WO2005084838A1 - 飛灰の処理方法 - Google Patents

飛灰の処理方法 Download PDF

Info

Publication number
WO2005084838A1
WO2005084838A1 PCT/JP2005/002377 JP2005002377W WO2005084838A1 WO 2005084838 A1 WO2005084838 A1 WO 2005084838A1 JP 2005002377 W JP2005002377 W JP 2005002377W WO 2005084838 A1 WO2005084838 A1 WO 2005084838A1
Authority
WO
WIPO (PCT)
Prior art keywords
washing
fly ash
solution
solid
residue
Prior art date
Application number
PCT/JP2005/002377
Other languages
English (en)
French (fr)
Inventor
Taro Aichi
Hiroshi Asada
Akiyoshi Horiuchi
Tetsuo Dohi
Original Assignee
Dowa Mining Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co., Ltd. filed Critical Dowa Mining Co., Ltd.
Publication of WO2005084838A1 publication Critical patent/WO2005084838A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/06Sulfates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Definitions

  • the present invention is intended for fly ash collected from combustion exhaust gas at the time of incineration of municipal solid waste or the like, or fly ash collected from exhaust gas generated at the time of melting ash or dust during incineration or the like.
  • the present invention relates to a wet treatment method, and particularly to a treatment method for separating and recovering C a, P b, gangue components, Zn content and the like contained in the fly ash in a form that can be effectively used.
  • Waste from general establishments and households (referred to as “municipal waste” or “general waste”) is collected at municipal waste incineration facilities, industrial waste incineration plants, etc., and incinerated. I have. At that time, incineration ash and fly ash generated from the incinerator are deposited at the final disposal site through intermediate treatment such as chemical treatment, melting treatment, and cement kiln treatment.
  • Patent Document 1 JP-A-7-1095333
  • Patent Literature 2 Japanese Patent Application Laid-Open No. Hei 8-1-1 7 7 2 4
  • Patent Literature 3 Japanese Patent Application Laid-Open No. H08-14141539 ''
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2000-01-1 1 3 2 4 2
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2000-01-34 8 6 2 7
  • Patent Document 7 JP-A-8-36555 No.
  • Patent Document 8 JP-A-8-3 2 3 3 2 1
  • Patent Document 9 Japanese Patent Application Laid-Open No. 2000-11017
  • Patent Document 10 Japanese Patent Application Laid-Open No. 2000-2004
  • Patent Literature 1 Japanese Patent Application Laid-Open No. 2000-2111
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-200501 Problem to be Solved by the Invention
  • wet treatment methods disclosed in the above patent documents are effective in separating and recovering heavy metals contained in fly ash in a stable form.
  • these technologies focus on the recovery of heavy metals, and further improvement is desired from the viewpoint of effective use of Ca and effective use of gangue components.
  • fly ash contains a large amount of Ca, so it is not possible to obtain in the intermediate process.
  • gangue residue byproducts gypsum C a S 0 4
  • this residue has a high Pb grade, it is desired to use it effectively for lead production.
  • it since it has a large gypsum content, its use as a raw material for lead production has a problem in terms of thermal energy.
  • the present invention relates to a process for recovering heavy metals by treating fly ash, i) Effective use of Ca,
  • Fly ash contains a large amount of Zn and often Pb. In order to use these metals effectively, it is preferable to use Zn for wet zinc herb and Pb for lead with other gangue components.
  • the inventors of the present invention have studied the process of treating fly ash that enables the use of Zn and Pb, and as a result, firstly, in the washing step, as much Ca as possible is dissolved in the liquid "as much as possible” and separated and collected. However, it was found that it would be extremely advantageous to reduce the amount of Ca remaining on the solids side of the washed fly ash as much as possible.
  • the Ca may be separated and recovered as the calcium carbonate (CAC0 3) and gypsum (CaS 0 4).
  • the present invention has been completed based on these findings.
  • the solution after decalcification obtained in the step [4] can be returned to the step [1] and reused as water for washing fly ash.
  • the after-liquid obtained in the step [9] can be reused by returning it to the steps [6] and [8] as [1] or [5] or as lipanolep water.
  • step [10] the by leaching with sulfuric acid-containing aqueous solution solids containing ⁇ and CaS 0 4 obtained in step [9], the step of shifting the Zn leachate side (sulfuric leaching step 2),
  • the method for treating fly ash according to the present invention has the following advantages.
  • the Ca in the fly ash is separated and recovered as CaCOa from the solution after washing and as CaS04 from the washing residue side, so it can be effectively used for various purposes.
  • FIG. 1 is a flowchart showing an example of a fly ash treatment process to which the present invention is applied. Preferred embodiments of the invention
  • the fly ash treatment method of the present invention can be applied to various fly ash discharged from incinerators and melting furnaces of waste treatment facilities and the like, or mixed fly ash thereof. Above all, it is effective to apply to fly ash having a high Ca content of, for example, 15 to 30% by mass.
  • FIG. 1 shows an example of the processing flow of the present invention.
  • [1] to [11] in FIG. 1 correspond to the steps [1] to [11] described in the claims.
  • the steps [1] to [11] will be described in order.
  • ⁇ Process [1] (Washing process)> make a fly ash mixture with a low pulp concentration. If the fly ash is agglomerated and clumped, such as when the fly ash is conditioned, it is desirable to grind it beforehand. This is because if the fly ash does not become well dispersed in the liquid during washing, the dissolution of Ca will not proceed easily.
  • the liquid for washing may be water, but after the step [4], the liquid can be reused.
  • a fly ash mixture having a very low pulp concentration (PD) of 5 to 100 g / L is used for washing.
  • PD pulp concentration
  • Pulp concentration is within the range of 0.01 to 100 g / L. Possible pulp concentration is too low, and the amount of liquid to be treated by solid-liquid separation increases. It is better to do it within the range. Practically, it is preferably from 10 to 100 g / L, and more preferably from 30 to 50 g.ZL.
  • the fly ash be dispersed in the liquid and that the Ca mass in the fly ash be vigorously stirred to a level at which the mass transfer coefficient of the film is negligible to promote the dissolution of Ca.
  • the pH during washing does not need to be particularly controlled, but it is possible to increase the amount of dissolved Ca by adding an acid or the like.
  • the pH value varies depending on the composition of the fly ash, but usually falls within the range of 7 to 13.
  • the time (residence time) of the cleaning treatment may be generally set to 10 to 150 minutes.
  • the optimal time varies depending on the degree of agglomeration of the agglomerates and the intensity of stirring, but it is desirable to use a sufficiently pulverized fly ash for a processing time of about 10 to 80 minutes.
  • stirring should be performed at a temperature of 20 to 90 ° C and a processing time of 10 to 150 minutes with a strength that stabilizes the pH 5 to 120 minutes after the start of the processing. Is desirable.
  • the slurry after washing is subjected to solid-liquid separation.
  • the Ca dissolved in the washing solution is collected as a solution after washing.
  • the amount of cleaning residue is greatly reduced compared to the original fly ash, and the Ca content is also reduced.
  • various means can be selected, such as thickening with a thickener, a filter, a press, a belt-type vacuum filter, an Oliver, and a screw counter.
  • the dissolved Ca is precipitated as Ca CO 3 by blowing CO 2 gas into the solution after washing.
  • CO 2 gas it is preferable to blow the co 2 gas so as to have a pH of 8 to 11, preferably 9 to 10. It is desirable to perform stirring.
  • C0 2 concentration and the G / L ratio ( "volume of the gas blown per minute (L) / slurries volume (L)") so much regardless CAC0 3 gas used is precipitated.
  • the C0 2 amount you introduced is excessive CAC0 3 will be redissolved, if when high C 0 2 concentration of the gas or GZL ratio of blowing high tricky.
  • the GL ratio is preferably set to 0.001 to 0.01.
  • the temperature is preferably from 10 to 40 ° C.
  • the processing time is preferably about 5 to 40 minutes, which is the time required for the pH value to fall within the above range.
  • the step [3] obtained CaC 0 3 containing slurry to solid-liquid was separated, the separating and recovering CAC0 3 as solids.
  • This can be used as a neutralizing agent in the production process.
  • Ca since Ca is removed from the post-solution, it can be returned to step [1] and used for washing water.
  • salts NaCl and C1 will be concentrated, so it is desirable to perform effluent treatment by partially bleeding off.
  • the washing residue obtained in the step [2] is subjected to a process for recovering a Pb-containing gangue residue that can be used for lead smelting and a Zn-containing liquid that can be used for wet zinc smelting. It is.
  • step [5] repulp and sulfuric acid leaching are performed.
  • the pulp concentration is preferably about 100 to 300 g / L before leaching.
  • sulfuric acid Zn is transferred to the leaching solution side, and Pb and gangue components are retained on the leaching residue side. However, some gangue components also migrate to the leachate side.
  • the pH during leaching is controlled between 1 and 3.5.
  • the temperature can be between 20 and 90 ° C and the leaching time can be between 30 and 120 minutes.
  • Neutralization is performed following leaching. This process precipitates gangue components that have been leached once. NaO H and CaO is as a neutralizing agent, Ca (OH) 2, CaC 0 3 power can be used. Here, it is possible to utilize the CaC 0 3 obtained in the step [4]. Even if Pb is contained in CaCOs, it is favorable for Pb-bearing gangue residue by neutralization.
  • the pH at the time of neutralization is controlled to 3.5 to 5, preferably 3.5 to 4. Most of the Ca content in fly ash has been removed by the previous washing process, so gypsum will not be produced in large quantities in this neutralization process.
  • the temperature can be 20 to 90 ° C, and the reaction time can be 5 to 120 minutes.
  • the neutralized slurry is subjected to solid-liquid separation, and the post-solution containing Zn and the residue containing Pb are recovered.
  • the post-Zn-containing solution can be used as, for example, a wet zinc raw material by treating in the following step [8].
  • Pb-containing residue includes Pb component and Si0 2 and [alpha] 1 2 0 gangue components such as mainly comprising PBS O. Since this Pb-containing residue has a small amount of accompanying gypsum, it can be suitably used as a raw material for lead production.
  • solution excluding the Pb-containing residue is the [7] (Zn-containing after liquid)
  • further pH neutralized with the liquid which had increased to 5-9 and to produce a Zn compound and CaS 0 4 such Zetaitashita. If the pH exceeds 9, Zn goes in the direction of redissolution. More preferably, the pH is 7-8.
  • CaO or Ca (OH) 2 can be used as a neutralizing agent.
  • the temperature can be 20 to 90 ° C, and the reaction time can be 5 to 120 minutes.
  • the solids containing the Zn compound and CaS 0 4 obtained in the step [9] repulped and leached with sulfuric acid.
  • the pulp concentration is desirably about 100 to 100 g / L before leaching.
  • the pH during leaching should be controlled between 0.1 and 4.
  • the temperature is 20-90. C.
  • the leaching time can be 5 to 120 minutes.
  • the post-solution containing ZnS 04 can be used as an electrolytic solution made of wet zinc.
  • CaS 04 can be used in various industrial fields.
  • composition analysis was performed. The results are shown in Table 2. On the other hand, a composition analysis was also performed on the solution after washing. The results are shown in Table 3.
  • composition analysis was performed. Table 6 shows the results. On the other hand, a composition analysis was also performed on the solution after washing. Table 7 shows the results.
  • Sulfuric acid leaching was carried out (step [5]).
  • the liquid temperature was 30 ° C.
  • solid-liquid separation was performed (step [7]) to obtain a Zn-containing post-solution and a Pb-containing residue.
  • Table 8 shows the analysis results of the solution containing Zn. After the Pb-containing residue was sufficiently dried at 1 G at 5 ° C, the composition was analyzed. Table 9 shows the results.
  • the invention example shows that Pb grade is higher than comparative example. Also, the amount of Ca was greatly reduced. In other words, the amount of gypsum accompanying the P-containing residue as a by-product is greatly reduced by using the washing residue in which most of the Ca is dissolved and removed on the liquid side in the washing step. This Pb-containing residue can be effectively used for lead production together with gangue components.
  • Example 2
  • the composition was analyzed. Table 10 shows the results. Composition analysis was also performed on the after solution (after Ca removal). Table 11 shows the results. As described above, the analyzed solution after the removal of Ca was returned to the washing solution, and the bleed-off operation was repeated about 30 L each time. This is the solution obtained by performing the above charging, that is, the solution after the removal of Ca after performing five consecutive chargings. The composition change due to the repetition is almost stable. As can be seen from Tables 10 and 11, from the post-washing solution obtained according to the present invention, for example, CaCOs of a grade usable as an alkali in step [6] was recovered. In addition, the amount of Ca dissolved in the solution after decalcification was smaller than that in the solution after washing, and it was confirmed that the solution could be repeatedly used as washing water.
  • the Zn-containing post-liquid (Table 8) obtained in Step [7] was subjected to the treatment of Step [8] and subsequent steps. That is, slurried lime Ca was added to the solution after the Zn content while stirring to neutralize (step [8]). At that time, pH The pH was monitored so that it was 9. The temperature was 30 ° C and the reaction time was 60 minutes. The slurry was solid-liquid separation (step [9]), was recovered Zn compound and CaS 0 4 of ZnO mainly as solids. In addition, the post-solution was recovered. The liquid after this could be reused as water, for example, returned to step [1] or step [5].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

[1]飛灰をパルプ濃度5~100g/Lの液中で洗浄することにより、飛灰のCa分を水に溶出させる工程(洗浄工程)、[2]前記洗浄工程で得られたスラリーを固液分離することにより、溶出したCa分を洗浄后液中に回収するとともに、固形分を洗浄残渣として回収する工程、を有する飛灰の処理方法。この洗浄后液にCO2ガスを吹き込むことでCaCO3が得られる。他方、洗浄残渣はCa分が少ないので硫酸浸出プロセスで石膏含有量の少ないPb含有残渣が副生し、これはPb製練に有用である。また、その后液からはZn製錬用原料が得られる。

Description

明細書 飛灰の処理方法 技術分野
本発明は、 都市ごみ等の焼却時の燃焼排ガスから採取される飛灰、 あるいは焼 却時の灰分やダスト類を溶融処理等する際に発生する排ガス等から採取される飛 灰を対象とした湿式処理法であって、 特に、 その飛灰中に含まれる C a 分、 P b 分、 脈石成分、 Z n 分などを有効利用しやすい形で分離回収する処理方法に関す る。 従来技術
一般事業所や一般家庭から排出されるごみ ( 「都市ごみ」 または 「一般廃棄物」 と称されている) は、 都市ごみ焼却施設や産業廃棄物焼却工場等に集められ、 焼 却処分されている。 その際に焼却炉から発生する焼却灰や飛灰は、 薬液処理、 溶 融処理、 セメントキルン処理等の中間処理を経て最終処分場に堆積される。
し力、し、 溶融炉ゃセメントキルン等での中間処理においては蒸気圧の高い Z n、 P b、 C d 等の重金属が炉内で揮発して排ガスに入り、 その後、 排ガス処理設備 の中で凝縮して再び飛灰となってしまうという問題があった。 この再度の飛灰中 には、 C I 、 N a、 C a と共に、 Z n、 p b、 C u、 C d 等の重金属が多量に含 まれており、 これらの元素の回収を含めた安定した処理方法が求められていた。 下記特許文献には種々の飛灰処理方法が提案されている。
特許文献 1 特開平 7 - 1 0 9 5 3 3号公報
特許文献 2 特開平 8— 1 1 7 7 2 4号公報
特許文献 3 特開平 8 - 1 4 1 5 3 9号公報 '
特許文献 4 特開 2 0 0 1— 1 1 3 2 4 2号公報
特許文献 5 特開 2 0 0 1— 3 4 8 6 2 7号公報
特許文献 6 特開 2 Q 0 3 - 1 6 4_ 8 2 9号公報
特許文献 7 特開平 8— 3 6 5 5号公幸艮 特許文献 8 特開平 8 - 3 2 3 3 2 1号公報
特許文献 9 特開 2 0 0 0 - 1 1 7 2 2 1号公報
特許文献 1 0 特開 2 0 0 0 — 1 4 4 2 7 1号公報
特許文献 1 1 特開 2 0 0 2 — 1 1 4 2 9号公報
特許文献 1 2 特開 2 0 0 3 - 2 0 1 5 2 4号公報 発明が解決しょうとする課題
上記各特許文献の湿式処理法は、 飛灰に含まれている重金属類を安定な形で分 離回収するうえで有効であると考えられる。 しかし、 これらの技術は重金属類を 回収することに主眼が置かれており、 C a の有効利用、 および脈石成分の有効利 用の観点に立てば、 更なる改善が望まれるところである。
一方、 本出願人は、 飛灰中の Z n を湿式亜鉛製鍊工程に供用できる最も好まし い形態で回収することを意図した飛灰処理方法として、 塩酸酸性水溶液で飛灰を 浸出する工程を採用した処理法を特願 2 0 0 3 - 3 6 5 7 0 6号として提案した。 これによれば、 中和澱物残渣として、 Z n リッチでその他の重金属類もリッチに 同伴し、 かつ S i や A 1 がほとんど含まれてこないものを回収することが可能と なる。 この残渣は湿式亜鉛製鍊工程に供給するための原料として利用価値が高い。
しかしながら、 この処理法にも問題がある。 すなわち、 得られる残渣には塩濃 度の高い液が付着するため、 製鍊工程で受け入れ可能な塩素量によって当該残渣 の使用量が制限を受けるのである。 この制限を回避するには付着した液を除去す るための処理が必要となる。 また、 塩酸浸出を用いる処理は硫酸浸出の場合と比 ベ、 コストが割高となる。
他方、 コスト面で有利な硫酸浸出のプロセスを用いて湿式亜鉛製鍊に供給可能 な Z n 資源を分離回収しょうとすると、 飛灰中には多量の C a が存在するため途 中工程で得られる副産物の脈石残渣中には石膏 ( C a S 0 4 )が多く含まれてしま う。 この残渣は P b 品位が高いので鉛製鍊に有効利用したいところであるが、 石 膏含有量が多いのでこれを鉛製鍊の原料として用いることは熱エネルギー上問題 がある。
そこで本発明は、 飛灰を処理して重金属類を回収するプロセスにおいて、 特に、 i ) Ca 分の有効利用、
ii) Pb含有脈石成分の有効利用、
iii ) 塩酸浸出プロセスよりも低コスト化、
を目標に掲げ、 これらを一挙に実現することを目的とする。 課題を解決するための手段
飛灰中には Zn が多量に含まれ、 Pb も含まれる場合が多い。 これらの金属を 有効利用するには、 Zn は湿式亜鉛製鰊に用い、 Pb は他の脈石成分と共に鉛製 鍊に用いるのが好適である。 発明者らはそのような Zn や Pb の利用を可能にす る飛灰の処理プロセスを鋭意検討した結果、 まず洗浄工程で Ca 分をできるだけ 多く 「液中」 に溶かして分離回収すること、 つまり、 洗浄された飛灰の固形分側 に留まる C a 分の量をできるだけ減少させることが極めて有利となることを見出 した。
最初の洗浄工程で Ca 分を液中に溶かすには、 飛灰のパルプ濃度が非常に薄い 状態で洗浄することが極めて効果的であることがわかった。
このとき、 洗浄後の固形分に含まれる Ca 量が少なくなるため、 これを硫酸浸 出で処理する場合、 脈石残渣に随伴する石膏量を低減することができる。 また Ca は炭酸カルシウム (CaC03)や石膏 (CaS 04)として分離回収できる。
本発明はこれらの知見に基づいて完成したものである。
すなわち、 上記目的を達成するために、 本発明によれば、
[1] 飛灰をパルプ濃度 5〜1 0 0 g/Lの液中で洗浄することにより、 飛灰の Ca分を水に溶出させる工程 (洗浄工程) 、
[2] 前記洗浄工程で得られたスラリーを固液分離することにより、 溶出した C a 分を洗浄后液中に回収するとともに、 固形分を洗浄残渣として回収する工程、 を有する飛灰の処理方法が提供される。
洗浄に際しては攪拌を行うことが望ましい。
また、 前記 [2] の洗浄后液を処理するために、 [1] [2]の工程の後、
[3] 前記 [2] の洗浄后液に C 02ガスを吹き込むことにより、 溶解している Ca 分を CaC03 として析出させる工程、 [4] 前記 [3] の工程で得られたスラ リーを固液分離することにより、 CaC 03 を固形分として分離回収する工程、
を有する飛灰の処理方法が提供される。
この場合、 前記 [4] の工程で得られた脱 Ca 后液を前記 [1] の工程に戻し飛灰 を洗浄するための水として再利用することができる。
他方、 前記 [2] の洗浄残渣を処理するために、 [1] [2]の工程の後、
[5] 前記 [2] の洗浄残渣を pHが 1〜3 · 5の硫酸含有水溶液で浸出すること により、 Zn を浸出液側に移行させる工程 (硫酸浸出工程 1 ) 、
[6] 前記 [5] の浸出後のスラリー (固液混合物) にアルカリを添加して p Hが 3 - 5-5となるように中和する工程 (中和工程 1 ) 、
[7] 前記 [6] の中和後のスラリーを固液分離することにより、 Zn 含有后液と 残渣を回収する工程、
を有する飛灰の処理方法が提供される。
また、 Zn 化合物と CaS 04 を回収するために、 前記 [1] [2] [5] [6] [7] のェ 程の後、
[8] 前記 [7] の Zn含有后液に CaOまたは Ca(OH)2を添加して pHが 5〜 9になるように中和することにより、 Zn 化合物および CaS 04 を生成させる 工程 (中和工程 2) 、
[9] 前記 [8] の中和後のスラリーを固液分離することにより、 Zn化合物およ び CaS 04 を固形分として回収する工程、
を有する飛灰の処理方法が提供される。
この場合、 前記 [9] の工程で得られた后液を [1] または [5] 、 あるいはリパノレ プ水として [6] 、 [8] の工程などに戻して再利用することができる。
さらに、 湿式亜鉛製練に使用できる ZnS 04 含有液を回収するために、 前記 [1] [2] [5] [6] [7] [8] [9] の工程の後、
[10] 前記 [9] の工程で得られた Ζηθおよび CaS 04 を含有する固形分を 硫酸含有水溶液を用いて浸出することにより、 Zn を浸出液側に移行させる工程 (硫酸浸出工程 2) 、
[11] 前記 [10]の浸出後のスラリーを固液分離することにより、 ZnS 04 含 有后液と、 CaS 04 (石膏) 主体の (すなわち CaS 04 が 8 0質量%以上含ま れる) 固形分を回収する工程、
を有する飛灰の処理方法が提供される。
本発明に従う飛灰の処理法は以下のようなメ リッ トを有する。
(1) 飛灰に多量に含まれる Ca の大部分をはじめに洗浄工程で液中に溶解させ てしまうので、 処理すべき洗浄残渣の量が低減できる。
(2) その洗浄残渣は Ca分が低減されているので、 硫酸浸漬を用いたプロセス で処理した際、 副産物として得られる Pb 含有脈石残渣中の石膏含有量を減じる ことができる。 このため、 その Pb 含有残渣は鉛製鍊に利用しやすい形態となつ て得られ、 リサイクルの促進が図れる。
(3) 飛灰に多く含まれる Zn は、 硫酸浸漬を用いた処理プロセスにより湿式亜 鉛製練に利用しやすい形態で回収可能である。 このため、 塩酸浸潰の場合に比べ 処理コス卜の低減が図れる。
(4) 飛灰中の C a は、 洗浄后液から Ca C Oa として、 また洗浄残渣側からは Ca S 04 として分離回収されるので、 種々の用途で有効利用できる。
(5) 洗浄后液の処理工程では C02 ガスが Ca C03 として固定されるので、 特に Cu 、 Zn 等の製鍊工場から排出される C 02 ガスを使用すればコンビナー 卜の二酸化炭素排出量の抑制に寄与できる。 図面の簡単な説明
第 1図は本発明を適用した飛灰処理プロセスの一例を示すフロー図である。 発明の好ましい態様
本発明の飛灰処理方法は、 廃棄物処理施設等の焼却炉や溶融炉から排出される 種々の飛灰あるいはそれらの混合飛灰に適用できる。 中でも、 C a 含有量が例え ば 1 5〜3 0質量%と高い飛灰に適用することが効果的である。
第 1図に本発明の処理フローの例を示す。 第 1図の [1] 〜[11]は請求項に記載 した [1] 〜[11]の工程に対応する。 以下、 工程 [1] 〜工程 [11]の順に説明する。 <工程 [1] (洗浄工程) 〉 まず、 薄いパルプ濃度の飛灰混合液を作る。 飛灰が調湿されている場合など、 凝集して塊状になっているときは、 予め粉砕しておくことが望ましい。 洗浄時に 飛灰が液中で良く分散された状態にならなければ Ca の溶解が進行しにくいから である。 洗浄するための液は水でよいが、 工程 [4] を終えた后液などを再利用す ることができる。
本発明では、 洗浄時の飛灰混合液として、 パルプ濃度 (P D) が 5〜 1 0 0 g /Lという非常に薄い状態のものを使用する。 パルプ濃度が濃いほど見かけ上の Ca 溶解度は大きくなる力 種々実験の結果、 洗浄水に溶解するトータルの Ca 量はパルプ濃度を薄く した方が多くなり有利であることが判明した。 パルプ濃度 は 0.0 1〜1 0 0 g/Lの範囲で可能である力 あまりパルプ濃度が薄いと固 液分離で処理する液量が増え不経済となるので、 5〜1 0 0 g/Lの範囲で行う のがよい。 現実的には 1 0〜1 0 0 g/Lが好適であり、 3 0〜5 0 g.ZLとす ることが一層好ましい。
洗浄に際しては強攪拌することが望ましい。 具体的には、 飛灰が液中で分散し、 かつ飛灰中の Ca の境膜物質移動係数が無視できるレベルまでの強い攪拌を行つ て Ca の溶解を促進させることが好ましい。
洗浄時の pHは特にコントロールしなくてよいが、 酸などを添加して C a の溶 解量を増すことは可能である。 飛灰の成分組成によって pH値はまちまちである が、 通常、 7〜1 3の範囲で落ち着く。
洗浄処理の時間 (滞留時間) は概ね 1 0〜1 5 0分とすればよい。 凝集物の解 砕度合いや攪拌の強さによって最適時間は異なるが、 充分に粉砕された飛灰を用 いて 1 0〜8 0分程度の処理時間とすることが望ましい。
具体的には温度 2 0〜9 0 °C、 処理時間 1 0〜1 5 0分の範囲において、 処理 開始の 5〜1 2 0分後に pHが安定化するような強さで攪拌を行うことが望まし い。
く工程 [2] >
洗浄後のスラリーを固液分離する。 洗浄液に溶解させた Ca 分は洗浄后液とし て回収される。 一方、 洗浄残渣は元の飛灰より大幅に量が減り、 かつ、 Ca 含有 量も低減する。 この工程では、 シックナ一による濃縮、 フィル夕一プレス、 ベルト式真空濾過 器、 オリバ一、 スクリューカウンターなど、 種々の手段が選択できる。 ただし、 シックナ一のみとすると固液分離性が悪くなり、 洗浄によって溶解した C a 分や 塩類が固形分側に多く持ち越される場合があるので注意を要する。 通常、 フィル タープレスを使用すると良好な結果が得られる。
く工程 [3] >
前記洗浄后液に C02 ガスを吹き込むことにより、 溶解している Ca 分を Ca C O 3 として析出させる。 この場合、 p H^ 8〜l 1、 好ましくは 9〜1 0とな るように co2 ガスを吹き込むと良い。 また、 攪拌を行うことが望ましい。 使用 するガスの C02 濃度や G/L比 ( 「1分間に吹き込むガスの体積 (L) /スラ リーの体積 (L) 」 ) にあまり関係なく CaC03 は析出する。 ただし、 導入す る C02 量が過剰になると CaC03 が再溶解してしまうので、 吹き込むガスの C 02 濃度が高い場合や GZL比が高い場合には注意を要する。 すなわち、 Ca C Oa が Ca(HC03 ) 2 となって再溶解しないように CaC 03 の析出をコント ロールすることが重要である。 そのコントロールのし易さを考慮すると、 G L 比は 0.0 0 1〜 0.0 1とすることが好ましい。 温度は 1 0〜 4 0 °Cが望ましい。 処理時間は p H値が上記範囲になるまでの時間が必要である力 概ね 5〜4 0分 とすることが望ましい。
<工程 [4] >
前記工程 [3] で得られた CaC 03 含有スラリーを固液分離して、 CaC03 を 固形分として分離回収する。 これは製鍊工程での中和剤等として利用できる。 他 方、 后液は Ca が除去されているため、 工程 [1] に戻して洗浄水に使用すること ができる。 ただし、 この脱 Ca 后液を繰り返し再利用すると塩類 (NaCl や C1 ) が濃縮してくるので、 一部はブリードオフさせて排水処理を実施すること が望ましい。
く工程 [5] (硫酸浸出工程 1) >
一方、 前記工程 [2] 得られた洗浄残渣は、 鉛製練に利用可能な Pb含有脈石残 渣と、 湿式亜鉛製鍊に利用可能な Zn 含有液とを回収するためのプロセスに供さ れる。 まず工程 [5] では、 リパルプして硫酸浸出を行う。 パルプ濃度は浸出前の状態 で 1 0 0〜3 0 0 g/L程度とすることが望ましい。 硫酸を用いることで Zn を 浸出液側に移行させ、 Pb と脈石成分を浸出残渣側へ留める。 ただし、 脈石成分 は一部浸出液側にも移行する。 浸出時の p Hは 1〜3.5にコントロールする。 p Hが 1未満に酸濃度を高めても Zn の浸出率は大きく変化しない。 p Hが 1.5 〜 2. 5で浸出することが経済性を含めて一層好ましい。 温度は 2 0〜 9 0 °C、 浸出時間は 3 0〜1 2 0分とすることができる。
く工程 [6] (中和工程 1 ) >
浸出に引き続いて中和を行う。 この処理では、 一旦浸出されてしまった脈石成 分を析出させる。 中和剤としては NaO Hや CaO、 Ca(OH)2、 CaC 03 力 使用できる。 ここで、 工程 [4] で得られた CaC 03 を利用することができる。 仮りにその CaCOs に Pb を含有していても、 中和にもってゆくことで Pb含 有脈石残渣には好都合である。 中和時の p Hは 3.5〜 5、 好ましくは 3.5〜 4 にコントロールする。 先の洗浄工程により飛灰中の Ca 分は大部分が除去されて いるため、 この中和工程で石膏が多量に生成することはない。 温度は 2 0〜9 0 °C、 反応時間は 5〜1 2 0分とすることができる。
<工程 [7] >
ここでは中和後のスラリーを固液分離して、 Zn含有后液と Pb含有残渣を回 収する。 Zn 含有后液は、 例えば [8] 以下の工程で処理することにより、 湿式亜 鉛製鍊原料とすることができる。 Pb 含有残渣は、 pbS O を主体とする Pb 成分と Si02 や Α120 等の脈石成分を含んでいる。 この Pb 含有残渣は随伴 する石膏の量が少ないので、 鉛製鍊用原料として好適に使用できる。
<工程 [8] (中和工程 2) >
前記 [7] で Pb 含有残渣を除いた后液 (Zn含有后液) を、 さらに pHを 5〜 9に高めた液中で中和し、 Ζηθ等の Zn 化合物および CaS 04 を生成させる。 p Hが 9を超えると Zn が再溶解の方向にゆく。 pH 7〜8とすることが一層好 ましい。 中和剤としては CaOまたは Ca(OH)2が使用できる。 温度は 2 0〜 9 0 °C、 反応時間は 5〜1 2 0分とすることができる。
<工程 [9] > 中和後のスラリーを固液分離して、 Zn 化合物および Ca S 04 を含む固形分 を回収する。 この固形分は、 例えば [10]以下の工程で処理することにより湿式亜 鉛製鍊原料となる。 后液は [1]または [5] 、 あるいはリパルプ水として [6]、 [8] の工程などに戻して使用することができる。
<工程 [10] (硫酸浸漬工程 2) >
前記工程 [9] で得られた Zn 化合物および CaS 04 を含む固形分をリパルプ し、 硫酸で浸出する。 これにより Zn を ZnS 04 の形で浸出液側に移行させる。 パルプ濃度は浸出前の状態で 1 0 0〜1 0 0 0 g/L程度とすることが望ましい。 浸出時の p Hは 0. 1〜4にコントロールすると良い。 温度は 2 0〜9 0。C、 浸 出時間は 5〜1 2 0分とすることができる。
く工程 [11]〉
浸出後のスラリーを固液分離して、 ZnS 04 含有后液と CaS 04 (石膏) 主 体の固形分を回収する。 ZnS 04 含有后液は湿式亜鉛製鍊の電解液として使用 できる。 CaS 04 は種々の産業分野で利用できる。 実施例
実施例 1
表 1に示す A飛灰を用いて、 これを C02 ガスを吹き込まない通常の方法で洗 浄した場合 (比較例) と、 本発明に従って飛灰濃度の薄い水で洗浄した後に C02 ガスで Ca を回収した場合 (発明例) について、 それぞれ洗浄后液と洗浄残渣を 処理した。
表 1
〔A飛灰〕
Figure imgf000011_0001
〔比較例〕
A飛灰を 1 0 0 0 g計量し、 これに蒸留水 3 L (リツ トル) を加えて飛灰混合 水を得た。 この飛灰混合水を 6 0分攪拌したのち、 濾過器で固液分離して、 濾液 aL と固形分 as を得た。 この固形分 as にさらに蒸留水 0. 3 Lを加えて追加 洗浄し、 濾液
Figure imgf000012_0001
と固形分 ( 「洗浄残渣」 という) を得た。 濾液 a t と濾液 を混合した液 ( 「洗浄后液」 という) が約 3 L得られた。
前記洗浄残渣を 1 0 5 °Cで充分乾燥したのち、 組成分析を行った。 その結果を 表 2に示す。 一方、 前記洗浄后液についても組成分析を行った。 その結果を表 3 に示す。
次に、 前記洗浄残渣をパルプ濃度 1 0 0 g/Lでリパルプした後、 硫酸を添加 して: pH= 2に調整した。 これを 3 0°Cで 6 0分攪拌することにより硫酸滲出を 実施した (工程 [5] ) 。 次いで、 その処理液 (浸出後のスラリー) に CaC 03 を添加して pH= 4に調整し、 6 0分攪拌して中和を行った (工程 [6] ) 。 液温 は 3 0°Cとした。 その後、 固液分離を行い (工程 [7] ) 、 Zn含有后液と Pb 含 有残渣を得た。 Zn 含有后液の分析結果を表 4に示す。 Pb 含有残渣は 1 0 5°C で充分乾燥したのち組成分析を行った。 その結果を表 5に示す。
表 2
〔洗浄残渣 (比較例) 〕
Figure imgf000012_0002
表 3
〔洗浄后液 (比較例) 〕
Figure imgf000012_0003
表 4
〔Zn含有后液 (比較例) 〕
Figure imgf000012_0004
表 5
〔Pb含有残渣 (比較例) 〕
合計 Zn Pb Ca S Na K CI
品位 (質量%) 0.86 1.61 30.56 8.92 1.09 0.89 0.97
物量 (g) 576 5 9 176 51 6 5 6 〔発明例〕
A飛灰を 1 0 0 0 g計量し、 これに繰り返し使用する水を 3 0 L加え、 さらに 蒸留水を 3 L加えて飛灰混合水を得た。 繰り返し使用する水とは、 後述実施例 2 の [4] の工程で得られた后液約 3 0 Lを洗浄水として毎回戻しながら当該同じ処 理プロセスを既に 4チャージ繰り返してきた後の、 [4] の工程で得られた后液で ある (ただし、 初回のチャージは蒸留水を使用)。 この飛灰混合水を 3 0 °Cで 6 0分攪拌した。 得られたスラリーを濾過器で固液分離して、 洗浄后液と洗浄残渣 を得た。 以上が工程 [1] および工程 [2] である。
前記洗浄残渣を 1 0 5°Cで充分乾燥したのち、 組成分析を行った。 その結果を 表 6に示す。 一方、 前記洗浄后液についても組成分析を行った。 その結果を表 7 に示す。
表 2 (比較例) と表 6 (発明例) を対比すると、 発明例では生成した洗浄残渣 の量自体が比較例よりも大幅に減少していることがわかる。 また洗浄残渣の C a 量も発明例の場合には大きく減少している。
表 3 (比較例) と表 7 (発明例) を対比すると、 発明例では洗浄后液中の Ca 量および Ca 濃度とも比較例より顕著に増加している。 これは、 飛灰混合水を希 釈化した状態で攪拌したことにより、 Ca が洗浄水中に多量に溶け込んだことを 示している。
次に、 比較例と同様に、 前記洗浄残渣をパルプ濃度 1 0 0 gZLでリパルプし た後、 硫酸を添加して pH= 2に調整し、 これを 3 0°Cで 6 0分攪拌することに より硫酸浸出を実施した (工程 [5] ) 。 次いでその処理液 (浸出後のスラリー) に後述する [4] の工程で回収した Ca C03 を添加して pH= 4に調整し、 6 0 分攪拌することにより中和を行った (工程 [6] ) 。 液温は 3 0 °Cとした。 その後 固液分離を行い (工程 [7] ) 、 Zn含有后液と Pb含有残渣を得た。 Zn 含有后 液の分析結果を表 8に示す。 Pb含有残渣は 1 G 5 °Cで充分乾燥したのち組成分 析を行った。 その結果を表 9に示す。
表 4 (比較例) と表 8 (発明例) を対比すると、 発明例では Zn 含有后液中の Zn 濃度が比較例よりも高く、 また C1 濃度は低くなつている。 つまり発明例で 得られた Zn 含有后液は湿式亜鉛製鍊の原料用途に供する上で非常に有利なもな である。
表 5 (比較例) と表 9 (発明例) を対比すると、 発明例では Pb含有残渣中の Pb 品位が比較例より高い。 また Ca 量は大幅に低減した。 つまり、 Ca 分の大 部分を洗浄工程で液側に溶解除去した洗浄残渣を用いることによって、 副産物の P 含有残渣に随伴する石膏量が大幅に減少する。 この Pb 含有残渣は脈石成分 とともに鉛製鍊に有効利用することができるものである。 実施例 2
前記 〔発明例〕 において洗浄工程で得られた洗浄后液を処理して、 CaC 03 を回収する実験を行った。 すなわち Ca が溶解している洗浄后液に攪拌しながら 純 C O 2 ガスを吹き込んだ (工程 [3] ) 。 その際、 純 C O 2 ガスは 3 3 m L /分 で導入した。 p Hが 9.8となったところでガスの導入および攪拌を止めた。 温 度は 3 0°C、 反応時間は概ね 2 0分であった。 その後、 スラリーを固液分離した
(工程 [4] ) 。
得られた固形分は 1 0 5 °Cで充分乾燥したのち組成分析した。 その結果を表 1 0に示す。 后液 (脱 Ca 后液) についても組成分析を行った。 その結果を表 1 1 に示す。 なお、 分析した脱 Ca 后液は、 前述のように、 この段階で毎回 3 0しの 脱 Ca 后液を洗浄水として戻し、 約 3 Lはブリードオフする操作を既に 4回繰り 返した後に今回のチャージを行って得られたもの、 すなわち、 連続 5チャージを 実施した後の脱 Ca 后液である。 その繰返しによる組成変動はほぼ安定している。 表 1 0、 表 1 1からわかるように、 本発明に従って得られた洗浄后液からは例 えば工程 [6] のアルカリとして利用可能な品位の CaCOs が回収された。 また 脱 Ca 后液は、 Ca 分の溶解量が洗浄后液より減少しており、 洗浄水としての繰 り返し利用が充分可能であることが確認された。
表 6
〔洗浄残渣 (発明例) 〕
合計 Zn Pb Ca S Na CI
品位 (質量%) 7.88 0.01 21.10 6.80 3.19 2.37 4.78
物量 583 46 0.1 123 39 19 14 28 表 7
〔洗浄后液 (発明例) 〕
Figure imgf000015_0001
表 8
〔Zn含有后液 (発明例) 〕
Figure imgf000015_0002
表 9
[: Pb含有残渣 (発明例) 〕
Figure imgf000015_0003
表 1 1 Ca后液 (発明例) 〕
Figure imgf000015_0004
実施例 3
実施例 1の 〔発明例〕 において工程 [7] で得られた Zn 含有后液 (表 8のもの) に、 工程 [8] 以降の処理を施した。 すなわち前記 Zn 含有量后液に、 スラリー化 した石灰 Ca〇を攪拌しながら添加して中和した (工程 [8] ) 。 その際、 pHが 9になるように pHを監視して行った。 温度は 3 0°C、 反応時間は 6 0分とした。 このスラリーを固液分離して (工程 [9] ) 、 ZnO主体の Zn 化合物と CaS 04 を固形分として回収した。 また、 后液を回収した。 この后液は水として例えばェ 程 [1] や工程 [5] に戻して再利用できるものであった。
固形分として回収された Zn化合物と CaS 04 を含む残渣をリパルプしてパ ルプ濃度 3 0 0 gZLとし、 これに硫酸を添加して p H= 2に調整し、 これを 6 0°Cで 2 0分攪拌することにより硫酸浸出を実施した (工程 [10]) 。 次いで固液 分離を行い (工程 [11]) 、 ZnSO* 含有后液と CaS 04 (石膏) 主体の固形分 を回収した。 ZnS 04 含有后液は品位的に湿式亜鉛製鍊の原料として利用でき るものであった。 一方、 得られた石膏は不純物が比較的少なく、 各種分野で使用 できるものであった。

Claims

請求の範囲
1. [1] 飛灰をパルプ濃度 5〜1 0 0 g/Lの液中で洗浄することにより、 飛灰 の Ca 分を水に溶出させる工程 (洗浄工程) 、
[2] 前記洗浄工程で得られたスラリーを固液分離することにより、 溶出した Ca 分を洗浄后液中に回収するとともに、 固形分を洗浄残渣として回収する工程、 を有する飛灰の処理方法。
2. [1] 飛灰をパルプ濃度 5〜1 0 0 gZLの液中で攪拌洗浄することにより、 飛灰の Ca 分を水に溶出させる工程 (洗浄工程) 、
[2] 前記洗浄工程で得られたスラリーを固液分離することにより、 溶出した C a 分を洗浄后液中に回収するとともに、 固形分を洗浄残渣として回収する工程、 を有する飛灰の処理方法。
3. [3] 前記 [2] の洗浄后液に C02 ガスを吹き込むことにより、 溶解している Ca 分を Ca COa として析出させる工程、
[4] 前記 [3] の工程で得られたスラリーを固液分離することにより、 CaC 03 を固形分として分離回収する工程、
を有する請求項 1または 2に記載の飛灰の処理方法。
4. 前記 [4] の工程で得られた后液 (脱 Ca 后液) を前記 [1] の工程に戻し飛灰 を洗浄するための液として再利用する、 請求項 3に記載の飛灰の処理方法。
5. [5] 前記 [2] の洗浄残渣を p Hが 1〜3. 5の硫酸含有水溶液で浸出するこ とにより、 Zn を浸出液側に移行させる工程 (硫酸浸出工程 1) 、
[6] 前記 [5] の浸出後のスラリー (固液混合物) にアルカリを添加して pHが 3. 5〜5となるように中和する工程 (中和工程 1) 、
[7] 前記 [6] の中和後のスラリーを固液分離することにより、 Zn含有后液と 残渣を回収する工程、
を有する請求項 1または 2に記載の飛灰の処理方法。
6.
[8] 前記 [7] の Zn 含有后液に Ca 0または Ca(OH) 2 を添加して p Hが 5〜9になるように中和することにより、 Zn 化合物、 Ca S 04 を生成させる 工程 (中和工程 2 ) 、
[9] 前記 [8] の中和後のスラリーを固液分離することにより、 Zn 化合物およ び Ca S 04 を固形分として回収する工程、
を有する請求項 5に記載の飛灰の処理方法。
7. 前記 [9] の工程で得られた后液を [1] または [5] の工程に戻して再利用する 請求項 6に記載の飛灰の処理方法。
8.
[10] 前記 [9] の工程で得られた Zn 化合物および CaS 04 を含有する固 形分を硫酸含有水溶液を用いて浸出することにより、 Zn を浸出液側に移行させ る工程 (硫酸浸出工程 2) 、
[11] 前記 [10]の浸出後のスラリーを固液分離することにより、 ZnS04 含 有后液と CaS OA (石膏) 主体の固形分を回収する工程、
を有する請求項 6に記載の飛灰の処理方法。
PCT/JP2005/002377 2004-03-03 2005-02-09 飛灰の処理方法 WO2005084838A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-59852 2004-03-03
JP2004059852A JP2005246226A (ja) 2004-03-03 2004-03-03 飛灰の処理方法

Publications (1)

Publication Number Publication Date
WO2005084838A1 true WO2005084838A1 (ja) 2005-09-15

Family

ID=34917992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002377 WO2005084838A1 (ja) 2004-03-03 2005-02-09 飛灰の処理方法

Country Status (2)

Country Link
JP (1) JP2005246226A (ja)
WO (1) WO2005084838A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104529011A (zh) * 2015-01-05 2015-04-22 北京建筑材料科学研究总院有限公司 垃圾焚烧飞灰水洗液去硬度降pH值装置和方法
CN111479939A (zh) * 2017-12-04 2020-07-31 昭和电工株式会社 钒酸盐的制造方法
WO2022203517A1 (en) * 2021-03-24 2022-09-29 Noah Solutions As Method and apparatus for neutralizing and stabilizing of fly ash
CN115301711A (zh) * 2022-08-04 2022-11-08 江山市虎鼎环保科技有限公司 一种飞灰水洗压滤的防堵塞方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878605B2 (ja) * 2008-03-31 2012-02-15 太平洋セメント株式会社 フライアッシュの湿式脱炭における前処理装置
JP5072919B2 (ja) * 2009-07-23 2012-11-14 日立造船株式会社 焼却炉からの焼却灰の処理装置および処理方法
MY160811A (en) * 2009-07-23 2017-03-31 Hitachi Shipbuilding Eng Co Device and method for extracting and separating sodium and potassium
JP2023035105A (ja) * 2021-08-31 2023-03-13 住友大阪セメント株式会社 炭酸カルシウム生成方法及びシステム
CN115446096B (zh) * 2022-08-29 2023-08-08 北京科技大学 废旧轮胎裂解炭黑制备高炉喷吹燃料及碳酸锌的方法
JP7485125B1 (ja) 2023-02-27 2024-05-16 住友大阪セメント株式会社 セメント製造プロセスから生じる廃棄物の再利用循環方法及びそのシステム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211127A (ja) * 2002-01-29 2003-07-29 Taiheiyo Cement Corp 塩化物含有ダストの処理方法
JP2003225633A (ja) * 2002-02-01 2003-08-12 Taiheiyo Cement Corp 塩化物含有ダストの処理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117724A (ja) * 1994-10-26 1996-05-14 Dowa Mining Co Ltd 焼却炉または溶融炉からの飛灰の処理方法
JP2000144271A (ja) * 1998-11-13 2000-05-26 Yoshizawa Lime Industry 溶融飛灰からの重金属の回収方法
JP2000212654A (ja) * 1999-01-19 2000-08-02 Dowa Mining Co Ltd 重金属と塩素を含有する物質からの重金属の回収方法
JP3633840B2 (ja) * 1999-11-29 2005-03-30 株式会社タクマ 溶融飛灰の処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003211127A (ja) * 2002-01-29 2003-07-29 Taiheiyo Cement Corp 塩化物含有ダストの処理方法
JP2003225633A (ja) * 2002-02-01 2003-08-12 Taiheiyo Cement Corp 塩化物含有ダストの処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAHARA K. ET AL.: "Yoyu Hibai no Kinzoku Kaishu.", HIBAI TAISAKU YUGAIBUSSHITSU JOKYO. MUGAIKA.SAISHIGENKA GIJUTSU., 1998, pages 208 - 241, XP002997262 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104529011A (zh) * 2015-01-05 2015-04-22 北京建筑材料科学研究总院有限公司 垃圾焚烧飞灰水洗液去硬度降pH值装置和方法
CN111479939A (zh) * 2017-12-04 2020-07-31 昭和电工株式会社 钒酸盐的制造方法
WO2022203517A1 (en) * 2021-03-24 2022-09-29 Noah Solutions As Method and apparatus for neutralizing and stabilizing of fly ash
CN115301711A (zh) * 2022-08-04 2022-11-08 江山市虎鼎环保科技有限公司 一种飞灰水洗压滤的防堵塞方法

Also Published As

Publication number Publication date
JP2005246226A (ja) 2005-09-15

Similar Documents

Publication Publication Date Title
WO2005084838A1 (ja) 飛灰の処理方法
JP4549579B2 (ja) 塩素分および鉛分の含有量が高い廃棄物の処理方法
WO2005084837A1 (ja) 二酸化炭素の固定を兼ねた飛灰の処理方法
CN110775998A (zh) 一种工业化回收锌生产纳米氧化锌的***及方法
JP3306471B2 (ja) セメントキルン排ガスダストの処理方法
JP2004035937A (ja) 水溶液からの塩化物の回収方法
JPH11199227A (ja) 飛灰から化学原料を回収する方法
CN101704593A (zh) 酸性矿山废水中锌铁锰分离及回收的方法
JP2003225633A (ja) 塩化物含有ダストの処理方法
JP3646245B2 (ja) 重金属含有飛灰の処理方法
JP2003236497A (ja) 廃棄物の処理方法
JP2003236503A (ja) 鉛分を含む廃棄物の処理方法
JP3568569B2 (ja) 焼却灰または飛灰の無害化処理による重金属のリサイクル方法
WO2005040437A1 (ja) 飛灰の湿式処理法
JP3851206B2 (ja) 飛灰の処理方法
JP3536901B2 (ja) 飛灰からの有価金属回収方法
JP2008246398A (ja) 溶融飛灰からの石膏の回収方法
JP3794260B2 (ja) 廃棄物の処理方法
JP5084272B2 (ja) 亜鉛を含む重金属類及び塩素を含有する物質の処理方法
JP3780359B2 (ja) 石油系燃焼灰の処理方法
JP2005068535A (ja) 鉛、亜鉛を含有するガス又は飛灰の処理方法
JP3896442B2 (ja) 重金属を含有する飛灰の処理方法
JP3733452B2 (ja) 廃棄物の処理方法
JP2000212654A (ja) 重金属と塩素を含有する物質からの重金属の回収方法
JP3524601B2 (ja) 焼却炉および溶融炉からの飛灰の処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase