WO2005066656A1 - Vehicle mounted radar system and its signal processing method - Google Patents

Vehicle mounted radar system and its signal processing method Download PDF

Info

Publication number
WO2005066656A1
WO2005066656A1 PCT/JP2003/016969 JP0316969W WO2005066656A1 WO 2005066656 A1 WO2005066656 A1 WO 2005066656A1 JP 0316969 W JP0316969 W JP 0316969W WO 2005066656 A1 WO2005066656 A1 WO 2005066656A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
target
detection
composite
vehicle
Prior art date
Application number
PCT/JP2003/016969
Other languages
French (fr)
Japanese (ja)
Inventor
Jie Bai
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2005513101A priority Critical patent/JPWO2005066656A1/en
Priority to PCT/JP2003/016969 priority patent/WO2005066656A1/en
Publication of WO2005066656A1 publication Critical patent/WO2005066656A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/348Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using square or rectangular modulation, e.g. diplex radar for ranging over short distances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area

Definitions

  • the present invention relates to an on-vehicle radar device and a signal processing method thereof.
  • Electromagnetic radar is known as a sensor used in a driving support device such as an inter-vehicle distance control device (also called ACC: Adaptive Cruise Control) or an inter-vehicle distance alarm.
  • a driving support device such as an inter-vehicle distance control device (also called ACC: Adaptive Cruise Control) or an inter-vehicle distance alarm.
  • the detection range required for the sensor varies depending on the type of driving assistance device.However, when the transmission power is constant, the detection range becomes narrower by increasing the maximum detection distance when the transmission power is constant. Conversely, if a wide detection width (detection angle) is to be obtained, the maximum detection distance will be short, and it is difficult to configure a detection range that simultaneously satisfies the requirements of various driving support devices. In addition, it is possible in principle to satisfy the desired detection range by increasing the transmission power. However, the increase in the transmission power is not possible due to the increase in the size and cost of the radar and the effect of radio waves on the human body. In reality, it is difficult because of the limitations.
  • the detection range that can be detected simultaneously is one, so if an antenna for long distance is used
  • the detection range for short distances becomes narrower, and conversely, when an antenna for short distances is used, the maximum detection distance decreases.
  • the detection accuracy of the image sensor may be drastically reduced due to bad weather or light conditions (backlight, normal light, etc.). There is a problem of performance. Disclosure of the invention
  • An object of the present invention is to provide a radar apparatus having a plurality of different detection ranges without substantially increasing transmission power and without using antenna switching or an image sensor.
  • the first radar detects at least the relative speed with respect to the target or the position of the evening target by irradiating the radio wave in front and receiving the reflected wave, and the second radar having a detection range different from that of the first radar.
  • a radar is provided, and the first radar and the second radar are mounted so as to face in the same direction.
  • the first radar forms a detection range in front of the vehicle
  • the second radar forms a detection range different from that of the first radar
  • the target detects the first radar.
  • the detection information of the target immediately before the target is transferred from the first radar to the second radar.
  • FIG. 1 is a diagram showing an embodiment of a composite radar.
  • FIG. 2 is a diagram showing an embodiment of the integrated vehicle-mounted composite radar.
  • FIG. 3 is a diagram showing an embodiment of an independently mounted composite radar.
  • Fig. 4 is a diagram showing the principle of the dual frequency CW system and the FMCW system of a millimeter wave radar.
  • Fig. 5 is a diagram showing the image of the tracker fil.
  • FIG. 6 is a diagram showing an embodiment of improving the re-acquisition responsiveness in the embodiment of FIG.
  • FIG. 7 is a diagram showing an implementation flowchart of FIG.
  • FIG. 8 is a diagram showing an embodiment of improving the responsiveness of the interrupted vehicle detection in the embodiment of FIG.
  • FIG. 9 is a diagram showing an implementation flowchart of FIG.
  • FIG. 10 is a diagram showing an embodiment in which overlapping detection areas are collated.
  • FIG. 11 is a diagram showing an implementation flowchart of FIG.
  • FIG. 12 is a diagram showing another embodiment of the present invention.
  • FIG. 13 is a diagram showing a configuration of an inter-vehicle distance automatic control, a warning and a rear-end collision reduction control.
  • driving assistance include an inter-vehicle distance alarm that detects the inter-vehicle distance to a vehicle (preceding vehicle) running ahead of the vehicle and sounds an alarm, or sets the inter-vehicle distance or inter-vehicle time to the preceding vehicle to a predetermined value
  • Inter-vehicle distance control that controls the acceleration and deceleration of the vehicle so that it keeps it, or a collision warning that issues an alarm by detecting an obstacle ahead, or when there is a high possibility of a collision or when it is predicted that a collision cannot be avoided
  • the vehicle generates braking force, assists the driver's steering, and adjusts auxiliary equipment such as seat belts and airbags in preparation for a collision.
  • collision reduction control can be considered.
  • the radar device mounted on the host vehicle (vehicle with radar) 1 Detects the relative speed with respect to 2, azimuth angle, distance 4 between vehicles, and controls brakes, power trains, alarms, etc.
  • the relative speed or the inter-vehicle distance with the evening target 2 in front of the own vehicle 1 is measured, and the relative speed or the inter-vehicle distance is set to a target value.
  • the speed of the own vehicle 1 is controlled by controlling the brakes and power train of the own vehicle 1 (engines and mechanisms that transmit the output of the prime mover to the wheels, such as engines and transmissions).
  • the collision reduction control the presence or absence of an obstacle in front of the own vehicle and the danger of a collision are determined, and the alarm device 7 is operated to urge the driver to avoid the collision. Furthermore, if it is determined that a collision with Target 2 is inevitable even after a sudden deceleration, emergency braking and seat belt winding will be performed to reduce damage in the event of a collision. In addition, by steering control of the steering system, it is possible to avoid an adjacent lane on the safe side without obstacles.
  • a vehicle existing in the lane in which the own vehicle 1 is traveling that is, a preceding vehicle, among vehicles existing in front of the own vehicle 1, that is, a preceding vehicle may be detected.
  • the maximum detection distance longitudinal distance
  • a detection range such as a maximum detection distance of 150 Cm] and a detection angle (beam angle) of 16 ° is required.
  • collision reduction control for example, not only a head-on collision but also an oblique collision such as a collision at an intersection, the radar detection range is relatively wide in the lateral direction.
  • the maximum detection distance is not required as much as inter-vehicle distance control. For this reason, for example, a detection range such as a maximum detection distance of 50 [m] and a beam angle of 60 ° is required.
  • FIG. 1 An embodiment of the composite radar device of the present invention will be described with reference to FIGS. 1, 2, 5, and 6.
  • FIG. 1 is a diagrammatic representation of the composite radar device of the present invention.
  • the composite radar 3 includes a first radar 3a and at least one second radar 3b having a different detection range from the first radar 3a. ing.
  • the first radar 3a and the second radar 3b are directed in the same direction, and both of them always detect the target. “Always” means that the two radars operate at the same time, and does not mean that they are not stopped at all.
  • the detection range 51 of the first radar 3a and the detection range 52 of the second radar 3b are shown in FIG. 2 (a).
  • the first radar 3a realizes a detection range (for example, a maximum detection distance of 150 [m] and a beam angle of 16 degrees) for inter-vehicle distance control
  • the second radar 3b realizes a detection range for collision reduction control. It realizes a detection range (for example, a maximum detection distance of 50 [m] and a beam angle of 60 degrees).
  • the first radar that sets the maximum detection distance longer 3a has a large influence of the mounting angle, so it is necessary to precisely adjust the optical axis.
  • the second radar 3b which forms a short-range wide-angle detection range, has the same detection accuracy as the first radar 3a. , Since no mounting accuracy is required, the second radar 3b can have a small and simple configuration. Specifically, it is conceivable to form the second radar 3b as an integrated circuit on a part of the substrate of the first radar, or to adopt a one-chip radar.
  • Fig. 1 shows a configuration example of the first radar 3a.
  • 2 frequency CW 2 frequency CW
  • the dual-frequency CW method is a radar device that measures the relative speed with respect to the vehicle ahead using Doppler shift, transmits two frequencies by switching, and uses the phase information of the received signal at each frequency. This method measures the distance to the vehicle ahead.
  • the first radar 3a includes a transmitter 18 that outputs a transmission signal based on the modulated signal input from the modulator 17 and a transmitter 11 that emits a transmission signal output from the transmitter 18. As shown in Fig. 4 (a), two frequencies Fl and F2 are transmitted while switching over time.
  • the first radar 3a receives the transmission signal reflected by the target.
  • the reception antenna 12 receives the transmission signal.
  • Mixer section 14 for generating (IF signal), analog circuit section 15 for amplifying this IF signal, A / D section 16 for converting the amplified analog signal to digital signal (AZD conversion), and digital FFT processing of the converted received signal for each time frame to calculate the distance to the target, relative speed, etc. based on the radar principle, and an FFT waveform analyzer 20; and a timing controller that controls the operation of each of the above units 1 9
  • the first radar 3a transmits the distance obtained by the FFT waveform analyzer 20.
  • a tracker that reduces the effects of measurement noise and variations on detection data such as distance and relative speed, instead of using the detection data such as separation and relative speed (so-called raw data) directly as radar output. It is desirable to have a configuration including the arithmetic unit 21.
  • Specific examples of the processing performed by the tracker calculation unit 21 include a method of performing a mathematical smoothing process by applying some kind of filtering to the detected data on the time axis to eliminate variations in measurement, Estimated values that reflect the smooth movement of the target are calculated by the fill-in process, and multi-target detection judgment is performed. Responsiveness such as tracking of moving targets (speed of detection for appearance and disappearance of targets) ) And eliminating false detections.
  • the following describes an example of the configuration of the tracker filter 21 for the purpose of measuring variation and responsiveness, or eliminating false detections.
  • the predicted value 42 is predicted from the previous value 40 estimated in the previous time frame, and the estimated value 40 is determined from the predicted value 42 and the actual raw data 41. According to such a configuration, it is possible to obtain a continuous fill estimated value 40 using the tracker fill.
  • the filter estimation value 40 is output to the outside of the radar as detection data.
  • the second radar 3b is a radar device having a detection range different from at least the first radar 3a.
  • the first radar 3a is used.
  • the one with a wider detection range angle is selected.
  • the second radar system the same two-frequency CW radio wave radar as the first radar 3a may be used, but an FMCW (Frequency Modulated Continuous Wave) radio wave radar described below may be used.
  • the FMCW method is an FMCW method (Frequency) that measures the distance and speed to the vehicle ahead by modulating the frequency of the transmission signal with a triangular wave and transmitting it.
  • Frequency Frequency
  • FIG. 3 (b) is a schematic diagram of the second radar 3b of the FM CW system.
  • a transmission signal subjected to a triangular modulation signal as shown in FIG. 4 (b) is transmitted from the transmission / reception MMIC 105.
  • the transmitted radio wave is reflected by the target and received by the transmitting and receiving MMIC 105.
  • the beat signal obtained by multiplying the received signal and the transmitted signal by the MMIC internal mixer is converted to obtain a beat frequency as shown in FIG. 4 (b).
  • the obtained beat frequency is amplified by a signal processing IC 60, sampled by a built-in AZD converter, converted into digital data, and subjected to high-speed Fourier transform processing by a signal processing IC 60 processor, thereby obtaining a beat. Get the frequency spectrum of the signal.
  • the signal processing is performed on the frequency spectrum of the beat signal acquired last to detect the evening signal.
  • the second radar 3b is formed integrally with the first radar 3a. However, as shown in FIG. 3, the second radar 3b is separated from the first radar 3a and is separately provided. May be attached to.
  • the composite radar 3 when the composite radar 3 is integrally formed as in the present embodiment, there is an effect that the mounting of the composite radar 3 on the radar-equipped vehicle 1 and the axis adjustment become easy, and the composite radar 3 is formed separately as shown in FIG.
  • the relative relationship between the detection range 51 of the first radar 3a and the detection range 52 of the second radar 3b can be set in accordance with the requirements of driving support control such as inter-vehicle distance control and collision reduction control. That is, there is an effect that the degree of freedom of the mounting position is secured.
  • FIG. 6 to 11 an embodiment of a target detection system using the composite radar of the present invention will be described with reference to FIGS. 6 to 11.
  • FIG. 1 since the required detection range is realized by using a plurality of radars, when the target moves from the detection range of one radar to the detection range of the other radar, the radar detection after the movement is performed. There is a delay due to tracker filter processing, etc., until an evening get is detected in the range, but this filter processing is inevitable due to noise reduction and erroneous detection elimination.
  • tracker filter processing etc.
  • this filter processing is inevitable due to noise reduction and erroneous detection elimination.
  • FIG. 6 First, an example of detecting a target traveling in the oncoming lane will be described with reference to FIGS. 6 and 7.
  • FIG. 6 First, an example of detecting a target traveling in the oncoming lane will be described with reference to FIGS. 6 and 7.
  • the composite radar device since the target 71 traveling in the oncoming lane approaches from a long distance, the composite radar device first detects the evening target 71 in the detection range 51 of the first radar 3a. At this time, the first radar 3a uses the tracker calculation unit 21 to determine the detected raw data and the detected raw data is not a false detection but a true evening get. The detected data is output as radar output to the outside of the radar every time frame.
  • filter determination delay 72 For a predetermined time after the target 71 enters the detection range 51 of the first radar 3a, since the tracker operation unit 21 performs the filtering process, No radar output is obtained. That is, the data when the target 71 is at the position of the star in FIG. 6 does not appear in the radar output. This delay time is referred to as filter determination delay 72.
  • the target 71 moves before the point A, the target 71 goes out of the detection range of the first radar 3a, and is not detected by the first radar 3a (lost).
  • target detection information for example, distance, relative speed, and relative acceleration
  • the second radar 3b calculates a predicted trajectory 74 of the evening radar using the evening target information received from the first radar 3a, and the target is located in the detection range 52 of the second radar 3b. Predict where to enter.
  • the output to the outside of the radar can be suspended. Thereafter, when the target 71 moves again to the detection boundary range B of the second radar 3b, the composite radar 3 detects the target 71 in the detection range 52 of the second radar 3b.
  • the second radar 3b detects the raw data as an erroneous detection.
  • the detected raw data (or trajectory 76) is immediately output to the outside of the second radar 3b without judging whether or not it exists.
  • whether or not the predicted position matches the actual detection position can be determined by a method such as matching when the distance between the two points is equal to or less than a predetermined value.
  • FIG. 7 shows a flowchart of this embodiment.
  • First 1 It is determined whether or not the target is detected by the radar 3a (S1). If the target is detected here, it is determined whether or not the position is at the boundary point A of the first radar detection range 51 (S2). If the target position is at the boundary point A of the first radar detection range, the target information is transferred to the second radar (S3). Conversely, if the target is not detected or the target is not at the boundary point A, the processing routine is stopped (S7).
  • the second radar estimates a predicted position B when the target enters the detection range 52 of the second radar from the received target information.
  • the second radar determines whether or not the raw data of the target has been detected around the predicted position B (S5). If detected, the second radar immediately outputs the raw data to the outside of the radar as the true position of the target (S6). On the other hand, if no detection is made, this processing routine is stopped (S7).
  • own vehicle information such as own vehicle speed, yaw rate, and brakes are also needed, so that the composite radar 3 obtains such information from the outside of the radar. It is desirable to have an information input unit 25.
  • FIG. 8 An example of the case where the interruption vehicle 81 is detected will be described with reference to FIGS. 8 and 9.
  • FIG. 8 An example of the case where the interruption vehicle 81 is detected will be described with reference to FIGS. 8 and 9.
  • the interrupting vehicle 81 appears from behind the host vehicle in the adjacent lane and breaks in front of the host vehicle, so the composite radar system first starts the interrupting vehicle in the detection range 52 of the second radar 3b. 8 1 is detected.
  • the second radar 3b detects the interrupted vehicle 81 after elapse of the filter determination delay 72 in order to determine that the detected raw data is not a false detection but a true target.
  • the detection result is transferred to the first radar 3a.
  • the first radar 3a detects the raw data around the detected detection point C
  • the first radar 3a immediately determines that it is a night target and continues to detect continuously.
  • the receiving radar reduces the fill time judgment delay 72 from the constant time interval shown in Fig. 5 to a minimum of 0 by passing information such as the distance between radars, relative speed, and relative acceleration. Therefore, the target can be detected earlier.
  • FIG. 9 shows a flowchart of this embodiment.
  • the second radar 3b has detected the evening target (S122).
  • the evening target it is determined whether or not the position is at the boundary point A of the first radar detection range (S122).
  • the target information is transferred from the second radar 3b to the first radar 3a (S123).
  • the processing routine is stopped (S127).
  • the first radar 3a estimates the predicted position of the target from the received target information (S124).
  • the first radar 3a detects the raw data of the evening target around the predicted position B (S125). If detected, the first radar 3a immediately outputs the estimated value of the raw data to the outside of the radar as the true position of the evening get (S126). If no detection is made, this processing routine is stopped (S127).
  • the composite radar that performs the above signal processing is When applied to a driving support device, the time during which the target is lost can be shortened, so that the control accuracy is improved.
  • radar usually detects multiple targets, but in inter-vehicle distance control, one target is selected as a tracking target.
  • one target is selected as a tracking target.
  • FIGS. 8 and 9 show an embodiment of a composite radar composed of the first radar 3a and the fine beam radar 3c.
  • the fine beam radar 3c is a second radar having a dielectric lens (not shown), and converges the radio wave beam to, for example, 2 ° or less, and irradiates the radio beam to a distance corresponding to the first radar 3a. This forms a narrow beam 9 1.
  • the dual-frequency CW method first radar 3a is difficult to separate and detect targets 92 and 93 stopped at the same distance because of the Doppler method.
  • the detected target position may be erroneously detected as being between the same distance between the targets 92 and 93 in the evening.
  • the narrow beam radar 3c has a narrow beam detection range, there is no evening between the targets 92 and 93, and thus the beam is not detected.
  • Detection results of 1st radar 3a and fine beam radar 3c By comparing with, the false detection of the first radar 3a can be canceled. According to this embodiment, it is possible to eliminate erroneous detection by performing detection data collation between composite radars in different radio systems.
  • FIG. 11 shows a flowchart of this embodiment.
  • the first radar 3a has detected the target (s131).
  • the target is determined whether or not the position is in front of the own lane (S132). If the target position is in front of the own lane, the target information is passed from the first radar 3a to the fine beam radar 3c (S133). Conversely, if no evening is detected or the evening is not at the front of the own lane, the processing routine is stopped (S137).
  • the fine beam radar 3c estimates a predicted position of the evening target from the received target information (S134). In addition, it is determined whether or not the fine beam radar 3c can detect the evening target around the predicted position (S135).
  • the target detected by the first radar 3a and located in front of the own lane is canceled as an erroneous detection (S136).
  • the data detected by the first radar 3a is output to the outside as it is (S137).
  • the narrow beam radar 3c can detect that there is no obstacle ahead of the own lane. Regardless, deceleration does not occur and the collision reduction control is not activated, and it is possible to pass between the left and right vehicles.
  • FIG. 12 shows an embodiment of a composite radar having a plurality of second radars.
  • information distance, relative speed between the detection ranges 51, 52, 53, 54, 55 of the radars, as in the embodiment shown in FIGS. , Relative acceleration, etc.
  • the target will leave the detection range of one radar and reduce the delay in determining the fill time when entering the detection range of the next radar to a minimum of 0. This allows early detection.
  • a composite radar system that can detect at least one of the vertical distance, horizontal position, azimuth angle, and relative speed with the target, at least the first radar (in this case, a long-range or medium-range millimeter-wave radar) ) And a second radar (here, an integrated short-range radar), and irradiates the first radar and the second radar simultaneously in the same direction to detect an obstacle.
  • the first radar in this case, a long-range or medium-range millimeter-wave radar
  • a second radar here, an integrated short-range radar
  • the distance to the detection target is within the capture range from outside the capture range of the first radar
  • at least one of the distance or the relative speed to the target detected by the second radar is set to the first radar. It can be passed to one radar, and the first radar can treat it as if there is an approaching object around the target object and preferentially catch it over other objects.
  • the second radar may be configured to transmit and receive signals using a different radio wave method than the first radar and detect obstacles. It is also possible to adopt a configuration in which transmission / reception is performed in the communication. Industrial applicability
  • a plurality of detection ranges can be used simultaneously, and the influence of weather on detection performance is reduced. Further, according to the signal processing method of the present invention, detection responsiveness and detection accuracy when a target moves between a plurality of detection ranges are improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Since a simultaneously detectable range is limited to one when a plurality of antennas are switched, a short distance detection range becomes small when a long distance antenna is used and, conversely, maximum detection distance decreases when a short distance antenna is used. When a radar is combined with an image sensor, the image sensor may exhibit a detection performance similar to that of a single radar due to bad weather or light beam conditions (backlight, forward light, and the like). The vehicle mounted radar system comprises a first radar for detecting at least the relative speed to a target or the position of the target by radiating a radio wave forward and receiving the reflected wave, and a second radar having a detection range different from that of the first radar, wherein both radars detect the target constantly. When the target deviates from the detection range of the first radar, information of the target detected immediately before it is transferred from the first radar to the second radar.

Description

明 細 書  Specification
車載レーダ装置およびその信号処理方法 技術分野  TECHNICAL FIELD OF THE INVENTION
本発明は車載レーダ装置およびその信号処理方法に関する。  The present invention relates to an on-vehicle radar device and a signal processing method thereof.
背景技術 Background art
車間距離制御装置 ( A C C : Adapt ive Cruise Control と称することも ある) や車間距離警報などの運転支援装置に用いられるセンサとして電 波式レーダが知られている。 Electromagnetic radar is known as a sensor used in a driving support device such as an inter-vehicle distance control device (also called ACC: Adaptive Cruise Control) or an inter-vehicle distance alarm.
ここでセンサに要求される検知範囲は運転支援装置の種類によって異 なるが、 電波レーダの検知範囲は、 送信電力が一定の場合には、 最大検 知距離を長くすれば検知できる幅が狭くなり、 逆に広い検知幅 (検知角 度) を得ようとすれば、 最大検知距離が短くなるため、 様々な運転支援 装置の要求を同時に満たす検知範囲を構成することは困難である。なお、 送信電力を増加させれば所望の検知範囲を満たすことも原理的には可能 であるが、 レーダの大型化,コス トの増大、 及び電波による人体への影響 から送信電力の増加には限度があるので、 現実には困難である。 この課 題を解決する従来技術として、 複数アンテナの切り替えで複数の検知範 囲を構成するミ リ波レーダ装置が知られている(特開 2001— 116830 号公報) 。 また、 距離センサと画像センサを組み合わせて、 画像センサ の検知情報を用いて距離センサが検知できない範囲を補完する技術も知 られている (特開 2 0 0 2— 9 9 9 0 7号) 。  Here, the detection range required for the sensor varies depending on the type of driving assistance device.However, when the transmission power is constant, the detection range becomes narrower by increasing the maximum detection distance when the transmission power is constant. Conversely, if a wide detection width (detection angle) is to be obtained, the maximum detection distance will be short, and it is difficult to configure a detection range that simultaneously satisfies the requirements of various driving support devices. In addition, it is possible in principle to satisfy the desired detection range by increasing the transmission power. However, the increase in the transmission power is not possible due to the increase in the size and cost of the radar and the effect of radio waves on the human body. In reality, it is difficult because of the limitations. As a conventional technique for solving this problem, there is known a millimeter wave radar apparatus in which a plurality of detection ranges are formed by switching a plurality of antennas (Japanese Patent Application Laid-Open No. 2001-116830). There is also known a technique in which a distance sensor and an image sensor are combined and a range in which the distance sensor cannot be detected is complemented by using detection information of the image sensor (Japanese Patent Application Laid-Open No. 2002-99907).
上記、 複数のアンテナを切り替えるものにおいては、 同時に検知でき る検知範囲は 1つであるため、 遠距離向けのアンテナを使用していると きは、 近距離の検知範囲が細くなり、 逆に近距離向けのアンテナを使用 しているときは、 最大検知距離が低下するという課題がある。 In the case of switching multiple antennas above, the detection range that can be detected simultaneously is one, so if an antenna for long distance is used However, there is a problem in that the detection range for short distances becomes narrower, and conversely, when an antenna for short distances is used, the maximum detection distance decreases.
また、 レーダと画像センサを組み合わせるものにおいては、 画像セン サは、 悪天候や光線条件 (逆光, 順光等) によって検出精度が激減する ことがあるため、 条件によってはレーダ単体の場合と同様の検知性能に なってしまうという課題がある。 発明の開示  In the case of a combination of a radar and an image sensor, the detection accuracy of the image sensor may be drastically reduced due to bad weather or light conditions (backlight, normal light, etc.). There is a problem of performance. Disclosure of the invention
本発明は、 実質的に送信電力を増加せず、 またアンテナの切り替えや 画像センサを使用せずに複数の異なる検知範囲を持つレーダ装置の提供 を目的とする。 前方に電波を照射して反射波を受信することにより、 少 なく ともターゲッ トとの相対速度又は夕ーゲッ 卜の位置を検出する第 1 レーダと、 該第 1 レーダとは検知範囲が異なる第 2 レーダとを備え、 前 記第 1 レーダと前記第 2 レーダとを同じ方向に向けて取り付け、 双方と も常時夕一ゲッ トの検知を行う。  An object of the present invention is to provide a radar apparatus having a plurality of different detection ranges without substantially increasing transmission power and without using antenna switching or an image sensor. The first radar detects at least the relative speed with respect to the target or the position of the evening target by irradiating the radio wave in front and receiving the reflected wave, and the second radar having a detection range different from that of the first radar. A radar is provided, and the first radar and the second radar are mounted so as to face in the same direction.
また、 上記のようなレーダ装置において、 第 1 レーダにより車両前方 に検知範囲を形成し、 第 2 レーダにより該第 1 レーダとは異なる検知範 囲を形成し、 ターゲッ トが前記第 1 レーダの検知範囲から外に出たとき は、 その直前の前記ターゲッ トの検知情報を前記第 1 レーダから前記第 2 レーダに引き渡す。 図面の簡単な説明  Further, in the radar device as described above, the first radar forms a detection range in front of the vehicle, the second radar forms a detection range different from that of the first radar, and the target detects the first radar. When the target goes out of the range, the detection information of the target immediately before the target is transferred from the first radar to the second radar. Brief Description of Drawings
第 1図は、 複合レーダの実施例を示す図である。  FIG. 1 is a diagram showing an embodiment of a composite radar.
第 2図は、 一体化車載複合レーダの実施例を示す図である。  FIG. 2 is a diagram showing an embodiment of the integrated vehicle-mounted composite radar.
第 3図は、 独立で車載した複合レーダの実施例を示す図である。 第 4図は、 ミリ波レーダの 2周波 C W方式と F M C W方式原理を示す 図である。 FIG. 3 is a diagram showing an embodiment of an independently mounted composite radar. Fig. 4 is a diagram showing the principle of the dual frequency CW system and the FMCW system of a millimeter wave radar.
第 5図は、 トラッカフィル夕のイメージを示す図である。  Fig. 5 is a diagram showing the image of the tracker fil.
第 6図は、第 2図の実施例で再捕捉応答性改善実施例を示す図である。 第 7図は、 第 6図の実施フローチャートを示す図である。  FIG. 6 is a diagram showing an embodiment of improving the re-acquisition responsiveness in the embodiment of FIG. FIG. 7 is a diagram showing an implementation flowchart of FIG.
第 8図は、 第 2図の実施例で割り込み車検知の応答性改善実施例を示 す図である。  FIG. 8 is a diagram showing an embodiment of improving the responsiveness of the interrupted vehicle detection in the embodiment of FIG.
第 9図は、 第 8図の実施フローチャートを示す図である。  FIG. 9 is a diagram showing an implementation flowchart of FIG.
第 1 0図は、 重複した検知エリアを照合する実施例を示す図である。 第 1 1図は、 第 1 0図の実施フローチャートを示す図である。  FIG. 10 is a diagram showing an embodiment in which overlapping detection areas are collated. FIG. 11 is a diagram showing an implementation flowchart of FIG.
第 1 2図は、 本発明の他の実施例を示す図である。  FIG. 12 is a diagram showing another embodiment of the present invention.
第 1 3図は、 車間距離自動制御と警報及び追突低減制御の構成を示す 図である。 発明を実施するための最良の形態  FIG. 13 is a diagram showing a configuration of an inter-vehicle distance automatic control, a warning and a rear-end collision reduction control. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図を参照して本発明の実施例について説明する。 具体的な複合 レーダ装置の構造及び信号処理の実施例を説明する前に、 まず第 1 3図 を用いて、運転支援装置及びレーダに要求される性能について説明する。 具体的な運転支援の例としては、 自車前方を走る車両 (先行車) との 車間距離を検知して警報を鳴らす車間距離警報や、 先行車との車間距離 または車間時間を所定の値に保つように車両の加速, 減速を制御する車 間距離制御、 あるいは、 前方の障害物を検出して警報を発する衝突警報 や、 衝突の可能性が高い場合あるいは衝突を回避できないと予測される 場合に、 車両に制動力を発生させたり、 運転者の操舵を補助したり、 シ ートベルトやエアバッグ等の補助器具を衝突に備えて調整したりする衝 突低減制御などが考えられる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Before describing the specific structure of the composite radar device and the embodiment of the signal processing, first, the performance required for the driving support device and the radar will be described with reference to FIG. Specific examples of driving assistance include an inter-vehicle distance alarm that detects the inter-vehicle distance to a vehicle (preceding vehicle) running ahead of the vehicle and sounds an alarm, or sets the inter-vehicle distance or inter-vehicle time to the preceding vehicle to a predetermined value Inter-vehicle distance control that controls the acceleration and deceleration of the vehicle so that it keeps it, or a collision warning that issues an alarm by detecting an obstacle ahead, or when there is a high possibility of a collision or when it is predicted that a collision cannot be avoided At the same time, the vehicle generates braking force, assists the driver's steering, and adjusts auxiliary equipment such as seat belts and airbags in preparation for a collision. For example, collision reduction control can be considered.
上記のような運転支援装置には、 先行車や前方の障害物の情報が必須 であり、 第 1 3図に示すように自車両 (レーダ搭載車) 1 に搭載された レーダ装置によって、 ターゲッ ト 2 との相対速度, 方位角度, 車間距離 4などを検知してブレーキ, パワートレイン, 警報等の制御を行う。 具体的には、 例えば、 車間距離制御であれば、 自車両 1前方の夕ーゲ ッ ト 2 との相対速度あるいは車間距離を測定し、 この相対速度や車間距 離が目標の値となるように、 自車両 1のブレーキやパワートレイン (ェ ンジン, トランスミ ッショ ンなど、 原動機及び原動機の出力を車輪に伝 達する機構を指す。 ) を制御し、 自車両 1 の速度を制御する。  Information on the preceding vehicle and obstacles ahead is indispensable for such a driving assistance device as described above. As shown in Fig. 13, the radar device mounted on the host vehicle (vehicle with radar) 1 Detects the relative speed with respect to 2, azimuth angle, distance 4 between vehicles, and controls brakes, power trains, alarms, etc. Specifically, for example, in the case of the inter-vehicle distance control, the relative speed or the inter-vehicle distance with the evening target 2 in front of the own vehicle 1 is measured, and the relative speed or the inter-vehicle distance is set to a target value. Next, the speed of the own vehicle 1 is controlled by controlling the brakes and power train of the own vehicle 1 (engines and mechanisms that transmit the output of the prime mover to the wheels, such as engines and transmissions).
また、 例えば、 衝突低減制御であれば、 自車両前方の障害物の有無及 び衝突の危険性を判定し、 警報装置 7を動作させてドライバに衝突回避 を促す。 さらに、 急減速してもターゲッ ト 2 との追突が避けられないと 判定される場合には、 非常ブレーキ動作, シートベルト卷取りなどを行 つて、 衝突時の被害軽減を図る。 さらに、 操舵系の操舵制御により、 障 害物のない安全側の隣接車線へ回避することもできる。  For example, in the case of the collision reduction control, the presence or absence of an obstacle in front of the own vehicle and the danger of a collision are determined, and the alarm device 7 is operated to urge the driver to avoid the collision. Furthermore, if it is determined that a collision with Target 2 is inevitable even after a sudden deceleration, emergency braking and seat belt winding will be performed to reduce damage in the event of a collision. In addition, by steering control of the steering system, it is possible to avoid an adjacent lane on the safe side without obstacles.
以上のように、 運転支援装置が実現できる運転支援機能は様々なもの が考えられるが、 これらの運転支援装置がレーダに要求する検知範囲は 各々異なっている。  As described above, there are various driving assistance functions that can be realized by the driving assistance device, but the detection ranges required by the driving assistance devices for the radar are different from each other.
例えば、 車間距離制御であれば、 自車両 1の前方の存在する車両のう ち、 自車両 1が走行している車線に存在する車両、 すなわち先行車を検 出すればよいので検知範囲は横方向には細いものでも構わないが、 高速 道路での使用が想定される為、 最大検知距離 (縦距離) は長く取る必要 がある。 よって、 例えば最大検知距離 1 5 0 C m ] , 検知角度 (ビーム 角度) 1 6 ° のような検知範囲が要求される。 これに対し、 例えば衝突低減制御の場合は、 正面衝突だけでなく、 交 差点における出会い頭の衝突のように斜めから衝突の場合も考えられる ので、レーダの検知範囲は比較的横方向の幅が広いことが要求されるが、 最大検知距離は車間距離制御ほどには必要とされない。 このため、 例え ば、 最大検知距離 5 0 [ m ] , ビーム角度 6 0 ° のような検知範囲が要 求される。 For example, in the case of inter-vehicle distance control, a vehicle existing in the lane in which the own vehicle 1 is traveling, that is, a preceding vehicle, among vehicles existing in front of the own vehicle 1, that is, a preceding vehicle may be detected. Although the direction may be narrow, the maximum detection distance (longitudinal distance) must be long because it is assumed to be used on expressways. Therefore, a detection range such as a maximum detection distance of 150 Cm] and a detection angle (beam angle) of 16 ° is required. On the other hand, in the case of collision reduction control, for example, not only a head-on collision but also an oblique collision such as a collision at an intersection, the radar detection range is relatively wide in the lateral direction. However, the maximum detection distance is not required as much as inter-vehicle distance control. For this reason, for example, a detection range such as a maximum detection distance of 50 [m] and a beam angle of 60 ° is required.
次に、 本発明の複合レーダ装置の実施例について、 第 1図, 第 2図, 第 5図, 第 6図を用いて説明する。  Next, an embodiment of the composite radar device of the present invention will be described with reference to FIGS. 1, 2, 5, and 6. FIG.
複合レーダ 3は、 第 2図 ( b ) に示すように、 第 1 レーダ 3 aと、 こ の第 1 レーダ 3 aとは検知範囲が異なった少なく とも 1個の第 2 レーダ 3 bとを備えている。 この第 1 レーダ 3 a及び第 2 レーダ 3 bを同じ方 向に向け、 双方とも常時ターゲッ トの検知を行う。 常時とは上記 2つの レーダを双方同時に稼動する意味であり、 全く停止させないことを意味 するものではない。  As shown in FIG. 2 (b), the composite radar 3 includes a first radar 3a and at least one second radar 3b having a different detection range from the first radar 3a. ing. The first radar 3a and the second radar 3b are directed in the same direction, and both of them always detect the target. “Always” means that the two radars operate at the same time, and does not mean that they are not stopped at all.
ここで、 車間距離制御と衝突低減制御とを実現するような場合には、 第 1 レーダ 3 aの検知範囲 5 1 と第 2 レーダ 3 bの検知範囲 5 2を第 2 図 ( a ) に示すような構成とする場合が多い。 すなわち第 1 レーダ 3 a で車間距離制御のための検知範囲 (例えば、 最大検知距離 1 5 0 [ m ] , ビーム角度 1 6度) を実現し、 第 2 レーダ 3 bで衝突低減制御のための 検知範囲 (例えば、 最大検知距離 5 0 [ m ] , ビーム角度 6 0度) を実 現する。  Here, in a case where the inter-vehicle distance control and the collision reduction control are realized, the detection range 51 of the first radar 3a and the detection range 52 of the second radar 3b are shown in FIG. 2 (a). Such a configuration is often used. That is, the first radar 3a realizes a detection range (for example, a maximum detection distance of 150 [m] and a beam angle of 16 degrees) for inter-vehicle distance control, and the second radar 3b realizes a detection range for collision reduction control. It realizes a detection range (for example, a maximum detection distance of 50 [m] and a beam angle of 60 degrees).
このように構成することで、 車間距離制御等で要求される比較的遠距 離の検知性能と、 割り込み警報や衝突低減制御に必要となる広角度の検 知性能とを両立させることが出来る。  With this configuration, it is possible to achieve both the relatively long-distance detection performance required for inter-vehicle distance control and the like and the wide-angle detection performance required for interrupt alarms and collision reduction control.
またこのような場合には、 最大検知距離を長く設定する第 1 レーダ 3 aは、 取り付け角度のずれの影響が大きいので光軸調整を精密に行う 必要があるが、 近距離広角の検知範囲を形成する第 2 レーダ 3 bは、 第 1 レーダ 3 aほどの検知精度, 取り付け精度を要求されないので、 第 2 レーダ 3 bは小型で簡易な構成とすることができる。 具体的には、 第 2 レーダ 3 bを第 1 レーダの基板の一部に集積回路として形成することや、 ワンチップレーダを採用することが考えられる。 In such a case, the first radar that sets the maximum detection distance longer 3a has a large influence of the mounting angle, so it is necessary to precisely adjust the optical axis.However, the second radar 3b, which forms a short-range wide-angle detection range, has the same detection accuracy as the first radar 3a. , Since no mounting accuracy is required, the second radar 3b can have a small and simple configuration. Specifically, it is conceivable to form the second radar 3b as an integrated circuit on a part of the substrate of the first radar, or to adopt a one-chip radar.
第 1 レーダ 3 aの構成例を第 1図に示す。 ここでは 2周波 CW  Fig. 1 shows a configuration example of the first radar 3a. Here, 2 frequency CW
(Continuous Wave) 方式の場合を例にとって説明する。 2周波 CW方式 とは、 ドップラーシフ トを利用して前方車両との相対速度を計測するレ ーダ装置において、 2つの周波数を切り替えて送信し、 各々の周波数に おける受信信号の位相情報を用いて前方車両までの距離を計測する方式 である。  (Continuous Wave) method will be described as an example. The dual-frequency CW method is a radar device that measures the relative speed with respect to the vehicle ahead using Doppler shift, transmits two frequencies by switching, and uses the phase information of the received signal at each frequency. This method measures the distance to the vehicle ahead.
第 1 レーダ 3 aは、 変調器 1 7から入力された変調信号に基づいて送 信信号を出力する発信器 1 8 , 発信器 1 8から出力された送信信号を放 射する送信部 1 1 を備えており、 第 4図 ( a) に示すように 2つの周波 数 F l, F 2を時間的に切り替えながら送信する。  The first radar 3a includes a transmitter 18 that outputs a transmission signal based on the modulated signal input from the modulator 17 and a transmitter 11 that emits a transmission signal output from the transmitter 18. As shown in Fig. 4 (a), two frequencies Fl and F2 are transmitted while switching over time.
また、 第 1 レーダ 3 aは、 ターゲッ トにより反射された送信信号.を受 信する受信アンテナ 1 2 , 受信信号と送信信号とから中間周波信号  Also, the first radar 3a receives the transmission signal reflected by the target. The reception antenna 12 receives the transmission signal.
( I F信号) を生成するミキサ部 1 4 , この I F信号を増幅するアナ口 グ回路部 1 5 , 増幅されたアナログ信号をデジタル信号に変換 (AZD 変換) する A/D部 1 6、 およびデジタル化された受信信号をタイムフ レーム毎に F F T処理し、レーダ原理に基づいてターゲッ 卜までの距離, 相対速度などを算出する F F T波形解析部 2 0と、 上記各部の動作を制 御するタイミング制御部 1 9 とを備えている。  Mixer section 14 for generating (IF signal), analog circuit section 15 for amplifying this IF signal, A / D section 16 for converting the amplified analog signal to digital signal (AZD conversion), and digital FFT processing of the converted received signal for each time frame to calculate the distance to the target, relative speed, etc. based on the radar principle, and an FFT waveform analyzer 20; and a timing controller that controls the operation of each of the above units 1 9
ここで第 1 レーダ 3 aは、 F F T波形解析部 2 0によって取得した距 離, 相対速度などの検知デ一夕 (いわゆる生デ一夕) をそのままレーダ 出力とするのではなく、 距離, 相対速度などの検知デ一夕について、 測 定ノイズやバラツキの影響を低減する トラッカ演算部 2 1 を備える構成 とすることが望ましい。 Here, the first radar 3a transmits the distance obtained by the FFT waveform analyzer 20. A tracker that reduces the effects of measurement noise and variations on detection data such as distance and relative speed, instead of using the detection data such as separation and relative speed (so-called raw data) directly as radar output. It is desirable to have a configuration including the arithmetic unit 21.
トラッカ演算部 2 1 による処理の具体例としては、 時間軸上で検知デ —夕に対して何らかのフィル夕をかけて数学的な平滑化処理を行い、 測 定上のバラツキを排除するものや、 フィル夕処理によって夕ーゲッ 卜の スムーズな動きを反映した推定値を算出し、 マルチターゲッ トの検知判 定ゃ移動するターゲッ トの追跡などの応答性 (ターゲッ トの出現, 消滅 に対する検知の早さ)の向上や、誤検知の排除を行うものが考えられる。 以下に、 測定上のバラツキと応答性、 または誤検知排除用を目的とし たトラッカフィルタ 2 1の構成例を説明する。  Specific examples of the processing performed by the tracker calculation unit 21 include a method of performing a mathematical smoothing process by applying some kind of filtering to the detected data on the time axis to eliminate variations in measurement, Estimated values that reflect the smooth movement of the target are calculated by the fill-in process, and multi-target detection judgment is performed. Responsiveness such as tracking of moving targets (speed of detection for appearance and disappearance of targets) ) And eliminating false detections. The following describes an example of the configuration of the tracker filter 21 for the purpose of measuring variation and responsiveness, or eliminating false detections.
本実施形態の複合レーダ 3のトラッカフィル夕 2 1 は、 第 5図に示す ように、 検知データ (距離, 相対速度, 方位角度 (もしくは横位置 =距 離 X方位角度) ) を生デ一夕 4 1 とし、 前回タイムフレームで推定した 前回値 4 0から真値の予測値 4 2を予測し、 予測値 4 2 と実際の生デー 夕 4 1から推定値 4 0を決定するものである。このような構成によれば、 このトラッカフィル夕を用いて連続的なフィル夕推定値 4 0を得ること ができる。  As shown in FIG. 5, the tracker filter 21 of the composite radar 3 of the present embodiment transmits the detected data (distance, relative speed, azimuth (or lateral position = distance X azimuth)) to the raw data. The predicted value 42 is predicted from the previous value 40 estimated in the previous time frame, and the estimated value 40 is determined from the predicted value 42 and the actual raw data 41. According to such a configuration, it is possible to obtain a continuous fill estimated value 40 using the tracker fill.
また、 誤検知を排除するため、 各タイムフレームにおいて、 生データ 4 1は距離範囲 4 5に入るか否かにより有効か無効かの判定を実施され る。 一定時間間隔 T (例えば 1秒) 4 6に有効回数の累積度が一定以上 (例えば 8 0 % ) に達すると、 フィル夕推定値 4 0をレーダ外部へ検知 データとして出力する。  Also, in order to eliminate false detections, in each time frame, it is determined whether the raw data 41 is valid or invalid depending on whether or not it falls within the distance range 45. When the cumulative number of valid times reaches a certain value (for example, 80%) at a certain time interval T (for example, 1 second) 46, the filter estimation value 40 is output to the outside of the radar as detection data.
次に、 第 2 レーダ 3 bの構成について説明する。 第 2 レーダ 3 bは、 少なく とも第 1 レーダ 3 aとは検知範囲が異なる レーダ装置であり、 上述のように衝突低減制御と車間距離制御を両立さ せるような場合は、 第 1 レーダ 3 aよりも検知範囲の角度が広いものが 選択される。 また第 2 レーダの方式は、 第 1 レーダ 3 aと同じ 2周波 C W方式の電波レーダを用いても良いが、 以下に説明する F M C W (Frequency Modulated Continuous Wave) 方式の電波レーダを用いても 良い。 Next, the configuration of the second radar 3b will be described. The second radar 3b is a radar device having a detection range different from at least the first radar 3a. When the collision reduction control and the inter-vehicle distance control are compatible as described above, the first radar 3a is used. The one with a wider detection range angle is selected. As the second radar system, the same two-frequency CW radio wave radar as the first radar 3a may be used, but an FMCW (Frequency Modulated Continuous Wave) radio wave radar described below may be used.
FMCW方式とは、送信信号の周波数に三角波の変調を施して送信し、 前方車両までの距離と速度を計測する FMCW方式 (Frequency  The FMCW method is an FMCW method (Frequency) that measures the distance and speed to the vehicle ahead by modulating the frequency of the transmission signal with a triangular wave and transmitting it.
Modulated CONTINUOUS WAV E) 方式を適用する場合の例について、 第 4図 (b) , 第 3図 ( b) を用いて説明する。 An example of applying the Modulated CONTINUOUS WAV E) method will be described with reference to FIGS. 4 (b) and 3 (b).
第 3図 ( b) は、 F M CW方式の第 2 レーダ 3 bの模式図である。 第 3図 ( b) において、 送受信 MM I C 1 0 5から、 第 4図 (b) に示す ような三角波の変調信号を施した送信信号を送信する。 送信された電波 はターゲッ 卜で反射され送受信 MM I C 1 0 5で受信される。  FIG. 3 (b) is a schematic diagram of the second radar 3b of the FM CW system. In FIG. 3 (b), a transmission signal subjected to a triangular modulation signal as shown in FIG. 4 (b) is transmitted from the transmission / reception MMIC 105. The transmitted radio wave is reflected by the target and received by the transmitting and receiving MMIC 105.
この受信信号と送信信号と MM I C内部ミキザで掛け合わせて得られ るビート信号を変換して、 第 4図 ( b) に示すようなビート周波数が得 られる。  The beat signal obtained by multiplying the received signal and the transmitted signal by the MMIC internal mixer is converted to obtain a beat frequency as shown in FIG. 4 (b).
続いて、 得られたビート周波数を信号処理 I C 6 0で増幅し、 内蔵の AZD変換器でサンプリングしてデジタル形式のデータに変換し、 信号 処理 I C 6 0のプロセッサで高速フーリェ変換処理し、 ビート信号の周 波数スぺク トラムを取得する。 最後に取得したビート信号の周波数スぺ ク トラムに信号処理を施して夕ーゲッ トを検知する。  Subsequently, the obtained beat frequency is amplified by a signal processing IC 60, sampled by a built-in AZD converter, converted into digital data, and subjected to high-speed Fourier transform processing by a signal processing IC 60 processor, thereby obtaining a beat. Get the frequency spectrum of the signal. The signal processing is performed on the frequency spectrum of the beat signal acquired last to detect the evening signal.
また、 本実施例では、 第 2 レーダ 3 bを第 1 レーダ 3 aと一体に構成 しているが、 第 3図に示すように第 1 レーダ 3 aと分離して別体で車両 に取り付けても良い。 In this embodiment, the second radar 3b is formed integrally with the first radar 3a. However, as shown in FIG. 3, the second radar 3b is separated from the first radar 3a and is separately provided. May be attached to.
ここで本実施例のように一体に構成した場合は、 複合レーダ 3をレー ダ搭載車 1への取り付け及び軸調整が容易になるという効果があり、 第 3図のように別体で構成した場合は、 第 1 レーダ 3 aの検知範囲 5 1 と 第 2 レーダ 3 bの検知範囲 5 2 との相対関係を、 車間距離制御や衝突低 減制御等の運転支援制御の要求に併せて設定できる、 すなわち取り付け 位置の自由度が確保されるという効果がある。  In this case, when the composite radar 3 is integrally formed as in the present embodiment, there is an effect that the mounting of the composite radar 3 on the radar-equipped vehicle 1 and the axis adjustment become easy, and the composite radar 3 is formed separately as shown in FIG. In this case, the relative relationship between the detection range 51 of the first radar 3a and the detection range 52 of the second radar 3b can be set in accordance with the requirements of driving support control such as inter-vehicle distance control and collision reduction control. That is, there is an effect that the degree of freedom of the mounting position is secured.
続いて、本発明の複合レーダを用いたターゲッ ト検知方式の実施例を、 第 6図から第 1 1図を用いて説明する。 本発明では、 必要な検知範囲を 複数のレーダを用いて実現している為、 一方のレーダの検知範囲から他 方のレーダの検知範囲に夕ーゲッ トが移動したときには、 移動後のレー ダ検知範囲において夕一ゲッ トが検出されるまでに、 トラッカフィルタ 処理等に伴う遅れが発生するが、 このフィルタ処理はノイズ削減, 誤検 知排除のため避けられない。 以下、 本発明の複合レーダを用いたターゲ ッ ト検知方式の実施例について説明する。  Next, an embodiment of a target detection system using the composite radar of the present invention will be described with reference to FIGS. 6 to 11. FIG. In the present invention, since the required detection range is realized by using a plurality of radars, when the target moves from the detection range of one radar to the detection range of the other radar, the radar detection after the movement is performed. There is a delay due to tracker filter processing, etc., until an evening get is detected in the range, but this filter processing is inevitable due to noise reduction and erroneous detection elimination. Hereinafter, an embodiment of a target detection system using the composite radar according to the present invention will be described.
まず、 第 6図及び第 7図を用いて、 対向車線を走行するターゲッ トを 検知する場合の例について説明する。  First, an example of detecting a target traveling in the oncoming lane will be described with reference to FIGS. 6 and 7. FIG.
第 6図では、 対向車線を走行するターゲッ ト 7 1が遠方から接近して くるので、 複合レーダ装置は、 まず第 1 レーダ 3 aの検知範囲 5 1で夕 一ゲッ ト 7 1を検出する。 このとき、 第 1 レーダ 3 aは検知した生デー 夕をトラッカ演算部 2 1で、 検知した生データが誤検知でなく真の夕一 ゲッ トであると判定した場合、 検知した軌跡 7 3などの検知データをレ ーダ出力として、 タイムフレームごとにレーダ外部へ出力する。  In FIG. 6, since the target 71 traveling in the oncoming lane approaches from a long distance, the composite radar device first detects the evening target 71 in the detection range 51 of the first radar 3a. At this time, the first radar 3a uses the tracker calculation unit 21 to determine the detected raw data and the detected raw data is not a false detection but a true evening get. The detected data is output as radar output to the outside of the radar every time frame.
ここで、 ターゲッ ト 7 1が第 1 レーダ 3 aの検知範囲 5 1に入ってか ら所定の時間は、 トラッカ演算部 2 1がフィルタ処理を行っているので レーダ出力は得られない。 すなわちターゲッ ト 7 1が第 6図中の星印の 位置にあるときのデータはレーダ出力に現れない。 この遅れ時間をフィ ルタ判定遅れ 7 2 とする。 Here, for a predetermined time after the target 71 enters the detection range 51 of the first radar 3a, since the tracker operation unit 21 performs the filtering process, No radar output is obtained. That is, the data when the target 71 is at the position of the star in FIG. 6 does not appear in the radar output. This delay time is referred to as filter determination delay 72.
次に、 ターゲッ ト 7 1が A点より手前へ移動すると、 ターゲッ ト 7 1 は第 1 レーダ 3 aの検知範囲外に出てしまうため、 第 1 レーダ 3 aでは 検知されなくなる (ロス ト) 。  Next, when the target 71 moves before the point A, the target 71 goes out of the detection range of the first radar 3a, and is not detected by the first radar 3a (lost).
このとき本実施例の複合レーダでは、 第 1 レーダ 3 a検知範囲の境界 A付近におけるターゲッ 卜の検知情報 (例えば距離, 相対速度, 相対加 速度など) を第 2 レーダ 3 bへ引き渡しする。 第 2 レーダ 3 bは第 1 レ —ダ 3 aから引き受けた夕ーゲッ ト情報を用いて夕一ゲッ トの予測軌跡 7 4を算出し、 第 2 レーダ 3 bの検知範囲 5 2にターゲッ トが進入する 位置を予測する。このときレーダ外部への出力を保留することができる。 その後、 ターゲッ ト 7 1が再び第 2 レーダ 3 bの検知境界範囲 B点ま で移動した場合、 複合レーダ 3は第 2 レーダ 3 bの検知範囲 5 2でター ゲッ ト 7 1を検出する。 このとき第 2 レーダ 3 bは、 検知した生データ が第 1 レーダ 3 aから引き渡しを受けた夕ーゲッ ト情報から予測される 位置と一致している場合には、 検知した生データが誤検知であるか否か を判断することなく、 検知した生データ (または軌跡 7 6 ) を直ちに第 2 レーダ 3 b外部へ出力する。 ここで予測位置と実際の検知位置が一致 しているか否かは、 例えば当該 2点間の距離が所定以下の場合に一致と する等の方法により判断することが出来る。  At this time, in the composite radar according to the present embodiment, target detection information (for example, distance, relative speed, and relative acceleration) near the boundary A of the detection range of the first radar 3a is transferred to the second radar 3b. The second radar 3b calculates a predicted trajectory 74 of the evening radar using the evening target information received from the first radar 3a, and the target is located in the detection range 52 of the second radar 3b. Predict where to enter. At this time, the output to the outside of the radar can be suspended. Thereafter, when the target 71 moves again to the detection boundary range B of the second radar 3b, the composite radar 3 detects the target 71 in the detection range 52 of the second radar 3b. At this time, if the detected raw data matches the position predicted from the evening target information received from the first radar 3a, the second radar 3b detects the raw data as an erroneous detection. The detected raw data (or trajectory 76) is immediately output to the outside of the second radar 3b without judging whether or not it exists. Here, whether or not the predicted position matches the actual detection position can be determined by a method such as matching when the distance between the two points is equal to or less than a predetermined value.
以上の処理により、 ターゲッ トが第 2 レーダ 3 bの検知範囲 5 2に入 つたときに、 第 1 レーダ 3 aにあるようなフィルタ判定遅れ 7 2を最小 0まで短縮することが可能となる。  By the above processing, when the target enters the detection range 52 of the second radar 3b, it is possible to reduce the filter determination delay 72 as in the first radar 3a to a minimum of zero.
本実施例のフローチャートを第 7図に示す。 第 7図において。 まず第 1 レーダ 3 aでターゲッ トを検知したか否かを判定する ( S 1 ) 。 ここ でターゲッ トを検知した場合、 その位置が第 1 レーダ検知範囲 5 1の境 界点 Aにあるか否かを判定する ( S 2 ) 。 ターゲッ ト位置が第 1 レーダ 検知範囲の境界点 Aにある場合は、 そのターゲッ ト情報を第 2 レーダへ 引き渡す (S 3 ) 。 逆に、 ターゲッ ト未検知またはターゲッ トが境界点 Aにいない場合には、 本処理ルーチンを中止する (S 7 ) 。 FIG. 7 shows a flowchart of this embodiment. In FIG. First 1 It is determined whether or not the target is detected by the radar 3a (S1). If the target is detected here, it is determined whether or not the position is at the boundary point A of the first radar detection range 51 (S2). If the target position is at the boundary point A of the first radar detection range, the target information is transferred to the second radar (S3). Conversely, if the target is not detected or the target is not at the boundary point A, the processing routine is stopped (S7).
次に、 第 2 レーダは上記受け取ったターゲッ ト情報から、 ターゲッ ト が第 2 レーダの検知範囲 5 2 に進入するときの予測位置 Bを推定する Next, the second radar estimates a predicted position B when the target enters the detection range 52 of the second radar from the received target information.
( S 4) 。 (S4).
続いて、 第 2 レーダは予測位置 Bの周辺で、 ターゲッ トの生デ一夕が 検出されているか否かを判定する (S 5 ) 。 検出されている場合、 第 2 レーダは生データを直ちにターゲッ 卜の真の位置としてレーダ外部へ出 力する (S 6 ) 。 逆に検知しない場合は本処理ルーチンを中止する (S 7 ) 。  Subsequently, the second radar determines whether or not the raw data of the target has been detected around the predicted position B (S5). If detected, the second radar immediately outputs the raw data to the outside of the radar as the true position of the target (S6). On the other hand, if no detection is made, this processing routine is stopped (S7).
以上の処理においては、 第 1 レーダから引き渡されるターゲッ ト情報 の他に、 自車速, ョーレート, ブレーキ等の自車情報も必要となるので、 複合レーダ 3はこれらの情報をレーダ外部から取得する車両情報入力部 2 5を備えることが望ましい。  In the above processing, in addition to the target information passed from the first radar, own vehicle information such as own vehicle speed, yaw rate, and brakes are also needed, so that the composite radar 3 obtains such information from the outside of the radar. It is desirable to have an information input unit 25.
次に、 第 8図及び第 9図を用いて、 割込み車 8 1の検知する場合の例 を示す。  Next, an example of the case where the interruption vehicle 81 is detected will be described with reference to FIGS. 8 and 9. FIG.
第 8図において、 割込み車 8 1は隣接車線の自車後方から出現して、 自車の前方に割込むので、 複合レーダ装置は、 まず第 2 レーダ 3 bの検 知範囲 5 2で割込み車 8 1 を検出する。 このとき、 第 2 レーダ 3 bは、 検知した生データが誤検知でなく真のターゲッ トであると判定するため、 フィルタ判定遅れ 7 2を経過してから割込み車 8 1 を検知する。 その後、割込み車 8 1が第 1 レーダ 3 aの検知境界点 Cに来るときに、 その検知結果を第 1 レーダ 3 aへ引き渡す。 そして、 第 1 レーダ 3 aは 引き受けた検知点 Cの周辺に生デ一夕を検知した場合、 直ちに夕ーゲッ トとして判定し、 連続検知し続けていく。 本実施例により、 レーダ間の 距離, 相対速度, 相対加速度などの情報を引き渡すことにより、 受け側 レーダはフィル夕判定遅れ 7 2を実施例第 5図中の一定時間間隔丁から 最小 0まで短縮し、 ターゲッ トを早めに検出することが可能になる。 In Fig. 8, the interrupting vehicle 81 appears from behind the host vehicle in the adjacent lane and breaks in front of the host vehicle, so the composite radar system first starts the interrupting vehicle in the detection range 52 of the second radar 3b. 8 1 is detected. At this time, the second radar 3b detects the interrupted vehicle 81 after elapse of the filter determination delay 72 in order to determine that the detected raw data is not a false detection but a true target. Thereafter, when the interruption vehicle 81 comes to the detection boundary point C of the first radar 3a, the detection result is transferred to the first radar 3a. Then, when the first radar 3a detects the raw data around the detected detection point C, the first radar 3a immediately determines that it is a night target and continues to detect continuously. According to the present embodiment, the receiving radar reduces the fill time judgment delay 72 from the constant time interval shown in Fig. 5 to a minimum of 0 by passing information such as the distance between radars, relative speed, and relative acceleration. Therefore, the target can be detected earlier.
第 9図に本実施例のフローチャートを示す。 まず、 第 2 レーダ 3 bに は夕ーゲッ トを検知したか否かを判定する (S 1 2 1 ) 。 夕ーゲッ トを 検知した場合は、 その位置が第 1 レーダ検知範囲の境界点 Aにあるか否 かを判定する ( S 1 2 2 ) 。 ターゲッ ト位置が第 1 レーダ検知範囲の境 界点 Aにある場合、 そのターゲッ ト情報を第 2 レーダ 3 bから第 1 レー ダ 3 aへ引き渡す (S 1 2 3 ) 。 逆に、 ターゲッ ト未検知または夕一ゲ ッ ト位置が境界点 Aにない場合は本処理ルーチンを中止する(S 1 2 7 )。 次に、 第 1 レーダ 3 aは上記受け取ったターゲッ ト情報から、 ターゲ ッ トの予測位置を推定する ( S 1 2 4 ) 。  FIG. 9 shows a flowchart of this embodiment. First, it is determined whether the second radar 3b has detected the evening target (S122). When the evening target is detected, it is determined whether or not the position is at the boundary point A of the first radar detection range (S122). When the target position is at the boundary point A of the first radar detection range, the target information is transferred from the second radar 3b to the first radar 3a (S123). Conversely, if the target has not been detected or the target position is not at the boundary point A, the processing routine is stopped (S127). Next, the first radar 3a estimates the predicted position of the target from the received target information (S124).
続いて予測位置 Bの周辺において、 第 1 レーダ 3 aが夕ーゲッ 卜の生 データを検知するか否かを判定する ( S 1 2 5 ) 。 検知した場合、 第 1 レーダ 3 aは生データの推定値を直ちに夕一ゲッ 卜の真の位置としてレ —ダ外部へ出力する ( S 1 2 6 ) 。 検知しない場合は、 本処理ルーチン を中止する (S 1 2 7 ) 。  Subsequently, it is determined whether or not the first radar 3a detects the raw data of the evening target around the predicted position B (S125). If detected, the first radar 3a immediately outputs the estimated value of the raw data to the outside of the radar as the true position of the evening get (S126). If no detection is made, this processing routine is stopped (S127).
以上のような信号処理を行うことにより、 夕ーゲッ 卜が一方のレーダ の検知範囲から、 他方のレーダの検知範囲に移動したときに発生する、 ターゲッ トロスト (消失) の時間を短縮することが出来る。  By performing the signal processing as described above, it is possible to reduce the time of the target loss (loss) that occurs when the evening target moves from the detection range of one radar to the detection range of the other radar. .
よって、 上記のような信号処理を行う複合レーダを車間距離制御等の 運転支援装置に適用した場合には、 ターゲッ トを見失っている時間を短 縮することができるので、 制御の精度が向上する。 Therefore, the composite radar that performs the above signal processing is When applied to a driving support device, the time during which the target is lost can be shortened, so that the control accuracy is improved.
また、 レーダは通常複数のターゲッ トを検知しているが、 車間距離制 御では、 追従対象として一つのターゲッ トを選択している。 ここで従来 のレーダ装置では、 割込み車がレーダで検知されたときに、 検出されて いる他の夕ーゲッ 卜との間で、 いずれのターゲッ トを先行車するかの判 断を行う必要があるため、 先述したフィル夕処理に加えて、 先行車選択 の遅れも発生する。  In addition, radar usually detects multiple targets, but in inter-vehicle distance control, one target is selected as a tracking target. Here, in the conventional radar system, when an interrupting vehicle is detected by radar, it is necessary to determine which target is ahead of the other detected evening targets. Therefore, in addition to the above-mentioned fill-in processing, there is a delay in selecting the preceding vehicle.
これに対して、 上記第 8図, 第 9図に示すような処理を行う複合レー ダ装置を適用すれば、 割込み車がまだ自車両 1が走行している車線に入 つてくる前に、 第 2 レーダ 3 bによって割込み車を検知し、 その情報を 第 1 レーダ 3 aに引き渡すことが出来るので、 割込み車が実際に自車線 に進入して第 1 レーダ 3 aによって検知されたときに、 検出された夕一 ゲッ トを追従対象として選択して車間距離制御を行うことが出来る。 第 1 0図は第 1 レーダ 3 aと細ビームレーダ 3 cで構成した複合レー ダの実施例である。 細ビームレーダ 3 cは、 誘電体レンズ (図示しない) を有する第 2 レーダであり、 電波ビームを例えば 2 ° 以下に収束させて 第 1 レーダ 3 aと相当する距離まで照射する。 これにより狭いビーム 9 1 を形成する。  On the other hand, if the composite radar device that performs the processing as shown in FIGS. 8 and 9 is applied, the interrupted vehicle will enter the lane where the host vehicle 1 is still traveling before the interrupted vehicle enters the lane. (2) An interrupted vehicle can be detected by the radar 3b and the information can be transferred to the first radar 3a.When the interrupted vehicle actually enters the own lane and is detected by the first radar 3a, the detection is performed. It is possible to perform the following distance control by selecting the obtained evening target as the tracking target. FIG. 10 shows an embodiment of a composite radar composed of the first radar 3a and the fine beam radar 3c. The fine beam radar 3c is a second radar having a dielectric lens (not shown), and converges the radio wave beam to, for example, 2 ° or less, and irradiates the radio beam to a distance corresponding to the first radar 3a. This forms a narrow beam 9 1.
2周波 C W方式の第 1 レーダ 3 aは、 ドップラー方式のため等距離で 停止中のターゲッ ト 9 2 と 9 3を分離検知しにくい問題が知られている。 また、 検知できたターゲッ ト位置は等距離夕一ゲッ ト 9 2と 9 3の間に あるように誤検知することがある。 この場合、 細ビームレーダ 3 cはビ 一ム検知範囲が細いため、 ターゲッ ト 9 2と 9 3の間に夕一ゲッ トがな いので未検知になる。 第 1 レーダ 3 aと細ビームレーダ 3 cの検知結果 との照合により、 第 1 レーダ 3 aの誤検知をキヤンセルことができる。 本実施例により、 異なる電波方式での複合レーダ間の検知デ一夕照合に より、 誤検知を無くすことができる。 It is known that the dual-frequency CW method first radar 3a is difficult to separate and detect targets 92 and 93 stopped at the same distance because of the Doppler method. In addition, the detected target position may be erroneously detected as being between the same distance between the targets 92 and 93 in the evening. In this case, since the narrow beam radar 3c has a narrow beam detection range, there is no evening between the targets 92 and 93, and thus the beam is not detected. Detection results of 1st radar 3a and fine beam radar 3c By comparing with, the false detection of the first radar 3a can be canceled. According to this embodiment, it is possible to eliminate erroneous detection by performing detection data collation between composite radars in different radio systems.
第 1 1図に本実施例のフローチャートを示す。 まず、 第 1 レーダ 3 a がターゲッ トを検知したかを判定する ( s 1 3 1 ) 。 ここでターゲッ ト を検知した場合、その位置は自車線正面位置にあるか否かを判定する( S 1 3 2 ) 。 ターゲッ ト位置が自車線正面位置にある場合、 その夕ーゲッ ト情報を第 1 レーダ 3 aから細ビームレーダ 3 cへ引き渡す( S 1 3 3 )。 逆に、 夕一ゲッ ト未検知または夕ーゲッ 卜の位置が自車線正面位置にな い場合は本処理ルーチンを中止する ( S 1 3 7 ) 。  FIG. 11 shows a flowchart of this embodiment. First, it is determined whether the first radar 3a has detected the target (s131). Here, when the target is detected, it is determined whether or not the position is in front of the own lane (S132). If the target position is in front of the own lane, the target information is passed from the first radar 3a to the fine beam radar 3c (S133). Conversely, if no evening is detected or the evening is not at the front of the own lane, the processing routine is stopped (S137).
次に、 細ビームレーダ 3 cは上記受け取ったターゲッ ト情報から、 夕 —ゲッ トの予測位置を推定する (S 1 3 4 ) 。 また、 予測位置の周辺に おいて、 細ビームレーダ 3 cが夕ーゲッ トを検知できているかを判定す る ( S 1 3 5 ) 。  Next, the fine beam radar 3c estimates a predicted position of the evening target from the received target information (S134). In addition, it is determined whether or not the fine beam radar 3c can detect the evening target around the predicted position (S135).
ここで検知しなかった場合、 第 1 レーダ 3 aで検出した自車線正面位 置にあるターゲッ トを誤検知としてキヤンセルする ( S 1 3 6 ) 。 逆に 検知した場合は、 第 1 レーダ 3 aでの検出データをそのまま外部への出 力する ( S 1 3 7 ) 。  If no target is detected here, the target detected by the first radar 3a and located in front of the own lane is canceled as an erroneous detection (S136). On the other hand, if it is detected, the data detected by the first radar 3a is output to the outside as it is (S137).
第 1 1図のように、 自車両 1の両隣の車線に車両が並んで停止してい るような場合には、 第 1 レーダのみでは二つの車両がつながって自車線 を塞いでいるように検出される場合があるが、 これに対して本実施例に よれば、 細ビームレーダ 3 cによって自車線前方には障害物がないこと を検知できるので、 車間距離制御において先行車が無い場合にもかかわ らず減速が発生したり、 衝突低減制御が動作したりすることを防止し、 左右の車両の間をすり抜けることが可能となる。 5 As shown in Fig. 11, when vehicles stop side by side in the lane on both sides of own vehicle 1 as in Fig. 11, only the first radar detects that two vehicles are connected to block the own lane. On the other hand, according to this embodiment, the narrow beam radar 3c can detect that there is no obstacle ahead of the own lane. Regardless, deceleration does not occur and the collision reduction control is not activated, and it is possible to pass between the left and right vehicles. Five
第 1 2図に第 2 レーダを複数設けた複合レーダの実施例を示す。 この 実施例においても、 各レーダの検知範囲 5 1, 5 2, 5 3 , 5 4, 5 5 の間で、 第 6図, 第 8図に示す実施例と同様に、 情報 (距離, 相対速度, 相対加速度など) の引き渡しをすることによって、 ターゲッ トが一つの レーダの検知範囲を出て、 次のレーダの検知範囲に入る際のフィル夕判 定遅れを最小 0まで短縮し、 ターゲッ トを早めに検出することが可能に なる。 FIG. 12 shows an embodiment of a composite radar having a plurality of second radars. In this embodiment as well, information (distance, relative speed) between the detection ranges 51, 52, 53, 54, 55 of the radars, as in the embodiment shown in FIGS. , Relative acceleration, etc.), the target will leave the detection range of one radar and reduce the delay in determining the fill time when entering the detection range of the next radar to a minimum of 0. This allows early detection.
最後に本発明の実施例を列挙する。  Finally, examples of the present invention will be listed.
ターゲッ トとの縦距離, 横位置または方位角度及び相対速度のうち少 なく とも 1つを検出できる複合レーダ装置において、 少なくとも送受信 が独立する第 1 レーダ (ここでは長距離または中距離用ミリ波レーダ) と、 第 2 レーダ (ここでは集積化した近距離レーダ) とを有し、 前記第 1 レーダと第 2 レーダとを同時に同じ方向へ照射して障害物を検知する。 上記において、 検知対象物との距離が前記第 1 レーダの捕捉範囲外に なった場合、 該レーダで検知した対象物との距離または相対速度の少な く とも一つを前記複数の第 2 レーダに受け渡し、 第 2 レーダは当該対象 物予測位置の周辺に接近物があるとして、 他の対象物より優先的に捕捉 するように処理することができる。  In a composite radar system that can detect at least one of the vertical distance, horizontal position, azimuth angle, and relative speed with the target, at least the first radar (in this case, a long-range or medium-range millimeter-wave radar) ) And a second radar (here, an integrated short-range radar), and irradiates the first radar and the second radar simultaneously in the same direction to detect an obstacle. In the above, when the distance to the detection target is out of the capture range of the first radar, at least one of the distance or the relative speed to the target detected by the radar is assigned to the plurality of second radars. The second radar is able to process it so that there is an approaching object near the predicted position of the target object, and the second radar captures it in preference to other target objects.
また、 検知対象物との距離が前記第 1 レーダの捕捉範囲外から捕捉範 囲内になった場合、 前記第 2 レーダで検知した対象物との距離または相 対速度の少なく とも一つを前記第 1 レーダに受け渡し、 第 1 レーダは当 該対象物位置の周辺に接近物があるとして、 他の対象物より優先的に捕 捉するように処理することもできる。  Further, when the distance to the detection target is within the capture range from outside the capture range of the first radar, at least one of the distance or the relative speed to the target detected by the second radar is set to the first radar. It can be passed to one radar, and the first radar can treat it as if there is an approaching object around the target object and preferentially catch it over other objects.
また第 2 レーダは、 第 1 レーダと異なる電波方式での送受信を行い、 障害物を検知する構成としても良く、 第 1 レーダと異なる電波ビーム幅 での送受信を行う構成としても良い。 産業上の利用可能性 The second radar may be configured to transmit and receive signals using a different radio wave method than the first radar and detect obstacles. It is also possible to adopt a configuration in which transmission / reception is performed in the communication. Industrial applicability
本発明の複合レーダによれば、 複数の検知範囲を同時に用いることが 出来、 検知性能に対する天候の影響も小さくなる。 また本発明の信号処 理方法によれば、 複数の検知範囲間をターゲッ トが移動する場合の検知 応答性及び検知精度が向上される。  According to the composite radar of the present invention, a plurality of detection ranges can be used simultaneously, and the influence of weather on detection performance is reduced. Further, according to the signal processing method of the present invention, detection responsiveness and detection accuracy when a target moves between a plurality of detection ranges are improved.

Claims

7 請 求 の 範 囲 7 Scope of Claim
1 . 前方に電波を照射して反射波を受信することにより、 少なく とも夕 ーゲッ トとの相対速度又は夕ーゲッ 卜の位置を検出する第 1 レーダと、 該第 1 レーダとは検知範囲が異なる第 2 レーダとを備え、  1. The first radar, which detects at least the relative speed with respect to the evening target or the position of the evening target by irradiating the radio wave forward and receiving the reflected wave, has a different detection range from the first radar. With a second radar,
前記第 1 レーダと前記第 2 レーダとを同じ方向に向けて取り付け、 前 記第 1および第 2のレーダで常時夕一ゲッ トの検知を行うことを特徴と する複合レーダ装置。  A composite radar apparatus, wherein the first radar and the second radar are mounted in the same direction, and the first and second radars always detect an overnight get.
2 . 請求項 1 において、 2. In Claim 1,
前記第 2 レーダは、 前記第 1 レーダよりも検知角度が広いことを特徴 とする複合レーダ装置。  The composite radar device, wherein the second radar has a wider detection angle than the first radar.
3 . 請求項 2において、 3. In Claim 2,
前記第 2 レーダは、 前記第 1 レーダよりも最大検知距離が短いことを 特徴とする複合レーダ装置。  The composite radar device, wherein the second radar has a shorter maximum detection distance than the first radar.
4 . 請求項 1 において、  4. In claim 1,
前記第 2 レーダを、 前記第 1 レーダの基板上に一体に設けたことを特 徴とする複合レーダ装置。  A composite radar device, wherein the second radar is provided integrally on a substrate of the first radar.
5 . 請求項 1 において、  5. In Claim 1,
前記第 1 レーダ及び前記第 2 レーダは、 検知した情報が誤検知か否か を判定する手段と、  Means for determining whether the detected information is erroneous detection, the first radar and the second radar,
前記第 1 レーダと前記第 2 レーダとの間で、 ターゲッ トの検知情報を 引き渡す手段と、 を有することを特徴とする複合レーダ装置。  Means for delivering target detection information between the first radar and the second radar.
6 . 請求項 5において、  6. In Claim 5,
前記第 1 レーダが夕ーゲッ トを検知している状況において、  In the situation where the first radar is detecting the evening target,
前記ターゲッ 卜が前記第 1 レーダの検知範囲外に出たときは、 その直前の前記ターゲッ トの検知情報を前記第 2 レーダに引き渡すこ とを特徴とする複合レーダ装置。 When the target goes out of the detection range of the first radar, the detection information of the target immediately before the target is transferred to the second radar. A composite radar device characterized by the following.
7 . 請求項 5において、  7. In Claim 5,
レーダ外部から、 少なく とも自車速を含む車両情報を取り込む車両情 報入力部を備え、  Equipped with a vehicle information input unit that captures at least vehicle information including the vehicle speed from outside the radar,
前記第 2 レーダは、 前記引き渡された検知情報と、 前記車両情報とに 基づいて、 前記ターゲッ トの移動経路を予測する手段を備えることを特 徵とする複合レーダ装置。  The composite radar device, characterized in that the second radar includes means for predicting a movement route of the target based on the delivered detection information and the vehicle information.
8 . 請求項 5において、  8. In Claim 5,
前記第 2 レーダは、 検知した前記ターゲッ トの位置と、 前記予測した 夕ーゲッ 卜の進入位置とを比較する手段を備えることを特徴とする複合 レーダ装置。  The composite radar device, wherein the second radar includes means for comparing the detected position of the target with the predicted entry position of the evening target.
9 . 請求項 1 において、  9. In claim 1,
前記第 2 レーダは、 最大検知距離が前記第 1 レーダと略同一であり、 検知角度が前記第 1 レーダよりも小さいことを特徴とする複合レーダ装 置。  The composite radar device, wherein the second radar has a maximum detection distance substantially equal to that of the first radar, and a detection angle is smaller than that of the first radar.
1 0 . 請求項 1 において、  10. In claim 1,
前記第 2 レーダは、 誘電体レンズを備え、  The second radar includes a dielectric lens,
送信信号を収束して放射することを特徴とする複合レーダ装置。  A composite radar device which converges and radiates a transmission signal.
1 1 . 請求項 1において、  1 1. In claim 1,
前記第 1 レーダは 2周波 C Wミリ波レーダであり、 第 2 レーダは FMCW ミ リ波レーダであることを特徴とする複合レーダ装置。  The composite radar device, wherein the first radar is a dual-frequency CW millimeter-wave radar, and the second radar is an FMCW millimeter-wave radar.
1 2 . 前方に電波を照射して反射波を受信することにより、 少なく とも 夕ーゲッ トとの相対速度又は夕一ゲッ 卜の位置を検出する第 1 レーダと、 最大検知距離が前記第 1 レーダと略同一であり、 検知角度が前記第 1 レーダよりも小さい第 2 レーダとを備えた複合レーダを有し、 前記複合レーダによって検出されるターゲッ 卜との距離または相対速 度に基づいて車両を制御する運転支援装置において、 1 2. The first radar that detects at least the relative speed with respect to the evening target or the position of the evening gate by irradiating the radio wave in front and receiving the reflected wave, and the maximum radar distance is the first radar. And a composite radar including a second radar having a detection angle smaller than the first radar, A driving assistance device that controls a vehicle based on a distance or a relative speed to a target detected by the composite radar,
前記第 1 レーダが自車線上にターゲッ トを検出した場合であって、 前 記第 2 レーダが、 前記第 1 レーダがターゲッ トを検出した位置に夕一ゲ ッ トを検出しないときは、 自車線上に夕ーゲッ トは検知されていないも のとして車両を制御することを特徴とする運転支援装置。  If the first radar detects a target on its own lane and the second radar does not detect a target at the position where the first radar detects the target, A driving assistance device that controls a vehicle as if no evening target was detected on the lane.
1 3 . 第 1のレーダにより車両前方に検知範囲を形成し、  1 3. A detection range is formed in front of the vehicle by the first radar,
第 2のレーダにより該第 1 レーダとは異なる検知範囲を形成し、 前記第 1及び第 2のレーダで常時夕一ゲッ トの検知を行い、  The second radar forms a detection range different from that of the first radar, and the first and second radars always perform a one-night detection, and
夕ーゲッ 卜が前記第 1のレーダの検知範囲から外に出たときは、 その 直前の前記ターゲッ トの検知情報を前記第 1のレーダから前記第 2のレ ーダに引き渡すことを特徴とするレーダ装置の信号処理方法。  When the target goes out of the detection range of the first radar, the detection information of the target immediately before the target is delivered from the first radar to the second radar. A signal processing method for a radar device.
1 4 . 請求項 1 3において、  1 4. In claim 13,
ターゲッ トが前記第 1のレーダの検知範囲から外に出たときは、 その 直前の前記ターゲッ トの検知情報を前記第 1のレーダから前記第 2のレ ーダに引き渡し、  When the target goes out of the detection range of the first radar, the detection information of the target immediately before the target is delivered from the first radar to the second radar,
引き渡された前記夕ーゲッ トの検知情報に基づいてターゲッ 卜の移動 軌跡を予測することを特徴とするレーダ装置の信号処理方法。  A signal processing method for a radar device, wherein a movement trajectory of a target is predicted based on the passed-in evening detection information.
1 5 . 請求項 1 3において、  1 5. In claim 13,
ターゲッ 卜が前記第 1のレーダの検知範囲から外に出たときは、 その直前の前記ターゲッ トの検知情報を前記第 1のレーダから前記第 When the target goes out of the detection range of the first radar, the detection information of the target immediately before the target is transmitted from the first radar to the second radar.
2のレーダに引き渡し、 Hand over to radar 2
レーダ外部から、 少なく とも自車速が含まれた車両情報を取り込み、 前記引き渡された検知情報と前記車両情報とに基づいて、 前記ターゲ ッ 卜が前記第 2 レーダの検知範囲に進入する位置を予測することを特徴 とするレーダ装置の信号処理方法。 Vehicle information including at least the own vehicle speed is taken in from outside the radar, and a position at which the target enters the detection range of the second radar is predicted based on the delivered detection information and the vehicle information. Features to do A signal processing method for a radar device.
1 6 . 請求項 1 5において、 1 6. In claim 15,
前記第 2のレーダが夕ーゲッ トを検知したときは、  When the second radar detects the evening target,
検知した前記夕一ゲッ トの位置と、 前記予測した夕ーゲッ トの進入位 置とを比較し、 一致するときは、 該検知結果をレーダ外部に出力するこ とを特徴とする複合レーダの信号処理方法。  A signal of the composite radar, wherein the detected position of the evening target is compared with the predicted entrance position of the evening target, and when they match, the detection result is output to the outside of the radar. Processing method.
PCT/JP2003/016969 2003-12-26 2003-12-26 Vehicle mounted radar system and its signal processing method WO2005066656A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005513101A JPWO2005066656A1 (en) 2003-12-26 2003-12-26 In-vehicle radar device and signal processing method thereof
PCT/JP2003/016969 WO2005066656A1 (en) 2003-12-26 2003-12-26 Vehicle mounted radar system and its signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/016969 WO2005066656A1 (en) 2003-12-26 2003-12-26 Vehicle mounted radar system and its signal processing method

Publications (1)

Publication Number Publication Date
WO2005066656A1 true WO2005066656A1 (en) 2005-07-21

Family

ID=34746773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016969 WO2005066656A1 (en) 2003-12-26 2003-12-26 Vehicle mounted radar system and its signal processing method

Country Status (2)

Country Link
JP (1) JPWO2005066656A1 (en)
WO (1) WO2005066656A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286034A (en) * 2006-03-23 2007-11-01 Omron Corp Radio detector and method
JP2007286033A (en) * 2006-03-23 2007-11-01 Omron Corp Radio detector and method
JP2008116357A (en) * 2006-11-06 2008-05-22 Toyota Motor Corp Object detector
JP2008215937A (en) * 2007-03-01 2008-09-18 Furukawa Electric Co Ltd:The Combined mode radar system
JP2008249399A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Complex mode radar device
JP2009198402A (en) * 2008-02-22 2009-09-03 Toyota Motor Corp Impact detection device
JP2010038888A (en) * 2008-08-08 2010-02-18 Toyota Motor Corp Object detecting device
JP2010096680A (en) * 2008-10-17 2010-04-30 Toyota Motor Corp Aiming method of radio-wave-type object detector
JP2015028440A (en) * 2013-07-30 2015-02-12 富士通テン株式会社 Radar device and signal processing method
JP2015532712A (en) * 2012-08-25 2015-11-12 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Improved operating method of ultrasonic sensor, driver assistance device and automobile
JP2016205953A (en) * 2015-04-21 2016-12-08 日産自動車株式会社 Object detection device and object detection method
CN109690349A (en) * 2016-09-15 2019-04-26 株式会社小糸制作所 Sensing system
JP2020038638A (en) * 2018-08-31 2020-03-12 バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド Intelligent roadside unit
CN112859008A (en) * 2021-01-19 2021-05-28 英博超算(南京)科技有限公司 Performance improving method for forward millimeter wave radar
KR20220101542A (en) * 2021-01-11 2022-07-19 모본주식회사 Integrable/detachable camera and radar sensor system and error compensation method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6681682B2 (en) * 2015-08-19 2020-04-15 株式会社日立製作所 Mobile object measuring system and mobile object measuring method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325149A (en) * 1994-05-31 1995-12-12 Hitachi Ltd Radar employing spread spectrum technology
JPH1027299A (en) * 1996-07-08 1998-01-27 Matsushita Electric Ind Co Ltd On-vehicle radar device
EP0867972A1 (en) * 1997-03-27 1998-09-30 Denso Corporation Aperture antenna and radar system using same
JPH11353599A (en) * 1998-06-05 1999-12-24 Toyota Motor Corp Vehicle running support device
JP2001242242A (en) * 2000-02-29 2001-09-07 Hitachi Ltd Millimeter-wave radar device with function for improving detecting performance
WO2002014898A2 (en) * 2000-08-16 2002-02-21 Raytheon Company Near object detection system
JP2002131425A (en) * 2000-10-26 2002-05-09 Matsushita Electric Works Ltd Radar device, on-board radar device, and collision preventing system
JP2003315452A (en) * 2002-04-24 2003-11-06 Hitachi Ltd Radar apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325149A (en) * 1994-05-31 1995-12-12 Hitachi Ltd Radar employing spread spectrum technology
JPH1027299A (en) * 1996-07-08 1998-01-27 Matsushita Electric Ind Co Ltd On-vehicle radar device
EP0867972A1 (en) * 1997-03-27 1998-09-30 Denso Corporation Aperture antenna and radar system using same
JPH11353599A (en) * 1998-06-05 1999-12-24 Toyota Motor Corp Vehicle running support device
JP2001242242A (en) * 2000-02-29 2001-09-07 Hitachi Ltd Millimeter-wave radar device with function for improving detecting performance
WO2002014898A2 (en) * 2000-08-16 2002-02-21 Raytheon Company Near object detection system
JP2002131425A (en) * 2000-10-26 2002-05-09 Matsushita Electric Works Ltd Radar device, on-board radar device, and collision preventing system
JP2003315452A (en) * 2002-04-24 2003-11-06 Hitachi Ltd Radar apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286033A (en) * 2006-03-23 2007-11-01 Omron Corp Radio detector and method
JP2007286034A (en) * 2006-03-23 2007-11-01 Omron Corp Radio detector and method
JP2008116357A (en) * 2006-11-06 2008-05-22 Toyota Motor Corp Object detector
JP2008215937A (en) * 2007-03-01 2008-09-18 Furukawa Electric Co Ltd:The Combined mode radar system
JP2008249399A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Complex mode radar device
JP2009198402A (en) * 2008-02-22 2009-09-03 Toyota Motor Corp Impact detection device
JP2010038888A (en) * 2008-08-08 2010-02-18 Toyota Motor Corp Object detecting device
JP2010096680A (en) * 2008-10-17 2010-04-30 Toyota Motor Corp Aiming method of radio-wave-type object detector
JP2015532712A (en) * 2012-08-25 2015-11-12 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー Improved operating method of ultrasonic sensor, driver assistance device and automobile
US9581694B2 (en) 2012-08-25 2017-02-28 Valeo Schalter Und Sensoren Gmbh Method for the improved actuation of ultrasonic sensors, driver assistance device and motor vehicle
US9709665B2 (en) 2013-07-30 2017-07-18 Fujitsu Ten Limited Radar apparatus and signal processing method
JP2015028440A (en) * 2013-07-30 2015-02-12 富士通テン株式会社 Radar device and signal processing method
JP2016205953A (en) * 2015-04-21 2016-12-08 日産自動車株式会社 Object detection device and object detection method
CN109690349A (en) * 2016-09-15 2019-04-26 株式会社小糸制作所 Sensing system
CN109690349B (en) * 2016-09-15 2023-10-31 株式会社小糸制作所 sensor system
JP2020038638A (en) * 2018-08-31 2020-03-12 バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド Intelligent roadside unit
US11099272B2 (en) 2018-08-31 2021-08-24 Beijing Online Network Technology (Beijing) Co., Ltd. Intelligent roadside unit
KR20220101542A (en) * 2021-01-11 2022-07-19 모본주식회사 Integrable/detachable camera and radar sensor system and error compensation method of the same
KR102529475B1 (en) * 2021-01-11 2023-05-08 모본주식회사 Integrable/detachable camera and radar sensor system and error compensation method of the same
CN112859008A (en) * 2021-01-19 2021-05-28 英博超算(南京)科技有限公司 Performance improving method for forward millimeter wave radar

Also Published As

Publication number Publication date
JPWO2005066656A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
US7786926B2 (en) Radar system for motor vehicles
US8976058B2 (en) Vechicle-mounted radar apparatus
US9260115B2 (en) Vehicle control apparatus
JP4043276B2 (en) Radar equipment
US9618608B2 (en) Target detection apparatus and vehicle control system
US10451724B2 (en) Radar apparatus
US9134409B2 (en) Vehicle-mounted radar apparatus
US9260114B2 (en) Vehicle control apparatus
US20160009284A1 (en) Vehicle control apparatus
US9266534B2 (en) Vehicle control apparatus
US10768293B2 (en) Object detecting apparatus using reflection point information of object
US9868441B2 (en) Vehicle control apparatus
WO2005066656A1 (en) Vehicle mounted radar system and its signal processing method
JP2001242242A (en) Millimeter-wave radar device with function for improving detecting performance
EP1548458A2 (en) Vehicle-mounted radar
US20140350815A1 (en) Vehicle controller, method for controlling vehicle, and computer readable storage medium
US10473760B2 (en) Radar device and vertical axis-misalignment detecting method
JP2001124848A (en) Millimeter wave radar system
JPH11198678A (en) Travel control device for vehicle
US9709665B2 (en) Radar apparatus and signal processing method
US6834231B2 (en) Vehicle travel control system
JP2005049281A (en) Method and device for recognizing object
EP2100164A2 (en) Surroundings monitoring apparatus
JP2009058316A (en) Radar device, object detection method, and vehicle
JP2010181257A (en) Obstacle detector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513101

Country of ref document: JP

122 Ep: pct application non-entry in european phase