WO2005064176A1 - Sliding frictional resistance mechanism and sliding frictional resistance mechanism with mechanical brake mechanism - Google Patents

Sliding frictional resistance mechanism and sliding frictional resistance mechanism with mechanical brake mechanism Download PDF

Info

Publication number
WO2005064176A1
WO2005064176A1 PCT/JP2004/019801 JP2004019801W WO2005064176A1 WO 2005064176 A1 WO2005064176 A1 WO 2005064176A1 JP 2004019801 W JP2004019801 W JP 2004019801W WO 2005064176 A1 WO2005064176 A1 WO 2005064176A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
sliding friction
side rotating
friction resistance
driving
Prior art date
Application number
PCT/JP2004/019801
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Yoshida
Kazumitsu Ishikawa
Original Assignee
Kito Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kito Corporation filed Critical Kito Corporation
Publication of WO2005064176A1 publication Critical patent/WO2005064176A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/54Safety gear
    • B66D1/58Safety gear responsive to excess of load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/02Automatic clutches actuated entirely mechanically
    • F16D43/20Automatic clutches actuated entirely mechanically controlled by torque, e.g. overload-release clutches, slip-clutches with means by which torque varies the clutching pressure
    • F16D43/21Automatic clutches actuated entirely mechanically controlled by torque, e.g. overload-release clutches, slip-clutches with means by which torque varies the clutching pressure with friction members
    • F16D43/213Automatic clutches actuated entirely mechanically controlled by torque, e.g. overload-release clutches, slip-clutches with means by which torque varies the clutching pressure with friction members with axially applied torque-limiting friction surfaces
    • F16D43/215Automatic clutches actuated entirely mechanically controlled by torque, e.g. overload-release clutches, slip-clutches with means by which torque varies the clutching pressure with friction members with axially applied torque-limiting friction surfaces with flat friction surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D7/00Slip couplings, e.g. slipping on overload, for absorbing shock
    • F16D7/02Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type
    • F16D7/024Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type with axially applied torque limiting friction surfaces
    • F16D7/025Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type with axially applied torque limiting friction surfaces with flat clutching surfaces, e.g. discs

Definitions

  • the present invention is intended to reduce slip friction resistance rotation while maintaining a predetermined range of slip friction resistance when a load such as a load exceeding the upper limit load (sliding friction resistance value) of an unloading device is applied.
  • the present invention relates to a sliding friction resistance mechanism and a sliding friction resistance mechanism with a mechanical brake mechanism for protecting a device by preventing a load greater than an upper limit use load from being applied to a driving unit or the like and preventing a danger of falling of a load.
  • the sliding friction resistance mechanism of the conventional unloading device consists of a metal support plate directly connected to the drive side or the load side, and the metal support plate is urged and pressed by a countersunk blade to apply the driving force of the drive unit to the load side (the unloading side). ), And when a load exceeding the upper limit of use load is applied, prevent the load above the upper limit use load from being applied to the drive side by rotating the slip friction resistance while maintaining the slip friction resistance value within the specified range. And a friction material pressing portion directly connected to the load side or the drive side, which is provided with a sliding friction resistance material that is in contact with a metal support plate for performing the sliding operation.
  • the sliding friction resistance material is formed by heating and pressing with a mixture of a paper member and a synthetic resin member, and is formed by heating and pressing with a mixture of a metal particle material and a metal powder material and a synthetic resin member.
  • a heat-resistant fiber woven material mixed with a synthetic resin member or impregnated with a heat-pressed fiber is used.
  • a wet type in which oil is interposed between the sliding friction resistance material and the metal support plate is used to improve the wear resistance of the friction resistance material and to improve the cooling to prevent seizure.
  • the prior art has the following disadvantages.
  • the increase in sliding frictional resistance is due to the increased viscosity of the oil at low temperatures, resulting in an increase in sliding frictional resistance.
  • Such a change in the sliding friction resistance due to a change in the viscosity of the oil is caused by the conventional contact between the sliding friction resistance material and the metal support plate on a wide surface.
  • a wide oil thin film layer is formed and the intervening state is always maintained, and especially in a state where the oil viscosity is high in a low temperature environment, the sliding friction resistance value is significantly increased.
  • the sliding friction resistance mechanism does not cause slip rotation during normal use and slides at a low speed while maintaining the sliding friction resistance value only when a load exceeding the upper limit load is applied. Due to the frictional resistance rotation, the roll in the low temperature region functions mainly as a resistance enhancing material, not as a cooling or sliding material. In addition, such a change in the sliding friction resistance value due to temperature is mainly caused by a change in the viscosity of the oil.In addition to this, the sliding friction resistance material itself becomes hard or soft due to the temperature change. However, the factors such as the change of the urging force of the countersunk blade due to the temperature drop are also considered, so there is a drawback that the sliding friction resistance value changes due to the temperature change even in the dry type without oil.
  • the lifting mechanism is equipped with a brake mechanism that operates such that a load, such as a suspended load, descends while applying a brake in accordance with the load by alternating the loosening and tightening of screws (hereinafter referred to as “mechanical brake”).
  • a brake mechanism that operates such that a load, such as a suspended load, descends while applying a brake in accordance with the load by alternating the loosening and tightening of screws (hereinafter referred to as “mechanical brake”).
  • the sliding frictional resistance mechanism when the sliding frictional resistance mechanism is operated in a cold state such as at 120 ° C, the frictional resistance becomes extremely large, so the torque (initial peak) required for the initial torque double slipping out is remarkable. growing. For this reason, the screws of the brake mechanism are strongly tightened, and there is a danger that the screw opening torque will exceed the slip torque of the sliding friction resistance mechanism. There is a problem that the unwinding operation becomes impossible.
  • Power can be 1 ton (rated load).
  • the braking force is reduced by about 10% to 20% compared to the case where the frictional characteristics at room temperature is considered. There was a drawback that it would.
  • the present invention has been made in view of the above-described drawbacks of the related art, and has as its object to provide a sliding friction resistance mechanism that has less change in sliding friction resistance value even with a change in temperature and has higher reliability and higher safety.
  • Another object of the present invention is to provide a mechanical brake operation that realizes a mechanical brake operation that operates safely at substantially the same braking force as at room temperature even in a cold state without lowering the braking force in a cold state.
  • the purpose is to provide a sliding friction resistance mechanism.
  • the present invention has the following configuration.
  • a driving-side rotating unit that is connected to the driving side and rotates by the driving force of the driving side; a load-side rotating unit that receives a load such as a load; and a load-side rotating unit or the driving-side rotating unit.
  • a sliding friction resistance material having a multi-line contact surface in contact with the load-side rotating portion or the driving-side rotating portion; and applying the sliding friction-resistant material to the load-side rotating portion or the driving-side rotating portion.
  • a pressing urging means for constantly pressing with a urging force to any one of the above.
  • the line contact portion comes into pressure contact with the drive side rotating portion or the load side rotating portion. In this state, an oil film is difficult to be formed at the line contact portion, and the line contact portion constitutes a sliding friction resistance mechanism which is a thin line portion.
  • a driving-side rotating unit that is connected to the driving side and rotates by the driving force of the driving side; a load-side rotating unit that receives a load such as a load; and a friction material provided on the load-side rotating unit or the driving-side rotating unit.
  • a sliding friction resistance material comprising: a pressing biasing means for constantly pressing the sliding friction resistance material against either the load-side rotating portion or the driving-side rotating portion by a biasing force; and the pressing biasing device.
  • the thermal expansion coefficient increases when the temperature rises and decreases when the temperature decreases.
  • sliding friction with the biasing force adjusting means consisting of parts and shape memory parts It constitutes a resistance mechanism.
  • a driving-side rotating portion that is connected to the driving side and rotates by the driving force of the driving side; and whether a load such as a load is applied.3 ⁇ 4
  • a sliding friction resistance material made of a material; pressing biasing means for constantly pressing the sliding friction resistance material against the load-side rotating portion or the driving-side rotating portion by a biasing force;
  • the sliding friction resistance mechanism is composed of the heating means for raising the temperature of the lowered oil.
  • the sliding frictional resistance material is fixed to the load-side rotating part side in the configuration according to any one of claims 1, 2, 3, and 4, and the sliding frictional surface of the sliding frictional resistance material and the driving-side rotating part are fixed. And a sliding friction contact mechanism, wherein a cooling action by the driving-side rotating section directly acts on the sliding friction surface of the sliding friction resistance material to constitute a sliding friction resistance mechanism.
  • FIG. 1 is a cross-sectional view of the configuration of a lifting device having a sliding friction resistance mechanism according to a first preferred embodiment of the present invention. _
  • FIG. 3 is a partially enlarged sectional view of the set state of FIG.
  • Fig. 4 is a comparison graph with the conventional technology.
  • FIG. 5 is a front view and a partially enlarged view in which a sliding friction resistance material according to a second preferred embodiment of the present invention is provided on a thin metal receiver.
  • FIG. 6 is a partially enlarged sectional view of the set state of FIG.
  • FIG. 7 is a surface view of a sliding friction resistance material according to a third preferred embodiment of the present invention.
  • FIG. 8 is a front view and a partially enlarged view of a thin metal receiver provided with a sliding friction resistance material according to a fourth embodiment of the present invention.
  • FIG. 9 is a partially enlarged sectional view of a fifth preferred embodiment of the present invention.
  • FIG. 10 is an operation diagram of a sliding friction resistance mechanism according to a sixth preferred embodiment of the present invention.
  • FIG. 11 is an operation diagram of a sliding friction resistance mechanism according to a seventh preferred embodiment of the present invention.
  • FIG. 12 is a graph comparing the slip torque of the prior art of the first preferred embodiment of the present invention.
  • FIG. 13 is a sectional view of the configuration of an unloading device according to an eighth embodiment of the present invention.
  • 1 is a discharge device
  • the discharge device 1 is a driving unit 2 such as a motor.
  • a rotating shaft 6 passing through the sliding friction resistance mechanism 5 a small gear portion 7 formed on the rotating shaft 6, and a free shaft 3 on the rotating shaft 3 rotated by the small gear portion 7.
  • one of the load gears 8 It comprises a load sheave 10 which is integrated and winds up a discharge chain 9 provided on the rotating shaft 3.
  • the sliding friction resistance mechanism unit 5 is a large gear that matches the small gear unit 4 on the driving side, and is integrally formed with the driving shaft rotating unit 11 that is rotatably supported by the rotating shaft 6 and the rotating shaft 6.
  • the load-side rotating part 14 which is provided so as to hold the drive-side rotating part 11 1 and sandwiches the load-bearing parts 12, 13, and is attached to the receiving parts 12, 13
  • the three sliding friction resistance members 15 a, 15 b, and 15 c each having a substantially banana-shaped contact surface in contact with the drive-side rotating portion 11 1, which has a multi-line contact form, are provided.
  • Pressing and urging means 16 a composed of a coned disk spring-type ring panel, etc., for constantly urging the frictional resistance material 15 a, 15 b; 15 c against the driving-side rotating portion 11 by the urging force. , 16b. '
  • the sliding friction resistance material 15a, 15b, and 15c are adhered to a thin metal tray 18 blasted on both sides, and the thin metal tray 18 is attached to the load-side rotating part 14 with an adhesive 2 5 It is fixed by bonding.
  • the urging means supporting brackets 17a and 17b are metal fittings for supporting the urging means 16a and 16b with a predetermined urging force.
  • the sliding friction resistance members 15a, 15b, and 15c whose contact surfaces are in a multi-line contact form are as follows in more detail.
  • thermosetting resin 23 is applied to the back side of the carbon fiber cloth cloth 2 2 and heated and pressed to form a carbon fiber friction material sheet in which carbon fibers are exposed on the surface to form fine linear irregularities. It is formed and cut into a predetermined banana form to form sliding friction resistance materials 15a, 15b and 15c.
  • the oil film is finely cut and has an action in a narrow range of line contact, so that the effect of oil viscosity change due to temperature change can be reduced.
  • a high-grade sliding friction resistance mechanism that is hardly affected by the resistance enhancing function of oil that has become highly viscous in the temperature range is realized.
  • the line contacting part functions as an oil removal part, and the removed oil mainly stays in the recess between the line contacting parts, and the oil film at the line contacting part becomes thin.
  • the oil film at the line abutment area thereby increasing the number of direct contact areas with the drive-side rotating part or the load-side rotating part, resulting in a highly viscous oil. / High quality sliding friction resistance mechanism is realized.
  • the experimental example shown in FIG. 4 will be described.
  • the frictional resistance material is a carbon fiber friction material in a lattice-like woven form in which a contact surface formed by weaving a group of warp yarns and a group of weft yarns in which a large number of ultra-fine carbon fibers are tangently arranged exposes fiber forms and forms irregularities.
  • the apex of each of the weft group and warp group (yarn diameter: 7 ⁇ ) of the carbon fiber friction material does not collapse or lose its shape even in the state of sliding friction resistance under an urging pressure. Re, a line contact portion of strength.
  • the experimental model is a 100 kg electric chain block (chain hoisting type lifting device).
  • the sliding friction resistance material sample is as follows.
  • the load at which the sliding friction resistance rotation occurs is as follows. (Usable load at normal temperature (20 degrees to 30 degrees) 150 kg)
  • the technology of the present invention has a difference of 50 kilograms at low temperatures, whereas the conventional technology has a weight of 200 kilograms.
  • the technology of the present invention achieves a significant improvement in the low temperature range, and is a high-quality and highly safe device. Is realized.
  • the heating means 29 warms the oil when the temperature detected by the temperature sensor 30 becomes, for example, 0 ° C. or less.
  • the heater equipment can be made small and the cost can be reduced as a whole. If and temperature a biasing force gradually strengthened when the temperature rose biasing means supporting bracket 1 7 a and 1 7 b or either over the v pressing energizing means 1 6 a, 1 6 b is One is below
  • the biasing force adjusting means may be made of a member whose coefficient of thermal expansion is larger than that of the other constituent members.
  • the change in the sliding frictional resistance due to the temperature difference was very large, so that the coefficient of thermal expansion was very large and it was necessary to have a large urging force adjusting means, and the device was large and costly.
  • the use of a sliding friction resistance material in the form of a line abutment, such as 15a made it possible to reduce the change in sliding friction resistance in the low-temperature range from 200 kg to 50 kg in the conventional technology.
  • the use of a sliding friction resistance material 15a in the form of a line abutment has the effect of reducing the size of the biasing force adjusting means.
  • the sliding friction resistance material 15a, 15b, 15c is fixed to the load side rotating part side (receiving plate 12, 13), and the sliding friction resistance material 15a, The sliding friction surfaces of 15b and 15c are brought into sliding friction contact with the driving-side rotating portion 11 and the cooling action of the driving-side rotating portion 11 directly causes the sliding friction resistance material 15a, 15b, A configuration that acts on the sliding friction surface of 15 c,
  • Receiving machine 1 2 and 1 3 Diameter 11 5mm Made of S45C
  • the load side friction structure (invention structure) always shows a value about 130 kgf higher than that of the drive side friction structure (conventional structure). I have.
  • the cooling action of the drive-side rotating part 11 immersed in oil and cooled by the oil is performed via the fixed surface (back side) of the sliding friction resistance material 15a. It acts to cool the sliding friction surface (surface) of the sliding friction resistance material that comes into sliding friction contact with the rotating part (receiving plate 12).
  • the drive-side rotating part has a large volume and a contact-side area
  • the load-side rotating part (receiving plate 12) has a small volume and a contact-side area. Ratio) is higher in the drive-side rotating part, but during sliding friction operation, the friction heats up the load-side rotating part, and the heat is transmitted to the driving-side rotating part through the sliding friction resistance material, which is a heat insulating material. It has a structure and operates at a high temperature with a low temperature drop.
  • the load-side friction structure is a structure in which the contact surface of the cooled drive-side rotating part and the sliding friction surface of the sliding friction resistance material directly contact each other.
  • the frictional heat generated is cooled by oil and is directly cooled by the drive-side rotating section, which has high heat dissipation efficiency. A small sliding friction resistance mechanism is realized.
  • FIGS. 5 to 11 different embodiments for carrying out the present invention shown in FIGS. 5 to 11 will be described. In the description of the different embodiments for carrying out the present invention, the same components as those in the first embodiment for carrying out the present invention are denoted by the same reference numerals, and redundant description will be omitted.
  • thermosetting resin 23 is applied to the back surface of the sliding friction resistance material in a state where the carbon fibers 19 are arranged in one direction in close contact with each other, impregnated, etc., and heated and pressed to form a carbon fiber friction material sheet.
  • a small chip 27 is created by cutting the material sheet, and these small chips 27 are arranged side by side so that the fiber directions are alternated and glued or integrated with a thermosetting resin to make the sliding friction resistance material 28a, 28b , 28 c.
  • the third preferred embodiment for carrying out the present invention shown in Fig. 7 is mainly different from the first preferred embodiment for carrying out the present invention in that a sliding friction resistance material is used.
  • a thermosetting resin 23 is applied to the back surface, impregnated, etc., and heated and pressed to cut the carbon fiber friction material sheet so that the carbon fibers 19 are oriented horizontally. The point lies in that a sliding friction resistance material 30 is formed.
  • the carbon fibers 19 may be oriented vertically or obliquely.
  • the main difference between the fourth preferred embodiment for carrying out the present invention shown in FIG. 8 and the first preferred embodiment for carrying out the present invention is that the sliding friction resistance material is made of carbon. With the fibers 1 9 arranged in one direction and in close contact with each other, a thermosetting resin 23 is applied to the back surface, impregnated, etc., and heated and pressed to cut the carbon fiber friction material sheet so that the carbon fibers 19 are oriented vertically. In that a substantially oval-shaped sliding friction resistance material 32 is formed. .
  • Slip friction resistance material 3 2 A large number of sheets are bonded to a thin metal receiver 18 with carbon fibers 19 in a vertical direction and are fixed by radiation in a radial manner.
  • the main difference between the fifth preferred embodiment for carrying out the present invention shown in FIG. 9 and the first preferred embodiment for carrying out the present invention is that the sliding friction resistance material is made finer.
  • the carbon fiber 34 is impregnated with the thermosetting resin 23, and the contact surface is formed with linear irregularities.
  • a sliding friction resistance material 35 having a contact surface in the form of a number of linear irregularities was formed by heating and pressing with a mold as described above. 36 is the line contact part.
  • the main difference between the sixth preferred embodiment for carrying out the present invention shown in FIG. 10 and the first preferred embodiment for carrying out the present invention is that a sliding friction resistance mechanism is provided.
  • the biasing means of the shape memory alloy body that expands and pushes the biasing force of the biasing means 16a and 16b when the temperature rises increases.
  • the present invention is characterized in that a sliding friction resistance mechanism 40 provided with an urging force adjusting means 39 made of a shape memory alloy body that contracts and weakens when the temperature drops.
  • the urging force adjusting means 39 contracts in the urging direction, expands in the vertical direction, becomes short in the urging direction, and changes shape. Then, the urging force of the pressing urging means 16a and 16b is reduced, and the operation is performed to suppress the rise of the sliding friction resistance value at high temperature. (B in the figure)
  • the urging force adjusting means 38 contracts in the vertical direction, expands in the urging direction, becomes longer, and presses the urging means 16a, 16b. It operates to increase the biasing force and suppress the decrease in sliding friction resistance at high temperatures. (C in the figure)
  • the combination of the sliding friction resistance mechanism 40 and the sliding friction resistance material 15a realizes a highly reliable and high-quality device with less change in the sliding friction resistance value.
  • the main difference between the seventh preferred embodiment for carrying out the present invention shown in FIG. 11 and the first preferred embodiment for carrying out the present invention is a sliding friction resistance mechanism.
  • the biasing means of the shape memory alloy body which expands and pushes up when the temperature rises to the biasing force of the biasing means 16a and 16b. a, 45b, and a sliding friction resistance mechanism provided with biasing force adjusting means 44a, 44b made of a shape memory alloy body that contracts and weakens when the temperature drops. That is, the part 46 is formed.
  • the biasing force adjusting means 44 a contracts in the biasing direction and expands in the vertical direction (B in the figure) to have a shape shorter in the biasing direction.
  • the shape changes and the urging force of the urging means 16a and 16b is weakened, and it becomes even less than 10 degrees
  • the biasing force adjusting means 4 4 b contracts in the biasing direction and expands in the vertical direction (C in the figure), and changes its shape to a shape shorter in the biasing direction.
  • the urging force of the urging means 16a and 16b is reduced to operate to suppress the increase in the sliding friction resistance at low temperatures.
  • the urging force adjusting means 45a contracts in the vertical direction, expands in the urging direction, and becomes longer (D in the figure). , 16 b to increase the urging force, and when the temperature rises to 55 degrees or more, the urging force adjustment means
  • the pushing biasing means 16 a and 16 b are pushed together with the biasing force adjusting means 45 a and It operates to further increase the biasing force and suppress the decrease in sliding friction resistance at high temperatures.
  • a sliding friction resistance material in the form of a line contact such as a sliding friction resistance material 15a
  • the change in the sliding friction resistance value due to temperature can be reduced, so that the change in the pressing force can be reduced. Therefore, it has the effect of realizing the miniaturization of the shape memory alloy.
  • the main difference between the eighth preferred embodiment for carrying out the present invention shown in FIG. 13 and the first preferred embodiment for carrying out the present invention is that the sliding friction resistance mechanism 5
  • the present invention is characterized in that the unloading device 53 is provided with a mechanical friction mechanism having a mechanical friction mechanism 52 with a mechanical brake mechanism in which the mechanical brake mechanism 5 and the mechanical brake mechanism 51 are combined.
  • the shaft 54 is provided with a small gear portion 7 and a male screw portion 55 integrally with the shaft 54.
  • the shaft 54 is screwed with the female threads 61, 62 on the male thread 55 to support
  • the support body 56 includes a body 58, a flange-shaped friction member receiving portion 59 provided integrally with the body 58, and a grooved male screw portion 6 threaded outside the body 58. 0 and a female screw portion 61 threaded inside.
  • a drive-side rotating unit 11 provided with sliding friction resistance materials 15a and 15b is rotatably supported on the body 58 of the support body 56, and a receiving plate is provided next to the drive-side rotating unit 11 1 2 is set so that it can rotate together with the support 5 6 and move in the longitudinal direction of the shaft, and is pressed next to the receiving plate 1 2
  • the urging means 16a is set so as to be movable in the longitudinal direction of the shaft, and a nut 63 screwed into the grooved male screw part 60 is set next to the pressing urging means 16a.
  • the urging force of the urging means 16a by tightening is set to a predetermined strength, and the sliding friction resistance members 15a and 15b are pressed against the sliding friction resistance
  • the sliding friction resistance mechanism 50 is formed by these components. Brake lining 6 4 a, 6 between friction member receiving part 59 and brake receiving board 57
  • a ratchet wheel 65 on which 4b is attached is rotatably provided, and a pawl 66 which is provided on the housing 69 side is provided on a side of the pawl of the ratchet wheel 65, and a mechanical brake machine is provided by these components.
  • Structure 51 is formed.
  • Reference numeral 67 denotes a motor-side brake
  • reference numeral 68 denotes an inverter for controlling the drive unit 2.
  • the sliding friction resistance mechanism 50 is configured such that the drive-side rotating part 11 on which the sliding friction resistance materials 15 a and 15 b are attached is sandwiched and held between the friction material receiving part 59 and the receiving plate 12. I have. Friction material receiving part
  • a ratchet wheel 65 with brake linings 64a and 64b attached is crimped by a male screw part 55 to a brake receiving plate 57 and a friction receiving part 59, all of which are integrated. It works as follows.
  • the pawls 66 and the pawls 65 do not fit together, and the pawls 65 rotate integrally with the brake receiver 57, etc. by the screwing operation of the support 56, and the load is driven by the drive unit 2. It is pulled up by the winding drive force.
  • the pawl 66 is fixed to prevent the pawl gear from rotating when the pawl 66 comes into contact with the ratchet wheel 65, so the shaft 54 rotates tightly due to the load, tightens the brake receiving plate 57, and stops the load with the brake working. And hold. In this stop state, the drive unit 2 stops, and the brake of the motor-side brake 67 is in the dominant state.
  • the load follows the rotation of the pinion 7 and the shaft 54 in the unwinding direction, and the brake lining 6 4 Tighten a, 64b and apply the brake.
  • the operation of loosening the brake and the operation of applying the brake are performed alternately, and the load descends while applying the braking force (friction force by the tightening force) according to the load. .
  • a mechanical friction brake mechanism is attached afterwards, or a sliding friction resistance mechanism is mounted to form a sliding friction resistance mechanism with a mechanical brake mechanism, which is also included in the technical category of the present invention.
  • the drive unit 2 composed of a motor is controlled by the inverter 68
  • the sliding friction resistance mechanism (5, 50) is used, the lowering rotation of the drive unit 2 is performed by the rotation of the drive unit 2 (hereinafter referred to as “drive rotation”
  • the rotation is greater than the driving rotation due to the tensile rotation caused by the load. Therefore, a counter electromotive force is generated in the drive unit 2 by the increased number of rotations.
  • the inverter 68 cannot consume this back electromotive force, and a large resistor must be provided to protect the inverter 68 from the back electromotive force, and therefore the resistor is housed outside the housing.
  • the problem of having to provide a case arises. In order to protect the inverter 68 from this electromotive force, a resistor must be provided to consume the electromotive force.Because this resistor is large, a case must be provided separately in the equipment to enable the resistance. there were.
  • the mechanical brake mechanism 51 since the energy of the electromotive force is consumed mechanically by the braking operation of the mechanical brake mechanism 51, the resistance can be reduced while using the inverter 68, or This realizes a loading device that does not need to be provided.
  • This technical concept is based on an inverter-controlled motor device that is provided with a mechanical rake mechanism that functions to consume an electromotive force generated by the motor rotating at a speed higher than the driving speed of the motor by a load.
  • the effect is that the resistance to protect the inverter from electromotive force can be made smaller or can be omitted.
  • the braking force is reduced due to the large lead angle of the screw, and the energy consumption of the mechanical electromotive force due to the braking operation is also reduced.Therefore, it is necessary to increase the resistance for consuming energy. Was.
  • the braking force is increased due to the small lead angle of the screw, and therefore the mechanical electromotive force generated by the braking action is reduced. Energy consumption also increases, so resistance can not be reduced and energy can be eliminated rather than consuming energy.
  • the contact surface of the sliding friction resistance material has a multi-line contact form, the oil film is finely cut and acts in a narrow range of line contact, and the effect of oil viscosity change due to temperature change is reduced. It is possible to obtain an effect of realizing a high-grade sliding friction resistance mechanism which can be reduced, and is not easily affected by oil which functions as a resistance enhancing material due to a high viscosity state particularly in a low temperature region.
  • the friction-resistant material is a lattice-shaped braided carbon in which the abutting surface formed by weaving the warp group and the weft group formed by arranging a large number of ultrafine carbon fibers is exposed in the form of fibers and forms irregularities.
  • the room temperature (20 degrees to 0 degree) and the maximum use load of 150 kg is At a low temperature of 25 degrees, sliding frictional resistance occurs at 1550 kilograms, and at a high temperature of 60 degrees, sliding frictional resistance occurs at 140 kilograms.
  • the best sliding friction resistance member (C) which is formed by mixing a paper member and a thermosetting resin member and applying heat and pressure, has a room temperature (20 degrees to 30 degrees).
  • the sliding friction resistance rotation occurs at 170 kg at a low temperature of 125 degrees, and the sliding friction at 150 kg at a high temperature of 60 degrees. Resistance rotation occurs.
  • the difference between the present technology and the conventional technology is 50 kilograms at a low temperature of 200 kilograms, and the present invention realizes a significant improvement in the low temperature range, and is a high-quality and highly safe device. It is clear that this is achieved.
  • the oil is heated to reduce the increase in the sliding frictional resistance in the low temperature range, or by adjusting the pressing force of the pressing biasing means with the change in temperature using parts with a high coefficient of thermal expansion.
  • a method to reduce the increase / decrease of the sliding friction resistance due to the change is to use a sliding friction resistance material with the contact surface in the form of a multi-line contact, especially for the sliding friction resistance due to the temperature difference in the low temperature range. Since the change can be reduced, it is possible to obtain the effect of realizing each of the above methods at a small size and at a low cost as compared with the case where the prior art is to be realized.
  • the sliding friction resistance between cold and normal temperature is almost the same, so that it can be almost used in cold to normal temperature without lowering the braking force in cold.
  • the effect of realizing a loading device or the like that safely exerts the same braking force can be obtained.
  • a biasing force adjusting means is provided that increases the biasing force of the pressing biasing means when the temperature rises and weakens it when the temperature falls.
  • a heating means is provided to raise the temperature of the cooled oil, so that the temperature change of the oil can be reduced in low-temperature conditions, such as in cold regions, and as a result, there is little change in the sliding friction resistance.
  • the effect of realizing a high-grade sliding friction resistance mechanism can be obtained.
  • the sliding friction resistance material was fixed to the driving side rotating part.
  • the cooling action of the drive-side rotating part 11 immersed in oil and cooled by the oil is performed via the fixed surface (back side) of the sliding friction resistance material 15a and the load-side rotating part (receiving plate). It acts to cool the sliding friction surface (surface) of the sliding friction resistance material that comes into contact with 12).
  • the drive-side rotating part has a large volume and a contact-side area
  • the load-side rotating part (receiving plate 12) has a small volume and a contact-side area. Ratio) is higher in the drive-side rotating part, but during sliding friction operation, the friction heats the load-side rotating part, and the heat is transmitted to the driving-side rotating part through the sliding friction resistance material, which is heat insulating material. It has a structure and operates at a high temperature, where the temperature is unlikely to drop. ⁇
  • the cooling efficiency of the sliding frictional resistance surface and the contact and reversal of the sliding frictional surface is low as a whole, and it is difficult to cool down.
  • the temperature of the sliding frictional resistance surface increases, and the frictional force decreases. This causes a problem of causing a large decrease in braking force.
  • the structure of the present invention has a structure in which the contact surface of the cooled rotating part on the drive side and the sliding friction surface of the sliding friction resistance material directly contact each other.
  • the frictional heat generated by the operation is cooled by the oil and directly cooled by the drive-side rotating section with high heat dissipation efficiency, so that the sliding frictional resistance operation at a lower temperature than that of the conventional technology can be obtained. This has the effect of realizing a small device with little weakening and low braking force.
  • the sliding friction resistance mechanism according to claims 1 to 4 realizes a sliding resistance that is not different from that at normal temperature (25 degrees) in a cold state such as minus 20 degrees. And a mechanical brake mechanism to form a sliding friction resistance mechanism with a mechanical brake mechanism, so that almost the same braking force can be obtained in cold to normal temperature use without lowering the cold braking force. It is possible to obtain an effect of realizing a safety device and the like that can be exhibited. '' Industrial applicability
  • the sliding friction resistance mechanism and the sliding friction resistance mechanism with a mechanical vibration mechanism according to the present invention are mainly used in the industry of manufacturing unloading devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

A sliding frictional resistance mechanism, wherein the energizing contact of carbon fibers exposed to the contact side on drive part side rotating bodies is the linear pressure contact, i.e., the multiple linear contact of these rotating bodies with the tip parts of the carbon fibers. Since oil film is finely cut out and contact occurs in the small area of line contact, the effect of a change in temperature on the change in viscosity of oil can be reduced. Accordingly, the reliable and safe sliding frictional resistance mechanism capable of providing less variation in sliding frictional resistance value can be provided even if the change in temperature occurs. Particularly, the high quality sliding frictional resistance mechanism less affected by the oil in a high viscosity state in a low temperature range can be provided.

Description

明細書 滑り摩擦抵抗機構およびメカ二カルプレーキ機構付滑り摩擦抵抗機構 技術分野  Description Sliding friction resistance mechanism and sliding friction resistance mechanism with mechanical brake mechanism
本発明は、 主に荷揚げ装置などの使用上限荷重 (滑り摩擦抵抗値) を越えた荷 重量などの負荷が掛かった場合に、 所定範囲の滑り摩擦抵抗値を維持しながら滑 り摩擦抵抗回転をして使用上限荷重以上の負荷が駆動部などに掛からないように して装置を保護しかつ荷の落下等の危険を防止する滑り摩擦抵抗機構およびメカ 二カルプレーキ機構付滑り摩擦抵抗機構に関する。 背景技術  The present invention is intended to reduce slip friction resistance rotation while maintaining a predetermined range of slip friction resistance when a load such as a load exceeding the upper limit load (sliding friction resistance value) of an unloading device is applied. The present invention relates to a sliding friction resistance mechanism and a sliding friction resistance mechanism with a mechanical brake mechanism for protecting a device by preventing a load greater than an upper limit use load from being applied to a driving unit or the like and preventing a danger of falling of a load. Background art
従来の荷揚げ装置の滑り摩擦抵抗機構は、 駆動側あるいは負荷側に直結した金 属支持板と、 この金属支持板に皿羽等により付勢押し付けられて駆動部の駆動力 を負荷側(荷揚げ側)に伝達し且つ使用上限荷重を越える負荷が掛かった場合に、 所定範囲の滑り摩擦抵抗値を維持したまま滑り摩擦抵抗回転して使用上限荷重以 上の負荷が駆動側等に掛からないようにするための金属支持板に当接される滑り 摩擦抵抗材を備えてなる負荷側にあるいは駆動側に直結した摩擦材押し付け部と から構成されている。  The sliding friction resistance mechanism of the conventional unloading device consists of a metal support plate directly connected to the drive side or the load side, and the metal support plate is urged and pressed by a countersunk blade to apply the driving force of the drive unit to the load side (the unloading side). ), And when a load exceeding the upper limit of use load is applied, prevent the load above the upper limit use load from being applied to the drive side by rotating the slip friction resistance while maintaining the slip friction resistance value within the specified range. And a friction material pressing portion directly connected to the load side or the drive side, which is provided with a sliding friction resistance material that is in contact with a metal support plate for performing the sliding operation.
滑り摩擦抵抗材には紙製部材と合成樹脂製部材を混在させて加熱加圧成形して なるもの、 金属粒材ゃ金属粉材と合成樹脂製部材を混在させて加熱加圧成形して なるもの、 耐熱性繊維織り材に合成樹脂製部材を混在させたり含浸させて加熱加 圧成形してなるものなどが用いられている。  The sliding friction resistance material is formed by heating and pressing with a mixture of a paper member and a synthetic resin member, and is formed by heating and pressing with a mixture of a metal particle material and a metal powder material and a synthetic resin member. For example, a heat-resistant fiber woven material mixed with a synthetic resin member or impregnated with a heat-pressed fiber is used.
その多くは摩擦抵抗材の耐磨耗性の向上、 焼き付け防止のための冷却向上など のために滑り摩擦抵抗材と金属支持板との間にオイルを介在させる湿式が用レ、ら れる。  In many cases, a wet type in which oil is interposed between the sliding friction resistance material and the metal support plate is used to improve the wear resistance of the friction resistance material and to improve the cooling to prevent seizure.
前記従来技術は次ぎに述べるような欠点があった。 The prior art has the following disadvantages.
( 1 ) 温度により介在させたオイルの粘性などの特性が変化することを主な原因 として、 滑り摩擦抵抗値が温度により変化するという欠点がある。 具体的には図 4に示すように使用上限荷重 (滑り摩擦抵抗値) を 1 5 0 0キロ グラム (標準温度 2◦度〜 3 0度) としたものにおいては、 従来技術の最も良い 特性を持つ (C ) のものでは油温一 2 5度の低温での滑り摩擦抵抗値は 1 7 0 0 キログラムであり、 油温 6 0度の高温での滑り抵抗値は 1 5 0 0キログラムであ る。 (1) There is a drawback that the sliding friction resistance value changes with temperature, mainly because the characteristics such as the viscosity of the interposed oil change with temperature. Specifically, as shown in Fig. 4, when the upper limit load (sliding friction resistance value) is set at 150 kilograms (standard temperature 2 ° C to 30 ° C), the best characteristics of the conventional technology are as follows. (C) has a sliding friction resistance of 170 kg at a low oil temperature of 125 ° C and a sliding resistance of 150 kg at a high oil temperature of 60 ° C. You.
低温域での滑り摩擦抵抗値の上昇変化が著しいことが分かる。  It can be seen that the increase in the sliding friction resistance in the low temperature range is remarkable.
滑り摩擦抵抗値の上昇変化は低下変化よりも装置の安全性にとって極めて深刻 で重大な問題である。 なぜなら、 滑り摩擦抵抗値の低下変化は使用上限界負荷重 量以下で動作することであるので作業性に影響を与えることはあっても安全性に は影響を与えることはないが、 滑り摩擦抵抗値の上昇変化は超過荷重を吊り上げ てしまう可能性があり、 過大負荷による荷揚げ装置の損傷や破損を生じさせると いう問題がある。  An increase in sliding frictional resistance is a much more serious and serious problem for equipment safety than a decrease. This is because the decrease in the sliding frictional resistance value is caused by the operation under the critical load weight in use, so it may affect the workability but does not affect the safety. There is a problem that a change in the value may cause the overload to be lifted, and the overload may damage or break the unloading device.
すなわち、 荷揚げ装置等においては、 低温域での滑り摩擦抵抗値の安定化が重 大な技術課題となっているのである。  In other words, stabilization of the sliding friction resistance in low-temperature regions is an important technical issue for unloading devices.
従来、 この技術課題を解決するために荷揚装置をより堅固にすることや、 介在 させたオイルの高性能化がなされてきたが、 いずれも装置のコストを増大させる ものであった。  Conventionally, in order to solve this technical problem, the unloading device has been made more robust, and the performance of the intervening oil has been improved, but all of these have increased the cost of the device.
滑り摩擦抵抗値の上昇変化は、 低温ではオイルの粘性が強くなり結果滑り摩擦 抵抗が増大するためである。  The increase in sliding frictional resistance is due to the increased viscosity of the oil at low temperatures, resulting in an increase in sliding frictional resistance.
このようなオイルの粘性変化による滑り摩擦抵抗値の変化は、 従来の滑り摩擦 抵抗材と金属支持板の当接が広い面での当接であるため、 金属支持板と滑り摩擦 抵抗材の ¾に広いオイル薄膜層が形成され介在している状態が常に維持され、 特 に低温環境でのオイル粘性が高い状態においては滑り摩擦抵抗値を著しく高くす るものである。  Such a change in the sliding friction resistance due to a change in the viscosity of the oil is caused by the conventional contact between the sliding friction resistance material and the metal support plate on a wide surface. A wide oil thin film layer is formed and the intervening state is always maintained, and especially in a state where the oil viscosity is high in a low temperature environment, the sliding friction resistance value is significantly increased.
高速回転で当接を繰り返す自動車のクラッチなどと違い、 滑り摩擦抵抗機構は 通常使用時には滑り回転が起こらず使用上限荷重以上の負荷が掛かったときのみ 滑り摩擦抵抗値を維持したまま低速で滑り'摩擦抵抗回転するので、 低温域でのォ ィルは冷却機能、 滑り機能材ではなく主に抵抗増強機能材として機能している。 また、 このような滑り摩擦抵抗値の温度による変化はオイルの粘性変化が主な 原因であるが、 これ以外にも滑り摩擦抵抗材そのものが温度の変化により固くな つたり柔らかくなったりすることによるもの、 温度低下による皿羽の付勢力の変 化などの要因も考えられるので、 オイルを介在させない乾式でも温度変化による 滑り摩擦抵抗値の変化が生じる欠点がある。 Unlike a car clutch that repeats contact at high speeds, the sliding friction resistance mechanism does not cause slip rotation during normal use and slides at a low speed while maintaining the sliding friction resistance value only when a load exceeding the upper limit load is applied. Due to the frictional resistance rotation, the roll in the low temperature region functions mainly as a resistance enhancing material, not as a cooling or sliding material. In addition, such a change in the sliding friction resistance value due to temperature is mainly caused by a change in the viscosity of the oil.In addition to this, the sliding friction resistance material itself becomes hard or soft due to the temperature change. However, the factors such as the change of the urging force of the countersunk blade due to the temperature drop are also considered, so there is a drawback that the sliding friction resistance value changes due to the temperature change even in the dry type without oil.
( 2 ) 前記した従来技術の滑り摩擦抵抗機構と 「卷上げ動作時には前記滑り摩擦 抵抗機構と一体となって回転し、 停止時にはブレーキが働き荷重を保持する状態 となり、 巻下げ動作時には荷重に応じたネジの緩み締まりの交互動作により荷重 に応じたブレーキを働かせながら、 吊荷などの荷重物が降下等するように動作す るブレーキ機構」 (以下 「メカニカルブレーキ」 という。) を備えてなる荷揚装置 においては、 一 2 0度 Cなどの冷間状態で滑り摩擦抵抗機構が作動した場合には その摩擦抵抗が著しく大きくなつているので初期トルク二滑り出しに必要なトル ク (初期ピーク) が著しく大きくなる。 このため、 ブレーキ機構のネジが強く締 まることになり、 ネジの開放トルクが滑り摩擦抵抗機構のスリップトルクを上回 る危険性があり、 モータによるネジの開放ができないロック状態となり、 結果荷 の卷下げ動作が不能になる問題が生じる。  (2) With the above-described conventional sliding friction resistance mechanism, "when the winding operation is performed, the sliding friction resistance mechanism is rotated integrally with the sliding friction resistance mechanism. The lifting mechanism is equipped with a brake mechanism that operates such that a load, such as a suspended load, descends while applying a brake in accordance with the load by alternating the loosening and tightening of screws (hereinafter referred to as “mechanical brake”). In the device, when the sliding frictional resistance mechanism is operated in a cold state such as at 120 ° C, the frictional resistance becomes extremely large, so the torque (initial peak) required for the initial torque double slipping out is remarkable. growing. For this reason, the screws of the brake mechanism are strongly tightened, and there is a danger that the screw opening torque will exceed the slip torque of the sliding friction resistance mechanism. There is a problem that the unwinding operation becomes impossible.
これを回避するためにネジのリード角を大きく取ってネジを開放し易くしなけ ればならない。  In order to avoid this, it is necessary to increase the lead angle of the screw to make it easier to open the screw.
具体的に説明すると、  Specifically,
常温時では冷間時のような初期トルク (初期ピーク) が著しく大きくなるよう な現象が生じないので、 ネジのリ一ド角を大きく取ってネジを開放し易くする必 要が無く、 例えば制動力を 1 トン (定格荷重) とすることができる。  At room temperature, there is no phenomenon that the initial torque (initial peak) becomes extremely large as in the case of cold. Therefore, it is not necessary to increase the lead angle of the screw to make it easier to open the screw. Power can be 1 ton (rated load).
冷間時では初期トルク (初期ピーク) が著しく大きくなる現象が生じるので、 ネジのリード角を大きく取ってネジを開放し易くするために、例えば制動力を 0 . 8 トン (定格荷重より 2 0パーセント低下) させなければならない。  When cold, the initial torque (initial peak) becomes extremely large. Therefore, to increase the lead angle of the screw and make it easier to open the screw, for example, increase the braking force to 0.8 tons (20 tons from the rated load). Percent decrease).
すなわち、 制動力を冷間時の摩擦特性を考慮したものに設定するために、 常温 時の摩擦特性を考慮した場合よりも 1 0パーセント〜 2 0パーセント程度制動力 を低下させた装置となってしまうという欠点があった。  In other words, in order to set the braking force to take into account the frictional characteristics during cold conditions, the braking force is reduced by about 10% to 20% compared to the case where the frictional characteristics at room temperature is considered. There was a drawback that it would.
さらに、 冷間時で低下させてしまった制動力を補完するために、 モータ側ブレ ーキの制動力をアップさせなければならなかった。 In addition, to compensate for the braking force that has been reduced during cold weather, I had to increase the braking force of the rake.
本発明は以上のような従来技術の欠点に鑑み、 温度変化によっても滑り摩擦抵 抗値の変化の少ないより信頼性と安全†生の高い滑り摩擦抵抗機構を提供すること を目的としている。  The present invention has been made in view of the above-described drawbacks of the related art, and has as its object to provide a sliding friction resistance mechanism that has less change in sliding friction resistance value even with a change in temperature and has higher reliability and higher safety.
また、 本発明の他の目的は、 冷間時における制動力を低下させることなく冷間 時においても常温時と略同じ制動力で安全に動作するメカニカルブレーキ動作を 実現したメ力二カルプレーキ機構付滑り摩擦抵抗機構を提供することを目的とし ている。  Another object of the present invention is to provide a mechanical brake operation that realizes a mechanical brake operation that operates safely at substantially the same braking force as at room temperature even in a cold state without lowering the braking force in a cold state. The purpose is to provide a sliding friction resistance mechanism.
本発明の前記ならびにそのほかの目的と新規な特徴は次の説明を添付図面と照 らし合わせて読むと、 より完全に明らかになるであろう。  The above and other objects and novel features of the present invention will become more completely apparent from the following description when read in conjunction with the accompanying drawings.
ただし、 図面はもっぱら解説のためのものであって、 本発明の技術的範囲を限 定するものではない。 発明の開示  However, the drawings are merely for explanation, and do not limit the technical scope of the present invention. Disclosure of the invention
上記目的を達成するために本発明は次のような構成となっている。  To achieve the above object, the present invention has the following configuration.
<請求項 1記載の発明 > <Invention described in claim 1>
駆動側に連絡されて該駆動側の駆動力により回転する駆動側回転部と、 .荷重な どの負荷が掛かる負荷側回転部と、 この負荷側回転部あるいは前記駆動側回転部 に設けられた、 該負荷側回転部あるいは該駆動側回転部と当接する当接面が多数 線当接形態である滑り摩擦抵抗材と、 この滑り摩擦抵抗材を前記負荷側回転部あ るいは前記駆動側回転部のいずれかに付勢力により常時押し付けておくための押 し付け付勢手段とからなり、 前記負荷が使用上限荷重以内では前記負荷側回転部 は前記駆動側回転部と一体となって駆動回転し、 前記負荷が前記 用上限荷重以 上にな と前記駆動側回転部が空転状態となって前記駆動側に前記使用上限荷重 以上の負荷が掛からないように動作する滑り摩擦抵抗機構を構成している。 <請求項 2記載の発明〉  A driving-side rotating unit that is connected to the driving side and rotates by the driving force of the driving side; a load-side rotating unit that receives a load such as a load; and a load-side rotating unit or the driving-side rotating unit. A sliding friction resistance material having a multi-line contact surface in contact with the load-side rotating portion or the driving-side rotating portion; and applying the sliding friction-resistant material to the load-side rotating portion or the driving-side rotating portion. And a pressing urging means for constantly pressing with a urging force to any one of the above. When the load is within the upper limit of use, the load-side rotating unit is driven to rotate integrally with the driving-side rotating unit. When the load is equal to or more than the upper limit load, the drive-side rotating unit is in a state of idling, and a slip friction resistance mechanism that operates so that a load equal to or more than the use upper limit load is not applied to the drive side. I have. <Invention described in Claim 2>
請求項 1記載の発明の構成において、 滑り摩擦抵抗部にオイルを介在させる湿 式においては、 該線当接部位が駆動側回転部あるいは負荷側回転部に圧当接して レ、る状態では該線当接部位はオイル膜が形成され難レ、細線部位である滑り摩擦抵 抗機構を構成している。 In the configuration of the first aspect of the present invention, in the wet type in which oil is interposed in the sliding friction resistance portion, the line contact portion comes into pressure contact with the drive side rotating portion or the load side rotating portion. In this state, an oil film is difficult to be formed at the line contact portion, and the line contact portion constitutes a sliding friction resistance mechanism which is a thin line portion.
<請求項 3記載の発明〉  <Invention described in claim 3>
駆動側に連絡されて該駆動側の駆動力により回転する駆動側回転部と、 荷重な どの負荷が掛かる負荷側回転部と、 この負荷側回転部あるいは前記駆動側回転部 に設けられた摩擦材からなる滑り摩擦抵抗材と、 この滑り摩擦抵抗材を前記負荷 側回転部あるいは前記駆動側回転部のいずれかに付勢力により常時押し付けてお くための押し付け付勢手段と、 前記押し付け付勢手段の付勢力を温度が上がった 場合は強めて行き且つ温度が下がった場合には弱めて行くようにする熱膨張係数 の大きレ、部品や形状記憶部品などからなる付勢力調節手段とで滑り摩擦抵抗機構 を構成している。  A driving-side rotating unit that is connected to the driving side and rotates by the driving force of the driving side; a load-side rotating unit that receives a load such as a load; and a friction material provided on the load-side rotating unit or the driving-side rotating unit. A sliding friction resistance material comprising: a pressing biasing means for constantly pressing the sliding friction resistance material against either the load-side rotating portion or the driving-side rotating portion by a biasing force; and the pressing biasing device. The thermal expansion coefficient increases when the temperature rises and decreases when the temperature decreases.Sliding friction with the biasing force adjusting means consisting of parts and shape memory parts It constitutes a resistance mechanism.
<請求項 4記載の発明 > <Invention described in claim 4>
駆動側に連絡されて該駆動側の駆動力により回転する駆動側回転部と、 荷重な どの負荷が掛か ¾負荷側回転部と、 この負荷側回転部あるいは前記駆動側回転部 に設けられた摩擦材からなる滑り摩擦抵抗材と、 この滑り摩擦抵抗材を前記負荷 側回転部あるいは前記駆動側回転部のレ、ずれかに付勢力により常時押し付けてお くための押し付け付勢手段と、 温度の下がったオイルの温度を上昇させるための 暖房手段とで滑り摩擦抵抗機構を構成している。  A driving-side rotating portion that is connected to the driving side and rotates by the driving force of the driving side; and whether a load such as a load is applied.¾The load-side rotating portion and the friction provided on the load-side rotating portion or the driving-side rotating portion. A sliding friction resistance material made of a material; pressing biasing means for constantly pressing the sliding friction resistance material against the load-side rotating portion or the driving-side rotating portion by a biasing force; The sliding friction resistance mechanism is composed of the heating means for raising the temperature of the lowered oil.
<請求項 5記載の発明〉  <Invention according to claim 5>
請求項 1、 2、 3、 4いずれか記載の発明の構成において、 滑り摩擦抵抗材が 負荷側回転部側に固定され、::.'前記滑り摩擦抵抗材の滑り摩擦面と駆動側回転部と が滑り摩擦当接され、 前記駆動側回転部による冷却作用が直接前記滑り摩擦抵抗 材の前記滑り摩擦面に作用するようにした滑り摩擦抵抗機構を構成している。 <請求項 6記載の発明 >  5. The sliding frictional resistance material is fixed to the load-side rotating part side in the configuration according to any one of claims 1, 2, 3, and 4, and the sliding frictional surface of the sliding frictional resistance material and the driving-side rotating part are fixed. And a sliding friction contact mechanism, wherein a cooling action by the driving-side rotating section directly acts on the sliding friction surface of the sliding friction resistance material to constitute a sliding friction resistance mechanism. <Invention described in claim 6>
請求項 1、 2、 3、 4、 5いずれか記載の滑り摩擦抵抗機構と、 巻上げ動作時 には前記滑り摩擦抵抗機構と一体となって回転し、 停止時にはブレーキが働き荷 重を保持する状態となり、 卷下げ動作時には荷重に応じたブレーキを働かせなが ら吊荷などの荷重物が降下等するように動作するメカニカルブレーキ機構とでメ 力二カルブレーキ機構付滑り摩擦抵抗機構を構成している。 図面の簡単な説明 A state in which the sliding friction resistance mechanism according to any one of claims 1, 2, 3, 4, and 5 rotates together with the sliding friction resistance mechanism during a hoisting operation, and a brake works to hold a load when stopped. In the unwinding operation, a mechanical friction mechanism that operates so that a load such as a suspended load descends while applying a brake according to the load during the unwinding operation constitutes a sliding friction resistance mechanism with a mechanical brake mechanism. I have. Brief Description of Drawings
第 1図は、 本発明の最良の第 1の実施の形態の滑り摩擦抵抗機構部を有する荷 揚げ装置の構成断面図。 _  FIG. 1 is a cross-sectional view of the configuration of a lifting device having a sliding friction resistance mechanism according to a first preferred embodiment of the present invention. _
第 2 は、 本発明の最良の第 1の実施の形態の滑り摩擦抵抗材を薄金属受盤に 設けた正面図および部分拡大図。  Second, a front view and a partially enlarged view in which a sliding friction resistance material according to the first preferred embodiment of the present invention is provided on a thin metal receiver.
第 3図は、 第 2図のセット状態での部分拡大断面図。  FIG. 3 is a partially enlarged sectional view of the set state of FIG.
第 4図は、 従来技術との比較グラフ。  Fig. 4 is a comparison graph with the conventional technology.
第 5図は、 本発明の最良の第 2の実施の形態の滑り摩擦抵抗材を薄金属受盤に 設けた正面図および部分拡大図。  FIG. 5 is a front view and a partially enlarged view in which a sliding friction resistance material according to a second preferred embodiment of the present invention is provided on a thin metal receiver.
第 6図は、 第 5図のセット状態での部分拡大断面図。  FIG. 6 is a partially enlarged sectional view of the set state of FIG.
第 7図は、 本発明の最良の第 3の実施の形態の滑り摩擦抵抗材の表面図。 . 第 8図は、 本発明の最良の第 4の実施の形態の滑り摩擦抵抗材を薄金属受盤に 設けた正面図および部分拡大図。  FIG. 7 is a surface view of a sliding friction resistance material according to a third preferred embodiment of the present invention. FIG. 8 is a front view and a partially enlarged view of a thin metal receiver provided with a sliding friction resistance material according to a fourth embodiment of the present invention.
第 9図は、 本発明の最良の第 5の実施の形態の部分拡大断面図。  FIG. 9 is a partially enlarged sectional view of a fifth preferred embodiment of the present invention.
第 1 0図は、 本発明の最良の第 6の実施の形態の滑り摩擦抵抗機構の動作図。 第 1 1図は、 本発明の最良の第 7の実施の形態の滑り摩擦抵抗機構の動作図。 第 1 2図は、 本発明の最良の第 1の実施の形態の従来技術のスリップトルクを 比較するグラフ。  FIG. 10 is an operation diagram of a sliding friction resistance mechanism according to a sixth preferred embodiment of the present invention. FIG. 11 is an operation diagram of a sliding friction resistance mechanism according to a seventh preferred embodiment of the present invention. FIG. 12 is a graph comparing the slip torque of the prior art of the first preferred embodiment of the present invention.
第 1 3図は、 本発明の最良の第 8の実施の形態の荷揚げ装置の構成断面図。 発明を実施するための最良の形態  FIG. 13 is a sectional view of the configuration of an unloading device according to an eighth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面に示す実施の形態により、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings.
第 1図ないし第 4図、 第 1 2図に示す本発明を実施するための最良の第 1の 実施の形態において、 1は荷揚げ装置であって、 この荷揚げ装置 1はモータなど の駆動部 2と、 この駆動部 2に回転駆動される該 2に直結した回転軸 3と、 この 回転軸 3に形成された小歯車部 4と、 この小歯車部 4により回転動作させられる 滑り摩擦抵抗機構部 5と、 この滑り摩擦抵抗機構部 5を貫く回転軸 6と、 この回 転軸 6に形成された小歯車部 7と、 この小歯車部 7により回転させられる回転軸 3上に該 3からフリーに設けられたロードギヤ一 8と、 このロードギヤー 8と一 体化されて回転軸 3上に設けられた荷揚げチェーン 9を巻き上げるロードシーブ 1 0とからなっている。 In the first preferred embodiment for carrying out the present invention shown in FIGS. 1 to 4 and FIG. 12, 1 is a discharge device, and the discharge device 1 is a driving unit 2 such as a motor. A rotating shaft 3 directly connected to the driving unit 2, a small gear unit 4 formed on the rotating shaft 3, and a sliding friction resistance mechanism unit rotated by the small gear unit 4. 5, a rotating shaft 6 passing through the sliding friction resistance mechanism 5, a small gear portion 7 formed on the rotating shaft 6, and a free shaft 3 on the rotating shaft 3 rotated by the small gear portion 7. And one of the load gears 8 It comprises a load sheave 10 which is integrated and winds up a discharge chain 9 provided on the rotating shaft 3.
滑り摩擦抵抗機構部 5は、 駆動側である小歯車部 4に嚙合う大歯車であり且つ 回転軸 6に回転フリーに軸支されてなる駆動側回転部 1 1と、 回転軸 6と一体的 に回転し駆動部側回転部 1 1を挟持するように設けられた荷重負荷が掛かる受盤 1 2、 1 3からなる負荷側回転部 1 4と、 受盤 1 2、 1 3に接着されて設けられ た、 駆動側回転部 1 1と当接する当接面が多数線当接形態である略バナナ形状の 3枚の滑り摩擦抵抗材 1 5 a、 1 5 b、 1 5 cと、 この滑り摩擦抵抗材 1 5 a、 1 5 b ; 1 5 cを駆動側回転部 1 1に付勢力により常時付勢押し付けておくため の、 皿バネゃ波型リングパネ等からなる押し付け付勢手段 1 6 a、 1 6 bとから なっている。 '  The sliding friction resistance mechanism unit 5 is a large gear that matches the small gear unit 4 on the driving side, and is integrally formed with the driving shaft rotating unit 11 that is rotatably supported by the rotating shaft 6 and the rotating shaft 6. The load-side rotating part 14, which is provided so as to hold the drive-side rotating part 11 1 and sandwiches the load-bearing parts 12, 13, and is attached to the receiving parts 12, 13 The three sliding friction resistance members 15 a, 15 b, and 15 c each having a substantially banana-shaped contact surface in contact with the drive-side rotating portion 11 1, which has a multi-line contact form, are provided. Pressing and urging means 16 a composed of a coned disk spring-type ring panel, etc., for constantly urging the frictional resistance material 15 a, 15 b; 15 c against the driving-side rotating portion 11 by the urging force. , 16b. '
滑り摩擦抵抗材 1 5 a、 1 5 b、 1 5 cは両面をブラストした薄金属受盤 1 8 に接着されて、 その薄金属受盤 1 8が負荷側回転部 1 4に接着剤 2 5により接着 固定されている。  The sliding friction resistance material 15a, 15b, and 15c are adhered to a thin metal tray 18 blasted on both sides, and the thin metal tray 18 is attached to the load-side rotating part 14 with an adhesive 2 5 It is fixed by bonding.
付勢手段支持金具 1 7 a、 1 7 bは押し付け付勢手段 1 6 a、 1 6 bを所定の 付勢力に支持する金具である。  The urging means supporting brackets 17a and 17b are metal fittings for supporting the urging means 16a and 16b with a predetermined urging force.
当接面が多数線当接形態である滑り摩擦抵抗材 1 5 a、 1 5 b、 1 5 cはより 詳しくは次のようになっている。  The sliding friction resistance members 15a, 15b, and 15c whose contact surfaces are in a multi-line contact form are as follows in more detail.
7 μ mめ炭素繊維 1 9を数ミリ幅程度に密接に並べた横糸群 2 0と縦糸群 2 1 を第 2図に示すようにクロス網して炭素繊維クロス布 2 2を形成し、 この炭素繊 維クロス布 2 2の裏側に熱硬化樹脂 2 3を塗布して加熱加圧して表面に炭素繊維 一本一本が露出して細かい線状凸凹を形成してなる炭素繊維摩擦材シートを形成 し、 所定のバナナ形態に裁断して滑り摩擦抵抗材 1 5 a、 1 5 b、 1 5 cを形成 している。  The weft group 20 and the warp group 21 in which the 7 μm-mesh carbon fibers 19 are closely arranged in a width of several millimeters are cross-netted as shown in FIG. 2 to form a carbon fiber cloth cloth 22. A thermosetting resin 23 is applied to the back side of the carbon fiber cloth cloth 2 2 and heated and pressed to form a carbon fiber friction material sheet in which carbon fibers are exposed on the surface to form fine linear irregularities. It is formed and cut into a predetermined banana form to form sliding friction resistance materials 15a, 15b and 15c.
第 3図に示すように、 表側 =当接側に露出した炭素繊維 1 9の駆動部側回転体 1 1との付勢当接は該 1 9の頂部との線圧力当接であり、 多数線当接形態とした ものである。  As shown in FIG. 3, the urging contact of the carbon fiber 19 exposed on the front side = contact side with the drive unit side rotating body 11 is a linear pressure contact with the top of the 19, and many This is a line contact form.
これにより、 オイル膜が細かく切断され且つ線当接という狭い範囲での作用と なり、 温度変化によるオイルの粘性変化の影響を少なくできるのである。 特に低 温域における高粘度状態となったオイルの抵抗増強機能の影響を受け難い高品位 の滑り摩擦抵抗機構を実現する。 As a result, the oil film is finely cut and has an action in a narrow range of line contact, so that the effect of oil viscosity change due to temperature change can be reduced. Especially low A high-grade sliding friction resistance mechanism that is hardly affected by the resistance enhancing function of oil that has become highly viscous in the temperature range is realized.
また、 線当接部位の向きによっては、 はオイルの搔き取り部として機能して、 搔き取ったオイルは線当接部位間の凹部に主に滞在させ線当接部位のオイル膜を 薄くして粘性の影響を弱め、 あるいは線当接部位のオイル膜を薄くしたことによ つて駆動側回転部あるいは負荷側回転部との直接の接触部位を多くして、 高粘度 状態となったオイルの影響を受け難!/、高品位の滑り摩擦抵抗機構を実現する。 第 4図に示す実験例について説明する。  In addition, depending on the direction of the line contacting part, it functions as an oil removal part, and the removed oil mainly stays in the recess between the line contacting parts, and the oil film at the line contacting part becomes thin. To reduce the effect of viscosity, or to reduce the oil film at the line abutment area, thereby increasing the number of direct contact areas with the drive-side rotating part or the load-side rotating part, resulting in a highly viscous oil. / High quality sliding friction resistance mechanism is realized. The experimental example shown in FIG. 4 will be described.
摩擦抵抗材は、 極細炭素繊維を多数本当接並べてなる縦糸群と横糸群を織り形 成した当接面が繊維形態が露出して凸凹を形成してなる格子状編み込み形態の炭 素繊維摩擦材であり、 この炭素繊維摩擦材の前記横糸群および縦糸群のそれぞれ の糸 (糸径: 7 μ ηι) の頂点部位が、 付勢圧力下での滑り摩擦抵抗擦れ状態でも 潰れたり型崩れしなレ、強度の線当接部位となるものである。  The frictional resistance material is a carbon fiber friction material in a lattice-like woven form in which a contact surface formed by weaving a group of warp yarns and a group of weft yarns in which a large number of ultra-fine carbon fibers are tangently arranged exposes fiber forms and forms irregularities. The apex of each of the weft group and warp group (yarn diameter: 7 μηι) of the carbon fiber friction material does not collapse or lose its shape even in the state of sliding friction resistance under an urging pressure. Re, a line contact portion of strength.
実験機種は 1 0 0 0キログラムの電気チヱ一ンブロック (チェーン巻上げ式荷 揚げ装置) である。  The experimental model is a 100 kg electric chain block (chain hoisting type lifting device).
この装置の場合 1 0 0 0キログラムが規定荷重量であり、 使用上限荷重が 1 5 0 0キログラムである。  In the case of this device, 100 kg is the specified load, and the upper limit use load is 1500 kg.
滑り摩擦抵抗材サンプルは次のようなものである。  The sliding friction resistance material sample is as follows.
(本発明技術のもの) (発) 炭素繊維クロス  (Of the present invention) (departure) Carbon fiber cloth
(従来品) (Α) 紙質  (Conventional product) (Α) Paper quality
(従来品) (Β ) 紙質  (Conventional product) (Β) Paper quality
(従来品) (C ) 紙質  (Conventional product) (C) Paper quality
(従来品) (D ) 金属系  (Conventional product) (D) Metal type
(従来品) (Ε ) グラフアイト系 (練成物)  (Conventional product) (Ε) Graphite (Kneaded product)
(従来品) (F ) 紙質  (Conventional product) (F) Paper quality
滑り摩擦抵抗回転が発生する荷重はつぎのようになる。 (常温 (2 0度〜 3 0 度) で使用上限荷重 1 5 0 0キログラム)  The load at which the sliding friction resistance rotation occurs is as follows. (Usable load at normal temperature (20 degrees to 30 degrees) 150 kg)
(表 1 )  (table 1 )
一 2 5度 常温 6 0度 1 550 1 500 1400 One 25 degrees normal temperature 60 degrees 1 550 1 500 1400
1 750 1 500 1 300  1 750 1 500 1 300
(A) 1 8 50 1 500 1450  (A) 1 8 50 1 500 1450
(B) 1 800 1 500 1 500  (B) 1 800 1 500 1 500
(C) 1 700 1 500 1 500  (C) 1 700 1 500 1 500
(D) " 1 700 1 500 1400  (D) "1 700 1 500 1400
(E) 2200 1 500 1400  (E) 2200 1 500 1400
(油特性 動粘度 260' 、リ平方/秒 (40度) )  (Oil properties kinematic viscosity 260 ', squared / second (40 degrees))
(発) は、 常温 (20度〜 3 0度) で使用上限荷重 1 500キロダラ ものにおいては、 一 25度の低温時には 1 550キログラムで滑り摩擦抵抗回転 が起こり、 60度の高温時には 1400キログラムで滑り摩擦抵抗回転が起こる。 これに対して紙製部材と熱硬化性樹脂部材を混在して加熱加圧形成してなる従 来技術で最も優れた滑り摩擦抵抗部材 (C) においては、 常温(20度〜 30度) で使用上限荷重 1 500キログラムとしたものにおいては、 一 25度の低温時に は 1 700キログラムで滑り摩擦抵抗回転が起こり、 60度の高温時には 1 50 0キログラムで滑り摩擦抵抗回転が起こる。  (Departure) is at a normal temperature (20 degrees to 30 degrees) and the maximum use load is 1,500 kilodala. At a low temperature of 125 degrees, sliding friction resistance rotation occurs at 1550 kilograms, and at a high temperature of 60 degrees, 1400 kilograms. Slip friction resistance rotation occurs. On the other hand, in the case of the sliding friction resistance member (C), which is the most excellent in the conventional technology, in which a paper-made member and a thermosetting resin member are mixed and formed by heating and pressing, it can be used at room temperature (20 to 30 degrees). In the case of an upper limit load of 1500 kg, sliding friction resistance rotation occurs at 1700 kg at a low temperature of 125 ° C, and sliding friction resistance rotation occurs at 1500 kg at a high temperature of 60 ° C.
本発明技術が低温での差が 50キログラムであるのに対して従来技術は 200 キログラムであり、 本発明の技術は低温域で大幅な改善を実現して、 高品位で安 全性の高い装置を実現するものである。  The technology of the present invention has a difference of 50 kilograms at low temperatures, whereas the conventional technology has a weight of 200 kilograms.The technology of the present invention achieves a significant improvement in the low temperature range, and is a high-quality and highly safe device. Is realized.
暖房手段 29は温度センサー 30で検出した温度が例えば 0度以下になった場 合にオイルを温めるものである。  The heating means 29 warms the oil when the temperature detected by the temperature sensor 30 becomes, for example, 0 ° C. or less.
滑り摩擦抵抗材 1 5 aと組合せることにより、 より低温時での滑り摩擦抵抗値 の変化を少ないものにできる。  By combining with the sliding friction resistance material 15a, the change in the sliding friction resistance at lower temperatures can be reduced.
また、 従来技術ではオイルの温度を上げるためには大きな電力と強いヒータ設 備が必要であつたが、 滑り摩擦抵抗材 1 5 aなどの線当接形態の滑り摩擦抵抗材 を用いることにより低温域での滑り摩擦抵抗値の変化を従来技術の 200キログ ラムから 50キログラムに大幅に改善しているので、 滑り摩擦抵 材 1 5 aの使 用により、 オイルの温度を上げる電力を省電力にでき且つヒータ設備を軽微なも のにでき、 全体としてコストを安価にできる。 付勢手段支持金具 1 7 aおよび 1 7 bあるいはいずれかー を v 押し付け付勢 手段 1 6 a、 1 6 bの付勢力を温度が上がった場合は強めて行き且つ温度が下が つた場合には弱めて行くようにする、 他の構成部材より熱膨張係数の大きい部材 からなる付勢力調節手段とするのもよい。 In addition, in the conventional technology, large electric power and a strong heater were required to raise the oil temperature.However, the use of a line-contact type sliding friction resistance material such as 15 The change in the sliding friction resistance in the region is greatly improved from the conventional 200 kilogram to 50 kilograms, and the use of the sliding friction material 15a saves the power that raises the oil temperature. The heater equipment can be made small and the cost can be reduced as a whole. If and temperature a biasing force gradually strengthened when the temperature rose biasing means supporting bracket 1 7 a and 1 7 b or either over the v pressing energizing means 1 6 a, 1 6 b is One is below The biasing force adjusting means may be made of a member whose coefficient of thermal expansion is larger than that of the other constituent members.
温度が上昇すると膨張して押し付け付勢手段の押さえ力を増加させ、 温度が下 降すると押し付け付勢手段の押さえ力を減少させる。 この押さえ力の上昇 ·減少 を温度の変化に伴 、滑らかに行うことができる。  When the temperature rises, it expands to increase the pressing force of the pressing urging means, and when the temperature falls, the pressing force of the pressing urging means decreases. The increase / decrease of the holding force can be performed smoothly as the temperature changes.
また、 従来技術では温度差による滑り摩擦抵抗値の変化が大変大きいものであ つたため、 熱膨張係数が大変大きく且つ大型の付勢力調節手段を持ちいらなけれ ばならならず装置が大型でコスト高となる欠点があつたが、 滑り摩擦抵抗材 1 5 aなどの線当接形態の滑り摩擦抵抗材を用いることにより低温域での滑り摩擦抵 抗値の変化を従来技術の 200キログラムから 50キログラムに示すように大幅 に改善しているので、 線当接形態の滑り摩擦抵抗材 1 5 aなどの使用により、 付 勢力調節手段を小型にできるという効果を得ることができる。  Also, in the prior art, the change in the sliding frictional resistance due to the temperature difference was very large, so that the coefficient of thermal expansion was very large and it was necessary to have a large urging force adjusting means, and the device was large and costly. However, the use of a sliding friction resistance material in the form of a line abutment, such as 15a, made it possible to reduce the change in sliding friction resistance in the low-temperature range from 200 kg to 50 kg in the conventional technology. As shown in Fig. 7, the use of a sliding friction resistance material 15a in the form of a line abutment has the effect of reducing the size of the biasing force adjusting means.
第 1 2図は、  Fig. 12
(負荷側摩擦構造:発明構造) 滑り摩擦抵抗材 1 5 a、 15 b、 1 5 cが負荷側 回転部側 (受盤 1 2、 1 3) に固定され、 滑り摩擦抵抗材 1 5 a、 1 5 b、 1 5 cの滑り摩擦面と駆動側回転部 1 1とが滑り摩擦当接され、 駆動側回転部 1 1に よる冷却作用が直接滑り摩擦抵抗材 1 5 a、 1 5 b、 1 5 cの滑り摩擦面に作用 するようにした構成と、  (Load side friction structure: Inventive structure) The sliding friction resistance material 15a, 15b, 15c is fixed to the load side rotating part side (receiving plate 12, 13), and the sliding friction resistance material 15a, The sliding friction surfaces of 15b and 15c are brought into sliding friction contact with the driving-side rotating portion 11 and the cooling action of the driving-side rotating portion 11 directly causes the sliding friction resistance material 15a, 15b, A configuration that acts on the sliding friction surface of 15 c,
(駆動側摩擦構造:従来構造) 滑り摩擦抵抗材 1 5 a、 1 5 b、 1 5 cを駆動側 回転部 1 1に固定された構成とのスリ ップトルク (滑り回転が起こる荷重値) を 比較するグラフである。  (Drive-side friction structure: conventional structure) Compare the slip torque (load value at which sliding rotation occurs) with the configuration in which the sliding friction resistance material 15a, 15b, 15c is fixed to the driving-side rotating part 11 It is a graph to do.
(比較条件) .  (Comparison conditions).
駆動側回転部 1 1 :刃先直径 150 mm S 45 C製  Drive side rotating part 1 1: Blade diameter 150 mm S 45 C
受盤 1 2、 1 3 :直径 11 5mm S 45 C製  Receiving machine 1 2 and 1 3: Diameter 11 5mm Made of S45C
定格荷重: 1 000 k g  Rated load: 1 000 kg
摩擦材の面圧: 3MP a  Surface pressure of friction material: 3MPa
回転速度: 1 80 r p m 円滑油:省エネルギー型工業用ギヤ油 2 6 0 Rotation speed: 1 80 rpm Lubricating oil: Energy-saving industrial gear oil 260
滑り摩擦条件: 3 0秒間強制滑り摩擦回転  Sliding friction condition: 30 seconds forced sliding friction rotation
(比較)  (Comparison)
スリップトルクは負荷側摩擦構造 (発明構造) が駆動側摩擦構造 (従来構造) よりも常に 1 3 0 k g f 程度高い値を示しており、 スリップトルクの低下が極め て小さい良好な性能を実現している。  As for the slip torque, the load side friction structure (invention structure) always shows a value about 130 kgf higher than that of the drive side friction structure (conventional structure). I have.
(検討) '  (Consideration) '
このような著しい効果を実現する理由は次のようなところにある。  The reason for realizing such a remarkable effect is as follows.
駆動側摩擦構造 (従来構造) においては、 オイルに漬かって該オイルにより冷 却される駆動側回転部 1 1の冷却作用は、滑り摩擦抵抗材 1 5 aの固定面(裏側) を経て負荷側回転部 (受盤 1 2 ) と滑り摩擦当接する滑り摩擦抵抗材の滑り摩擦 面 (表面) を冷却するように作用する。  In the drive-side friction structure (conventional structure), the cooling action of the drive-side rotating part 11 immersed in oil and cooled by the oil is performed via the fixed surface (back side) of the sliding friction resistance material 15a. It acts to cool the sliding friction surface (surface) of the sliding friction resistance material that comes into sliding friction contact with the rotating part (receiving plate 12).
また、 一般的な構成においては駆動側回転部は容 と当接側面積が大きく、 負 荷側回転部 (受盤 1 2 ) は容積と当接側面積が小さいので、 熱放熱効率 (冷却効 率) は駆動側回転部の方が高いのであるが、 滑り摩擦動作時にはその摩擦により 負荷側回転部が熱くなり、 その熱は断熱材である滑り摩擦抵抗材を経て駆動側回 転部に伝わる構造であり、 温度が下がり難く高い愠度での動作となっているもの である。  In a general configuration, the drive-side rotating part has a large volume and a contact-side area, and the load-side rotating part (receiving plate 12) has a small volume and a contact-side area. Ratio) is higher in the drive-side rotating part, but during sliding friction operation, the friction heats up the load-side rotating part, and the heat is transmitted to the driving-side rotating part through the sliding friction resistance material, which is a heat insulating material. It has a structure and operates at a high temperature with a low temperature drop.
すなわち、 全体として滑り摩擦抵抗面とその当接受側の冷却効率が悪く、 冷却 し難く温度が高くなる構造であり、 これにより滑り摩擦抵抗面の温度が高くなる と、 摩擦力が弱まり大きな制動力の低下を招くという問題を生ずるものである。 これに対して負荷側摩擦構造 (発明構造) においては、 冷却された駆動側回転 部の当接面と滑り摩擦抵抗材の滑り摩擦面とが直接に当接する構造であり、 滑り 摩擦動作により発生する摩擦熱がオイルで冷却され且つ放熱効率が高い駆動側回 転部により直接に冷却されることにより、' 従来技術より低い温度での滑り摩擦抵 抗動作が得られるので摩擦力の弱まり (低下) の小さい滑り摩擦抵抗機構を実現 している。 他の実施例 次に、 第 5図ないし第 1 1図に示す本発明を実施するための異なる形態につい て説明する。なお、これら本発明を実施するための異なる形態の説明に当たって、 本発明を実施するための最良の第 1の実施の形態と同一構成部分には同一符号を 付して重複する説明を省略する。 In other words, as a whole, the cooling efficiency of the sliding frictional resistance surface and the contact receiving side is poor, it is difficult to cool, and the temperature rises. Is caused. On the other hand, the load-side friction structure (invention structure) is a structure in which the contact surface of the cooled drive-side rotating part and the sliding friction surface of the sliding friction resistance material directly contact each other. The frictional heat generated is cooled by oil and is directly cooled by the drive-side rotating section, which has high heat dissipation efficiency. A small sliding friction resistance mechanism is realized. Other embodiments Next, different embodiments for carrying out the present invention shown in FIGS. 5 to 11 will be described. In the description of the different embodiments for carrying out the present invention, the same components as those in the first embodiment for carrying out the present invention are denoted by the same reference numerals, and redundant description will be omitted.
第 5図および第 6図に示す本発明を実施するための最良の第 2の実施の形態に おいて前記本発明を実施するための最良の第 1の実施の形態.と主に異なる点は、 滑り摩擦抵抗材を炭素繊維 1 9を一方向に並べ密接した状態で裏面に熱硬化樹脂 2 3を塗布、 含浸等し加熱加圧して炭素繊維摩擦材シートを形成し、 この炭素繊 維摩擦材シートを裁断して小チップ 2 7を作成し、 この小チップ 2 7を繊維方向 が交互になるように並べ接着しあるいは熱硬化樹脂で一体化して滑り摩擦抵抗材 2 8 a , 2 8 b , 2 8 cを形成した点にある。  The main differences between the second preferred embodiment for carrying out the present invention shown in FIGS. 5 and 6 and the first preferred embodiment for carrying out the present invention are as follows. A thermosetting resin 23 is applied to the back surface of the sliding friction resistance material in a state where the carbon fibers 19 are arranged in one direction in close contact with each other, impregnated, etc., and heated and pressed to form a carbon fiber friction material sheet. A small chip 27 is created by cutting the material sheet, and these small chips 27 are arranged side by side so that the fiber directions are alternated and glued or integrated with a thermosetting resin to make the sliding friction resistance material 28a, 28b , 28 c.
このような形態でも前記第 1の実施の形態と同じような効果を得ることができ る。 - 第 7図に示す本発明を実施するための最良の第 3の実施の形態において前記本 発明を実施するための最良の第 1の実施の形態と主に異なる点は、 滑り摩擦抵抗 材を炭素繊維 1 9を一方向に並べ密接した状態で裏面に熱硬化榭脂 2 3を塗布、 含浸等し加熱加圧して炭素繊維摩擦材シートを、 炭素繊維 1 9が横向きになるよ うに裁断してなる滑り摩擦抵抗材 3 0を形成した点にある。  In such a form, the same effect as in the first embodiment can be obtained. -The third preferred embodiment for carrying out the present invention shown in Fig. 7 is mainly different from the first preferred embodiment for carrying out the present invention in that a sliding friction resistance material is used. With the carbon fibers 19 arranged in one direction and in close contact with each other, a thermosetting resin 23 is applied to the back surface, impregnated, etc., and heated and pressed to cut the carbon fiber friction material sheet so that the carbon fibers 19 are oriented horizontally. The point lies in that a sliding friction resistance material 30 is formed.
炭素繊維 1 9の向きが縦向き、 斜め向きとするのもよい。  The carbon fibers 19 may be oriented vertically or obliquely.
第 8図に示す本発明を実施するための最良の第 4の実施の形態において前記本 発明を実施するための最良の第 1の実施の形態と主に異なる点は、 滑り摩擦抵抗 材を炭素繊維 1 9を一方向に並べ密接した状態で裏面に熱硬化榭脂 2 3を塗布、 含浸等し加熱加圧して炭素繊維摩擦材シートを、 炭素繊維 1 9が縦向きになるよ うに裁断して略小判型の滑り摩擦抵抗材 3 2を形成した点にある。.  The main difference between the fourth preferred embodiment for carrying out the present invention shown in FIG. 8 and the first preferred embodiment for carrying out the present invention is that the sliding friction resistance material is made of carbon. With the fibers 1 9 arranged in one direction and in close contact with each other, a thermosetting resin 23 is applied to the back surface, impregnated, etc., and heated and pressed to cut the carbon fiber friction material sheet so that the carbon fibers 19 are oriented vertically. In that a substantially oval-shaped sliding friction resistance material 32 is formed. .
滑り摩擦抵抗材 3 2多数枚を薄金属受盤 1 8に炭素繊維 1 9方向が縦向きで放 射状に接着固定して使用する。  Slip friction resistance material 3 2 A large number of sheets are bonded to a thin metal receiver 18 with carbon fibers 19 in a vertical direction and are fixed by radiation in a radial manner.
第 9図に示す本発明を実施するための最良の第 5の実施の形態において前記本 発明を実施するための最良の第 1の実施の形態と主に異なる点は、 滑り摩擦抵抗 材を微細炭素繊維 3 4に熱硬化樹脂 2 3を含浸させ、 当接面が線凸凹が形成され るようにした金型により加熱加圧して、 当接面が多数の線凸凹形態である滑り摩 擦抵抗材 3 5を形成した点にある。 3 6は線当接部位。 The main difference between the fifth preferred embodiment for carrying out the present invention shown in FIG. 9 and the first preferred embodiment for carrying out the present invention is that the sliding friction resistance material is made finer. The carbon fiber 34 is impregnated with the thermosetting resin 23, and the contact surface is formed with linear irregularities. The point is that a sliding friction resistance material 35 having a contact surface in the form of a number of linear irregularities was formed by heating and pressing with a mold as described above. 36 is the line contact part.
第 1 0図に示す本発明を実施するための最良の第 6の実施の形態において前記 本発明を実施するための最良の第 1の実施の形態と主に異なる点は、 滑り摩擦抵 抗機構部の付勢手段支持金具を押し付け付勢手段 1 6 a、 1 6 bの付勢力を温度 が上がつた場合には膨張して押し強めて行く形状記憶合金体からなる付勢力調節 手段 3 8 、 温度が下がった場合には収縮して引き弱めて行くようにする形状記 憶合金体からなる付勢力調節手段 3 9を設けてなる滑り摩擦抵抗機構部 4 0を形 成した点にある。  The main difference between the sixth preferred embodiment for carrying out the present invention shown in FIG. 10 and the first preferred embodiment for carrying out the present invention is that a sliding friction resistance mechanism is provided. The biasing means of the shape memory alloy body that expands and pushes the biasing force of the biasing means 16a and 16b when the temperature rises increases. However, the present invention is characterized in that a sliding friction resistance mechanism 40 provided with an urging force adjusting means 39 made of a shape memory alloy body that contracts and weakens when the temperature drops.
例えば、 温度が 0度以下になった場合には付勢力調節手段 3 9が付勢方向に対 して収縮し縦方向に対して膨張して付勢方向に対して短!、形状に形状変化して、 押し付け付勢手段 1 6 a、 1 6 bの付勢力を弱め、 高温時の.滑り摩擦抵抗値の上 昇を抑えるように動作する。 (図中 B ) ·  For example, when the temperature drops to 0 ° C. or less, the urging force adjusting means 39 contracts in the urging direction, expands in the vertical direction, becomes short in the urging direction, and changes shape. Then, the urging force of the pressing urging means 16a and 16b is reduced, and the operation is performed to suppress the rise of the sliding friction resistance value at high temperature. (B in the figure)
温度が 5 0度以上になった場合には付勢力調節手段 3 8は縦方向に対して収縮 し付勢方向に膨張して長くなつて押し付け付勢手段 1 6 a、 1 6 bを押しその付 勢力を強めて、 高温時の滑り摩擦抵抗値の低下を抑えるように動作する。 (図中 C )  When the temperature rises to 50 degrees or higher, the urging force adjusting means 38 contracts in the vertical direction, expands in the urging direction, becomes longer, and presses the urging means 16a, 16b. It operates to increase the biasing force and suppress the decrease in sliding friction resistance at high temperatures. (C in the figure)
このような滑り摩擦抵抗機構部 4 0と滑り摩擦抵抗材 1 5 aとの組み合わせに より、 より滑り摩擦抵抗値の変化の少ない高信頼、 高品位の装置を実現する。 第 1 1図に示す本発明を実施するための最良の第 7の実施の形態において前記 本発明を実施するための最良の第 1の実施の形態と主に異なる点は、 滑り摩擦抵 抗機構部の付勢手段支持金具を押し付け付勢手段 1 6 a、 1 6 bの付勢力を温度 が上がつた場合には膨張して押し強めて行く形状記憶合金体からなる付勢力調節 手段 4 5 a、 4 5 bと、 温度が下がった場合には収縮して引き弱めて行くように する形状記憶合金体からなる付勢力調節手段 4 4 a、 4 4 bを設けてなる滑り摩 擦抵抗機構部 4 6を形成した点にある。  The combination of the sliding friction resistance mechanism 40 and the sliding friction resistance material 15a realizes a highly reliable and high-quality device with less change in the sliding friction resistance value. The main difference between the seventh preferred embodiment for carrying out the present invention shown in FIG. 11 and the first preferred embodiment for carrying out the present invention is a sliding friction resistance mechanism. The biasing means of the shape memory alloy body which expands and pushes up when the temperature rises to the biasing force of the biasing means 16a and 16b. a, 45b, and a sliding friction resistance mechanism provided with biasing force adjusting means 44a, 44b made of a shape memory alloy body that contracts and weakens when the temperature drops. That is, the part 46 is formed.
温度が 0度以下になった場合には付勢力調節手段 4 4 aが付勢方向に対して収 縮し縦方向に対して膨張して (図中 B ) 付勢方向に対して短い形状に形状変化し て、 押し付け付勢手段 1 6 a、 1 6 bの付勢力を弱め、 更に一 1 0度以下になる と付勢力調節手段 4 4 bが付勢方向に対して収縮し縦方向に対して膨張して (図 中 C ) 付勢方向に対して短い形状に形状変化して、 付勢力調節手段 4 4 aととも に押し付け付勢手段 1 6 a、 1 6 bの付勢力を弱めて低温時の滑り摩擦抵抗値の 上昇を抑えるように動作する。 When the temperature drops to 0 ° C or lower, the biasing force adjusting means 44 a contracts in the biasing direction and expands in the vertical direction (B in the figure) to have a shape shorter in the biasing direction. The shape changes and the urging force of the urging means 16a and 16b is weakened, and it becomes even less than 10 degrees And the biasing force adjusting means 4 4 b contracts in the biasing direction and expands in the vertical direction (C in the figure), and changes its shape to a shape shorter in the biasing direction. In conjunction with a, the urging force of the urging means 16a and 16b is reduced to operate to suppress the increase in the sliding friction resistance at low temperatures.
温度が 4 0度以上になった場合には付勢力調節手段 4 5 aは縦方向に対して縮 小し付勢方向に膨張して長くなつて (図中 D ) 押し付け付勢手段 1 6 a、 1 6 b を押しその付勢力を強めて、 温度が 5 5度以上になった場合には付勢力調節手段 When the temperature exceeds 40 degrees, the urging force adjusting means 45a contracts in the vertical direction, expands in the urging direction, and becomes longer (D in the figure). , 16 b to increase the urging force, and when the temperature rises to 55 degrees or more, the urging force adjustment means
4 5 bは縦方向に対して縮小し付勢方向に膨張して長くなつて (図中 E ) 押し付 け付勢手段 1 6 a、 1 6 bを付勢力調節手段 4 5 aとともに押しその付勢力をさ らに強めて、 高温時の滑り摩擦抵抗値の低下を抑えるように動作する。 45 b contracts in the vertical direction, expands in the biasing direction, and becomes longer (E in the figure). The pushing biasing means 16 a and 16 b are pushed together with the biasing force adjusting means 45 a and It operates to further increase the biasing force and suppress the decrease in sliding friction resistance at high temperatures.
温度変化による滑り摩擦抵抗値の変化の範囲の小さい、 より高精度、 高品位の 装置を実現できる。  Higher precision, higher quality equipment with a small range of sliding friction resistance change due to temperature change can be realized.
また、 滑り摩擦抵抗材 1 5 aなどの線当接形態の滑り摩擦抵抗材を用いること により、 温度による滑り摩擦抵抗値の変化を小さいものにできるので、 押し付け 付勢力の変化も小さいものにでき、 したがって形状記憶合金の小型化を実現する という効果を相する。  In addition, by using a sliding friction resistance material in the form of a line contact such as a sliding friction resistance material 15a, the change in the sliding friction resistance value due to temperature can be reduced, so that the change in the pressing force can be reduced. Therefore, it has the effect of realizing the miniaturization of the shape memory alloy.
第 1 3図に示す本発明を実施するための最良の第 8実施の形態において前記本 発明を実施するための最良の第 1の実施の形態と主に異なる点は、 滑り摩擦抵抗 機構部 5 0とメカニカルブレーキ機構部 5 1とを組合わせてなるメカニカルブレ —キ機構付滑り摩擦抵抗機構部 5 2を備えた荷揚装置 5 3を形成した点にある。 軸 5 4には小歯車部 7と雄ネジ部 5 5が該軸 5 4に一体的に設けられている。 軸 5 4には雄ネジ部 5 5にそれぞれの雌ネジ部 6 1、 6 2を螺合させて支持体 The main difference between the eighth preferred embodiment for carrying out the present invention shown in FIG. 13 and the first preferred embodiment for carrying out the present invention is that the sliding friction resistance mechanism 5 The present invention is characterized in that the unloading device 53 is provided with a mechanical friction mechanism having a mechanical friction mechanism 52 with a mechanical brake mechanism in which the mechanical brake mechanism 5 and the mechanical brake mechanism 51 are combined. The shaft 54 is provided with a small gear portion 7 and a male screw portion 55 integrally with the shaft 54. The shaft 54 is screwed with the female threads 61, 62 on the male thread 55 to support
5 6とブレーキ受盤 5 7が設けられている。 5 6 and a brake receiver 57 are provided.
支持体 5 6は胴部 5 8と、 該 5 8と一体的に設けられた鍔状形態の摩擦部材受 部 5 9と、 胴部 5 8の外側に螺刻された溝付き雄ネジ部 6 0と、 内側に螺刻され た雌ネジ部 6 1とからなっている。  The support body 56 includes a body 58, a flange-shaped friction member receiving portion 59 provided integrally with the body 58, and a grooved male screw portion 6 threaded outside the body 58. 0 and a female screw portion 61 threaded inside.
支持体 5 6の胴部 5 8には滑り摩擦抵抗材 1 5 aと 1 5 bを設けた駆動側回転 部 1 1が回転自在に軸支され、 駆動側回転部 1 1の隣に受盤 1 2が支持体 5 6と 一体回転し且つ軸長手方向に移動可能にセッ卜され、 受盤 1 2の隣に押し付け付 勢手段 1 6 aが軸長手方向に移動可能にセットされ、 押し付け付勢手段 1 6 aの 隣には溝付き雄ネジ部 6 0に螺合されたナツト 6 3がセットされ、 ナット 6 3の 締め付けによる押し付け付勢手段 1 6 aの付勢力を所定の強さにして、 受盤 1 2 と摩擦部材受部 5 9で締め挟持するように滑り摩擦抵抗材 1 5 aと 1 5 bに押し 付けてなり、 これらの構成部品により滑り摩擦抵抗機構部 5 0を形成している。 摩擦部材受部 5 9とブレーキ受盤 5 7の間にはブレーキライニング 6 4 a、 6A drive-side rotating unit 11 provided with sliding friction resistance materials 15a and 15b is rotatably supported on the body 58 of the support body 56, and a receiving plate is provided next to the drive-side rotating unit 11 1 2 is set so that it can rotate together with the support 5 6 and move in the longitudinal direction of the shaft, and is pressed next to the receiving plate 1 2 The urging means 16a is set so as to be movable in the longitudinal direction of the shaft, and a nut 63 screwed into the grooved male screw part 60 is set next to the pressing urging means 16a. The urging force of the urging means 16a by tightening is set to a predetermined strength, and the sliding friction resistance members 15a and 15b are pressed against the sliding friction resistance The sliding friction resistance mechanism 50 is formed by these components. Brake lining 6 4 a, 6 between friction member receiving part 59 and brake receiving board 57
4 bを貼り付けた爪車 6 5が回転自在に設けられ、 筐体 6 9側には爪車 6 5の爪 に嚙む爪 6 6が設けられていて、 これらの構成部品によりメカニカルブレーキ機 構 5 1を形成している。 A ratchet wheel 65 on which 4b is attached is rotatably provided, and a pawl 66 which is provided on the housing 69 side is provided on a side of the pawl of the ratchet wheel 65, and a mechanical brake machine is provided by these components. Structure 51 is formed.
6 7はモータ側ブレーキ、 6 8は駆動部 2を制御するインバータである。  Reference numeral 67 denotes a motor-side brake, and reference numeral 68 denotes an inverter for controlling the drive unit 2.
滑り摩擦抵抗機構部 5 0は、 滑り摩擦抵抗材 1 5 aと 1 5 bを貼った駆動側回 転部 1 1が摩擦材受部 5 9と受盤 1 2の間に挟まれ保持されている。 摩擦材受部 The sliding friction resistance mechanism 50 is configured such that the drive-side rotating part 11 on which the sliding friction resistance materials 15 a and 15 b are attached is sandwiched and held between the friction material receiving part 59 and the receiving plate 12. I have. Friction material receiving part
5 9は押し付け付勢手段 1 6 aによって常に一定の力で駆動側回転部 1 1を押し、 駆動側回転部 1 1の回転力は摩擦により摩擦材受部 5 9およぴ受盤 1 2に伝達さ れる構造となっている。 5 9 always pushes the drive side rotating part 11 1 with a constant force by the pressing urging means 16 a, and the rotating force of the drive side rotating part 11 is frictional material receiving part 59 and the receiving plate 1 2 due to friction. The structure is transmitted to
渦卷および地球吊り等、 チェーン 9に定格負荷時の例えば 1 . 5倍以上の力が 作用した場合には、 駆動回転部 1 1が摩擦材受部 5 9と受盤 1 2の間で空転する ことによってモータの駆動力を逃がし、本体およびチェーン 9の破損を防止する。 メカニカルブレーキ機構 5 1は、 ブレーキライニング 6 4 a、 6 4 bを貼った 爪車 6 5が、 雄ネジ部 5 5によりブレーキ受盤 5 7と摩擦受部 5 9で圧着され全 てが一体となっていて、 次のように動作する。  When a force of, for example, 1.5 times or more of the rated load applied to the chain 9 such as a spiral or suspension from the earth, the drive rotating portion 11 idles between the friction material receiving portion 59 and the receiving plate 12. By doing so, the driving force of the motor is released, and the main body and the chain 9 are prevented from being damaged. In the mechanical brake mechanism 51, a ratchet wheel 65 with brake linings 64a and 64b attached is crimped by a male screw part 55 to a brake receiving plate 57 and a friction receiving part 59, all of which are integrated. It works as follows.
(卷上げ時)  (When winding)
爪 6 6と爪車 6 5は嚙合わず、 爪車 6 5は支持体 5 6によるネジの締め込み作 用により, ブレーキ受盤 5 7等と一体となって回転し、 荷は駆動部 2の卷上げ回 転駆動力で引上げられる。  The pawls 66 and the pawls 65 do not fit together, and the pawls 65 rotate integrally with the brake receiver 57, etc. by the screwing operation of the support 56, and the load is driven by the drive unit 2. It is pulled up by the winding drive force.
(停止時) .  (When stopped).
爪 6 6が爪車 6 5に噴合って爪歯車が回転しないように固定されるので、 軸 5 4が荷重により締り回転してブレーキ受盤 5 7を締めてブレーキ利き状態にして 荷を停止させ保持する。 この停止状態では駆動部 2は停止しモータ側ブレーキ 6 7のブレ キが利き状 態となつている。 The pawl 66 is fixed to prevent the pawl gear from rotating when the pawl 66 comes into contact with the ratchet wheel 65, so the shaft 54 rotates tightly due to the load, tightens the brake receiving plate 57, and stops the load with the brake working. And hold. In this stop state, the drive unit 2 stops, and the brake of the motor-side brake 67 is in the dominant state.
(卷下げ時) 駆動部 2に電気が流れ逆回転 (卷下げ回転) し、 駆動回転部 1 1が 卷下げ回転されると、 爪 6 6が爪 * 6 5に嚙合って爪歯車が回転しないように固 定さ† る。  (During unwinding) Electricity flows into the drive unit 2 and reverse rotation (unwind rotation) occurs. When the drive rotation unit 11 is unwinded and rotated, the pawl 66 rotates in accordance with the pawl * 65. Fix it not to be.
爪車 6 5が固定されている状態で駆動回転部 1 1が駆動部 2により卷下げ回転 するとネジの螺合により支持体 5 6が図では左側に移動してブレーキライニング 6 4 a、 6 4 bの締め付けを緩める。  When the driving rotary unit 11 is lowered by the driving unit 2 while the ratchet wheel 65 is fixed, the support 56 moves to the left in the figure by screwing of the screws, and the brake linings 6 4 a, 6 4 Loosen the tightening of b.
ブレーキライニング 6 4 a、 6 4 bの締め付けが緩まると、 これに追随して荷 重により小歯車部 7および軸 5 4が卷き下げ方向に回転して、 ネジ作用によりブ レーキライニング 6 4 a、 6 4 bの締め付けを行い、 ブレーキを利かせる。 すなわち、 卷下げ回転時にはこのブレーキを緩める動作とブレーキを利かせる 動作が交互に行われ動作となって、 荷重に応じたブレーキ力 (締め付け力による 摩擦力) を利かせながら荷を降下させて行く。  When the tightening of the brake linings 6 4a and 6 4b is loosened, the load follows the rotation of the pinion 7 and the shaft 54 in the unwinding direction, and the brake lining 6 4 Tighten a, 64b and apply the brake. In other words, during the unwinding rotation, the operation of loosening the brake and the operation of applying the brake are performed alternately, and the load descends while applying the braking force (friction force by the tightening force) according to the load. .
オプションとするなどして、 後付けでメカニカルブレーキ機構を取付けたり、 滑り摩擦抵抗機構を取付けたりしてメカニカルブレーキ機構付滑り摩擦抵抗機構 を形成するものも本願発明の技術的範疇に含まれるものである。  As an option, a mechanical friction brake mechanism is attached afterwards, or a sliding friction resistance mechanism is mounted to form a sliding friction resistance mechanism with a mechanical brake mechanism, which is also included in the technical category of the present invention. .
モータからなる駆動部 2をインバータ 6 8により制御する場合、 滑り摩擦抵抗 機構部 (5、 5 0 ) のみの構成では、 駆動部 2の卷下げ回転は駆動部 2による回 転 (以下 「駆動回転」 という。) に加えて荷重による引張り回転が働くために、 駆 動回転以上の回転になる。 . このため増えた回転数分だけ駆動部 2には逆起電力が発生する。  In the case where the drive unit 2 composed of a motor is controlled by the inverter 68, if only the sliding friction resistance mechanism (5, 50) is used, the lowering rotation of the drive unit 2 is performed by the rotation of the drive unit 2 (hereinafter referred to as “drive rotation In addition to the above, the rotation is greater than the driving rotation due to the tensile rotation caused by the load. Therefore, a counter electromotive force is generated in the drive unit 2 by the increased number of rotations.
インバータ 6 8ではこの逆起電力を消費することができなく、 インバータ 6 8 を逆起電力から保護するために、 大型の抵抗を設けなければならず、 このため筐 体の外部に抵抗を収納するケースを設けなければならないという問題が生じる。 この起電力からインバータ 6 8を保護するため起電力を消費するめの抵抗を設 けなければならず、 この抵抗が大型のため装置に別体で抵抗を有能するケースを 設けなければならないものであった。 メカニカルブレーキ機構 5 1を設けることにより、 このメカニカルブレーキ機 構 5 1の制動動作により機械的に起電力のエネルギーが消費されるので、 インバ ータ 6 8を使用しながら抵抗を小さくできる、 あるいは設けなくてよい荷揚装置 を実現するものである。 The inverter 68 cannot consume this back electromotive force, and a large resistor must be provided to protect the inverter 68 from the back electromotive force, and therefore the resistor is housed outside the housing. The problem of having to provide a case arises. In order to protect the inverter 68 from this electromotive force, a resistor must be provided to consume the electromotive force.Because this resistor is large, a case must be provided separately in the equipment to enable the resistance. there were. By providing the mechanical brake mechanism 51, since the energy of the electromotive force is consumed mechanically by the braking operation of the mechanical brake mechanism 51, the resistance can be reduced while using the inverter 68, or This realizes a loading device that does not need to be provided.
この技術思想は、 インバータ制御されるモータ装置おいて、 負荷によりモータ の駆動回転数以上にモータが回転することにより生じる起電力を消費するように 機能するメカェカルプレーキ機構を設けてなるモータ装置 いうところにあり、 その効果は起電力からインバータを保護する抵抗をより小さくできる、 あるいは 設けなくてよくできるところにある。  This technical concept is based on an inverter-controlled motor device that is provided with a mechanical rake mechanism that functions to consume an electromotive force generated by the motor rotating at a speed higher than the driving speed of the motor by a load. The effect is that the resistance to protect the inverter from electromotive force can be made smaller or can be omitted.
従来技術においてはネジのリード角を大きく取るため制動力が低くなり、 その ため制動動作による機械的な起電力のエネルギー消費も小さくなるため、 ェネル ギーを消費するための抵抗を大きくする必要があった。  In the conventional technology, the braking force is reduced due to the large lead angle of the screw, and the energy consumption of the mechanical electromotive force due to the braking operation is also reduced.Therefore, it is necessary to increase the resistance for consuming energy. Was.
しかるに本発明の実施例であるメ力二カルプレーキ機構付滑り摩擦抵抗機構部 5 2によれば、 ネジのリード角を小さく取るため制動力が高くなり、 そのため制 動動作による機械的な起電力のエネルギー消費も大きくなり、 エネルギーを消費 するより抵抗を小さくできないし設けなくてよいものとできる。  However, according to the sliding friction resistance mechanism 52 with the mechanical force dual brake mechanism, which is an embodiment of the present invention, the braking force is increased due to the small lead angle of the screw, and therefore the mechanical electromotive force generated by the braking action is reduced. Energy consumption also increases, so resistance can not be reduced and energy can be eliminated rather than consuming energy.
以上の説明から明らかなように、 本発明にあっては次に列挙する効果が得られ る。  As is clear from the above description, the following effects can be obtained in the present invention.
ぐ請求項 1記載の発明の効果 > The effect of the invention described in claim 1>
滑り摩擦抵抗材の当接面を多数線当接形態としたものであるので、 オイル膜が 細かく切断され且つ線当接という狭い範囲での作用となり、 温度変化によるオイ ルの粘性変化の影響を少なくできる、 特に低温域で高粘度状態となって抵抗増強 材として機能するオイルの影響を受け難い高品位の滑り摩擦抵抗機構を実現する という効果を得ることができる。  Since the contact surface of the sliding friction resistance material has a multi-line contact form, the oil film is finely cut and acts in a narrow range of line contact, and the effect of oil viscosity change due to temperature change is reduced. It is possible to obtain an effect of realizing a high-grade sliding friction resistance mechanism which can be reduced, and is not easily affected by oil which functions as a resistance enhancing material due to a high viscosity state particularly in a low temperature region.
実験例によると、 摩擦抵抗材が極細炭素繊維を多数本並べてなる縦糸群と横糸 群を織り形成した当接面が繊維形態で露出して凸凹を形成してなる格子状編み込 み形態の炭素繊維摩擦材であり、 この炭素繊維摩擦材の前記横糸群および縦糸群 のそれぞれの糸 (糸径: 7 μ πι) の頂点部位が線当接部位となるものでは、 常温 ( 2 0度〜 3 0度) で使用上限荷重 1 5 0 0キログラムとしたものにおいては、 - 2 5度の低温時には 1 5 5 0キログラムで滑り摩擦抵抗回転が起こり、 6 0度 の高温時には 1 4 0 0キログラムで滑り摩擦抵抗回転が起こる。 According to the experimental example, the friction-resistant material is a lattice-shaped braided carbon in which the abutting surface formed by weaving the warp group and the weft group formed by arranging a large number of ultrafine carbon fibers is exposed in the form of fibers and forms irregularities. In the case of a fiber friction material, in which the apex portion of each of the yarns (yarn diameter: 7 μπι) of the weft group and the warp group of the carbon fiber friction material serves as a line contacting portion, the room temperature (20 degrees to 0 degree) and the maximum use load of 150 kg is At a low temperature of 25 degrees, sliding frictional resistance occurs at 1550 kilograms, and at a high temperature of 60 degrees, sliding frictional resistance occurs at 140 kilograms.
これに対して紙製部材と熱硬化性榭脂部材を混在して加熱加圧形成してなる最 も優れた滑り摩擦抵抗部材従来品 (C ) においては、 常温 (2 0度〜 3 0度) で 使用上限荷重 1 5 0 0キログラムとしたものにおいては、 一 2 5度の低温時には 1 7 0 0キログラムで滑り摩擦抵抗回転が起こり、 6 0度の高温時には 1 5 0 0 キログラムで滑り摩擦抵抗回転が起こる。  On the other hand, the best sliding friction resistance member (C), which is formed by mixing a paper member and a thermosetting resin member and applying heat and pressure, has a room temperature (20 degrees to 30 degrees). In the case of the upper limit load of 150 kg, the sliding friction resistance rotation occurs at 170 kg at a low temperature of 125 degrees, and the sliding friction at 150 kg at a high temperature of 60 degrees. Resistance rotation occurs.
本発明技術が低温での差が 5 0キログラムであるのに対して従来技術は 2 0 0 キログラムであり、 本発明が低温域で大幅な改善を実現して、 高品位で安全性の 高い装置を実現するものであることは明らかである。  The difference between the present technology and the conventional technology is 50 kilograms at a low temperature of 200 kilograms, and the present invention realizes a significant improvement in the low temperature range, and is a high-quality and highly safe device. It is clear that this is achieved.
また、オイルを暖房して低温域での滑り摩擦抵抗値の増大幅を軽減する方法や、 熱膨張率の高い部品により温度の変化に伴い押し付け付勢手段の押し付け力を調 節して温度の変化による滑り摩擦抵抗値の増減幅を軽減する方法を、 当接面を多 数線当接形態とした滑り摩擦抵抗材を使用することにより、 特に低温域での温度 差による滑り摩擦抵抗値の変化を小さくできるので、 前記各方法を従来技術で実 現しようとしだ場合に比べて、 小型、 低コストで実現するという効果を得ること ができる。  In addition, the oil is heated to reduce the increase in the sliding frictional resistance in the low temperature range, or by adjusting the pressing force of the pressing biasing means with the change in temperature using parts with a high coefficient of thermal expansion. A method to reduce the increase / decrease of the sliding friction resistance due to the change is to use a sliding friction resistance material with the contact surface in the form of a multi-line contact, especially for the sliding friction resistance due to the temperature difference in the low temperature range. Since the change can be reduced, it is possible to obtain the effect of realizing each of the above methods at a small size and at a low cost as compared with the case where the prior art is to be realized.
また、 メカニカルブレーキ機構を設けた装置においては、 冷間時と常温時の滑 り摩擦抵抗が略同じであるので、 冷間時の制動力を下げることなく冷間時〜常温 時の使用において略同じ制動力を安全に発揮する荷揚装置等を実現するという効 果を得ることができる。  Also, in a device equipped with a mechanical brake mechanism, the sliding friction resistance between cold and normal temperature is almost the same, so that it can be almost used in cold to normal temperature without lowering the braking force in cold. The effect of realizing a loading device or the like that safely exerts the same braking force can be obtained.
く請求項 2記載の発明の効果 > Effect of the invention described in claim 2>
前記請求項 1記載の発明と同様な効果を得ることができるとともに、 当接部位 をオイル膜が形成され難い細線部位に形成してなるものであるので、 よりオイル の粘性変化による影響を受けないものを実現するという効果を得ることできる。 く請求項 3記載の発明の効果 >  The same effect as the invention of claim 1 can be obtained, and the contact portion is formed in a thin line portion where an oil film is difficult to be formed, so that it is less affected by a change in oil viscosity. The effect of realizing things can be obtained. Effect of the invention described in claim 3>
押し付け付勢手段の付勢力を温度が上がった場合は強めて行き且つ温度が下が つた場合には弱めて行くようにする付勢力調節手段を設けてなるので、 温度変化 で引き起こされる付勢力の弱まりや強まりによる滑り摩擦抵抗の変化を、 付勢力 を強めるあるいは弱めることにより少なくできるという効果を得ることができる c A biasing force adjusting means is provided that increases the biasing force of the pressing biasing means when the temperature rises and weakens it when the temperature falls. C THAT the weakened or strengthened change in sliding friction resistance due to the induced bias force is, it is possible to obtain an effect of less by weakening or strengthen the biasing force
<請求項 4記載の発明の効果 > <Effect of the invention described in claim 4>
温度の下がったオイルの温度を上昇させるための暖房手段を設けたものである ので、 寒冷地などの低温状態においてオイルの温度変化を小さいものにでき、 結 果、 滑り摩擦抵抗値の変化の少ない高品位な滑り摩擦抵抗機構を実現するという 効果を得ることができる。  A heating means is provided to raise the temperature of the cooled oil, so that the temperature change of the oil can be reduced in low-temperature conditions, such as in cold regions, and as a result, there is little change in the sliding friction resistance. The effect of realizing a high-grade sliding friction resistance mechanism can be obtained.
<請求項 5記載の発明の効果 > <Effect of the invention described in claim 5>
< 1 >従来技術においては滑り摩擦抵抗材は駆動側回転部に固定きれていた。 こ の構造 ίこおいてオイルに漬かって該オイルにより冷却される駆動側回転部 1 1の 冷却作用は、 滑り摩擦抵抗材 1 5 aの固定面 (裏側) を経て負荷側回転部 (受盤 1 2 ) と滑り摩擦当接する滑り摩擦抵抗材の滑り摩擦面 (表面) を冷却するよう に作用する。  <1> In the prior art, the sliding friction resistance material was fixed to the driving side rotating part. In this structure, the cooling action of the drive-side rotating part 11 immersed in oil and cooled by the oil is performed via the fixed surface (back side) of the sliding friction resistance material 15a and the load-side rotating part (receiving plate). It acts to cool the sliding friction surface (surface) of the sliding friction resistance material that comes into contact with 12).
また、 一般的な構成においては駆動側回転部は容積と当接側面積が大きく、 負 荷側回転部 (受盤 1 2 ) は容積と当接側面積が小さいので、 熱放熱効率 (冷却効 率) は駆動側回転部の方が高いのであるが、 滑り摩擦動作時にはその摩擦により 負荷側回転部が熱くなり、 その熱は断熱材である滑り摩擦抵抗材を経て駆動側回 転部に伝わる構造であり、 温度が下がり難く高い温度での動作となっているもの である。 ·  In a general configuration, the drive-side rotating part has a large volume and a contact-side area, and the load-side rotating part (receiving plate 12) has a small volume and a contact-side area. Ratio) is higher in the drive-side rotating part, but during sliding friction operation, the friction heats the load-side rotating part, and the heat is transmitted to the driving-side rotating part through the sliding friction resistance material, which is heat insulating material. It has a structure and operates at a high temperature, where the temperature is unlikely to drop. ·
すなわち、 前述した従来の構造においては、 全体として滑り摩擦抵抗面とその 当接受翻の冷却効率が悪く冷却し難く温度が高くなり、 これにより滑り摩擦抵抗 面の温度が高くなると、 摩擦力が弱まり大きな制動力の低下を招くという問題を 生ずるものである。  In other words, in the conventional structure described above, the cooling efficiency of the sliding frictional resistance surface and the contact and reversal of the sliding frictional surface is low as a whole, and it is difficult to cool down. As a result, the temperature of the sliding frictional resistance surface increases, and the frictional force decreases. This causes a problem of causing a large decrease in braking force.
< 2〉これに対して、 本請求項の発明の構成においては、 冷却された駆動側回転 部の当接面と滑り摩擦抵抗材の滑り摩擦面とが直接に当接する構造であり、 滑り 摩擦動作により発生する摩擦熱がオイルで冷却され且つ放熱効率が高い駆動側回 転部により直接に冷却されることにより、 従来技術より低い温度での滑り摩擦抵 抗動作が得られるので、 摩擦力の弱まりの少なく制動力の低の下小さい装置を実 現するという効果を得るものである。 <請求項 6記載の発明の効果〉 <2> On the other hand, the structure of the present invention has a structure in which the contact surface of the cooled rotating part on the drive side and the sliding friction surface of the sliding friction resistance material directly contact each other. The frictional heat generated by the operation is cooled by the oil and directly cooled by the drive-side rotating section with high heat dissipation efficiency, so that the sliding frictional resistance operation at a lower temperature than that of the conventional technology can be obtained. This has the effect of realizing a small device with little weakening and low braking force. <Effect of the invention according to claim 6>
請求項 1〜 4に記載の滑り摩擦抵抗機構はマイナス 2 0度というような冷間時 において常温時 (2 5度) と変わらない滑り抵抗を実現するものであるので、 こ の滑り摩擦抵抗機構とメカニカルブレーキ機構とを組合せてなるメカニカルブレ ーキ機構付滑り摩擦抵抗機構を構成することにより、 冷間時の制動力を下げるこ となく冷間時〜常温時の使用において略同じ制動力を安全に発揮する荷揚装置等 を実現するという効果を得ることができる。 ' 産業上の利用可能性  The sliding friction resistance mechanism according to claims 1 to 4 realizes a sliding resistance that is not different from that at normal temperature (25 degrees) in a cold state such as minus 20 degrees. And a mechanical brake mechanism to form a sliding friction resistance mechanism with a mechanical brake mechanism, so that almost the same braking force can be obtained in cold to normal temperature use without lowering the cold braking force. It is possible to obtain an effect of realizing a safety device and the like that can be exhibited. '' Industrial applicability
以上のように、 本発明にかかる滑り摩擦抵抗機構およびメカニカルブレ 構付滑り摩擦抵抗機構は、 主に荷揚げ装置を製造する産業で利用される。  As described above, the sliding friction resistance mechanism and the sliding friction resistance mechanism with a mechanical vibration mechanism according to the present invention are mainly used in the industry of manufacturing unloading devices.

Claims

請 求 の 範 囲 The scope of the claims
1 . 駆動側に連絡されて該駆動側の駆動力により回転する駆動側回転部と、 荷重 などの負荷が掛かる負荷側回転部と、 この負荷側回転部あるいは俞記駆動側回転 部に設 ίナられた、 該負荷側回転都あるいは該駆動側回転部と当接する当接面が多 数線当接形態である滑り摩擦抵抗材と、 この滑り摩擦抵抗材を前記負荷側回転部 あるいは前記駆動側回転部のいずれかに付勢力により常時押し付けておくための 押し付け付勢手段とからなり、 前記負荷が使用上限荷重以内では前記負荷側回転 部は前記駆動側回転部と一体となって駆動回転し、 前記負荷が前記使用上限荷重 以上になると前記駆動側回転部が空転状態となって前記駆動側に前記使用上限荷 重以上の負荷が掛からないように動作することを特徴とする滑り摩擦抵抗機構。1. A driving-side rotating unit that is connected to the driving side and rotates by the driving force of the driving-side, a load-side rotating unit that receives a load such as a load, and a load-side rotating unit or the driving-side rotating unit. A sliding frictional resistance member having a contact surface in contact with the load-side rotating member or the driving-side rotating portion in the form of a multi-line contact surface; And a pressing urging means for constantly pressing against one of the side rotating parts by an urging force. When the load is within the upper limit of use load, the load side rotating part is driven integrally with the driving side rotating part. When the load is equal to or more than the upper limit of use load, the driving-side rotating unit is in an idling state and operates so that a load equal to or more than the use upper limit load is not applied to the drive side. mechanism.
2 . 滑り摩擦抵抗部にオイルを介在させる湿式においては、 該線当接部位が駆動 側回転部あるいは負荷側回転部に圧当接している状態では該線当接部位はオイル 膜が形成され難レ、細線部位であることを特徴と請求項 1記載の滑り摩擦抵抗機構。 2. In the wet method in which oil is interposed in the sliding friction resistance portion, it is difficult for the line contact portion to form an oil film when the line contact portion is in pressure contact with the drive side rotating portion or the load side rotating portion. 3. The sliding friction resistance mechanism according to claim 1, wherein the sliding friction resistance mechanism is a thin line portion.
3 . 駆動側に連絡されて該駆動側の駆動力により回転する駆動側回転部と、 荷重 などの負荷が掛かる負荷側回転部と、 この負荷側回転部あるいは前記駆動側回転 部に設けられた摩擦材からなる滑り摩擦抵抗材と、 この滑り摩擦抵抗材を前記負 荷側回転部あるいは前記駆動側回転部のいずれかに付勢力により常時押し付けて おくための押し付け付勢手段と、 前記押し付け付勢手段の付勢力を温度が上がつ た場合は強めて行き且つ温度が下がった場合には弱めて行くようにする熱膨張係 数の大きレ、部品や形状記憶部品などからなる付勢力調節手段とからなることを特 徴とする滑り摩擦抵抗機構。 3. A driving-side rotating unit that is connected to the driving side and rotates by the driving force of the driving-side, a load-side rotating unit that receives a load such as a load, and the load-side rotating unit or the driving-side rotating unit. A sliding friction resistance material made of a friction material; pressing biasing means for constantly pressing the sliding friction resistance material against either the load-side rotating portion or the drive-side rotating portion by a biasing force; The biasing force of the biasing means is increased when the temperature rises, and increased when the temperature rises, and decreased when the temperature falls. A sliding friction resistance mechanism characterized by comprising:
4 . 駆動側に連絡されて該駆動側の駆動力により回転する駆動側回転部と、 荷重 などの負荷が掛かる負荷側回転部と、 この負荷側回転部あるいは前記駆動側回転 部に設けられた摩擦材からなる滑り摩擦抵抗材と、 この滑り摩擦抵抗材を前記負 荷側回転部あるいは前記駆動側回転部のいずれかに付勢力により常時押し付けて おくための押し付け付勢手段と、 温度の下がったオイルの温度を上昇させるため の暖房手段とからなることを特徴とする滑り摩擦抵抗機構。 4. A driving-side rotating unit that is connected to the driving side and rotates by the driving force of the driving side, a load-side rotating unit that receives a load such as a load, and the load-side rotating unit or the driving-side rotating unit. A sliding friction resistance material made of a friction material; pressing biasing means for constantly pressing the sliding friction resistance material against either the load-side rotating portion or the driving-side rotating portion by a biasing force; A sliding friction resistance mechanism comprising heating means for raising the temperature of the oil that has been heated.
5 . 滑り摩擦抵抗材が負荷側回転部側に固定され、 前記滑り摩擦抵抗材の滑り摩 擦面と駆動側回転部とが滑り摩擦当接され、 前記駆動側回転部による冷却作用が 直接前記滑り摩擦抵抗材の前記滑り摩擦面に作用するようにしたことを特徴とす る請求項 1、 2、 3、 4いずれか記載の滑り摩擦抵抗機構。 5. The sliding friction resistance material is fixed to the load side rotating part side, the sliding friction surface of the sliding friction resistance material and the driving side rotating part are brought into sliding friction contact, and the cooling action by the driving side rotating part is directly The sliding friction resistance mechanism according to any one of claims 1, 2, 3, and 4, wherein the sliding friction surface acts on the sliding friction surface.
6 . 請求項 1、 2、 3、 4、 5いずれか記載の滑り摩擦抵抗機構と、 卷上げ動作 時には前記滑り摩擦抵抗機構と一体となって回転し、 停止時にはブレーキが働き 荷重を保持する状態となり、 卷下げ動作時には荷重に応じたブレーキを働かせな がら吊^ 1などの荷重物が降下等するように動作するメカニカルブレーキ機構とか らなることを特徴とするメカニカルプレーキ機構付滑り摩擦抵抗機構。 6. A state in which the sliding friction resistance mechanism according to any one of claims 1, 2, 3, 4, and 5 rotates together with the sliding friction resistance mechanism during the winding operation, and the brake operates and holds the load when stopped. next, the mechanical brakes mechanism with sliding frictional resistance mechanism, characterized in that the mechanical brake mechanism Toka Ranaru that operates to load objects such as hanging ^ 1 reluctant Na exert a brake according to the load drops and the like at the time of卷下up operation.
PCT/JP2004/019801 2003-12-26 2004-12-24 Sliding frictional resistance mechanism and sliding frictional resistance mechanism with mechanical brake mechanism WO2005064176A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-432904 2003-12-26
JP2003432904 2003-12-26

Publications (1)

Publication Number Publication Date
WO2005064176A1 true WO2005064176A1 (en) 2005-07-14

Family

ID=34736494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019801 WO2005064176A1 (en) 2003-12-26 2004-12-24 Sliding frictional resistance mechanism and sliding frictional resistance mechanism with mechanical brake mechanism

Country Status (1)

Country Link
WO (1) WO2005064176A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059674A1 (en) 2007-11-09 2009-05-14 Bayerische Motoren Werke Aktiengesellschaft Vehicle, particularly a motorcycle having a torque-limiting unit
CN112228481A (en) * 2019-07-15 2021-01-15 Ktr***有限公司 Device for transmitting torque

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992745A (en) * 1972-12-30 1974-09-04
JPH0221337U (en) * 1988-07-27 1990-02-13
JPH08268687A (en) * 1995-03-30 1996-10-15 Kito Corp Hoisting and towing device in common use
JPH09308415A (en) * 1996-05-24 1997-12-02 Mamiya Op Co Ltd Double-bearing reel
JPH10157987A (en) * 1996-11-28 1998-06-16 Kito Corp Hoist with load fall preventing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4992745A (en) * 1972-12-30 1974-09-04
JPH0221337U (en) * 1988-07-27 1990-02-13
JPH08268687A (en) * 1995-03-30 1996-10-15 Kito Corp Hoisting and towing device in common use
JPH09308415A (en) * 1996-05-24 1997-12-02 Mamiya Op Co Ltd Double-bearing reel
JPH10157987A (en) * 1996-11-28 1998-06-16 Kito Corp Hoist with load fall preventing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059674A1 (en) 2007-11-09 2009-05-14 Bayerische Motoren Werke Aktiengesellschaft Vehicle, particularly a motorcycle having a torque-limiting unit
CN112228481A (en) * 2019-07-15 2021-01-15 Ktr***有限公司 Device for transmitting torque
CN112228481B (en) * 2019-07-15 2022-06-14 Ktr***有限公司 Device for transmitting torque

Similar Documents

Publication Publication Date Title
US6746768B2 (en) Thermal interface material
CN103863294B (en) Method for manipulating the parking brake with motor-driven parking and braking mechanism
KR0163191B1 (en) Torque regulating device
US8944230B2 (en) Separator spring for clutch plate separation and stabilization
US20090127528A1 (en) Load control power transmission
JPH0835532A (en) Friction lining for torque transmission gear
EP3651863A1 (en) Fall-protection apparatus comprising friction brake
KR20140071267A (en) Brake lining and process for producing same
JP2005123194A (en) Heat spreader for plasma display panel
JPS6239029Y2 (en)
JP2003222168A (en) Self-servo friction brake, friction coefficient measuring unit, and frictional force controlling method
WO2005064176A1 (en) Sliding frictional resistance mechanism and sliding frictional resistance mechanism with mechanical brake mechanism
AU7544894A (en) Friction pads for use in disc brakes
CN217586847U (en) Winch brake block dynamic friction coefficient detection device
EP1248011B1 (en) Disc brake to be opened by torque
JPH0344790B2 (en)
JP2005207587A (en) Sliding friction resistance mechanism and sliding friction resistance mechanism with mechanical brake mechanism
US6966545B2 (en) Chain block
JP2009079635A (en) Wet friction plate
US6209690B1 (en) Load brake
US7232113B2 (en) Draw works
US3493087A (en) Hoist load brake
JP2005214284A (en) Winding machine
US7191885B2 (en) Clutch linings comprising fiber-reinforced ceramic materials
WO2020133458A1 (en) Bidirectional self-locking device and antenna lifting rod

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP