WO2005063859A1 - ポリブタジエン成形品の接着方法、これより得られるポリブタジエン複合成形品、医療用部材、および輸液セット - Google Patents

ポリブタジエン成形品の接着方法、これより得られるポリブタジエン複合成形品、医療用部材、および輸液セット Download PDF

Info

Publication number
WO2005063859A1
WO2005063859A1 PCT/JP2004/019296 JP2004019296W WO2005063859A1 WO 2005063859 A1 WO2005063859 A1 WO 2005063859A1 JP 2004019296 W JP2004019296 W JP 2004019296W WO 2005063859 A1 WO2005063859 A1 WO 2005063859A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutadiene
molded product
resin
bonding
treatment
Prior art date
Application number
PCT/JP2004/019296
Other languages
English (en)
French (fr)
Inventor
Minoru Furuichi
Nobuyuki Toyota
Teruo Aoyama
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to EP20040807653 priority Critical patent/EP1698654A4/en
Priority to US10/583,865 priority patent/US20080226930A1/en
Publication of WO2005063859A1 publication Critical patent/WO2005063859A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5344Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially annular, i.e. of finite length, e.g. joining flanges to tube ends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73773General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • B29C2059/145Atmospheric plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/10Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/484Moisture curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4845Radiation curing adhesives, e.g. UV light curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4895Solvent bonding, i.e. the surfaces of the parts to be joined being treated with solvents, swelling or softening agents, without adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/18Polymers of hydrocarbons having four or more carbon atoms, e.g. polymers of butylene, e.g. PB, i.e. polybutylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7148Blood bags, medical bags
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/22Presence of unspecified polymer
    • C09J2400/226Presence of unspecified polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2409/00Presence of diene rubber
    • C09J2409/008Presence of diene rubber in the pretreated surface to be joined
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31931Polyene monomer-containing

Definitions

  • the present invention relates to a method for bonding a polybutadiene molded product, a polybutadiene composite molded product obtained therefrom, a medical member, and an infusion set.
  • infusion sets are commercialized by solvent bonding (adhesion) of tubes and connectors.
  • the above-mentioned infusion set has been commercialized as PVC tube Z solvent (polar solvent) Z polar resin connector.
  • PVC tube Z solvent polar solvent
  • RB studies are increasing in place of PVC tubes.
  • bonding with polar solvent Z-polar resin may be insufficient.
  • a pump may be used to infuse a patient using an infusion set.
  • the infusion set is under pressure, for example, the connection between a tube and a connector is used. There is a possibility that the liquid leaks more.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-321788
  • the present invention improves the bonding (adhesion) force between a polybutadiene molded product and a polar resin molded product, and further improves the bonding force by selecting (combining) solvents for these molded products. It is aimed at.
  • the present invention provides (1) a step of reducing the water contact angle on the surface of the polybutadiene molded article (hereinafter also referred to as “(1) step”);
  • the polybutadiene is preferably syndiotactic 1,2 polybutadiene having a crystallinity of 5% or more!
  • the above-mentioned step (1) includes ozone treatment, electron beam treatment, corona discharge treatment, plasma discharge treatment, radiation (X-ray, ⁇ -ray, j8-ray) treatment, ultraviolet treatment, ultraviolet laser treatment, and Processing strength At least one selected species is included.
  • the water contact angle (CA) of the polybutadiene molded product having a reduced water contact angle obtained by the above step (1) is 80 degrees or less.
  • polar resin examples include polycarbonate resin, polyester resin, ABS resin, polystyrene resin, polyurethane resin, polyamide resin, polyalkyl acrylate resin, polyalkyl methacrylate resin, and polyvinyl acetate. At least one selected from the group consisting of resin, polychloride resin, and polychloride resin.
  • the difference (A CA) between the water contact angle (CA) of the polybutadiene molded product having a reduced water contact angle obtained in the above step (1) and the water contact angle (CA) of the polar resin molded product is +60.
  • the bonding in the step (2) is preferably bonding with an organic solvent.
  • Preferred examples of the organic solvent include at least one selected from the group consisting of cyclohexanone, tetrahydrofuran, cyclohexane, methylethyl ketone, acetone, and ethyl acetate.
  • the polybutadiene molded article and the polar resin molded article each having a reduced water contact angle obtained in the step (1) are previously treated with the above-mentioned organic solvent.
  • the present invention relates to a polybutadiene composite molded product obtained by the above method for bonding a polybutadiene molded product. Further, the present invention relates to a medical member including at least the polybutadiene composite molded article.
  • the present invention relates to an infusion set including the medical member as a component.
  • a polar group is planted on the surface of the polybutadiene molded article.
  • the bonding (adhesion) force with the polar resin molded product is improved, and the solvent of these molded products is improved.
  • the bonding strength can be further improved.
  • FIG. 1 is a plan view of an infusion set including a polybutadiene composite molded article (medical member) of the present invention as a component.
  • FIG. 2 (a) is a schematic diagram of a connector, and (b) is a schematic diagram of a tube.
  • a composition comprising (A) syndiotactic 1,2-polybutadiene alone or (A) syndiotactic 1,2-polybutadiene and (B) another thermoplastic polymer is preferably used.
  • This (A) syndiotactic 1,2 polybutadiene is a syndiotactic 1,2 polybutadiene having a crystallinity of 5% or more, preferably 10 to 40%, and a melting point of preferably 50 to 50%. It is in the range of 150 ° C, more preferably 60-140 ° C. When the crystallinity and the melting point are in these ranges, the result is an excellent balance between mechanical strength such as tensile strength and tear strength and flexibility.
  • a syndiotactic 1,2 polybutadiene having a crystallinity of about 5 to 25% by mass is used.
  • low crystal RB (Hereinafter, also referred to as “low crystal RB”) is used as a tube body because of its excellent flexibility.
  • the (A) syndiotactic 1,2-polybutadiene used in the present invention has, for example, a 1,2-bond content of 70% or more, and includes, for example, a catalyst containing a cobalt compound and an aluminoxane.
  • the force obtained by polymerizing butadiene in the presence of is not limited to this production method.
  • the 1,2 bond content in the butadiene bond unit of the (A) syndiotactic 1,2-polybutadiene used in the present invention is usually 70% or more, preferably 80% or more, and more preferably 90% or more. It is. When the content of the 1,2 bond is 70% or more, the 1,2-polybutadiene exhibits excellent properties as a thermoplastic elastomer.
  • the (A) syndiotactic 1,2-polybutadiene used in the present invention may be obtained by copolymerizing a small amount of a conjugated diene other than butadiene.
  • the conjugated diene other than butadiene include 1,3-pentadiene, 1,3-butadiene derivatives substituted with a higher alkyl group, and 2-alkyl-substituted 1,3-butadiene.
  • 1,3-butadiene derivatives substituted with higher alkyl groups include 1 pen Chinole 1,3 butadiene, 1-hexyl-1,3-butadiene, 11-heptyl-1,3-butadiene, 1-year-old octyl 1,3-butadiene, and the like.
  • 2-alkyl-substituted 1,3-butadiene examples include 2-methyl-1,3-butadiene (isoprene), 2-ethyl-1,3-butadiene, 2-propyl-1,3 butadiene 2 Isopropyl 1,3 butadiene, 2-butyl-1,3 butadiene, 2 isobutyl-1,3 butadiene, 2 amylane 1,3 butadiene, 2 isoamylene 1,3 butadiene, 2-hexyl-1,3 butadiene, 2-cyclohexyl 1 2,3-butadiene, 2-isohexyl-1,3-butadiene, 2-butyl-1,3-butadiene, 2-isoheptyl-1,3-butadiene, 2-butyl-1,3-butadiene, 2-isooctyl-1,3-butadiene, etc.
  • conjugated genes to be copolymerized with butadiene include isoprene and 1,3 pentadiene.
  • the content of butadiene in the monomer component used for the polymerization is preferably at least 50 mol%, particularly preferably at least 70 mol%.
  • the above-mentioned conoreto compound an organic acid salt of cobalt having preferably 4 or more carbon atoms can be mentioned.
  • the organic acid salts of cobalt include butyrate, hexanoate, heptylate, octylate such as 2-ethylhexylate, decanoate, stearic acid, oleic acid, and erlic acid.
  • the so-called octylates of 2-ethylhexyl acid, stearates and benzoates are preferred for their excellent solubility in hydrocarbon solvents.
  • Examples of the aluminoxane include those represented by the following general formula (I) or general formula ( ⁇ ). [0016] [Formula 1]
  • R is a hydrocarbon group such as a methyl group, an ethyl group, a propyl group, and a butyl group. Preferred are a methyl group and an ethyl group, and particularly preferred is a methyl group.
  • M is an integer of 2 or more, preferably 5 or more, and more preferably 10-100.
  • Specific examples of aluminoxane include methyl aluminoxane, ethyl aluminoxane, propyl aluminoxane, butyl aluminoxane, and the like, and methyl aluminoxane is particularly preferred! /.
  • the polymerization catalyst contains a phosphine compound in addition to the above-mentioned cobalt compound and aluminoxane.
  • the phosphine conjugate is a component effective for activating the polymerization catalyst, controlling the vinyl bond structure and the crystallinity, and preferably includes an organic phosphorus conjugate represented by the following general formula ( ⁇ ).
  • Ar represents a group shown below.
  • R 1 , R 2 , and R 3 are the same or different and are each a hydrogen atom, preferably an alkyl group having 16 carbon atoms, a halogen atom, and preferably 1 to 11 carbon atoms. And represents an alkoxy group having 6 or an aryl group having preferably 6 to 12 carbon atoms.
  • R ′ represents a cycloalkyl group or an alkyl-substituted cycloalkyl group, and n is an integer of 0-3.
  • phosphine conjugate represented by the general formula (III) include tri (3-methylphenyl) phosphine, tri- (3-ethylphenyl) phosphine, and tri (3,5-dimethylphenyl) phosphine.
  • the compound represented by the above general formula (IV) is a complex having a phosphine compound in which n is 3 in the above general formula ( ⁇ ) as a ligand with respect to cobalt chloride.
  • this cobalt conjugate it may be used as synthesized in a rough manner, or may be used in such a manner that the cobalt chloride and the phosphine conjugate are brought into contact in the polymerization system.
  • various phosphine compounds in the complex it is possible to control the amount of 1,2-bonds and the crystallinity of the resulting syndiotactic 1,2-polybutadiene.
  • cobalt compound represented by the above general formula (IV) include cobalt bis (triphenylphosphine) dichloride, cobalt bis [tris (3-methylphenylphosphine)] dichloride, cobalt bis [ Tris (3-ethylphenylphosphine)] dichloride, cobalt bis [tris (4-methylphenylphosphine)] dichloride, cobalt bis [tris (3,5-dimethylphenylphosphine)] dichloride, cobalt bis [tris (3,4- Dimethylphenylphosphine)] dichloride, cobalt bis [tris (3-isopropylphenylphosphine)] dichloride, cobalt bis [tris (3-tbutylphenylphosphine)] dichloride, cobalt bis [tris (3,5-jetylphenyl) -Luphosphine)] dichloride, cobalt bi [Tris (3-methylphenyl
  • cobalt bis (triphenylphosphine) dichloride cobalt bis [tris (3-methylphenylphosphine)] dichloride, and cobalt bis [tris (3,5-dimethylphenyl) dichloride.
  • the amount of the phosphine compound used is usually 0.1 to 50, preferably 0.5 to 20, and more preferably 112, as a ratio of phosphorus atom to cobalt atom (PZCo).
  • the amount of aluminum Noo hexane as the ratio of aluminum atoms (Al / Co) to pair the cobalt atom of Kobaruti ⁇ was typically 4 one 10 7, Ru preferably 10-10 6 Der.
  • the amount of the phosphine compound used is such that the ratio of the phosphorus atom to the cobalt atom (PZCo) is 2, and the amount of the aluminoxane is as described above. Obey.
  • Examples of the inert organic solvent used as the polymerization solvent include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and cumene; aliphatic hydrocarbon solvents such as n-pentane, n-hexane, and n-butane; Examples include alicyclic hydrocarbon solvents such as cyclopentane, methylcyclopentane, and cyclohexane, and mixtures thereof.
  • the polymerization temperature is usually 50-120 ° C, preferably -20-100 ° C.
  • the polymerization reaction may be a batch type or a continuous type.
  • the concentration of the monomer in the solvent is usually 5 to 50% by mass, preferably 10 to 35% by mass.
  • the weight average molecular weight of the (A) syndiotactic 1,2 polybutadiene used in the present invention is preferably 11 to 5,000,000, more preferably 11 to 1.5 million, and particularly preferably 50 to 1,000,000. It is. If the weight-average molecular weight is less than 10,000, the flowability is extremely high, making it extremely difficult to process. Also, the molded product (medical member) becomes sticky, which is not preferable, while if it exceeds 5,000,000, the flowability is extremely low. Processing becomes very difficult, which is not preferable.
  • thermoplastic polymer includes thermoplastic resins other than the above-mentioned component (A) and
  • thermoplastic elastomer specifically, polyethylene, polypropylene, styrene butadiene styrene block copolymer (SBS), styrene isoprene styrene block copolymer (SIS), and hydrides thereof (SEBS, SEPS), polybutadiene (BR) other than the above-mentioned syndiotactic 1,2-polybutadiene, ABS resin, polyisoprene, various polyethylenes (LLDPE, ULDPE, LDPE), ethylene butyl acetate copolymer, ethylene acrylate copolymer, and Group of ethylene-methacrylic acid copolymers At least one selected.
  • SBS styrene butadiene styrene block copolymer
  • SIS styrene isoprene styrene block copolymer
  • SEBS polybutadiene
  • BR polybutadiene
  • the amount of the component (B) is 40 parts by mass or less, preferably 0 to 35 parts by mass, per 100 parts by mass of the total amount of the components (A) and (B).
  • the amount exceeds 40 parts by mass the proportion of the component (A) used is reduced, and the inherent flexibility of the component (A) is lost.
  • the composition used in the present invention may contain additives such as a lubricant, a filler or a foaming agent, if necessary, in addition to the components (A) and (B).
  • additives such as paraffin oil, silicone oil, liquid polyisoprene, liquid polybutadiene, L-acid amide, stearic acid amide and other lubricants, talc, silica, magnesium hydroxide, calcium carbonate, glass , Carbon fiber, glass balloons, and other foaming agents; and microspheres, ADCA, OBSH, baking soda, AIBN, etc., manufactured by Matsumoto Yushi Co., Ltd.
  • the amount of lubricant used is 100 parts by mass of the total amount of the resin component, that is, the components (A) and (B).
  • the amount is 10 parts by mass or less, preferably 0.01 to 8 parts by mass. If the amount exceeds 10 parts by mass, the lubricant bleeds out of the product and elutes in the used drug, which is not preferable.
  • additives for example, a polyfunctional monomer such as trimethylpropanetrimetha- talate, a light-sensitive material such as hydroxycyclohexylphenol-ketone or the like.
  • a polymerization initiator, a photosensitizer such as benzophenone, or the like may be contained in an amount of 5 parts by mass or less based on 100 parts by mass of the syndiotactic 1,2-polybutadiene.
  • the composition used for the polybutadiene molded article in the present invention comprises the above-mentioned component (A) alone, or the components (A)-(B), and if necessary, the above-mentioned additives and the like are added thereto.
  • molded products such as tubes and connectors
  • press molding, extrusion molding, injection molding, blow molding, profile extrusion molding, T-die film molding, inflation molding, nodder slush molding, rotational molding, etc. are used. It is molded into a tube or other connector with a tube connection.
  • a low-crystal RB is used because the tube requires flexibility, but since the melting point is low, in order to develop steam sterilization resistance, it is then irradiated with an electron beam. Can be crosslinked.
  • the vinyl group of the syndiotactic 1,2-polybutadiene undergoes a radical polymerization to form a three-dimensional crosslinked structure, thereby imparting heat resistance to the molded article (tube).
  • the electron beam is permeable to the synthetic resin, and the degree of transmission depends on the thickness of the molded product and the kinetic energy of the electron beam.
  • a molded article (tube) having a uniform degree of crosslinking in the thickness direction can be obtained.
  • the connector may be irradiated with an electron beam.
  • the electron beam irradiation may be performed before or after bonding the tube and the connector.
  • the electron beam accelerating voltage is preferably 50-3, OOOkV, more preferably 300-2, OOOkV with respect to the polybutadiene molded article (medical member) such as the above tube. If it is less than 50 kV, the proportion of electrons captured and absorbed in the surface layer becomes relatively large, so that the number of electron beams transmitted through the molded article decreases, and the internal crosslinking is delayed compared to the surface layer, and the degree of crosslinking increases. Is not preferred because of the difference in On the other hand, if it is larger than 3, OOOkV, the degree of cross-linking becomes too large, and it becomes hard and elasticity and elongation become small, which is not preferable.
  • the irradiation amount of the electron beam is preferably in the range of 100 Mrad (corresponding to 10-1 or OOOkGy in SI unit system), and more preferably in the range of 50 Mrad. Let me do it. If it is less than lMrad, the degree of cross-linking of 1,2-polybutadiene is small, while if it exceeds lOOMrad, the degree of cross-linking becomes too large and becomes hard, which is not preferable because elasticity and elongation are small.
  • Crosslinking by electron beam irradiation can be represented by the product of the electron beam acceleration voltage and the irradiation dose.
  • the product of the electron beam acceleration voltage (kV) and the irradiation dose (Mrad) is preferably used. 2,000 to 20, 20, OOO (kV'Mrad), and more preferably, 5,000 to 16,000 (kV-Mrad).
  • the elastic modulus (M2) at 50% elongation of the medical member after electron beam irradiation is increased.
  • M2 / Ml is the above electron beam acceleration voltage (kV) and irradiation dose (Mrad)
  • the polybutadiene molded article such as a cross-linked tube obtained after electron beam irradiation obtained in this way has steam sterilization resistance, and is, for example, a cross-linked product of the present invention. It does not deform when steam sterilized using an infusion tube at 100-121 ° C for about 10-20 minutes.
  • the steam sterilization resistance refers specifically to a resin molded product such as an infusion tube (for example, an inner diameter of 3 ⁇ , an outer diameter of 4.4mm ⁇ , a wall thickness of 0.7mm, and a tube length of 20cm).
  • an infusion tube for example, an inner diameter of 3 ⁇ , an outer diameter of 4.4mm ⁇ , a wall thickness of 0.7mm, and a tube length of 20cm.
  • the haze value of the polybutadiene molded article (medical member such as a tube) irradiated with the electron beam of the present invention is preferably 30 or less, more preferably 25 or less.
  • the haze value is a measure of transparency, the smaller the value, the better the transparency. This haze value was measured according to ASTM D-1003.
  • the polybutadiene formed article of the present invention after electron beam irradiation is toluene insoluble component force typically 50- 99 mass 0/0, preferably from 80- 95 wt%.
  • the toluene insoluble content is a barometer that indicates to what extent the double bond in (A) syndiotactic 1,2-polybutadiene is crosslinked by irradiating the polybutadiene molded article with an electron beam.
  • the toluene-insoluble matter is determined by immersing the polybutadiene molded article (medical member) [(a) g] of the present invention in 100 ml of toluene, leaving it at 30 ° C. for 48 hours, and then filtering it using a 100 mesh wire mesh. After collecting a part of the filtrate ((c) ml), evaporating it to dryness and solidifying it, weighing the remaining solid matter [soluble matter in toluene: (b) g], the gel content is calculated by the following formula. Was calculated.
  • toluene insoluble content is less than 50% by mass, crosslinking by electron beam irradiation is insufficient, heat resistance is poor, and steam sterilization resistance is poor. On the other hand, if the content exceeds 99% by mass, the crosslinking by electron beam irradiation proceeds excessively, and the medical member becomes too hard and loses flexibility, which is not preferable.
  • the toluene insoluble content can be easily adjusted by setting the product of the electron beam acceleration voltage (kV) and the irradiation dose (Mrad) to 2,000 to 20,000 (kV. Mrad).
  • the polybutadiene molded article (medical member such as a tube) of the present invention preferably has a halogen atom content of 200 ppm or less, more preferably 100 ppm or less.
  • the content of the halogen atom can be adjusted, for example, by using a non-halogen inert organic solvent as the polymerization solvent, as described above, so that the content of the halogen atom in the obtained 1,2-polybutadiene is preferably 200 ppm. Or less, more preferably 100 ppm or less. It is preferable to use only a non-halogen compound in the catalyst system because the halogen atom content in the polybutadiene molded article (medical member) can be further reduced.
  • the polybutadiene molded product irradiated with the electron beam in this way is excellent in flexibility and hardness, and has steam sterilization resistance, so that it is useful not only for tubes but also for connectors.
  • the polybutadiene molded article used in the present invention includes a tube made of 1,2 polybutadiene as described above, a tube made of a blend of 1,2-polybutadiene and a styrene isoprene block copolymer (SIS), 2—Tube made of a blend of polybutadiene and rubber; 1, 2-tube made of a blend of polybutadiene and an olefin resin.
  • the combination with the styrene isoprene block copolymer may be hydrogenated styrene, ethylene propylene styrene, or a partially hydrogenated potato product.
  • a force that can use various rubbers isoprene rubber and natural rubber are preferred.
  • the combination with the olefin resin LDPE, L LDPE and EVA are mentioned as preferred resins.
  • thermoplastic resins such as ABS resin, polystyrene resin, acrylic resin, polyacrylamide, polyacrylic acid, polymethyl acrylate, Polyalkyl acrylates such as polyethyl acrylate, polyacrylonitrile, acrylonitrile styrene copolymer, polymethacrylamide, polymethacrylic acid, polyalkyl methacrylate such as polymethyl methacrylate and polyethyl methacrylate Ester, polyurethane resin, polymethary resin-tolyl, acetal resin, polyoxymethylene, ionomer, chlorinated polyethylene, coumarone's indene resin, regenerated cellulose, petroleum resin, cellulose derivative, alkali cellulose, cellulose ester , Senorelose acetate, senorelose acetate butyrate, senorelose xanthate, senorelose citrate,
  • Aromatic polyamides such as polyphenylene isophthalamide, polyphenylene terephthalamide, metaxylylene diamine, polyimide, polyphenylene sulfide, polyether ether ketone, polyamide imide, polyarylate, polyethylene terephthalate, etc.
  • Polyester resin polyvinyl chloride, polyvinyl chloride, polyvinyl chloride, chlorinated polyethylene, chlorosulfonated polyethylene, polycarbonate, CR-39, polysulfone, polyethersulfone, polysulfonamide, polybutyl alcohol, polybutyl ester, polycarbonate Cinnamate, polyacetate, polybutyl ether, polyisobutyl vinyl ether, polymethylbutyl ether, polyphenylene oxide, polybutylene terephthalate, etc., and thermosetting plastics such as amino resin and a phosphorus resin , Urea resin, polysulfonamide, melamine resin, aryl resin, diaryl phthalate resin, alkyd resin, epoxy resin, silicone resin, vinyl ester resin, phenol resin, novolac resin, resorcinol resin , Unsaturated poly Ester ⁇ , low shrinkage unsaturated polyester, such as furan ⁇ is like et be.
  • preferred polar resins are polycarbonate resins, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, ABS resins, polystyrene resins, polyacrylic resins, polyurethane resins, polyamide resins, and polyacetic acid resins. Fats, poly-Shi-Dani Bulure resin and poly-Shi-Dai Breweryden resin.
  • the solubility parameter (SP value) of the polar resin is preferably 9-13, and more preferably 9.5-12.
  • solubility parameter 1 is a value calculated using the group parameter of Small by the group contribution method described in “Polymer Handbook”, published by John Wiley & Son, “Polymer Handbook”, 1999, 4th edition, section VII, pages 682-685). .
  • the solubility parameter of a copolymer composed of 75% by mass of styrene and 25% by mass of acrylonitrile is one of the solubility parameter of polystyrene 9.03 (cal / cm 3 ) ⁇ and the solubility parameter of polyacrylo-tolyl 12.71.
  • Equation (1) Substituting into equation (1) using (. & 17 ⁇ 11 3 ) 1/2 gives a value of 9.95 (calZcm 3 ) 1/2 .
  • the solubility parameter ⁇ s of the vinyl polymer obtained by polymerizing the vinyl monomer in two or more steps and changing the type of the vinyl monomer in each step is finally determined. It was determined that additivity was established by the value obtained by dividing the total mass of the obtained vinyl polymer by the mass of the vinyl polymer obtained in each step, that is, the mass fraction. That is, the polymer is polymerized in the q step, and can be calculated by the following equation (2) from the solubility parameter ⁇ i of the polymer obtained in each step and its mass fraction Wi. [0053] [Equation 2]
  • polymerization is performed in two stages, and in the first stage, 50 parts by mass of a copolymer consisting of 75% by mass of styrene and 25% by mass of acrylonitrile is obtained, and in the second stage, 50 parts by mass of a polymer of methyl methacrylate is obtained. If obtained, the polymer obtained in this two-stage polymerization
  • the water of the polybutadiene composite molded product having a reduced contact angle with water after being subjected to ozone treatment, electron beam treatment, corona discharge treatment, plasma discharge treatment, ultraviolet treatment, ultraviolet laser treatment and chemical treatment When a high adhesive strength is obtained at the time of approaching the contact angle and adhering the solvent with a polar solvent, the following effect is obtained.
  • solubility parameter When the solubility parameter is less than 9, the adhesive force by the polar solvent is insufficient, which is not preferable. On the other hand, if it exceeds 13, drug adsorption becomes strong and it is not suitable for connector use.
  • Examples of the polar resin satisfying such a solubility parameter include the above-mentioned preferred polar resins.
  • Examples of the polar resin molded product used in the present invention include a connector and an infusion set auxiliary tool made of the above various polar resins.
  • the method for bonding a polybutadiene molded product of the present invention comprises the steps of (1) first treating the polybutadiene molded product with ozone to introduce a polar group described below into the surface of the polybutadiene molded product.
  • the step (1) is a means for reducing the water contact angle on the surface of the polybutadiene molded product. Any method may be used as long as it is ozone treatment, corona discharge treatment, plasma discharge treatment, excimer laser treatment, electron beam treatment, ultraviolet treatment, or chemical treatment.
  • Ozonation is performed by exposing a polybutadiene molded article to ozone.
  • the exposure method can be performed by an appropriate method such as a method of maintaining the polybutadiene molded article in an atmosphere in which ozone is present for a predetermined time or a method of exposing the molded article to an ozone stream for a predetermined time.
  • ozone can be generated by supplying an oxygen-containing gas such as air, oxygen gas, or oxygenated air to an ozone generator (such as an ultraviolet irradiation device).
  • an ozone generator such as an ultraviolet irradiation device.
  • the obtained ozone-containing gas is introduced into a container, a tank, or the like holding a polybutadiene molded product to perform ozone treatment.
  • Various conditions such as the ozone concentration in the ozone-containing gas, the exposure time, and the exposure temperature can be appropriately determined according to the type of the polar resin molded article and the purpose of the surface modification.
  • the conditions of the ozone treatment differ depending on the shape of the polybutadiene molded product and the like.
  • Oxygen or air flow can be used to generate ozone at a concentration of 200mgZl at a flow rate of 20-2, OOOmlZmin, and can be treated at a temperature of 0-80 ° C for 1 minute and 24 hours.
  • treatment with an ozone concentration of 10-80 mgZl at room temperature for about 20-30 minutes is appropriate.
  • an ozone concentration of about 120 mgZl and a treatment at room temperature for about 30 minutes to 6 hours are appropriate.
  • the generated ozone concentration when using air is about 50% of that when using oxygen.
  • Electron beam treatment [0063] Electron beam treatment:
  • an electron beam irradiation device equipped with an electron beam accelerator instead of the above ozone generator, and irradiate the surface of the polybutadiene molded product to be treated with an electron beam generated by the electron beam accelerator. It is implemented by.
  • the above electron beam irradiation device include, for example, a device capable of irradiating a uniform electron beam in a curtain form from a linear filament (for example, , An elect opening curtain type device) or the like can be used.
  • the electron beam irradiation dose at this time is usually 0.5 Mrad or more, preferably 1.5 Mrad or more, and more preferably 3 Mrad or more.
  • the electron beam irradiation dose is set with respect to the line speed of the processed film on the entrance side of the electron beam irradiation apparatus, and the upper limit is not particularly limited, but is usually about 20 Mrad.
  • the corona treatment is performed, for example, by passing a polybutadiene molded article to be treated into a corona atmosphere generated in an inert gas using a known corona discharge treatment device.
  • the corona discharge density at this time is usually 10 (W. min. Zm 2 ) or more, preferably 30 to 300 (W-min. Zm 2 ).
  • the inert gas include argon, helium, krypton, neon, xenon, and a simple gas of nitrogen or a mixed gas of two or more thereof. Nitrogen is particularly preferred in the industry.
  • the inert gas may contain oxygen when the oxygen concentration in the gas is 1% by volume or less, preferably 0.1% by volume or less, more preferably 0.01% by volume or less.
  • Plasma processing includes low-pressure plasma processing and atmospheric-pressure plasma processing.
  • the low-pressure plasma treatment consists of electronically exciting the above-mentioned inert gas with a plasma jet at a power of 200 to 1,000 W at a low pressure of 0.1 to 5 Torr, removing charged particles, and electrically This can be achieved by contacting a neutral, excited inert gas with the polybutadiene article to be treated.
  • the processing time at this time is 10-60 seconds, preferably 20-40 seconds.
  • an alternating current of 3 to 5kHz2 to 3000V is applied between the electrodes in the above-described inert gas to generate an excited inert gas similar to that in the low-pressure plasma processing. It can be carried out by bringing the excited inert gas into contact with the polybutadiene molded article to be treated.
  • the processing time at this time is 10 to 60 seconds, preferably 20 to 40 seconds.
  • UV laser treatment
  • the ultraviolet laser light there is a laser having an oscillation wavelength of 180 to 360 nm, preferably 190 to 250 nm, and an excimer laser is preferable.
  • excimer laser Gases include KrF, KrCl, ArF, ArCl, F, etc.
  • an ArF laser has an oscillation wavelength of 192 nm and a photon energy of 148 Kcal. Therefore, a CH bond having a binding energy of 100-l lOKcal can be cleaved, and hydrogen excited by excimer laser irradiation is easily extracted, and instead, for example, a carbonyl group is generated by oxygen in air coexisting. , A carboxyl group, a hydroxyl group and the like can be introduced.
  • the chemical treatment is a process for etching or deteriorating a polybutadiene molded product or a process for introducing a functional group to the surface.
  • a peroxide treatment such as hydrogen peroxide
  • examples include treatment with an inorganic acid such as nitric acid, hydrochloric acid, sulfuric acid, chromic acid, and potassium permanganate solution, and treatment with a solution of aluminum chloride, sodium chloride, and the like in toluene.
  • the conditions for chemical treatment are as follows: 2-50% by mass of nitric acid, hydrochloric acid, sulfuric acid, chromic acid or potassium permanganate in an acidic, neutral or basic solvent (including water) and a polybutadiene molded product. Immerse for 5 minutes and 48 hours to oxidize. If necessary, a method of heating to 30-50 ° C can be adopted.
  • the above-mentioned ozone treatment, electron beam treatment, corona discharge treatment, plasma discharge treatment, ultraviolet laser treatment, or chemical treatment can be used alone or in combination! it can.
  • the ultraviolet laser treatment is performed in the presence of ozone to reduce the water contact angle of the polybutadiene molded article.
  • the water contact angle on the surface of the polybutadiene molded article can be reduced by the above-mentioned step (1).
  • the water contact angle is the contact angle when a drop of water is gently placed on a treated plate-shaped polybutadiene molded product, and is a commercially available automatic contact angle meter, for example, an automatic contact angle meter manufactured by Kyowa Interface Science Co., Ltd. Can be measured.
  • the water contact angle of the polybutadiene molded product treated in the step (1) is usually 80 degrees or less, preferably 75 degrees or less, and more preferably 10 degrees to 70 degrees. If it exceeds 80 ° C, the adhesion to the polar resin molded product will be poor, and the problem that a polar solvent cannot be used will occur.
  • the polar resin has a water contact angle of usually 80 ° to 20 °, preferably 78 ° to 30 °, more preferably 75 ° to 40 °.
  • the difference (A CA) between the water contact angle (CA) of the polybutadiene molded product with reduced water contact angle obtained in the step (1) and the water contact angle (CA) of the polar resin molded product is usually , +
  • the solubility parameter of polybutadiene itself is usually 8.3-8.5, preferably 8.4, but the solubility parameter of the polybutadiene molded product after the treatment in step (1) is Usually, it rises from 9.0 to 12.0, preferably 9.3 to 11.0, and approaches the solubility parameter of the polar resin described above. Therefore, it can be said that in the step (1), the adhesiveness is improved by approximating the solubility parameter of the polybutadiene and the polar resin.
  • step (1) is applied to the polybutadiene molded article when the polybutadiene molded article and the polar resin molded article are bonded to each other.
  • step (1) is applied to the polar resin molded article. This is also possible.
  • the polybutadiene molded product having a reduced water contact angle is bonded to the polar resin molded product by the treatment of the step (1).
  • Adhesion methods include solvent adhesion, ultrasonic adhesion, high-frequency adhesion, and adhesion using an adhesive that does not impair transparency during adhesion (UV-curable acrylic-type instant adhesives, cyano acrylate-type instant adhesives). And the like, but solvent bonding is preferred.
  • the solvent bonding is to bond both using a polybutadiene molded product and an organic solvent soluble in Z or a polar resin molded product.
  • an organic solvent common to polybutadiene molded products and polar resin molded products may be used, or an organic solvent soluble in each may be used individually.
  • organic solvent for adhesion examples include tetrahydrofuran, cyclohexane, toluene, cyclohexanone, methyl ethyl ketone, acetone, and ethyl acetate.
  • Conditions for this bonding include immersion of the bonding portion between the polybutadiene molded product and the polar resin molded product in a bonding solvent, spraying of the bonding solvent, and application of the bonding solvent with a brush, end cloth, or the like. Can be implemented.
  • the polybutadiene molded product and the polar resin molded product may be subjected to roughing treatment using an organic solvent having the same bonding or a combination of individual organic solvents. desirable.
  • a polybutadiene molded product such as a tube treated by ozone treatment or the like and a polar resin molded product such as a connector are adhered to each other to form a bonding portion. Is strongly adhered to obtain a polybutadiene composite molded article.
  • the infusion set 10 includes a connection member (connector) 15 for coupling to the infusion discharge tube 14 in the infusion bag 12, a first tube T1 for connecting the connection member 15 to the drip tube 11, It has a second tube T2 for connecting the drop tube 11 and the puncture needle 13, a clamp 18 for adjusting the infusion rate, and a cap 16 for enclosing the puncture needle 13.
  • connection member (connector) 15 for coupling to the infusion discharge tube 14 in the infusion bag 12
  • a first tube T1 for connecting the connection member 15 to the drip tube 11
  • It has a second tube T2 for connecting the drop tube 11 and the puncture needle 13, a clamp 18 for adjusting the infusion rate, and a cap 16 for enclosing the puncture needle 13.
  • Reference numeral 19 denotes a joining member for connecting the second tube T2 and the puncture needle 13.
  • the puncture needle 13 may be a hollow stainless steel having a puncture blade at its tip. Metal needles and synthetic resin needles are used. Further, a roller barrel is used as the clamp 18, and the roller clamp is provided with a roller 17 movably provided, and the second tube T2 is moved by moving the roller 17 to the puncture needle 13 side. The flow path becomes narrower, and the infusion rate can be adjusted. A filter (not shown) is stored in the drip tube 11 in case a foreign substance is contained in an infusion solution or the like. As the puncture needle 13, a conventionally used puncture needle is used.
  • each of the joining member 15, the drip tube 11, and the joining member 19 corresponds to a “connector having a tube connecting portion”, and is made of a polar resin such as polycarbonate, polyester, transparent ABS, and vinyl chloride. Used.
  • tubes Tl and T2 soft tubes having transparency are suitable. Specifically, soft vinyl chloride resin which has been conventionally used and low crystallinity of about 5 to 25% are used. Syndiotactic 1,2-polybutadiene having a degree of crystallinity, and a syndiotactic 1,2-polybutadiene of the present invention having a degree of crystallinity of 5% or more, preferably about 5 to 25%. Butadiene treated with ozone is used.
  • the ends of the tubes Tl and T2 and the tube connecting portions of the connecting member 15, the drip tube 11, and the connecting member 19 are solvent bonding, ultrasonic wave, It is firmly fixed by adhesion or high frequency bonding.
  • the tube of ozone-treated syndiotactic 1,2-polybutadiene is bonded to the connector made of polycarbonate, the two can be firmly adhered to each other and there is no liquid leakage.
  • the solvent adhesion includes tetrahydrofuran, cyclohexane, cyclohexanone, methyl ethyl ketone, acetone, ethyl acetate, toluene and the like as described above.
  • a medical member comprising a tube and a connector having a tube joint is also applied as a component to a medical device such as a component of the above-mentioned infusion set or a catheter for drug administration. can do.
  • a medical device such as a component of the above-mentioned infusion set or a catheter for drug administration. can do.
  • the haze was measured with a Gardner HAZE meter.
  • a 2mm-thick press-formed sheet produced at a molding temperature of 150 ° C was punched out using a JIS No. 3 dumbbell, and stress was measured using Shimadzu's universal tensile tester AGlOkNE to determine flexibility.
  • RB810 test piece (20 mm wide x 100 mm long x 2 mm thick) manufactured by feJSR was ozone treated.
  • the distance to the test piece surface was set to 20 cm and the irradiation time was set to 3 minutes for the mercury lamp power.
  • the intensity of ultraviolet light having a wavelength of 254 nm is 18 mWZcm 2
  • the integrated light amount is 7 jZcm 2 .
  • the contact angle of 1 IX 1 of distilled water dropped on the test piece was measured using a G1 type contact angle measuring device manufactured by Elma Corporation.
  • test pieces RB810 manufactured by JSR Corporation, width 20 mm x length 1 OOmm x thickness 2 mm
  • various connector pieces width 20 mm x length
  • various connector pieces width 20 mm x length
  • the test piece with the solvent bonded was heat-treated at 50 ° C for 24 hours, returned to room temperature, and allowed to stand for 2 hours, and then the shear strength was measured using Shimadzu's universal tensile tester AGlOkNE.
  • Example 1 shows Example 1 and Comparative Example 1.
  • ozone treatment was performed on a test piece of RB. It can be seen that the absorption of the carboxylic group exists at 1,720 cm- 1 .
  • the addition of a polar group improves the contact angle to 32 degrees, makes it more compatible with cyclohexanone, a polar solvent, and makes it possible to bond with polycarbonate, a polar resin, and exhibits sufficient adhesion. I understand.
  • Example 2 shows Example 2 and Comparative Example 2.
  • Example 2 an ozone treatment was performed on a test piece of RB. It can be seen that the absorption of the carboxylic group exists at 1,720 cm- 1 .
  • the addition of a polar group improves the contact angle to 32 degrees, makes it more compatible with the polar solvent cyclohexanone, and makes it possible to bond with the polar resin, transparent ABS. Understand the contents.
  • Example 3 shows Example 3 and Comparative Example 3.
  • ozone treatment was performed on a test piece of RB. It can be seen that the absorption of the carboxylic group exists at 1,720 cm- 1 .
  • the addition of the polar group improves the contact angle to 32 degrees, makes it more compatible with the polar solvent cyclohexanone, and makes it possible to adhere to the polar resin, polyester, and develops sufficient adhesive strength! /, Understand the contents.
  • Example Comparative Example 4 Table 1 shows Example 1 and Comparative Example 4.
  • ozone treatment was performed on a test piece of RB. It can be seen that the absorption of the carboxylic group exists at 1,720 cm- 1 .
  • the addition of a polar group improves the contact angle to 32 degrees, makes it more compatible with cyclohexanone, a polar solvent, and makes it possible to bond with polycarbonate, a polar resin, and exhibits sufficient adhesion. I understand. Further, it can be seen that there is no drug adsorption property which is important for infusion tube use, and there is no drug loss.
  • Comparative Example 4 uses PVC and has excellent adhesive strength because of compatibility with polar solvents and polar resins even without ozone treatment. However, it is not preferable because it has a high drug-adsorbing property, which is important as an infusion tube, and the remaining amount of the drug decreases (loss). It is not preferable because the plasticizer contained in PVC has a risk of causing various obstacles to the human body.
  • Example 1 shows Example 1 and Comparative Example 5.
  • ozone treatment was performed on a test piece of RB. It can be seen that the absorption of the carboxylic group exists at 1,720 cm- 1 .
  • the addition of a polar group improves the contact angle to 32 degrees, makes it more compatible with cyclohexanone, a polar solvent, and makes it possible to bond with polycarbonate, a polar resin, and exhibits sufficient adhesion. I understand.
  • Comparative Example 5 which uses PE, has no polarity and therefore has poor compatibility with polar solvents and polar resins, and poor adhesive strength. In addition, transparency and flexibility, which are important for an infusion tube, are poor and are not preferable. [0095] [Table 1]
  • the present invention it is useful for medical applications, is free from liquid leakage at the joint, is excellent in flexibility and hardness, is excellent in steam sterilization resistance, is recyclable, and has a Shiridani bull system. It is possible to provide a medical member mainly composed of syndiotactic 1,2-polybutadiene and a medical device using the same, which are environmentally friendly because they do not contain fat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 ポリブタジエン成形品と極性樹脂成形品との接合(接着)力を向上させ、また、これらの成形品の溶剤を選ぶ(組み合わせる)ことで、さらに接合力を向上させる。  (1)ポリブタジエン成形品を、オゾン処理、電子線処理、コロナ放電処理、プラズマ放電処理、紫外線レーザー処理、または化学処理して、該成形品表面の水接触角を低減させる工程と、(2)水接触角が低減されたポリブタジエン成形品を極性樹脂成形品と接着する工程、とを含むポリブタジエン成形品の接着方法。

Description

明 細 書
ポリブタジエン成形品の接着方法、これより得られるポリブタジエン複合成 形品、医療用部材、および輸液セット
技術分野
[0001] 本発明は、ポリブタジエン成形品の接着方法、これより得られるポリブタジエン複合 成形品、医療用部材および輸液セットに関する。
背景技術
[0002] 近年、可塑剤を使用しない PVC (塩ィ匕ビュル系榭脂)代替材料として、シンジオタク チック 1, 2—ポリブタジエン (RB)に代表されるポリブタジエンが注目されており、本発 明者らは、 RBチューブと RBコネクターを接着した医療用部材 (特許文献 1:特開 200 4-321788号公報)などを提案している。
ところで、輸液セットは、チューブとコネクターを溶剤接合 (接着)し商品化されてい る。これまで、上記輸液セットとしては、 PVCチューブ Z溶剤 (極性溶剤) Z極性榭脂 コネクターで商品化されている。し力しながら、近年、脱 PVCの動きが顕著ィ匕し、 PV Cチューブに換え、上記のように、 RBの検討が増えている。ところが、 RBは極性に乏 しぐ用途によっては、極性溶剤 Z極性樹脂での接合が不十分な場合がある。
特に、 日本や米国では、輸液セットを用いて、患者に点滴するに際し、ポンプを用 いる場合があり、この場合には、輸液セットに圧力が力かるため、例えばチューブとコ ネクターとの接合部より液洩れを生じる恐れがある。
特許文献 1:特開 2004-321788号公報
発明の開示
発明が解決しょうとする課題
[0003] 本発明は、ポリブタジエン成形品と極性榭脂成形品との接合 (接着)力を向上させ、 また、これらの成形品の溶剤を選ぶ (組み合わせる)ことで、さらに接合力を向上させ ることを目的としている。
課題を解決するための手段
[0004] 本発明は、 (1)ポリブタジエン成形品の表面の水接触角を低減させる工程 (以下「(1)工程」と もいう)と、
(2)上記水接触角が低減されたポリブタジエン成形品を極性榭脂成形品と接着す る工程 (以下「(2)工程」ともいう)、
とを含むポリブタジエン成形品の接着方法に関する。
ここで、上記ポリブタジエンとしては、結晶化度が 5%以上のシンジォタクチック 1, 2 ポリブタジエンが好まし!/、。
また、上記(1)工程としては、オゾン処理、電子線処理、コロナ放電処理、プラズマ 放電処理、放射線 (X線, γ線、 j8線)処理、紫外線処理、紫外線レーザー処理、お よびィ匕学処理の群力 選ばれた少なくとも 1種が挙げられる。
上記(1)工程により得られる水接触角が低減されたポリブタジエン成形品の水接触 角(CA )は、80度以下である。
BR
上記極性榭脂としては、ポリカーボネート榭脂、ポリエステル榭脂、 ABS榭脂、ポリ スチレン榭脂、ポリウレタン榭脂、ポリアミド榭脂、ポリアルキルアタリレート榭脂、ポリ アルキルメタタリレート榭脂、ポリ酢酸ビニル榭脂、ポリ塩ィ匕ビュルおよびポリ塩ィ匕ビ- リデン榭脂の群カゝら選ばれた少なくとも 1種が挙げられる。
上記(1)工程により得られた水接触角が低減されたポリブタジエン成形品の水接触 角(CA )と極性榭脂成形品の水接触角(CA )との差( A CA)は、 +60度一— 15
BR PR
度である。
上記 (2)工程における接着としては、有機溶剤による接着が好ましい。
上記有機溶剤としては、シクロへキサノン、テトラヒドロフラン、シクロへキサン、メチ ルェチルケトン、アセトン、および酢酸ェチルの群力 選ばれた少なくとも 1種が好ま しく挙げられる。
(2)工程における接着に際しては、 (1)工程により得られた水接触角が低減された ポリブタジエン成形品および極性榭脂成形品を、あらかじめ、上記有機溶剤で処理 することが好ましい。
次に、本発明は、上記ポリブタジエン成形品の接着方法により得られるポリブタジェ ン複合成形品に関する。 また、本発明は、上記ポリブタジエン複合成形品を少なくとも含む医療用部材に関 する。
さらに、本発明は、上記医療用部材を構成要素とする輸液セットに関する。 発明の効果
[0005] 本発明によれば、上記ポリブタジエン成形品の表面に極性基を植え付け、ある!/、は 、粗面化することにより、ポリブタジエン成形品の表面の水接触角を低減させることで 、極性榭脂成形品との接合 (接着)力を向上させ、また、これらの成形品の溶剤を選 ぶ (組み合わせる)ことで、さらに接合力を向上させることができる。
図面の簡単な説明
[0006] [図 1]本発明のポリブタジエン複合成形品(医療用部材)を構成要素とする輸液セット の平面図である。
[図 2] (a)はコネクターの概略図で、(b)はチューブの概略図である。
符号の説明
[0007] 10 輸揿セット
11 点滴筒
12 輸液バッグ
13 穿刺針
14 輸液排出用管
15 接続部材 (コネクター)
16 キャップ
17 ローラ
18 クレンメ
19 接合部材
T1, T2 チューブ
発明を実施するための最良の形態
ポリブタジエン成形品
本発明のチューブなどのポリブタジエン成形品を構成するポリブタジエンとしては、 (A)シンジオタクチック 1, 2—ポリブタジエン単独で、あるいは、(A)シンジオタクチッ ク 1, 2—ポリブタジエンおよび (B)その他の熱可塑性ポリマーとの組成物が好ましく用 いられる。この (A)シンジォタクチック 1, 2 ポリブタジエンは、結晶化度が 5%以上、 好ましくは 10— 40%の結晶性を有するシンジオタクチック 1, 2 ポリブタジエンであり 、その融点は、好ましくは 50— 150°C、さらに好ましくは 60— 140°Cの範囲にある。 結晶化度,融点がこの範囲にあることにより、引張強度、引裂強度などの力学強度と 柔軟性のバランスに優れる結果となる。
[0009] なお、結晶化度が 5— 25質量%程度までのシンジオタクチック 1, 2 ポリブタジエン
(以下「低結晶 RB」ともいう)は、柔軟性に優れるので、チューブ本体として用いられる 。し力しながら、この低結晶化度 RBは、融点が低いので (融点 =約 70— 95°C)、耐 蒸気滅菌性に劣る。このため、後述するように、電子線照射により、架橋させて耐熱 性を付与することが望ましい。
一方、結晶化度が 25— 40質量%程度のシンジオタクチック 1, 2 ポリブタジエン( 以下「高結晶 RB」ともいう)は、融点が比較的高い(融点 =約 105— 140°C)が、一方 、硬度が高く柔軟性に劣るので、コネクタ一として好ましく用いることができる。
[0010] 本発明に用いられる(A)シンジオタクチック 1, 2—ポリブタジエンは、例えば、 1, 2- 結合含有量が 70%以上のものであり、例えば、コバルト化合物およびアルミノォキサ ンを含有する触媒の存在下に、ブタジエンを重合して得られるものである力 この製 造方法に限定されるものではない。
[0011] 本発明に用いられる(A)シンジオタクチック 1, 2—ポリブタジエンのブタジエン結合 単位における 1, 2 結合含有量は、通常、 70%以上、好ましくは 80%以上、さらに 好ましくは 90%以上である。 1, 2 結合含有量が 70%以上であることにより、当該 1, 2—ポリブタジエンが良好な熱可塑性エラストマ一としての性質が発揮される。
[0012] 本発明に用いられる (A)シンジオタクチック 1, 2—ポリブタジエンは、ブタジエン以 外の共役ジェンが少量共重合して 、てもよ 、。ブタジエン以外の共役ジェンとしては 、 1, 3 ペンタジェン、高級アルキル基で置換された 1, 3 ブタジエン誘導体、 2—ァ ルキル置換 1 , 3 ブタジエンなどが挙げられる。
このうち、高級アルキル基で置換された 1, 3 ブタジエン誘導体としては、 1 ペン チノレー 1, 3 ブタジエン、 1一へキシルー 1, 3 ブタジエン、 1一へプチルー 1, 3 ブタジ ェン、 1一才クチル 1, 3—ブタジエンなどが挙げられる。
[0013] ここで、 2—アルキル置換 1, 3—ブタジエンの代表的なものは、 2—メチルー 1, 3—ブ タジェン(イソプレン)、 2—ェチルー 1, 3 ブタジエン、 2 プロピル 1, 3 ブタジエン 2 イソプロピル 1, 3 ブタジエン、 2—ブチルー 1, 3 ブタジエン、 2 イソブチルー 1 , 3 ブタジエン、 2 アミルー 1, 3 ブタジエン、 2 イソアミルー 1, 3 ブタジエン、 2— へキシルー 1, 3 ブタジエン、 2—シクロへキシルー 1, 3 ブタジエン、 2 イソへキシル 1, 3 ブタジエン、 2 プチルー 1, 3 ブタジエン、 2 イソへプチルー 1, 3 ブタジ ェン、 2—才クチルー 1, 3 ブタジエン、 2 イソォクチルー 1, 3 ブタジエンなどが挙げ られる。これらの共役ジェンのなかで、ブタジエンと共重合される好ましい共役ジェン としては、イソプレン、 1, 3 ペンタジェンが挙げられる。重合に供される単量体成分 中のブタジエンの含有量は 50モル%以上、特には 70モル%以上が好ましい。
[0014] 本発明で用いられる (A)シンジオタクチック 1, 2 ポリブタジエンは、上述したように
、例えば、コバルト化合物およびアルミノォキサンを含有する触媒の存在下に、ブタ ジェンを重合して得られる。上記コノ レト化合物としては、好ましくは炭素数 4以上の コバルトの有機酸塩を挙げることができる。このコバルトの有機酸塩の具体例として、 酪酸塩、へキサン酸塩、ヘプチル酸塩、 2—ェチルへキシル酸などのォクチル酸塩、 デカン酸塩や、ステアリン酸、ォレイン酸、エル力酸などの高級脂肪酸塩、安息香酸 塩、トリル酸塩、キシリル酸塩、ェチル安息香酸などのアルキル、ァラルキル、ァリル 置換安息香酸塩やナフトェ酸塩、アルキル、ァラルキルもしくはァリル置換ナフトェ酸 塩を挙げることができる。これらのうち、 2—ェチルへキシル酸のいわゆるォクチル酸 塩や、ステアリン酸塩、安息香酸塩が、炭化水素溶媒への優れた溶解性のために好 ましい。
[0015] 上記アルミノォキサンとしては、例えば下記一般式 (I)または一般式 (Π)で表される ものを挙げることができる。 [0016] [化 1]
Figure imgf000008_0001
Figure imgf000008_0002
(OA1) m+2
[0017] この一般式 (I)ある!/、は (II)で表されるアルミノォキサンにぉ 、て、 Rはメチル基、ェ チル基、プロピル基、ブチル基などの炭化水素基であり、好ましくはメチル基、ェチル 基であり、特に好ましくはメチル基である。また、 mは、 2以上、好ましくは 5以上、さら に好ましくは 10— 100の整数である。アルミノォキサンの具体例としては、メチルアル ミノォキサン、ェチルアルミノォキサン、プロピルアルミノォキサン、ブチルアルミノォキ サンなどを挙げることができ、メチルアルミノォキサンが特に好まし!/、。
[0018] 重合触媒は、上記コバルト化合物とアルミノォキサン以外に、ホスフィン化合物を含 有することが極めて好ましい。ホスフィンィ匕合物は、重合触媒の活性化、ビニル結合 構造および結晶性の制御に有効な成分であり、好ましくは下記一般式 (ΠΙ)で表され る有機リンィ匕合物を挙げることができる。
[0019] P (Ar) (R,) …… (III)
n 3-n
一般式 (III)中、 Arは下記で示される基を示す。
[0020] [化 2]
Figure imgf000009_0001
[0021] (上記基において、 R1, R2, R3は、同一または異なって、水素原子、炭素数が好まし くは 1一 6のアルキル基、ハロゲン原子、炭素数が好ましくは 1一 6のアルコキシ基また は炭素数が好ましくは 6— 12のァリール基を表す。 )
また、一般式 (ΠΙ)中、 R'はシクロアルキル基、アルキル置換シクロアルキル基を示 し、 nは 0— 3の整数である。
[0022] 一般式 (III)で表されるホスフィンィ匕合物としては、具体的に、トリー(3 メチルフ - ル)ホスフィン、トリ—(3—ェチルフエ-ル)ホスフィン、トリー(3, 5—ジメチルフエ-ル)ホ スフイン、トリ—(3, 4—ジメチルフエ-ル)ホスフィン、トリ—(3—イソプロピルフエ-ル)ホ スフイン、トリ—(3— t ブチルフエ-ル)ホスフィン、トリ—(3, 5—ジェチルフエ-ル)ホス フィン、トリ—(3—メチルー 5—ェチルフエ-ル)ホスフィン)、トリ—(3—フエ-ルフエ-ル) ホスフィン、トリ—(3, 4, 5—トリメチルフエ-ル)ホスフィン、トリ— (4ーメトキシ— 3, 5—ジ メチルフエ-ル)ホスフィン、トリー (4 エトキシー 3, 5—ジェチルフエ-ル)ホスフィン、ト リ— (4—ブトキシー 3, 5—ジブチルフエ-ル)ホスフィン、トリ(p—メトキシフエ-ルホスフィ ン)、トリシクロへキシルホスフィン、ジシクロへキシルフェ-ルホスフィン、トリベンジル ホスフィン、トリ(4 メチルフエ-ルホスフィン)、トリ(4 ェチルフエ-ルホスフィン)など を挙げることができる。これらのうち、特に好ましいものとしては、トリフエ-ルホスフィン 、トリ—(3—メチルフエ-ル)ホスフィン、トリ— (4ーメトキシー 3, 5—ジメチルフエ-ル)ホス フィンなどが挙げられる。
[0023] また、コバルト化合物として、下記一般式 (IV)で表される化合物を用いることができ 5
[0024] [化 3]
Figure imgf000010_0001
[0025] 上記一般式 (IV)で表される化合物は、塩化コバルトに対し上記一般式 (ΠΙ)におい て nが 3であるホスフィン化合物を配位子に持つ錯体である。このコバルトィ匕合物の使 用に際しては、あら力じめ合成したものを使用してもよいし、あるいは重合系中に塩 化コバルトとホスフィンィ匕合物を接触させる方法で使用してもよい。錯体中のホスフィ ン化合物を種々選択することにより、得られるシンジオタクチック 1, 2—ポリブタジエン の 1, 2—結合の量、結晶化度の制御を行なうことができる。
[0026] 上記一般式 (IV)で表されるコバルト化合物の具体例としては、コバルトビス(トリフエ -ルホスフィン)ジクロライド、コバルトビス〔トリス(3—メチルフエ-ルホスフィン)〕ジクロ ライド、コバルトビス〔トリス(3—ェチルフエ-ルホスフイン)〕ジクロライド、コバルトビス〔 トリス(4 メチルフエ-ルホスフイン)〕ジクロライド、コバルトビス〔トリス(3, 5—ジメチル フエ-ルホスフイン)〕ジクロライド、コバルトビス〔トリス(3, 4—ジメチルフエ-ルホスフィ ン)〕ジクロライド、コバルトビス〔トリス(3—イソプロピルフエ-ルホスフィン)〕ジクロライド 、コバルトビス〔トリス(3— t ブチルフエ-ルホスフイン)〕ジクロライド、コバルトビス〔トリ ス(3, 5—ジェチルフエ-ルホスフイン)〕ジクロライド、コバルトビス〔トリス(3—メチルー 5 —ェチルフエ-ルホスフィン)〕ジクロライド、コバルトビス〔トリス(3—フエ-ルフエ-ルホ スフイン)〕ジクロライド、コバルトビス〔トリス(3, 4, 5—トリメチルフエ-ルホスフイン)〕ジ クロライド、コバルトビス〔トリス(4ーメトキシー 3, 5—ジメチルフエ-ルホスフイン)〕ジクロ ライド、コバルトビス〔トリス(4 エトキシー 3, 5—ジェチルフエ-ルホスフイン)〕ジクロラ イド、コバルトビス〔トリス(4 ブトキシー 3, 5—ジブチルフエ-ルホスフイン)〕ジクロライ ド、コバルトビス〔トリス(4ーメトキシフエ-ルホスフイン)〕ジクロライド、コバルトビス〔トリ ス(3—メトキシフエ-ルホスフィン)〕ジクロライド、コバルトビス〔トリス(4—ドデシルフェ -ルホスフィン)〕ジクロライド、コバルトビス〔トリス(4 ェチルフエ-ルホスフィン)〕ジク 口ライドなどを使用することができる。
[0027] これらのうち、特に好ましいものとしては、コバルトビス(トリフエ-ルホスフィン)ジクロ ライド、コバルトビス〔トリス(3—メチルフエ-ルホスフイン)〕ジクロライド、コバルトビス〔ト リス(3, 5—ジメチルフエ-ルホスフイン)〕ジクロライド、コバルトビス〔トリス(4ーメトキシ —3, 5—ジメチルフエ-ルホスフィン)〕ジクロライドなどが挙げられる。
[0028] 触媒の使用量は、ブタジエン単独重合の場合は、ブタジエン 1モル当たり、共重合 する場合は、ブタジエンとブタジエン以外の共役ジェンとの合計量 1モル当たり、コバ ノレ卜ィ匕合物を、 =3ノ ノレ卜原子換算で 0. 001— 1ミジモノレ、好ましくは 0. 01—0. 5ミジモ ル程度使用する。また、ホスフィンィ匕合物の使用量は、コバルト原子に対するリン原 子の比(PZCo)として、通常、 0. 1— 50、好ましくは 0. 5— 20、さらに好ましくは 1一 20である。さらに、アルミノォキサンの使用量は、コバルトィ匕合物のコバルト原子に対 するアルミニウム原子の比(Al/Co)として、通常、 4一 107、好ましくは 10— 106であ る。なお、一般式 (IV)で表される錯体を用いる場合は、ホスフィン化合物の使用量が コバルト原子に対するリン原子の比(PZCo)が 2であるとし、アルミノォキサンの使用 量は、上記の記載に従う。
[0029] 重合溶媒として用いられる不活性有機溶媒としては、例えばベンゼン、トルエン、キ シレン、クメンなどの芳香族炭化水素溶媒、 n ペンタン、 n—へキサン、 n ブタンなど の脂肪族炭化水素溶媒、シクロペンタン、メチルシクロペンタン、シクロへキサンなど の脂環族炭化水素溶媒およびこれらの混合物が挙げられる。
[0030] 重合温度は、通常、 50— 120°Cで、好ましくは— 20— 100°Cである。
重合反応は、回分式でも、連続式でもよい。なお、溶媒中の単量体濃度は、通常、 5— 50質量%、好ましくは 10— 35質量%である。
また、重合体を製造するために、本発明の触媒および重合体を失活させないため に、重合系内に酸素、水あるいは炭酸ガスなどの失活作用のある化合物の混入を極 力なくすような配慮が必要である。重合反応が所望の段階まで進行したら反応混合 物をアルコール、その他の重合停止剤、老化防止剤、酸化防止剤、紫外線吸収剤な どを添加し、次いで通常の方法に従って生成重合体を分離、洗浄、乾燥して本発明 に用いられるシンジオタクチック 1, 2—ポリブタジエンを得ることができる。
[0031] 本発明に用いられる(A)シンジオタクチック 1, 2 ポリブタジエンの重量平均分子 量は、好ましくは 1万一 500万、さらに好ましくは 1万一 150万、特に好ましくは 5万一 100万である。重量平均分子量が 1万未満では流動性が極端に高ぐ加工が非常に 困難となり、また成形品(医療用部材)がべたつくため好ましくなぐ一方、 500万を超 えると流動性が極端に低ぐ加工が非常に困難となり好ましくない。
[0032] 一方、(B)熱可塑性ポリマーとしては、上記 (A)成分以外の熱可塑性榭脂および
Zまたは熱可塑性エラストマ一であり、具体的には、ポリエチレン、ポリプロピレン、ス チレン ブタジエン スチレンブロック共重合体(SBS)、スチレン イソプレンースチレ ンブロック共重合体(SIS)、これらの水素化物(SEBS、 SEPS)、上記シンジオタクチ ック 1, 2—ポリブタジエン以外のポリブタジエン(BR)、 ABS榭脂、ポリイソプレン、各 種ポリエチレン(LLDPE、 ULDPE、 LDPE)、エチレン 酢酸ビュルコポリマー、ェ チレン アクリル酸エステルコポリマー、およびエチレンーメタクリル酸コポリマーの群 力 選ばれた少なくとも 1種である。
[0033] (B)成分の配合量は、 (A)一 (B)成分の合計量 100質量部中に、 40質量部以下、 好ましくは 0— 35質量部である。 40質量部を超えると、(A)成分の使用割合が少なく なり、(A)成分本来の柔軟性が失われる。
[0034] なお、本発明に用いられる組成物において、上記 (A)—(B)成分以外に、必要に 応じて、滑剤、フィラーまたは発泡剤などの添加剤を含有してもよい。上記添加剤の 具体例としては、パラフィンオイル、シリコンオイル、液状ポリイソプレン、液状ポリブタ ジェン、エル力酸アミド、ステアリン酸アミドなどの滑剤のほ力、タルク、シリカ、水酸化 マグネシウム、炭酸カルシウム、ガラス、カーボンファイバー、ガラスバルーンなどのフ イラ一、および、松本油脂社製のマイクロスフェア、 ADCA、 OBSH、重曹、 AIBNな どの発泡剤を挙げることができる。
なお、滑剤の使用量は、榭脂成分、すなわち (A)— (B)成分の合計 100質量部に 対して 10質量部以下、好ましくは 0. 01— 8質量部である。 10質量部を超えると、滑 剤が製品からブリードアウトし、使用薬剤に溶出するので、好ましくない。
[0035] また、電子線照射による耐熱性と柔軟性とのバランスを向上させるために、その他 の添加剤、例えば、トリメチルプロパントリメタタリレートなどの多官能モノマー、ヒドロキ シシクロへキシルフエ-ルケトンなどの光重合開始剤、ベンゾフエノンなどの光増感剤 などを、シンジオタクチック 1, 2—ポリブタジエン 100質量部に対して 5質量部以下含 有させてもよい。
[0036] 組成物の調製と成形
本発明にポリブタジエン成形品に用いられる組成物は、上記 (A)成分単独、あるい は、(A)—(B)成分、これらにさらに必要に応じて、上記添加剤などを添加して、カロ 熱軟化させて、混練し成形する。混練と成形は、シンジオタクチック 1, 2 -ポリブタジ ェンの軟化温度な!/、し溶融温度以上の成形性の良好な温度範囲で行!、、均質な成 形品(チューブなどの医療用部材)にする。このため、成形温度は、 90— 170°C程度 が良い。チューブ、コネクターなどの成形品を得るには、プレス成形、押し出し成形、 射出成形、ブロー成形、異形押し出し成形、 Tダイフィルム成形、インフレーション成 形、ノ ゥダースラッシュ成形、回転成形などが利用され、チューブなどやチューブ接 続部を有するコネクターに成形される。
[0037] 電子線照射
本発明のポリブタジエン成形品のうち、チューブは柔軟性を必要とするため、低結 晶 RBが用いられるが、融点が低いため、耐蒸気滅菌性を発現させるために、次いで 電子線を照射し、架橋することができる。電子線を照射すると、シンジオタクチック 1, 2—ポリブタジエンのビニル基のラジカル重合により三次元架橋構造となり、成形品( チューブ)の耐熱性を付与させる。電子線は、合成樹脂に対して透過性があり、その 透過の程度は、成形品の厚みと、電子線の運動エネルギーに依存する。
その照射厚みに従って厚み方向に均一に透過可能に電子線のエネルギーを調節 すると、厚み方向で架橋度を均一にした成形品(チューブ)とすることができる。 なお、コネクターについても、電子線照射してもよい。
また、電子線照射は、チューブとコネクターとの接着前でも、接着後でもよい。 [0038] 電子線エネルギーは、上記のチューブなどのポリブタジエン成形品(医療用部材) に対して、電子線加速電圧が、好ましくは 50— 3, OOOkV、さらに好ましくは 300— 2 , OOOkVとするが、 50kVより小さいと、表層部で捕獲吸収される電子の割合が相対 的に多くなつて、成形品を透過する電子線が少なくなり、表層部に比して内部の架橋 が遅れて、架橋度に差が生じるので、好ましくない。一方、 3, OOOkVより大きいと、 架橋度が大きくなり過ぎて、硬質となるとともに弾力性や伸びが小さくなり好ましくない
[0039] また、この際の電子線の照射量は、好ましくは 1一 100Mrad (SI単位系で、 10— 1 , OOOkGyに相当する)、さらに好ましくは 1一 50Mradの範囲で照射して架橋硬化さ せる。 lMradより少ないと、 1, 2—ポリブタジエンの架橋度が小さぐ一方、 lOOMrad を超えると、架橋度が大きくなり過ぎて、硬質となるので、弾力性や伸びが小さいので 好ましくない。
[0040] 電子線照射による架橋は、電子線加速電圧と照射量の積で表すことができ、本発 明においては、電子線加速電圧 (kV)と照射線量 (Mrad)の積を、好ましくは 2, 000 一 20, OOO (kV'Mrad)、さらに好ましくは 5, 000— 16, 000 (kV- Mrad)とする。 2 , 000 (kV* Mrad)より小さいと、表層部で捕獲吸収される電子の割合が相対的に多 くなつて、ポリブタジエン成形品(医療用部材)を透過する電子線が少なくなり、表層 部に比して内部の架橋が遅れて、架橋度に差が生じるので、好ましくない。一方、 20 , 000 (kV,Mrad)より大きいと、架橋度が大きくなり過ぎて、硬質となるので、弾力性 や伸びが小さ 、ので好ましくな!/、。
[0041] 本発明のポリブタジエン成形品(チューブなどの医療用部材)に、上記のような電子 線照射を施すことにより、電子線照射後の医療用部材の 50%伸びにおける弾性率( M2 )を電子線照射前の 50%伸びにおける弾性率 (Ml )の好ましくは 1. 1-2. 5
50 50
倍、さらに好ましくは 1. 1-2. 0倍とすることができる。 M2 /Ml が 1. 1未満では
50 50
、電子線架橋が進んでおらず、耐蒸気滅菌性に劣る、一方、 2. 5を超えると、架橋さ れたポリブタジエン成形品(チューブなどの医療用部材)が硬くなりすぎ、柔軟性が失 われ好ましくない。 M2 /Ml は、上記電子線加速電圧 (kV)と照射線量 (Mrad)
50 50
の積を、 2, 000— 20, OOO (kV'Mrad)とすることにより、容易に調整することができ る。
[0042] また、このようにして得られる電子線照射後の架橋されたチューブなどのポリブタジ ェン成形品(医療用部材)は、耐蒸気滅菌性を有し、例えば、本発明の架橋された輸 液チューブを用いて、 100— 121°Cで 10— 20分間程度、蒸気滅菌しても、変形する こともない。
ここで、耐蒸気滅菌性とは、具体的には、輸液チューブなどの榭脂成形品 (例えば 、内径 3πιπι φ、外径 4. 4mm φ、肉厚 0. 7mmのチューブ、チューブ長 20cm)を高 圧蒸気滅菌器に入れ、 121°Cで 20分間、蒸気滅菌した場合、滅菌前の円形が保た れ、変形が観察されないことを意味する。
[0043] さらに、本発明の電子線を照射されたポリブタジエン成形品(チューブなどの医療 用部材)のヘイズ値は、好ましくは 30以下、さらに好ましくは 25以下である。ヘイズ値 は、透明性の尺度であり、その値が小さくなる程、透明性がよくなる。このヘイズ値は 、 ASTM D— 1003に準拠して測定した。
[0044] また、電子線照射後の本発明のポリブタジエン成形品(チューブなどの医療用部材 )は、トルエン不溶分力 通常、 50— 99質量0 /0、好ましくは 80— 95質量%である。ト ルェン不溶分は、当該ポリブタジエン成形品を電子線照射することにより、(A)シン ジオタクチック 1 , 2—ポリブタジエン中の二重結合がどの程度架橋して 、るかを示す バロメーターである。
ここで、トルエン不溶分は、本発明のポリブタジエン成形品(医療用部材) [ (a) g]を 100mlのトルエンに浸漬させ、 30°Cで 48時間放置後、 100メッシュ金網を用いて濾 過し、濾過液の一部 [ (c) ml]を採取後、蒸発乾燥固化させ、得られた残存固形分 [ト ルェン可溶分:(b) g]を秤量し、下式によりゲル含有量を算出した。
ゲル含有量 (質量%) = [{a-b X (100/c) }/a] X 100
トルエン不溶分が 50質量%未満では、電子線照射による架橋が不充分であり、耐 熱性が劣り、耐蒸気滅菌性に劣る。一方、 99質量%を超えると、電子線照射による 架橋が進みすぎて、医療用部材が硬くなりすぎ、柔軟性が失われ好ましくない。 上記トルエン不溶分は、上記電子線加速電圧 (kV)と照射線量 (Mrad)の積を、 2 , 000— 20, 000 (kV. Mrad)とすることにより、容易に調整することができる。 [0045] さらに、本発明のポリブタジエン成形品(チューブなどの医療用部材)は、ハロゲン 原子の含有量が好ましくは 200ppm以下、さらに好ましくは lOOppm以下である。こ のハロゲン原子の含有量は、例えば、上記のように、重合溶媒として非ハロゲン系の 不活性有機溶媒を用いることにより、得られる 1, 2—ポリブタジエン中のハロゲン原子 の含有量を好ましくは 200ppm以下、さらに好ましくは lOOppm以下にすることがで きる。また、触媒系において、非ハロゲン系の化合物のみを用いることは、ポリブタジ ェン成形品(医療用部材)中のハロゲン原子の含有量をさらに低減させることができ 好ましい。
[0046] このようにして電子線照射されたポリブタジエン成形品は、柔軟性と硬度に優れ、ま た耐蒸気滅菌性を有するので、チューブのほか、コネクターにも有用である。
[0047] 本発明に用いられるポリブタジエン成形品とは、上記のような 1, 2 ポリブタジエン からなるチューブ、 1, 2—ポリブタジエンとスチレン イソプレンブロック共重合体(SIS )とのブレンドからなるチューブ、 1, 2—ポリブタジエンとゴムとのブレンド力 なるチュ ーブ、 1, 2—ポリブタジエンとォレフィン樹脂とのブレンドからなるチューブをさす。こ の中で、スチレン イソプレンブロック共重合体との組み合わせについては、水素添 カロしたスチレン エチレン プロピレン スチレンでもよく、部分水素添カ卩品でもよ 、。 ゴムとの組み合わせについては種々のゴムを使用することができる力 イソプレンゴム および天然ゴムが好ましい。ォレフィン樹脂との組み合わせについては、 LDPE、 L LDPE、 EVAが好ましい榭脂として挙げられる。
[0048] 極件榭脂
次に、本発明の極性榭脂成形品に用いられる極性榭脂としては、熱可塑性プラス チックとして、 ABS榭脂、ポリスチレン榭脂、アクリル榭脂、ポリアクリルアミド、ポリアク リル酸、ポリアクリル酸メチル、ポリアクリル酸ェチルなどのポリアクリル酸アルキルエス テル、ポリアクリロニトリル、アクリロニトリル スチレン共重合体、ポリメタクリルアミド、ポ リメタクリル酸、ポリメタクリル酸メチル榭脂、ポリメタクリル酸ェチル榭脂などのポリメタ クリル酸アルキルエステル、ポリウレタン榭脂、ポリメタタリ口-トリル、ァセタール榭脂 、ポリオキシメチレン、ィオノマー、塩素化ポリエチレン、クマロン'インデン榭脂、再生 セルロース、石油榭脂、セルロース誘導体、アルカリセルロース、セルロースエステル 、セノレロースアセテート、セノレロースアセテートブチレート、セノレロースザンテート、セ ノレロース二トレート、セノレロースエーテノレ、カノレボキシメチノレセノレロース、セノレロース エーテルエステル、フッ素榭脂、 FEP、ポリクロ口トリフルォロエチレン、ポリテトラフル ォロエチレン、ポリフッ化ビ-リデン、ポリフッ化ビュル、ナイロン 11、ナイロン 12、ナイ ロン 6、ナイロン 6, 10、ナイロン 6, 12、ナイロン 6, 6、ナイロン 4, 6などのポリポリアミ ド榭脂、ポリフエ-レンイソフタルアミド、ポリフエ-レンテレフタルアミド、メタキシリレン ジァミンなどの芳香族ポリアミド、ポリイミド、ポリフエ-レンスルフイド、ポリエーテルエ ーテルケトン、ポリアミドイミド、ポリアリレート、ポリエチレンテレフタレートなどのポリェ ステル樹脂、ポリ塩化ビニル、ポリ塩ィ匕ビユリデン榭脂、塩素化ポリエチレン、クロロス ルホン化ポリエチレン、ポリカーボネート、 CR— 39、ポリスルホン、ポリエーテルスルホ ン、ポリスルホンアミド、ポリビュルアルコール、ポリビュルエステル、ポリケィ皮酸ビ- ル、ポリ酢酸ビュル、ポリビュルエーテル、ポリイソブチルビ-ルエーテル、ポリメチル ビュルエーテル、ポリフエ-レンォキシド、ポリブチレンテレフタレートなどを、また熱 硬化性プラスチックとして、アミノ榭脂、ァ-リン榭脂、尿素樹脂、ポリスルホンアミド、 メラミン榭脂、ァリル榭脂、フタル酸ジァリル榭脂、アルキド榭脂、エポキシ榭脂、シリ コン榭脂、ビニルエステル榭脂、フエノール榭脂、ノボラック榭脂、レゾルシノール榭 脂、不飽和ポリエステル榭脂、低収縮不飽和ポリエステル、フラン榭脂などが挙げら れる。
このうち、好ましい極性榭脂は、ポリカーボネート榭脂、ポリエチレンテレフタレート ゃポリブチレンテレフタレートなどのポリエステル榭脂、 ABS榭脂、ポリスチレン榭脂 、ポリアクリル榭脂、ポリウレタン榭脂、ポリアミド榭脂、ポリ酢酸ビュル榭脂、ポリ塩ィ匕 ビュル榭脂およびポリ塩ィ匕ビユリデン榭脂が挙げられる。
なお、極性榭脂の溶解度パラメーター(SP値)は、好ましくは 9一 13、さらに好ましく は 9. 5— 12である。
ここで、溶解度パラメータ一は、 John Wiley&Son社出版「ポリマーハンドブック」 1999年、第 4版、セクション VII第 682— 685頁)に記載のグループ寄与法で Small のグループパラメーターを用いて算出した値である。例えば、ポリメタクリル酸メチル( 繰返単位分子量 lOOgZモル、密度 = 1. 19gZcm3として(以下、単位省略)) 9. 25 (calZcm3) 1/2、ポリアクリル酸ブチル (繰返単位分子量 128、密度 1. 06として) 8. 9 7 (calZcm3) 1/2、ポリメタクリル酸ブチル (繰返単位分子量 142、密度 1. 06として) 9 . 47 (calZcm3) 1/2、ポリスチレン(繰返単位分子量 104、密度 1. 05として) 9. 03 (c alZcm3) 1/2、ポリアクリロニトリル (繰返単位分子量 53、密度 1. 18として) 12. 71 (ca l/cm3) 1/2である。なお、各重合体の密度は、 VCH社出版の「ウルマンズ ェンサイ クロべディア ォブ インダストリァノレ ケミストリー(ULLMANN' S ENCYCLOPE DIA OF INDUSTRIAL CHEMISTRY)」 1992年、第 A21卷、第 169頁記載 の値を用いた。また、共重合体の溶解度パラメーター δ cは、質量分率 5%未満の場 合は主成分の値を用い、質量分率 5%以上の場合では質量分率で加成性が成立す るとした。すなわち、 m種類の単量体からなる共重合体を構成する個々の単量体の 単独重合体の溶解度パラメーター δ ηとその質量分率 Wnとから次の式(1)により算 出できる。
[0050] [数 1] n =m n =m
Figure imgf000018_0001
n = 1 n = 1 ( l )
[0051] 例えば、スチレン 75質量%とアクリロニトリル 25質量%からなる共重合体の溶解度 パラメータ一は、ポリスチレンの溶解度パラメーター 9. 03 (cal/cm3) υ とポリアク リロ-トリルの溶解度パラメーター 12. 71 (。&17«113) 1/2を用ぃて式(1)に代入して 9. 95 (calZcm3) 1/2の値が得られる。
[0052] また、ビニル系単量体を 2段階以上で、かつ各段階においてビニル系単量体の種 類を変えて重合してえられるビニル系重合体の溶解度パラメーター δ sは、最終的に 得られたビニル系重合体の全質量を各段階で得られたビニル系重合体の質量で割 つた値、すなわち質量分率で加成性が成立するとした。すなわち、 q段階で重合し、 各段階で得られた重合体の溶解度パラメーター δ iとその質量分率 Wiとから次の式( 2)により算出できる。 [0053] [数 2]
Figure imgf000019_0001
i = l i = l ( 2 )
[0054] 例えば、 2段階で重合し、 1段階目にスチレン 75質量%とアクリロニトリル 25質量% 力 なる共重合体が 50質量部得られ、 2段階目にメタクリル酸メチルの重合体が 50 質量部得られたとすると、この 2段階の重合で得られた重合体
の溶解度パラメータ一は、スチレン(75質量0 /0)—アクリロニトリル(25質量0 /0)共重合 体の溶解度パラメーター 9. 95とポリメタクリル酸メチルの溶解度パラメーター 9. 2 5 (calZcm3) 1/2を用いて式(2)に代入して 9. 60 (calZcm3) 1/2の値が得られる。
[0055] 溶解度パラメーターを上記範囲内にすると、オゾン処理、電子線処理、コロナ放電 処理、プラズマ放電処理、紫外線処理、紫外線レーザー処理および化学処理し水接 触角が低減されたポリブタジエン複合成形品の水接触角に近接し、極性溶剤にて溶 剤接着するさいに、高 ヽ接着強度が得られると ヽぅ効果を奏する。
溶解度パラメーターが 9未満では、極性溶剤による接着力が不十分となり好ましくな い。一方、 13を超えると薬物吸着が強くなりコネクター用途には適さない。
このような溶解度パラメーターを満足する極性榭脂としては、上記の好ま 、極性 榭脂が挙げられる。
[0056] なお、本発明に用いられる極性榭脂成形品としては、上記各種の極性樹脂からな る、コネクター、輸液セット補助具などが挙げられる。
[0057] 本発明のポリブタジエン成形品の接着方法は、(1)ポリブタジエン成形品をまずォ ゾン処理することにより、ポリブタジエン成形品の表面に後記記載の極性基を導入し
、次 、で (2)オゾン処理されたポリブタジエン成形品と極性榭脂成形品とを接着する 工程を含むものである。
[0058] Π )丁.程 (水榇触 低減丁.程)
(1)工程としては、ポリブタジエン成形品の表面の水接触角を低減させる手段であ ればいかなる方法でもよいが、例えばオゾン処理、コロナ放電処理、プラズマ放電処 理、エキシマレーザー処理、電子線処理、紫外線処理、あるいは、化学処理が挙げ られる。
[0059] オゾン処理:
オゾン処理は、ポリブタジエン成形品をオゾンに暴露することによって行われる。暴 露方法は、ポリブタジエン成形品を、オゾンが存在する雰囲気に所定時間保持する 方法、オゾン気流中に所定時間暴露する方法などの適宜の方法で行うことができる。
[0060] ここで、オゾンは、空気、酸素ガス、または酸素添加空気などの酸素含有気体をォ ゾン発生装置 (紫外線照射装置など)に供給することによって発生させることができる 。得られたオゾン含有気体を、ポリブタジエン成形品を保持してある容器、漕などに 導入して、オゾン処理を行う。オゾン含有気体中のオゾン濃度、暴露時間、暴露温度 の諸条件は、極性榭脂成形品種類および表面改質の目的に応じて適宜定めること ができる。
[0061] オゾン処理の条件は、ポリブタジエン成形品の形状などにより異なる。酸素または 空気の気流を用い、流量 20— 2, OOOmlZminで、 1一 200mgZlの濃度のオゾン を発生させて、温度 0— 80°C、時間 1分一 24時間で処理することができる。例えば、 オゾン濃度 10— 80mgZlで、室温下、 20— 30分程度の処理が適当である。また、 フィルム形状の場合は、オゾン濃度 1一 20mgZl程度で、室温下、 30分一 6時間程 度の処理が適当である。空気を用いた場合の発生オゾン濃度は酸素を用いた場合 の約 50%となる。
[0062] オゾン処理により、ポリブタジエン成形品の表面には酸ィ匕を主とする反応によって、 過炭酸基 (一 C O— OH)が導入され、その一部は水酸基 (一 OH)やカルボニル基 (C =0)などの官能基に変化すると推定される。
[0063] 電子線処理:
電子線処理は、上記オゾン発生装置に代えて電子線加速器を備えた電子線照射 装置を使用し、処理すべきポリブタジエン成形品の表面に、電子線加速器により発 生させた電子線を照射することにより実施される。上記の電子線照射装置としては、 例えば、線状のフィラメントからカーテン状に均一な電子線を照射できる装置 (例えば 、エレクト口カーテン型の装置)などを使用することができる。このときの電子線照射線 量は、通常、 0. 5Mrad以上、好ましくは 1. 5Mrad以上、さらに好ましくは 3Mrad以 上である。電子線照射線量は、電子線照射装置の入口側における処理フィルムのラ イン速度に対して設定され、その上限は特に限定されるものではないが、通常、 20 Mrad程度である。
[0064] コロナ放電処理:
コロナ処理は、例えば公知のコロナ放電処理器を用い、不活性気体中で発生させ たコロナ雰囲気に処理すべきポリブタジエン成形品を通過させることにより行われる。 このときのコロナ放電密度は、通常、 10 (W.分 Zm2)以上、好ましくは 30— 300 (W- 分 Zm2)である。上記不活性気体としては、アルゴン、ヘリウム、クリプトン、ネオン、キ セノン、または窒素の単体あるいはこれらの 2種類以上混合気体が挙げられ、特にェ 業的には窒素が好ましい。上記不活性気体は、気体中の酸素濃度が 1容量%以下、 好ましくは 0. 1容量%以下、より好ましくは 0. 01容量%以下の範囲内で、酸素を含 有していてもよい。
[0065] プラズマ処理:
プラズマ処理には、低圧プラズマ処理と大気圧プラズマ処理とがある。低圧プラズ マ処理は、 0. 1一 5Torrの低圧状態で 200— 1, 000Wの出力で上述した不活性気 体をプラズマジェットで電子的に励起させた後、帯電粒子を除去し、電気的に中性と した励起不活性気体を、処理すべきポリブタジエン成形品と接触させることにより、実 施することができる。このときの処理時間は 10— 60秒、好ましくは 20— 40秒である。
[0066] また、大気圧プラズマ処理は、上述した不活性気体中、電極間に 3— 5kHz2— 30 00Vの交流電流を印加し、低圧プラズマ処理と同様の励起不活性気体を発生させ た後、該励起不活性気体を、処理すべきポリブタジエン成形品と接触させることにより 、実施することができる。このときの処理時間は 10— 60秒、好ましくは 20— 40秒であ る。
[0067] 紫外線レーザー処理:
紫外線レーザー光としては、 180— 360nm、好ましくは 190— 250nmの発振波長 を有するレーザーがあり、好ましくはエキシマレーザーである。エキシマレーザーに用 いられるガスには、 KrF、 KrCl、 ArF、 ArCl、 Fなどがあり、それぞれ固有の発振波
2
長を有する。例えば、 ArFレーザーは、 192nmの発振波長があり、光子エネルギー は 148Kcalである。したがって、結合エネルギーが 100— l lOKcalである C H結合 を切断することができ、エキシマレーザー照射により励起された水素は、容易に引き 抜かれ、代りに共存させた空気中の酸素などにより、例えばカルボニル基、カルボキ シル基、水酸基などを導入することができる。
[0068] エキシマレーザーの照射量は、エネルギー密度として 15— 25mjZcm2、好ましく は 18— 22mjZcm2である。すなわち、エネルギー密度が 15mjZcm2未満では所 望の親水性が得られ難ぐ一方 25mjZcm2を超えてもそれ以上の親水性が向上し な!、だけでなぐむしろ基材であるポリブタジエン成形品の表面が荒れるからである。
[0069] 化学処理:
化学処理とは、ポリブタジエン成形品をエッチングある 、は劣化させる処理あるいは 表面に官能基を導入する処理であり、その具体例としては、該成形品を、過酸化水 素などの過酸化物処理、硝酸、塩酸、硫酸、クロム酸、過マンガン酸カリウム溶液など の無機酸による処理、塩ィ匕アルミニウム、塩ィ匕鉄のトルエンなどの溶液による処理な どが挙げられる。
化学処理の条件としては、酸性、中性、塩基性溶剤(水を含む)下に 2— 50質量% 濃度の硝酸、塩酸、硫酸、クロム酸、過マンガン酸カリウムの何れかと、ポリブタジエン 成形品を 5分一 48時間浸漬させて酸化させる。必要に応じて、 30— 50°Cに加温す る手法ち採用することがでさる。
[0070] 以上の(1)工程は、上記オゾン処理、電子線処理、コロナ放電処理、プラズマ放電 処理、紫外線レーザー処理、あるいは、化学処理を、単独で、あるいは組み合わせて 用!/、ることができる。
例えば、(1)工程は、オゾンの存在下で紫外線レーザー処理することがポリブタジ ェン成形品の水接触角を低減させる面カゝら好ましい。
[0071] 上記(1)工程により、ポリブタジエン成形品の表面の水接触角を低減させることがで きる。
この理由は、上記したように、これらの処理により、ポリブタジエン成形品の表面に 例えばカルボニル基、カルボキシル基、水酸基、アルデヒド基などの極性基を導入し たり、あるいは、該表面を粗面化することにより、水接触角が低減されるものと推定さ れる。
ここで、水接触角は、処理された板状のポリブタジエン成形品に水を静かに一滴乗 せたときの接触角を、市販の自動接触角計、例えば協和界面科学社製の自動接触 角計により測定することができる。
[0072] (1)工程で処理されたポリブタジエン成形品の水接触角は、通常、 80度以下、好ま しくは 75度以下、さらに好ましくは 10度一 70度である。 80度を超えると、極性榭脂成 形品との接着に劣り、また、極性溶剤を使用できない問題が発生する。
なお、上記極性榭脂の水接触角は、通常、 80度一 20度、好ましくは 78度一 30度 、さらに好ましくは 75度一 40度である。
したがって、(1)工程により得られた水接触角が低減されたポリブタジエン成形品の 水接触角(CA )と極性榭脂成形品の水接触角(CA )との差(A CA)は、通常、 +
BR PR
60度一— 15度、好ましくは + 60度一— 10度、さらに好ましくは + 60度一— 5度、特に 好ましくは + 50度一 0度である。
[0073] なお、ポリブタジエン自体の溶解度パラメータ一は、通常、 8. 3-8. 5、好ましくは 8 . 4であるが、(1)工程で処理された後のポリブタジエン成形品の溶解度パラメーター は、通常、 9. 0— 12. 0、好ましくは 9. 3— 11. 0と上昇し、上記極性榭脂の溶解度 パラメーターに近づく。したがって、(1)工程は、ポリブタジエンと極性樹脂との溶解度 ノ ラメーターを近似させることによって、接着性が向上するということもできる。
[0074] 以上の (1)工程は、ポリブタジエン成形品と極性榭脂成形品とを接着させる際に、該 ポリブタジエン成形品に適用されるが、これに加えて、極性榭脂成形品に適用するこ とも可能である。
この場合、極性榭脂成形品への上記各処理の条件は、ポリブタジエン成形品と同 様である。
[0075] (2)工程 (接着工程)
本発明では、次いで、(1)工程の処理により、水接触角が低減されたポリブタジエン 成形品を極性榭脂成形品と接着する。 接着方法としては接着の際に透明性を損ねない、溶剤接着、超音波接着、あるい は高周波接着、接着剤を使用した接着 (UV硬化アクリルタイプ瞬間接着剤、シァノ アタリレートタイプ瞬間接着剤を含む)などが挙げられるが、好ましくは溶剤接着であ る。
ここで、溶剤接着は、ポリブタジエン成形品および Zまたは極性榭脂成形品に溶解 可能な有機溶剤を用いて、両者を接着するものである。
溶剤接着は、ポリブタジエン成形品および極性榭脂成形品の共通する有機溶剤を 用いてもよぐまた、それぞれに可溶な有機溶剤を個別に用いてもよい。
上記接着用の有機溶剤としては、テトラヒドロフラン、シクロへキサン、トルエン、シク 口へキサノン、メチルェチルケトン、アセトン、酢酸ェチルなどが挙げられる。
この接着の条件としては、ポリブタジエン成形品と極性榭脂成形品の接着個所を接 着用溶剤に浸漬したり、接着溶剤を吹き付けたり、接着溶剤を刷毛、端布などで塗布 するなどの手段により、実施することができる。
なお、上記の各接着に際しては、上記接着の共通する有機溶剤または個別の有機 溶剤を組み合わせて用いて、ポリブタジエン成形品および極性榭脂成形品を、それ ぞれ、あら力じめ処理することが望ましい。
[0076] 本発明によれば、(1)工程にぉ 、てオゾン処理などで処理されたチューブなどのポ リブタジエン成形品とコネクターなどの極性榭脂成形品とを接着することにより、接着 個所が強固に接着されたポリブタジエン複合成形品が得られる。
[0077] 次に、本発明のポリブタジエン複合成形品(医療用部材:チューブおよびチューブ 接続部を有するコネクター)を用いた輸液セットについて、図 1を用いてさらに具体的 に説明する。
この輸液セット 10は、輸液バッグ 12内の輸液排出用管 14との結合のための接続部 材 (コネクター) 15と、接続部材 15と点滴筒 11とを接続する第 1のチューブ T1と、点 滴筒 11と穿刺針 13とを接続する第 2のチューブ T2と、輸液速度を調整するためのク レンメ 18と、穿刺針 13を被包するキャップ 16とを有している。なお、符号 19は、第 2 のチューブ T2と穿刺針 13とを接続するための接合部材である。
[0078] ここで、穿刺針 13としては、先端に穿刺用刃先を有する中空のステンレス鋼などか らなる金属針、合成樹脂製針が使用される。また、クレンメ 18としては、ローラータレ ンメが用いられており、このローラークレンメは、移動可能に設けられたローラ 17を備 え、このローラ 17の穿刺針 13側への移動により第 2のチューブ T2の流路が狭くなり、 輸液速度の調整が可能である。点滴筒 11内には、万一、輸液剤などに異物が含ま れていた場合に備えてフィルター(図示せず)が収納されている。なお、穿刺針 13と しては、従来より使用されているものが用いられる。
また、本発明においては、接合部材 15,点滴筒 11,接合部材 19は、いずれも、「 チューブ接続部を有するコネクター」に該当し、ポリカーボネート、ポリエステル、透明 ABS、塩化ビニルなどの極性榭脂が用いられる。
[0079] また、チューブ Tl, T2としては、透明性を有する軟質チューブが好適であり、具体 的には、従来より使用の、軟質塩化ビニル榭脂、結晶化度が 5— 25%程度の低結晶 化度のシンジォタクチック 1, 2—ポリブタジエン、さらに、本発明の結晶化度 5%以上 、好ましくは結晶化度が 5— 25%程度の低結晶化度のシンジオタクチック 1, 2—ポリ ブタジエンをオゾン処理したものが用いられる。
[0080] ここで、チューブ Tl, T2の各先端と結合部材 15,点滴筒 11,接合部材 19 (いず れも、本発明におけるコネクタに相当)におけるチューブ接続部とは、溶剤接着、超 音波接着、あるいは高周波接着により、密着強固に固定されている。
本発明では、オゾン処理されたシンジオタクチック 1, 2—ポリブタジエン力 なるチュ ーブが、ポリカーボネートからなるコネクターと接着されているため、両者が密着強固 に固定することができ、液漏れがない。
ここで、溶剤接着としては、上記のようにテトラヒドロフラン、シクロへキサン、シクロへ キサノン、メチルェチルケトン、アセトン、酢酸ェチル、トルエンなどが挙げられる。
[0081] なお、本発明において、チューブとチューブ接合部を有するコネクターからなる医 療用部材は、上記の輸液セットの構成要素、薬剤投与用カテーテルなどの医療用器 具への構成要素としても適用することができる。 実施例
[0082] 以下、実施例を挙げて本発明をさらに具体的に説明する力 本発明は以下の実施 例に限定されるものではない。なお、実施例中、部および%は特に断らない限り、質 量基準である。また、実施例中の各種の測定は、以下に従った。
[0083] シートの诱明'!^
成形温度 150°C
金型温度 20°C
2mm厚み射出成形シートの曇価で判定。
曇価はガードナー社製 HAZEメーターで測定した。
判定
3未満 :〇良好 (商品価値有り)
3以上 5未満 :△
5以上 :X不良(商品価値無し)
[0084] 300% 1 力ほ軟件 ¾平 )
成形温度 150°Cで作製した 2mm厚みプレス成形シートを JIS3号ダンベルにて打 ち抜き、島津製万能引張試験機 AGlOkNEを用いて応力を測定し柔軟性を判定。 判定
5MPa未満 :〇良好 (柔軟性が振動を吸収し商品価値有り)
5MPa以上、 lOMPa未満:△
lOMPa以上 : X不良 (柔軟性が乏しく振動が伝わり商品価値無し)
[0085] オゾン処理および榇羞テスト用テストピース作製
日本製鋼所社製の射出成形機 N— 100を用いて幅 20mm X長さ 100mm X厚み 2 mm成形品を、 1, 2ポリブタジエン QiSR社製 RB810 (1, 2—ビュル結合含量 = 90% 、密度 =0. 901 X 103kg/m3) ]は成形温度 130°CZ金型温度 20°C、ポリエステル 榭脂 (イーストマンケミカル社製 EasterDNOlO)は成形温度 270°CZ金型温度 30 °C、ポリカーボネート榭脂(三菱エンジニアリングプラスチック社製ユーピロン S— 300 OR)は成形温度 270°CZ金型温度 30°C、 ABS榭脂 (テクノポリマー社製テクノ ABS 810)は成形温度 240°CZ金型温度 30°Cでそれぞれ成形し接着テスト用テストピー スに供した。
[0086] オゾン処理
岩崎電気社製の低圧水銀ランプ型 OC2507 (25W7灯)を用いて、予め脱脂処 理を施し: feJSR社製の RB810テストピース(幅 20mm X長さ 100mm X厚み 2mm) をオゾン処理した。オゾン処理は、水銀ランプ力もテストピース表面までの距離を 20c m、照射時間 3分とした。このとき、波長が 254nmの紫外線の強度は 18mWZcm2、 積算光量は 7jZcm2である。
[0087] 接触角測定
エルマ社製のゴ-ォメーター式接触角測定器 G 1タイプを使用し、テストピース上に 滴下した蒸留水 1 IX 1の接触角を測定した。
[0088] 接着テスト
オゾン処理直後および未処理テストピース (JSR社製の RB810 幅 20mm X長さ 1 OOmm X厚み 2mm)に所定溶剤を lmlシリンジより滴下させ、予め脱脂処理を施し た各種コネクターピース(幅 20mm X長さ 100mm X厚み 2mm)と重ね合わせ溶剤 接着をした。溶剤接着部分はそれぞれの試験片の端の部分を 25mm X I 2. 5mmの 矩形となるよう 2枚の成形ピースを重ね合わせた。溶剤接着したテストピースは 50°C X 24時間熱処理を施した後に、室温に戻し 2時間静置後、島津製作所社製の万能 引張試験機 AGlOkNEを用いて剪断強度を測定。
判定
8kgfZcm2以上 :〇良好 (商品価値有り)
7以上一 8kgfZcm2未満 :△
7kgfZcm2未満 :X不良 (商品価値無し)
[0089] 薬物吸着テスト
薬剤に-トログリセリン (濃度 60 gZml)を選び、輸液チューブ内を流速 70mlZh rでパスさせたときの 1時間経過後の薬剤残存率を測定した。
判定
残存率 95%以上 :〇良好 (商品価値有り)
95%未満一 80%以上:△
80%未満 : X不良(商品価値無し)
テストに供したチューブ
RB810 (JSR社製)、 PVC (日本ゼオン社製 101EPZジォクチルフタレート Zェポ キシ補助可塑剤 Z有機スズ安定剤 Zステアリン酸亜鉛 = 100/46/8/2/1)を J SR研究所ラボ押出機 (池貝 FS40 (単軸 40mm押出機 (LZD= 28) )にてチューブ (外径 Z内径 Z厚み = 3. 7mm/3mm/0. 7mm)を作製。
[0090] 実施例 比較例 1
表 1に、実施例 1、比較例 1を示す。実施例 1は、 RBのテストピースにオゾン処理を 施したものである。 1, 720cm— 1にカルボ-ル基の吸収が存在することがわかる。極 性基が付与されたため接触角が 32度と改善され、極性溶剤であるシクロへキサノン になじみやすくなり、極性榭脂であるポリカーボネートとの接着が可能となり、接着力 が十分発現している内容がわかる。
比較例 1は、 RBのテストピースがオゾン処理を施されていないため極性溶剤、極性 榭脂との相容が思わしくなく結果として接着力が不足していることがわかる。
[0091] 実施例 2、比較例 2
表 1に、実施例 2、比較例 2を示す。実施例 2は、 RBのテストピースにオゾン処理を 施したものである。 1, 720cm— 1にカルボ-ル基の吸収が存在することがわかる。極 性基が付与されたため接触角が 32度と改善され、極性溶剤であるシクロへキサノン になじみやすくなり、極性榭脂である透明 ABSとの接着が可能となり、接着力が十分 発現している内容がわかる。
比較例 2は RBのテストピースがオゾン処理を施されて ヽな 、ため極性溶剤、極性 榭脂との相容が思わしくなく結果として接着力が不足していることがわかる。
[0092] 実施例 3、比較例 3
表 1に、実施例 3、比較例 3を示す。実施例 3は、 RBのテストピースにオゾン処理を 施したものである。 1, 720cm— 1にカルボ-ル基の吸収が存在することがわかる。極 性基が付与されたため接触角が 32度と改善され、極性溶剤であるシクロへキサノン になじみやすくなり、極性榭脂であるポリエステルとの接着が可能となり、接着力が十 分発現して!/、る内容がわかる。
比較例 3は RBのテストピースがオゾン処理を施されて ヽな 、ため極性溶剤、極性 榭脂との相容が思わしくなく結果として接着力が不足していることがわかる。
[0093] 実施例 比較例 4 表 1に、実施例 1、比較例 4を示す。実施例 1は、 RBのテストピースにオゾン処理を 施したものである。 1, 720cm— 1にカルボ-ル基の吸収が存在することがわかる。極 性基が付与されたため接触角が 32度と改善され、極性溶剤であるシクロへキサノン になじみやすくなり、極性榭脂であるポリカーボネートとの接着が可能となり、接着力 が十分発現している内容がわかる。さらに輸液チューブ用途として重要な薬物吸着 性が無く薬剤の損失がな 、ことがわかる。
比較例 4は、 PVCを使用したものでオゾン処理を施さなくても極性溶剤、極性榭脂 との相容がよぐ接着強度は優れる。し力し輸液チューブとして重要な薬物吸着性が 高く薬剤の残存量が減少 (損失がある)し好ましくない。また PVCに含まれる可塑剤が 人体に種々の障害をひき起こす恐れを有しており好まし 、ものではな 、。
実施例 比較例 5
表 1に、実施例 1、比較例 5を示す。実施例 1は、 RBのテストピースにオゾン処理を 施したものである。 1, 720cm— 1にカルボ-ル基の吸収が存在することがわかる。極 性基が付与されたため接触角が 32度と改善され、極性溶剤であるシクロへキサノン になじみやすくなり、極性榭脂であるポリカーボネートとの接着が可能となり、接着力 が十分発現している内容がわかる。さらに、輸液チューブ用途として重要な透明性( 薬液の適正な流れが確認できる)、柔軟性 (300%引張応力:柔軟性があることにより 、チューブに触れた衝撃が人体とつながる針に伝播しがたく好ましい)を有し優れた 特性を有して 、ることがわかる。
比較例 5は、 PEを使用したもので、極性を持たないため極性溶剤、極性榭脂との相 容が悪く接着強度が乏しい。また、輸液チューブとして重要な透明性、柔軟性に乏し く、好ましいものではない。 [0095] [表 1]
Figure imgf000030_0001
産業上の利用可能性
[0096] 本発明によれば、医療用途に有用であり、接合部において液洩れがなぐまた柔軟 性と硬度に優れるとともに、耐蒸気滅菌性に優れ、リサイクル可能であり、さらに塩ィ匕 ビュル系榭脂を含まないため環境問題にもやさしい、シンジオタクチック 1, 2—ポリブ タジェンを主体とする医療用部材とこれを用いた医療用器具を提供するができる。

Claims

請求の範囲
[1] (1)ポリブタジエン成形品の表面の水接触角を低減させる工程と、
(2)上記水接触角が低減されたポリブタジエン成形品を極性榭脂成形品と接着す る工程、
とを含むポリブタジエン成形品の接着方法。
[2] ポリブタジエンが、結晶化度 5%以上のシンジオタクチック 1, 2—ポリブタジエンであ る請求項 1記載のポリブタジエン成形品の接着方法。
[3] 上記(1)工程が、オゾン処理、電子線処理、コロナ放電処理、プラズマ放電処理、 紫外線レーザー処理、およびィ匕学処理の群力 選ばれた少なくとも 1種である請求項
1または 2記載のポリブタジエン成形品の接着方法。
[4] 上記(1)工程により得られる水接触角が低減されたポリブタジエン成形品の水接触 角(CA )が 80度以下である請求項 1一 3いずれかに記載のポリブタジエン成形品
BR
の接着方法。
[5] 極性樹脂がポリカーボネート榭脂、ポリエステル榭脂、 ABS榭脂、ポリスチレン榭脂 、ポリウレタン榭脂、ポリアミド榭脂、ポリアルキルアタリレート榭脂、ポリアルキルメタク リレート榭脂、ポリ酢酸ビュル榭脂、ポリ塩ィ匕ビュル榭脂およびポリ塩ィ匕ビユリデン榭 脂の群力 選ばれた少なくとも 1種である請求項 1一 4いずれかに記載のポリブタジェ ン成形品の接着方法。
[6] (1)工程により得られた水接触角が低減されたポリブタジエン成形品の水接触角( CA )と極性榭脂成形品の水接触角(CA )との差(A CA)が + 60度一— 15度で
BR PR
ある請求項 1一 5いずれかに記載のポリブタジエン成形品の接着方法。
[7] (2)工程における接着が有機溶剤による接着である請求項 1一 6いずれかに記載の ポリブタジエン成形品の接着方法。
[8] 有機溶剤がシクロへキサノン、テトラヒドロフラン、シクロへキサン、メチルェチルケト ン、アセトン、および酢酸ェチルの群力 選ばれた少なくとも 1種である請求項 1一 7 いずれか〖こ記載のポリブタジエン成形品の接着方法。
[9] (1)工程により得られた水接触角が低減されたポリブタジエン成形品および極性榭 脂成形品を、あら力じめ、請求項 8記載の有機溶剤で処理する請求項 1一 8いずれか に記載のポリブタジエン成形品の接着方法。
[10] 請求項 1一 9いずれかに記載のポリブタジエン成形品の接着方法により得られるポ リブタジエン複合成形品。
[11] 請求項 10記載のポリブタジエン複合成形品を少なくとも含む医療用部材。
[12] 請求項 11記載の医療用部材を構成要素とする輸液セット。
PCT/JP2004/019296 2003-12-26 2004-12-24 ポリブタジエン成形品の接着方法、これより得られるポリブタジエン複合成形品、医療用部材、および輸液セット WO2005063859A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20040807653 EP1698654A4 (en) 2003-12-26 2004-12-24 METHOD FOR BONDING AN ARTICLE FORMED FROM POLYBUTADIENE, ARTICLE FORMED FROM POLYBUTADIENE COMPOSITE THUS MANUFACTURED, MEDICAL ELEMENT, AND NECESSARY FOR PERFUSER FLUID
US10/583,865 US20080226930A1 (en) 2003-12-26 2004-12-24 Method For Adhering Polybutadiene Formed Article, Polybutadiene Composite Formed Article Manufactured Thereby, Medical Member, and Infusion Fluid Set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-433773 2003-12-26
JP2003433773 2003-12-26

Publications (1)

Publication Number Publication Date
WO2005063859A1 true WO2005063859A1 (ja) 2005-07-14

Family

ID=34736529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019296 WO2005063859A1 (ja) 2003-12-26 2004-12-24 ポリブタジエン成形品の接着方法、これより得られるポリブタジエン複合成形品、医療用部材、および輸液セット

Country Status (5)

Country Link
US (1) US20080226930A1 (ja)
EP (1) EP1698654A4 (ja)
KR (1) KR20060123391A (ja)
CN (1) CN1898304A (ja)
WO (1) WO2005063859A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101357552B (zh) * 2007-07-30 2011-06-15 比亚迪股份有限公司 一种用于光固化涂层表面的印刷方法
JP5391772B2 (ja) * 2009-03-26 2014-01-15 富士ゼロックス株式会社 記録装置
US9782542B2 (en) * 2009-10-01 2017-10-10 Momentive Performance Materials Inc. Self-lubricating pharmaceutical syringe stoppers
US8530536B2 (en) * 2009-10-01 2013-09-10 Momentive Performance Materials Inc. Self-lubricating pharmaceutical syringe stoppers
US9068063B2 (en) * 2010-06-29 2015-06-30 Eastman Chemical Company Cellulose ester/elastomer compositions
US9708472B2 (en) 2011-12-07 2017-07-18 Eastman Chemical Company Cellulose esters in highly-filled elastomeric systems
DE102012008789B4 (de) * 2012-05-07 2021-03-25 Innovative Oberflächentechnologien GmbH Polymeroberflächen mit erhöhter Oberflächenenergie und Verfahren zur Herstellung derselben
US11160728B2 (en) * 2014-02-20 2021-11-02 Fresenius Kabi Deutschland Gmbh Medical containers and system components with non-DEHP plasticizers for storing red blood cell products, plasma and platelets
US10077342B2 (en) 2016-01-21 2018-09-18 Eastman Chemical Company Elastomeric compositions comprising cellulose ester additives
CN112156266A (zh) * 2020-10-13 2021-01-01 湖南平安医械科技有限公司 一次性使用静脉留置针导管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245851A (ja) * 1999-03-03 2000-09-12 Terumo Corp 医療用コネクターおよび医療用コネクターを備えた医療用具
JP2001162723A (ja) * 1999-12-08 2001-06-19 Tokai Rubber Ind Ltd ゴム・ポリアミド複合体及びその製造方法
WO2003018685A2 (en) * 2001-08-24 2003-03-06 Baxter International Inc. Medical tubing made from polybutadiene
JP2003190274A (ja) * 2001-12-28 2003-07-08 Nippon Zeon Co Ltd 医療用チューブの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE524671A (ja) * 1952-11-29 1900-01-01
US3333634A (en) * 1965-06-29 1967-08-01 Mobil Oil Corp Secondary recovery method achieving high macroscopic and microscopic sweep efficiency
US3928664A (en) * 1973-01-17 1975-12-23 Du Pont Ozone treatment of elastomers
US4144153A (en) * 1975-10-03 1979-03-13 Takiron Co., Ltd. Radiation process for producing 1,2-polybutadiene foamed products
US4422907A (en) * 1981-12-30 1983-12-27 Allied Corporation Pretreatment of plastic materials for metal plating
JPH02305834A (ja) * 1989-03-15 1990-12-19 Terumo Corp 耐放射線性ポリブタジエン組成物
US5254390B1 (en) * 1990-11-15 1999-05-18 Minnesota Mining & Mfg Plano-convex base sheet for retroreflective articles
JP2000129017A (ja) * 1998-10-22 2000-05-09 Terumo Corp 医療用部材およびその製造方法
US20050069716A1 (en) * 2003-09-11 2005-03-31 Sun Sasongko Composition of coextruded adhesive film to bond non-polar to polar surfaces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245851A (ja) * 1999-03-03 2000-09-12 Terumo Corp 医療用コネクターおよび医療用コネクターを備えた医療用具
JP2001162723A (ja) * 1999-12-08 2001-06-19 Tokai Rubber Ind Ltd ゴム・ポリアミド複合体及びその製造方法
WO2003018685A2 (en) * 2001-08-24 2003-03-06 Baxter International Inc. Medical tubing made from polybutadiene
JP2003190274A (ja) * 2001-12-28 2003-07-08 Nippon Zeon Co Ltd 医療用チューブの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1698654A4 *

Also Published As

Publication number Publication date
EP1698654A4 (en) 2007-05-30
KR20060123391A (ko) 2006-12-01
US20080226930A1 (en) 2008-09-18
EP1698654A1 (en) 2006-09-06
CN1898304A (zh) 2007-01-17

Similar Documents

Publication Publication Date Title
US5871823A (en) Hydrophilic coating of surfaces of polymeric substrates
JP3050920B2 (ja) 表面を改質するためのプラズマとγ線とを併用した照射重合方法
EP0887369B1 (de) Verfahren zur Hydrophilierung der Oberfläche polymerer Substrate mit einem Makroinitiator als Primer
Abourayana et al. Plasma processing for tailoring the surface properties of polymers
WO2005063859A1 (ja) ポリブタジエン成形品の接着方法、これより得られるポリブタジエン複合成形品、医療用部材、および輸液セット
JP5050285B2 (ja) 製塩用陰イオン交換膜及びその製造方法
WO1992007464A1 (en) Combined plasma and gamma radiation polymerization method for modifying surfaces
JPWO2012091169A1 (ja) 表面改質方法、表面改質弾性体、注射器用ガスケット、注射器およびタイヤ
JP2007023062A (ja) 熱可塑性エラストマー組成物、その成形品の接着方法、その成形品を含む複合成形品及びその複合成形品を備える医療用輸液セット
JP4261623B2 (ja) 白血球除去材
JP4561964B2 (ja) 医療用部材および医療用器具
US7579057B2 (en) Resin molding and worked item therefrom
CN111094406B (zh) 交联的苯乙烯型嵌段共聚物
KR101342198B1 (ko) 개질 기재 및 개질 기재의 제조 방법
JP2005206824A (ja) ポリブタジエン成形品の接着方法、これより得られるポリブタジエン複合成形品、医療用部材、および輸液セット
EP1468704A1 (en) Medical member mainly comprising syndiotactic 1,2-polybutadiene
JP2004307843A (ja) 樹脂成形品およびその加工品
CN113667173A (zh) 一种具有磷酰胆碱抗凝表面的高分子瓣叶的制造方法
JP2006077161A (ja) ポリブタジエン成形品の接着方法、これより得られるポリブタジエン複合成形品、医療用部材、および輸液セット
JP2006225561A (ja) 熱可塑性エラストマー成形品の接着方法、これより得られる複合成形品、医療用部材、および輸液セット
JP6352706B2 (ja) 表面改質方法及び表面改質弾性体
Pal et al. Radiation-induced polymer modification and polymerization
Ghobashy Impact modification in PVC blends, IPNs, and gels
JP2006161020A (ja) 熱可塑性エラストマー成形品、熱可塑性エラストマー成形品の表面処理方法、医療用チューブ、および輸液セット
JPH06228349A (ja) 成形品表面の親水化方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480038966.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067012660

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004807653

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004807653

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067012660

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10583865

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP