WO2005087911A1 - Microbe culturing apparatus and utilizing the same, hydrogen production apparatus and fuel cell system - Google Patents

Microbe culturing apparatus and utilizing the same, hydrogen production apparatus and fuel cell system Download PDF

Info

Publication number
WO2005087911A1
WO2005087911A1 PCT/JP2005/004548 JP2005004548W WO2005087911A1 WO 2005087911 A1 WO2005087911 A1 WO 2005087911A1 JP 2005004548 W JP2005004548 W JP 2005004548W WO 2005087911 A1 WO2005087911 A1 WO 2005087911A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
hydrogen production
microorganisms
microorganism
culture
Prior art date
Application number
PCT/JP2005/004548
Other languages
French (fr)
Japanese (ja)
Inventor
Naoto Torata
Akihito Yoshida
Yasuyoshi Goto
Hideaki Yukawa
Masuzo Yokoyama
Masayuki Inui
Original Assignee
Sharp Kabushiki Kaisha
Research Institute Of Innovative Technology For The Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha, Research Institute Of Innovative Technology For The Earth filed Critical Sharp Kabushiki Kaisha
Priority to JP2006511036A priority Critical patent/JP4476285B2/en
Publication of WO2005087911A1 publication Critical patent/WO2005087911A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/36Means for collection or storage of gas; Gas holders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/02Bioreactors or fermenters combined with devices for liquid fuel extraction; Biorefineries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an apparatus for culturing microorganisms, an apparatus for producing hydrogen using microorganisms cultivated by the apparatus, and a fuel cell system using the apparatus.
  • Hydrogen is attracting attention as an ultimate clean energy source that, unlike fossil raw materials, does not generate substances of concern such as carbon dioxide and sulfur oxides even when burned due to environmental problems. Hydrogen has more than three times the amount of heat per unit mass of petroleum, and if supplied to a fuel cell, can be converted to electrical and thermal energy with high efficiency.
  • the reaction conditions are normal temperature and normal pressure, and the generated gas does not contain CO, so that its removal is unnecessary.
  • Biological hydrogen production methods are broadly classified into methods using photosynthetic microorganisms and methods using non-photosynthetic microorganisms (mainly anaerobic microorganisms).
  • the former method requires the use of photoenergy for hydrogen generation. Since the photosynthetic microorganisms have low light energy utilization efficiency, a large light-collecting area is required for hydrogen generation.
  • issues that need to be solved such as the price problem of the hydrogen generator and the difficulty of maintenance and management, and it has not reached a practical level.
  • Patent Document 1 discloses that hydrogen is separated from biogas generated in a hydrogen fermenter. Separated, the remaining gas containing carbon dioxide as the main component is circulated through the hydrogen fermenter and blown into the fermentation broth, and the fermenter is pressurized to reduce the hydrogen concentration and activate the action of hydrogen-producing bacteria. A method for increasing the amount of generated hydrogen and the yield of hydrogen is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-280045 (Patent Document 2) supplies hydrogen gas produced by a microorganism to a fuel cell.
  • Patent Document 2 a fuel cell-incorporated bioreactor in which hydrogen gas is sucked into the fuel cell from the gas phase part of the reactor by lowering the hydrogen partial pressure at the hydrogen inlet according to the consumption of hydrogen is shown.
  • Patent Document 3 discloses that a Clostridium genus is placed in a first reaction vessel into which Clostridium microorganisms are charged. The microorganisms decompose the organic material to produce hydrogen, and the remaining organic material after the generation of hydrogen is charged into the second reaction vessel. The material can be decomposed into water and carbon dioxide. Thus, a method is described in which almost no discharge (garbage) is generated by the decomposition of the organic material in the second reaction vessel.
  • Patent Document 4 Japanese Unexamined Patent Publication No. Hei 11-99397
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-135088
  • Patent Document 2 JP-A-2002-280045
  • Patent Document 3 JP-A-2002-355022
  • Patent Document 4 JP-A-11 99397
  • microorganisms When storing microorganisms, it was necessary to store them under low-temperature conditions, a special storage was required also from the viewpoint of safety, and it was necessary to purchase microorganisms on a regular basis. Further, there is another problem that the processing of the container storing the microorganisms is complicated.
  • a microorganism having a hydrogen generating ability is continuously cultured in a large amount, the hydrogen generating ability of the microorganism is continuously induced, and the microorganism is continuously supplied to a hydrogen producing apparatus.
  • the device that can be used has been unseen.
  • Japanese Patent Application Laid-Open No. 2002-280045 discloses a microorganism of the type in which hydrogen partial pressure is kept low by utilizing the consumption of hydrogen by power generation of a fuel cell.
  • a system including a hydrogen production device and a fuel cell is shown.
  • the conventional hydrogen production method using a microorganism has a problem of treating fermentation residues after hydrogen generation.
  • hydrogen is generated in a first reaction vessel using two reaction vessels, and the remaining organic material after the generation of hydrogen is charged into a second reaction vessel.
  • This shows a method in which a second microorganism is injected to decompose water and carbon dioxide, and no effluent is generated.
  • the process is complicated and control is difficult, for example, it is necessary to put the remaining organic material after hydrogen generation into the second reaction vessel.
  • Such pathways include, for example, a pathway that generates hydrogen in the pathway of decomposing glucose to pyruvate, a pathway that generates hydrogen in the process of acetic acid generation via acetyl acetyl pyruvate, and a formic acid derived from pyruvate.
  • routes that directly generate hydrogen include, for example, a pathway that generates hydrogen in the pathway of decomposing glucose to pyruvate, a pathway that generates hydrogen in the process of acetic acid generation via acetyl acetyl pyruvate, and a formic acid derived from pyruvate.
  • the route (a) is a method via reduced nicotinamide adenine dinucleotide (NADH) and ferredoxin (Fd). This route is disadvantageous in terms of thermodynamics, so it is necessary to reduce the hydrogen partial pressure in the reaction system.
  • NADH nicotinamide adenine dinucleotide
  • Fd ferredoxin
  • the route (b) is a method via reduced ferredoxin and hydrogenase.
  • acetic acid is generated along with the generation of hydrogen.
  • the route (c) is a method via formate dehydrogenase and hydrogenase. Since the product is also a gas only at normal temperature, separation of hydrogen from the reaction solution occurs and immediately continuous hydrogen production and hydrogen production become possible.
  • the present inventors have developed a hydrogen production apparatus capable of continuous hydrogen production and a method for controlling the hydrogen production amount by mainly utilizing a metabolic pathway in which hydrogen is produced from formic acid and formate in a microbial cell. It has been found that it is possible to provide a hydrogen production device capable of performing the above.
  • a hydrogen production device capable of continuous hydrogen production continuously cultivating microorganisms under aerobic conditions, expressing the hydrogen generation ability under anaerobic conditions, and supplying the microorganisms to the hydrogen generation device Thereby, the continuous hydrogen generation of the hydrogen generator can be performed.
  • a cultivation unit for microorganisms communicating with a gas source containing oxygen and a nutrient source supply unit, and an organic matter supply source and an anaerobic atmosphere providing means communicating with the cultivation unit for supplying organic matter that allows the microorganisms to express hydrogen.
  • the present inventors have found an apparatus for culturing microorganisms having a hydrogen-producing ability under anaerobic conditions for microorganisms, and a hydrogen producing apparatus in which the culturing apparatus is connected to the hydrogen producing apparatus.
  • controlling the supply amount of the organic substrate and controlling at least one hydrogen generation condition selected from formic acid concentration conditions, temperature conditions, pH conditions, microorganism concentration conditions, and stirring conditions.
  • a hydrogen production system that can control the amount of hydrogen production.
  • a fuel cell system using the above-mentioned hydrogen production device capable of controlling the power generation amount of the fuel cell has been found. Power!
  • the present invention relates to a biological hydrogen production apparatus mainly utilizing a metabolic pathway generated by hydrogen formate and a fuel cell system using the same.
  • a biological hydrogen production apparatus mainly utilizing a metabolic pathway generated by hydrogen formate and a fuel cell system using the same.
  • it is possible to control the amount of hydrogen production by controlling the supply amount of an organic substrate which is a raw material for hydrogen production.
  • at least one hydrogen generation condition selected from formic acid concentration condition, temperature condition, pH condition, microorganism concentration condition, and stirring condition power, it is possible to control the hydrogen production amount.
  • a fuel cell system capable of controlling a power generation amount by controlling a hydrogen production amount that is, a fuel cell system capable of immediately obtaining required power, is provided. is there.
  • an object of the present invention is to provide a hydrogen production apparatus capable of easily and continuously producing hydrogen in one reaction vessel without requiring complicated processes and control.
  • the present invention provides:
  • a culture section for microorganisms communicating with a gas source containing oxygen and a nutrient source supply section, and an organic substance supply source and an anaerobic atmosphere communicating with the culture section for supplying organic substances that allow the microorganisms to generate hydrogen.
  • An apparatus for culturing microorganisms comprising: a hydrogen-producing ability-expressing section under anaerobic conditions for microorganisms having an application means;
  • the culture device according to the above (1) or (2), wherein the organic substance that causes the microorganism to exhibit hydrogen-producing ability is at least one selected from glucose, formic acid, and formate;
  • the culture apparatus is connected to a hydrogen generation reaction section, and the hydrogen generation reaction section supplies an organic substrate.
  • Hydrogen production equipment in communication with the raw material supply
  • the hydrogen production amount is controlled by at least one hydrogen generation condition selected from the group consisting of organic substrate concentration conditions, temperature conditions, pH conditions, microorganism concentration conditions, and stirring conditions in the hydrogen generation reaction section.
  • a system comprising the hydrogen production apparatus according to any one of the above (5) to (12) and a fuel cell using hydrogen that also generates power as a fuel gas;
  • the amount of power generated by the fuel cell is controlled by one of the hydrogen generation conditions selected from the organic substrate concentration conditions, temperature conditions, pH conditions, microorganism concentration conditions, and stirring conditions in the hydrogen generation reaction section.
  • partitioned spaces may be a single space or a plurality of spaces may be provided.
  • microorganisms can be continuously cultured, and the microorganisms can continuously exhibit hydrogen generation ability (reformation).
  • the microorganism culturing device to a hydrogen production device, it is possible to continuously supply microorganisms having an ability to produce hydrogen to the hydrogen production device, thereby providing a device capable of continuously producing hydrogen. it can.
  • the supply amount of the organic substrate and the hydrogen generation conditions (organic substrate concentration, temperature, PH, By controlling (concentration and stirring), it is possible to provide a hydrogen production apparatus capable of controlling the amount of hydrogen production.
  • the supply of organic substrate and hydrogen production conditions (organic substrate concentration, temperature, pH, microbial By controlling the mass concentration and agitation), it is possible to provide a fuel cell system including a hydrogen production device capable of controlling the power generation amount of the fuel cell.
  • FIG. 1 is a schematic diagram of a preferred microorganism culturing apparatus of the present invention.
  • FIG. 2 is a schematic diagram of a preferred hydrogen generator of the present invention.
  • FIG. 3 is a schematic configuration diagram of a fuel cell system using the hydrogen production device of the present invention.
  • FIG. 4 is a schematic configuration diagram of a fuel cell system using the hydrogen production apparatus used in Examples 2-15.
  • FIG. 5 is a diagram showing the relationship between the supply rate of an organic substrate, the amount of hydrogen production, and the amount of power generation in a fuel cell system using the hydrogen production apparatus of the present invention.
  • FIG. 6 is a diagram showing the relationship between the concentration of an organic substrate, the amount of hydrogen production, and the amount of power generation in a fuel cell system using the hydrogen production apparatus of the present invention.
  • FIG. 7 is a diagram showing the relationship between the temperature in a reaction solution, the amount of hydrogen production, and the amount of power generation in a fuel cell system using the hydrogen production apparatus of the present invention.
  • FIG. 8 is a diagram showing a relationship between pH in a reaction solution, a hydrogen production amount, and a power generation amount in a fuel cell system using the hydrogen production apparatus of the present invention.
  • FIG. 9 is a diagram showing the relationship between the concentration of microorganisms in a reaction solution, the amount of hydrogen production, and the amount of power generation in a fuel cell system using the hydrogen production apparatus of the present invention.
  • FIG. 10 is a diagram showing the relationship between the number of revolutions of a stirrer using the hydrogen production device of the present invention, the hydrogen production amount, and the power generation amount in the fuel cell system.
  • Waste liquid tank Hydrogen concentration tank (fixed tank)
  • Reformation vessel (hydrogen generation ability development tank): Organic material supply device
  • the culture apparatus of the present invention includes a microorganism culture tank that communicates with a nutrient source supply tank that stores and supplies a gas source containing oxygen and a nutrient source for culturing microorganisms to the culture tank.
  • a microorganism separation unit for separating microorganisms from the cultured culture solution, a reformer tank that has an anaerobic atmosphere-providing means to make the reformer tank anaerobic, and a reformer tank that expresses hydrogen generation ability,
  • a microorganism storage tank for collecting and storing the collected microorganisms.
  • the hydrogen generator of the present invention together with the above-described culturing apparatus, includes a hydrogen generation reaction tank having a hydrogen outlet, a tank for storing and supplying a solution containing an organic substrate to the hydrogen generation reaction tank, Microorganisms with reduced hydrogen production capacity inside the reactor and metabolic components of the microorganisms
  • a hydrogen generation reaction tank having a hydrogen outlet
  • a tank for storing and supplying a solution containing an organic substrate to the hydrogen generation reaction tank Microorganisms with reduced hydrogen production capacity inside the reactor and metabolic components of the microorganisms
  • FIG. 1 shows a preferred embodiment of the culture apparatus of the present invention.
  • the microorganism used in the present invention may be any microorganism capable of producing hydrogen, and is mainly a formate dehydrogenase gene (F. Zinoni et al., Proc. Natl. Acid. Sci. USA Vol. 83, pp. 4650 — 4654, July 1986 Biochemistry) and a microorganism having a hydrogenase gene (R. Boehm et al., Molecular Microbiology (1990), 4 (2), 231-243), and are mainly anaerobic microorganisms.
  • a formate dehydrogenase gene F. Zinoni et al., Proc. Natl. Acid. Sci. USA Vol. 83, pp. 4650 — 4654, July 1986 Biochemistry
  • R. Boehm et al. Molecular Microbiology (1990), 4 (2), 231-243
  • Examples of specific anaerobic microorganisms used in the present invention include Escherichia (poroa)
  • Escherichia microorganisms—for example, Escherichia coli ATCC9637, ATCC11775, ATCC4157, etc.
  • Klebsiella microorganisms for example, Talebsiella pneumoniae ATCC13883, ATCC8044, Enterobacter terrorobacter
  • Enterobacter aerogenes Enterobacter aerogenes ATCC13048, ATCC29007, etc.
  • microorganisms of the genus Clostridium eg, Clostridium beijerinckii ATCC25752, ATCC17795, etc.
  • the microorganism is cultured under aerobic conditions, propagated under anaerobic conditions, and then cultured under anaerobic conditions, whereby the hydrogen production pathway of the microorganisms is obtained.
  • an enzyme protein involved in the enzyme can be produced, and therefore, has an ability to generate hydrogen.
  • the expression of the function of the microorganism in this manner is herein referred to as "modification" (in the present invention).
  • the culture unit of the microorganism in the culture apparatus of the present invention stores a nutrient source for the growth of the microorganism, and is in communication with a nutrient source supply unit that supplies the nutrient source to the culture unit.
  • a microorganism culturing tank 24 as a microorganism culturing section communicates with a microorganism culturing medium tank 23 as a nutrient source supply section.
  • a normal nutrient medium containing a carbon source, a nitrogen source, a mineral source and the like can be used.
  • the carbon source include glucose, fructose, molasses, and the like
  • examples of the nitrogen source include inorganic nitrogen sources such as ammonia, ammonium salts, and nitrates
  • examples of the organic nitrogen source include urea and amino acids.
  • Proteins and the like can be used alone or in combination. Both inorganic and organic forms can be used in a similar manner.
  • a mineral source for example, potassium monohydrogen phosphate, magnesium sulfate, or the like mainly containing P, Mg, S, and the like can be used.
  • nutrients such as various vitamins such as peptone, meat extract, yeast extract, corn steep liquor, casamino acid, biotin, and thiamine can be added.
  • LB medium is used as the culture medium for microorganisms, supply 10 g of tryptone, 5 g of yeast extract, and 10 g of sodium chloride to 1 liter by adding water to microorganism culture medium tank 23. can do.
  • the nutrient source supply unit preferably has a sterilizing means for sterilizing the inside.
  • a sterilization means a device such as a heater or a heat exchanger capable of controlling the inside to a high temperature can be used.
  • a new culture medium when supplied to the tank, it can be sterilized by heating at 120 ° C for about 20 minutes. However, when a sterilized medium is used in advance, this step need not be performed. It is preferable that a heater or a heat exchanger is provided on the surface of the microorganism culture medium tank 23.
  • the nutrient source supply section and the microorganism culture section are communicated with each other using at least one kind of connection means selected from a pipe, a container, a pump, a sensor, and a valve.
  • the culture unit is provided with a mechanism for detecting the amount of liquid in the culture unit, and it is preferable that a nutrient source can be supplied from the nutrient source supply unit based on the detected value.
  • the medium tank 23 for culturing microorganisms and the culture tank The culture medium for microorganism culture can be sent to the culture tank 24 by using the pump 33 while being measured by the flow meter 32.
  • the cultivation performed in the microorganism culturing section is usually performed at about 20 ° C to about 40 ° C, preferably about 25 ° C to about 40 ° C under aerobic conditions such as aeration and stirring. Can be done at temperature.
  • the pH during the culturing is preferably in the range of 5-10, preferably around 6-8.
  • the pH adjustment during the culturing can be performed by adding an acid or alkali.
  • the carbon source concentration at the start of the culture is 0.1-20% (w / v), preferably 115% (w / v).
  • the culturing period is usually one half day to 15 days.
  • the culture section of the microorganism is in communication with a gas source containing oxygen!
  • a gas source containing oxygen oxygen or air is generally used.
  • a gas supply method containing oxygen a gas supply method used for ordinary aerobic culture, for example, an air pump can be used.
  • the gas source containing oxygen has means for sterilizing the gas, and can supply the sterilized gas to the culture unit.
  • the amount of sterilized air or oxygen to be supplied to the microorganism culturing unit is preferably 0.001 to 1 liter of oxygen / 1 liter of solution, which can be appropriately selected according to the microorganism to be used. More preferably, 0.01-0.5 liter oxygen / 1 liter solution 'min. In Fig.
  • the microbial culture tank is supplied with sterile air or oxygen from the sterile air supply device 25 under the control of a flow meter 34 using a pump 35 at a speed of 0.001-1 liter oxygen / 1 liter solution 'min. Can be sent.
  • the culture part of the microorganism is in communication with a gas source containing oxygen, and can be cultured under aerobic conditions, but can also be cultured under anaerobic conditions. In this case, gas should be supplied from the gas source to the culture unit.
  • the microorganism culture section preferably has an inlet through which the above-mentioned microorganisms can be introduced. It is preferable that the cells to be introduced are introduced so that the cells have an optical density OD of 0.01 to 10 in the culture part of the microorganism. More preferably, bacteria
  • Body optical density OD 0.05-5.
  • the culture tank 24 is filled with microorganisms.
  • Microorganisms are introduced through a mouth (not shown).
  • microorganisms may be introduced only at the start of continuous culture.
  • additional microorganisms can be introduced after the start of continuous culture.
  • the ability of microorganisms to produce hydrogen is low due to equipment problems. When it is lowered, the same kind of microorganism can be injected from the input port.
  • the microorganisms cultured in the microorganism culture section are sent to a separation section capable of separating the cultured microorganisms and the culture solution.
  • a separation section capable of separating the cultured microorganisms and the culture solution.
  • membrane separation centrifugation, or the like can be used, and it is preferable to use membrane separation, which is a simple operation.
  • the separation unit it is also possible to perform an operation for removing a substance contained in the culture solution and acting as a hindrance when expressing the ability to generate hydrogen. Such an operation includes washing the separated microorganism using an anaerobic unused medium, sterilized water, or the like.
  • the culture solution sent to the microorganism washing tank 29 as a separation unit removes a large amount of microorganisms from the vent 30 in order to remove a substance that is an inhibitory factor when inducing hydrogen production. Separate some or all of the non-microbial solution with a smaller 1 ⁇ m or smaller eye filter.
  • the mixture of the microorganism and the medium is sent to the reforming vessel (hydrogen generating ability expression tank) 26 by the pump 40 and the flow meter 39.
  • a hydrogen-producing ability expressing section for causing a microorganism after culturing to exhibit hydrogen-producing ability is a system for maintaining the reforming section in an anaerobic state.
  • the time for expressing the hydrogen generation ability can be changed.
  • a nitrogen source or a mineral source indicated as a nutrient source for the growth of microorganisms.
  • the hydrogen generating ability expressing section has an anaerobic atmosphere providing means.
  • the means for imparting an anaerobic atmosphere include a means for heating the contents in the reforming section, a means for reducing the pressure in the reforming section, and a means for introducing an inert gas such as nitrogen gas or carbon dioxide gas into the reforming section. They can be used alone or in combination.
  • an inert gas such as nitrogen gas or carbon dioxide gas
  • the inside of the reforming section is brought into an anaerobic state by reducing the pressure, the inside of the reforming section is reduced to about 6.67 ⁇ 10 2 Pa or less, more preferably about 4.00 ⁇ 10 2 Pa or less, for about 1 to 60 minutes. For about 5 to 60 minutes.
  • a method is generally used in which a reaction system, which is preferably maintained in an anaerobic state even during the reforming reaction, is sealed with an inert gas such as nitrogen gas or carbon dioxide gas.
  • an appropriate reducing agent eg, thioglycolic acid, ascorbic acid, cysteine hydrochloride, mercaptoacetic acid, thiolacetic acid, daltathione, sulfuric acid sulfate, etc.
  • anaerobic conditions can be obtained, and a means for introducing such a reducing agent can also be used.
  • the oxidation reduction potential in the solution in the hydrogen generating ability expressing section is preferably -100mV--500mV, more preferably -150mV--400mV, and still more preferably -200mV--350mV.
  • the oxidation-reduction potential can be measured with, for example, ORP Electrodes manufactured by BROADLEY JAMES.
  • the organic substance to be supplied to the reforming section in order to cause the microorganism to exhibit hydrogen-producing ability at least one selected from the group consisting of dalcose, formic acid, and formate can be used.
  • the concentration of glucose is preferably 1 to 1000 mM, more preferably 1 to 300 mM, and still more preferably 10 to 250 mM, since the expression of the hydrogen generating ability can be performed more easily. Supply.
  • formate zinc formate, sodium formate, potassium formate, cesium formate, nickel formate, barium formate, calcium formate, ammonium formate and the like can be used.
  • a solution of formic acid or formate it is preferable to supply them at a concentration of 1-1000 mM, more preferably 1-1500 mM, and even more preferably 1-1300 mM. Yes, particularly preferably 1 to 50 mM.
  • Examples of the organic substance include sugars such as glucose, fructose and molasses.
  • the amount of glucose is preferably an amount necessary to increase the number of cells to about ⁇ times or more by dividing and growing the microorganism under anaerobic conditions. This mitotic growth can be easily known by performing ordinary cell optical density measurement, for example, using a spectrophotometer DU-800 manufactured by Beckman Coulter.
  • formate dehydrogenase preferably contains a trace amount of a metal component (iron, molybdenum, nickel, selenium, etc. are generally used, although the metal component varies depending on the type of microorganism used).
  • the microorganism growth medium contains glucose
  • the microorganism growth medium can be used as a glucose source.
  • the induction of the hydrogen-producing ability of the microorganism in the hydrogen-producing ability expressing section is performed at a temperature of about 20 ° C to 40 ° C, preferably about 25 ° C to 40 ° C. Further, the pH can be adjusted at 5-10, preferably around 6-8. The time for inducing the hydrogen-producing ability of the microorganism depends on the microorganism used, and is usually 0.5 to 24 hours.
  • communication between the microorganism culturing unit and the reforming unit is performed using at least one selected from a pipe, a pump, a sensor, and a valve. Further, as described above, a separation unit may be interposed between the culture unit and the reforming unit.
  • the reforming section preferably has a mechanism for detecting the amount of liquid in the reforming section. Based on this detection value, it is preferable to adjust the amount of microorganisms to be introduced from the culture section.
  • the reforming section can store and supply the microorganisms expressing the hydrogen generating ability.
  • the microorganism storage unit preferably has a mechanism capable of continuously or intermittently supplying microorganisms to the hydrogen production device.
  • the pump 42 and the pump 42 Organic substances are added while controlling with a flow meter 41.
  • the microorganisms that have exhibited hydrogen-producing ability in the reforming tank are sent to the microorganism storage tank 28, where they can be stored until supplied to the reaction tank 2 of the continuous hydrogen generator described below as needed.
  • FIG. 2 shows an example of a continuous hydrogen generation system including a microorganism culturing apparatus connected to a hydrogen generation reaction section of a continuous hydrogen generator.
  • the above-described culture apparatus is connected to a hydrogen generation reaction unit.
  • the reforming vessel also separates part or all of the solution other than the microorganisms into the hydrogen generation reaction section in order to remove metabolites such as ethanol, acetic acid, and lactic acid.
  • Methods for separation include a method of reducing the amount of culture solution containing metabolites by a method of cross-flow filtration using a filter, and a method of separating microorganisms from the culture supernatant by centrifugation and removing the culture supernatant.
  • the microorganism after centrifugation is newly dispersed and suspended in a medium, washed, and sent to the hydrogen generation reaction section for use. Further, in order to reduce the amount of metabolites brought into the hydrogen generation reaction section, it is preferable to repeat the above-mentioned centrifugation and washing.
  • the above metabolites are known to adversely affect hydrogen production by microorganisms.
  • the amount of metabolites produced in the culture apparatus for microorganisms can be reduced as much as possible and delivered to the hydrogen generation reaction section, so that the microorganisms can stably produce hydrogen for a long time. be able to.
  • the culturing device including the culturing unit for microorganisms and the hydrogen generating ability expressing unit in the hydrogen producing device is the same as that described for the culturing device described above.
  • the culture apparatus and the hydrogen generation reaction section are connected by a mechanism capable of transporting microorganisms.
  • a mechanism capable of transporting the microorganisms a normal mechanism for transporting microorganisms, which is appropriately combined with a pump, piping, and the like, can be used. And a mechanism for introducing microorganisms into the culture device by setting the inside of the hydrogen generation reaction section to negative pressure.
  • the microorganisms reformed in the reforming tank 26 as described above are stored in the microorganism supply tank 28, and if necessary, the power 14 is supplied to the hydrogen generating reaction tank (Hereinafter, also referred to as a reaction tank).
  • the concentration of the microorganisms to be supplied to the reaction tank 2 is within a concentration range of 0.1 to 80% (w / w) (based on the weight of the wet cells), preferably 10 to 70% (w / w) (the weight of the wet cells). (Based on body mass).
  • the reaction tank 2 can be supplied with a hydrogen production medium from the medium tank 3.
  • a medium it is preferable to use a medium different from the microorganism growth medium used in the above-mentioned culturing unit in terms of hydrogen generation performance of the microorganism, but the same medium can also be used.
  • the medium can also be supplied to the culture tank 24 of the device. In this way, the hydrogen generator can be made compact.
  • the hydrogen generation reaction section is controlled at a temperature of 20 ° C to 40 ° C, and is preferably maintained at a temperature of 25 ° C to 40 ° C.
  • the hydrogen generation reaction section has an anaerobic atmosphere providing means.
  • the anaerobic atmosphere providing means is the same as that described above for the anaerobic atmosphere providing means in the hydrogen generating ability expressing section.
  • the hydrogen generation reaction section is preferably in communication with a source of an organic substance for hydrogen generation (hereinafter, also referred to as an organic substrate) for supplying an organic substance for hydrogen generation.
  • the organic substance for hydrogen generation may be a compound such as a saccharide that is converted into formic acid in the intracellular metabolic pathway, or may be formic acid or formate.
  • the formate is a substance having a hydrocarboxyl group (Danigaku structural formula HCOO—).
  • formic acid sodium formate, potassium formate, calcium formate, manganese formate, nickel formate, cesium formate, barium formate, ammonium formate and the like can be mentioned.
  • the direct supply method can be preferably used. Then, while controlling the solution containing the organic matter for hydrogen generation from the fuel tank 1 using the pump 13 and the flow meter 12 in the reaction tank 2 maintained in an anaerobic state, the pH of the solution is in the range of 5-9. Can be supplied. When the pH varies greatly, it is possible to supply the P H adjusted solution.
  • the hydrogen generation reaction section preferably has means for flowing a liquid inside the reaction section in order to increase the area of contact between the organic matter and the microorganisms for hydrogen generation.
  • a mixing blade for moving the contents of the reaction section a device for spraying the contents, a device for dropping the contents provided inside the reaction tank, and the like can be used.
  • the above-mentioned reforming tank 26, organic matter supply device 27, reaction tank 2, and fuel tank 1 Materials that are stable in material are selected according to their properties, and those in which part or all of the inside of the tank / tank is coated with a chemically stable material are preferred. For example, if an acidic solution is used, a tank made of an acid-resistant material such as an alloy can be used.
  • the surfaces of the reforming tank 26 and the reaction tank 2 are preferably corrosion-resistant.
  • a hydrogen concentrating section (fixed section) is provided after the hydrogen generation reaction section, and hydrogen gas is provided.
  • Other components can be fixed.
  • a method for fixing components other than hydrogen gas a conventionally known method can be used, and a fixing method using an absorbent using a liquid absorbent, a solid absorbent, or the like can be used.
  • removing carbon dioxide a method of storing a liquid carbon dioxide absorbent in a hydrogen concentrating unit and fixing carbon dioxide can be used.
  • a liquid carbon dioxide absorbent an ethanolamine solution or the like can be used.
  • a hydrogen concentration tank 5 can be provided to concentrate hydrogen gas.
  • the valve 21 of the hydrogen concentrating tank 5 is a valve for replacing the condensing agent (absorbent), but it does not work even if there are two or more replacement ports.
  • the absorbent regeneration system can be combined with a combination of a plurality of valves and tanks. When using a system that adsorbs at room temperature and regenerates at high temperature, such as zeolite and amine-based solutions, it is also possible to regenerate the condensing agent using the heat generated in the fuel cell unit described below.
  • the hydrogen production device is provided with a hydrogen generation amount detection unit, and is configured to be able to supply microorganisms to the culture device based on the detection value of the hydrogen generation amount detection unit.
  • a hydrogen generation amount detection unit a device capable of measuring the amount of generated hydrogen can be used, and for example, a gas flow meter can be used.
  • the hydrogen generation amount can be measured by the flow meter 32, and the microorganisms can be supplied from the microorganism storage tank 28 to the reaction tank 2 based on the measured value.
  • the supply amount of the solution containing the organic matter for hydrogen generation to the reaction tank is based on information such as the output of the fuel cell 6 described later, a flow meter 32 for detecting the amount of hydrogen generation, the temperature of the reaction tank 2 and the stirring state. Can be controlled by adjusting the feed pump. If the power output of the fuel cell 6 does not increase due to the increase in the output of the supply pump, the microbial Since it is considered that the amount has decreased, it is preferable to extract a part of the medium and the microorganisms in the reaction tank 2 and supply the microorganisms and a new medium to the medium tank and the culturing apparatus. At that time, the amount of microorganisms supplied from the microorganism storage tank 28 to the reaction tank 2 is controlled.
  • the bacterial cells and a part of the medium in the reaction tank 2 are controlled by using the pump 18 while controlling the extraction amount based on information such as the amount of hydrogen generation, the temperature, and the supply amount of the raw material. Drained into waste tank 4. A predetermined amount of culture medium is supplied from the culture tank 3 and a predetermined amount of microorganisms from the microorganism storage tank 28 to the reaction tank 2 using the pump 15 in accordance with the amount of the sample to be extracted.
  • the fuel tank 1, the reaction tank 2, and the culture tank 3 use a heat insulating material such as polyurethane foam or glass wool to suppress the amount of heat transfer, and the temperature is about 20-45 ° C using a heat exchanger. It is preferred to be controlled by
  • FIG. 3 shows an example of a fuel cell system configuration diagram using a hydrogen production device capable of controlling the amount of hydrogen production.
  • the organic substrate is supplied from the tank 52 containing the organic substrate shown in FIG.
  • the hydrogen generation reaction section 51 can include a reaction solution containing a microorganism having a formate dehydrogenase gene and a hydrogenase gene and a medium component (hydrogen generation medium). By supplying the organic substrate to the hydrogen generation reaction section 51, the microorganisms in the reaction solution produce a gas containing hydrogen.
  • the gas produced by the microorganism passes through a condenser 55, is separated into a hydrogen-rich gas by a gas separator 56, and is supplied to a fuel electrode of a fuel cell 54.
  • a gas separator 56 In the fuel cell 54, power can be generated from the hydrogen gas supplied to the fuel electrode and the oxygen in the air supplied to the air electrode.
  • the organic substrate supply pump 61 By controlling the supply amount of the organic substrate by the organic substrate supply pump 61, it is possible to control the gas production amount. Further, by controlling the supply amount of the organic substrate, the power generation amount in the fuel cell 54 can be controlled.
  • the formic acid concentration, temperature, pH, and microorganism concentration can be measured.
  • a hydrogen production device that can confirm the concentration and set the conditions of formic acid concentration, temperature, pH, and microorganism concentration can be obtained.
  • the stirring a hydrogen production apparatus capable of setting the condition of the number of rotations of the stirrer by obtaining the number of rotations by attaching the stirrer 60 to the reaction vessel and rotating the same is obtained.
  • a fuel cell system is formed using the above-described hydrogen production apparatus, at least one hydrogen production condition selected from formic acid concentration conditions, temperature conditions, pH conditions, microorganism concentration conditions, and stirring conditions is controlled. Accordingly, it is possible to obtain a fuel cell system including a hydrogen production device capable of controlling the amount of hydrogen production and simultaneously controlling the amount of power generation as a fuel cell system.
  • the formic acid concentration condition is controlled by measuring the formate ion concentration in the reaction vessel.
  • Methods for measuring the formic acid concentration include a method using liquid chromatography and a method using an ultrasonic liquid densitometer that measures with ultrasonic waves and electric conductivity.
  • a method using a densitometer using ultrasonic waves is used to measure the time-dependent changes in the solution, but a method using liquid chromatography can also be used in combination.
  • Increasing the formic acid concentration increases hydrogen production, and decreasing formic acid concentration decreases hydrogen production. Further, when the concentration exceeds a certain formic acid concentration, it becomes difficult to control the hydrogen production.
  • the range of formic acid concentration at which the hydrogen production can be controlled is 10 to 100 mM, since 0 to 250 mM is the range where the preferred linear relationship between hydrogen production and formic acid concentration can be obtained. preferable.
  • the formic acid concentration is increased by adding an organic substrate, and the formic acid concentration is decreased by adding a medium component or the like.
  • the reaction temperature condition is controlled by measuring the temperature in the reaction vessel.
  • a method for measuring the temperature a method using a general resistance type temperature sensor or the like can be mentioned. Increasing the reaction temperature increases hydrogen production, depending on the microbial species used, and decreasing the temperature decreases hydrogen production. Generally, when using microorganisms that grow at room temperature, the temperature range in which the amount of hydrogen production can be controlled is preferably 20 ° C to 45 ° C, more preferably. The range of 30 ° C-40 ° C is preferred for microbial life.
  • a method of raising the reaction temperature a method of heating a hydrogen production device using thermal energy obtained by a fuel cell is used. Examples of the method for lowering the reaction temperature include air cooling and water cooling, but the water cooling method is used because it is easy to control.
  • the pH condition is controlled by measuring the pH in the reaction solution.
  • the value is detected using a general pH sensor or the like.
  • the pH value depends on the microorganism species used, but the smaller the difference between the optimal pH range and the pH value in the reaction solution, the higher the hydrogen production.The larger the difference, the higher the hydrogen production. Decrease.
  • the optimum value varies depending on the species of microorganism used and the buffer component in the reaction solution, but the optimum pH value is often 4.0 to 8.0, and more preferably 5.5 to 5. 7. Exists at 0.
  • a method of increasing the pH a method of adding an alkaline solution can be used.
  • a method of lowering the pH a method of adding an organic substrate is used.
  • alkaline solution examples include aqueous solutions of lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, ammonia and the like. Among them, it is preferable to use ammonia water from the viewpoint of the cost of sodium hydroxide and the fact that ammonia water can also be used as a nitrogen source.
  • the concentration of microorganisms is controlled by measuring the concentration of microorganisms in the reaction solution.
  • Methods for measuring the concentration of microorganisms include a method using a turbidity sensor, a method for calculating from the absorbance, and a method for applying an electric field to a part of the reaction solution and measuring the degree of polarization of cells in that part. .
  • a measurement is performed using a turbidity sensor in order to observe the change over time in the solution
  • a method for calculating the absorbance force can also be used together, but the measurement method is not limited to these.
  • Increasing the concentration of microorganisms increases hydrogen production, and decreasing the concentration of microorganisms decreases hydrogen production.
  • a method for increasing the concentration of microorganisms a method of introducing microorganisms from the microorganism supply port 66 is used.
  • a method for lowering the concentration of microorganisms a method of supplying a culture medium from the culture medium supply pump 62 into the reaction solution is used.
  • the stirring conditions are controlled by setting the number of rotations of the stirring device 60 in the reaction solution.
  • the stirring conditions are not limited to the rotation speed, but various control methods such as a method for measuring the torque of the motor 59 and the power consumption of the stirring device 60 can be used.
  • the following shows an apparatus for performing this. Increasing the rotation speed of the stirrer 60 increases the hydrogen production, and decreasing the rotation speed of the stirrer 60 decreases the hydrogen production.
  • the rotation speed of the stirring device 60 can be adjusted by adjusting the motor 59.
  • Magnetic stirrers are also preferably used because they facilitate maintenance.
  • the amount of hydrogen generated can be controlled by controlling at least one hydrogen generation condition selected from the formic acid concentration conditions, temperature conditions, pH conditions, microorganism concentration conditions, and stirring conditions described above. . In addition, by controlling the amount of hydrogen production in this way, it is possible to control the amount of power generated by the fuel cell.
  • the hydrogen production amount can be controlled by combining two or more of the above hydrogen production conditions.
  • a method of simultaneously controlling formic acid concentration conditions and microorganism concentration conditions, or a combination of microorganism concentration conditions and stirring conditions is preferable, which is preferable.
  • a means for supplying the organic substrate to the reactor (hydrogen generation reaction section) 51 a method of supplying the organic substrate while spraying it using a device 57 for spraying the organic substrate can be used.
  • spraying By spraying, the organic substrate can be dispersed and supplied, the reaction area increases, and the production rate of hydrogen-containing gas can be increased accordingly.
  • spraying makes it possible to reduce the load of the microorganisms in the reaction solution on local acid. Furthermore, it is preferable because the life of microorganisms is improved.
  • Means for spraying include a method by pressurization and a method by ultrasonic waves.
  • the means for spraying is preferably a method using ultrasonic waves.
  • the condenser 5 By using the condenser 5 near the outlet of the gas containing hydrogen generated from the reactor 51, the amount of steam contained in the gas containing hydrogen produced by the microorganisms can be reduced.
  • the cooling method is preferably water cooling to increase the force effect that is possible with air cooling.
  • the vapor contained in the generated gas is condensed in the system piping from the reactor 51 to the fuel cell, forming droplets and eventually a liquid film, and the generated hydrogen is transferred to the fuel cell. The point at which the supply tends to stagnate is improved.
  • the step of generating a gas containing hydrogen gas from the supply of the organic substrate is preferably performed in a constant temperature bath 53 in an atmosphere at a constant temperature.
  • the organic substrate can be replenished from the organic substrate supply port 63.
  • the gas separation device 56 can separate a hydrogen-rich gas from a gas mainly generated from hydrogen and carbon dioxide generated in the reactor 51.
  • a separation method a general method such as a membrane separation method or an adsorption method is used.
  • a tank 58 containing a medium component, a medium component supply pump 62, a medium component supply port 64, and a reaction solution discharge valve 65 can be provided.
  • a method is used in which the medium component is continuously or semi-continuously added from the medium component supply pump 62 and the reaction solution is withdrawn at the same flow rate from the reaction solution discharge pump 65.
  • Microorganisms can also be supplied from the microorganism supply port 66.
  • the medium component in the tank 58 containing the medium component can be supplied from the medium component supply port 64.
  • formic acid or formate is supplied continuously or intermittently (direct supply method), or a saccharide that is converted to formic acid in the intracellular metabolic pathway (Eg, glucose, fructose, mannose, galactose, etc.) by supplying the compound (indirect supply method). It is also possible to use both direct and indirect supply methods.
  • the formate is a substance having a hydrocarboxyl group (Hirokaku structural formula HCOO-).
  • formic acid sodium formate, potassium formate, calcium formate, manganese formate, nickel formate, cesium formate, barium formate, and ammonium formate.
  • formic acid, sodium formate, potassium formate, calcium formate, and ammonium formate are preferred from the viewpoint of solubility in water.Furthermore, formic acid, sodium formate, and ammonium formate are preferred in terms of cost. preferable.
  • the concentration of the formic acid and formate to be supplied is preferably close to the saturation concentration of each substance, because the volume of the reaction solution in the reactor 51 is not increased.
  • Formic acid a high-purity liquid raw material, is more preferable in terms of handling.
  • the oxidation-reduction potential is 100 mV (millivolt) per 500 mV, preferably 200 mV. 500 mV.
  • a reaction solution for hydrogen generation having a microorganism concentration of 10% (w / w) to 90% (w / w) (based on wet cell mass).
  • the concentration of the microorganism is preferably 10% (w / w) to 80% (w / w) (based on the weight of the wet cells). More preferably, from the viewpoint of the amount of hydrogen generated per unit volume, a microorganism concentration of 20% (w / w) to 80% (w / w) (based on wet cell mass) can be preferably used.
  • the hydrogen productivity required for practical use is 50 L (H).
  • Examples of medium components that can be contained in the reaction solution used in reactor 51 include ordinary nutrient media containing a carbon source, a nitrogen source, a mineral source, and the like.
  • Examples of the carbon source include glucose, fructose, molasses, etc.
  • examples of the nitrogen source include inorganic nitrogen sources, such as ammonia, ammonium salts and nitrates
  • examples of the organic nitrogen source include urea, amino acids, and proteins. Etc. can be used alone or in combination. Both inorganic and organic forms can be used in the same way.
  • As a mineral source potassium monohydrogen phosphate, magnesium sulfate, etc., mainly containing K, P, Mg, S, etc. can be used.
  • nutrients such as peptone, meat extract, yeast extract, corn steep liquor, casamino acid, biotin, thiamine and other vitamins can be added.
  • an antifoaming agent When hydrogen is generated, it is preferable to add an antifoaming agent to the reaction solution.
  • Known antifoaming agents are used. Specifically, silicone-based and polyether-based antifoaming agents are used.
  • an acid-resistant metal As a material of the reactor 51, an acid-resistant metal, an acid-resistant coated glass or a plastic can be suitably used.
  • the rotating part of the stirring part which has a structure that does not allow oxygen to permeate into the inside of the reactor 51, has high sealing properties using packing etc. Is done.
  • a conventional hydrogen generator using city gas requires a reforming temperature of 600 ° C or higher, while a reforming method using methanol requires a reforming temperature of several hundred ° C.
  • the temperature of the reaction vessel of the present invention can be used at normal temperature. Further, although it usually takes time to start up and finish the conventional reformer, the method of the present invention can easily handle hydrogen production, shortening the time, and is preferable as a fuel cell system.
  • the electric power generated in the fuel cell can be connected to a device system via a power conversion system 7 as shown in FIG.
  • the gas discharged from the fuel cell generates heat through the combustion catalyst 9, and should be used as a part of the heat source that keeps the fuel tank 1, reaction tank 2, medium tank 3, and hydrogen concentration tank 5 warm as necessary. Can be.
  • the fuel cell system using the hydrogen production method of the present invention does not generate CO, so that there is little problem with the deterioration of the fuel cell, and a high temperature is required as a hydrogen supply method. It is clear that there is no need for a reformer system and that hydrogen can be produced simultaneously with the supply of organic substrates.
  • a microorganism having a hydrogen generating ability can be continuously cultured to express a hydrogen generating ability, and once a seed microorganism is supplied, it is useful for a long period of time. Microorganisms can be produced. In addition, it is possible to continuously supply the microorganisms that have developed hydrogen-producing ability to the hydrogen generator, and it is possible to continuously generate hydrogen using the microorganisms.
  • the hydrogen production apparatus of the present invention and the fuel cell system including the same can control the production rate of the gas containing hydrogen generated in the reactor 51 by controlling the supply rate of the organic substrate. It is possible, and furthermore, the power generation amount of the fuel cell can be controlled. In addition, by using formate and formic acid as organic substrates, continuous production of fermentation residue is difficult because the main product is gas and separation from reactor 51 is easy. It is characterized by the fact that it becomes possible to easily carry out efficient hydrogen production.
  • FIG. 2 shows the hydrogen generator used in Example 1.
  • the medium was supplied. Then, sterilized air was sent and aerated. After culturing at 37 ° C for 12 hours, the cells in the culture tank and the culture solution are supplied from the flow meter after judging the required amount of liquid sensor provided in the tank in the hydrogen generation ability expression tank. After judging the amount, it was sent to the hydrogen generating capacity expression tank using a pump.
  • the culture solution discharged from the culture tank was washed by separating the cells from the culture medium in a cell washing tank (not shown), mixed with a new medium, and then sent to the hydrogen generation ability expression tank. . At this time, the oxygen concentration in the tank was reduced using an exhaust device in order to make the hydrogen generating ability expression tank anaerobic.
  • the oxidation potential of the contents in the hydrogen generating ability expression tank was -250 mV.
  • sodium formate was supplied to about 50 mM to express the hydrogen generating ability to the cells.
  • the time to induce hydrogen production was 6 hours.
  • Microorganisms expressing hydrogen-producing ability were stored in a microorganism storage tank.
  • a water level sensor is installed in each of a culture tank, a culture tank, a cell washing tank, a reforming vessel (hydrogen generation ability expression tank), and a microorganism storage tank.
  • the liquid was sent using a flow meter and a pump.
  • the temperature inside each tank is 37. C and pH were controlled at about 6-7.
  • Hydrogen generation medium tank 3 contains water (1000 ml), tryptone peptone (1%), sodium molybdate (10 ⁇ ), and sodium selenite (10 ⁇ ) as hydrogen generation medium. ), Disodium hydrogen phosphate (26.5 mM), sodium dihydrogen phosphate (73.5 mM), yeast extract (0.5%) The nutrient solution was previously heat-sterilized at 120 ° C for 10 minutes and stored.
  • the reaction tank 2 is supplied with a medium for hydrogen generation from the medium tank 3 using the pump 15, and the cells are supplied from the microorganism storage tank.
  • the temperature is maintained at about 37 ° C and the pH is 6-7.
  • the formic acid aqueous solution was fed from the fuel tank 1 while measuring with the flow meter 12 using the pump 13.
  • the frequency of contact between the cells and formic acid was increased by stirring with a stirrer 8.
  • the generated mixed gas containing hydrogen passed through a pipe having a flow meter 32, and was adsorbed with diethanolamine in diethanolamine in a hydrogen concentration tank 5 to concentrate hydrogen.
  • the concentrated hydrogen is sent to the anode of the fuel cell unit 6 using the pump 45, and the air taken in by the pump 20 from the air inlet 19 is removed by the filter 10 to remove suspended matter, and then sent to the power source. Then, power was generated by using these.
  • the generated power is connected to the equipment's system by an inverter 7 or the like.
  • Example 1 The results of Example 1 clearly show that the use of the hydrogen production apparatus connected with the culture apparatus of the present invention generates hydrogen required for the fuel cell at a stable rate for several days. It became ⁇ .
  • a method for producing hydrogen using a microorganism by Escherichia coli W strain (ATCC9637).
  • the main culture solution was centrifuged (5000 rotations, 15 minutes), and the supernatant was removed to obtain a microorganism having a hydrogen production function.
  • This microorganism was separated by centrifugation, and then suspended and prepared in 500 ml (milliliter) of a hydrogen generation medium under a reduced state shown in the composition of Table 3 below.
  • FIG. 3 shows a schematic diagram of the apparatus used in this example.
  • the hydrogen generation reaction solution containing the microorganism prepared above was injected into the reactor 51, and the hydrogen generation medium shown in Table 3 was injected into the tank 58 containing the medium components.
  • 26M (molar mol / liter) of formic acid was prepared in the tank 52 containing the organic substrate.
  • the reaction solution temperature was 37 ° C
  • the pH of the solution was 6.0
  • the concentration of microorganisms was about 40% (based on the weight of cells in a wet state)
  • the stirring speed in the reaction solution was 800 rpm.
  • the organic substrate supply pump 61 was used to change the supply rate of the organic substrate, and the amount of hydrogen production gas generated by supplying the reactor 51 and the amount of power generated by the fuel cell were measured.
  • the feed rate was 10 mlZhr (milliliter / hour) (Example 2), 21 mlZhr (milliliter / hour) (Example 3), and 42 mlZhr (milliliter / hour) (Example 4).
  • Figure 5 shows the results
  • Fig. 5 shows the correlation between the supply rate of the organic substrate, the amount of hydrogen production, and the amount of power generation in the fuel cell system. It became clear that controlling the supply rate of the organic substrate can control the hydrogen production and the power generation of the fuel cell.
  • a microorganism capable of producing hydrogen was obtained in the same manner as in Example 2, and the obtained microorganism was suspended and prepared in a hydrogen generation medium to obtain a hydrogen generation reaction solution (500 ml, milliliter).
  • Formic acid was supplied to the hydrogen production device by the organic substrate supply pump 61, and the hydrogen production rate and the amount of power generated by the fuel cell were measured while adding formic acid in the following reaction solution so as to obtain the formic acid concentration.
  • the temperature of the reaction solution in the reactor was 37 ° C
  • the pH was 6.0
  • the concentration of microorganisms was Is controlled by the number of rotations of the stirrer, and the hydrogen production rate and the amount of power generation are measured at 800 rpm under the conditions of 40% (w / w) (based on the wet cell mass).
  • Fig. 6 shows the results.
  • Fig. 6 shows the correlation between the concentration of the organic substrate (formic acid) and the amount of hydrogen production and the amount of power generation in the fuel cell system.
  • Fig. 7 shows the results.
  • Fig. 7 shows the correlation between the temperature of the reaction solution in the reactor, the amount of hydrogen production, and the amount of power generated by the fuel cell system.
  • the pH of the reaction solution in the reactor was changed to 5.5, 6.0, and 6.5, and the conditions were as follows: formic acid concentration: 30 mM, temperature: 37 ° C, microorganism concentration: 40% (w / w), stirring speed: 800 rpm. Then, the hydrogen production rate and the power generation amount of the fuel cell were measured in the same manner as in Example 5.
  • Fig. 8 shows the results.
  • Fig. 8 shows the correlation between the pH of the reaction solution in the reactor, the amount of hydrogen production, and the amount of power generated by the fuel cell system.
  • Example 8 The microbial concentration of the reaction solution in the reactor was changed to 30%, 40%, and 50%, and the formic acid concentration was 30 mM, the temperature was 37 ° C, the pH was 6.0, and the stirring speed was 800 rpm. In the same manner as in Example 5, the hydrogen production rate and the power generation amount of the fuel cell were measured. The results are shown in FIG.
  • Fig. 9 shows the correlation between the concentration of microorganisms in the reaction solution in the reactor, the amount of hydrogen production, and the amount of power generation in the fuel cell system.
  • the stirring power of the reaction solution in the reactor was controlled by the rotation speed of the stirring device.
  • the hydrogen production rate and the power generation amount of the fuel cell were measured in the same manner as described above.
  • Fig. 10 shows the correlation between the rotation speed of the stirring device in the reactor, the hydrogen production amount, and the power generation amount in the fuel cell system!
  • a hydrogen production apparatus characterized in that the production amount of hydrogen discharged from a reaction vessel is controlled by any one of formic acid concentration, temperature, pH, microorganism concentration, and stirring power. It was found that it was possible to control the amount of hydrogen produced in the fuel cell and to control the amount of power generated by the fuel cell using the hydrogen produced as fuel gas.
  • the culture apparatus and the hydrogen generator including the same according to the present invention can continuously generate hydrogen using microorganisms, and require a continuous hydrogen system, such as a home or office building. It can be used in fuel cell cogeneration systems applied to applications such as fuel cells for distributed power sources widely installed in demand networks.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

It is intended to realize continuous production of hydrogen through continuous culturing of microbes, continuously causing microbes to their express hydrogen production ability and continuous supply of microbes to an apparatus whereby hydrogen is produced from organic materials by microbes. Also, it is intended to provide a hydrogen production apparatus whose objectives include controlling of hydrogen production volume and to provide a fuel cell system capable of operating of a fuel cell on a practical level and capable of controlling of power generation quantity through controlling of hydrogen production volume. There is provided an apparatus comprising a microbe culturing unit communicating with an oxygenic gas source and nutrient source supply unit and, communicating with the culturing unit, a unit capable of microbial expression of hydrogen production ability under anaerobic conditions, this unit furnished with not only an organic material supply source for supplying an organic material to be fed to cause microbes to express their hydrogen production ability but also anaerobic atmosphere imparting means, so that continuous culturing of microbial cells and microbial expression of hydrogen production ability (reforming) can be carried out. Continuous production of hydrogen can be realized by accomplishing supply of such microbes to a hydrogen production reactor and continuous microbe supply.

Description

明 細 書  Specification
微生物の培養装置、それを用いる水素生産装置および燃料電池システ ム  Microbial culture device, hydrogen production device and fuel cell system using the same
技術分野  Technical field
[0001] 本発明は、微生物の培養装置、それにより培養される微生物を用いる水素生産装 置、およびこれを用いる燃料電池システムに関する。  The present invention relates to an apparatus for culturing microorganisms, an apparatus for producing hydrogen using microorganisms cultivated by the apparatus, and a fuel cell system using the apparatus.
背景技術  Background art
[0002] 水素は化石原料とは異なり、燃焼しても炭酸ガスや硫黄酸ィ匕物などの環境問題に より懸念される物質を発生しない究極のクリーンエネルギー源として注目されている。 水素の単位質量当たりの熱量は石油の 3倍以上あり、燃料電池に供給すれば、高い 効率で電気エネルギーおよび熱エネルギーに変換することができる。  [0002] Hydrogen is attracting attention as an ultimate clean energy source that, unlike fossil raw materials, does not generate substances of concern such as carbon dioxide and sulfur oxides even when burned due to environmental problems. Hydrogen has more than three times the amount of heat per unit mass of petroleum, and if supplied to a fuel cell, can be converted to electrical and thermal energy with high efficiency.
[0003] 水素の生産方法としては、従来より、化学的製法として天然ガスやナフサの熱分解 水蒸気改質法などの技術が提案されている。この方法は、高温高圧の反応条件を必 要とする。また、この方法で製造される合成ガスには CO (—酸化炭素)が含まれるの で、燃料電池用燃料として使用する場合には燃料電池電極触媒の劣化防止のため 、技術的課題解決難度の高 、CO除去を行うことが必要である。  [0003] As a method for producing hydrogen, techniques such as thermal decomposition and steam reforming of natural gas and naphtha have been proposed as chemical production methods. This method requires high temperature and high pressure reaction conditions. In addition, since the synthesis gas produced by this method contains CO (carbon oxide), when used as a fuel for fuel cells, it is difficult to solve the technical problems in order to prevent the deterioration of the fuel cell electrode catalyst. It is necessary to remove CO.
[0004] 一方、微生物による生物的水素生産方法は、反応条件が常温常圧であり、そして 発生するガスには COが含まれないのでその除去も不要である。  [0004] On the other hand, in the biological hydrogen production method using microorganisms, the reaction conditions are normal temperature and normal pressure, and the generated gas does not contain CO, so that its removal is unnecessary.
このような観点から、微生物による生物的水素生産は、燃料電池用の燃料 (水素) 供給方法としてより好ましぐ注目されている。  From such a viewpoint, biological hydrogen production by microorganisms has been attracting more and more attention as a fuel (hydrogen) supply method for fuel cells.
[0005] 生物的水素生産方法は、光合成微生物を使用する方法、および非光合成微生物( 主に嫌気性微生物)を使用する方法に大別される。前者の方法は、水素発生に光ェ ネルギーを用いる力 光合成微生物の光エネルギー利用効率が低いので、水素発 生に広大な集光面積を要する。また、水素発生装置の価格問題や維持管理の難し さなど、解決しなければならない課題が多ぐ実用的なレベルには達していない。  [0005] Biological hydrogen production methods are broadly classified into methods using photosynthetic microorganisms and methods using non-photosynthetic microorganisms (mainly anaerobic microorganisms). The former method requires the use of photoenergy for hydrogen generation. Since the photosynthetic microorganisms have low light energy utilization efficiency, a large light-collecting area is required for hydrogen generation. In addition, there are many issues that need to be solved, such as the price problem of the hydrogen generator and the difficulty of maintenance and management, and it has not reached a practical level.
[0006] 後者の嫌気性微生物を使用する水素生産方法について、特開 2003— 135088号 公報 (特許文献 1)には、水素発酵槽において発生させたバイオガス中から水素を分 離し、残った二酸化炭素を主成分とする残ガスを水素発酵槽に循環して発酵液中に 吹き込み、発酵槽内を加圧下とすることで水素濃度を低下させ、水素生成菌の作用 を活性ィ匕して、水素の発生量および水素収率を増加させる方法が開示されて 、る。 [0006] Regarding the latter method of producing hydrogen using anaerobic microorganisms, Japanese Patent Application Laid-Open No. 2003-135088 (Patent Document 1) discloses that hydrogen is separated from biogas generated in a hydrogen fermenter. Separated, the remaining gas containing carbon dioxide as the main component is circulated through the hydrogen fermenter and blown into the fermentation broth, and the fermenter is pressurized to reduce the hydrogen concentration and activate the action of hydrogen-producing bacteria. A method for increasing the amount of generated hydrogen and the yield of hydrogen is disclosed.
[0007] また、微生物を用いて製造した水素を利用する燃料電池とのシステムに関して、特 開 2002-280045号公報 (特許文献 2)では、微生物により生成された水素ガスを燃 料電池へ供給し、水素の消費に応じた水素吸入口の水素分圧低下によりリアクター の気相部から燃料電池へ水素ガスを吸入してなる燃料電池組み込み型バイオリアク ターが示されている。  [0007] Further, regarding a system with a fuel cell utilizing hydrogen produced by using a microorganism, Japanese Patent Application Laid-Open No. 2002-280045 (Patent Document 2) supplies hydrogen gas produced by a microorganism to a fuel cell. In addition, a fuel cell-incorporated bioreactor in which hydrogen gas is sucked into the fuel cell from the gas phase part of the reactor by lowering the hydrogen partial pressure at the hydrogen inlet according to the consumption of hydrogen is shown.
[0008] さらに水素発酵後の後処理の方法としては、特開 2002-355022号公報 (特許文 献 3)では、クロストリジゥム属の微生物が投入される第 1の反応容器中において、クロ ストリジゥム属の微生物が有機材料を分解して水素を製造し、水素発生後の残りの有 機材料を第 2の反応容器中に投入し、該有機材料の投入後に第 2の微生物を投入 することにより、有機材料を水と二酸ィ匕炭素に分解することができる。このように第 2の 反応容器中での有機材料の分解により、ほとんど排出物 (ゴミ)が生じない方法が示 されている。  [0008] Further, as a post-treatment method after hydrogen fermentation, Japanese Patent Application Laid-Open No. 2002-355022 (Patent Document 3) discloses that a Clostridium genus is placed in a first reaction vessel into which Clostridium microorganisms are charged. The microorganisms decompose the organic material to produce hydrogen, and the remaining organic material after the generation of hydrogen is charged into the second reaction vessel. The material can be decomposed into water and carbon dioxide. Thus, a method is described in which almost no discharge (garbage) is generated by the decomposition of the organic material in the second reaction vessel.
[0009] また、これまでに、微生物の高密度培養方法に関しては、特開平 11— 99397号公 報 (特許文献 4)では、菌体 (好気性菌)を用いて曝気槽からの処理水を膜分離装置 に導入し、水分を膜を透過させて系外に除去するとともに、膜を透過しなカゝつた非透 過液を曝気槽へ返送することにより高密度に培養する培養方法が示されている。 特許文献 1:特開 2003— 135088号公報  [0009] In addition, regarding a high-density culture method of microorganisms, Japanese Unexamined Patent Publication No. Hei 11-99397 (Patent Document 4) has disclosed that treated water from an aeration tank using cells (aerobic bacteria). It shows a culture method in which water is introduced into a membrane separation device to remove water out of the system by permeating the membrane, and a non-permeated liquid that has not passed through the membrane is returned to the aeration tank to perform high-density culture. Have been. Patent Document 1: Japanese Patent Application Laid-Open No. 2003-135088
特許文献 2:特開 2002-280045号公報  Patent Document 2: JP-A-2002-280045
特許文献 3:特開 2002-355022号公報  Patent Document 3: JP-A-2002-355022
特許文献 4:特開平 11 99397号公報  Patent Document 4: JP-A-11 99397
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 従来の微生物を用いた水素生産装置においては、水素生産を行っている間に微 生物の水素生成能力が低下してくるため、水素生成能力を回復することを目的として 、水素製造装置内の微生物を交換'補充する必要があった。しかしながら、微生物を 交換'補充する際に、水素の製造が一次的に停止する状態となり、水素を利用するこ とができなくなる。例えばその水素を燃料電池にて発電に使用する場合であれば、 電気を使用できない状態になり、非常に不便であった。また、交換'補充する微生物 は、保管できる期間が短いうえに、時間経過とともに水素生成能力が低下してくるの で、頻繁に交換'補充する必要があり、非常に労力を要していた。 [0010] In a conventional hydrogen production apparatus using a microorganism, the hydrogen production capacity of the microorganism is reduced while the hydrogen production is being performed. The microorganisms inside had to be exchanged and replenished. However, microorganisms At the time of replacement and replenishment, hydrogen production temporarily stops, and hydrogen cannot be used. For example, when the hydrogen was used for power generation in a fuel cell, electricity could not be used, which was very inconvenient. In addition, the microorganisms to be exchanged and replenished have a short storage period, and the ability to generate hydrogen decreases over time. Therefore, the microorganisms need to be exchanged and replenished frequently, which requires much labor.
微生物を保管する場合にも、低温条件下に保管する必要があり、安全性の点から も特別な保管庫が必要であり、定期的に微生物を購入する必要があった。さらに微 生物を保存している容器の処理が煩雑であるなどの問題があった。  When storing microorganisms, it was necessary to store them under low-temperature conditions, a special storage was required also from the viewpoint of safety, and it was necessary to purchase microorganisms on a regular basis. Further, there is another problem that the processing of the container storing the microorganisms is complicated.
このように課題に対して、水素生成能を有する微生物を連続的に大量に培養して、 該微生物の水素生成能を連続的に誘導し、該微生物を水素生産装置に連続的に供 給することができる装置は、見出されていな力つた。  In order to solve the problem as described above, a microorganism having a hydrogen generating ability is continuously cultured in a large amount, the hydrogen generating ability of the microorganism is continuously induced, and the microorganism is continuously supplied to a hydrogen producing apparatus. The device that can be used has been unseen.
[0011] また、これまでの微生物を用いた水素の生産方法として、有機性物質を発酵させて 水素を製造する方法では、反応容器内の水素濃度を下げることにより、水素の発生 量および水素収率を増加させることが示されている。これまで、一般的に微生物を用 いた水素生産において、水素発生量を増加させる方法、水素収率を改善させる方法 は検討がなされている。し力しながら、微生物を用いる水素生産装置において、得ら れる水素発生量が少ないので水素発生量を制御することは困難であったために、水 素発生量を制御することができる水素生産装置は見出されていな力つた。  [0011] As a conventional method for producing hydrogen using microorganisms, in a method of producing hydrogen by fermenting an organic substance, the amount of hydrogen generated and the yield of hydrogen are reduced by lowering the hydrogen concentration in the reaction vessel. It has been shown to increase rates. So far, methods for increasing the amount of hydrogen generated and methods for improving the hydrogen yield in hydrogen production using microorganisms have been studied. However, in a hydrogen production system using microorganisms, it was difficult to control the amount of hydrogen produced because the amount of hydrogen produced was small, so a hydrogen production system capable of controlling the amount of hydrogen produced was The power that was not found.
[0012] さらに、微生物を用いる水素生産装置と燃料電池力もなるシステムにおいて、特開 2002-280045号では、燃料電池の発電による水素の消費を利用して、水素分圧を低 く保つ方式の微生物による水素生産装置と燃料電池とを含むシステムは示されてい る。し力しながら、水素の生産量の制御をすることにより、発電量の制御が行えるよう な水素生産装置を含む燃料電池システム、つまり、微生物を用いた水素生産方法に より実用的レベルで用いることが可能な燃料電池システムは、これまで見出されてい なかった。  [0012] Further, in a hydrogen production apparatus using a microorganism and a system that also has a fuel cell power, Japanese Patent Application Laid-Open No. 2002-280045 discloses a microorganism of the type in which hydrogen partial pressure is kept low by utilizing the consumption of hydrogen by power generation of a fuel cell. A system including a hydrogen production device and a fuel cell is shown. Fuel cell system that includes a hydrogen production device that can control the amount of power generation by controlling the amount of hydrogen produced while controlling the amount of hydrogen produced, that is, using the hydrogen production method using microorganisms at a practical level. No fuel cell system capable of the above has been found so far.
[0013] また従来の微生物を用いる水素生産方法では、水素発生後の発酵残さの処理の 問題があった。特開 2002-355022号では、 2つの反応容器を用いて、第 1の反応容器 で水素を発生し、水素発生後の残りの有機材料を第 2の反応容器に投入し、さら〖こ 第 2の微生物を投入することで、水と二酸ィ匕炭素まで分解し、排出物の生じない方法 を示している。しカゝしながら、水素発生後の残りの有機材料を第 2の反応容器に投入 する必要があるなど工程が複雑で、制御が困難であるという課題がある。 [0013] In addition, the conventional hydrogen production method using a microorganism has a problem of treating fermentation residues after hydrogen generation. In Japanese Patent Application Laid-Open No. 2002-355022, hydrogen is generated in a first reaction vessel using two reaction vessels, and the remaining organic material after the generation of hydrogen is charged into a second reaction vessel. This shows a method in which a second microorganism is injected to decompose water and carbon dioxide, and no effluent is generated. However, there is a problem that the process is complicated and control is difficult, for example, it is necessary to put the remaining organic material after hydrogen generation into the second reaction vessel.
課題を解決するための手段  Means for solving the problem
[0014] 嫌気性微生物における水素発生に関する代謝経路は色々な経路が知られている。 [0014] Various metabolic pathways for hydrogen generation in anaerobic microorganisms are known.
そのような経路としては、例えば、グルコースのピルビン酸への分解経路での水素を 発生する経路、ピルビン酸力 ァセチル CoAを経て酢酸が生成する過程での水素を 発生する経路、ピルビン酸由来の蟻酸より直接水素を発生する経路などが挙げられ る。  Such pathways include, for example, a pathway that generates hydrogen in the pathway of decomposing glucose to pyruvate, a pathway that generates hydrogen in the process of acetic acid generation via acetyl acetyl pyruvate, and a formic acid derived from pyruvate. There are routes that directly generate hydrogen.
上記の代表的な水素発生の反応式を以下に示す。  The reaction formula of the above-mentioned typical hydrogen generation is shown below.
[0015] (a)グルコースのピルビン酸への分解経路 (A) Degradation pathway of glucose to pyruvate
C H 0 (グルコース)→ 2CH COCOOH (ピノレビン酸) +2H (水素)  C H 0 (glucose) → 2CH COCOOH (pinolevic acid) + 2H (hydrogen)
6 12 6 3 2  6 12 6 3 2
(b)ピルビン酸がァセチル CoAをへて酢酸が生成する経路  (b) Pathway from pyruvate to acetyl CoA to produce acetic acid
CH COCOOH+H 0→ CH COOH (酢酸) +COに酸化炭素) + H  CH COCOOH + H 0 → CH COOH (acetic acid) + CO to carbon oxide) + H
3 2 3 2 2  3 2 3 2 2
(C)蟻酸より水素が発生する経路  (C) Route of hydrogen generation from formic acid
HCOOH (蟻酸)→ H +CO  HCOOH (formic acid) → H + CO
2 2  twenty two
[0016] (a)の経路は、還元型ニコチンアミドアデニンジヌクレオチド (NADH)およびフェレド キシン (Fd)を経由する方法である。この経路は熱力学的に不利であるため、反応系 内の水素分圧を低下させる必要がある。  [0016] The route (a) is a method via reduced nicotinamide adenine dinucleotide (NADH) and ferredoxin (Fd). This route is disadvantageous in terms of thermodynamics, so it is necessary to reduce the hydrogen partial pressure in the reaction system.
(b)の経路は、還元型フェレドキシンおよびヒドロゲナーゼを経由する方法である。 この経路では水素の生成と共に酢酸が生成する。水素の連続的な生産を行うために は、不要な酢酸が反応溶液中に副生する問題点がある。  The route (b) is a method via reduced ferredoxin and hydrogenase. In this route, acetic acid is generated along with the generation of hydrogen. In order to continuously produce hydrogen, there is a problem that unnecessary acetic acid is by-produced in the reaction solution.
(c)の経路は、蟻酸脱水素酵素およびヒドロゲナーゼを経由する方法である。生成 物も常温で気体のみであるために、反応溶液からの水素の分離が起こりやすぐ連 続的な水素の連続水素生産、および水素生産が可能となる。  The route (c) is a method via formate dehydrogenase and hydrogenase. Since the product is also a gas only at normal temperature, separation of hydrogen from the reaction solution occurs and immediately continuous hydrogen production and hydrogen production become possible.
[0017] 本発明者らは、微生物細胞内の蟻酸および蟻酸塩より水素が生成する代謝経路を 主として利用することにより、連続水素生産が可能な水素生産装置、および水素の生 産量を制御することが可能な水素生産装置を提供することができることを見出した。 連続水素生産が可能な水素生産装置として、好気条件下に連続的に微生物を培 養し、その微生物に嫌気条件下で水素生成能を発現させ、該微生物を水素発生装 置に供給することにより、水素発生装置の連続水素生成を可能にする。酸素を含む 気体源と栄養源供給部とに連通する微生物の培養部と、該培養部に連通し、微生物 に水素生成能を発現させる有機物を供給するための有機物供給源と嫌気雰囲気付 与手段とを有する、微生物の嫌気条件下での水素生成能発現部とを具備する微生 物の培養装置、その培養装置部が水素生産装置に連設されてなる水素生産装置を 見出した。 The present inventors have developed a hydrogen production apparatus capable of continuous hydrogen production and a method for controlling the hydrogen production amount by mainly utilizing a metabolic pathway in which hydrogen is produced from formic acid and formate in a microbial cell. It has been found that it is possible to provide a hydrogen production device capable of performing the above. As a hydrogen production device capable of continuous hydrogen production, continuously cultivating microorganisms under aerobic conditions, expressing the hydrogen generation ability under anaerobic conditions, and supplying the microorganisms to the hydrogen generation device Thereby, the continuous hydrogen generation of the hydrogen generator can be performed. A cultivation unit for microorganisms communicating with a gas source containing oxygen and a nutrient source supply unit, and an organic matter supply source and an anaerobic atmosphere providing means communicating with the cultivation unit for supplying organic matter that allows the microorganisms to express hydrogen. The present inventors have found an apparatus for culturing microorganisms having a hydrogen-producing ability under anaerobic conditions for microorganisms, and a hydrogen producing apparatus in which the culturing apparatus is connected to the hydrogen producing apparatus.
[0018] さらに、有機性基質の供給量の制御を行うこと、ならびに蟻酸濃度条件、温度条件 、 pH条件、微生物濃度条件、および攪拌条件力 選ばれる少なくとも一つの水素生 成条件の制御を行うことで、水素生産量を制御することが可能な水素生産装置を見 出した。また、同時に燃料電池の発電量も制御可能な上記の水素生産装置を用いる 燃料電池システムを見出した。力!]えて、本発明により、残さの生じにくい水素生産装 置を提供でき、燃料電池システムとして水素の連続生産が可能、また発電量が制御 可能である燃料電池システムを構築することができる。  Further, controlling the supply amount of the organic substrate, and controlling at least one hydrogen generation condition selected from formic acid concentration conditions, temperature conditions, pH conditions, microorganism concentration conditions, and stirring conditions. As a result, they found a hydrogen production system that can control the amount of hydrogen production. At the same time, a fuel cell system using the above-mentioned hydrogen production device capable of controlling the power generation amount of the fuel cell has been found. Power! In addition, according to the present invention, it is possible to provide a hydrogen production apparatus that hardly generates residues, to construct a fuel cell system capable of continuously producing hydrogen as a fuel cell system, and capable of controlling the amount of power generation.
[0019] 本発明は、蟻酸力 水素が生成する代謝経路を主として利用する、生物的水素生 産装置およびそれを用いた燃料電池システムに関する発明である。上記の課題を解 決し、微生物により水素を生産させる場合、水素生産の原料となる有機性基質の供 給量を制御することにより、水素生産量を制御することが可能となる。さらに、蟻酸濃 度条件、温度条件、 pH条件、微生物濃度条件、および攪拌条件力 選ばれる少なく とも一つの水素生成条件により制御することにより、水素生産量を制御することが可 能となる。また、微生物を用いての水素生産方法において、水素生産量の制御により 、発電量を制御することができる燃料電池システム、すなわち所要電力を即座に取り 出すことができる燃料電池システムを提供するものである。  [0019] The present invention relates to a biological hydrogen production apparatus mainly utilizing a metabolic pathway generated by hydrogen formate and a fuel cell system using the same. In the case where the above problem is solved and hydrogen is produced by microorganisms, it is possible to control the amount of hydrogen production by controlling the supply amount of an organic substrate which is a raw material for hydrogen production. Further, by controlling at least one hydrogen generation condition selected from formic acid concentration condition, temperature condition, pH condition, microorganism concentration condition, and stirring condition power, it is possible to control the hydrogen production amount. Also, in a hydrogen production method using a microorganism, a fuel cell system capable of controlling a power generation amount by controlling a hydrogen production amount, that is, a fuel cell system capable of immediately obtaining required power, is provided. is there.
[0020] また、本発明では、有機性基質を選択することで残さの生じにく!、水素生産装置を 提供するのが可能であることを見出した。中でも有機性基質に蟻酸および蟻酸塩を 用いること、特に蟻酸を用いた場合では、水素と二酸ィ匕炭素に分解することが可能で ある。その場合に、主に気体が生成するため、反応槽内の反応溶液からの分離が容 易である。そのため、 1つの反応槽で、複雑な工程、制御を必要とせずに、容易に連 続的に水素生産することが可能な水素生産装置を提供するものである。 [0020] Further, in the present invention, it has been found that by selecting an organic substrate, a residue is hardly generated, and it is possible to provide a hydrogen production apparatus. In particular, when formic acid and formate are used as the organic substrate, particularly when formic acid is used, it can be decomposed into hydrogen and carbon dioxide. In that case, gas is mainly generated, so it is difficult to separate it from the reaction solution in the reaction tank. Easy. Therefore, an object of the present invention is to provide a hydrogen production apparatus capable of easily and continuously producing hydrogen in one reaction vessel without requiring complicated processes and control.
[0021] すなわち、本発明は:  That is, the present invention provides:
(1)酸素を含む気体源と栄養源供給部に連通する微生物の培養部と、該培養部と連 通し、微生物に水素生成能を発現させる有機物を供給するための有機物供給源お よび嫌気雰囲気付与手段を有する微生物の嫌気条件下での水素生成能発現部とを 具備する微生物の培養装置;  (1) A culture section for microorganisms communicating with a gas source containing oxygen and a nutrient source supply section, and an organic substance supply source and an anaerobic atmosphere communicating with the culture section for supplying organic substances that allow the microorganisms to generate hydrogen. An apparatus for culturing microorganisms, comprising: a hydrogen-producing ability-expressing section under anaerobic conditions for microorganisms having an application means;
(2)培養部と水素生成能発現部との間に、培養された微生物と培養液との分離部が 設けられている上記の(1)に記載の培養装置;  (2) The culture apparatus according to the above (1), wherein a separation section for separating the cultured microorganism and the culture solution is provided between the culture section and the hydrogen generation ability expressing section;
(3)微生物に水素生成能を発現させる有機物が、グルコース、蟻酸および蟻酸塩か ら選択される少なくとも 1種である上記の(1)または(2)に記載の培養装置;  (3) The culture device according to the above (1) or (2), wherein the organic substance that causes the microorganism to exhibit hydrogen-producing ability is at least one selected from glucose, formic acid, and formate;
(4)微生物が、蟻酸脱水素酵素遺伝子およびヒドロゲナーゼ遺伝子を有する上記の (1)一(3)のいずれか 1つに記載の培養装置;  (4) The culture device according to any one of (1) to (3) above, wherein the microorganism has a formate dehydrogenase gene and a hydrogenase gene;
[0022] (5)上記の(1)一(4)のいずれか 1つに記載の培養装置が水素生成反応部に連設さ れてなり、該水素生成反応部が、有機性基質を供給する原料供給部と連通する水素 生産装置;  (5) The culture apparatus according to any one of (1) to (4) above is connected to a hydrogen generation reaction section, and the hydrogen generation reaction section supplies an organic substrate. Hydrogen production equipment in communication with the raw material supply
(6)水素の生産量が、原料供給部から水素生成反応部への有機性基質の供給量で 制御される上記の(5)に記載の水素生産装置;  (6) The hydrogen production apparatus according to (5), wherein the production amount of hydrogen is controlled by the supply amount of the organic substrate from the raw material supply unit to the hydrogen generation reaction unit;
(7)水素の生産量が、水素生成反応部の有機性基質濃度条件、温度条件、 pH条件 、微生物濃度条件および攪拌条件力 選ばれる少なくとも 1つの水素生成条件により 制御される上記の(5)に記載の水素生産装置;  (7) The hydrogen production amount is controlled by at least one hydrogen generation condition selected from the group consisting of organic substrate concentration conditions, temperature conditions, pH conditions, microorganism concentration conditions, and stirring conditions in the hydrogen generation reaction section. A hydrogen production apparatus according to [1];
[0023] (8)有機性基質が、噴霧装置を介して水素生成反応部に供給される上記の(5)に記 載の水素生産装置;  (8) The hydrogen production apparatus according to the above (5), wherein the organic substrate is supplied to the hydrogen production reaction section via a spraying device;
(9)水素生成能発現部と水素生成反応部との間に、水素生成能を発現した微生物と 培養液との分離部が設けられて 、る上記の(5)— (8)の 、ずれか 1つに記載の水素 生産装置;  (9) Between the hydrogen generating ability expressing section and the hydrogen generating reaction section, there is provided a separating section for separating the microorganism which has developed the hydrogen generating ability from the culture solution. A hydrogen production apparatus according to any one of the above;
(10)水素生成反応部が水素生成量検出部を具備し、水素生成量検出部の検出値 に基づいて培養装置力も微生物を供給できるように構成されてなる上記の(5)— (9) の、、ずれか 1つに記載の水素生産装置; (10) The above-mentioned (5)-(9), wherein the hydrogen generation reaction section is provided with a hydrogen generation amount detection section, and the culturing apparatus can supply microorganisms based on the detection value of the hydrogen generation amount detection section. A hydrogen production apparatus according to any one of the above;
[0024] (11)有機性基質が、蟻酸または蟻酸塩である上記の(5)—(10)のいずれか 1つに 記載の水素生産装置; (11) The hydrogen production apparatus according to any one of the above (5) to (10), wherein the organic substrate is formic acid or formate;
(12)水素生成反応部が、排出されるガスに含まれる水蒸気を凝縮するための凝縮 器を備える上記の(5)—(11)の 、ずれか 1つに記載の水素生産装置;  (12) The hydrogen production apparatus according to any one of (5) to (11) above, wherein the hydrogen generation reaction unit includes a condenser for condensing steam contained in the discharged gas;
(13)上記の(5)—(12)のいずれか 1つに記載の水素生産装置と、該水素生産装置 力も発生する水素を燃料ガスとして用いる燃料電池とからなるシステム;  (13) A system comprising the hydrogen production apparatus according to any one of the above (5) to (12) and a fuel cell using hydrogen that also generates power as a fuel gas;
(14)燃料電池での発電量が、原料供給部から水素生成反応部への有機性基質の 供給量により制御される上記の(13)に記載のシステム;  (14) The system according to (13) above, wherein the amount of power generated by the fuel cell is controlled by the amount of organic substrate supplied from the raw material supply unit to the hydrogen generation reaction unit;
(15)燃料電池での発電量が、水素生成反応部の有機性基質濃度条件、温度条件 、 pH条件、微生物濃度条件および攪拌条件から選択されるいずれか 1つの水素生 成条件により制御される上記の(13)に記載のシステム  (15) The amount of power generated by the fuel cell is controlled by one of the hydrogen generation conditions selected from the organic substrate concentration conditions, temperature conditions, pH conditions, microorganism concentration conditions, and stirring conditions in the hydrogen generation reaction section. System according to (13) above
に関する。  About.
[0025] なお、本明細書にぉ 、て、「栄養源供給部」、「微生物の培養部」、「水素生成能発 現部」、「水素生成反応部」などの語における「部」は、区切られた空間を意味し、槽、 タンク、容器などであってよい。よって、以下、例えば「微生物の培養部」を「微生物の 培養槽」などということがある。これらの区切られた空間は、 1つであってもよいし、複 数が併設されていてもよい。  [0025] In this specification, "parts" in the terms such as "nutrient source supply unit", "microorganism culturing unit", "hydrogen generating ability generating unit", "hydrogen generating reaction unit" and the like are used. Means a separated space, which may be a tank, a tank, a container, or the like. Therefore, hereinafter, for example, the “microbial culture unit” may be referred to as a “microorganism culture tank”. These partitioned spaces may be a single space or a plurality of spaces may be provided.
発明の効果  The invention's effect
[0026] 本発明の培養装置によれば、微生物を連続培養し、微生物に連続的に水素生成 能を発現させること (改質)ができる。また、該微生物培養装置を水素生産装置に付 加することで、水素生成能を発現させた微生物を水素生産装置に連続的に供給する ことが可能となり、水素の連続生産が可能な装置を提供できる。  [0026] According to the culture apparatus of the present invention, microorganisms can be continuously cultured, and the microorganisms can continuously exhibit hydrogen generation ability (reformation). In addition, by adding the microorganism culturing device to a hydrogen production device, it is possible to continuously supply microorganisms having an ability to produce hydrogen to the hydrogen production device, thereby providing a device capable of continuously producing hydrogen. it can.
さらに、蟻酸脱水素酵素遺伝子およびヒドロゲナーゼ遺伝子を有する微生物が存 在している本発明のリアクターを用いることにより、有機性基質の供給量、および水素 生成条件 (有機性基質濃度、温度、 PH、微生物濃度および攪拌)を制御することに より、水素生産量を制御することが可能な水素生産装置を提供することができる。さら に、有機性基質の供給量、および水素生成条件 (有機性基質濃度、温度、 pH、微生 物濃度および攪拌)を制御することにより、燃料電池の発電量を制御することが可能 な水素生産装置を含む燃料電池システムを提供できる。 Furthermore, by using the reactor of the present invention in which a microorganism having a formate dehydrogenase gene and a hydrogenase gene is present, the supply amount of the organic substrate and the hydrogen generation conditions (organic substrate concentration, temperature, PH, By controlling (concentration and stirring), it is possible to provide a hydrogen production apparatus capable of controlling the amount of hydrogen production. In addition, the supply of organic substrate and hydrogen production conditions (organic substrate concentration, temperature, pH, microbial By controlling the mass concentration and agitation), it is possible to provide a fuel cell system including a hydrogen production device capable of controlling the power generation amount of the fuel cell.
また、連続的に水素を生産することが可能な水素生産装置、およびそれを用いた 燃料電池システムを提供できる。  Further, it is possible to provide a hydrogen production device capable of continuously producing hydrogen, and a fuel cell system using the same.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]図 1は、本発明の好ましい微生物の培養装置の模式図である。  FIG. 1 is a schematic diagram of a preferred microorganism culturing apparatus of the present invention.
[図 2]図 2は、本発明の好ましい水素生成装置の模式図である。  FIG. 2 is a schematic diagram of a preferred hydrogen generator of the present invention.
[図 3]図 3は、本発明の水素生産装置を用いた燃料電池システムの概略構成図であ る。  FIG. 3 is a schematic configuration diagram of a fuel cell system using the hydrogen production device of the present invention.
[図 4]図 4は、実施例 2— 15に用いた水素生産装置を用いた燃料電池システムの概 略構成図である。  FIG. 4 is a schematic configuration diagram of a fuel cell system using the hydrogen production apparatus used in Examples 2-15.
[図 5]図 5は、本発明の水素生産装置を用いた有機性基質の供給速度と水素生産量 及び燃料電池システムでの発電量の関係を示した図である。  FIG. 5 is a diagram showing the relationship between the supply rate of an organic substrate, the amount of hydrogen production, and the amount of power generation in a fuel cell system using the hydrogen production apparatus of the present invention.
[図 6]図 6は、本発明の水素生産装置を用いた有機性基質の濃度と水素生産量及び 燃料電池システムでの発電量の関係を示した図である。  FIG. 6 is a diagram showing the relationship between the concentration of an organic substrate, the amount of hydrogen production, and the amount of power generation in a fuel cell system using the hydrogen production apparatus of the present invention.
[図 7]図 7は、本発明の水素生産装置を用いた反応溶液中の温度と水素生産量及び 燃料電池システムでの発電量の関係を示した図である。  FIG. 7 is a diagram showing the relationship between the temperature in a reaction solution, the amount of hydrogen production, and the amount of power generation in a fuel cell system using the hydrogen production apparatus of the present invention.
[図 8]図 8は、本発明の水素生産装置を用いた反応溶液中の pHと水素生産量及び 燃料電池システムでの発電量の関係を示した図である。  FIG. 8 is a diagram showing a relationship between pH in a reaction solution, a hydrogen production amount, and a power generation amount in a fuel cell system using the hydrogen production apparatus of the present invention.
[図 9]図 9は、本発明の水素生産装置を用いた反応溶液中の微生物濃度と水素生産 量及び燃料電池システムでの発電量の関係を示した図である。  FIG. 9 is a diagram showing the relationship between the concentration of microorganisms in a reaction solution, the amount of hydrogen production, and the amount of power generation in a fuel cell system using the hydrogen production apparatus of the present invention.
[図 10]図 10は、本発明の水素生産装置を用いた攪拌装置の回転数と水素生産量及 び燃料電池システムでの発電量の関係を示した図である。  FIG. 10 is a diagram showing the relationship between the number of revolutions of a stirrer using the hydrogen production device of the present invention, the hydrogen production amount, and the power generation amount in the fuel cell system.
符号の説明  Explanation of symbols
[0028] 1 :燃料タンク [0028] 1: Fuel tank
2 :反応槽  2: Reaction tank
3 :培地タンク  3: Medium tank
4 :廃液タンク :水素濃縮槽(固定槽)4: Waste liquid tank : Hydrogen concentration tank (fixed tank)
:燃料電池部: Fuel cell unit
:インバーター:inverter
:撹拌器: Agitator
:燃焼触媒: Combustion catalyst
:清浄フィルター : Clean filter
1 :弁1: Valve
:流量計 :Flowmeter
:ポンプ :pump
:動力 :power
:培地供給ポンプ : Medium supply pump
:廃液抜取口 : Waste liquid outlet
:培地投入口 : Medium inlet
:廃液抜取ポンプ : Waste pump
:エアー取り入れ口 : Air intake
:送風ポンプ : Blow pump
:濃縮剤入替ロ(弁) : Concentrator replacement b (valve)
:吸着剤 : Adsorbent
:微生物培養用培地タンク :培養容器 (培養槽) : Medium tank for microbial culture: Culture vessel (Culture tank)
:滅菌空気供給装置  : Sterile air supply device
:改質容器 (水素生成能発現槽) :有機物供給装置 : Reformation vessel (hydrogen generation ability development tank): Organic material supply device
:微生物貯蔵槽 : Microorganism storage tank
:微生物洗浄槽 : Microorganism washing tank
:廃液バルブ(ベント) : Waste liquid valve (vent)
:微生物供給口  : Microorganism supply port
、 35、 37、 40、 42、 44、 45 :ポンプ 32、 34、 36、 39、 41、 43:流量計 , 35, 37, 40, 42, 44, 45: Pump 32, 34, 36, 39, 41, 43: Flow meter
38:洗浄用培地供給口  38: Washing medium supply port
51:リアクター(水素生成反応部)  51: Reactor (hydrogen generation reaction section)
52:有機性基質の入ったタンク  52: Tank with organic substrate
53:恒温槽  53: constant temperature bath
54:燃料電池  54: Fuel cell
55:凝縮器  55: Condenser
56:ガス分離装置  56: Gas separation device
57:有機性基質を噴霧する装置  57: Equipment for spraying organic substrates
58:培地成分の入ったタンク  58: Tank containing medium components
59:モーター  59: Motor
60:攪拌装置  60: Stirrer
61:有機性基質供給ポンプ  61: Organic substrate feed pump
62:培地成分供給ポンプ  62: Medium component supply pump
63:有機性基質供給口  63: Organic substrate supply port
64:培地成分供給口  64: Medium component supply port
65:反応溶液排出ポンプ  65: Reaction solution discharge pump
66:微生物供給口  66: Microorganism supply port
67:各種センサー類  67: Various sensors
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 本発明の培養装置は、培養槽に酸素を含む気体源と微生物を培養するための栄 養源を貯蔵して供給する栄養源供給槽とに連通する微生物培養槽と、微生物を培 養した培養液から微生物を分離するための微生物分離部と、改質槽を嫌気状態に する嫌気雰囲気付与手段を有する微生物に水素生成能を発現させる改質槽と、改 質槽カも微生物を回収して貯蔵する微生物貯蔵槽とを具備する装置である。  [0029] The culture apparatus of the present invention includes a microorganism culture tank that communicates with a nutrient source supply tank that stores and supplies a gas source containing oxygen and a nutrient source for culturing microorganisms to the culture tank. A microorganism separation unit for separating microorganisms from the cultured culture solution, a reformer tank that has an anaerobic atmosphere-providing means to make the reformer tank anaerobic, and a reformer tank that expresses hydrogen generation ability, A microorganism storage tank for collecting and storing the collected microorganisms.
[0030] 本発明の水素発生装置は、上記培養装置とともに、水素の排出口を有する水素生 成反応槽と、水素生成反応槽に有機性基質を含む溶液を貯蔵 '供給するタンクと、 水素生成反応槽内部の水素生成能の低下した微生物および微生物の代謝成分を 除去して蓄える廃液タンクと、水素生成反応槽で生成した水素を用いる燃料電池部 を具備する装置である。 [0030] The hydrogen generator of the present invention, together with the above-described culturing apparatus, includes a hydrogen generation reaction tank having a hydrogen outlet, a tank for storing and supplying a solution containing an organic substrate to the hydrogen generation reaction tank, Microorganisms with reduced hydrogen production capacity inside the reactor and metabolic components of the microorganisms This is a device that includes a waste liquid tank for removing and storing and a fuel cell unit using hydrogen generated in the hydrogen generation reaction tank.
[0031] 以下、本発明の微生物の培養装置および水素発生装置に関して図面を参照しな がら説明する。  Hereinafter, a microorganism culturing device and a hydrogen generating device of the present invention will be described with reference to the drawings.
本発明の培養装置の好まし ヽ形態を図 1に示す。  FIG. 1 shows a preferred embodiment of the culture apparatus of the present invention.
本発明で使用される微生物は、水素生成能を有する微生物であればよぐ主に、蟻 酸脱水素酵素遺伝子 (F.Zinoniら、 Proc.Natl.Acid.Sci.USAゝ Vol.83, pp4650— 4654、 July 1986 Biochemistry)およびヒドロゲナーゼ遺伝子(R.Boehmら、 Molecular Microbiology (1990)、 4(2)、 231— 243)を有する微生物であり、主として嫌気性微生 物である。  The microorganism used in the present invention may be any microorganism capable of producing hydrogen, and is mainly a formate dehydrogenase gene (F. Zinoni et al., Proc. Natl. Acid. Sci. USA Vol. 83, pp. 4650 — 4654, July 1986 Biochemistry) and a microorganism having a hydrogenase gene (R. Boehm et al., Molecular Microbiology (1990), 4 (2), 231-243), and are mainly anaerobic microorganisms.
[0032] 本発明で使用される具体的な嫌気性微生物の例としては、ェシエリキア(  [0032] Examples of specific anaerobic microorganisms used in the present invention include Escherichia (
Escherichia)属微生物—例えばェシエリキア'コリ(Escherichia coli ATCC9637、 A TCC11775、 ATCC4157等)、クレブシエラ(Klebsiella)属微生物—例えばタレブシ エラ 'ニューモニエ(Klebsiella pneumoniae ATCC13883、 ATCC8044等)、ェン テロパクター(Enterobacter)属微生物—例えばェンテロバクタ^ ~ ·ァエロギネス( Enterobacter aerogenes ATCC13048、 ATCC29007等)そしてクロストリジゥム( Clostridium)属微生物—例えばクロストリジゥム ·ベイェリンキイ(Clostridium beijerinckii ATCC25752, ATCC17795等)等が挙げられる。  Escherichia) microorganisms—for example, Escherichia coli ATCC9637, ATCC11775, ATCC4157, etc., Klebsiella microorganisms—for example, Talebsiella pneumoniae ATCC13883, ATCC8044, Enterobacter terrorobacter —Examples include Enterobacter aerogenes (Enterobacter aerogenes ATCC13048, ATCC29007, etc.) and microorganisms of the genus Clostridium—eg, Clostridium beijerinckii ATCC25752, ATCC17795, etc.
[0033] これらの嫌気性微生物の嫌気的条件による***増殖は、好気的条件によるそれと 比較して極めて遅いので、該微生物の増殖は好気的条件による培養が好ましい。こ の意味では嫌気性微生物の内、偏性嫌気性微生物よりも通性嫌気性微生物が好適 に使用される。上記微生物の内ではェシエリキア'コリ(Escherichia coli)、ェンテロバ クタ^ ~·ァエロギネス(Enterobacter aerogenes)等が好適に用いることが出来る。 [0033] Since division and growth of these anaerobic microorganisms under anaerobic conditions are extremely slow as compared with those under aerobic conditions, culture of these microorganisms is preferably performed under aerobic conditions. In this sense, of the anaerobic microorganisms, facultative anaerobic microorganisms are preferably used rather than obligate anaerobic microorganisms. The above Eshierikia 'E. coli (Escherichia co li) is among the microorganisms, Enteroba Kuta ^ ~ · Aeroginesu (Enterobacter aerogenes) or the like can be suitably used.
[0034] 本発明の培養装置にお!ヽては、上記微生物は、該微生物を好気条件下で培養し て***増殖させた後、嫌気条件下で培養することにより、微生物の水素生成経路に 関与する酵素タンパクを作成することができ、したがって水素生成能を有することが できる。このように微生物の機能を発現させることを、ここでは (本発明では)「改質」と 表現している。 [0035] 本発明の培養装置における微生物の培養部は、微生物の増殖用の栄養源を貯蔵 し、培養部に該栄養源を供給する栄養源供給部と連通している。図 1においては、微 生物の培養部としての微生物培養タンク 24は、栄養源供給部としての微生物培養用 培地タンク 23と連通して!/、る。 [0034] In the culture apparatus of the present invention, the microorganism is cultured under aerobic conditions, propagated under anaerobic conditions, and then cultured under anaerobic conditions, whereby the hydrogen production pathway of the microorganisms is obtained. Thus, an enzyme protein involved in the enzyme can be produced, and therefore, has an ability to generate hydrogen. The expression of the function of the microorganism in this manner is herein referred to as "modification" (in the present invention). [0035] The culture unit of the microorganism in the culture apparatus of the present invention stores a nutrient source for the growth of the microorganism, and is in communication with a nutrient source supply unit that supplies the nutrient source to the culture unit. In FIG. 1, a microorganism culturing tank 24 as a microorganism culturing section communicates with a microorganism culturing medium tank 23 as a nutrient source supply section.
[0036] 本発明で使用される微生物の増殖用の栄養源 (以下、微生物増殖用培地ともいう) としては、炭素源、窒素源、ミネラル源等を含む通常の栄養培地を用いることができる 。炭素源としては、例えばグルコース、フルクトース、廃糖蜜等を、窒素源としては、無 機態窒素源では、例えばアンモニア、アンモ-ゥム塩、硝酸塩等、有機態窒素源で は、例えば尿素、アミノ酸類、タンパク質等をそれぞれ単独もしくは混合して用いるこ とができる。無機態、有機態ともに同様に利用することが可能である。またミネラル源 として、おもに 、 P、 Mg、 Sなどを含む、例えばリン酸一水素カリウム、硫酸マグネシゥ ム等を用いることができる。この他にも必要に応じて、ペプトン、肉エキス、酵母エキス 、コーンスティープリカ一、カザミノ酸、ピオチン、チアミン等各種ビタミン等の栄養素 添加することもできる。微生物培養用培地として、具体的には LB培地を使用する場 合は、トリプトン 10g、酵母エキス 5g、塩化ナトリウム 10gに水をカ卩えて 1リットルにした 溶液を、微生物培養用培地タンク 23に供給することができる。  As a nutrient source for the growth of microorganisms (hereinafter also referred to as a microorganism growth medium) used in the present invention, a normal nutrient medium containing a carbon source, a nitrogen source, a mineral source and the like can be used. Examples of the carbon source include glucose, fructose, molasses, and the like; examples of the nitrogen source include inorganic nitrogen sources such as ammonia, ammonium salts, and nitrates; and examples of the organic nitrogen source include urea and amino acids. , Proteins and the like can be used alone or in combination. Both inorganic and organic forms can be used in a similar manner. In addition, as a mineral source, for example, potassium monohydrogen phosphate, magnesium sulfate, or the like mainly containing P, Mg, S, and the like can be used. In addition, if necessary, nutrients such as various vitamins such as peptone, meat extract, yeast extract, corn steep liquor, casamino acid, biotin, and thiamine can be added. If LB medium is used as the culture medium for microorganisms, supply 10 g of tryptone, 5 g of yeast extract, and 10 g of sodium chloride to 1 liter by adding water to microorganism culture medium tank 23. can do.
[0037] 栄養源供給部は、内部を滅菌するための滅菌手段を有することが好ましい。滅菌 手段としては、ヒーター、熱交^^などの内部を高温に制御できる装置を用いること ができる。 [0037] The nutrient source supply unit preferably has a sterilizing means for sterilizing the inside. As a sterilization means, a device such as a heater or a heat exchanger capable of controlling the inside to a high temperature can be used.
これにより、新たに培地をタンクに供給するときに、加熱処理により 120°Cで 20分程 度、滅菌処理することができる。但し、予め、滅菌処理した培地を使用する場合は、こ の処理は行わなくてもよい。微生物培養用培地タンク 23のタンク表面には、ヒーター または熱交^^などが設けられて 、ることが好ま 、。  Thus, when a new culture medium is supplied to the tank, it can be sterilized by heating at 120 ° C for about 20 minutes. However, when a sterilized medium is used in advance, this step need not be performed. It is preferable that a heater or a heat exchanger is provided on the surface of the microorganism culture medium tank 23.
[0038] 栄養源供給部と微生物の培養部との間は、配管、容器、ポンプ、センサーおよび弁 から選択される少なくとも 1種の接続手段を用いて連通して 、ることが好ま 、。また 、培養部には培養部内の液量の検出機構が設けられており、この検出値に基づいて 栄養源供給部から栄養源を供給できることが好まし 、。  [0038] It is preferable that the nutrient source supply section and the microorganism culture section are communicated with each other using at least one kind of connection means selected from a pipe, a container, a pump, a sensor, and a valve. Further, the culture unit is provided with a mechanism for detecting the amount of liquid in the culture unit, and it is preferable that a nutrient source can be supplied from the nutrient source supply unit based on the detected value.
[0039] 図 1の形態では、微生物培養用培地タンク 23と培養タンク 24とが流量計 32およびポ ンプ 33を介して接続され、培養タンク 24に、微生物培養用培地を流量計 32で計測し ながらポンプ 33を用いて送ることができる。 In the embodiment shown in FIG. 1, the medium tank 23 for culturing microorganisms and the culture tank The culture medium for microorganism culture can be sent to the culture tank 24 by using the pump 33 while being measured by the flow meter 32.
[0040] 微生物の培養部において行われる培養は、通常、通気攪拌、振盪等の好気的条 件下、約 20°C—約 40°C、好ましくは約 25°C—約 40°Cの温度で行うことができる。培養 時の pHは 5— 10、好ましくは 6— 8付近の範囲がよぐ培養中の pH調整は、酸またはァ ルカリを添加することにより行うことができる。培養開始時の炭素源濃度は、 0.1— 20% (w/v)、好ましくは 1一 5% (w/v)である。また、培養期間は通常、半日一 5日間である。  [0040] The cultivation performed in the microorganism culturing section is usually performed at about 20 ° C to about 40 ° C, preferably about 25 ° C to about 40 ° C under aerobic conditions such as aeration and stirring. Can be done at temperature. The pH during the culturing is preferably in the range of 5-10, preferably around 6-8. The pH adjustment during the culturing can be performed by adding an acid or alkali. The carbon source concentration at the start of the culture is 0.1-20% (w / v), preferably 115% (w / v). The culturing period is usually one half day to 15 days.
[0041] 微生物の培養部は、酸素を含む気体源と連通して!/ヽる。酸素を含む気体としては、 一般に、酸素または空気が用いられる。酸素を含む気体供給方法としては、通常の 好気培養に用いる気体供給方法、例えばエアーポンプなどを用いることができる。酸 素を含む気体源は、該気体の滅菌手段を有し、滅菌された気体を培養部に供給す ることができる。微生物の培養部に供給する滅菌空気または酸素の量は、用いる微 生物に応じて適宜選択することができる力 0.001— 1リットル酸素/ 1リットル溶液 'min が好ましい。より好ましくは、 0.01— 0.5リットル酸素/ 1リットル溶液 'minである。図 1で は、微生物培養槽には、滅菌エアーまたは酸素を、滅菌空気供給装置 25から、流量 計 34による制御の下、 0.001— 1リットル酸素 /1リットル溶液 'minの速度でポンプ 35を 用いて送ることができる。  [0041] The culture section of the microorganism is in communication with a gas source containing oxygen! As the gas containing oxygen, oxygen or air is generally used. As a gas supply method containing oxygen, a gas supply method used for ordinary aerobic culture, for example, an air pump can be used. The gas source containing oxygen has means for sterilizing the gas, and can supply the sterilized gas to the culture unit. The amount of sterilized air or oxygen to be supplied to the microorganism culturing unit is preferably 0.001 to 1 liter of oxygen / 1 liter of solution, which can be appropriately selected according to the microorganism to be used. More preferably, 0.01-0.5 liter oxygen / 1 liter solution 'min. In Fig. 1, the microbial culture tank is supplied with sterile air or oxygen from the sterile air supply device 25 under the control of a flow meter 34 using a pump 35 at a speed of 0.001-1 liter oxygen / 1 liter solution 'min. Can be sent.
[0042] 微生物の培養部は、酸素を含む気体源と連通しており、好気条件下で培養を行うこ とができるが、嫌気条件下で培養を行うことも可能である。この場合、上記気体源から 培養部に気体を供給しな ヽ。  [0042] The culture part of the microorganism is in communication with a gas source containing oxygen, and can be cultured under aerobic conditions, but can also be cultured under anaerobic conditions. In this case, gas should be supplied from the gas source to the culture unit.
[0043] 微生物の培養部は、上記の微生物を導入することが可能な導入口を有することが 好ましい。微生物の導入ロカ 導入する菌体は、微生物の培養部内の菌体光学密 度 OD =0.01— 10の密度になるように投入されることが好ましい。より好ましくは、菌 [0043] The microorganism culture section preferably has an inlet through which the above-mentioned microorganisms can be introduced. It is preferable that the cells to be introduced are introduced so that the cells have an optical density OD of 0.01 to 10 in the culture part of the microorganism. More preferably, bacteria
610 610
体光学密度 OD =0.05— 5である。図 1においては、培養タンク 24には、微生物投入  Body optical density OD = 0.05-5. In FIG. 1, the culture tank 24 is filled with microorganisms.
610  610
口(図示せず)から微生物が投入される。  Microorganisms are introduced through a mouth (not shown).
[0044] 本発明の培養装置においては、連続培養が可能であるので連続培養の開始時の み微生物を投入すればよい。あるいは、連続培養の開始後に微生物を追加して投入 することも可能である。また、装置上のトラブルなどにより微生物の水素生成能力が低 下した場合に、該投入口から同種の微生物を投入することができる。 [0044] In the culture apparatus of the present invention, continuous culture is possible, so that microorganisms may be introduced only at the start of continuous culture. Alternatively, additional microorganisms can be introduced after the start of continuous culture. In addition, the ability of microorganisms to produce hydrogen is low due to equipment problems. When it is lowered, the same kind of microorganism can be injected from the input port.
[0045] 微生物の培養部で培養された微生物は、培養された微生物と培養液とを分離する ことが可能な分離部に送られる。微生物と培養液とを分離する方法としては、膜分離 、遠心分離などを用いることができ、操作が簡便である膜分離を用いることが好ましい 。分離部では、培養液中に含まれ、水素生成能を発現させるときに阻害要因となる物 質を除去する操作を行うことも可能となる。このような操作としては、分離された微生 物を嫌気状態の未使用の培地、滅菌水などを用いて洗浄することが挙げられる。  [0045] The microorganisms cultured in the microorganism culture section are sent to a separation section capable of separating the cultured microorganisms and the culture solution. As a method for separating the microorganism from the culture solution, membrane separation, centrifugation, or the like can be used, and it is preferable to use membrane separation, which is a simple operation. In the separation unit, it is also possible to perform an operation for removing a substance contained in the culture solution and acting as a hindrance when expressing the ability to generate hydrogen. Such an operation includes washing the separated microorganism using an anaerobic unused medium, sterilized water, or the like.
[0046] 図 1においては、分離部としての微生物洗浄槽 29に送られた培養液は、水素生成 能を誘導するときに阻害要因となる物質を除去するために、ベント 30から微生物の大 きさより小さい 1 μ m以下の目のフィルターにより、微生物以外の溶液の一部または全 部を分離する。未使用の培地を洗浄用培地供給口 38から微生物洗浄槽 29に供給し た後、微生物と培地の混合物を、ポンプ 40、流量計 39により改質容器 (水素生成能 発現槽) 26に送る。  [0046] In FIG. 1, the culture solution sent to the microorganism washing tank 29 as a separation unit removes a large amount of microorganisms from the vent 30 in order to remove a substance that is an inhibitory factor when inducing hydrogen production. Separate some or all of the non-microbial solution with a smaller 1 μm or smaller eye filter. After supplying the unused medium from the washing medium supply port 38 to the microorganism washing tank 29, the mixture of the microorganism and the medium is sent to the reforming vessel (hydrogen generating ability expression tank) 26 by the pump 40 and the flow meter 39.
[0047] 本発明の培養装置において、培養した後の微生物に水素生成能力を発現させる ための水素生成能発現部 (以下、改質部ともいう)は、該改質部を嫌気状態に保つシ ステムと、蟻酸、蟻酸塩もしくはグルコースまたはそれらを少なくとも一成分以上含む 有機物を供給するシステムを有して 、る。  [0047] In the culture apparatus of the present invention, a hydrogen-producing ability expressing section (hereinafter also referred to as a reforming section) for causing a microorganism after culturing to exhibit hydrogen-producing ability is a system for maintaining the reforming section in an anaerobic state. A stem and a system for supplying formic acid, formate, or glucose, or an organic substance containing at least one component thereof.
上記の有機物として供給する炭素源の種類を種々変更させることにより、水素生成 能力を発現させる時間を変化させることができる。これは、微生物が炭素源を取り込 む速度が、炭素源の種類によって異なることを利用している。例えば、炭素源として ガラクトースを用いると、炭素源としてグルコースを用いるよりも水素生成能力の発現 を遅くするように制御することができる。さらに付け加えると、有機物として供給する炭 素源以外にも、微生物の増殖用の栄養源で示した窒素源、ミネラル源を供給すること も好ましい。  By changing the kind of the carbon source supplied as the organic substance in various ways, the time for expressing the hydrogen generation ability can be changed. This takes advantage of the fact that the rate at which microorganisms take up carbon sources varies with the type of carbon source. For example, when galactose is used as a carbon source, it is possible to control the onset of the hydrogen generation ability to be slower than when glucose is used as a carbon source. In addition, in addition to the carbon source supplied as organic matter, it is also preferable to supply a nitrogen source or a mineral source indicated as a nutrient source for the growth of microorganisms.
[0048] 水素生成能発現部は、嫌気雰囲気付与手段を有する。嫌気雰囲気付与手段とし ては、改質部内の内容物を加熱処理する手段、改質部内を減圧する手段、改質部 内に窒素ガスなどの不活性ガスや炭酸ガスなどを導入する手段などを単独または組 み合わせて用いることができる。 [0049] 改質部内を減圧して嫌気的状態にする場合、改質部内を約 6.67 X 102 Pa以下、よ り好ましくは約 4.00 X 102 Pa以下の減圧下に、約 1一 60分程度、好ましくは 5— 60分程 度保持することが好ましい。改質部内は、改質反応中においても嫌気的状態に維持 されることが好ましぐ反応系を窒素ガスなどの不活性ガスや炭酸ガスなどで封入す る方法が通常用いられる。 [0048] The hydrogen generating ability expressing section has an anaerobic atmosphere providing means. The means for imparting an anaerobic atmosphere include a means for heating the contents in the reforming section, a means for reducing the pressure in the reforming section, and a means for introducing an inert gas such as nitrogen gas or carbon dioxide gas into the reforming section. They can be used alone or in combination. When the inside of the reforming section is brought into an anaerobic state by reducing the pressure, the inside of the reforming section is reduced to about 6.67 × 10 2 Pa or less, more preferably about 4.00 × 10 2 Pa or less, for about 1 to 60 minutes. For about 5 to 60 minutes. In the reforming section, a method is generally used in which a reaction system, which is preferably maintained in an anaerobic state even during the reforming reaction, is sealed with an inert gas such as nitrogen gas or carbon dioxide gas.
[0050] また、必要に応じて、適切な還元剤(例えば、チォグリコール酸、ァスコルビン酸、シ スティン塩酸塩、メルカプト酢酸、チオール酢酸、ダルタチオンそして硫ィヒソーダ等) を改質部内の内容物に添加して嫌気的条件とすることができ、このような還元剤を投 入する手段を用いることもできる。  [0050] If necessary, an appropriate reducing agent (eg, thioglycolic acid, ascorbic acid, cysteine hydrochloride, mercaptoacetic acid, thiolacetic acid, daltathione, sulfuric acid sulfate, etc.) is added to the contents in the reforming section. In this case, anaerobic conditions can be obtained, and a means for introducing such a reducing agent can also be used.
[0051] 水素生成能発現部内の溶液中の酸ィ匕還元電位は- lOOmV—- 500mVが好ましぐよ り好ましくは- 150mV—- 400mVであり、さらに好ましくは- 200mV—- 350mVである。酸 化還元電位は、例えば、 BROADLEY JAMES社製、 ORP Electrodesで測定すること ができる。  [0051] The oxidation reduction potential in the solution in the hydrogen generating ability expressing section is preferably -100mV--500mV, more preferably -150mV--400mV, and still more preferably -200mV--350mV. The oxidation-reduction potential can be measured with, for example, ORP Electrodes manufactured by BROADLEY JAMES.
[0052] 微生物に水素生成能を発現させるために改質部に供給する有機物としては、ダル コース、蟻酸および蟻酸塩から選択される少なくとも 1種を使用することができる。 グルコースの濃度は、水素生成能力の発現をより容易に行うことができる点で、好ま しくは 1—1000 mM、より好ましくは 1一 300 mMであり、さらに好ましくは 10— 250 mMに なるように供給する。  [0052] As the organic substance to be supplied to the reforming section in order to cause the microorganism to exhibit hydrogen-producing ability, at least one selected from the group consisting of dalcose, formic acid, and formate can be used. The concentration of glucose is preferably 1 to 1000 mM, more preferably 1 to 300 mM, and still more preferably 10 to 250 mM, since the expression of the hydrogen generating ability can be performed more easily. Supply.
蟻酸塩としては、蟻酸亜鉛、蟻酸ナトリウム、蟻酸カリウム、蟻酸セシウム、蟻酸ニッ ケル、蟻酸バリウム、蟻酸カルシウム、蟻酸アンモ-ゥムなどが使用できる。蟻酸また は蟻酸塩の溶液を用いる場合、これらの濃度としては、 1—1000 mMになるように供給 することが好ましぐより好ましくは 1一 500 mMであり、さらに好ましくは 1一 300 mMで あり、特に好ましくは 1一 50 mMである。  As formate, zinc formate, sodium formate, potassium formate, cesium formate, nickel formate, barium formate, calcium formate, ammonium formate and the like can be used. When a solution of formic acid or formate is used, it is preferable to supply them at a concentration of 1-1000 mM, more preferably 1-1500 mM, and even more preferably 1-1300 mM. Yes, particularly preferably 1 to 50 mM.
[0053] 有機物としては、グルコース、フルクトース、廃糖蜜等の糖類が挙げられる。ダルコ ースを用いる場合、グルコースの量としては、微生物の嫌気条件下での***増殖に より細胞数力 ¾倍程度以上になるのに必要な量が好ましい。この***増殖は、通常の 菌体光学密度測定、例えば Beckman Coulter社製 spectrophotometer DU- 800によ る測定を行う事により容易に知ることができる。さらに付け加えると、蟻酸脱水素酵素 およびヒドロゲナーゼの誘導発現には、必要な微量金属成分 (用いる微生物種により 、金属成分は異なるものの、鉄、モリブデン、ニッケル、セレン等が一般的である。)を 含むことが好ましい。 [0053] Examples of the organic substance include sugars such as glucose, fructose and molasses. When dalcose is used, the amount of glucose is preferably an amount necessary to increase the number of cells to about 程度 times or more by dividing and growing the microorganism under anaerobic conditions. This mitotic growth can be easily known by performing ordinary cell optical density measurement, for example, using a spectrophotometer DU-800 manufactured by Beckman Coulter. In addition, formate dehydrogenase In addition, the inducible expression of hydrogenase preferably contains a trace amount of a metal component (iron, molybdenum, nickel, selenium, etc. are generally used, although the metal component varies depending on the type of microorganism used).
また、前記の微生物増殖用培地がグルコースを含む場合、該微生物増殖用培地を グルコースの供給源として用いることもできる。  When the microorganism growth medium contains glucose, the microorganism growth medium can be used as a glucose source.
[0054] 水素生成能発現部における微生物の水素生成能の誘導は、約 20°C— 40°C、好ま しくは約 25°C— 40°Cの温度で行う。また、 pHは 5— 10、好ましくは 6— 8付近で行うこと ができる。微生物の水素生成能を誘導する時間としては、用いる微生物により異なる 力 通常、 0.5— 24時間である。  [0054] The induction of the hydrogen-producing ability of the microorganism in the hydrogen-producing ability expressing section is performed at a temperature of about 20 ° C to 40 ° C, preferably about 25 ° C to 40 ° C. Further, the pH can be adjusted at 5-10, preferably around 6-8. The time for inducing the hydrogen-producing ability of the microorganism depends on the microorganism used, and is usually 0.5 to 24 hours.
[0055] 微生物の培養部と改質部との間は、配管、ポンプ、センサーおよび弁から選択され る少なくとも 1種を用いて連通していることが好ましい。また、上述したように、培養部 と改質部との間に分離部が介在することもできる。  [0055] It is preferable that communication between the microorganism culturing unit and the reforming unit is performed using at least one selected from a pipe, a pump, a sensor, and a valve. Further, as described above, a separation unit may be interposed between the culture unit and the reforming unit.
[0056] 改質部は、改質部内の液量の検出機構を有することが好ましぐこの検出値に基づ V、て培養部からの微生物の投入量を調節することが好ま U、。  The reforming section preferably has a mechanism for detecting the amount of liquid in the reforming section. Based on this detection value, it is preferable to adjust the amount of microorganisms to be introduced from the culture section.
本発明の培養装置において水素生成能を発現させた微生物を、例えば水素生産 装置などの装置において用いる場合、上記の改質部が、水素生成能を発現させた 微生物を貯蔵 ·供給することができる微生物貯蔵部と連通することが好ましい。微生 物貯蔵部は、連続的または断続的に水素生産装置に微生物を供給できる機構を有 することが好ましい。  When the microorganisms expressing the hydrogen generating ability in the culture apparatus of the present invention are used in, for example, a device such as a hydrogen producing apparatus, the reforming section can store and supply the microorganisms expressing the hydrogen generating ability. Preferably, it is in communication with the microbial reservoir. The microorganism storage unit preferably has a mechanism capable of continuously or intermittently supplying microorganisms to the hydrogen production device.
[0057] 図 1において、水素生成能発現部としての改質槽 26には、排気装置 (図示せず)に て改質槽内を嫌気的状態にした後、有機物供給装置 27によりポンプ 42、流量計 41に より制御しながら有機物を添加する。改質槽において水素生成能を発現した微生物 は、微生物貯蔵槽 28に送られ、後述の連続水素生成装置の反応槽 2に必要に応じ て供給されるまで貯蔵されることができる。  In FIG. 1, after the inside of the reforming tank 26 is anaerobic by an exhaust device (not shown), the pump 42 and the pump 42 Organic substances are added while controlling with a flow meter 41. The microorganisms that have exhibited hydrogen-producing ability in the reforming tank are sent to the microorganism storage tank 28, where they can be stored until supplied to the reaction tank 2 of the continuous hydrogen generator described below as needed.
以上が、本発明の培養装置の好ましい例である。  The above is a preferred example of the culture device of the present invention.
[0058] 連続式水素発生装置の水素生成反応部に連設された微生物培養装置を含む連 続水素生成システムに関して、例として図 2に示す。 [0058] FIG. 2 shows an example of a continuous hydrogen generation system including a microorganism culturing apparatus connected to a hydrogen generation reaction section of a continuous hydrogen generator.
本発明の水素生産装置は、上記の培養装置が水素生成反応部に連設されてなる ものが好ましい。改質容器力も水素生成反応部へは、エタノールや酢酸、乳酸など の代謝産物を除去するために、微生物以外の溶液の一部または全部を分離する。 分離する方法としては、フィルターを用いたクロスフローろ過による方法により代謝 産物を含む培養液の量を少なくする方法、遠心分離により微生物を培養上清と分離 して培養上清を除く方法などが挙げられる。遠心分離により培養上清を除く場合、遠 心分離後の微生物を新 、培地に分散 ·懸濁して洗浄し、これを水素生成反応部に 送って用いるのが好ましい。また、水素生成反応部への代謝産物の持込をより少なく するために、上記の遠心分離および洗浄を繰り返して行うのが好ま ヽ。 In the hydrogen production apparatus of the present invention, the above-described culture apparatus is connected to a hydrogen generation reaction unit. Are preferred. The reforming vessel also separates part or all of the solution other than the microorganisms into the hydrogen generation reaction section in order to remove metabolites such as ethanol, acetic acid, and lactic acid. Methods for separation include a method of reducing the amount of culture solution containing metabolites by a method of cross-flow filtration using a filter, and a method of separating microorganisms from the culture supernatant by centrifugation and removing the culture supernatant. Can be When the culture supernatant is removed by centrifugation, it is preferable that the microorganism after centrifugation is newly dispersed and suspended in a medium, washed, and sent to the hydrogen generation reaction section for use. Further, in order to reduce the amount of metabolites brought into the hydrogen generation reaction section, it is preferable to repeat the above-mentioned centrifugation and washing.
上記の代謝産物は、微生物の水素生産に悪影響を及ぼすことが知られている。本 発明の水素生産装置においては、微生物の培養装置において産生された代謝産物 の量をできるだけ低減させて水素生成反応部へ送達することができるので、長時間、 安定して微生物による水素生産を行うことができる。  The above metabolites are known to adversely affect hydrogen production by microorganisms. In the hydrogen production apparatus of the present invention, the amount of metabolites produced in the culture apparatus for microorganisms can be reduced as much as possible and delivered to the hydrogen generation reaction section, so that the microorganisms can stably produce hydrogen for a long time. be able to.
[0059] 水素生産装置における、微生物の培養部および水素生成能発現部を含む培養装 置にっ 、ては、上記の培養装置につ!、て述べたことと同様である。  [0059] The culturing device including the culturing unit for microorganisms and the hydrogen generating ability expressing unit in the hydrogen producing device is the same as that described for the culturing device described above.
[0060] 培養装置と水素生成反応部とは、微生物を運搬することができる機構により連通す ることが好ましい。微生物を運搬することができる機構としては、ポンプ、配管などを 適宜組み合わせた通常の微生物の運搬機構を用いることができ、培養装置の微生 物貯蔵部内を陽圧にして、微生物を水素生成反応部内に投入する機構、水素生成 反応部内を陰圧にして、微生物を培養装置力 導入する機構などが挙げられる。  [0060] It is preferable that the culture apparatus and the hydrogen generation reaction section are connected by a mechanism capable of transporting microorganisms. As a mechanism capable of transporting the microorganisms, a normal mechanism for transporting microorganisms, which is appropriately combined with a pump, piping, and the like, can be used. And a mechanism for introducing microorganisms into the culture device by setting the inside of the hydrogen generation reaction section to negative pressure.
[0061] 図 2においては、上述したようにして改質槽 26で改質された微生物は、微生物供給 槽 28に蓄えられ、必要に応じて、動力 14により水素発生装置の水素生成反応槽 (以 下、反応槽ともいう) 2に供給することができる。反応槽 2に供給する際の微生物濃度 は、 0.1— 80% (w/w) (湿潤状態菌体質量基準)の濃度範囲であり、好ましくは 10— 70 % (w/w) (湿潤状態菌体質量基準)である。  [0061] In FIG. 2, the microorganisms reformed in the reforming tank 26 as described above are stored in the microorganism supply tank 28, and if necessary, the power 14 is supplied to the hydrogen generating reaction tank ( (Hereinafter, also referred to as a reaction tank). The concentration of the microorganisms to be supplied to the reaction tank 2 is within a concentration range of 0.1 to 80% (w / w) (based on the weight of the wet cells), preferably 10 to 70% (w / w) (the weight of the wet cells). (Based on body mass).
[0062] 反応槽 2には、培地タンク 3から、水素生産用培地を供給することができる。該培地と しては、微生物の水素発生性能の点で、上記培養部で使用した微生物増殖用培地 とは異なる培地を用いることが好ましいが、同じ培地を用いることもできる。微生物増 殖用培地と同じ培地を水素発生用培地として用いる場合、培地タンク 3から上記培養 装置の培養タンク 24に培地を供給することもできる。このようにすれば、水素発生装 置をコンパクトにすることができる。 [0062] The reaction tank 2 can be supplied with a hydrogen production medium from the medium tank 3. As the medium, it is preferable to use a medium different from the microorganism growth medium used in the above-mentioned culturing unit in terms of hydrogen generation performance of the microorganism, but the same medium can also be used. When the same medium as the medium for microbial growth is used as the medium for hydrogen generation, The medium can also be supplied to the culture tank 24 of the device. In this way, the hydrogen generator can be made compact.
[0063] 水素生成反応部は、 20°C— 40°Cの温度に管理され、好ましくは 25°C— 40°Cの温度 に保たれる。  [0063] The hydrogen generation reaction section is controlled at a temperature of 20 ° C to 40 ° C, and is preferably maintained at a temperature of 25 ° C to 40 ° C.
水素生成反応部は、嫌気雰囲気付与手段を有する。嫌気雰囲気付与手段としては 、上記の水素生成能発現部における嫌気雰囲気付与手段について述べたことと同 様である。  The hydrogen generation reaction section has an anaerobic atmosphere providing means. The anaerobic atmosphere providing means is the same as that described above for the anaerobic atmosphere providing means in the hydrogen generating ability expressing section.
[0064] 水素生成反応部は、水素生成のための有機物を供給する水素生成用有機物(以 下、有機性基質ともいう)供給源と連通していることが好ましい。水素生成用有機物と しては、菌体内代謝経路において蟻酸に変換される糖類等の化合物であってもよい し、蟻酸や蟻酸塩であってもよい。ここで蟻酸塩とは、ヒドロカルボキシル基 (ィ匕学構 造式 HCOO—)を有する物質である。中でも、蟻酸、蟻酸ナトリウム、蟻酸カリウム、蟻 酸カルシウム、蟻酸マンガン、蟻酸ニッケル、蟻酸セシウム、蟻酸バリウム、蟻酸アン モニゥムなどが挙げられる。それらの中でも、水に対する溶解度の面から蟻酸、蟻酸 ナトリウム、蟻酸カリウム、蟻酸カルシウム、および蟻酸アンモ-ゥムが好ましぐさらに 、コストの面力 蟻酸、蟻酸ナトリウムおよび蟻酸アンモ-ゥムが好ましい。間接的供 給方法と直接的供給方法の併用も可能であるものの、直接的供給方法が好ましく用 いることができる。そして、燃料タンク 1から水素生成用有機物を含む溶液を、嫌気状 態に保持された反応槽 2にポンプ 13および流量計 12を用いて計測制御しながら、溶 液の pHが 5— 9の範囲になるように供給することができる。 pHが大きく変化する場合は 、 PH調整液を供給することができる。 [0064] The hydrogen generation reaction section is preferably in communication with a source of an organic substance for hydrogen generation (hereinafter, also referred to as an organic substrate) for supplying an organic substance for hydrogen generation. The organic substance for hydrogen generation may be a compound such as a saccharide that is converted into formic acid in the intracellular metabolic pathway, or may be formic acid or formate. Here, the formate is a substance having a hydrocarboxyl group (Danigaku structural formula HCOO—). Among them, formic acid, sodium formate, potassium formate, calcium formate, manganese formate, nickel formate, cesium formate, barium formate, ammonium formate and the like can be mentioned. Among them, formic acid, sodium formate, potassium formate, calcium formate and ammonium formate are preferred from the viewpoint of solubility in water. Further, formic acid, sodium formate and ammonium formate are preferred in terms of cost. Although it is possible to use both the indirect supply method and the direct supply method, the direct supply method can be preferably used. Then, while controlling the solution containing the organic matter for hydrogen generation from the fuel tank 1 using the pump 13 and the flow meter 12 in the reaction tank 2 maintained in an anaerobic state, the pH of the solution is in the range of 5-9. Can be supplied. When the pH varies greatly, it is possible to supply the P H adjusted solution.
このようにして、水素生成のための有機物を供給することにより、水素を含むガス、 または水素を含むガスと代謝産物等が生成する。  By supplying an organic substance for hydrogen generation in this manner, a gas containing hydrogen, or a gas containing hydrogen and metabolites are generated.
[0065] 水素生成反応部は、水素発生のための有機物と微生物が接触する面積を増加さ せるために、反応部内部の液体を流動させる手段を有していることが好ましい。この ような手段としては、反応部の内容物を移動させる混合翼、該内容物を噴霧する装 置、反応槽内部に設けられた内容物を滴下する装置などを用いることができる。 なお、上記の改質槽 26、有機物供給装置 27、反応槽 2、燃料タンク 1は、溶液の特 性に応じて材料的に安定であるものが選択され、槽ゃタンクの内部の一部または全 部が化学的に安定な材料でコートされて 、るものが好まし 、。例えば酸性溶液を使 用する場合であれば、合金のような耐酸性の材料で製造されたタンクを使用すること もできる。改質槽 26、反応槽 2の表面は、耐腐食性であることが好ましい。 [0065] The hydrogen generation reaction section preferably has means for flowing a liquid inside the reaction section in order to increase the area of contact between the organic matter and the microorganisms for hydrogen generation. As such means, a mixing blade for moving the contents of the reaction section, a device for spraying the contents, a device for dropping the contents provided inside the reaction tank, and the like can be used. The above-mentioned reforming tank 26, organic matter supply device 27, reaction tank 2, and fuel tank 1 Materials that are stable in material are selected according to their properties, and those in which part or all of the inside of the tank / tank is coated with a chemically stable material are preferred. For example, if an acidic solution is used, a tank made of an acid-resistant material such as an alloy can be used. The surfaces of the reforming tank 26 and the reaction tank 2 are preferably corrosion-resistant.
[0066] 反応部で発生するガス中に、水素ガス以外のガスが含まれ、それを除去する方が 望ましい場合は、水素生成反応部の後に水素濃縮部(固定部)を設けて、水素ガス 以外の成分を固定することができる。水素ガス以外の成分を固定する方法としては、 従来公知の方法を用いることができ、液体の吸収剤、固体の吸収剤などを用いた吸 収剤による固定方法を用いることができる。二酸ィ匕炭素を除去する場合、液体の二 酸化炭素吸収剤を水素濃縮部に貯蔵して二酸化炭素を固定する方法を用いること ができる。液体の二酸化炭素吸収剤としては、エタノールァミン溶液などが使用可能 である。 [0066] If gas other than hydrogen gas is contained in the gas generated in the reaction section, and it is desirable to remove the gas, a hydrogen concentrating section (fixed section) is provided after the hydrogen generation reaction section, and hydrogen gas is provided. Other components can be fixed. As a method for fixing components other than hydrogen gas, a conventionally known method can be used, and a fixing method using an absorbent using a liquid absorbent, a solid absorbent, or the like can be used. When removing carbon dioxide, a method of storing a liquid carbon dioxide absorbent in a hydrogen concentrating unit and fixing carbon dioxide can be used. As a liquid carbon dioxide absorbent, an ethanolamine solution or the like can be used.
[0067] 図 2においては、水素濃縮槽 5を設けて水素ガスを濃縮することができる。水素濃縮 槽 5が有する弁 21は、濃縮剤 (吸収剤)の入れ替え用のバルブであるが、入れ替え口 は 2箇所以上あっても力まわない。また、複数個のバルブ、タンクなどの組み合わせ により吸収剤の再生システムを組み合わせることもできる。ゼォライト、アミン系溶液な どの、常温で吸着して高温で再生するシステムを使用する場合、後述の燃料電池部 において発生した熱を利用して濃縮剤を再生することも可能である。  In FIG. 2, a hydrogen concentration tank 5 can be provided to concentrate hydrogen gas. The valve 21 of the hydrogen concentrating tank 5 is a valve for replacing the condensing agent (absorbent), but it does not work even if there are two or more replacement ports. Also, the absorbent regeneration system can be combined with a combination of a plurality of valves and tanks. When using a system that adsorbs at room temperature and regenerates at high temperature, such as zeolite and amine-based solutions, it is also possible to regenerate the condensing agent using the heat generated in the fuel cell unit described below.
[0068] 水素生産装置は、水素生成量検出部を具備し、該水素生成量検出部の検出値に 基づいて、培養装置力 微生物を供給できるように構成されてなる。水素生成量検出 部としては、生成する水素の量を測定し得る機器を用いることができ、例えばガス流 量計を用いることができる。図 2においては、流量計 32により水素生成量を測定するこ とができ、この測定値に基づいて微生物貯蔵槽 28から反応槽 2に微生物を供給する ことができる。  [0068] The hydrogen production device is provided with a hydrogen generation amount detection unit, and is configured to be able to supply microorganisms to the culture device based on the detection value of the hydrogen generation amount detection unit. As the hydrogen generation amount detection unit, a device capable of measuring the amount of generated hydrogen can be used, and for example, a gas flow meter can be used. In FIG. 2, the hydrogen generation amount can be measured by the flow meter 32, and the microorganisms can be supplied from the microorganism storage tank 28 to the reaction tank 2 based on the measured value.
[0069] 反応槽への水素生成用有機物を含む溶液の供給量は、後述の燃料電池 6の出力 、水素生成量を検出する流量計 32、反応槽 2の温度、撹拌状態などの情報をベース に供給ポンプを調節することにより制御することができる。供給ポンプの出力増加に 力かわらず燃料電池 6の発電出力が増カロしない場合は、微生物の水素生成能力が 低下していることが考えられるので、反応槽 2内の培地および微生物の一部を抜き取 り、培地タンクおよび培養装置力 微生物と新たな培地を供給することが好ましい。そ の際、微生物貯蔵槽 28から反応槽 2に微生物を供給する量を制御する。 The supply amount of the solution containing the organic matter for hydrogen generation to the reaction tank is based on information such as the output of the fuel cell 6 described later, a flow meter 32 for detecting the amount of hydrogen generation, the temperature of the reaction tank 2 and the stirring state. Can be controlled by adjusting the feed pump. If the power output of the fuel cell 6 does not increase due to the increase in the output of the supply pump, the microbial Since it is considered that the amount has decreased, it is preferable to extract a part of the medium and the microorganisms in the reaction tank 2 and supply the microorganisms and a new medium to the medium tank and the culturing apparatus. At that time, the amount of microorganisms supplied from the microorganism storage tank 28 to the reaction tank 2 is controlled.
[0070] 反応槽 2中の菌体および培地の一部は、上記のように、水素生成量、温度、原料供 給量などの情報をベースに抜き取り量を制御しつつ、ポンプ 18を用いて廃液タンク 4 に抜き取られる。この抜き取り量に応じて、培地タンク 3から所定量の培地を、また微 生物貯蔵槽 28から所定量の微生物を、反応槽 2にポンプ 15を使用して供給する。な お、燃料タンク 1と反応槽 2、培地タンク 3は、ポリウレタンフォームやガラスウールなど の断熱材を使用して熱の移動量を抑制し、熱交換器などにより温度が 20— 45°C程度 に制御されて 、ることが好まし 、。  [0070] As described above, the bacterial cells and a part of the medium in the reaction tank 2 are controlled by using the pump 18 while controlling the extraction amount based on information such as the amount of hydrogen generation, the temperature, and the supply amount of the raw material. Drained into waste tank 4. A predetermined amount of culture medium is supplied from the culture tank 3 and a predetermined amount of microorganisms from the microorganism storage tank 28 to the reaction tank 2 using the pump 15 in accordance with the amount of the sample to be extracted. The fuel tank 1, the reaction tank 2, and the culture tank 3 use a heat insulating material such as polyurethane foam or glass wool to suppress the amount of heat transfer, and the temperature is about 20-45 ° C using a heat exchanger. It is preferred to be controlled by
[0071] 以下に、水素生産量を制御することが可能な水素生産装置、および燃料電池を含 むシステムにつ 、て示す。  Hereinafter, a hydrogen production apparatus capable of controlling the hydrogen production amount and a system including a fuel cell will be described.
図 3に、水素生産量を制御することが可能な水素生産装置を用いた燃料電池シス テム構成図を一例として示す。  FIG. 3 shows an example of a fuel cell system configuration diagram using a hydrogen production device capable of controlling the amount of hydrogen production.
図 3の有機性基質の入ったタンク 52から有機性基質供給ポンプ 61で供給しながら 、水素生成反応部 51へ供給する。水素生成反応部 51は、蟻酸脱水素酵素遺伝子 およびヒドロゲナーゼ遺伝子を有する微生物と培地成分 (水素発生用培地)を含む 反応溶液を含み得る。有機性基質を水素生成反応部 51へ供給することにより、反応 溶液中の微生物が水素を含むガスを生産する。  The organic substrate is supplied from the tank 52 containing the organic substrate shown in FIG. The hydrogen generation reaction section 51 can include a reaction solution containing a microorganism having a formate dehydrogenase gene and a hydrogenase gene and a medium component (hydrogen generation medium). By supplying the organic substrate to the hydrogen generation reaction section 51, the microorganisms in the reaction solution produce a gas containing hydrogen.
[0072] 微生物が生産したガスは凝縮器 55を通過し、ガス分離装置 56にて水素リッチなガ スに分離され、燃料電池 54の燃料極に供給される。燃料電池 54では、燃料極に供 給された水素ガスと、空気極に供給された空気中の酸素とから、発電することが可能 となる。  The gas produced by the microorganism passes through a condenser 55, is separated into a hydrogen-rich gas by a gas separator 56, and is supplied to a fuel electrode of a fuel cell 54. In the fuel cell 54, power can be generated from the hydrogen gas supplied to the fuel electrode and the oxygen in the air supplied to the air electrode.
[0073] 有機性基質供給ポンプ 61で有機性基質の供給量の制御により、ガス生産量を制 御することが可能である。さらには、有機性基質の供給量の制御により、燃料電池 54 での発電量も制御可能となる。  [0073] By controlling the supply amount of the organic substrate by the organic substrate supply pump 61, it is possible to control the gas production amount. Further, by controlling the supply amount of the organic substrate, the power generation amount in the fuel cell 54 can be controlled.
反応液中の蟻酸濃度、温度、 pH、微生物濃度が把握できるように各種センサー類 67に、それぞれ必要なセンサーを取付けることにより、蟻酸濃度、温度、 pH、微生物 濃度を確認でき、蟻酸濃度、温度、 pH、微生物濃度の条件を設定することが可能な 水素生産装置が得られる。攪拌については、攪拌装置 60を反応容器に取付け、回 転させ、回転数を把握することで、攪拌装置の回転数の条件を設定することが可能 な水素生産装置が得られる。 By attaching necessary sensors to various sensors 67 so that the formic acid concentration, temperature, pH, and microorganism concentration in the reaction solution can be grasped, the formic acid concentration, temperature, pH, and microorganism concentration can be measured. A hydrogen production device that can confirm the concentration and set the conditions of formic acid concentration, temperature, pH, and microorganism concentration can be obtained. Regarding the stirring, a hydrogen production apparatus capable of setting the condition of the number of rotations of the stirrer by obtaining the number of rotations by attaching the stirrer 60 to the reaction vessel and rotating the same is obtained.
[0074] また上記の水素生産装置を用いて燃料電池のシステムとした場合、蟻酸濃度条件 、温度条件、 pH条件、微生物濃度条件、および攪拌条件力 選ばれる少なくとも一 つの水素生成条件を制御することにより、水素生産量の制御を行うと同時に、燃料電 池システムとして発電量の制御も行うことが可能な水素生産装置を含む燃料電池シ ステムを得ることができる。 When a fuel cell system is formed using the above-described hydrogen production apparatus, at least one hydrogen production condition selected from formic acid concentration conditions, temperature conditions, pH conditions, microorganism concentration conditions, and stirring conditions is controlled. Accordingly, it is possible to obtain a fuel cell system including a hydrogen production device capable of controlling the amount of hydrogen production and simultaneously controlling the amount of power generation as a fuel cell system.
[0075] 以下に、水素生産量、および燃料電池の発電量を制御する手段として、蟻酸濃度 条件、温度条件、 pH条件、微生物濃度条件、および攪拌条件の詳細について示す Hereinafter, details of formic acid concentration conditions, temperature conditions, pH conditions, microorganism concentration conditions, and stirring conditions will be described as means for controlling the hydrogen production amount and the fuel cell power generation amount.
[0076] 蟻酸濃度条件は、反応容器内の蟻酸イオン濃度を測定し、制御を行う。蟻酸濃度 を測定する方法としては、液体クロマトグラフィーを用いる方法、超音波と導電率によ り測定する超音波液体濃度計を用いる方法が挙げられる。本発明では、溶液中の経 時変化を見ていくために、超音波による濃度計を用いる方法により、測定を行うもの の、液体クロマトグラフィーを用いる方法も併用することができる。蟻酸濃度を増加さ せることにより、水素生産量は増加し、蟻酸濃度を下げると、水素生産量は減少する 。また、ある一定の蟻酸濃度を超える場合には、水素の生産量の制御は難しくなる。 水素生産量を制御できる蟻酸濃度の範囲としては、 0— 250mMが好ましぐ水素生 産量と蟻酸濃度との直線的な関係を得ることが可能な範囲である点で、 10— 100m Mがさらに好ましい。蟻酸濃度を増加させる方法としては、有機性基質を加えること により行い、減少させる方法としては、培地成分等を加える方法により行う。 [0076] The formic acid concentration condition is controlled by measuring the formate ion concentration in the reaction vessel. Methods for measuring the formic acid concentration include a method using liquid chromatography and a method using an ultrasonic liquid densitometer that measures with ultrasonic waves and electric conductivity. In the present invention, a method using a densitometer using ultrasonic waves is used to measure the time-dependent changes in the solution, but a method using liquid chromatography can also be used in combination. Increasing the formic acid concentration increases hydrogen production, and decreasing formic acid concentration decreases hydrogen production. Further, when the concentration exceeds a certain formic acid concentration, it becomes difficult to control the hydrogen production. The range of formic acid concentration at which the hydrogen production can be controlled is 10 to 100 mM, since 0 to 250 mM is the range where the preferred linear relationship between hydrogen production and formic acid concentration can be obtained. preferable. The formic acid concentration is increased by adding an organic substrate, and the formic acid concentration is decreased by adding a medium component or the like.
[0077] 反応温度条件は、反応容器内の温度を測定し、制御を行う。温度を測定する方法 としては、一般的な抵抗式の温度センサー等を用いて行う方法が挙げられる。反応 温度を上げると、用いる微生物種にもよるものの、水素生産量は増加し、温度を下げ ると水素生産量は減少する。一般的に常温で増殖する微生物を用いた場合、水素 生産量を制御できる温度範囲としては、 20°C— 45°Cの条件が好ましぐさらに好ましく は 30°C— 40°Cの範囲が微生物のライフの面力 好ま 、。反応温度を上げる方法と しては、燃料電池による得られる熱エネルギーを用いて、水素生産装置を加温する 方法により行われる。反応温度を下げる方法としては、空冷、水冷などが挙げられる ものの、水冷方法が制御の容易な点で、用いられる。 [0077] The reaction temperature condition is controlled by measuring the temperature in the reaction vessel. As a method for measuring the temperature, a method using a general resistance type temperature sensor or the like can be mentioned. Increasing the reaction temperature increases hydrogen production, depending on the microbial species used, and decreasing the temperature decreases hydrogen production. Generally, when using microorganisms that grow at room temperature, the temperature range in which the amount of hydrogen production can be controlled is preferably 20 ° C to 45 ° C, more preferably. The range of 30 ° C-40 ° C is preferred for microbial life. As a method of raising the reaction temperature, a method of heating a hydrogen production device using thermal energy obtained by a fuel cell is used. Examples of the method for lowering the reaction temperature include air cooling and water cooling, but the water cooling method is used because it is easy to control.
[0078] pH条件は、反応溶液中の pHを測定し、制御を行う。 pHを測定する方法としては、 一般的な pHセンサー等を用いて、値を検出する。 pHの値は、用いる微生物種にも よるが、最適な pH領域と反応溶液中の pHの値との差が小さくなるほど、水素の生産 量は増加し、差が大きくなるほど、水素の生産量は減少する。一般的に、用いる微生 物種、反応溶液中の緩衝成分に最適値は異なってくるものの、最適な pH値は 4. 0 一 8. 0に存在することが多ぐさらに好ましくは 5. 5-7. 0に存在する。 pHを上げる 方法としては、アルカリ性溶液を添加する方法を用いることができる。 pHを下げる方 法としては、有機性基質を添加する方法が用いられる。アルカリ性溶液としては、水 酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム 、アンモニア等の水溶液が挙げられる。中でも、水酸ィ匕ナトリウム力 コストの面から、 アンモニア水が、窒素源としても用いることが可能な面から、これらを用いることが好 ましい。 [0078] The pH condition is controlled by measuring the pH in the reaction solution. As a method of measuring pH, the value is detected using a general pH sensor or the like. The pH value depends on the microorganism species used, but the smaller the difference between the optimal pH range and the pH value in the reaction solution, the higher the hydrogen production.The larger the difference, the higher the hydrogen production. Decrease. In general, the optimum value varies depending on the species of microorganism used and the buffer component in the reaction solution, but the optimum pH value is often 4.0 to 8.0, and more preferably 5.5 to 5. 7. Exists at 0. As a method of increasing the pH, a method of adding an alkaline solution can be used. As a method of lowering the pH, a method of adding an organic substrate is used. Examples of the alkaline solution include aqueous solutions of lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, ammonia and the like. Among them, it is preferable to use ammonia water from the viewpoint of the cost of sodium hydroxide and the fact that ammonia water can also be used as a nitrogen source.
[0079] 微生物濃度条件は、反応溶液中の微生物濃度を測定し、制御を行う。微生物濃度 を測定する方法としては、濁度センサーを用いる方法、吸光度から算出する方法、反 応溶液の一部に電場を与え、その部分の細胞の分極度合を測定する方法などが挙 げられる。本発明では、溶液中の経時変化を見ていくために、濁度センサーにより、 測定を行うものの、吸光度力も算出する方法も併用することができるが、測定方法は これらに限定するものではない。微生物濃度を上げると、水素生産量は増加し、微生 物濃度を下げると水素生産量は減少する。微生物濃度を上げる方法としては、微生 物供給口 66より微生物を投入する方法を用いる。微生物濃度を下げる方法としては 、培地成分供給ポンプ 62から培地を反応溶液中に供給する方法を用いる。  [0079] The concentration of microorganisms is controlled by measuring the concentration of microorganisms in the reaction solution. Methods for measuring the concentration of microorganisms include a method using a turbidity sensor, a method for calculating from the absorbance, and a method for applying an electric field to a part of the reaction solution and measuring the degree of polarization of cells in that part. . In the present invention, although a measurement is performed using a turbidity sensor in order to observe the change over time in the solution, a method for calculating the absorbance force can also be used together, but the measurement method is not limited to these. Increasing the concentration of microorganisms increases hydrogen production, and decreasing the concentration of microorganisms decreases hydrogen production. As a method for increasing the concentration of microorganisms, a method of introducing microorganisms from the microorganism supply port 66 is used. As a method for lowering the concentration of microorganisms, a method of supplying a culture medium from the culture medium supply pump 62 into the reaction solution is used.
[0080] 攪拌条件は、反応溶液中の攪拌装置 60の回転数を設定することにより、制御を行 う。攪拌条件は、回転数だけではなぐモーター 59のトルク、攪拌装置 60の消費動 力を測定する方法などさまざまな制御方法が挙げられるものの、図 3では回転数を用 いて行う装置を示す。攪拌装置 60の回転数を増加させると、水素生産量は増加し、 攪拌装置 60の回転数を下げると水素生産量は減少する。攪拌装置 60の回転数は、 モーター 59の調整により行うことができる。マグネティック方式の攪拌装置も、メンテ ナンスが容易になるために好ましく用いられる。 [0080] The stirring conditions are controlled by setting the number of rotations of the stirring device 60 in the reaction solution. The stirring conditions are not limited to the rotation speed, but various control methods such as a method for measuring the torque of the motor 59 and the power consumption of the stirring device 60 can be used. The following shows an apparatus for performing this. Increasing the rotation speed of the stirrer 60 increases the hydrogen production, and decreasing the rotation speed of the stirrer 60 decreases the hydrogen production. The rotation speed of the stirring device 60 can be adjusted by adjusting the motor 59. Magnetic stirrers are also preferably used because they facilitate maintenance.
[0081] 上記に示した、蟻酸濃度条件、温度条件、 pH条件、微生物濃度条件、および攪拌 条件力 選ばれる少なくとも一つの水素生成条件により制御することで、水素発生量 の制御を行うことができる。またこのようにして、水素の生産量を制御することにより、 燃料電池の発電量の制御も可能である。  [0081] The amount of hydrogen generated can be controlled by controlling at least one hydrogen generation condition selected from the formic acid concentration conditions, temperature conditions, pH conditions, microorganism concentration conditions, and stirring conditions described above. . In addition, by controlling the amount of hydrogen production in this way, it is possible to control the amount of power generated by the fuel cell.
[0082] また、上記に示した中の水素生成条件を 2つ以上の組み合わせによっても水素生 産量の制御が可能である。中でも、蟻酸濃度条件と微生物濃度条件、微生物濃度条 件と攪拌条件の組み合わせが好ましぐこれらを同時に制御する方法が好ましい。蟻 酸濃度条件と微生物濃度条件、微生物濃度条件と攪拌条件を同時に制御すること で、水素の生産量をより容易に制御することが可能になる。  [0082] Also, the hydrogen production amount can be controlled by combining two or more of the above hydrogen production conditions. Among them, a method of simultaneously controlling formic acid concentration conditions and microorganism concentration conditions, or a combination of microorganism concentration conditions and stirring conditions is preferable, which is preferable. By simultaneously controlling the formic acid concentration condition and the microorganism concentration condition, or the microorganism concentration condition and the stirring condition, it becomes possible to more easily control the hydrogen production amount.
[0083] 有機性基質をリアクター (水素生成反応部) 51へ供給する手段としては、有機性基 質を噴霧する装置 57を用いて、噴霧しながら供給する方法を用いることができる。噴 霧を行うことで、有機性基質を分散して供給することができ、反応面積が増加し、それ に伴い、水素を含むガスの生産速度が増加することができる。また、特に有機性基質 に蟻酸を用いる場合には、噴霧を行うことにより、反応溶液中の微生物への局所的な 酸に対する負荷を減らすことが可能になる。ひいては、微生物ライフが向上するため に好ましい。噴霧を行う手段としては、加圧による方法、超音波による方法などが挙 げられる。噴霧させる手段として加圧による方法を用いる場合には、リアクター 51内 の嫌気雰囲気を保持するために、窒素ガス等の不活性ガスを用いる必要がある。こ の点から、噴霧させる手段は超音波を用いる方法が好まし 、。  [0083] As a means for supplying the organic substrate to the reactor (hydrogen generation reaction section) 51, a method of supplying the organic substrate while spraying it using a device 57 for spraying the organic substrate can be used. By spraying, the organic substrate can be dispersed and supplied, the reaction area increases, and the production rate of hydrogen-containing gas can be increased accordingly. In particular, when formic acid is used as an organic substrate, spraying makes it possible to reduce the load of the microorganisms in the reaction solution on local acid. Furthermore, it is preferable because the life of microorganisms is improved. Means for spraying include a method by pressurization and a method by ultrasonic waves. When a pressurized method is used as the spraying means, it is necessary to use an inert gas such as a nitrogen gas in order to maintain an anaerobic atmosphere in the reactor 51. From this point, the means for spraying is preferably a method using ultrasonic waves.
[0084] リアクター 51からの発生した水素を含むガスの排出口付近に凝縮器 5を用いること により、微生物が生産した水素を含むガスに含まれる蒸気量を減少させることができ る。冷却方法は、空冷でも可能である力 効果を高めるために、水冷することが好まし い。これにより、発生したガスに含まれる蒸気が、リアクター 51から燃料電池までのシ ステムの配管内で結露、液滴、ひいては液膜が生じ、発生した水素の燃料電池への 供給が滞りやすくなる点が改善される。 [0084] By using the condenser 5 near the outlet of the gas containing hydrogen generated from the reactor 51, the amount of steam contained in the gas containing hydrogen produced by the microorganisms can be reduced. The cooling method is preferably water cooling to increase the force effect that is possible with air cooling. As a result, the vapor contained in the generated gas is condensed in the system piping from the reactor 51 to the fuel cell, forming droplets and eventually a liquid film, and the generated hydrogen is transferred to the fuel cell. The point at which the supply tends to stagnate is improved.
上記の有機性基質の供給カゝら水素ガスを含むガスを発生する段階は、恒温槽 53 内にて一定温度の雰囲気で行われるのが好ましい。  The step of generating a gas containing hydrogen gas from the supply of the organic substrate is preferably performed in a constant temperature bath 53 in an atmosphere at a constant temperature.
[0085] 有機性基質は有機性基質供給口 63から、補給することが可能である。  [0085] The organic substrate can be replenished from the organic substrate supply port 63.
ガス分離装置 56は、リアクター 51で発生した水素および二酸ィ匕炭素を主成分とす るガスから、水素リッチなガスを分離することができる。分離する方法としては、膜分離 法、吸着法など、一般的な方法が用いられる。  The gas separation device 56 can separate a hydrogen-rich gas from a gas mainly generated from hydrogen and carbon dioxide generated in the reactor 51. As a separation method, a general method such as a membrane separation method or an adsorption method is used.
[0086] また培地成分の入ったタンク 58、培地成分供給ポンプ 62、培地成分供給口 64、反 応溶液排出バルブ 65を設置することができる。ここで、水素を連続生産する場合、培 地成分を連続的あるいは半連続的に、培地成分供給ポンプ 62より加え、反応溶液も 同じ流量で、反応溶液排出ポンプ 65から引き抜く方法を用いる。微生物も、微生物 供給口 66から供給することが可能である。培地成分の入ったタンク 58の培地成分は 、培地成分供給口 64から補給することができる。  [0086] A tank 58 containing a medium component, a medium component supply pump 62, a medium component supply port 64, and a reaction solution discharge valve 65 can be provided. Here, in the case of continuously producing hydrogen, a method is used in which the medium component is continuously or semi-continuously added from the medium component supply pump 62 and the reaction solution is withdrawn at the same flow rate from the reaction solution discharge pump 65. Microorganisms can also be supplied from the microorganism supply port 66. The medium component in the tank 58 containing the medium component can be supplied from the medium component supply port 64.
[0087] リアクター内で微生物に水素を発生させるには、連続的にあるいは間欠的に、蟻酸 、蟻酸塩を供給すること (直接的供給方法)、あるいは菌体内代謝経路において蟻酸 に変換される糖類 (例えばグルコース、フルクトース、マンノース、ガラクトースなど)の 化合物を供給すること(間接的供給方法)で行うことができる。直接的供給方法と間接 的供給方法の併用も可能である。  [0087] In order to generate hydrogen from microorganisms in a reactor, formic acid or formate is supplied continuously or intermittently (direct supply method), or a saccharide that is converted to formic acid in the intracellular metabolic pathway (Eg, glucose, fructose, mannose, galactose, etc.) by supplying the compound (indirect supply method). It is also possible to use both direct and indirect supply methods.
[0088] ここで蟻酸塩とは、ヒドロカルボキシル基 (ィ匕学構造式 HCOO—)を有する物質である 。中でも、蟻酸、蟻酸ナトリウム、蟻酸カリウム、蟻酸カルシウム、蟻酸マンガン、蟻酸 ニッケル、蟻酸セシウム、蟻酸バリウム、蟻酸アンモ-ゥムなどが挙げられる。それら の中でも、水に対する溶解度の面から蟻酸、蟻酸ナトリウム、蟻酸カリウム、蟻酸カル シゥム、および蟻酸アンモ-ゥムが好ましぐさらに、コストの面力 蟻酸、蟻酸ナトリウ ムおよび蟻酸アンモ-ゥムが好ましい。供給する蟻酸、蟻酸塩の濃度は、リアクター 5 1の反応溶液の体積を増加させな 、ため、それぞれの物質の飽和濃度に近いものが 好ましい。純度の高い液体原料である蟻酸力 取り扱いの面でより好ましい。  [0088] Here, the formate is a substance having a hydrocarboxyl group (Hirokaku structural formula HCOO-). Among them, formic acid, sodium formate, potassium formate, calcium formate, manganese formate, nickel formate, cesium formate, barium formate, and ammonium formate. Among them, formic acid, sodium formate, potassium formate, calcium formate, and ammonium formate are preferred from the viewpoint of solubility in water.Furthermore, formic acid, sodium formate, and ammonium formate are preferred in terms of cost. preferable. The concentration of the formic acid and formate to be supplied is preferably close to the saturation concentration of each substance, because the volume of the reaction solution in the reactor 51 is not increased. Formic acid, a high-purity liquid raw material, is more preferable in terms of handling.
反応溶液の条件としては、還元状態下の培養液を用いる必要がある。嫌気的条件 に準じて、酸化還元電位が lOOmV (ミリボルト)一一 500mV、好ましくは 200mV—— 500mVである。 As a condition of the reaction solution, it is necessary to use a culture solution under a reduced state. According to anaerobic conditions, the oxidation-reduction potential is 100 mV (millivolt) per 500 mV, preferably 200 mV. 500 mV.
[0089] 微生物濃度は、 10% (w/w) -90%(w/w) (湿潤状態菌体質量基準)の微生物濃度の 水素発生用反応溶液を用いることが好ましい。反応溶液の粘性が高くなるという観点 から、微生物濃度は 10% (w/w)— 80%(w/w) (湿潤状態菌体質量基準)が好ましい。さ らに好ましくは、単位体積あたりの水素発生量という観点からは、微生物濃度は 20% ( w/w)一 80%(w/w) (湿潤状態菌体質量基準)が好ましく用いることができる。この微生 物濃度範囲で水素を生産することで、実用化に必要な水素生産性である 50L (H )  [0089] It is preferable to use a reaction solution for hydrogen generation having a microorganism concentration of 10% (w / w) to 90% (w / w) (based on wet cell mass). From the viewpoint of increasing the viscosity of the reaction solution, the concentration of the microorganism is preferably 10% (w / w) to 80% (w / w) (based on the weight of the wet cells). More preferably, from the viewpoint of the amount of hydrogen generated per unit volume, a microorganism concentration of 20% (w / w) to 80% (w / w) (based on wet cell mass) can be preferably used. . By producing hydrogen in this microbial concentration range, the hydrogen productivity required for practical use is 50 L (H).
2 2
/hr/L (反応容積)の水素発生速度以上が得ることが可能となる。 It is possible to obtain a hydrogen generation rate of / hr / L (reaction volume) or more.
[0090] リアクター 51内で用いられる反応溶液が含み得る培地成分としては、炭素源、窒素 源、ミネラル源等を含む通常の栄養培地を挙げることができる。炭素源としては、例え ばグルコース、フルクトース、廃糖蜜等を、窒素源としては、無機態窒素源では、例え ばアンモニア、アンモニゥム塩、硝酸塩等、有機態窒素源では、例えば尿素、ァミノ 酸類、タンパク質等をそれぞれ単独もしくは混合して用いることができる。無機態、有 機態ともに同様に利用することが可能である。またミネラル源として、おもに K、 P、 Mg 、 Sなどを含む、例えばリン酸一水素カリウム、硫酸マグネシウム等を用いることができ る。この他にも必要に応じて、ペプトン、肉エキス、酵母エキス、コーンスティープリカ 一、カザミノ酸、ピオチン、チアミン等各種ビタミン等の栄養素を添加することもできる [0090] Examples of medium components that can be contained in the reaction solution used in reactor 51 include ordinary nutrient media containing a carbon source, a nitrogen source, a mineral source, and the like. Examples of the carbon source include glucose, fructose, molasses, etc., examples of the nitrogen source include inorganic nitrogen sources, such as ammonia, ammonium salts and nitrates, and examples of the organic nitrogen source include urea, amino acids, and proteins. Etc. can be used alone or in combination. Both inorganic and organic forms can be used in the same way. As a mineral source, potassium monohydrogen phosphate, magnesium sulfate, etc., mainly containing K, P, Mg, S, etc. can be used. In addition, if necessary, nutrients such as peptone, meat extract, yeast extract, corn steep liquor, casamino acid, biotin, thiamine and other vitamins can be added.
[0091] 水素発生の際には、反応溶液中に消泡剤を加えることが好ましい。消泡剤につい ては、公知のものが用いられる。具体的にはシリコーン系、ポリエーテル系の消泡剤 が用いられる。 [0091] When hydrogen is generated, it is preferable to add an antifoaming agent to the reaction solution. Known antifoaming agents are used. Specifically, silicone-based and polyether-based antifoaming agents are used.
[0092] リアクター 51の材質は、耐酸性の金属類や耐酸性コーティング処理されたガラス類 やプラスチック類を好適に用いることができる。またリアクター 51は、嫌気性微生物を 用いるために、リアクター 51内部へ酸素を透過しない構造が好ましぐ攪拌部分の回 転部などはパッキン等を用いたシール性の高いものを使用することが推奨される。  [0092] As a material of the reactor 51, an acid-resistant metal, an acid-resistant coated glass or a plastic can be suitably used. In addition, since the anaerobic microorganisms are used for the reactor 51, it is recommended that the rotating part of the stirring part, which has a structure that does not allow oxygen to permeate into the inside of the reactor 51, has high sealing properties using packing etc. Is done.
[0093] 従来の技術において、水素生産装置で生成した水素を一般的に固体高分子型燃 料電池の燃料として用いる場合には、一酸ィ匕炭素を除去するシステム (CO変成器、 CO除去器等)を用いて、 COを lOppm以下に維持する必要がある。本発明の微生物 を用いた水素生産装置では主に水素と二酸ィ匕炭素からなるガスが生成し、基本的に 一酸化炭素が生成しない。そのため、本発明の方法では、 COを除去する装置の設 置が不要である。 [0093] In the prior art, when hydrogen generated by a hydrogen production device is generally used as a fuel for a polymer electrolyte fuel cell, a system for removing carbon dioxide (a CO converter, a CO removal device) is used. It is necessary to keep CO below lOppm by using a device. The microorganism of the present invention In a hydrogen production apparatus using, a gas mainly composed of hydrogen and carbon dioxide is generated, and basically no carbon monoxide is generated. Therefore, the method of the present invention does not require installation of an apparatus for removing CO.
また、従来の都市ガスを用いた水素発生装置では、 600°C以上の改質温度が必要 となり、メタノールを用いた改質方法でも数百 °Cの改質温度が必要となるのに対して 、本発明の反応容器の温度は常温で用いることが可能である。さらに、通常、従来の 改質器の立ち上げ、終了時に時間がかかるものの、本発明の方法では水素の生産 までの取り扱 、が容易で時間を短縮でき、燃料電池システムとしても好ま 、。  In addition, a conventional hydrogen generator using city gas requires a reforming temperature of 600 ° C or higher, while a reforming method using methanol requires a reforming temperature of several hundred ° C. The temperature of the reaction vessel of the present invention can be used at normal temperature. Further, although it usually takes time to start up and finish the conventional reformer, the method of the present invention can easily handle hydrogen production, shortening the time, and is preferable as a fuel cell system.
[0094] さらに燃料電池において生じた電力は、図 1に示すような電力変換システム 7を介し て機器系統に接続することができる。燃料電池から排出されたガスは、燃焼用触媒 9 を通って発熱し、必要に応じて燃料タンク 1、反応槽 2、培地タンク 3、水素濃縮槽 5を 保温する熱源の一部として使用することができる。  [0094] Further, the electric power generated in the fuel cell can be connected to a device system via a power conversion system 7 as shown in FIG. The gas discharged from the fuel cell generates heat through the combustion catalyst 9, and should be used as a part of the heat source that keeps the fuel tank 1, reaction tank 2, medium tank 3, and hydrogen concentration tank 5 warm as necessary. Can be.
これらの点からも、本発明の水素生産方法を用いた燃料電池システムが、 CO発生 しな 、ため燃料電池の劣化に対して問題が少な 、こと、水素の供給方法としても高 温の必要な改質器のシステムを必要としないこと、有機性基質の供給と同時に水素 生産可能であることなどの点において優れていることがわかる。  From these points, the fuel cell system using the hydrogen production method of the present invention does not generate CO, so that there is little problem with the deterioration of the fuel cell, and a high temperature is required as a hydrogen supply method. It is clear that there is no need for a reformer system and that hydrogen can be produced simultaneously with the supply of organic substrates.
[0095] 本発明によれば、水素生成能を有する微生物を連続的に培養して水素生成能を 発現させることができ、一旦、種となる微生物を供給すれば、長期間連続的に有用な 微生物を製造できる。また、水素生成能を発現させた微生物を連続的に水素生成装 置に供給することが可能になり、その微生物を使用して連続的に水素を生成すること が可能になる。  [0095] According to the present invention, a microorganism having a hydrogen generating ability can be continuously cultured to express a hydrogen generating ability, and once a seed microorganism is supplied, it is useful for a long period of time. Microorganisms can be produced. In addition, it is possible to continuously supply the microorganisms that have developed hydrogen-producing ability to the hydrogen generator, and it is possible to continuously generate hydrogen using the microorganisms.
[0096] 本発明の水素生産装置およびそれを含む燃料電池システムは、有機性基質の供 給量を制御することにより、リアクター 51内で発生する水素を含むガスの生産量を制 御することが可能であり、さらには燃料電池の発電量も制御できる。また、有機性基 質として蟻酸塩および蟻酸を用いることにより、発酵残さの生成が生じにくぐまた主 な生成物が気体であるために、リアクター 51からの分離も容易であるために、連続的 な水素生産を容易に行うことが可能になることを特徴として 、る。  [0096] The hydrogen production apparatus of the present invention and the fuel cell system including the same can control the production rate of the gas containing hydrogen generated in the reactor 51 by controlling the supply rate of the organic substrate. It is possible, and furthermore, the power generation amount of the fuel cell can be controlled. In addition, by using formate and formic acid as organic substrates, continuous production of fermentation residue is difficult because the main product is gas and separation from reactor 51 is easy. It is characterized by the fact that it becomes possible to easily carry out efficient hydrogen production.
実施例 [0097] 以下、実施例により具体的に本発明を説明するが、本発明はこれにより何ら制限さ れるものではない。 Example [0097] Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
実施例 1  Example 1
実施例 1で用いた水素発生装置を、図 2に示す。  FIG. 2 shows the hydrogen generator used in Example 1.
微生物培養用培地タンク 23に、水 (1000 ml)、グルコース (20 mM)、トリプトンペプトン (1%)、モリブテン酸ナトリウム (10 μ Μ)、亜セレン酸ナトリウム (10 μ Μ)、リン酸水素ニナ トリウム (26.5 mm)、リン酸二水素ナトリウム (73.5 mM)、酵母エキス (0.5%)および硫化ナ トリウム (2mM)カゝらなる培養液を予め 120°Cで 10分間加熱殺菌したものを貯蔵し、培養 槽に供給する。初回起動時のみ、ェシエリキア'コリ W株 (ATCC9637)を培養槽に 投入し、菌体密度が 3 g_湿潤菌体 /リットル (菌体光学密度 OD =約 1.5)になるよう〖こ  Water (1000 ml), glucose (20 mM), tryptone peptone (1%), sodium molybdate (10 μΜ), sodium selenite (10 μΜ), hydrogen phosphate Store a culture solution consisting of sodium (26.5 mm), sodium dihydrogen phosphate (73.5 mM), yeast extract (0.5%) and sodium sulfide (2 mM) that has been heat-sterilized at 120 ° C for 10 minutes beforehand. And supply it to the culture tank. Only during the initial start-up, add Escherichia coli W strain (ATCC9637) to the culture tank and adjust the cell density to 3 g_wet cells / liter (cell optical density OD = about 1.5).
610  610
培地を供給した。そして、滅菌した空気を送付して曝気した。 37°Cにて 12時間の培養 を実施し、培養槽内の菌体と培養液を、水素生成能発現槽に槽内に設けられた液量 センサー力 必要量を判断し、流量計から供給量を判断して、ポンプを用いて水素 生成能発現槽に送った。培養槽から排出された培養液は、一旦、菌体洗浄槽 (図示 せず)にて菌体を培地と分離して洗浄し、新たな培地と混合してから水素生成能発現 槽に送った。その際、水素生成能発現槽を嫌気状態にするために、排気装置を用い て槽内の酸素濃度を低下させた。そのときの水素生成能発現槽内の内容物の酸ィ匕 還元電位は、 -250 mVであった。そして、水素生成能を発現させるために、蟻酸ナト リウムを 50 mM程度になるように供給して菌体に水素生成能を発現させた。水素生成 能を誘導する時間は、 6時間であった。水素生成能を発現させた微生物を微生物貯 蔵槽に貯蔵した。  The medium was supplied. Then, sterilized air was sent and aerated. After culturing at 37 ° C for 12 hours, the cells in the culture tank and the culture solution are supplied from the flow meter after judging the required amount of liquid sensor provided in the tank in the hydrogen generation ability expression tank. After judging the amount, it was sent to the hydrogen generating capacity expression tank using a pump. The culture solution discharged from the culture tank was washed by separating the cells from the culture medium in a cell washing tank (not shown), mixed with a new medium, and then sent to the hydrogen generation ability expression tank. . At this time, the oxygen concentration in the tank was reduced using an exhaust device in order to make the hydrogen generating ability expression tank anaerobic. At that time, the oxidation potential of the contents in the hydrogen generating ability expression tank was -250 mV. Then, in order to express the hydrogen generating ability, sodium formate was supplied to about 50 mM to express the hydrogen generating ability to the cells. The time to induce hydrogen production was 6 hours. Microorganisms expressing hydrogen-producing ability were stored in a microorganism storage tank.
[0098] この連続微生物水素生成能発現装置においては、培地タンク、培養槽、菌体洗浄 槽、改質容器 (水素生成能発現槽)、微生物貯蔵槽のそれぞれに水位レベルセンサ 一を設置し、流量計とポンプを用いて送液した。また、各タンクの内部は、温度は 37 。C、 pHは約 6— 7に制御した。  [0098] In this continuous microbial hydrogen generation ability expression device, a water level sensor is installed in each of a culture tank, a culture tank, a cell washing tank, a reforming vessel (hydrogen generation ability expression tank), and a microorganism storage tank. The liquid was sent using a flow meter and a pump. The temperature inside each tank is 37. C and pH were controlled at about 6-7.
[0099] 水素発生用培地タンク 3には、水素発生用培地として、水 (1000 ml),トリプトンぺプト ン (1%)、モリブテン酸ナトリウム (10 μ Μ)、亜セレン酸ナトリウム (10 μ Μ)、リン酸水素二 ナトリウム (26.5 mM)、リン酸二水素ナトリウム (73.5 mM)、酵母エキス (0.5%)からなる培 養液を予め 120°Cで 10分間加熱殺菌したものを貯蔵した。 [0099] Hydrogen generation medium tank 3 contains water (1000 ml), tryptone peptone (1%), sodium molybdate (10 μΜ), and sodium selenite (10 μΜ) as hydrogen generation medium. ), Disodium hydrogen phosphate (26.5 mM), sodium dihydrogen phosphate (73.5 mM), yeast extract (0.5%) The nutrient solution was previously heat-sterilized at 120 ° C for 10 minutes and stored.
反応槽 2には、水素発生用培地を培地タンク 3からポンプ 15を用いて供給し、さらに 、微生物貯蔵槽から菌体を供給し、温度 37°C程度、 pH 6— 7に保ち、嫌気状態にて 燃料タンク 1から蟻酸水溶液をポンプ 13を用いて流量計 12により計測しながら液送し た。撹拌機 8により撹拌して、菌体と蟻酸の接触頻度を向上させた。  The reaction tank 2 is supplied with a medium for hydrogen generation from the medium tank 3 using the pump 15, and the cells are supplied from the microorganism storage tank. The temperature is maintained at about 37 ° C and the pH is 6-7. The formic acid aqueous solution was fed from the fuel tank 1 while measuring with the flow meter 12 using the pump 13. The frequency of contact between the cells and formic acid was increased by stirring with a stirrer 8.
[0100] 発生した水素を含む混合ガスは、流量計 32を有する配管を通り水素濃縮槽 5にお いてジエタノールァミンに二酸ィ匕炭素を吸着させて水素を濃縮した。 [0100] The generated mixed gas containing hydrogen passed through a pipe having a flow meter 32, and was adsorbed with diethanolamine in diethanolamine in a hydrogen concentration tank 5 to concentrate hydrogen.
濃縮された水素をポンプ 45を用いて燃料電池部 6のアノードに送付し、空気取り入 れ口 19からポンプ 20にて取り入れられた空気をフィルター 10にて浮遊物を除去した 後、力ソードに送付して、これらを用いて発電した。発電した電力は、インバーター 7 などにより機器'系統に接続される。  The concentrated hydrogen is sent to the anode of the fuel cell unit 6 using the pump 45, and the air taken in by the pump 20 from the air inlet 19 is removed by the filter 10 to remove suspended matter, and then sent to the power source. Then, power was generated by using these. The generated power is connected to the equipment's system by an inverter 7 or the like.
[0101] なお、反応槽 2において、水素ガス生成に伴い菌体の補充および培地の入れ替え の必要があつたので、反応槽 2内の培養液をポンプ 18にて廃液タンク 4に抜き取った 以上の操作の繰り返しにより、連続的に水素を生成することが可能であった。 26mol (モル) /L (リットル)の濃度の蟻酸水溶液を 28 mL/hrのフィード速度で連続的に供給 して発生するガス量を測定した結果、約 32L (ガス) / hrであり、 120時間の連続ガス製 造を行うことが可能であった。ガスクロマトグラフィーによる分析では、生成ガスの主要 成分は水素と炭酸ガスであり、これらがほぼ同体積生成した。水素発生速度は、実験 時間の間、安定的に 50— 55L (H ) / hr / L (反応容積)であった。 [0101] In the reaction tank 2, it was necessary to replenish the cells and replace the medium with the generation of hydrogen gas. Therefore, the culture solution in the reaction tank 2 was drawn out to the waste liquid tank 4 by the pump 18. By repeating the operation, it was possible to continuously generate hydrogen. The amount of gas generated by continuously supplying an aqueous solution of formic acid having a concentration of 26 mol (mol) / L (liter) at a feed rate of 28 mL / hr was measured, and as a result, it was about 32 L (gas) / hr, and 120 hours It was possible to carry out continuous gas production. According to the analysis by gas chromatography, the main components of the product gas were hydrogen and carbon dioxide, which were produced in approximately the same volume. The rate of hydrogen evolution was stably 50-55 L (H) / hr / L (reaction volume) during the experiment.
2  2
[0102] 実施例 1の結果により、本発明の培養装置を連設した水素生産装置を用いることに より、燃料電池に必要な水素が数日間にわたり、安定した速度で発生することが明ら カゝとなった。  [0102] The results of Example 1 clearly show that the use of the hydrogen production apparatus connected with the culture apparatus of the present invention generates hydrogen required for the fuel cell at a stable rate for several days. It became ゝ.
[0103] 実施例 2— 4 [0103] Example 2-4
ェシエリキア'コリ W株(Escherichia coli W strain ;ATCC9637)による微生物を用い た水素生産方法。  A method for producing hydrogen using a microorganism by Escherichia coli W strain (ATCC9637).
本菌株を下表 1で示される組成の培養液 500ml (ミリリットル)に加え、好気的条件 下、 37°Cで一晩振盪培養 (前培)を行った。 [0104] [表 1] 好気的培養涪地組成 (L B培地) This strain was added to 500 ml (milliliter) of a culture solution having the composition shown in Table 1 below, and shaking culture (preculture) was performed overnight at 37 ° C under aerobic conditions. [Table 1] Aerobic culture medium composition (LB medium)
Figure imgf000031_0001
Figure imgf000031_0001
[0105] 次に嫌気的条件下、一晩振盪培養 (前培)を行った培養液を一部採取し、蟻酸ナト リウムを含む下表 2で示される組成の培養液に加え、 37°Cで 12時間の振盪培養 (本 ! 1 Next, under anaerobic conditions, a part of the culture solution that had been subjected to shaking culture (pre-culture) overnight was collected, and added to a culture solution containing sodium formate and having the composition shown in Table 2 below at 37 ° C. 12 hours shaking culture (book! 1
培)を行った。  Culture).
[0106] [表 2] [Table 2]
ο 、,  ο ,,
、 ο、  , Ο,
表 2 嫌気的培養培地糸 a成  Table 2 Anaerobic culture medium yarn a
組成成分 成分量  Composition Ingredient Amount
水 iCOOml  Water iCOOml
酵母コ;:キス 0. 5% (重量%)  Yeast ;; kiss 0.5% (% by weight)
トリプトンぺブ卜ン  Trypton Button
モリブデン酸ナトリウム 10 β Μ  Sodium molybdate 10 β Μ
亜セレン酸ナトリウム 10 μ Μ  Sodium selenite 10 μΜ
リン酸水秦ニナトリウム 26. 5m  Phosphorus water Qin disodium 26.5m
リン酸ニ水素ナトリウム  Sodium dihydrogen phosphate
グルコース 20rrii  Glucose 20rrii
硫化ナトリウム 2ι Sodium sulfide 2ι
S酸ナトリウム 50m  Sodium S-acid 50m
[0107] 次 、で、本培養液を遠心分離機にかけ(5000回転、 15分)、上澄み液を除去し、 水素生産機能を有する微生物を得ることができた。 [0107] Next, the main culture solution was centrifuged (5000 rotations, 15 minutes), and the supernatant was removed to obtain a microorganism having a hydrogen production function.
本微生物を遠心分離により分離後、下表 3の組成で示される還元状態下の水素発 生用培地 500ml (ミリリットル)に懸濁調製した。  This microorganism was separated by centrifugation, and then suspended and prepared in 500 ml (milliliter) of a hydrogen generation medium under a reduced state shown in the composition of Table 3 below.
[0108] [表 3] ¾ 3 水素宪生用培地組成 [0108] [Table 3] ¾ 3 Composition of medium for hydrogen production
Figure imgf000032_0001
Figure imgf000032_0001
[0109] 今回の実施例に用いた装置の概略図を図 3に示す。 FIG. 3 shows a schematic diagram of the apparatus used in this example.
上記で作成した微生物の存在している水素発生反応溶液をリアクター 51へ注液し 、培地成分の入ったタンク 58には表 3で示される水素発生培地を注液した。また有機 性基質の入ったタンク 52には 26M (モーラー モル/リットル)の蟻酸を準備した。 反応溶液温度 37°C、溶液の pH6. 0、微生物濃度約 40% (湿潤状態菌体質量基 準)、反応溶液内の攪拌回転数 800rpmの条件に設定した。  The hydrogen generation reaction solution containing the microorganism prepared above was injected into the reactor 51, and the hydrogen generation medium shown in Table 3 was injected into the tank 58 containing the medium components. 26M (molar mol / liter) of formic acid was prepared in the tank 52 containing the organic substrate. The reaction solution temperature was 37 ° C, the pH of the solution was 6.0, the concentration of microorganisms was about 40% (based on the weight of cells in a wet state), and the stirring speed in the reaction solution was 800 rpm.
[0110] 有機性基質供給ポンプ 61で有機性基質の供給速度を変化させ、リアクター 51〖こ 供給して発生する水素生産ガス量および、燃料電池での発電量を測定した。 [0110] The organic substrate supply pump 61 was used to change the supply rate of the organic substrate, and the amount of hydrogen production gas generated by supplying the reactor 51 and the amount of power generated by the fuel cell were measured.
供給速度を lOmlZhr (ミリリットル/時間)(実施例 2)、 21mlZhr (ミリリットル/時間)( 実施例 3)、 42mlZhr (ミリリットル/時間)(実施例 4)で行った。その結果を図 5に示す  The feed rate was 10 mlZhr (milliliter / hour) (Example 2), 21 mlZhr (milliliter / hour) (Example 3), and 42 mlZhr (milliliter / hour) (Example 4). Figure 5 shows the results
[0111] 図 5は有機性基質の供給速度と水素生産量及び燃料電池システムでの発電量の 相関を示している。有機性基質の供給速度を制御することで、水素生産量、及び燃 料電池の発電量を制御できることが明らかになった。 [0111] Fig. 5 shows the correlation between the supply rate of the organic substrate, the amount of hydrogen production, and the amount of power generation in the fuel cell system. It became clear that controlling the supply rate of the organic substrate can control the hydrogen production and the power generation of the fuel cell.
[0112] 実施例 5  [0112] Example 5
実施例 2と同様の方法で、水素生産能を有する微生物を得て、得られた微生物を 水素発生用培地に懸濁調製することにより、水素発生反応溶液 500ml (ミリリットル)を 得た。  A microorganism capable of producing hydrogen was obtained in the same manner as in Example 2, and the obtained microorganism was suspended and prepared in a hydrogen generation medium to obtain a hydrogen generation reaction solution (500 ml, milliliter).
有機性基質供給ポンプ 61で水素生産装置に蟻酸を供給し、以下の反応溶液中の 蟻酸濃度となるように添加しながら、水素生産速度および、燃料電池での発電量を 測定した。 [0113] リアクター内の蟻酸濃度を lOmM (ミリモーラー)、 30mM (ミリモーラー)、 50mM (ミ リモーラー)に変化させる以外は、リアクター内の反応溶液の温度が 37°C、 pHが 6. 0 、微生物濃度が 40%(w/w) (湿潤状態菌体質量基準)の条件を用い、攪拌について は、攪拌装置の回転数で制御を行い、 800rpmの条件で、水素生産速度および発 電量の測定を行った。 Formic acid was supplied to the hydrogen production device by the organic substrate supply pump 61, and the hydrogen production rate and the amount of power generated by the fuel cell were measured while adding formic acid in the following reaction solution so as to obtain the formic acid concentration. [0113] Except for changing the formic acid concentration in the reactor to lOmM (millimolar), 30mM (millimolar), and 50mM (millimolar), the temperature of the reaction solution in the reactor was 37 ° C, the pH was 6.0, and the concentration of microorganisms was Is controlled by the number of rotations of the stirrer, and the hydrogen production rate and the amount of power generation are measured at 800 rpm under the conditions of 40% (w / w) (based on the wet cell mass). Was.
その結果を、図 6に示す。  Fig. 6 shows the results.
[0114] 図 6は、有機性基質 (蟻酸)の濃度と水素生産量及び燃料電池システムでの発電量 の相関を示している。リアクターの反応溶液内の蟻酸濃度を制御することで、水素生 産量、及び燃料電池の発電量に相関関係があることが明らかになった。  [0114] Fig. 6 shows the correlation between the concentration of the organic substrate (formic acid) and the amount of hydrogen production and the amount of power generation in the fuel cell system. By controlling the formic acid concentration in the reaction solution of the reactor, it became clear that there is a correlation between the hydrogen production and the fuel cell power generation.
[0115] 実施例 6  [0115] Example 6
リアクター内の反応溶液の温度を 30°C、 37°C、および 44°Cに変化させ、蟻酸濃度 : 30mM、 pH = 6. 0、微生物濃度: 40%(w/w)、攪拌回転数: 800rpmの条件を用 いて、実施例 5と同様の方法にて、水素生産速度および燃料電池の発電量の測定を 行った。  The temperature of the reaction solution in the reactor was changed to 30 ° C, 37 ° C, and 44 ° C, formic acid concentration: 30 mM, pH = 6.0, microbial concentration: 40% (w / w), stirring speed: The hydrogen production rate and the power generation amount of the fuel cell were measured in the same manner as in Example 5 under the condition of 800 rpm.
結果を図 7に示す。  Fig. 7 shows the results.
[0116] 図 7は、リアクター内の反応溶液の温度と水素生産量及び燃料電池システムでの発 電量の相関を示している。リアクターの反応溶液内の温度を制御することで、水素生 産量、及び燃料電池の発電量に相関関係があることが明らかになった。  [0116] Fig. 7 shows the correlation between the temperature of the reaction solution in the reactor, the amount of hydrogen production, and the amount of power generated by the fuel cell system. By controlling the temperature in the reaction solution of the reactor, it became clear that there was a correlation between the hydrogen production and the fuel cell power generation.
[0117] 実施例 7  [0117] Example 7
リアクター内の反応溶液の pHを 5.5、 6.0、および 6.5に変化させ、蟻酸濃度: 30m M、温度: 37°C、微生物濃度: 40%(w/w)、攪拌回転数: 800rpmの条件を用いて、 実施例 5と同様の方法にて、水素生産速度および燃料電池の発電量の測定を行つ た。  The pH of the reaction solution in the reactor was changed to 5.5, 6.0, and 6.5, and the conditions were as follows: formic acid concentration: 30 mM, temperature: 37 ° C, microorganism concentration: 40% (w / w), stirring speed: 800 rpm. Then, the hydrogen production rate and the power generation amount of the fuel cell were measured in the same manner as in Example 5.
結果を図 8に示す。  Fig. 8 shows the results.
[0118] 図 8は、リアクター内の反応溶液の pHと水素生産量及び燃料電池システムでの発 電量の相関を示している。リアクターの反応溶液内の pHを制御することで、水素生 産量、及び燃料電池の発電量に相関関係があることが明らかになった。  [0118] Fig. 8 shows the correlation between the pH of the reaction solution in the reactor, the amount of hydrogen production, and the amount of power generated by the fuel cell system. By controlling the pH in the reaction solution of the reactor, it became clear that there was a correlation between the hydrogen production and the fuel cell power generation.
[0119] 実施例 8 リアクター内の反応溶液の微生物濃度を 30%、 40%、および 50%に変化させ、蟻 酸濃度: 30mM、温度: 37°C、 pH=6.0、攪拌回転数: 800rpmの条件を用いて、実 施例 5と同様の方法にて、水素生産速度および燃料電池の発電量の測定を行った。 結果を図 9に示す。 [0119] Example 8 The microbial concentration of the reaction solution in the reactor was changed to 30%, 40%, and 50%, and the formic acid concentration was 30 mM, the temperature was 37 ° C, the pH was 6.0, and the stirring speed was 800 rpm. In the same manner as in Example 5, the hydrogen production rate and the power generation amount of the fuel cell were measured. The results are shown in FIG.
[0120] 図 9は、リアクター内の反応溶液の微生物濃度と水素生産量及び燃料電池システ ムでの発電量の相関を示している。リアクターの反応溶液内の微生物濃度を制御す ることで、水素生産量、及び燃料電池の発電量に相関関係があることが明らかになつ た。  [0120] Fig. 9 shows the correlation between the concentration of microorganisms in the reaction solution in the reactor, the amount of hydrogen production, and the amount of power generation in the fuel cell system. By controlling the concentration of microorganisms in the reaction solution of the reactor, it became clear that there is a correlation between the amount of hydrogen produced and the amount of power generated by the fuel cell.
[0121] 実施例 9  [0121] Example 9
リアクター内の反応溶液の攪拌力につ 、て、攪拌装置の回転数で制御を行った。 攪拌装置の回転数を 400rpm、 800rpm、および 1200rpmに変化させ、蟻酸濃度: 30mM、温度: 37°C、 pH=6.0、微生物濃度: 40%(w/w)の条件を用いて、実施例 5 と同様の方法にて、水素生産速度および燃料電池の発電量の測定を行った。  The stirring power of the reaction solution in the reactor was controlled by the rotation speed of the stirring device. The number of revolutions of the stirrer was changed to 400 rpm, 800 rpm, and 1200 rpm, and the conditions of formic acid: 30 mM, temperature: 37 ° C., pH = 6.0, and microorganism concentration: 40% (w / w) were used in Example 5. The hydrogen production rate and the power generation amount of the fuel cell were measured in the same manner as described above.
結果を図 10に示す。  The results are shown in FIG.
[0122] 図 10は、リアクター内の攪拌装置の回転数と水素生産量及び燃料電池システムで の発電量の相関を示して!/、る。リアクター内の攪拌装置の回転数を制御することで、 水素生産量、及び燃料電池の発電量に相関関係があることが明らかになった。  [0122] Fig. 10 shows the correlation between the rotation speed of the stirring device in the reactor, the hydrogen production amount, and the power generation amount in the fuel cell system! By controlling the rotation speed of the stirring device in the reactor, it became clear that there was a correlation between the amount of hydrogen produced and the amount of power generated by the fuel cell.
[0123] 実施例 5— 10により、反応容器から排出される水素の生産量を蟻酸濃度、温度、 p H、微生物濃度、攪拌力のいずれか一つにより制御することを特徴とする水素生産装 置における水素生産量の制御、およびこれを用いて生産された水素を燃料ガスに用 いた燃料電池の発電量の制御が可能であることが判明した。  [0123] According to Examples 5-10, a hydrogen production apparatus characterized in that the production amount of hydrogen discharged from a reaction vessel is controlled by any one of formic acid concentration, temperature, pH, microorganism concentration, and stirring power. It was found that it was possible to control the amount of hydrogen produced in the fuel cell and to control the amount of power generated by the fuel cell using the hydrogen produced as fuel gas.
産業上の利用可能性  Industrial applicability
[0124] 本発明の培養装置、およびこれを含む水素発生装置は、微生物を用いて連続的に 水素を発生させることができ、連続的に水素を必要とするシステム、例えば家庭用や 事務所ビルなどに応用される燃料電池コジェネレーションシステム、需要地ネットヮー クに広く設置される分散型電源用燃料電池などに利用することができる。 [0124] The culture apparatus and the hydrogen generator including the same according to the present invention can continuously generate hydrogen using microorganisms, and require a continuous hydrogen system, such as a home or office building. It can be used in fuel cell cogeneration systems applied to applications such as fuel cells for distributed power sources widely installed in demand networks.

Claims

請求の範囲  The scope of the claims
[I] 酸素を含む気体源と栄養源供給部に連通する微生物の培養部と、該培養部と連 通し、微生物に水素生成能を発現させる有機物を供給するための有機物供給源お よび嫌気雰囲気付与手段を有する微生物の嫌気条件下での水素生成能発現部とを 具備する微生物の培養装置。  [I] A culture section for microorganisms communicating with a gas source containing oxygen and a nutrient source supply section, and an organic substance supply source and an anaerobic atmosphere communicating with the culture section for supplying an organic substance capable of producing hydrogen to the microorganisms. An apparatus for culturing microorganisms, comprising: a hydrogen-producing ability expressing section under anaerobic conditions of microorganisms having an application means.
[2] 培養部と水素生成能発現部との間に、培養された微生物と培養液との分離部が設 けられて 、る請求項 1に記載の培養装置。  [2] The culture apparatus according to claim 1, wherein a separation section for separating a cultured microorganism and a culture solution is provided between the culture section and the hydrogen generation ability expressing section.
[3] 微生物に水素生成能を発現させる有機物が、グルコース、蟻酸および蟻酸塩から 選択される少なくとも 1種である請求項 1または 2に記載の培養装置。 [3] The culture apparatus according to claim 1, wherein the organic substance that causes the microorganism to exhibit hydrogen-producing ability is at least one selected from glucose, formic acid, and formate.
[4] 微生物が、蟻酸脱水素酵素遺伝子およびヒドロゲナーゼ遺伝子を有する請求項 1 一 3のいずれ力 1つに記載の培養装置。 [4] The culture device according to any one of [13] to [13], wherein the microorganism has a formate dehydrogenase gene and a hydrogenase gene.
[5] 請求項 1一 4のいずれか 1つに記載の培養装置が水素生成反応部に連設されてな り、該水素生成反応部が、有機性基質を供給する原料供給部と連通する水素生産 装置。 [5] The culture device according to any one of claims 114 is connected to a hydrogen generation reaction unit, and the hydrogen generation reaction unit communicates with a raw material supply unit that supplies an organic substrate. Hydrogen production equipment.
[6] 水素の生産量が、原料供給部から水素生成反応部への有機性基質の供給量で制 御される請求項 5に記載の水素生産装置。  6. The hydrogen production apparatus according to claim 5, wherein the production amount of hydrogen is controlled by the supply amount of the organic substrate from the raw material supply section to the hydrogen generation reaction section.
[7] 水素の生産量が、水素生成反応部の有機性基質濃度条件、温度条件、 pH条件、 微生物濃度条件および攪拌条件力 選ばれる少なくとも 1つの水素生成条件により 制御される請求項 5に記載の水素生産装置。 [7] The hydrogen production amount is controlled by at least one hydrogen production condition selected from the group consisting of organic substrate concentration conditions, temperature conditions, pH conditions, microorganism concentration conditions, and stirring conditions. Hydrogen production equipment.
[8] 有機性基質が、噴霧装置を介して水素生成反応部に供給される請求項 5に記載の 水素生産装置。 [8] The hydrogen production apparatus according to claim 5, wherein the organic substrate is supplied to the hydrogen production reaction unit via a spray device.
[9] 水素生成能発現部と水素生成反応部との間に、水素生成能を発現した微生物と培 養液との分離部が設けられている、請求項 5— 8のいずれか 1つに記載の水素生産 装置。  [9] The method according to any one of claims 5 to 8, wherein a separation section for separating the microorganism having developed hydrogen generation ability from the culture solution is provided between the hydrogen generation ability expressing section and the hydrogen generation reaction section. The described hydrogen production equipment.
[10] 水素生成反応部が水素生成量検出部を具備し、水素生成量検出部の検出値に基 づ 、て培養装置力 微生物を供給できるように構成されてなる請求項 5— 9の 、ずれ 力 1つに記載の水素生産装置。  [10] The method according to claim 5-9, wherein the hydrogen generation reaction unit includes a hydrogen generation amount detection unit, and is configured to be able to supply microorganisms to the culturing apparatus based on a detection value of the hydrogen generation amount detection unit. Hydrogen production device according to one of the shift forces.
[II] 有機性基質が、蟻酸または蟻酸塩である請求項 5— 10のいずれ力 1つに記載の水 素生産装置。 [II] The water according to any one of claims 5 to 10, wherein the organic substrate is formic acid or formate. Elementary production equipment.
[12] 水素生成反応部が、排出されるガスに含まれる水蒸気を凝縮するための凝縮器を 備える請求項 5— 11の 、ずれか 1つに記載の水素生産装置。  12. The hydrogen production apparatus according to any one of claims 5 to 11, wherein the hydrogen generation reaction unit includes a condenser for condensing steam contained in the discharged gas.
[13] 請求項 5— 12のいずれか 1つに記載の水素生産装置と、該水素生産装置から発生 する水素を燃料ガスとして用いる燃料電池とからなるシステム。 [13] A system comprising the hydrogen production device according to any one of claims 5 to 12, and a fuel cell using hydrogen generated from the hydrogen production device as a fuel gas.
[14] 燃料電池での発電量が、原料供給部から水素生成反応部への有機性基質の供給 量により制御される請求項 13に記載のシステム。 14. The system according to claim 13, wherein the amount of power generated by the fuel cell is controlled by the amount of the organic substrate supplied from the raw material supply unit to the hydrogen generation reaction unit.
[15] 燃料電池での発電量が、水素生成反応部の有機性基質濃度条件、温度条件、 pH 条件、微生物濃度条件および攪拌条件から選択されるいずれか 1つの水素生成条 件により制御される請求項 13に記載のシステム。 [15] The amount of power generated by the fuel cell is controlled by one of the hydrogen generation conditions selected from the organic substrate concentration conditions, temperature conditions, pH conditions, microorganism concentration conditions, and stirring conditions in the hydrogen generation reaction section. The system according to claim 13.
PCT/JP2005/004548 2004-03-16 2005-03-15 Microbe culturing apparatus and utilizing the same, hydrogen production apparatus and fuel cell system WO2005087911A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511036A JP4476285B2 (en) 2004-03-16 2005-03-15 Microbial culture apparatus, hydrogen production apparatus and fuel cell system using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004075364 2004-03-16
JP2004-075366 2004-03-16
JP2004075366 2004-03-16
JP2004-075364 2004-03-16
JP2004092752 2004-03-26
JP2004-092752 2004-03-26

Publications (1)

Publication Number Publication Date
WO2005087911A1 true WO2005087911A1 (en) 2005-09-22

Family

ID=34975579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004548 WO2005087911A1 (en) 2004-03-16 2005-03-15 Microbe culturing apparatus and utilizing the same, hydrogen production apparatus and fuel cell system

Country Status (2)

Country Link
JP (1) JP4476285B2 (en)
WO (1) WO2005087911A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159457A (en) * 2005-12-13 2007-06-28 Hrein Energy:Kk Hydrogen generating system
JP2010113831A (en) * 2008-11-04 2010-05-20 Ace Bio Product Kk Biofuel cell
KR101465086B1 (en) * 2012-07-04 2014-11-27 포항공과대학교 산학협력단 Hydrogen production apparatus by way of algae and its production method using thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205492A (en) * 1985-03-11 1986-09-11 Res Inst For Prod Dev Production of fuel gas
JPH08294396A (en) * 1995-04-26 1996-11-12 Ebara Corp Production of hydrogen gas
JP2002270209A (en) * 2001-03-06 2002-09-20 Sharp Corp Solid polymer fuel cell
JP2003135088A (en) * 2001-11-06 2003-05-13 Takuma Co Ltd Method for producing hydrogen and generating electric power by using microorganism and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205492A (en) * 1985-03-11 1986-09-11 Res Inst For Prod Dev Production of fuel gas
JPH08294396A (en) * 1995-04-26 1996-11-12 Ebara Corp Production of hydrogen gas
JP2002270209A (en) * 2001-03-06 2002-09-20 Sharp Corp Solid polymer fuel cell
JP2003135088A (en) * 2001-11-06 2003-05-13 Takuma Co Ltd Method for producing hydrogen and generating electric power by using microorganism and apparatus therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159457A (en) * 2005-12-13 2007-06-28 Hrein Energy:Kk Hydrogen generating system
JP2010113831A (en) * 2008-11-04 2010-05-20 Ace Bio Product Kk Biofuel cell
KR101465086B1 (en) * 2012-07-04 2014-11-27 포항공과대학교 산학협력단 Hydrogen production apparatus by way of algae and its production method using thereof

Also Published As

Publication number Publication date
JPWO2005087911A1 (en) 2008-01-31
JP4476285B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
Steinbusch et al. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass
US20200248207A1 (en) Methanothermobacter Thermautotrophicus Strain and Variants Thereof
WO2004074495A1 (en) Highly efficient hydrogen production method using microorganism
CN105695319A (en) Bioelectricity synthesis system and method for synthesizing acetic acid and/or ethyl alcohol through same
US20230287462A1 (en) A process to treat a carbon dioxide comprising gas
US20060272956A1 (en) Dual hydrogen production apparatus
WO2006130678A2 (en) Dual method of hydrogen production
JP4476285B2 (en) Microbial culture apparatus, hydrogen production apparatus and fuel cell system using the same
JP2007159457A (en) Hydrogen generating system
CN113874517A (en) Methanation process in bioreactors with continuous cell retention
JP4574375B2 (en) Hydrogen production apparatus using microorganisms and fuel cell system using the same
JP4440732B2 (en) Apparatus for culturing microorganisms having hydrogen production ability and biological hydrogen production method
JP4588541B2 (en) Hydrogen production method and hydrogen production apparatus
JP4860659B2 (en) Hydrogen generating method and hydrogen generating apparatus
JP4790505B2 (en) Continuous hydrogen production method using microorganisms
JP2005013045A (en) Method for continuously producing hydrogen from organic waste
JP5159710B2 (en) Microbial culture method and culture apparatus, biological hydrogen production method and fuel cell system
NL2029926B1 (en) A process to treat a carbon dioxide comprising gas
JP2006055127A (en) Method and apparatus for culturing microorganism, biological method for producing hydrogen and fuel cell system
JP4827763B2 (en) Hydrogen production method using microorganisms
WO2022243361A1 (en) System and method to recycle the water and ammonia and optionally other cell media nutrients for a power-to-gas plant in biological methanation utilizing biocatalyst (methanogen)
KR20230114927A (en) Method for anaerobic digestion for high quality bio_methane production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511036

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase