WO2005064050A1 - Acrylic shrinkable fiber and method for production thereof - Google Patents

Acrylic shrinkable fiber and method for production thereof Download PDF

Info

Publication number
WO2005064050A1
WO2005064050A1 PCT/JP2004/019725 JP2004019725W WO2005064050A1 WO 2005064050 A1 WO2005064050 A1 WO 2005064050A1 JP 2004019725 W JP2004019725 W JP 2004019725W WO 2005064050 A1 WO2005064050 A1 WO 2005064050A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
weight
production example
parts
dyeing
Prior art date
Application number
PCT/JP2004/019725
Other languages
French (fr)
Japanese (ja)
Inventor
Sohei Nishida
Kohei Kawamura
Minoru Kuroda
Masahiko Mihoichi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2005516717A priority Critical patent/JP4603486B2/en
Priority to DE602004020800T priority patent/DE602004020800D1/en
Priority to US10/583,182 priority patent/US20070098982A1/en
Priority to AT04808075T priority patent/ATE429530T1/en
Priority to EP04808075A priority patent/EP1698718B1/en
Publication of WO2005064050A1 publication Critical patent/WO2005064050A1/en
Priority to KR1020067011818A priority patent/KR101098809B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/48Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/14Dyeability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]

Definitions

  • Acrylic shrinkable fiber and method for producing the same
  • the present invention relates to an acrylic high-shrinkable fiber having a high shrinkage ratio even after dyeing, and a method for producing the same.
  • acrylic fibers have a hair-like feel and are used in nappi products such as toys and clothing because of their characteristics.
  • the down bear is made of shrinkable fibers and the guard hair part is made of non-shrinkable fibers. Since pile fabrics are required to have appearance characteristics, various colors are also required for shrinkable fibers, but only shrinkage fibers of limited hue colored in the spinning process are present.
  • the acrylic shrinkable fiber of the present invention shrinks by dry heat treatment in a tenter process in pile processing after passing through a dyeing process. So far, acrylonitrile 30-58 weight 0 /. , Vinylidene chloride and vinyl chloride 70-42 weight. /. Also, acrylonitrile synthetic fibers having higher shrinkage than copolymers composed of 0 to 10% by weight of one or more ethylenically unsaturated monomers have been obtained (Japanese Patent Application Laid-Open No. According to the findings of the present inventors, the above-mentioned shrinkable fibers shrink when dyed at 70 ° C. or more, and an adhesive adheres to the back of the pile during pile processing. Of the tenter process to dry
  • the polymer (I) comprising 40% by weight or more of atarilononitonyl and 20% to 60% by weight of vinylidene chloride and a sulfonic acid-containing monomer has a high content of 95% to 60% by weight.
  • the polymer (I) and the polymer ( ⁇ ) are said to be compatible.
  • the present inventors have found that when the polymer (I) and the polymer ( ⁇ ) are compatible with each other, a polymer having a property of lowering heat resistance in addition to a property of improving dyeing properties at low temperatures. Since ⁇ ) is continuously present in the fiber, it greatly affects the shrinkage behavior of the fiber, making it difficult to suppress the dye shrinkage even at a low dyeing temperature. When shrinking greatly during dyeing, the shrinkage rate after dyeing decreases, and when shrinking during dyeing, the packing density of fibers in the dyeing machine decreases, causing pi-pass, which causes dye spots.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and to provide a dyeable acryl-based shrinkable fiber which has a small shrinkage during dyeing and has a high shrinkage even after dyeing.
  • acrylic shrinkable fibers that can be dyed with low dye shrinkage and high shrinkage after dyeing by spinning an incompatible spinning stock solution.
  • the present invention provides 40 to 80 weight of acrylonitrile. / 0 and a halogen-containing monomer 2 0-6 0 weight 0/0 ⁇ Pi sulfonic acid-containing monomer 0 to 5 wt 0/0 become more polymer (Alpha) in 5 0-9 9 parts by weight of acrylonitrile for 5-7 0
  • the present invention also relates to a dyeable acrylic shrinkable fiber produced from a spinning solution in which the polymer ( ⁇ ) and the polymer ( ⁇ ) are incompatible.
  • the other copolymerizable monomer in the acrylic shrinkable fiber is preferably an acrylic ester.
  • the other copolymerizable monomer in the acrylic shrinkable fiber is preferably an acrylic ester. It is preferable that the spinning solution in the acrylic shrinkable fiber is phase-separated into particles of 0.1 to 3 ⁇ or more.
  • the dye shrinkage at 80 ° C or less is 10 ° / 0 or less and the shrinkage after dyeing is 20% or more.
  • the above acrylic shrink fibers have a relative saturation value of at least 60 ° C of at least 0.1 and a relative saturation value of at least 70 ° C of at least 0.8.
  • Acrylic shrinkable fiber of the polymer used in the production of the present invention (A) is, Atari Ronitoriru 4 0-8 0 weight 0/0 and a halogen-containing monomer 2 0-6 0 weight 0/0 ⁇ Pi sulfonic acid-containing monomer 0 It is a polymer containing up to 5% by weight.
  • the content of atarilonitrile is less than 40% by weight, the heat resistance of the obtained fiber will be low.
  • the acrylonitrile content exceeds 80% by weight, heat resistance is increased and sufficient dyeability and shrinkage cannot be obtained.
  • the halogen-containing monomer is preferably a vinyl halide or a vinylidene halide represented by vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, or the like. Two or more kinds can be used as a mixture.
  • This halogen-containing monomer is preferably used in an amount of 20 to 60% by weight in the polymer (A). If it exceeds 60% by weight, the hydrophobicity becomes high and sufficient dyeability cannot be obtained. On the other hand, if the content is less than 20% by weight, the fibers are rusted and the texture is deteriorated.
  • the sulfonic acid-containing monomer includes acrylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid, isoprenesulfonic acid, 2-acrylamide-12-methylpropanesulfonic acid or a metal salt thereof. Phosphoramine salts and the like are preferred, and they can be used alone or as a mixture of two or more.
  • the polymer (B) used in the production of the acrylic shrinkable fiber of the present invention comprises 5 to 70% by weight of atarilonitrile and 20 to 94% by weight of other copolymerizable monomers. / 0 and a polymer containing 1 to 40% by weight of a sulfonic acid-containing monomer.
  • acrylonitrile is 5 to 70% by weight. / 0 is preferably used. If it exceeds 70% by weight, heat resistance becomes high and sufficient dyeability and shrinkage cannot be obtained.
  • other copolymerizable monomers include acrylic acid / methacrylic acid and their lower alkyl esters, N- or N, N-alkyl-substituted aminoalkyl esters / glycidyl esters, and Lilamide methacrylamide and their N or N, N-alkyl substituents, carboxyl group-containing vinyl monomers represented by acrylic acid, methacrylic acid ditaconic acid, etc.
  • Anionic vinyl monomers such as ammonium salts, cationic vinyl monomers such as quaternary aminoalkyl esters of acrylic acid and methacrylic acid, or lower alkyl ethers containing butyl groups, and butyl groups typified by butyl acetate Contained lower power rubonic ester, vinyl chloride, vinylidene chloride, Of Bulle, halogenated vinyl ⁇ Pi vinylidene halides typified by bromide Biniri den or the like, styrene and the like are preferable, and can be used singly or two or more of these monomers.
  • the other copolymerizable monomer is preferably 20 to 94% by weight.
  • an atalylic acid ester as another copolymerizable monomer.
  • the acrylate methyl acrylate, ethyl acrylate, butyl acrylate and the like are preferable, and these monomers can be used alone or in combination of two or more.
  • the sulfonic acid-containing monomer in the polymer (B) is acrylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid, isoprenesulfonic acid, 2-acrylamide 2-methylpropanesulfonic acid, or a metal salt or a diamine salt thereof. Can be used alone or as a mixture of two or more.
  • the amount of the sulfonic acid-containing monomer is 1 to 40 weight. / 0 is preferable, but if it exceeds 40% by weight, voids and agglomeration occur in the fiber, and the strength is reduced.
  • the total content of the sulfonic acid group-containing monomer in the polymer (A) and the polymer (B) contained in the fiber is as follows: ))
  • polymer (B) are preferably from 0.1 to 10 parts by weight, more preferably from 0.2 to 5 parts by weight, based on the total amount of monomers. If the amount is less than 0.1 part by weight, sufficient dyeability cannot be obtained, and if the amount is more than 10 parts by weight, voids and agglomeration occur in the fibers, and the strength is undesirably reduced. Further, by the inclusion polymer containing sulfonic acid monomer (B) 1 0 wt 0/0 or more, the polymer (A) and the polymer (B) tends to incompatibility.
  • the polymer (A) and the polymer (B) of the present invention are compounds known as polymerization initiators, for example,
  • the polymer (A) and the polymer (B) of the present invention may be an organic solvent such as acetone, acetonitrile, dimethylformamide, dimethylacetamide, dimethylsulfoxide or an inorganic solvent such as zinc chloride, nitric acid, and rhodane. Dissolve in salt to make a spinning stock solution.
  • organic solvent such as acetone, acetonitrile, dimethylformamide, dimethylacetamide, dimethylsulfoxide
  • an inorganic solvent such as zinc chloride, nitric acid, and rhodane.
  • Dissolve in salt to make a spinning stock solution.
  • inorganic and / or organic pigments such as titanium oxide or coloring pigments, stabilizers that are effective in preventing fire, coloring, weathering, etc. as long as they do not hinder spinning. It is.
  • the mixing ratio of the polymer (A) and the polymer (B) of the present invention is less than 1% by weight of the polymer (B), sufficient dyeability cannot be obtained. Undesirably, voids and agglomeration occur on the surface, resulting in a decrease in strength and dyeability.
  • the term “immiscible” in the present invention preferably refers to a state in which the spinning dope is phase-separated into particles of 0.1 to 30 ⁇ , and more preferably a state in which the spinning solution is phase-separated into particles of 6-1.
  • the state of phase separation of less than 0.1 ⁇ the properties of the polymer ( ⁇ ) are reflected and the shrinkage ratio during dyeing increases, and in the state of phase separation exceeding 30 in, voids are formed in the fiber. Adhesion occurs and strength and dyeing properties decrease, which is not desirable.
  • the polymer (A) and the polymer (B) are composed of an incompatible spinning solution, the polymer (A) having a high abundance ratio in the fiber is the sea and the abundance ratio. It is considered that the low polymer (B) has an island-sea structure. Therefore, the polymer (B) has low heat resistance because it does not exist continuously in the fiber, but does not significantly affect the shrinkage behavior. Therefore, the fiber composed of the incompatible spinning dope can have a lower dyeing shrinkage ratio than the fiber composed of the compatible spinning dope.
  • the shrinkage of the shrinkable fiber is determined by the resin composition and the spinning method, if the shrinkage is large in the dyeing step, the shrinkage in the subsequent pile processing step will be small. Therefore, the shrinkage rate after dyeing can be further increased by reducing the shrinkage rate.
  • the compatibility between the polymer (A) and the polymer (B) is reduced, so that incompatibility can be promoted.
  • the dye shrinkage ratio in the present invention is an index of how much a fiber shrinks by dyeing, and is obtained as follows.
  • the length L of the fiber after treating the fiber of length Lo in a water bath at an arbitrary temperature for 60 minutes was measured, and the length L was determined by the following equation.
  • Staining shrinkage (%) ((L o-L) / L o) X I 00
  • the shrinkage rate after dyeing in the present invention is an index of how much the fiber after dyeing shrinks in the tenter process, and is determined as follows.
  • the fiber after dyeing was treated at 130 ° C. for 5 minutes using a soaking oven, and the length Ld of the fiber was measured, and the length Ld was determined by the following equation.
  • an acrylic shrinkable fiber of the present invention spinning is performed from a nozzle by a conventional wet or dry spinning method, followed by drawing and drying. Further, if necessary, stretching and heat treatment may be performed. Further, the obtained fiber can be stretched 1.3 to 4.0 times at 70 to 140 ° C. to obtain a contracted fiber.
  • the dye shrinkage ratio when the dye shrinkage ratio is large, it is preferable to carry out a relaxation treatment of 1% or more in the fiber manufacturing process in order to suppress shrinkage.
  • the mitigation process is It is preferable to carry out at 70 ° C to 140 ° C of wet heat or dry heat.
  • the dyeing shrinkage can be suppressed by increasing the processing temperature and the relaxation rate.However, the relaxation treatment under excessive conditions also reduces the shrinkage rate after dyeing. Relaxation treatment of 20% or less is preferred.
  • the acrylic shrinkable fiber of the present invention is shrunk in a tenter process in pile processing.
  • the tenter process preferably has a dry heat of 110 to 150 ° C, and is usually around 130 ° C. Therefore, the shrinkage after dyeing is measured under dry heat at 130 ° C for 5 minutes.
  • the dyeing shrinkage increases as the dyeing temperature increases. Therefore, if the dyeing temperature exceeds 90 ° C, the dye shrinkage rate increases, which is not preferable. Furthermore, since the remaining shrinkage decreases when the dye shrinks greatly during dyeing, it becomes difficult to increase the shrinkage after dyeing to 20% or more. On the other hand, if the dye shrinkage exceeds 10%, the packing density of the fibers in the dyeing machine will decrease, causing by-passes, which may cause dye spots. Further, there is a disadvantage that the crimp generated during shrinkage becomes difficult to elongate in the polisher process at the time of pile processing, and a pile fabric having a desired appearance and texture cannot be obtained.
  • the relative saturation value referred to in the present invention is an index of the dyeing ability of a fiber. The fiber is dyed at an arbitrary temperature for 60 minutes using a supersaturated amount of MalachiteGleen to obtain a saturated dyeing amount.
  • the relative saturation value was determined from the saturated dyeing amount.
  • the saturated dyeing amount and the relative saturation value were determined by the following equations.
  • Relative saturation value saturation dyeing amount X 400/463
  • the acryl-based shrinkable fiber of the present invention has a relative saturation value of 0.1 or more, light-colored dyeing becomes possible. Further, since the dye can be dyed from a light color to a dark color and further to a black color with a relative saturation value of 0.8 or more, the relative saturation is preferably 0.8 or more.
  • the phase separation state is determined by observing the spinning stock solution in which the base dope and the blended polymer are mixed at an arbitrary ratio using a phase-contrast microscope (ANS30, manufactured by ARIO TECHNO CORPORATION) and determining the granular system of the blended polymer separated into particles. The measurement was performed at 10 points at random and evaluated by the average value.
  • ANS30 manufactured by ARIO TECHNO CORPORATION
  • a card sliver was made via an opener and a card. Then, sliver knitting was performed with a high pile weaving machine, the pile portion was cut by shearing to make the pile length uniform, and the back surface of the pile was back-coated with an acrylate-based adhesive. Next, the adhesive was dried at 130 ° C. for 5 minutes, and the shrinkable fibers were shrunk. After that, it was finished to high pile by polisher finishing and shearing.
  • the sensory evaluation of the step pile fabric created as described in (2) was made based on a four-point scale from the visual and sensory point of view, in terms of the level of the appearance characteristics in which the step between the long pile section and the short pile section was emphasized. And evaluated according to the following criteria.
  • the step pile fabric has an appearance characteristic in which a step between a long pile portion and a short pile portion is greatly emphasized.
  • the step pile fabric has an appearance characteristic in which a step between a long pile portion and a short pile portion is emphasized.
  • ion-exchanged water 2.00 parts of ion-exchanged water, 0.9 parts of sodium lauryl sulfate, 0.43 parts of sulfurous acid, 0.22 parts of sodium bisulfite, 0.001 part of iron sulfate, 0.001 part of acrylonitrile (hereinafter referred to as AN) 4. 9 parts, chloride chloride (hereinafter referred to as VC) 52.5 5 parts were charged and purged with nitrogen. The temperature inside the polymerization machine was adjusted to 50 ° C, and 0.035 parts of ammonium persulfate was added as an initiator to start polymerization.
  • VC chloride chloride
  • the obtained shrink fiber was crimped and cut to 32 mm, and then Maxilon Red d GRL (manufactured by Chipa Specialty Chemicals Co., Ltd.) 0.2% omf dye and Ultra MT # 100 (Mitejima Chemical Co., Ltd. Dyeing was performed at 60 ° C, 70 ° C, and 80 ° C for 60 minutes using 0.5 g, L of a dyeing aid. Dyed fibers 70 in weight percent and the non-shrinkage raw cotton "Kanecaron (registered trademark)" and RCL 12. 2 dtex, 44 mm 30 weight (Kaneka Corporation) 0/0 cotton mixing created a high pile . At that time, the pile length was cut to 15 mm for shirring after sliver cutting and the pile length to 18 mm after polisher finishing to obtain a high pile.
  • the drawn yarn obtained in Production Example 1 was subjected to a 5% relaxation treatment at 110 ° C.
  • a mixture obtained so as to have a ratio of 9: 1 was used as a spinning dope.
  • the obtained spinning solution is discharged through a 0.08 ⁇ , 8500-hole die into a 30% by weight acetone aqueous solution at 25 ° C, and further stretched 2.0 times in a 20% by weight acetone aqueous solution at 25 ° C. After that, it was washed with water at 60 ° C. Then, the 4.4 dtex drawn yarn which was dried at 130 ° C and further stretched 1.8 times at 105 ° C was subjected to a 5% relaxation treatment at 110 ° C. Further, a high pile was prepared from the fiber subjected to the relaxation treatment in the same manner as in Production Example 1. (Production Example 4)
  • the drawn yarn obtained in Production Example 4 was subjected to a relaxation treatment of 5% at 110 ° C. Further, a high pile was prepared from the fiber subjected to the relaxation treatment by using the same method as in Production Example 1.
  • the solution of Polymer 3 prepared in Production Example 4 was mixed with the solution of Polymer 3 prepared by adding acetone so that the amount of Polymer 3 prepared in Production Example 3 became 30% by weight, and the weight ratio of the polymer was changed.
  • the obtained undiluted spinning solution was subjected to relaxation treatment in the same manner as in Production Example 3 to prepare a fiber.
  • a high pile was prepared in the same manner as in Production Example 1 using the fiber subjected to the relaxation treatment.
  • the drawn yarn obtained in Production Example 7 was subjected to a relaxation treatment of 5% at 110 ° C.
  • the drawn yarn obtained in Production Example 11 was subjected to a relaxation treatment of 5% at 110 ° C.
  • the fiber subjected to the relaxation treatment was subjected to a high pie using the same method as in Production Example 1. Created.
  • the drawn yarn obtained in Production Example 11 was subjected to a 5% relaxation treatment at 110 ° C.
  • the drawn yarn obtained in Production Example 13 was subjected to a 5% relaxation treatment at 110 ° C.
  • Acetone 187 parts, water 47 parts, AN 50 in 5 L internal pressure polymerization reactor Parts, 25 parts of MA, 10 parts of vinylidene chloride (hereinafter referred to as VD) and 15 parts of SAM were charged, and polymerized in the same manner as for polymer 2 of Production Example 1 to obtain a solution of polymer 10.
  • the solution of polymer 10 was added to the solution of polymer 1 in which acetone was added and dissolved so that the amount of polymer 1 obtained in Production Example 1 was 30% by weight, and the weight ratio of polymer 1 was 10: 9.
  • the mixture mixed at a ratio of 1: 1 was used as a spinning dope.
  • the obtained spinning stock solution was spun using the same method as in Production Example 1 to obtain a drawn yarn. Using the obtained drawn yarn, a high pile was prepared in the same manner as in Production Example 1.
  • the drawn yarn obtained in Production Example 17 was subjected to a 5% relaxation treatment at 110 ° C.
  • Table 1 shows the method for producing the fibers obtained in Production Examples 1 to 18.
  • composition the composition blend polymer / pace polymer relaxation treatment
  • the contracted fibers obtained in Production Examples 1, 2, 4, 5, 7 to 18 were dyed at 60 ° C, 70 ° C, and 80 ° C for 60 minutes.
  • Table 2 shows the values of the relative saturation value, the dye shrinkage ratio, and the post-dye shrinkage ratio.
  • the dye shrinkage rate is reduced to 10% or less by dyeing at 60 to 80 ° C, and the shrinkage rate after dyeing is increased to 20% or more after dyeing.
  • the relative saturation value becomes 0.1 or more at a temperature of 70 ° C or more and the relative saturation value becomes 0.8 or more.
  • the shrinkable fibers obtained in Production Examples 3 and 6 were dyed at 60 ° C., 70 ° C. and 80 ° C. for 60 minutes.
  • Table 2 shows the relative saturation value, staining shrinkage, and shrinkage after staining.
  • Example 1 Production Example 1 10 0.2 1.0 ⁇ 2 7 ⁇ ⁇ 36 30 ⁇ ⁇ ⁇ ⁇ Example 2 Production Example 2 10 1-2.2 ⁇ ⁇ .7 ⁇ 1 24 ⁇ ⁇ ⁇ Comparative Example 1 Production Example 3 Compatible 0.3 1.0 2.3 8 19 30 30 21 10 ⁇ ' ⁇ X Example 3 Production Example 4 7 0.3 1.1 ⁇ 3 9- ⁇ 37 32 ⁇ ⁇ ⁇ ⁇ Example 4 Production Example 5 7 ⁇ ⁇ 2.4 ⁇ -8 ⁇ ⁇ 26 1 ⁇ ⁇ Comparative Example 2 Compatible 0.4 1.3 2.5 9 20.35 28 18 5 ⁇ X
  • Example 5 Production Example 7 g 0.3 1.0 ⁇ 28- ⁇ 36 31 ⁇ ⁇ ⁇ Example 6
  • Production Example 8 9 ⁇ 1 2.1 ⁇ ⁇ 8- ⁇ 24 1 ⁇ ⁇
  • Example 7 Production Example 9 11 0.2 0.8 ⁇ 2 6 ⁇ 35 30 ⁇ ⁇ ⁇
  • Example 8 Production Example 10 11 ⁇ ⁇ 1.9 one ⁇ : 6 ⁇ -24 ⁇ ⁇ O
  • Example 9 Production Example "12 0.1 0.8 ⁇ 2 6 ⁇ ⁇ 36 31 ⁇ ⁇ ⁇ ⁇ Example 10
  • Production example 12 12 ⁇ ⁇ 2.2 ⁇ -7 ⁇ 1 24 ⁇ 1 O
  • Production example 13 11 0.2 0.9 ⁇ 2 5 1 34 29 ⁇ ⁇ ⁇ ⁇
  • Example 12 Production failure "I4 11 ⁇ ⁇ 1.8 ⁇ 1 7 1-23-- ⁇
  • Example 13 Production example 15 6 0.1 0.8 ⁇ 2 5 ⁇ 34 29 1 ⁇ ⁇ ⁇
  • Example 14 Production example 16 6 ⁇ ⁇ 1.8 ⁇ ⁇ 6
  • the acrylic shrinkable fiber of the present invention has a small shrinkage during dyeing and has a high shrinkage even after dyeing. As a result, a wide range of new products such as clothing, toys (stuffed toys, etc.) and interior goods It enables planning.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

A method for producing an acrylic dyeable and shrinkable fiber being reduced in the shrink during dying and exhibiting a high shrinkage factor even after dyeing, which comprises spinning incompatible fluid stocks for spinning.

Description

明細書  Specification
アクリル系収縮繊維及びその製造方法 技術分野  Acrylic shrinkable fiber and method for producing the same
本発明は、 染色後においても高収縮率を有する染色できるアクリル系高収 縮繊維及び製造方法に関する。  The present invention relates to an acrylic high-shrinkable fiber having a high shrinkage ratio even after dyeing, and a method for producing the same.
背景技術 Background art
従来、 アクリル系繊維は、 獸毛様風合 、を有し、 その特徴から玩具、 衣料 等の立毛商品に用いられている。 なかでも、 立毛感、 天然調の外観を持たせ るために、 外観上ダウンベア一部を収縮繊維、 ガードヘアー部を非収縮繊維 で構成する例が多い。 パイル布帛には、 外観特性が要求さ るため、 収縮繊 維にも様々な色相が求められるが、 収縮繊維は紡糸工程で着色された限られ た色相の収縮繊維しか存在しない。  Conventionally, acrylic fibers have a hair-like feel and are used in nappi products such as toys and clothing because of their characteristics. Above all, in order to give a napped feel and a natural appearance, there are many cases where the down bear is made of shrinkable fibers and the guard hair part is made of non-shrinkable fibers. Since pile fabrics are required to have appearance characteristics, various colors are also required for shrinkable fibers, but only shrinkage fibers of limited hue colored in the spinning process are present.
本発明のアクリル系収縮繊維は、 染色工程を経た後、 パイル加工における テンター工程で乾熱処理され収縮する。 これまでに、 アクリロニトリル 3 0 〜 5 8重量0 /。、 塩化ビニリデンおよぴ塩化ビニル 7 0〜 4 2重量。/。及ぴ 1種 以上のエチレン性不飽和単量体 0〜1 0重量%で構成される共重合体より高 収縮性を有するァクリロ二トリル系合成繊維が得られているが (特開昭 6 0 - 1 1 0 9 1 1号公報)、 本発明者らの知見では、 上記の収縮繊維は 7 0 °C以 上の染色で収縮してしまい、 パイル加工時のパイル裏面に接着剤を付着し乾 燥させるテンター工程の The acrylic shrinkable fiber of the present invention shrinks by dry heat treatment in a tenter process in pile processing after passing through a dyeing process. So far, acrylonitrile 30-58 weight 0 /. , Vinylidene chloride and vinyl chloride 70-42 weight. /. Also, acrylonitrile synthetic fibers having higher shrinkage than copolymers composed of 0 to 10% by weight of one or more ethylenically unsaturated monomers have been obtained (Japanese Patent Application Laid-Open No. According to the findings of the present inventors, the above-mentioned shrinkable fibers shrink when dyed at 70 ° C. or more, and an adhesive adheres to the back of the pile during pile processing. Of the tenter process to dry
熱では大きく収縮しない。 また、 7 0 °C未満の染色では収縮を抑えテンター 工程の熱で収縮させる事が出来るが、 十分な染色性が得られない。 Does not shrink significantly with heat. In the case of dyeing at less than 70 ° C, shrinkage can be suppressed and shrinkage can be achieved by the heat of the tenter process, but sufficient dyeing properties cannot be obtained.
低温染色性を向上させる為、 アタリロニトニル 4 0重量%以上と塩化ビ二 リデン及ぴスルホン酸含有モノマー 2 0〜6 0重量%とよりなる重合体(I ) 9 5〜6 0重量部に、 高い染色性を有するアクリロニトリル 3 0〜 7 5重 量0 /0とメチルァクリレート 2 5〜7 0重量%とよりなる重合体 (Π ) 5〜4 0重量部を混合する事で、 染色できる収縮繊維が得られている (特許 2 5 6 6 8 9 0号公報)。 この収縮繊維は低温での染色性を向上させる事で染色収縮 率を抑え、 染色後に 2 0 %以上収縮する収縮繊維が得られているが、 重合体 (I ) と重合体 (π ) は相溶するとされている。 本発明者らの知見で は、 重合体 (I ) と重合体 (π ) が相溶する場合、 低温での染色性を向上さ せる性質の他に耐熱性を低くする性質を持つ重合体 (π ) が繊維中に連続し て存在する為、 繊維の収縮挙動に大きく反映し、 低い染色温度でも染色収縮 率を抑える事が困難となる。 染色時に大きく収縮すると染色後収縮率が小さ くなり、 また、 染色時に収縮すると染色機中の繊維の詰め密度が小さくなり パイパスが生じる為、 染め斑の原因となる。 さらには、 収縮時に生じる捲縮 がパイル加工時のポリッシヤー工程で伸ぴにくい等の欠点があり、 所望の外 観、 風合いを有するパイル布帛が得られない。 これらの問題はいまだ解決さ れておらず、 染色時の収縮が小さく、 染色後においても高収縮率を有する染 色可能なアクリル系縮繊維は得られていない。 In order to improve the low-temperature dyeability, the polymer (I) comprising 40% by weight or more of atarilononitonyl and 20% to 60% by weight of vinylidene chloride and a sulfonic acid-containing monomer has a high content of 95% to 60% by weight. acrylonitrile 3 0-7 5 by weight 0/0 and methyl § chestnut rate 2 5-7 0% by weight and more becomes a polymer having dyeability ([pi) 5 to 4 0 parts by weight by mixing the staining can shrink Fibers have been obtained (Japanese Patent No. 25666690). This shrinkable fiber suppresses the dye shrinkage rate by improving the dyeability at low temperatures, and shrinkable fiber that shrinks by 20% or more after dyeing is obtained. The polymer (I) and the polymer (π) are said to be compatible. The present inventors have found that when the polymer (I) and the polymer (π) are compatible with each other, a polymer having a property of lowering heat resistance in addition to a property of improving dyeing properties at low temperatures. Since π) is continuously present in the fiber, it greatly affects the shrinkage behavior of the fiber, making it difficult to suppress the dye shrinkage even at a low dyeing temperature. When shrinking greatly during dyeing, the shrinkage rate after dyeing decreases, and when shrinking during dyeing, the packing density of fibers in the dyeing machine decreases, causing pi-pass, which causes dye spots. Further, there is a drawback that the crimp generated during shrinkage is difficult to be stretched in the polisher process during pile processing, and a pile fabric having a desired appearance and texture cannot be obtained. These problems have not been solved yet, and a dyeable acrylic shrinkable fiber which has a small shrinkage during dyeing and has a high shrinkage even after dyeing has not been obtained.
発明の開示 Disclosure of the invention
そこで本発明は、上記の従来技術の問題を解消し、染色時の収縮を小さく、 染色後においても高収縮率を有する染色可能なァクリル系収縮繊維を得る事 にある。  The present invention has been made to solve the above-mentioned problems of the prior art, and to provide a dyeable acryl-based shrinkable fiber which has a small shrinkage during dyeing and has a high shrinkage even after dyeing.
本発明者らは、 鋭意検討した結果、 非相溶な紡糸原液を紡糸する事で、 染 色収縮を小さく、 かつ高い染色後収縮率を有 -Τる染色できるアクリル系収縮 繊維を見出した。  As a result of intensive studies, the present inventors have found acrylic shrinkable fibers that can be dyed with low dye shrinkage and high shrinkage after dyeing by spinning an incompatible spinning stock solution.
すなわち、 本発明は、 アクリロニトリル 4 0〜8 0重量。 /0とハロゲン含有 モノマー 2 0〜6 0重量0 /0及ぴスルホン酸含有モノマー 0〜5重量0 /0とより なる重合体 (Α) 5 0〜 9 9重量部に、 アクリロニトリル 5〜 7 0重量%と その他共重合可能なモノマー 2 0〜9 4重量%及ぴスルホン酸含有モノマー 1〜4 0重量%とよりなる重合体 (Β ) 1〜5 0重量部を混合した重合組成 物よりなり、 重合体 (Α) と重合体 (Β ) が非相溶である紡糸原液から製造 される染色できるアクリル系収縮繊維に関する。 That is, the present invention provides 40 to 80 weight of acrylonitrile. / 0 and a halogen-containing monomer 2 0-6 0 weight 0/0 及Pi sulfonic acid-containing monomer 0 to 5 wt 0/0 become more polymer (Alpha) in 5 0-9 9 parts by weight of acrylonitrile for 5-7 0 A polymer consisting of 20 to 94% by weight of a copolymerizable monomer and 20 to 94% by weight of a monomer containing sulfonic acid and 1 to 40% by weight of a sulfonic acid-containing monomer. The present invention also relates to a dyeable acrylic shrinkable fiber produced from a spinning solution in which the polymer (Α) and the polymer (Β) are incompatible.
上記のアクリル系収縮繊維におけるその他共重合可能なモノマーは、 ァク リル酸エステルである事が好ましい。  The other copolymerizable monomer in the acrylic shrinkable fiber is preferably an acrylic ester.
上記のアクリル系収縮繊維におけるその他共重合可能なモノマーは、 ァク リル酸エステルである事が好ましい。 上記のアクリル系収縮繊維における紡糸原液が 0 . 1〜3 Ο μ πι以上の粒 子状に相分離している事が好ましい。 The other copolymerizable monomer in the acrylic shrinkable fiber is preferably an acrylic ester. It is preferable that the spinning solution in the acrylic shrinkable fiber is phase-separated into particles of 0.1 to 3 μμπι or more.
上記のアクリル系収縮繊維において、 8 0 °C以下の染色収縮率が 1 0 °/0以 下及び染色後収縮率が 2 0 %以上である事が好ましい。 In the above acrylic shrinkable fibers, it is preferable that the dye shrinkage at 80 ° C or less is 10 ° / 0 or less and the shrinkage after dyeing is 20% or more.
上記のアクリル系収縮繊維における、 6 0 °C以上の相対飽和値が 0 . 1以 上であり、かつ、 7 0 °C以上の相対飽和値が 0 . 8以上である事が好ましい。 上記のァクリル系収縮繊維の製造方法において、 1〜2 0 %の緩和処理を 行う事が好ましい。  It is preferable that the above acrylic shrink fibers have a relative saturation value of at least 60 ° C of at least 0.1 and a relative saturation value of at least 70 ° C of at least 0.8. In the above-mentioned method for producing acryl-based shrinkable fibers, it is preferable to carry out a relaxation treatment of 1 to 20%.
本発明のアクリル系収縮繊維の製造に用いられる重合体 (A) は、 アタリ ロニトリル 4 0〜 8 0重量0 /0とハロゲン含有モノマー 2 0〜 6 0重量0 /0及ぴ スルホン酸含有モノマー 0〜 5重量%を含む重合体である。 Acrylic shrinkable fiber of the polymer used in the production of the present invention (A) is, Atari Ronitoriru 4 0-8 0 weight 0/0 and a halogen-containing monomer 2 0-6 0 weight 0/0 及Pi sulfonic acid-containing monomer 0 It is a polymer containing up to 5% by weight.
前記重合体 (A) において、 アクリロニトリルを 4 0〜8 0重量0 /0用いる 事が好ましいが、 Wherein the polymer (A), but it is preferable to use 4 0-8 0 weight 0/0 acrylonitrile,
アタリロニトリルの含有量が 4 0重量%未満では、 得られる繊維の耐熱性が 低くなる。 また、 アクリロニトリルの含有量が 8 0重量%を超えると、 耐熱 性が高くなり十分な染色性、 収縮率が得られない。 If the content of atarilonitrile is less than 40% by weight, the heat resistance of the obtained fiber will be low. On the other hand, when the acrylonitrile content exceeds 80% by weight, heat resistance is increased and sufficient dyeability and shrinkage cannot be obtained.
本発明の重合体 (A) において、 ハロゲン含有モノマーとは塩化ビニル、 塩化ビユリデン、 臭化ビュル、 臭化ビニリデン等に代表されるハロゲン化ビ 二ル及ぴハロゲン化ビニリデン類等が好ましく、 単独もしくは 2種以上混合 して用いる事ができる。 このハロゲン含有モノマーは重合体 (A) において 2 0〜6 0重量%用いる事が好ましい。 6 0重量%を超えると疎水性が高く なり十分な染色性が得られない。 また、 2 0重量%未満では繊維にがさつき が生じ蝕感が悪くなる。  In the polymer (A) of the present invention, the halogen-containing monomer is preferably a vinyl halide or a vinylidene halide represented by vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, or the like. Two or more kinds can be used as a mixture. This halogen-containing monomer is preferably used in an amount of 20 to 60% by weight in the polymer (A). If it exceeds 60% by weight, the hydrophobicity becomes high and sufficient dyeability cannot be obtained. On the other hand, if the content is less than 20% by weight, the fibers are rusted and the texture is deteriorated.
本発明の重合体 (A) においてスルホン酸含有モノマーとは、 ァリルスル ホン酸、メタリルスルホン酸、スチレンスルホン酸、ィソプレンスルホン酸、 2—ァクリルアミド一 2—メチルプロパンスルホン酸またはこれらの金属塩 類おょぴァミン塩類等が好ましく、 単独もしくは 2種以上混合して用いる事 ができる。 本発明の重合体 (A) において、 スルホン酸含有モノマーの含有 量を 0〜 5重量%用いる事が好ましいが、 5重量%を超えるとでは繊維にポ イドや膠着が生じ、 強度が低下する。 In the polymer (A) of the present invention, the sulfonic acid-containing monomer includes acrylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid, isoprenesulfonic acid, 2-acrylamide-12-methylpropanesulfonic acid or a metal salt thereof. Phosphoramine salts and the like are preferred, and they can be used alone or as a mixture of two or more. In the polymer (A) of the present invention, it is preferable to use the sulfonic acid-containing monomer in an amount of 0 to 5% by weight. Id and agglomeration occur, reducing strength.
本発明のアクリル系収縮繊維の製造に用いられる重合体 (B ) は、 アタリ ロニトリル 5〜 7 0重量%とその他共重合可能なモノマー 2 0〜 9 4重量。 /0 及ぴスルホン酸含有モノマー 1〜 4 0重量%含む重合体である。 The polymer (B) used in the production of the acrylic shrinkable fiber of the present invention comprises 5 to 70% by weight of atarilonitrile and 20 to 94% by weight of other copolymerizable monomers. / 0 and a polymer containing 1 to 40% by weight of a sulfonic acid-containing monomer.
前記重合体 (B ) において、 アクリロニトリルを 5〜 7 0重量。 /0用いる事 が好ましい。 7 0重量%を超えると、 耐熱性が高くなり十分な染色性、 収縮 率が得られない。 In the polymer (B), acrylonitrile is 5 to 70% by weight. / 0 is preferably used. If it exceeds 70% by weight, heat resistance becomes high and sufficient dyeability and shrinkage cannot be obtained.
本発明の重合体 (B ) において、 その他共重合可能なモノマーとしては、 ァクリル酸ゃメタクリル酸及ぴそれらの低級アルキルエステル、 Nまたは N, N—アルキル置換したアミノアルキルエステルゃグリシジルエステル、 ァク リルアミ ドゃメタクリルアミ ド及ぴそれらの Nまたは N, N—アルキル置換 体、 アクリル酸、 メタクリル酸ゃィタコン酸等に代表されるカルボキシル基 含有ビニル単量体おょぴそれらのナトリゥム、 力リゥムまたはアンモニゥム 塩等のァニオン性ビュル単量体、 ァクリル酸ゃメタクリル酸の 4級化ァミノ アルキルエステルをはじめとするカチオン性ビニル単量体、 あるいはビュル 基含有低級アルキルエーテル、 酢酸ビュルに代表されるビュル基含有低級力 ルボン酸エステル、 塩化ビュル、 塩化ビニリデン、 臭化ビュル、 臭化ビニリ デン等に代表されるハロゲン化ビニル及ぴハロゲン化ビニリデン類、 さらに はスチレン等が好ましく、 これらのモノマーを単独もしくは 2種以上混合し て用いる事ができる。 その他の共重合可能なモノマーは 2 0〜9 4重量%で ある事が好ましい。 2 0重量%未満では耐熱性が高くなり十分な染色性が得 られない。 特に、 染色性の点で、 その他共重合可能なモノマーとしてアタリ ル酸エステルを用いる事が好ましい。 ァクリル酸エステルとしてはァクリル 酸メチル、 アクリル酸ェチル、 アクリル酸ブチル等が好ましく、 これらのモ ノマーを単独もしくは 2種以上混合して用いる事ができる。  In the polymer (B) of the present invention, other copolymerizable monomers include acrylic acid / methacrylic acid and their lower alkyl esters, N- or N, N-alkyl-substituted aminoalkyl esters / glycidyl esters, and Lilamide methacrylamide and their N or N, N-alkyl substituents, carboxyl group-containing vinyl monomers represented by acrylic acid, methacrylic acid ditaconic acid, etc. Anionic vinyl monomers such as ammonium salts, cationic vinyl monomers such as quaternary aminoalkyl esters of acrylic acid and methacrylic acid, or lower alkyl ethers containing butyl groups, and butyl groups typified by butyl acetate Contained lower power rubonic ester, vinyl chloride, vinylidene chloride, Of Bulle, halogenated vinyl 及 Pi vinylidene halides typified by bromide Biniri den or the like, styrene and the like are preferable, and can be used singly or two or more of these monomers. The other copolymerizable monomer is preferably 20 to 94% by weight. If it is less than 20% by weight, heat resistance becomes high and sufficient dyeability cannot be obtained. In particular, from the viewpoint of dyeability, it is preferable to use an atalylic acid ester as another copolymerizable monomer. As the acrylate, methyl acrylate, ethyl acrylate, butyl acrylate and the like are preferable, and these monomers can be used alone or in combination of two or more.
重合体 (B ) においてスルホン酸含有モノマーとは、 ァリルスルホン酸、 メタリルスルホン酸、 スチレンスルホン酸、 イソプレンスルホン酸、 2—ァ クリルアミ ドー 2—メチルプロパンスルホン酸またはこれらの金属塩類およ ぴァミン塩類等が好ましく、 単独もしくは 2種以上混合して用いる事ができ る。 本発明の重合体 (B ) において、 スルホン酸含有モノマーは 1〜4 0重 量。 /0である事が好ましいが、 4 0重量%を超えると繊維にボイドゃ膠着が生 じ、 強度が低下する。 The sulfonic acid-containing monomer in the polymer (B) is acrylsulfonic acid, methallylsulfonic acid, styrenesulfonic acid, isoprenesulfonic acid, 2-acrylamide 2-methylpropanesulfonic acid, or a metal salt or a diamine salt thereof. Can be used alone or as a mixture of two or more. The In the polymer (B) of the present invention, the amount of the sulfonic acid-containing monomer is 1 to 40 weight. / 0 is preferable, but if it exceeds 40% by weight, voids and agglomeration occur in the fiber, and the strength is reduced.
本発明のアクリル系収縮繊維は、 染色性を向上させる為、 繊維中に含まれ ている重合体 (A) および重合体 (B ) におけるスルホン酸基含有モノマー の合計含有量が、 重合体 (A) および重合体 (B ) のモノマー合計量の 0 . 1〜 1 0重量部である事が好ましく、 0 . 2〜 5重量部であることがより好 ましい。 0 . 1重量部未満であると、 充分な染色性が得られず、 1 0重量部 を超えると繊維にボイドゃ膠着が生じ、 強度が低下するので好ましくない。 また、 重合体 (B ) のスルホン酸含有モノマーを 1 0重量0 /0以上含有させる 事で、 重合体 (A) と重合体 (B ) とは非相溶化する傾向がある。 In the acrylic shrinkable fiber of the present invention, in order to improve the dyeability, the total content of the sulfonic acid group-containing monomer in the polymer (A) and the polymer (B) contained in the fiber is as follows: )) And polymer (B) are preferably from 0.1 to 10 parts by weight, more preferably from 0.2 to 5 parts by weight, based on the total amount of monomers. If the amount is less than 0.1 part by weight, sufficient dyeability cannot be obtained, and if the amount is more than 10 parts by weight, voids and agglomeration occur in the fibers, and the strength is undesirably reduced. Further, by the inclusion polymer containing sulfonic acid monomer (B) 1 0 wt 0/0 or more, the polymer (A) and the polymer (B) tends to incompatibility.
本発明の重合体 (A)、 重合体 (B ) は、 重合開始剤として概知の化合物、 例えばパー  The polymer (A) and the polymer (B) of the present invention are compounds known as polymerization initiators, for example,
ォキシド系化合物、ァゾ系化合物、.または各種のレドックス系化合物を用い、 乳化重合、 Using an oxide compound, an azo compound, or various redox compounds, emulsion polymerization,
懸濁重合、 溶液重合等一般的なビニル重合方法により得る事ができる。 It can be obtained by a general vinyl polymerization method such as suspension polymerization and solution polymerization.
本発明の重合体 (A)、 重合体 (B ) は、 有機溶剤、 例えばアセトン、 ァセ トニトリル、 ジメチルホルムアミ ド、 ジメチルァセトアミ ド、 ジメチルスル ホキシドあるいは無機溶剤、 例えば塩化亜鉛、 硝酸、 ロダン塩に溶解させて 紡糸原液とする。 この紡糸原液に、 酸化チタンまたは着色用顔料のような無 機及び 又は有機の顔料、 防鎮、 着色紡糸、 耐候性等に効果のある安定剤等 を紡糸に支障をきたさない限り使用するこども可能である。  The polymer (A) and the polymer (B) of the present invention may be an organic solvent such as acetone, acetonitrile, dimethylformamide, dimethylacetamide, dimethylsulfoxide or an inorganic solvent such as zinc chloride, nitric acid, and rhodane. Dissolve in salt to make a spinning stock solution. In this spinning dope, it is possible to use inorganic and / or organic pigments such as titanium oxide or coloring pigments, stabilizers that are effective in preventing fire, coloring, weathering, etc. as long as they do not hinder spinning. It is.
本発明の重合体 (A) と重合体 (B ) の混合割合は、 重合体 (B ) が 1重 量%未満では、 十分な染色性が得られず、 5 0重量%を超えると、 繊維にポ イドや膠着が生じ、 強度、 染色性が低下するので好ましくない。  When the mixing ratio of the polymer (A) and the polymer (B) of the present invention is less than 1% by weight of the polymer (B), sufficient dyeability cannot be obtained. Undesirably, voids and agglomeration occur on the surface, resulting in a decrease in strength and dyeability.
本発明の非相溶とは、 紡糸原液が 0 . 1〜3 0 μ ηιの粒状に相分離してい る状態が好ましく、 6〜1 の粒状に相分離している状態がより好まし い。 0 . 1 μ πι未満の相分離状態では、 重合体 (Β ) の性質が反映され染色 時の収縮率が高くなり、 3 0 inを超える相分離状態では、 繊維にボイドゃ 膠着が生じ、 強度、 染色性が低下するため好ましくない The term “immiscible” in the present invention preferably refers to a state in which the spinning dope is phase-separated into particles of 0.1 to 30 μηι, and more preferably a state in which the spinning solution is phase-separated into particles of 6-1. In the state of phase separation of less than 0.1 μπι, the properties of the polymer (Β) are reflected and the shrinkage ratio during dyeing increases, and in the state of phase separation exceeding 30 in, voids are formed in the fiber. Adhesion occurs and strength and dyeing properties decrease, which is not desirable.
本発明のアクリル系収縮繊維は、 重合体 (A) と重合体 (B) は非相溶で ある紡糸原液からなる為、 繊維中で存在比率の高い重合体 (A) が海、 存在 比率の低い重合体 (B) が島となる海島構造をとつていると考えられる。 よ つて、 重合体 (B) は繊維中で連続して存在しないため耐熱性の低い性質を 有しているが収縮挙動には大きく影響しない。 その為、 非相溶な紡糸原液か らなる繊維は、 相溶な紡糸原液からなる繊維と比較して染色収縮率を低くす る事ができる。 また、 収縮繊維の収縮率は、 樹脂組成と紡糸方法により決ま る為、 染色工程で大きく収縮するとその後のパイル加工工程での収縮率は小 さくなる。 よって、 染色収縮率を小さくする事で染色後収縮率をより大きく する事ができる。  In the acrylic shrinkable fiber of the present invention, since the polymer (A) and the polymer (B) are composed of an incompatible spinning solution, the polymer (A) having a high abundance ratio in the fiber is the sea and the abundance ratio. It is considered that the low polymer (B) has an island-sea structure. Therefore, the polymer (B) has low heat resistance because it does not exist continuously in the fiber, but does not significantly affect the shrinkage behavior. Therefore, the fiber composed of the incompatible spinning dope can have a lower dyeing shrinkage ratio than the fiber composed of the compatible spinning dope. In addition, since the shrinkage of the shrinkable fiber is determined by the resin composition and the spinning method, if the shrinkage is large in the dyeing step, the shrinkage in the subsequent pile processing step will be small. Therefore, the shrinkage rate after dyeing can be further increased by reducing the shrinkage rate.
さらに、 本発明において、 重合体 (A) に塩化ビュルを含有させる事で、 重合体 (A) と重合体 (B) との相溶性が低下することにより非相溶化を進 めることができる。  Further, in the present invention, by incorporating butyl chloride into the polymer (A), the compatibility between the polymer (A) and the polymer (B) is reduced, so that incompatibility can be promoted. .
本発明でいう染色収縮率とは、 繊維が染色でどれだけ収縮するかという指 標であり、 次のようにして求められる。 長さ L oの繊維を任意の温度の水浴 で 60分間処理した後の繊維の長さ Lを測定し、 下記の式より求めた。 染色収縮率 (%) = ((L o-L) /L o) X I 00  The dye shrinkage ratio in the present invention is an index of how much a fiber shrinks by dyeing, and is obtained as follows. The length L of the fiber after treating the fiber of length Lo in a water bath at an arbitrary temperature for 60 minutes was measured, and the length L was determined by the following equation. Staining shrinkage (%) = ((L o-L) / L o) X I 00
本発明でいう染色後収縮率とは、 染色後の繊維がテンター工程でどれだけ 収縮するかという指標であり、 次のようにして求められる。 染色後の長さ L d oの繊維を均熱オーブンを用い 130°Cで 5分間処理した後、 繊維の長さ Ldを測定し、 下記式より求めた。  The shrinkage rate after dyeing in the present invention is an index of how much the fiber after dyeing shrinks in the tenter process, and is determined as follows. The fiber after dyeing was treated at 130 ° C. for 5 minutes using a soaking oven, and the length Ld of the fiber was measured, and the length Ld was determined by the following equation.
染色後収縮率 (%) = ((Ld o-L d) /L d o) X 100  Shrinkage after staining (%) = ((Ld o-L d) / L d o) X 100
本発明のアクリル系収縮繊維の製造方法は、 常法の湿式あるいは乾式の紡 糸法でノズルより紡出し、 延伸、 乾燥を行う。 また必要に応じ更に延伸、 熱 処理を行ってもよい。 さらに、得られた繊維を 70〜 140°Cで 1. 3〜4. 0倍に延伸して収縮繊維を得る事ができる。  In the method for producing an acrylic shrinkable fiber of the present invention, spinning is performed from a nozzle by a conventional wet or dry spinning method, followed by drawing and drying. Further, if necessary, stretching and heat treatment may be performed. Further, the obtained fiber can be stretched 1.3 to 4.0 times at 70 to 140 ° C. to obtain a contracted fiber.
本発明のアクリル系収縮繊維は、 染色収縮率が大きい場合、 収縮を抑える 為、 繊維製造工程で 1%以上の緩和処理を行う事が好ましい。 緩和処理は、 湿熱又は乾熱の 70°C〜140°Cで行う事が好ましい。 処理温度を高く、 緩 和率を大きくする事で染色収縮率を抑える事が出来るが、 過剰な条件での緩 和処理は染色後収縮率も抑えてしまうため、 1 10°C前後の温度で 20%以 下の緩和処理が好ましい。 In the case of the acrylic shrinkable fiber of the present invention, when the dye shrinkage ratio is large, it is preferable to carry out a relaxation treatment of 1% or more in the fiber manufacturing process in order to suppress shrinkage. The mitigation process is It is preferable to carry out at 70 ° C to 140 ° C of wet heat or dry heat. The dyeing shrinkage can be suppressed by increasing the processing temperature and the relaxation rate.However, the relaxation treatment under excessive conditions also reduces the shrinkage rate after dyeing. Relaxation treatment of 20% or less is preferred.
本発明のアクリル系収縮繊維は、 パイル加工におけるテンター工程で収縮 させる。 テンター工程は乾熱 1 10〜 150°Cが好ましく、 通常 130°C前 後である為、 染色後収縮率は乾熱 130°C 5分の条件で測定する。  The acrylic shrinkable fiber of the present invention is shrunk in a tenter process in pile processing. The tenter process preferably has a dry heat of 110 to 150 ° C, and is usually around 130 ° C. Therefore, the shrinkage after dyeing is measured under dry heat at 130 ° C for 5 minutes.
本発明のアクリル系収縮繊維は、 染色温度が高くなると染色収縮率が高く なる。 その為、 染色温度が 90°Cを超えると染色収縮率が大きくなるため好 ましくない。 さらには、 染色で大きく収縮すると残された収縮率が小さくな る為、 染色後収縮率を 20%以上にする事が困難になる。 また、 染色収縮率 が 10 %を超えると、 染色機中の繊維の詰め密度が小さくなりパイパスが生 じる為、 染め斑の原因となりやすい。 さらには、 収縮時に生じる捲縮がパイ ル加工時のポリッシヤー工程で伸ぴにくくなるといった欠点があり、 所望の 外観、 風合いを有するパイル布帛が得られない。  In the acrylic shrinkable fiber of the present invention, the dyeing shrinkage increases as the dyeing temperature increases. Therefore, if the dyeing temperature exceeds 90 ° C, the dye shrinkage rate increases, which is not preferable. Furthermore, since the remaining shrinkage decreases when the dye shrinks greatly during dyeing, it becomes difficult to increase the shrinkage after dyeing to 20% or more. On the other hand, if the dye shrinkage exceeds 10%, the packing density of the fibers in the dyeing machine will decrease, causing by-passes, which may cause dye spots. Further, there is a disadvantage that the crimp generated during shrinkage becomes difficult to elongate in the polisher process at the time of pile processing, and a pile fabric having a desired appearance and texture cannot be obtained.
本発明のアタリル系収縮繊維は、 染色後収縮率が 20 %未満になると、 パ ィル布帛に加工した時、 非収縮原綿との段差が小さくなる為、 段差が強調さ れず、天然調または、意匠性のある外観特性をもつパイル布帛が得られない。 本発明でいう相対飽和値とは、 繊維の染色能力の指標であり、 繊維を任意 の温度で 60分間、過飽和な量の Ma l a c h i t e Gr e e nを用いて染 色し飽和染着量を求め、  When the shrinkage rate after dyeing of the ataryl-based shrinkable fiber of the present invention is less than 20%, the step difference from non-shrinkable raw cotton becomes small when processed into a pile fabric, so that the step is not emphasized, and the natural tone or A pile fabric having a designable appearance characteristic cannot be obtained. The relative saturation value referred to in the present invention is an index of the dyeing ability of a fiber.The fiber is dyed at an arbitrary temperature for 60 minutes using a supersaturated amount of MalachiteGleen to obtain a saturated dyeing amount.
飽和染着量より相対飽和値を求めた。 飽和染着量、 相対飽和値は下記の式よ り求めた。 The relative saturation value was determined from the saturated dyeing amount. The saturated dyeing amount and the relative saturation value were determined by the following equations.
飽和染着量 = ((Ao -A) /Ao) X 2. 5) Saturated dyeing amount = ((Ao -A) / Ao) X 2.5)
A:染色後の染浴の吸光度 (618 nm) A: Absorbance of dye bath after dyeing (618 nm)
Ao :染色前の染浴の吸光度 (618 nm) Ao: Absorbance of dye bath before dyeing (618 nm)
相対飽和値 =飽和染着量 X 400/463  Relative saturation value = saturation dyeing amount X 400/463
本発明のァクリル系収縮繊維は、 相対飽和値が 0. 1以上で淡色の染色が 可能となる。 さらには、 相対飽和値が 0 · 8以上で淡色から濃色、 さらには黒色まで染色 可能となる為、 相対飽和は 0 . 8以上が好ましい。 When the acryl-based shrinkable fiber of the present invention has a relative saturation value of 0.1 or more, light-colored dyeing becomes possible. Further, since the dye can be dyed from a light color to a dark color and further to a black color with a relative saturation value of 0.8 or more, the relative saturation is preferably 0.8 or more.
以下、実施例の記載に先立って供試繊維の性能評価方法等について詳述する。 Hereinafter, a method for evaluating the performance of the test fiber and the like will be described in detail before describing the examples.
( 1 ) 相分離状態  (1) Phase separation state
相分離状態は、 ベースドープとブレンドポリマーを任意の比率で混合させ た紡糸原液を位相差顕微鏡 (ァリオテクノ株式会社製 AN S 3 0 ) を用い て観察し、 粒状に分離したブレンドポリマーの粒系を無作為に 1 0箇所測定 し、 その平均値で評価した。  The phase separation state is determined by observing the spinning stock solution in which the base dope and the blended polymer are mixed at an arbitrary ratio using a phase-contrast microscope (ANS30, manufactured by ARIO TECHNO CORPORATION) and determining the granular system of the blended polymer separated into particles. The measurement was performed at 10 points at random and evaluated by the average value.
( 2 ) ハイパイル試作  (2) High pile prototype
収縮性繊維および非収縮性繊維を混綿 ·調湿した後オープナー、 カードを 経てカードスライバーを作成した。 次いでハイパイル編織機でスライバー二 ッティングを行い、 シャーリングでパイル部をカツトしてパイル長を一定に 揃えた後、 パイルの裏面をァクリル酸エステル系接着剤でバックコーティン グ行った。 次いで 1 3 0 °C、 5分で接着剤を乾燥させると共に収縮性繊維を 収縮させた。 その後ポリッシヤー仕上げ及びシャーリングを行ってハイパイ ルに仕上げた。  After mixing shrinkable fiber and non-shrinkable fiber and adjusting the humidity, a card sliver was made via an opener and a card. Then, sliver knitting was performed with a high pile weaving machine, the pile portion was cut by shearing to make the pile length uniform, and the back surface of the pile was back-coated with an acrylate-based adhesive. Next, the adhesive was dried at 130 ° C. for 5 minutes, and the shrinkable fibers were shrunk. After that, it was finished to high pile by polisher finishing and shearing.
( 3 ) ハイパイルの外観評価  (3) Evaluation of high pile appearance
( 2 ) のようにして作成した段差パイル布帛に対し、 長パイル部と短パイ ル部の段差が強調された外観特性の程度を視覚的及び感覚的な観点から、 4 段階評価による官能的評価を行い、 以下の基準で評価した。  From the visual and sensory viewpoint, the sensory evaluation of the step pile fabric created as described in (2) was made based on a four-point scale from the visual and sensory point of view, in terms of the level of the appearance characteristics in which the step between the long pile section and the short pile section was emphasized. And evaluated according to the following criteria.
◎:段差パイル布帛において長パイル部と短パイル部の段差が非常に強調さ れた外観特性を有する。  :: The step pile fabric has an appearance characteristic in which a step between a long pile portion and a short pile portion is greatly emphasized.
〇:段差パイル布帛において長パイル部と短パイル部の段差が強調された外 観特性を有する。  〇: The step pile fabric has an appearance characteristic in which a step between a long pile portion and a short pile portion is emphasized.
Δ:段差パイル布帛において長パイル部と短パイル部の段差があまり強調さ れていない。 Δ: In the step pile fabric, the step between the long pile portion and the short pile portion is not emphasized so much.
X :段差パイル布帛において長パイル部と短パイル部の段差がほとんど見ら れない。  X: In the step pile fabric, there is almost no step difference between the long pile section and the short pile section.
以下、実施例を記すが、実施例中の部は特記しない限り重量部を意味する。 【実施例】 Hereinafter, examples will be described, but parts in the examples mean parts by weight unless otherwise specified. 【Example】
(製造例 1 )  (Production Example 1)
内容積 20 Lの耐圧重合反応装置にィオン交換水 2.00部、 ラウリル硫酸 ナトリウム 0. 9部、亜硫酸 0. 43部、亜硫酸水素ナトリウム 0. 22部、 硫酸鉄 0. 001部、 アクリロニトリル (以下 ANと記す。) 4. 9部、 塩化 ビュル (以下 VCと記す。) 52. 5部を投入し、 窒素置換した。 重合機内温 を 50°Cに調整し、開始剤として過硫酸アンモニゥム 0. 035部を投入し、 重合を開始した。 途中、 AN42. 1部、 スチレンスルホン酸ナトリ ウム (以 下 3 Sと記す。) 0. 5部、 過硫酸アンモニゥム 0. 23部を追加しながら、 重合時間 5時間 10分で重合した。 その後、 未反応 VCを回収し、 ラテック スを重合機より払い出し、 塩析、 熱処理、 ろ過、 水洗、 脱水、 乾燥し、 重合 体 1を得た。  2.00 parts of ion-exchanged water, 0.9 parts of sodium lauryl sulfate, 0.43 parts of sulfurous acid, 0.22 parts of sodium bisulfite, 0.001 part of iron sulfate, 0.001 part of acrylonitrile (hereinafter referred to as AN) 4. 9 parts, chloride chloride (hereinafter referred to as VC) 52.5 5 parts were charged and purged with nitrogen. The temperature inside the polymerization machine was adjusted to 50 ° C, and 0.035 parts of ammonium persulfate was added as an initiator to start polymerization. On the way, polymerization was carried out for 5 hours and 10 minutes while adding AN42.1 parts, sodium styrenesulfonate (hereinafter referred to as 3S) 0.5 parts and ammonium persulfate 0.23 parts. Thereafter, unreacted VC was recovered, the latex was discharged from the polymerization machine, and salting out, heat treatment, filtration, washing with water, dehydration, and drying were performed to obtain Polymer 1.
次に、 内容積 5 Lの耐圧重合反応装置にアセトン 187部、 水 47部、 A N 40部、 アクリル酸メチル (以下 MAと記す。) 45部、 2—アクリルアミ ドー 2—メチルプロパンスルホン酸ナトリウム (以下 SAMと記す。) 15部 を投入し、窒素置換した。重合機内温度を 65°Cに調整し、開始剤として 2, 2 ^—ァゾビス (2, 4ージメチルパレロニトリル) 0. 5部を投入し重合 を開始した。 途中、 ァゾビス 1. 0部を追加しながら 2時間重合し、 その後 70°Cに昇温し 2時間重合させ重合体濃度 30重量%の重合体 2の溶液を得 た。 重合体 1が 30重量。 /0になるようにアセトンを加え溶解した重合体 1の 溶液に、 重合体 2の溶液を重合体の重量比が重合体 1 :重合体 2 = 9 : 1の 比率になるように混合した物を紡糸原液とした。 得られた、 紡糸原液を 0. 08ιηπιφ、 8500孔の口金を通して 25°C、 30重量%のアセトン水溶 液中に吐出し、 さらに 25°C、 20重量%アセトン水溶液中で 2. 0倍に延 伸した後 60°Cで水洗した。 ついで 130°Cで乾燥、 更に 105°Cで 1. 8 倍に延伸した 4.. 4 d t e xの延伸糸を得た。 Next, 187 parts of acetone, 47 parts of water, 40 parts of AN, 45 parts of methyl acrylate (hereinafter referred to as MA) and 45 parts of 2-acrylamide 2-sodium 2-methylpropanesulfonate were placed in a pressure-resistant polymerization reactor having an internal volume of 5 L. (Hereinafter referred to as SAM.) 15 parts were charged and replaced with nitrogen. The temperature in the polymerization machine was adjusted to 65 ° C, and 0.5 parts of 2,2 ^ -azobis (2,4-dimethylpareronitrile) was added as an initiator to initiate polymerization. On the way, polymerization was carried out for 2 hours while adding 1.0 part of azobis, followed by heating to 70 ° C. and polymerization for 2 hours to obtain a solution of polymer 2 having a polymer concentration of 30% by weight. 30% by weight of polymer 1. / To a solution of the polymer 1 dissolved adding acetone to be 0, the polymer weight ratio of 2 solution polymer Polymer 1: Polymer 2 = 9: mixed ones so as to 1 ratio Was used as a spinning dope. The obtained spinning stock solution is discharged into a 30% by weight aqueous acetone solution at 25 ° C and 30% by weight through a die having a hole diameter of 0.008ιηπιφ and 8,500, and further spread 2.0 times in a 20% by weight aqueous acetone solution at 25 ° C. After elongation, it was washed with water at 60 ° C. Then, it was dried at 130 ° C and further stretched 1.8 times at 105 ° C to obtain a drawn yarn of 4.4 dtex.
続いて、得られた収縮繊維にクリンプを付与して 32 mmにカツトした後、 Ma x i l o n Re d GRL (チパ · スペシャルティー · ケミカルズ株式 会社製) 0. 2%om f の染料とウルトラ MT# 100 (ミテジマ化学株式 会社製) 0. 5 g,Lの染色助剤を用いて 60°C、 70°C、 80°Cで 60分 間染色した。 染色した繊維 70重量%と非収縮原綿である 「カネカロン (登 録商標)」 RCL 12. 2 d t e x、 44 mm (鐘淵化学工業株式会社製) を 30重量0 /0混綿してハイパイルを作成した。 その際スライバーユッテイング 後のシャーリングではパイル長を 15 mm、 ポリッシヤー仕上げ後のパイル 長を 18 mmにカットし、 ハイパイルを得た。 Subsequently, the obtained shrink fiber was crimped and cut to 32 mm, and then Maxilon Red d GRL (manufactured by Chipa Specialty Chemicals Co., Ltd.) 0.2% omf dye and Ultra MT # 100 (Mitejima Chemical Co., Ltd. Dyeing was performed at 60 ° C, 70 ° C, and 80 ° C for 60 minutes using 0.5 g, L of a dyeing aid. Dyed fibers 70 in weight percent and the non-shrinkage raw cotton "Kanecaron (registered trademark)" and RCL 12. 2 dtex, 44 mm 30 weight (Kaneka Corporation) 0/0 cotton mixing created a high pile . At that time, the pile length was cut to 15 mm for shirring after sliver cutting and the pile length to 18 mm after polisher finishing to obtain a high pile.
(製造例 2 )  (Production Example 2)
製造例 1で得られた延伸糸に 110°Cで 5 %の緩和処理を行った。  The drawn yarn obtained in Production Example 1 was subjected to a 5% relaxation treatment at 110 ° C.
さらに、 緩和処理を行った繊維を、 製造例 1と同様の方法を用いてハイパイ ルを作成した。 Further, a high pile was prepared from the fiber subjected to the relaxation treatment in the same manner as in Production Example 1.
(製造例 3 )  (Production Example 3)
内容積 20 Lの耐圧重合反応装置にィオン交換水 200部、 ラウリル硫酸 ナトリウム 1. 1部、 亜硫酸 0. 13部、 硫酸水素ナトリウム 0. 17部、 硫酸鉄 0. 002部、 アクリロニトリル 10. 7部、 塩化ビユリデン 4. 4 部を投入し、 窒素置換した。 重合機内温を 55°Cに調整し、 開始剤として過 硫酸アンモニゥム 0. 012部を投入し、 重合を開始した。 途中、 アタリ口 二トリル 42. 7部、 塩化ビニリデン 41. 0部、 スチレンスルホン酸ナト リウム 1. 2部、 過硫酸アンモニゥム 0. 135部を追加しながら、 重合時 間 6時間 10分で重合した。 その後、 ラテックスを重合機より払い出し、 塩 析、 熱処理、 ろ過、 水洗、 脱水、 乾燥し重合体 3を得た。 重合体 3が 30重 量%になるようにァセトンを加え溶解した重合体 3の溶液に、 製造例 1で作 成した重合体 2の溶液を重合体の重量比が重合体 3 :重合体 2 = 9 : 1の比 率になるように混合した物を紡糸原液とした。 得られた、 紡糸原液を 0. 0 8πιπιφ、 8500孔の口金を通して 25°C、 30重量%のアセトン水溶液 中に吐出し、 さらに 25°C、 20重量%アセトン水溶液中で 2. 0倍に延伸 した後 60°Cで水洗した。 ついで、 130°Cで乾燥、 更に 105°Cで 1. 8 倍に延伸した 4. 4 d t e xの延伸糸に 1 10°Cで 5%の緩和処理を行った。 さらに、 緩和処理を行った繊維を、 製造例 1と同様の方法を用いてハイパイ ルを作成した。 (製造例 4) 200 parts of ion-exchanged water, 1.1 parts of sodium lauryl sulfate, 0.13 parts of sulfurous acid, 0.17 parts of sodium bisulfate, 0.17 parts of sodium bisulfate, 0.002 parts of iron sulfate, and 10.7 parts of acrylonitrile Then, 4.4 parts of virylidene chloride were charged and the atmosphere was replaced with nitrogen. The temperature inside the polymerization machine was adjusted to 55 ° C, and 0.012 parts of ammonium persulfate was added as an initiator to start polymerization. On the way, 42.7 parts of nitrile nitrile, 41.0 parts of vinylidene chloride, 1.2 parts of sodium styrenesulfonate and 0.135 parts of ammonium persulfate were added, and polymerization was carried out for 6 hours and 10 minutes. . Thereafter, the latex was discharged from the polymerization machine and subjected to salting out, heat treatment, filtration, washing with water, dehydration, and drying to obtain a polymer 3. The solution of polymer 2 prepared in Production Example 1 was added to the solution of polymer 3 in which acetone was added and dissolved so that the amount of polymer 3 was 30% by weight, and the weight ratio of the polymer was polymer 3: polymer 2. A mixture obtained so as to have a ratio of 9: 1 was used as a spinning dope. The obtained spinning solution is discharged through a 0.08πιπιφ, 8500-hole die into a 30% by weight acetone aqueous solution at 25 ° C, and further stretched 2.0 times in a 20% by weight acetone aqueous solution at 25 ° C. After that, it was washed with water at 60 ° C. Then, the 4.4 dtex drawn yarn which was dried at 130 ° C and further stretched 1.8 times at 105 ° C was subjected to a 5% relaxation treatment at 110 ° C. Further, a high pile was prepared from the fiber subjected to the relaxation treatment in the same manner as in Production Example 1. (Production Example 4)
内容積 5 Lの耐圧重合反応装置にアセトン 1 8 7部、 水 4 7部、 AN 4 0 部、 MA 5 5部、 S AM 5部を投入し製造例 1の重合体 2と同様の方法で重 合し、 重合体 4の溶液を得た。 製造例 1で得た重合体 1が 3 0重量%になる ようにアセトンを加え溶解した重合体 1の溶液に、 重合体 4の溶液を重合体 の重量比が重合体 1 :重合体 4 = 7 : 3の比率になるように混合した物を紡 糸原液とした。 得られた、 紡糸原液を製造例 1と同様の方法を用いて紡糸し 延伸糸を得た。 得られた延伸糸を製造例 1と同様の方法を用いてハイパイル を作成した。  187 parts of acetone, 47 parts of water, 40 parts of AN, 5 parts of MA, and 5 parts of SAM were charged into a pressure-resistant polymerization reactor having an internal volume of 5 L, and the same method as in Polymer 2 of Production Example 1 was added. The polymerization was performed to obtain a polymer 4 solution. A solution of Polymer 4 was added to a solution of Polymer 1 in which acetone was added and dissolved so that the amount of Polymer 1 obtained in Production Example 1 was 30% by weight, and the weight ratio of Polymer was Polymer 1: Polymer 4 = The mixture mixed at a ratio of 7: 3 was used as a spinning dope. The obtained spinning stock solution was spun using the same method as in Production Example 1 to obtain a drawn yarn. Using the obtained drawn yarn, a high pile was prepared in the same manner as in Production Example 1.
(製造例 5 )  (Production Example 5)
製造例 4で得られた延伸糸に 1 1 0 °Cで 5 %の緩和処理を行った。 さらに、 緩和処理を行った繊維を、 製造例 1と同様の方法を用いてハイパイルを作成 した。  The drawn yarn obtained in Production Example 4 was subjected to a relaxation treatment of 5% at 110 ° C. Further, a high pile was prepared from the fiber subjected to the relaxation treatment by using the same method as in Production Example 1.
(製造例 6 )  (Production Example 6)
製造例 3で作成した重合体 3が 3 0重量%になるようにアセトンを加え溶 解した重合体 3の溶液に、 製造例 4で作成した重合体 4の溶液を重合体の重 量比が重合体 3 :重合体 4 = 7 : 3の比率になるように混合した物を紡糸原 液とした。 得られた、 紡糸原液を製造例 3と同様の方法を用いて緩和処理を 行った繊維を作成した。 ついで、 その緩和処理を行った繊維を用いて製造例 1と同様の方法でハイパイルを作成した。  The solution of Polymer 3 prepared in Production Example 4 was mixed with the solution of Polymer 3 prepared by adding acetone so that the amount of Polymer 3 prepared in Production Example 3 became 30% by weight, and the weight ratio of the polymer was changed. A mixture obtained by mixing polymer 3: polymer 4 = 7: 3 was used as a spinning solution. The obtained undiluted spinning solution was subjected to relaxation treatment in the same manner as in Production Example 3 to prepare a fiber. Next, a high pile was prepared in the same manner as in Production Example 1 using the fiber subjected to the relaxation treatment.
(製造例 7 )  (Production Example 7)
内容積 5 Lの耐圧重合反応装 gにアセトン 1 8 7部、 水 4 7部、 AN 3 0 部、 MA 5 5部、 S AM I 5部を投入し製造例 1の重合体 2と同様の方法で 重合し、 重合体 5の溶液を得た。 製造例 1で得た重合体 1が 3 0重量%にな るようにアセトンを加え溶解した重合体 1の溶液に、 重合体 5の溶液を重合 体の重量比が重合体 1 :重合体 5 = 9 : 1の比率になるように混合した物を 紡糸原液とした。 得られた、 紡糸原液を製造例 1と同様の方法を用いて紡糸 し延伸糸を得た。 得られた延伸糸を製造例 1と同様の方法を用いてハイパイ ルを作成した。 (製造例 8 ) To a pressure-resistant polymerization reactor g having an inner volume of 5 L, 187 parts of acetone, 47 parts of water, 30 parts of AN, 5 parts of MA, and 5 parts of SAMI were charged, and the same as polymer 2 of Production Example 1 was added. Polymerization was carried out by the method to obtain a solution of Polymer 5. A solution of Polymer 5 was added to a solution of Polymer 1 in which acetone was added and dissolved so that the amount of Polymer 1 obtained in Production Example 1 was 30% by weight, and the weight ratio of Polymer 1 was Polymer 1: Polymer 5 = 9: 1 The mixture mixed so as to have a ratio of 1 was used as a spinning dope. The obtained spinning dope was spun using the same method as in Production Example 1 to obtain a drawn yarn. Using the obtained drawn yarn, a high pile was prepared in the same manner as in Production Example 1. (Production Example 8)
製造例 7で得られた延伸糸に 1 1 0 °Cで 5 %の緩和処理を行つた。  The drawn yarn obtained in Production Example 7 was subjected to a relaxation treatment of 5% at 110 ° C.
さらに、 緩和処理を行った繊維を、 製造例 1と同様の方法を用いてハイパイ ルを作成した。 Further, a high pile was prepared from the fiber subjected to the relaxation treatment in the same manner as in Production Example 1.
(製造例 9 )  (Production Example 9)
内容積 5 Lの耐圧重合反応装置にァセトン 1 8 7部、 水 4 7部、 A N 6 0 部、 MA 2 5部、 S AM I 5部を投入し製造例 1の重合体 2と同様の方法で 重合し、 重合体 6の溶液を得た。 製造例 1で得た重合体 1が 3 0重量%にな るようにァセトンを加え溶解した重合体 1の溶液に、 重合体 6の溶液を重合 体の重量比が重合体 1 :重合体 6 = 9 : 1の比率になるように混合した物を 紡糸原液とした。 得られた、 紡糸原液を製造例 1と同様の方法を用いて紡糸 し延伸糸を得た。 得られた延伸糸を製造例 1と同様の方法を用いてハイパイ ルを作成した。  187 parts of acetone, 47 parts of water, 60 parts of AN, 5 parts of MA, and 5 parts of SAM I were charged into a pressure-resistant polymerization reactor having an internal volume of 5 L, and a method similar to that of polymer 2 of Production Example 1 was used. And a solution of polymer 6 was obtained. A solution of polymer 6 was added to a solution of polymer 1 in which acetone was added and dissolved so that the amount of polymer 1 obtained in Production Example 1 was 30% by weight, and the weight ratio of polymer was polymer 1: polymer 6. = 9: 1 was used as a stock solution for spinning. The obtained spinning dope was spun using the same method as in Production Example 1 to obtain a drawn yarn. Using the obtained drawn yarn, a high pile was prepared in the same manner as in Production Example 1.
(製造例 1 0 )  (Production Example 10)
製造例 9で得られた延伸糸に 1 1 0。Cで 5 %の緩和処理を行つた。  110 for the drawn yarn obtained in Production Example 9. C performed a 5% mitigation.
さらに、 緩和処理を行った繊維を、 製造例 1と同様の方法を用いてハイパイ ルを作成した。 Further, a high pile was prepared from the fiber subjected to the relaxation treatment in the same manner as in Production Example 1.
(製造例 1 1 )  (Production Example 1 1)
内容積 5 Lの耐圧重合反応装置にアセトン 1 4 0部、 水 9 4部、 A N 1 0 部、 アクリル酸メチル (以下 MAと記す。) 6 0部、 S AM 3 0部を投入し製 造例 1の重合体 2と同様の方法で重合し、 重合体 7の溶液を得た。 製造例 1 で得た重合体 1が 3 0重量%になるようにアセトンを加え溶解した重合体 1 の溶液に、 重合体 7の溶液を重合体の重量比が重合体 1 :重合体 7 = 9 6 : 4の比率になるように混合した物を紡糸原液とした。 得られた、 紡糸原液を 製造例 1と同様の方法を用いて紡糸し延伸糸を得た。 得られた延伸糸を製造 例 1と同様の方法を用いてハイパイルを作成した。  140 parts of acetone, 94 parts of water, 10 parts of AN, 60 parts of methyl acrylate (hereinafter referred to as MA), and 30 parts of SAM are charged into a pressure-resistant polymerization reactor having an internal volume of 5 L to produce. Polymerization was carried out in the same manner as in Polymer 2 of Example 1 to obtain a solution of Polymer 7. A solution of Polymer 7 was added to a solution of Polymer 1 in which acetone was added and dissolved so that the amount of Polymer 1 obtained in Production Example 1 was 30% by weight, and the weight ratio of the polymer was Polymer 1: Polymer 7 = A mixture mixed at a ratio of 96: 4 was used as a spinning dope. The obtained spinning dope was spun using the same method as in Production Example 1 to obtain a drawn yarn. Using the obtained drawn yarn, a high pile was prepared in the same manner as in Production Example 1.
(製造例 1 2 )  (Production Example 1 2)
製造例 1 1で得られた延伸糸に 1 1 0 °Cで 5 %の緩和処理を行った。  The drawn yarn obtained in Production Example 11 was subjected to a relaxation treatment of 5% at 110 ° C.
さらに、 緩和処理を行った繊維を、 製造例 1と同様の方法を用いてハイパイ ルを作成した。 Further, the fiber subjected to the relaxation treatment was subjected to a high pie using the same method as in Production Example 1. Created.
(製造例 13 )  (Production Example 13)
内容積 5 Lの耐圧重合反応装置にアセトン 187部、 水 47部、 AN 50 部、 アクリル酸ェチル (以下 E Aと記す。) 35部、 SAM 15部を投入し製 造例 1の重合体 2と同様の方法で重合し、 重合体 8の溶液を得た。 製造例 1 で得た重合体 1が 30重量%になるようにアセトンを加え溶解した重合体 1 の溶液に、 重合体 8の溶液を重合体の重量比が重合体 1 :重合体 8 = 9 : 1 の比率になるように混合した物を紡糸原液とした。 得られた、 紡糸原液を製 造例 1と同様の方法を用いて紡糸し延伸糸を得た。 得られた延伸糸を製造例 1と同様の方法を用いてハイパイルを作成した。  187 parts of acetone, 47 parts of water, 50 parts of AN, 35 parts of ethyl acrylate (hereinafter referred to as EA), 35 parts of SAM, and 15 parts of SAM were charged into a pressure-resistant polymerization reactor having an inner volume of 5 L. Polymerization was carried out in the same manner to obtain a polymer 8 solution. A solution of Polymer 8 was added to a solution of Polymer 1 in which acetone was added and dissolved so that the amount of Polymer 1 obtained in Production Example 1 was 30% by weight, and the weight ratio of the polymer was Polymer 1: Polymer 8 = 9 : The mixture mixed so as to have a ratio of 1 was used as a spinning dope. The obtained spinning dope was spun using the same method as in Production Example 1 to obtain a drawn yarn. Using the obtained drawn yarn, a high pile was prepared in the same manner as in Production Example 1.
(製造例 14)  (Production Example 14)
製造例 11で得られた延伸糸に 110°Cで 5%の緩和処理を行った。  The drawn yarn obtained in Production Example 11 was subjected to a 5% relaxation treatment at 110 ° C.
さらに、 緩和処理を行った繊維を、 製造例 1と同様の方法を用いてハイパイ ルを作成した。 Further, a high pile was prepared from the fiber subjected to the relaxation treatment in the same manner as in Production Example 1.
(製造例 15)  (Production Example 15)
内容積 5 Lの耐圧重合反応装置にァセトン 187部、 水 47部、 AN50 部、 メタクリル酸メチル (以下 MM Aと記す。) 35部、 SAM15部を投入 し製造例 1の重合体 2と同様の方法で重合し、 重合体 9の溶液を得た。 製造 例 1で得た重合体 1が 30重量%になるようにァセトンを加え溶解した重合 体 1の溶液に、重合体 9の溶液を重合体の重量比が重合体 1 :重合体 9 = 9 : 1の比率になるように混合した物を紡糸原液とした。 得られた、 紡糸原液を 製造例 1と同様の方法を用いて紡糸し延伸糸を得た。 得られた延伸糸を製造 例 1と同様の方法を用いてハイパイルを作成した。  187 parts of acetone, 47 parts of water, 50 parts of AN, 35 parts of methyl methacrylate (hereinafter referred to as MMA), 35 parts of SAM, and 15 parts of SAM were charged into a pressure-resistant polymerization reactor having an inner volume of 5 L, and the same as polymer 2 of Production Example 1 was added. Polymerization was carried out by the method to obtain a solution of polymer 9. A solution of polymer 9 was added to a solution of polymer 1 in which acetone was added and dissolved so that the amount of polymer 1 obtained in Production Example 1 was 30% by weight, and the weight ratio of the polymer was polymer 1: polymer 9 = 9. : A mixture obtained so as to have a ratio of 1: 1 was used as a spinning dope. The obtained spinning dope was spun using the same method as in Production Example 1 to obtain a drawn yarn. Using the obtained drawn yarn, a high pile was prepared in the same manner as in Production Example 1.
(製造例 16)  (Production Example 16)
製造例 13で得られた延伸糸に 110°Cで 5 %の緩和処理を行った。  The drawn yarn obtained in Production Example 13 was subjected to a 5% relaxation treatment at 110 ° C.
さらに、 緩和処理を行った繊維を、 製造例 1と同様の方法を用いてハイパイ ルを作成した。 Further, a high pile was prepared from the fiber subjected to the relaxation treatment in the same manner as in Production Example 1.
(製造例 17 )  (Production Example 17)
内容積 5 Lの耐圧重合反応装置にアセトン 187部、 水 47部、 AN 50 部、 MA25部、 塩化ビニリデン (以下 VDと記す。) 10部、 SAM15部 を投入し製造例 1の重合体 2と同様の方法で重合し、 重合体 10の溶液を得 た。 製造例 1で得た重合体 1が 30重量%になるようにァセトンを加え溶解 した重合体 1の溶液に、 重合体 10の溶液を重合体の重量比が重合体 1 :重 合体 10= 9 : 1の比率になるように混合した物を紡糸原液とした。 得られ た、 紡糸原液を製造例 1と同様の方法を用いて紡糸し延伸糸を得た。 得られ た延伸糸を製造例 1と同様の方法を用いてハイパイルを作成した。 Acetone 187 parts, water 47 parts, AN 50 in 5 L internal pressure polymerization reactor Parts, 25 parts of MA, 10 parts of vinylidene chloride (hereinafter referred to as VD) and 15 parts of SAM were charged, and polymerized in the same manner as for polymer 2 of Production Example 1 to obtain a solution of polymer 10. The solution of polymer 10 was added to the solution of polymer 1 in which acetone was added and dissolved so that the amount of polymer 1 obtained in Production Example 1 was 30% by weight, and the weight ratio of polymer 1 was 10: 9. The mixture mixed at a ratio of 1: 1 was used as a spinning dope. The obtained spinning stock solution was spun using the same method as in Production Example 1 to obtain a drawn yarn. Using the obtained drawn yarn, a high pile was prepared in the same manner as in Production Example 1.
(製造例 18)  (Production Example 18)
製造例 17で得られた延伸糸に 1 10°Cで 5%の緩和処理を行った。  The drawn yarn obtained in Production Example 17 was subjected to a 5% relaxation treatment at 110 ° C.
さらに、 緩和処理を行った繊維を、 製造例 1と同様の方法を用いてハイパイ ルを作成した。 Further, a high pile was prepared from the fiber subjected to the relaxation treatment in the same manner as in Production Example 1.
製造例 1〜 18で得られた繊維の製造方法を表 1に示す。 Table 1 shows the method for producing the fibers obtained in Production Examples 1 to 18.
ベースポリマー ブレンドポリマー ブレンド組成 Base polymer Blend polymer Blend composition
組成、 組成 ブレンドポリマー/ペースポリマー 緩和処理 製造例 1 重合体 1 _g 重合体 2 AN40-MA45-SAM1S 10/90 0% 製造例 2 重合体 1 AN50— VC49- 5— 3S°" 重合体 2 AN40-MA4S-SAM15 10/90 5% 製造例 3 重合体 3 重合体 2 AN40— MA45— SAM15 10/90 5% 製造例 4 重合体 1 AN50— VC49- 5— 3S°- 5 重合体 4 AN40- MA5.5—' SAM5 30/70 o% 製造例 5 重合体 1 AN50-VC49- 5-3S0 S 重合体 4 AN40— MA55— SAMS 30/70 5% 製造例 6 重合体 3 AN50— VD49- 5— 3S°- 5 重合体 4 AN40— MA55— SAM5 30/70 5% 製造例 7 重合体"! AN50-VG49- S-3S0 S 重合体 5 AN^- A^-SAM15 10/90 0% 製造例 8 重合体"! AN50— VC49- s— 3S°- 重合体 5 AN30— MA55— SAM15 10/90 5% 製造例 9 重合体 1 AN50— VC49- 5— 3S°- 5 重合体 6 AN60— MA25— SAM"15 10/90 0% 製造例 10 重合体 1 AN5o _3So 重合体 6 AN60— MA25— SAM15 10/90 5% 製造例" 重合体 1 AN50— VC49- 5— 3S。- 5 重合体 7 AN10— MA60— SAM30 4/96 0% 製造例 12 重合体 1 AN50— VC49- 5— 3S°- 5 重合体 7 AN10— MA60— SAM30 4/96 5% 製造例 13 重合体 1 AN50— VC49- s— 3S°- 5 重合体 8 AN50-EA3S-SAM1S 10/90 o% 製造例 14 重合体 1 AN50— VC49- 5— 3S° 5 重合体 8 AN50-EA35-SAM S 10/90 5% 製造例 15 重合体 1 AN50— VC49- s— 3S°- 5 重合体 9 AN50-M A35-SAM15 10/90 0% 製造例 16 重合体 1 AN50— VC49- s— 3S°- 5 重合体 9 ANB0-M A35-SAM1S 10/90 5% 製造例 17 重合体 1 AN50— VC49- s— 3S°- 5 重合体 10 AN50-MAZ5-VD 0-SAM15 10/90 0% 製造例 18 重合体 1 AN50— VC49- s— 3S°- 5 重合体 10 AN50- MA2S - VD10- SAM15 10/90 5% Composition, the composition blend polymer / pace polymer relaxation treatment Production Example 1 Polymer 1 _g Polymer 2 AN 40 -MA 45 -SAM 1S 10/90 0% Production Example 2 Polymer 1 AN 50 - VC 49 - 5 - 3S ° " Polymer 2 AN 40 -MA 4S -SAM 15 10/90 5% Production Example 3 Polymer 3 Polymer 2 AN 40 — MA 45 — SAM 15 10/90 5% Production Example 4 Polymer 1 AN 50 — VC 49- 5 - 3S ° - 5 polymer 4 AN 40 - MA 5 5 - . 'SAM 5 30/70 o% production example 5 polymer 1 AN 50 -VC 49 - 5 -3S 0 S polymer 4 AN 40 - MA 55 - SAM S 30/70 5% production example 6 polymer 3 AN 50 - VD 49 - 5 - 3S ° - 5 polymer 4 AN 40 - MA 55 - SAM 5 30/70 5% production example 7 polymer "! AN 50 -VG 49 - S -3S 0 S polymer 5 AN ^-A ^ -SAM 15 10/90 0% Production example 8 polymer "! AN 50 — VC 49 - s — 3S °-polymer 5 AN 30 - MA 55 - SAM 15 10/90 5 % production example 9 polymer 1 AN 50 - VC 49 - 5 - 3S ° - 5 polymer 6 AN 60 - MA 25 - SAM "15 10/90 0% production example 10 fold combined 1 AN 5o _ 3S o polymer 6 AN 60 - MA 25 - SAM 15 10/90 5% production example "polymer 1 AN 50 - VC 49 - 5 - 3S.- 5 polymer 7 AN 10 - MA 60 - SAM 30 4/96 0% production example 12 polymer 1 AN 50 - VC 49 - 5 - 3S ° - 5 polymer 7 AN 10 - MA 60 - SAM 30 4/96 5% production example 13 polymer 1 AN 50 - VC 49 - s - 3S ° - 5 polymer 8 AN 50 -EA 3S -SAM 1S 10/90 o% production Example 14 polymer 1 AN 50 - VC 49 - 5 - 3S ° 5 polymer 8 AN 50 -EA 35 -SAM S 10/90 5% production example 15 polymer 1 AN 50 - VC 49 - s - 3S ° - 5 polymer 9 AN 50 -MA 35 -SAM 15 10/90 0% production example 16 polymer 1 AN 50 - VC 49 - s - 3S ° - 5 polymer 9 AN B0 -MA 35 -SAM 1S 10/90 5% production example 17 polymer 1 AN 50 - VC 49 - s - 3S ° - 5 Polymer 10 AN 50 -MA Z5 -VD 0 -SAM 15 10/90 0% Production Example 18 Polymer 1 AN 50 - VC 49 - s - 3S ° - 5 Polymer 10 AN 50 - MA 2S - VD 10 -SAM 15 10/90 5%
(実施例 1〜 1 6 ) (Examples 1 to 16)
製造例 1、 2、 4、 5、 7〜1 8で得られた収縮繊維を 6 0 °C、 7 0 °C、 8 0 °Cで 6 0分間染色した。 そのときの相対飽和値、 染色収縮率、 染色後収縮 率の値を表 2に示す。 紡糸原液が非相溶な場合、 6 0〜8 0 °Cの染色で染色 収縮率が 1 0 %以下に、 染色後収縮率が 2 0 %以上になり、 6 0 °C以上の染 色で相対飽和値が 0 . 1以上に、 かつ 7 0 °C以上の温度で相対飽和値が 0 . 8以上になる。 The contracted fibers obtained in Production Examples 1, 2, 4, 5, 7 to 18 were dyed at 60 ° C, 70 ° C, and 80 ° C for 60 minutes. Table 2 shows the values of the relative saturation value, the dye shrinkage ratio, and the post-dye shrinkage ratio. When the spinning solution is incompatible, the dye shrinkage rate is reduced to 10% or less by dyeing at 60 to 80 ° C, and the shrinkage rate after dyeing is increased to 20% or more after dyeing. The relative saturation value becomes 0.1 or more at a temperature of 70 ° C or more and the relative saturation value becomes 0.8 or more.
さらに、 製造例 1、 2、 4、 5、 7〜1 8で得られたハイパイルの外観評価 を行った。 その結果を表 2に示す。 染色後収縮率が 2 0 %以上であれば、 長 パイル部と短パイル部の段差が強調された外観特性を有するハイパイルを得 る事ができる。 Furthermore, the appearance of the high piles obtained in Production Examples 1, 2, 4, 5, 7 to 18 was evaluated. The results are shown in Table 2. When the shrinkage after dyeing is 20% or more, a high pile having an appearance characteristic in which a step between a long pile portion and a short pile portion is emphasized can be obtained.
(比較例 1、 2 )  (Comparative Examples 1 and 2)
製造例 3、 6で得られた収縮繊維を 6 0 °C、 7 0 °C、 8 0 °Cで 6 0分間染 色した。 そのときの相対飽和値、 染色収縮率、 染色後収縮率の値を表 2に示 す。  The shrinkable fibers obtained in Production Examples 3 and 6 were dyed at 60 ° C., 70 ° C. and 80 ° C. for 60 minutes. Table 2 shows the relative saturation value, staining shrinkage, and shrinkage after staining.
紡糸原液が相溶な場合、 7 0〜 8 0 °Cの染色で染色収縮率を 1 0 %以下に する事が困難である。  When the spinning solution is compatible, it is difficult to reduce the dye shrinkage to 10% or less by dyeing at 70 to 80 ° C.
さらに、 製造例 3、 6で得られたハイパイルの外観評価を行った。 その結 果を表 2に示す。 染色後収縮率が 2 0 %以下になると長パイル部と短パイル 部の段差がほとんど見られなくなる。 Further, the appearance of the high pile obtained in Production Examples 3 and 6 was evaluated. The results are shown in Table 2. When the shrinkage ratio after dyeing is 20% or less, almost no level difference is observed between the long pile portion and the short pile portion.
相分離 相対飽和値 染色収縮率 (%) 染色後収箱率 (%) ハイパイル外観評価 jHf能 Phase separation Relative saturation value Dye shrinkage (%) Box ratio after dyeing (%) High pile appearance evaluation jHf ability
製造方法 (jum) 染色温度 (°c) 染色温度 (°c) 染色温度 (°c) 染色温度 C)  Production method (jum) Staining temperature (° c) Staining temperature (° c) Staining temperature (° c) Staining temperature C)
60 70 80 60 70 80 60 70 80 60 70 80 実施例 1 製造例 1 10 0.2 1.0 ― 2 7 ■― 36 30 ― © ◎ ― 実施例 2 製造例 2 10 一 - 2.2 ― ― .7 ― 一 24 ― ― 〇 比較例1 製造例 3 相溶 0.3 1.0 2.3 8 19 30 30 21 10 ◎ '〇 X 実施例 3 製造例 4 7 0.3 1. 1 ― 3 9 -― 37 32 ― ◎ ◎ ― 実施例 4 製造例 5 7 ― ― 2.4 ― - 8 ― ― 26 一 ― 〇 比較例 2 相溶 0.4 1.3 2.5 9 20 .35 28 18 5 ◎ X  60 70 80 60 70 80 60 70 80 60 70 80 Example 1 Production Example 1 10 0.2 1.0 ― 2 7 ■ ― 36 30 ― © ◎ ― Example 2 Production Example 2 10 1-2.2 ― ― .7 ― 1 24 ― ― 〇 Comparative Example 1 Production Example 3 Compatible 0.3 1.0 2.3 8 19 30 30 21 10 ◎ '〇 X Example 3 Production Example 4 7 0.3 1.1 ― 3 9-― 37 32 ― ◎ ◎ ― Example 4 Production Example 5 7 ― ― 2.4 ―-8 ― ― 26 1 ― 比較 Comparative Example 2 Compatible 0.4 1.3 2.5 9 20.35 28 18 5 ◎ X
実施例 5 製造例 7 g 0.3 1.0 ― 2 8 -― 36 31 ― ◎ ― 実施例 6 製造例 8 9 ― 一 2. 1 ― ― 8 - ― 24 一 ― 〇 実施例 7 製造例 9 11 0.2 0.8 ― 2 6 ― 35 30 ― ◎ ― 実施例 8 製造例 10 11 ― ― 1.9 一 ― : 6 ― - 24 ― ― O 実施例 9 製造例" 12 0.1 0.8 ― 2 6 ■― 36 31 ― ◎ ◎ ― 実施例 10 製造例 12 12 ― ― 2.2 ― - 7 ― 一 24 ― 一 O 実施例 11 製造例 13 11 0.2 0.9 ― 2 5 一 34 29 ― ◎ ◎ ― 実施例 12 製造倒" I4 11 ― ― 1.8 ― 一 7 一 ― 23 ― ― 〇 実施例 13 製造例 15 6 0.1 0.8 ― 2 5 ― 34 29 一 ◎ ◎ ― 実施例 14 製造例 16 6 ― ― 1.8 ― ― 6 ― ― 22 一 ― 〇 実施例 15 製造例 17 6 0. 1 0.8 ― 1 6 ― 34 28 ― ◎ ◎ ― 実施例 16 製造例 18 6 ― 一 1.7 ― ― 6 ― ― 21 : ― ― 〇 Example 5 Production Example 7 g 0.3 1.0 ― 28-― 36 31 ― ◎ ― Example 6 Production Example 8 9 ― 1 2.1 ― ― 8-― 24 1 ― 〇 Example 7 Production Example 9 11 0.2 0.8 ― 2 6 ― 35 30 ― ◎ ― Example 8 Production Example 10 11 ― ― 1.9 one ―: 6 ―-24 ― ― O Example 9 Production Example "12 0.1 0.8 ― 2 6 ■ ― 36 31 ― ◎ ◎ ― Example 10 Production example 12 12 ― ― 2.2 ―-7 ― 1 24 ― 1 O Example 11 Production example 13 11 0.2 0.9 ― 2 5 1 34 29 ― ◎ ◎ ― Example 12 Production failure "I4 11 ― ― 1.8 ― 1 7 1-23--〇 Example 13 Production example 15 6 0.1 0.8 ― 2 5 ― 34 29 1 ◎ ◎ ― Example 14 Production example 16 6 ― ― 1.8 ― ― 6 ― ― 22 1 ― 〇 Example 15 Production example 17 6 0.1 0.8 ― 1 6 ― 34 28 ― ◎ ◎ ― Example 16 Production example 18 6 ― 1 1.7 ― ― 6 ― ― 21: ― ― 〇
»2 産業上の利用可能性 »2 Industrial applicability
本発明のアクリル系収縮繊維は、 染色時の収縮を小さく、 染色後において も高収縮率を有するものであり、 その結果、 衣料、 玩具 (ぬいぐるみ等) 及 ぴインテリア用等の広範囲に新たな商品企画を可能とするものである。  The acrylic shrinkable fiber of the present invention has a small shrinkage during dyeing and has a high shrinkage even after dyeing. As a result, a wide range of new products such as clothing, toys (stuffed toys, etc.) and interior goods It enables planning.

Claims

請求の範囲 The scope of the claims
1. アクリロニトリル 40〜 80重量%とハロゲン含有モノマー 20〜60 重量%及びスルホン酸含有モノマー 0〜5重量%とよりなる重合体 (A) 5 0〜99重量部に、 アクリロニトリル 5〜 70重量%とその他共重合可能な モノマー 20〜94重量0 /0及ぴスルホン酸含有モノマー 1〜40重量0 /0とよ りなる重合体 (B) 1〜50重量部を混合した重合組成物よりなり、 重合体 (A) と重合体 (B) が非相溶である紡糸原液から製造される染色できるァ クリル系収縮繊維 1. A polymer comprising 40 to 80% by weight of acrylonitrile, 20 to 60% by weight of a halogen-containing monomer and 0 to 5% by weight of a sulfonic acid-containing monomer (A) 50 to 99 parts by weight of acrylonitrile and 5 to 70% by weight of acrylonitrile consists other copolymerizable monomer 20 to 94 weight 0/0 及Pi sulfonic acid-containing monomer 1 to 40 wt 0/0 by Li Cheng polymer (B) polymer composition obtained by mixing 50 parts by weight Dyeable acrylic shrinkable fiber produced from a spinning stock solution in which the union (A) and the polymer (B) are incompatible.
2. 重合体 (A) および重合体 (B) におけるスルホン酸基含有モノマーの 合計含有量が、 重合体 (A) および重合体 (B) のモノマー合計量の 0. 1 2. The total content of the sulfonic acid group-containing monomers in the polymer (A) and the polymer (B) is 0.1% of the total amount of the monomers in the polymer (A) and the polymer (B).
〜10重量部である請求項 1記載のアクリル系収縮繊維 The acrylic shrinkable fiber according to claim 1, wherein the amount is from 10 to 10 parts by weight.
3. 前記重合体 (B) において、 その他共重合可能なモノマーがアクリル酸 エステルである、 請求項 1〜 2記載のァクリル系収縮繊維  3. The acryl-based shrinkable fiber according to claim 1, wherein, in the polymer (B), the other copolymerizable monomer is an acrylic ester.
4. 前記紡糸原液が 0. 1〜30 μηιの粒子状に相分離している事を特徴と する、 請求項 1〜 3記載のアクリル系収縮繊維  4. The acrylic shrinkable fiber according to any one of claims 1 to 3, wherein the spinning solution is phase-separated into particles of 0.1 to 30 μηι.
5. 80°C以下の染色収縮率が 10%以下であることを特徴とする請求項 1 〜 4記載のアクリル系収縮繊維  5. The acrylic shrinkable fiber according to any one of claims 1 to 4, wherein the dye shrinkage at 80 ° C or less is 10% or less.
6. 80°C以下で染色後、 130°C、 5分間の乾熱処理による収縮率が 20% 以上であることを特徴とする請求の請求項 1〜 5記載のアクリル系収縮繊維 6. The acrylic shrinkable fiber according to any one of claims 1 to 5, wherein the shrinkage rate by dry heat treatment at 130 ° C for 5 minutes after dyeing at 80 ° C or less is 20% or more.
7. 60°C以上の染色で相対飽和値が 0. 1以上であり、 かつ、 70°C以上 の相対飽和値が 0. 8以上である事を特徴とする請求項 1〜 6記載のァクリ ル系収縮繊維 7. The filter according to claim 1, wherein the relative saturation value at staining at 60 ° C. or more is 0.1 or more, and the relative saturation value at 70 ° C. or more is 0.8 or more. Le shrink fiber
8. 1〜20%の緩和処理を行う事を特徴とする請求項 1〜 7記載のァクリ ル系収縮繊維の製造方法  8. The method for producing an acryl-based shrinkable fiber according to claim 1, wherein a relaxation treatment of 1 to 20% is performed.
PCT/JP2004/019725 2003-12-26 2004-12-24 Acrylic shrinkable fiber and method for production thereof WO2005064050A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005516717A JP4603486B2 (en) 2003-12-26 2004-12-24 Acrylic shrinkable fiber and method for producing the same
DE602004020800T DE602004020800D1 (en) 2003-12-26 2004-12-24 SHRINKABLE ACRYLIC FIBER AND METHOD FOR THE PRODUCTION THEREOF
US10/583,182 US20070098982A1 (en) 2003-12-26 2004-12-24 Acrylic shrinkable fiber and method for production thereof
AT04808075T ATE429530T1 (en) 2003-12-26 2004-12-24 SHRINKABLE ACRYLIC FIBER AND METHOD FOR PRODUCING THE SAME
EP04808075A EP1698718B1 (en) 2003-12-26 2004-12-24 Acrylic shrinkable fiber and method for production thereof
KR1020067011818A KR101098809B1 (en) 2003-12-26 2006-06-15 Acrylic shrinkable fiber and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003435851 2003-12-26
JP2003-435851 2003-12-26

Publications (1)

Publication Number Publication Date
WO2005064050A1 true WO2005064050A1 (en) 2005-07-14

Family

ID=34736647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019725 WO2005064050A1 (en) 2003-12-26 2004-12-24 Acrylic shrinkable fiber and method for production thereof

Country Status (8)

Country Link
US (1) US20070098982A1 (en)
EP (1) EP1698718B1 (en)
JP (1) JP4603486B2 (en)
KR (1) KR101098809B1 (en)
CN (1) CN100412241C (en)
AT (1) ATE429530T1 (en)
DE (1) DE602004020800D1 (en)
WO (1) WO2005064050A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008990A1 (en) * 2004-07-16 2006-01-26 Kaneka Corporation Acrylic shrinkable fiber and process for producing the same
JP2008101302A (en) * 2006-10-19 2008-05-01 Kaneka Corp Acrylic fiber and method for producing the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2309102T3 (en) * 2000-07-28 2008-12-16 Kaneka Corporation TEXTILE MATERIAL WITH STEELED HAIR.
EP1413658A4 (en) * 2001-07-05 2004-10-13 Kaneka Corp Pile cloth having animal hair style
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
JP4545094B2 (en) * 2003-12-26 2010-09-15 株式会社カネカ Stepped pile fabric and method for manufacturing the same
US20070298210A1 (en) * 2004-11-12 2007-12-27 Kohei Kawamura Pile Fabric With Height Difference and Method for Manufacturing the Same
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
US8840758B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
JP5740058B2 (en) * 2012-09-24 2015-06-24 株式会社カネカ Pile fabric and manufacturing method thereof
US9617685B2 (en) 2013-04-19 2017-04-11 Eastman Chemical Company Process for making paper and nonwoven articles comprising synthetic microfiber binders
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
CN105040151B (en) * 2015-07-10 2017-08-04 东华大学 A kind of polyacrylonitrile fibre of low temperature dyeing and preparation method thereof
CN105040150B (en) * 2015-07-10 2017-03-22 东华大学 Low temperature dyeable contractile polyacrylonitrile fibre and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163207A (en) * 1979-06-02 1980-12-19 Hoechst Ag Fiber or yarn comprising acrilonitrile copolymer mixture and method
JPS6342911A (en) * 1986-08-07 1988-02-24 Kanebo Ltd Production of modacrylic yarn of modified cross section
JPS6452812A (en) * 1987-08-17 1989-02-28 Kanebo Ltd Flame-retardant acrylic high-shrinkage fiber
JPS6452813A (en) * 1987-08-24 1989-02-28 Kanebo Ltd Flame-retardant acrylic high-shrinkage fiber
JPH06158422A (en) * 1992-11-06 1994-06-07 Kanebo Ltd Flame-retardant acrylic fiber having high shrinkage
JP2001303364A (en) * 2000-04-24 2001-10-31 Kanegafuchi Chem Ind Co Ltd Acrylic synthetic yarn having excellent whiteness and dyeability

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958670A (en) * 1957-12-12 1960-11-01 Du Pont Compositions and fibers containing acrylonitrile polymer blends and method of making
US3963790A (en) * 1972-08-09 1976-06-15 Rhone-Poulenc-Textile Non-inflammable filaments comprising acrylonitrile/vinylidene chloride copolymers
JPS5146857B2 (en) * 1972-09-14 1976-12-11
GB1517368A (en) * 1974-11-15 1978-07-12 Bayer Ag Modacrylic filaments with colouristic properties
US4101621A (en) * 1975-05-31 1978-07-18 Kanebo, Ltd. Method for producing flame resistant acrylic fibers
DE2554124C3 (en) * 1975-12-02 1986-07-10 Bayer Ag, 5090 Leverkusen Process for the production of hydrophilic fibers and threads from acrylonitrile polymers
GB1549924A (en) * 1976-11-03 1979-08-08 Snia Viscosa Polymer blends for making modacrylic fibres
US4301107A (en) * 1978-08-30 1981-11-17 American Cyanamid Company Melt-spinning a plurality of acrylonitrile polymer fibers
FR2442901A1 (en) * 1978-11-30 1980-06-27 Rhone Poulenc Textile DOUBLE CONSTITUENT ACRYLIC FIBERS
US5458968A (en) * 1994-01-26 1995-10-17 Monsanto Company Fiber bundles including reversible crimp filaments having improved dyeability
WO2000070133A1 (en) * 1999-05-18 2000-11-23 Kaneka Corporation Hollow, shrinkable fiber for pile and method for production thereof and file product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163207A (en) * 1979-06-02 1980-12-19 Hoechst Ag Fiber or yarn comprising acrilonitrile copolymer mixture and method
JPS6342911A (en) * 1986-08-07 1988-02-24 Kanebo Ltd Production of modacrylic yarn of modified cross section
JPS6452812A (en) * 1987-08-17 1989-02-28 Kanebo Ltd Flame-retardant acrylic high-shrinkage fiber
JPS6452813A (en) * 1987-08-24 1989-02-28 Kanebo Ltd Flame-retardant acrylic high-shrinkage fiber
JPH06158422A (en) * 1992-11-06 1994-06-07 Kanebo Ltd Flame-retardant acrylic fiber having high shrinkage
JP2001303364A (en) * 2000-04-24 2001-10-31 Kanegafuchi Chem Ind Co Ltd Acrylic synthetic yarn having excellent whiteness and dyeability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008990A1 (en) * 2004-07-16 2006-01-26 Kaneka Corporation Acrylic shrinkable fiber and process for producing the same
JP2008101302A (en) * 2006-10-19 2008-05-01 Kaneka Corp Acrylic fiber and method for producing the same

Also Published As

Publication number Publication date
JP4603486B2 (en) 2010-12-22
DE602004020800D1 (en) 2009-06-04
US20070098982A1 (en) 2007-05-03
EP1698718A1 (en) 2006-09-06
EP1698718A4 (en) 2008-03-19
EP1698718B1 (en) 2009-04-22
CN100412241C (en) 2008-08-20
CN1894449A (en) 2007-01-10
JPWO2005064050A1 (en) 2007-07-19
ATE429530T1 (en) 2009-05-15
KR101098809B1 (en) 2011-12-26
KR20060118551A (en) 2006-11-23

Similar Documents

Publication Publication Date Title
KR101098809B1 (en) Acrylic shrinkable fiber and method for production thereof
JP4713481B2 (en) Acrylic shrinkable fiber and method for producing the same
JP4979175B2 (en) Method for producing artificial hair fiber
JP4533319B2 (en) Acrylic shrink fiber
JPH06158422A (en) Flame-retardant acrylic fiber having high shrinkage
JP4745194B2 (en) Acrylic fiber and method for producing the same
DE3243902A1 (en) ACRYLNITRILE POLYMER, METHOD FOR THE PRODUCTION THEREOF AND FIBER PRODUCED THEREOF
JP2007291575A (en) Acrylic shrinkable fiber and pile cloth by using the same
WO2011122016A1 (en) Acrylonitrile-containing fiber, process for production of same, and pile cloth comprising same
JP5740058B2 (en) Pile fabric and manufacturing method thereof
JP2601775B2 (en) Flame retardant acrylic composite fiber
JPH02277810A (en) Flame-retardant high-shrinkage modacrylic fiber
JP2008007909A (en) Acrylic fiber and its production method
JP2601774B2 (en) Flame retardant acrylic composite fiber
WO2007060946A1 (en) Acrylic shrinkable fiber and process for production thereof
WO2002053825A1 (en) Acrylic short fiber and method of dyeing acrylic short fiber
JP2519185B2 (en) Flame-retardant acrylic composite fiber
JPWO2006118175A1 (en) Acrylic shrinkable fiber
JP2008038286A (en) Acrylic shrinkable fiber
JPH0874119A (en) Highly shrinkable acrylic fiber and production of the same
JP2008266800A (en) Acrylonitrile-based flat fiber
JP2013159863A (en) Acrylic synthetic fiber, porous synthetic fiber and pile fabric including them, and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480037641.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516717

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004808075

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067011818

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007098982

Country of ref document: US

Ref document number: 10583182

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004808075

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10583182

Country of ref document: US