WO2005061743A1 - Method for welding strips of aluminium alloy - Google Patents

Method for welding strips of aluminium alloy Download PDF

Info

Publication number
WO2005061743A1
WO2005061743A1 PCT/FR2004/003002 FR2004003002W WO2005061743A1 WO 2005061743 A1 WO2005061743 A1 WO 2005061743A1 FR 2004003002 W FR2004003002 W FR 2004003002W WO 2005061743 A1 WO2005061743 A1 WO 2005061743A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
brazing
core alloy
core
content
Prior art date
Application number
PCT/FR2004/003002
Other languages
French (fr)
Inventor
Sandrine Dulac
Sylvain Henry
Original Assignee
Alcan Rhenalu
Alcan Rolled Products-Ravenswood, Llc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34566232&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005061743(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alcan Rhenalu, Alcan Rolled Products-Ravenswood, Llc. filed Critical Alcan Rhenalu
Priority to KR1020067010680A priority Critical patent/KR101194970B1/en
Priority to JP2006540529A priority patent/JP4996255B2/en
Priority to DE602004007034T priority patent/DE602004007034T2/en
Priority to US10/596,057 priority patent/US7926701B2/en
Priority to MXPA06005902A priority patent/MXPA06005902A/en
Priority to CA2547801A priority patent/CA2547801C/en
Priority to BRPI0416973-5A priority patent/BRPI0416973B1/en
Priority to EP04805531A priority patent/EP1687456B1/en
Publication of WO2005061743A1 publication Critical patent/WO2005061743A1/en
Priority to NO20063021A priority patent/NO346759B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/002Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of light metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • B23K35/288Al as the principal constituent with Sn or Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the invention relates to brazing without flux under controlled atmosphere of aluminum alloy strips coated on one or two faces with a brazing alloy, and intended in particular for the manufacture of heat exchangers for the automobile or the building industry. .
  • the corrosion resistance of a large number of strips for exchangers is based on the formation of an anode layer at the core / cladding interface which imposes a very low silicon content in the core.
  • This is the case for example of the alloys described in patent EP 0326337 (Alcan).
  • the 6xxx alloys have therefore been replaced for the most part by 3xxx alloys with low magnesium and low silicon and the effect of structural hardening has been lost.
  • Core alloys of the 3xxx type with structural hardening have been proposed recently, for example in patent EP 0718072 (Hoogovens Aluminum Walz area) or in application EP 1254965 (SAPA Heat Transfer).
  • the invention aims to provide a material which has both structural hardening properties, but also good aptitude for brazing in lines
  • the subject of the invention is a method of assembling aluminum alloy sheets comprising brazing without flux in a controlled atmosphere at a temperature between 580 and 620 ° C, rapid cooling and optionally tempering at a temperature between 80 and 250 ° C, and in which at least one of the sheets consists of a core alloy of composition (% by weight):
  • a preferred composition for the core alloy is:
  • the annealing can take place during operation in the hot parts of the exchanger.
  • Figures la and lb show, respectively in top view and side view, the N-shaped test pieces used in the examples to assess the solderability.
  • FIG. 2 represents the definition of the width of the brazed joint in the brazing aptitude test described in the examples.
  • the invention is based on the selection, for fluxless brazing, of a particular composition for the core alloy, in combination with the addition to the cladding alloy of one or more elements making it possible to modify it. surface properties, such as surface tension or the composition of the oxide layer.
  • the core alloy contains manganese and copper, as well as silicon and magnesium to allow precipitation hardening of Mg 2 Si.
  • the silicon content must be greater than 0.3% to allow the formation of a sufficient amount of Mg 2 Si, but remain below 1% if we want to keep a sufficient gap between the melting temperatures of the core alloy and the cladding alloy.
  • the magnesium content is between 0.3 and 3.0%, and preferably between 0.35 and 0.7%.
  • the cladding alloy is usually an aluminum alloy containing
  • One of the characteristics of the invention is to add to the plating alloy one or more elements making it possible to improve its wettability, belonging to the group consisting of Ag, Be, Bi, Ce, La, Pb, Pd, Sb, Y or mischmetal, which is a mixture of non-separated rare earths. It is this better wettability which makes it possible to avoid the use of a flux for soldering, without however operating under vacuum.
  • the brazing alloy is most often plated on the core alloy by co-laminating.
  • the brazing alloy is plated on one side
  • the other side can be coated, in a manner known per se, with a sacrificial alloy, generally of the Al-
  • the brazing alloy can also be deposited in the form of particles, in particular of Al-Si particles, as described for example in patent EP 0568568 (Alcan
  • the particles of brazing alloy are generally associated with flux particles, in particular fluxes based on fluorides such as potassium fluoro-aluminate, and on a binder such as a polymer resin.
  • flux particles in particular fluxes based on fluorides such as potassium fluoro-aluminate, and on a binder such as a polymer resin.
  • a particular advantage of the invention in this case is to avoid the presence of flux in the coating.
  • From 0.05 to 0.5% of bismuth and / or from 0.01 to 0.5% of yttrium can also be incorporated in addition to the core alloy.
  • Brazing is carried out without flow under a controlled atmosphere, for example nitrogen or argon, at a temperature between 580 and 620 ° C, which allows the brazing alloy to melt, but also ensures dissolution of the soul alloy.
  • a controlled atmosphere for example nitrogen or argon
  • An assembly part can be tempered at a temperature between 80 and 250 ° C.
  • plating alloy plates 4047 Al-12% Si or 4047 + 0.19% Bi or 4047 + 0.05% Y or 4047 + 0.05% Ca. Assemblies are made from these plates so that the The thickness of the plating alloy represents 10% of the total thickness. These assemblies are hot rolled, then cold rolled so as to produce plated strips of thickness 0.3 mm. These strips are then subjected to a restoration treatment for 10 h at 260 ° C.
  • the test tube described in Figure 1 was used to assess the solderability of these materials.
  • the "N" consists of a bare strip of alloy 3003, in the H24 state, and 0.3 mm thick.
  • a degreasing treatment of 15 min at 250 ° C is applied to the metal to be brazed. No other surface preparation is applied and in particular no flux is deposited.
  • Brazing is done in a double-walled glass oven which allows you to visualize the movements of liquid solder and the formation of joints during treatment.
  • the thermal cycle is composed of a temperature rise phase up to 610 ° C with a speed of about 20 ° C / min, a 2 min hold at 610 ° C, and a descent to about 30 ° C / min. The whole is done under continuous nitrogen sweep, with a flow rate of 8 1 / min.
  • the results are qualified by a grade from A to E according to the following scale: The results are shown in Table 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Coating With Molten Metal (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Resistance Welding (AREA)
  • Clamps And Clips (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laser Beam Processing (AREA)
  • Catalysts (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

The invention relates to a method for assembling sheets of aluminium alloy, comprising a welding without flux, in a controlled atmosphere, at a temperature of 580 to 620 °C, a rapid cooling and, optionally, reheating to a temperature of 80 to 250 °C, in which at least one of the sheets has a core alloy comprising (wt. %), Si 0.3 1.0, Fe < 1.0, Cu 0.3 1.0, Mn 0.3 2.0, Mg 0.3 3.0, Zn < 6.0, Ti < 0.1, Zr < 0.3, Cr < 0.3, Ni < 2.0, Co < 2.0, Bi < 0.5, Y < 0.5, other elements < 0.05 each, to a total of 0.15, the remainder being aluminium and covered on at least one face with a welding aluminium alloy, comprising 4 to 15 % silicon and 0.01 to 0.5 % of at least one of the elements Ag, Be, Bi, Ce, La, Pb, Pd, Sb, Y or a mixed metal. The method is particularly suitable for the non-flux welding of heat exchangers.

Description

Procédé de brasage de bandes en alliage d'aluminium Aluminum alloy strip brazing process
Domaine de l'inventionField of the invention
L'invention concerne le brasage sans flux sous atmosphère contrôlée de bandes en alliage d'aluminium revêtues sur une ou deux faces d'un alliage de brasage, et destiné en particulier à la fabrication d' échangeurs de chaleur pour l'automobile ou le bâtiment.The invention relates to brazing without flux under controlled atmosphere of aluminum alloy strips coated on one or two faces with a brazing alloy, and intended in particular for the manufacture of heat exchangers for the automobile or the building industry. .
Etat de la techniqueState of the art
L'utilisation, pour l'application échangeurs, d'alliages d'âme à durcissement structural (notamment de) la série 6xxx : Al-Mg-Si) était très courante tant que le procédé de brasage utilisé était de type brasage sous vide. Le passage à la technologie du brasage sous atmosphère contrôlée avec flux non corrosif Nocolok®, en liaison avec le coût élevé associé aux fours sous vide et à leur maintenance, a mis un point d'arrêt à cet usage. Le procédé Nocolok® impose en effet des contraintes strictes sur l'utilisation d'alliages au magnésium, car cet élément réagit avec le flux, utilisé pour dissoudre la couche d'oxyde, et le rend inopérant. La teneur généralement donnée comme limite est de l'ordre de 0.3%. Au delà, une quantité très importante de flux serait nécessaire, ce qui rendrait l'opération extrêmement coûteuse. Par ailleurs, la résistance à la corrosion d'un grand nombre de bandes pour échangeurs est basée sur la formation d'une couche anodique à l'interface âme/placage qui impose une très faible teneur en silicium dans l'âme. C'est le cas par exemple des alliages décrits dans le brevet EP 0326337 (Alcan). Les alliages 6xxx ont donc été remplacés très majoritairement par des alliages 3xxx à bas magnésium et bas silicium et l'effet de durcissement structural a été perdu. Des alliages d'âme de type 3xxx à durcissement structural ont été proposés récemment, par exemple dans le brevet EP 0718072 (Hoogovens Aluminium Walzprodukte) ou dans la demande EP 1254965 (SAPA Heat Transfer). Dans les deux cas, aucune modification n'a été apportée aux bandes pour améliorer leur brasabilité dans un four Nocolok® standard. Par conséquent, soit la teneur en magnésium doit être limitée à une valeur relativement faible (par exemple inférieure à 0.35% comme dans le cas de la demande EP 1254965), mais l'effet de durcissement structural est alors relativement réduit, soit il est nécessaire d'augmenter la quantité de flux déposée, ou d'utiliser un flux alternatif tel que le flux au césium décrit dans le brevet US 5771962 (Ford). Dans les deux cas, cela se traduit par une augmentation significative du coût de l'opération.The use, for the exchanger application, of structural hardening core alloys (in particular of) the 6xxx series: Al-Mg-Si) was very common as long as the brazing method used was of vacuum brazing type. The transition to brazing technology under controlled atmosphere with non-corrosive Nocolok® flux, in conjunction with the high cost associated with vacuum furnaces and their maintenance, put a stop to this use. The Nocolok® process indeed imposes strict constraints on the use of magnesium alloys, because this element reacts with the flux, used to dissolve the oxide layer, and makes it ineffective. The content generally given as a limit is of the order of 0.3%. Beyond that, a very large quantity of flux would be necessary, which would make the operation extremely expensive. Furthermore, the corrosion resistance of a large number of strips for exchangers is based on the formation of an anode layer at the core / cladding interface which imposes a very low silicon content in the core. This is the case for example of the alloys described in patent EP 0326337 (Alcan). The 6xxx alloys have therefore been replaced for the most part by 3xxx alloys with low magnesium and low silicon and the effect of structural hardening has been lost. Core alloys of the 3xxx type with structural hardening have been proposed recently, for example in patent EP 0718072 (Hoogovens Aluminum Walzprodukte) or in application EP 1254965 (SAPA Heat Transfer). In the in two cases, no modification was made to the bands to improve their solderability in a standard Nocolok® oven. Consequently, either the magnesium content must be limited to a relatively low value (for example less than 0.35% as in the case of application EP 1254965), but the effect of structural hardening is then relatively reduced, or it is necessary to increase the quantity of flux deposited, or to use an alternative flux such as the cesium flux described in US Pat. No. 5,771,962 (Ford). In both cases, this translates into a significant increase in the cost of the operation.
L'invention vise à proposer un matériau qui possède à la fois des propriétés de durcissement structural, mais aussi une bonne aptitude au brasage dans les lignesThe invention aims to provide a material which has both structural hardening properties, but also good aptitude for brazing in lines
Nocolok® existantes.Nocolok® existing.
Objet de l'inventionSubject of the invention
L'invention a pour objet un procédé d'assemblage de tôles en alliage d'aluminium comportant un brasage sans flux sous atmosphère contrôlée à une température comprise entre 580 et 620°C, un refroidissement rapide et éventuellement un revenu à une température comprise entre 80 et 250°C, et dans lequel l'une au moins des tôles est constituée d'un alliage d'âme de composition (% en poids) :The subject of the invention is a method of assembling aluminum alloy sheets comprising brazing without flux in a controlled atmosphere at a temperature between 580 and 620 ° C, rapid cooling and optionally tempering at a temperature between 80 and 250 ° C, and in which at least one of the sheets consists of a core alloy of composition (% by weight):
Si: 0,3 -1,0 Fe<l,0 Cu: 0,3 -1,0 Mn: 0,3 -2,0 Mg : 0,3 -3,0 Zn<6,0Si: 0.3 -1.0 Fe <1.0 Cu: 0.3 -1.0 Mn: 0.3 -2.0 Mg: 0.3 -3.0 Zn <6.0
Ti<0,l Zr<0,3 Cr<0,3 Ni < 2,0 Co<2,0 Bi<0,5 Y<0,5 autres éléments < 0,05 chacun et 0,15 au total, reste aluminium, et revêtue sur au moins une face d'un alliage d'aluminium de brasage contenant de 4 à 15% de silicium et de 0,01 à 0,5% de l'un au moins des éléments Ag, Be, Bi, Ce, La, Pb, Pd, Sb, Y ou de mischmetal.Ti <0.1 l Zr <0.3 Cr <0.3 Ni <2.0 Co <2.0 Bi <0.5 Y <0.5 other elements <0.05 each and 0.15 in total, remains aluminum, and coated on at least one face with a brazing aluminum alloy containing from 4 to 15% of silicon and from 0.01 to 0.5% of at least one of the elements Ag, Be, Bi, Ce, La, Pb, Pd, Sb, Y or mischmetal.
Une composition préférée pour l'alliage d'âme est :A preferred composition for the core alloy is:
Si: 0,3 -1,0 Fe<0,5 Cu: 0,35 -1,0 Mn: 0,3 -0,7 Mg: 0,35 -0,7 Zn<Si: 0.3 -1.0 Fe <0.5 Cu: 0.35 -1.0 Mn: 0.3 -0.7 Mg: 0.35 -0.7 Zn <
0,2 Ti<0,l Zr<0,3 Cr<0,3 Ni < 1,0 Co<l,0 Bi<0,5 Y<0,5 autres éléments < 0,05 chacun et 0,15 au total, reste aluminium,0.2 Ti <0.1 Zr <0.3 Cr <0.3 Ni <1.0 Co <1.0 Bi <0.5 Y <0.5 other elements <0.05 each and 0.15 at total, aluminum rest,
Dans le cas de la fabrication d'échangeurs thermiques, le revenu peut s'effectuer en cours de fonctionnement dans les parties chaudes de l'échangeur. Description des figuresIn the case of the manufacture of heat exchangers, the annealing can take place during operation in the hot parts of the exchanger. Description of the figures
Les figures la et lb représentent, respectivement en vue de dessus et vue de côté, les éprouvettes en N utilisées dans les exemples pour évaluer l'aptitude au brasage. La figure 2 représente la définition de la largeur du joint brasé dans le test d'aptitude au brasage décrit dans les exemples.Figures la and lb show, respectively in top view and side view, the N-shaped test pieces used in the examples to assess the solderability. FIG. 2 represents the definition of the width of the brazed joint in the brazing aptitude test described in the examples.
Description de l'inventionDescription of the invention
L'invention repose sur la sélection, pour le brasage sans flux, d'une composition particulière pour l'alliage d'âme, en combinaison avec l'addition à l'alliage de placage d'un ou plusieurs éléments permettant d'en modifier les propriétés de surface, comme la tension superficielle ou la composition de la couche d'oxyde. L'alliage d'âme contient du manganèse et du cuivre, ainsi que du silicium et du magnésium pour permettre un durcissement par précipitation de Mg2Si. La teneur en silicium doit être supérieure à 0,3% pour permettre la formation d'une quantité suffisante de Mg2Si, mais rester inférieure à 1% si on veut garder un écart suffisant entre les températures de fusion de l'alliage d'âme et de l'alliage de placage. La teneur en magnésium est comprise entre 0,3 et 3,0%, et de préférence entre 0,35 et 0,7%. Elle doit être suffisante pour permettre la formation de Mg2Si, et n'est pas limitée, comme dans la demande EP 1254965, par le risque de réaction avec le flux, puisqu'il n'y en a pas. Contrairement à ce qui est préconisé dans la demande de brevet EP 1254965, on ne vise pas un excès de silicium par rapport à la quantité stoechiométrique pour former Mg2Si, mais au contraire un excès de magnésium. Cependant, le magnésium ayant une influence défavorable sur la formabilité, il est souhaitable de le limiter à 0,7% pour les applications exigeant une mise en forme importante.The invention is based on the selection, for fluxless brazing, of a particular composition for the core alloy, in combination with the addition to the cladding alloy of one or more elements making it possible to modify it. surface properties, such as surface tension or the composition of the oxide layer. The core alloy contains manganese and copper, as well as silicon and magnesium to allow precipitation hardening of Mg 2 Si. The silicon content must be greater than 0.3% to allow the formation of a sufficient amount of Mg 2 Si, but remain below 1% if we want to keep a sufficient gap between the melting temperatures of the core alloy and the cladding alloy. The magnesium content is between 0.3 and 3.0%, and preferably between 0.35 and 0.7%. It must be sufficient to allow the formation of Mg 2 Si, and is not limited, as in application EP 1254965, by the risk of reaction with the flow, since there is none. Contrary to what is recommended in patent application EP 1254965, there is not an excess of silicon relative to the stoichiometric amount to form Mg 2 Si, but on the contrary an excess of magnesium. However, since magnesium has an unfavorable influence on formability, it is desirable to limit it to 0.7% for applications requiring significant shaping.
Le cuivre augmente la résistance mécanique de l'alliage lorsqu'il est en solution solide. Contrairement à l'enseignement de EP 1254965, la demanderesse n'a pas constaté de diminution de la résistance à la corrosion au-delà de 0,3% à condition de ne pas dépasser 1%, limite à partir de laquelle le cuivre précipite. Au contraire, la présence de cuivre en solution solide augmente le potentiel de corrosion. Une raison supplémentaire de ne pas dépasser 1% est d'éviter de trop abaisser la température de fusion de l'alliage.Copper increases the mechanical resistance of the alloy when it is in solid solution. Contrary to the teaching of EP 1254965, the Applicant has not observed a reduction in the corrosion resistance beyond 0.3% provided that it does not exceed 1%, the limit from which the copper precipitates. On the contrary, the presence of copper in solid solution increases the corrosion potential. A reason additional not to exceed 1% is to avoid excessively lowering the melting temperature of the alloy.
L'alliage de placage est, de manière habituelle, un alliage d'aluminium contenant deThe cladding alloy is usually an aluminum alloy containing
4 à 15% de silicium, et éventuellement d'autres éléments d'addition tels que Cu, Mg ou Zn. Une des caractéristiques de l'invention est d'ajouter à l'alliage de placage un ou plusieurs éléments permettant d'améliorer sa mouillabilité, appartenant au groupe constitué par Ag, Be, Bi, Ce, La, Pb, Pd, Sb, Y ou du mischmetal, qui est un mélange de terres rares non séparées. C'est cette meilleure mouillabilité qui permet d'éviter l'utilisation d'un flux au brasage, sans pour autant opérer sous vide.4 to 15% of silicon, and possibly other addition elements such as Cu, Mg or Zn. One of the characteristics of the invention is to add to the plating alloy one or more elements making it possible to improve its wettability, belonging to the group consisting of Ag, Be, Bi, Ce, La, Pb, Pd, Sb, Y or mischmetal, which is a mixture of non-separated rare earths. It is this better wettability which makes it possible to avoid the use of a flux for soldering, without however operating under vacuum.
L'alliage de brasage est le plus souvent plaqué sur l'alliage d'âme par colaminage.The brazing alloy is most often plated on the core alloy by co-laminating.
Dans le cas où l'alliage de brasage est plaqué sur une seule face, l'autre face peut être revêtue, de manière connue en soi, d'un alliage sacrificiel, généralement de type Al-In the case where the brazing alloy is plated on one side, the other side can be coated, in a manner known per se, with a sacrificial alloy, generally of the Al-
Zn, destiné à améliorer la résistance à la corrosion de l'alliage d'âme.Zn, intended to improve the corrosion resistance of the core alloy.
L'alliage de brasage peut également être déposé sous forme de particules, notamment de particules Al-Si, comme décrit par exemple dans le brevet EP 0568568 (AlcanThe brazing alloy can also be deposited in the form of particles, in particular of Al-Si particles, as described for example in patent EP 0568568 (Alcan
International). Pour le brasage sous atmosphère contrôlée, les particules d'alliage de brasage sont généralement associées à des particules de flux, en particulier de flux à base de fluorures comme le fluoro-aluminate de potassium, et d'un liant tel qu'une résine polymère. Un avantage particulier de l'invention dans ce cas est d'éviter la présence de flux dans le revêtement.International). For brazing under a controlled atmosphere, the particles of brazing alloy are generally associated with flux particles, in particular fluxes based on fluorides such as potassium fluoro-aluminate, and on a binder such as a polymer resin. . A particular advantage of the invention in this case is to avoid the presence of flux in the coating.
De 0,05 à 0,5% de bismuth et/ou de 0,01 à 0,5% d'yttrium peuvent également être incorporés en plus à l'alliage d'âme.From 0.05 to 0.5% of bismuth and / or from 0.01 to 0.5% of yttrium can also be incorporated in addition to the core alloy.
Le brasage s'effectue sans flux sous atmosphère contrôlée, par exemple d'azote ou d'argon, à une température comprise entre 580 et 620°C, qui permet la fusion de l'alliage de brasage, mais assure également la mise en solution de l'alliage d'âme.Brazing is carried out without flow under a controlled atmosphere, for example nitrogen or argon, at a temperature between 580 and 620 ° C, which allows the brazing alloy to melt, but also ensures dissolution of the soul alloy.
Cette mise en solution est suivie d'un refroidissement rapide, par exemple à l'air puisé. On peut effectuer un revenu de la pièce assemblée à une température comprise entre 80 et 250°C.This dissolution is followed by rapid cooling, for example with forced air. An assembly part can be tempered at a temperature between 80 and 250 ° C.
Dans le cas de la fabrication d' échangeurs thermiques, il est parfois possible d'effectuer le revenu en fonctionnement dans les parties les plus chaudes de l'échangeur, par exemple les tubes de radiateurs de refroidissement des moteurs d'automobile. ExempleIn the case of the manufacture of heat exchangers, it is sometimes possible to carry out the income in operation in the hottest parts of the exchanger, for example the tubes of cooling radiators of automobile engines. Example
On a coulé plusieurs plaques d'alliages d'âme dont les compositions respectives sont indiquées au tableau 1 :Several plates of core alloys were cast, the respective compositions of which are indicated in Table 1:
Tableau 1Table 1
Figure imgf000006_0001
Figure imgf000006_0001
ainsi que des plaques d'alliage de placage 4047 (Al-12%Si) ou 4047 + 0.19% Bi ou 4047 + 0.05% Y ou 4047 + 0.05% Ca. Des assemblages sont réalisés à partir de ces plaques de telle sorte que l'épaisseur d'alliage de placage représente 10% de l'épaisseur totale. Ces assemblages sont laminés à chaud, puis à froid de façon à produire des bandes plaquées d'épaisseur 0.3 mm. Ces bandes sont ensuite soumises à un traitement de restauration de 10 h à 260°C.as well as plating alloy plates 4047 (Al-12% Si) or 4047 + 0.19% Bi or 4047 + 0.05% Y or 4047 + 0.05% Ca. Assemblies are made from these plates so that the The thickness of the plating alloy represents 10% of the total thickness. These assemblies are hot rolled, then cold rolled so as to produce plated strips of thickness 0.3 mm. These strips are then subjected to a restoration treatment for 10 h at 260 ° C.
L'éprouvette décrite à la figure 1 a été utilisée pour évaluer la brasabilité de ces matériaux. Le « N » est constitué d'une bande nue en alliage 3003, à l'état H24, et d'épaisseur 0.3 mm. Un traitement de dégraissage de 15 min à 250°C est appliqué au métal à braser. Aucune autre préparation de surface n'est appliquée et en particulier aucun flux n'est déposé. Le brasage se fait dans un four en verre à double paroi qui permet de visualiser les mouvements de brasure liquide et la formation des joints au cours du traitement. Le cycle thermique est composé d'une phase de montée en température jusqu'à 610°C avec une vitesse d'environ 20°C/min, d'un maintien de 2 min à 610°C, et d'une descente à environ 30°C/min. Le tout se fait sous balayage continu d'azote, avec un débit de 8 1/min. Les résultats sont qualifiés par une note de A à E selon l'échelle suivante :
Figure imgf000007_0001
Les résultats sont indiqués au tableau 2
The test tube described in Figure 1 was used to assess the solderability of these materials. The "N" consists of a bare strip of alloy 3003, in the H24 state, and 0.3 mm thick. A degreasing treatment of 15 min at 250 ° C is applied to the metal to be brazed. No other surface preparation is applied and in particular no flux is deposited. Brazing is done in a double-walled glass oven which allows you to visualize the movements of liquid solder and the formation of joints during treatment. The thermal cycle is composed of a temperature rise phase up to 610 ° C with a speed of about 20 ° C / min, a 2 min hold at 610 ° C, and a descent to about 30 ° C / min. The whole is done under continuous nitrogen sweep, with a flow rate of 8 1 / min. The results are qualified by a grade from A to E according to the following scale:
Figure imgf000007_0001
The results are shown in Table 2
Tableau 2Table 2
Figure imgf000007_0002
Figure imgf000007_0002
Les caractéristiques mécaniques sont mesurées sur les composites M/4047+Bi, M+Bi/4047+Bi et M+Y/4047+Y à la fois après brasage, et après différents traitements de revenu. Le tableau 3 présente les valeurs obtenues et les compare avec un alliage N utilisé classiquement pour les bandes destinées aux échangeurs, et de composition :The mechanical characteristics are measured on the composites M / 4047 + Bi, M + Bi / 4047 + Bi and M + Y / 4047 + Y both after brazing, and after various tempering treatments. Table 3 presents the values obtained and compares them with an alloy N conventionally used for bands intended for exchangers, and of composition:
Figure imgf000007_0003
Tableau 3
Figure imgf000007_0003
Table 3
Figure imgf000008_0001
Figure imgf000008_0001
On constate l'effet très favorable du durcissement structural sur la résistance mécanique, surtout après revenu. We note the very favorable effect of structural hardening on mechanical strength, especially after tempering.

Claims

Revendications claims
1. Procédé d'assemblage de tôles en alliage d'aluminium comportant un brasage sans flux sous atmosphère contrôlée à une température comprise entre 580 et 620°C, un refroidissement rapide et éventuellement un revenu à une température comprise entre 80 et 250°C, et dans lequel l'une au moins des tôles est constituée d'un alliage d'âme de composition (% en poids) : Si : 0,3 - l,0 Fe < l,0 Cu : 0,3 - 1,0 Mn : 0,3 - 2,0 Mg : 0,3 - 3,0 Zn < 6,0 Ti < 0,l Zr < 0,3 Cr < 0,3 Ni < 2,0 Co < 2,0 Bi < 0,5 Y < 0,5 autres éléments < 0,05 chacun et 0,15 au total, reste aluminium, et revêtue sur au moins une face d'un alliage d'aluminium de brasage contenant de 4 à 15% de silicium et de 0,01 à 0,5% de l'un au moins des éléments Ag, Be, Bi, Ce, La, Pb, Pd, Sb, Y ou de mischmetal.1. A method of assembling aluminum alloy sheets comprising brazing without flux under a controlled atmosphere at a temperature between 580 and 620 ° C, rapid cooling and possibly tempering at a temperature between 80 and 250 ° C, and in which at least one of the sheets consists of a core alloy of composition (% by weight): Si: 0.3 - 1.0 Fe <1.0 Cu: 0.3 - 1.0 Mn: 0.3 - 2.0 Mg: 0.3 - 3.0 Zn <6.0 Ti <0.1 L Zr <0.3 Cr <0.3 Ni <2.0 Co <2.0 Bi < 0.5 Y <0.5 other elements <0.05 each and 0.15 in total, remains aluminum, and coated on at least one side with a brazing aluminum alloy containing from 4 to 15% of silicon and from 0.01 to 0.5% of at least one of the elements Ag, Be, Bi, Ce, La, Pb, Pd, Sb, Y or mischmetal.
2. Procédé selon la revendication 1, caractérisé en ce que la teneur en cuivre de l'alliage d'âme est comprise entre 0,35 et 1%.2. Method according to claim 1, characterized in that the copper content of the core alloy is between 0.35 and 1%.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la teneur en manganèse de l'alliage d'âme est comprise entre 0,3 et 0,7%.3. Method according to one of claims 1 or 2, characterized in that the manganese content of the core alloy is between 0.3 and 0.7%.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la teneur en magnésium de l'alliage d'âme est comprise entre 0,35 et 0,7%.4. Method according to one of claims 1 to 3, characterized in that the magnesium content of the core alloy is between 0.35 and 0.7%.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la teneur en zinc de l'alliage d'âme est inférieure à 0,2%.5. Method according to one of claims 1 to 4, characterized in that the zinc content of the core alloy is less than 0.2%.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la teneur en bismuth de l'alliage d'âme est comprise entre 0,05 et 0,5%. 6. Method according to one of claims 1 to 5, characterized in that the bismuth content of the core alloy is between 0.05 and 0.5%.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la teneur en yttrium de l'alliage d'âme est comprise entre 0,01 et 0,5%.7. Method according to one of claims 1 to 6, characterized in that the yttrium content of the core alloy is between 0.01 and 0.5%.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que l'alliage d'âme a pour composition : Si: 0,3 -1,0 Fe<0,5 Cu: 0,35 -1,0 Mn: 0,3 -0,7 Mg: 0,35 -0,7 Zn<0,2 Ti<0,l Zr<0,3 Cr<0,3 Ni < 1,0 Co<l,0 Bi<0,5 Y < 0,5 autres éléments < 0,05 chacun et 0,15 au total, reste aluminium.8. Method according to one of claims 1 to 7, characterized in that the core alloy has the composition: Si: 0.3 -1.0 Fe <0.5 Cu: 0.35 -1.0 Mn: 0.3 -0.7 Mg: 0.35 -0.7 Zn <0.2 Ti <0.1 L Zr <0.3 Cr <0.3 Ni <1.0 Co <1.0 Bi 0.5 Y <0.5 other elements <0.05 each and 0.15 in total, aluminum remains.
y. Frocédé selon l'une des revendications 1 à 8, caractérisé en ce que l'alliage de brasage est plaqué sur l'alliage d'âme par colaminage.there. Frocédé according to one of claims 1 to 8, characterized in that the brazing alloy is pressed onto the core alloy by co-laminating.
10. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le revêtement d'alliage de brasage est constitué de particules, éventuellement enrobées dans une couche de résine.10. Method according to one of claims 1 to 8, characterized in that the brazing alloy coating consists of particles, optionally coated in a resin layer.
11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce qu'il est utilisé pour la fabrication d' échangeurs thermiques et que le revenu s'effectue en cours de fonctionnement des échangeurs dans leurs parties chaudes. 11. Method according to one of claims 1 to 10, characterized in that it is used for the manufacture of heat exchangers and that the income takes place during operation of the exchangers in their hot parts.
PCT/FR2004/003002 2003-11-28 2004-11-24 Method for welding strips of aluminium alloy WO2005061743A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020067010680A KR101194970B1 (en) 2003-11-28 2004-11-24 Method for brazing of aluminum alloy plates and assembly of aluminum alloy plates thereby
JP2006540529A JP4996255B2 (en) 2003-11-28 2004-11-24 Brazing method for strip made of aluminum alloy
DE602004007034T DE602004007034T2 (en) 2003-11-28 2004-11-24 METHOD FOR WELDING ALUMINUM ALLOY TAPES
US10/596,057 US7926701B2 (en) 2003-11-28 2004-11-24 Method for brazing strips of aluminium alloy
MXPA06005902A MXPA06005902A (en) 2003-11-28 2004-11-24 Method for welding strips of aluminium alloy.
CA2547801A CA2547801C (en) 2003-11-28 2004-11-24 Method for welding strips of aluminium alloy
BRPI0416973-5A BRPI0416973B1 (en) 2003-11-28 2004-11-24 Assembly process of sheets made of aluminum alloy
EP04805531A EP1687456B1 (en) 2003-11-28 2004-11-24 Method for welding strips of aluminium alloy
NO20063021A NO346759B1 (en) 2003-11-28 2006-06-28 Procedure for brazing aluminum alloy strips

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0314000A FR2862984B1 (en) 2003-11-28 2003-11-28 ALUMINUM ALLOY BAND FOR SOLDERING
FR0314000 2003-11-28

Publications (1)

Publication Number Publication Date
WO2005061743A1 true WO2005061743A1 (en) 2005-07-07

Family

ID=34566232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/003002 WO2005061743A1 (en) 2003-11-28 2004-11-24 Method for welding strips of aluminium alloy

Country Status (14)

Country Link
US (1) US7926701B2 (en)
EP (1) EP1687456B1 (en)
JP (1) JP4996255B2 (en)
KR (1) KR101194970B1 (en)
CN (1) CN100453673C (en)
AT (1) ATE364728T1 (en)
BR (1) BRPI0416973B1 (en)
CA (1) CA2547801C (en)
DE (1) DE602004007034T2 (en)
ES (1) ES2287801T3 (en)
FR (1) FR2862984B1 (en)
MX (1) MXPA06005902A (en)
NO (1) NO346759B1 (en)
WO (1) WO2005061743A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7624906B2 (en) * 2007-07-20 2009-12-01 Harbin Institute Of Technology Ultrasonic brazing of aluminum alloy and aluminum matrix composite
US8158273B2 (en) 2007-06-20 2012-04-17 Aleris Aluminum Koblenz Gmbh Aluminium alloy brazing sheet product
CN102758109A (en) * 2012-08-07 2012-10-31 曾琦 High-strength wear-resisting heat-resisting aluminium alloy material and preparation process thereof
EP2855063B1 (en) 2012-05-31 2016-03-23 Gränges Sweden AB Multilayer aluminium brazing sheet for fluxfree brazing in controlled atmosphere
CN107326223A (en) * 2017-06-09 2017-11-07 太仓东旭精密机械有限公司 A kind of bicycle use alloy material
EP3176273B1 (en) 2014-07-30 2018-12-19 UACJ Corporation Aluminium alloy brazing sheet
CN110241340A (en) * 2019-07-31 2019-09-17 广州蕴智刀具技术有限公司 A kind of high-strength abrasion-proof non-ferrous alloy and preparation method thereof

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862894B1 (en) * 2003-11-28 2007-02-16 Pechiney Rhenalu ALLUMINIUM ALLOY BAND FOR BRAZING
FR2936597A1 (en) * 2008-10-01 2010-04-02 Valeo Systemes Thermiques HEAT EXCHANGER WITH REDUCED COMPONENT THICKNESS AND METHOD FOR MANUFACTURING THE SAME
CN101817128B (en) * 2009-04-21 2012-01-11 兰州理工大学 Preparation method of aluminum-based brazing filler metal with low melting point
MX2012009187A (en) * 2010-02-10 2012-08-31 Hobart Brothers Co Aluminum alloy welding wire.
US10654135B2 (en) 2010-02-10 2020-05-19 Illinois Tool Works Inc. Aluminum alloy welding wire
CN103347643B (en) * 2011-01-31 2016-07-06 爱励轧制产品德国有限责任公司 Aluminium brazing sheet material for solder without soldering acid
CN103502493A (en) * 2011-04-20 2014-01-08 爱励轧制产品德国有限责任公司 Fin stock material
EP2514555A1 (en) 2011-04-21 2012-10-24 Aleris Aluminum Koblenz GmbH Extruded aluminium alloy tube product
CN102198571A (en) * 2011-05-17 2011-09-28 安徽绿能技术研究院 High-strength high-toughness submerged arc welding flux
FR2975402B1 (en) 2011-05-20 2013-05-10 Constellium France ALLOYS FOR THERMAL HEAT EXCHANGER TUBE WITH INTERNAL PROTECTIVE VENEER AND WITH BREAKER BREAKER
CN102286679A (en) * 2011-09-02 2011-12-21 上海交通大学 Rare earth aluminum alloy used for heat exchanger and preparation method thereof
EP2574453B1 (en) * 2011-09-30 2014-12-10 Aleris Aluminium GmbH Method for joining an aluminium alloy fin to a steel tube and heat exchanger made therefrom
CN102433471A (en) * 2011-12-15 2012-05-02 贵州华科铝材料工程技术研究有限公司 High-toughness aluminum alloy and preparation method thereof
CN102816961B (en) * 2012-09-05 2014-06-11 江苏弗莱迪斯汽车***有限公司 Aluminum alloy material for heat dissipators and manufacturing method thereof
DE102013215534A1 (en) * 2013-08-07 2015-02-12 Magna International Inc. body component
CN103469017B (en) * 2013-09-22 2015-04-15 苏州华宇精密铸造有限公司 Aluminum alloy for precision casting and casting method thereof
CN103589914A (en) * 2013-11-05 2014-02-19 吴高峰 Aluminum alloy radiating fin for heat exchanger
JP6282444B2 (en) * 2013-11-13 2018-02-21 三菱アルミニウム株式会社 Aluminum alloy brazing sheet, aluminum alloy assembly for brazing, and method of brazing aluminum alloy material
CN103643092B (en) * 2013-12-24 2016-01-06 北京科技大学 Large strain intensified index AlMgSi sheet alloy and preparation method thereof
CN103722305B (en) * 2013-12-31 2015-09-23 中国电子科技集团公司第二十研究所 A kind of aluminium-based amorphous alloy solder and preparation method thereof
CN103966483B (en) * 2014-04-10 2016-03-23 安徽银力铸造有限公司 A kind of corrosion-resistant automobile aluminum alloy sheet
HUE041879T2 (en) 2014-07-30 2019-06-28 Aleris Rolled Prod Germany Gmbh Multi-layered alumium brazing sheet material
US10022822B2 (en) 2014-07-31 2018-07-17 Aleris Rolled Products Germany Gmbh Multi-layered aluminium brazing sheet material
US10150186B2 (en) 2014-12-11 2018-12-11 Uacj Corporation Brazing method
CN104626674B (en) * 2014-12-31 2017-04-12 上海华峰新材料研发科技有限公司 Soldering flux-free soldering aluminum alloy material and preparation method thereof
CN104595770A (en) * 2015-01-30 2015-05-06 东莞市闻誉实业有限公司 Efficient heat-dissipation LED (Light-Emitting Diode) lamp
KR101811332B1 (en) * 2015-03-25 2018-01-30 주식회사 에프티넷 Corrosion resistant aluminium alloy for heat exchanger tube, manufacturing method for tube or pipe using the aluminium alloy, and heat exchanger using the same
CN105171267B (en) * 2015-07-21 2017-12-01 重庆永林机械设备有限公司 Lead-free solder and its preparation method and application
CN105088022B (en) * 2015-08-13 2017-11-17 宁波格莱美厨具有限公司 A kind of aluminium alloy non-stick pan and preparation method thereof
JP6186455B2 (en) 2016-01-14 2017-08-23 株式会社Uacj Heat exchanger and manufacturing method thereof
CN105648288B (en) * 2016-01-27 2017-09-19 广西平果铝合金精密铸件有限公司 A kind of casting hub dedicated aluminium alloy casting rod and preparation method thereof
CN105499832A (en) * 2016-01-28 2016-04-20 东北大学 Aluminum magnesium cerium welding wire and preparation method thereof
EP3423607B1 (en) * 2016-02-29 2019-12-18 Aleris Rolled Products Germany GmbH Rolled aluminium alloy for heat exchangers
KR102282585B1 (en) 2016-04-12 2021-07-28 주식회사 에스피텍 Corrosion resistant heat exchanger using the control of alloy composition and potential
CN106216875B (en) * 2016-08-16 2018-12-28 镇江市锶达合金材料有限公司 A kind of preparation method of high-performance aluminium-base composite soldering
CN106148774A (en) * 2016-08-17 2016-11-23 任静儿 A kind of aluminum alloy materials of heat exchanger
JP6312968B1 (en) 2016-11-29 2018-04-18 株式会社Uacj Brazing sheet and method for producing the same
EP3555330A4 (en) * 2016-12-15 2020-05-13 Arconic Technologies LLC Corrosion resistant aluminum alloy
CN106929721A (en) * 2017-03-29 2017-07-07 沈阳工业大学 A kind of high intensity Al Cu alloys of low hot cracking tendency and preparation method thereof
JP7053281B2 (en) 2017-03-30 2022-04-12 株式会社Uacj Aluminum alloy clad material and its manufacturing method
JP2018196896A (en) * 2017-05-24 2018-12-13 株式会社神戸製鋼所 Aluminum alloy brazing sheet
EP3633310A4 (en) 2017-05-25 2020-07-08 SP Tech Co., Ltd Highly corrosion-resistant heat exchanger system using control of alloy composition and alloy potential
CN107130152B (en) * 2017-06-06 2019-07-19 合肥饰界金属制品有限公司 High toughness Al-alloy material and preparation method thereof
JP6916715B2 (en) 2017-11-08 2021-08-11 株式会社Uacj Brazing sheet and its manufacturing method
CN108977703A (en) * 2018-07-03 2018-12-11 重庆新久融科技有限公司 A kind of aluminum alloy mould plate and preparation method thereof
JP7291714B2 (en) 2018-09-11 2023-06-15 株式会社Uacj Brazing sheet manufacturing method
CN109604864B (en) * 2018-11-16 2021-05-04 南京理工大学 Titanium-based solder for connecting TiAl alloy and Ni-based high-temperature alloy
CN109266919A (en) * 2018-11-21 2019-01-25 重庆铝王铝业有限公司 A kind of high-performance aluminium alloy
CA3126851A1 (en) * 2019-03-13 2020-09-17 Novelis Inc. Age-hardenable and highly formable aluminum alloys, monolithic sheet made therof and clad aluminum alloy product comprising it
CN110904367B (en) * 2019-11-19 2021-08-10 安徽鑫发铝业有限公司 Wear-resistant electrophoresis aluminum alloy profile
FR3105047B1 (en) 2019-12-20 2022-11-18 Constellium Neuf Brisach Strip or sheet in aluminum alloys for brazing without flux or with reduced flux
JP2021122850A (en) * 2020-02-07 2021-08-30 株式会社マーレ フィルターシステムズ Brazing sheet, brazing method and method for manufacturing heat exchanger
FR3134584A1 (en) 2022-04-19 2023-10-20 Constellium Neuf-Brisach Heat exchanger based on an aluminum alloy obtained by brazing
CN114807795B (en) * 2022-04-29 2023-02-28 中南大学 Method for improving performance of brazed chromium-zirconium-copper alloy and chromium-zirconium-copper alloy workpiece
CN114875286A (en) * 2022-05-30 2022-08-09 山东南山铝业股份有限公司 Rare earth-free low-alloy high-strength and high-toughness aluminum alloy and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2489845A1 (en) * 1980-09-11 1982-03-12 Cegedur ARMABLE ALUMINUM ALLOY AND METHOD FOR MANUFACTURING THE SAME
US4649087A (en) * 1985-06-10 1987-03-10 Reynolds Metals Company Corrosion resistant aluminum brazing sheet
JPH02129333A (en) * 1988-11-10 1990-05-17 Mitsubishi Alum Co Ltd Aluminum brazing sheet for heat exchanger
EP0718072A1 (en) * 1994-12-19 1996-06-26 Hoogovens Aluminium Walzprodukte GmbH Brazing sheet
EP1170118A1 (en) * 2000-07-05 2002-01-09 Pechiney Rhenalu Aluminium alloy plated sheets for structural aircraft elements
FR2826979A1 (en) * 2001-07-09 2003-01-10 Corus Aluminium Walzprod Gmbh Weldable rolled product of high strength aluminum alloy for structural aircraft components contains silicon, copper, manganese, magnesium, iron, zirconium, chromium, zinc, titanium, vanadium and aluminum

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440712A (en) * 1966-10-27 1969-04-29 Aluminum Co Of America Brazing aluminum
US3811177A (en) * 1969-12-15 1974-05-21 Vaw Ver Aluminium Werke Ag Process for brazing workpieces of aluminum containing material
US3898053A (en) * 1973-05-25 1975-08-05 Reynolds Metals Co Brazing materials
US3963454A (en) * 1974-12-10 1976-06-15 Reynolds Metals Company Brazing materials
JPS5456961A (en) 1977-10-14 1979-05-08 Sumitomo Light Metal Ind Brazing sheet for fin having sacrifice anodic effect
US4240574A (en) * 1978-03-13 1980-12-23 Ford Motor Company Fluxless brazing of aluminum in inert gas
JPS6050867A (en) * 1983-08-30 1985-03-20 Shin Kobe Electric Mach Co Ltd Sealed type lead storage battery
US4929511A (en) * 1983-12-06 1990-05-29 Allied-Signal Inc. Low temperature aluminum based brazing alloys
JPH08120384A (en) * 1994-10-24 1996-05-14 Sky Alum Co Ltd Al-mg-si aluminum alloy excellent in intergranular corrosion resistance and brazind sheet using the same
DE69531229T2 (en) * 1994-12-19 2004-06-03 Corus Aluminium Walzprodukte Gmbh brazing
JPH08276265A (en) * 1995-04-03 1996-10-22 Mitsubishi Alum Co Ltd Manufacture of al product
JPH1147919A (en) * 1997-07-29 1999-02-23 Shinko Alcoa Yuso Kizai Kk Brazed aluminum heat exchanger and aluminum alloy brazing sheet for brazing
JP2000015481A (en) * 1998-07-07 2000-01-18 Denso Corp Brazing composition of aluminum material, aluminum material for brazing, and brazing method of aluminum material
SE514078C2 (en) * 1999-04-21 2000-12-18 Valeo Engine Cooling Ab Vehicle radiator, has casing comprising core and cover layers made from different aluminium materials
HUP0300706A2 (en) * 2000-05-18 2003-07-28 Corus Aluminium Walzprod Gmbh Method of manufacturing an aluminium product
AU2001272022A1 (en) * 2000-06-22 2002-01-02 Kaiser Aluminum And Chemical Corporation Aluminum filler alloy containing sodium for fluxless brazing
JP4475617B2 (en) * 2000-07-05 2010-06-09 住友軽金属工業株式会社 Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
WO2002007928A1 (en) * 2000-07-26 2002-01-31 Corus Aluminium Walzprodukte Gmbh Nickel-plated brazing sheet product
US6815086B2 (en) * 2001-11-21 2004-11-09 Dana Canada Corporation Methods for fluxless brazing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2489845A1 (en) * 1980-09-11 1982-03-12 Cegedur ARMABLE ALUMINUM ALLOY AND METHOD FOR MANUFACTURING THE SAME
US4649087A (en) * 1985-06-10 1987-03-10 Reynolds Metals Company Corrosion resistant aluminum brazing sheet
JPH02129333A (en) * 1988-11-10 1990-05-17 Mitsubishi Alum Co Ltd Aluminum brazing sheet for heat exchanger
EP0718072A1 (en) * 1994-12-19 1996-06-26 Hoogovens Aluminium Walzprodukte GmbH Brazing sheet
EP1170118A1 (en) * 2000-07-05 2002-01-09 Pechiney Rhenalu Aluminium alloy plated sheets for structural aircraft elements
FR2826979A1 (en) * 2001-07-09 2003-01-10 Corus Aluminium Walzprod Gmbh Weldable rolled product of high strength aluminum alloy for structural aircraft components contains silicon, copper, manganese, magnesium, iron, zirconium, chromium, zinc, titanium, vanadium and aluminum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0143, no. 56 (C - 0745) 2 August 1990 (1990-08-02) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158273B2 (en) 2007-06-20 2012-04-17 Aleris Aluminum Koblenz Gmbh Aluminium alloy brazing sheet product
US7624906B2 (en) * 2007-07-20 2009-12-01 Harbin Institute Of Technology Ultrasonic brazing of aluminum alloy and aluminum matrix composite
EP2855063B1 (en) 2012-05-31 2016-03-23 Gränges Sweden AB Multilayer aluminium brazing sheet for fluxfree brazing in controlled atmosphere
EP2855063B2 (en) 2012-05-31 2022-09-07 Gränges Sweden AB Multilayer aluminium brazing sheet for fluxfree brazing in controlled atmosphere
CN102758109A (en) * 2012-08-07 2012-10-31 曾琦 High-strength wear-resisting heat-resisting aluminium alloy material and preparation process thereof
EP3176273B1 (en) 2014-07-30 2018-12-19 UACJ Corporation Aluminium alloy brazing sheet
US10661395B2 (en) 2014-07-30 2020-05-26 Uacj Corporation Aluminum-alloy brazing sheet
CN107326223A (en) * 2017-06-09 2017-11-07 太仓东旭精密机械有限公司 A kind of bicycle use alloy material
CN110241340A (en) * 2019-07-31 2019-09-17 广州蕴智刀具技术有限公司 A kind of high-strength abrasion-proof non-ferrous alloy and preparation method thereof
CN110241340B (en) * 2019-07-31 2021-01-12 山东和顺腾达高科技材料有限公司 High-strength wear-resistant non-ferrous alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2007512143A (en) 2007-05-17
NO346759B1 (en) 2022-12-19
EP1687456A1 (en) 2006-08-09
KR101194970B1 (en) 2012-10-25
CA2547801A1 (en) 2005-07-07
KR20070004545A (en) 2007-01-09
EP1687456B1 (en) 2007-06-13
CN100453673C (en) 2009-01-21
ATE364728T1 (en) 2007-07-15
ES2287801T3 (en) 2007-12-16
US7926701B2 (en) 2011-04-19
FR2862984B1 (en) 2006-11-03
CA2547801C (en) 2012-02-14
BRPI0416973B1 (en) 2015-07-28
US20070158386A1 (en) 2007-07-12
CN1886527A (en) 2006-12-27
JP4996255B2 (en) 2012-08-08
NO20063021L (en) 2006-08-28
FR2862984A1 (en) 2005-06-03
DE602004007034D1 (en) 2007-07-26
DE602004007034T2 (en) 2008-02-21
BRPI0416973A (en) 2007-02-21
MXPA06005902A (en) 2006-06-27

Similar Documents

Publication Publication Date Title
CA2547801C (en) Method for welding strips of aluminium alloy
CA2547833C (en) Aluminium alloy strip for welding
CA2726650C (en) Aluminum alloy strips for brazed heat exchanger tubes
EP3363584B1 (en) Method of manufacturing a brazing metal sheet
FR2876606A1 (en) Aluminium-manganese alloy brazing strip for use in the fabrication of light brazed assemblies such as heat exchangers and their components
FR2802294A1 (en) MOUNTING OF MAGNESIUM BARRIER HEAT EXCHANGER
WO2003044235A2 (en) Aluminium alloy strips for heat exchangers
JP2013086103A (en) Aluminum alloy brazing sheet
WO2021123585A1 (en) Aluminium alloy strip or sheet for no-flux or reduced-flux soldering
EP0059742B1 (en) Method for manufacturing a brazable aluminium alloy
FR2470323A1 (en) COPPER ALLOY TUBE FOR TRANSPORTING DRINKING WATER AND HEAT EXCHANGERS
WO2020178507A1 (en) Strip of aluminum alloy for manufacturing brazed heat exchangers
EP3934908A1 (en) Strip of aluminum alloy for manufacturing brazed heat exchangers
WO2023203296A1 (en) Heat exchanger based on an alumnimium alloy obtained by brazing
EP3934840A1 (en) Strip of aluminum alloy for manufacturing brazed heat exchangers
CN115698352A (en) Aluminum alloy brazing sheet and aluminum alloy brazed body
WO2007034121A1 (en) Assembling method and assembling an aluminum component and a magnesium component by depositing a molten metal compound having a melting point lower than 650°c
FR2843317A1 (en) Brazing sheet product, for use in brazing operation to form an assembly e.g. heat exchanger and fuel cell, comprises core sheet, clad layer of aluminum alloy and diffusion layer comprising nickel-tin alloy
BE413447A (en)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035081.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004805531

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/005902

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2007158386

Country of ref document: US

Ref document number: 2547801

Country of ref document: CA

Ref document number: 10596057

Country of ref document: US

Ref document number: 2006540529

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067010680

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004805531

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067010680

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0416973

Country of ref document: BR

WWG Wipo information: grant in national office

Ref document number: 2004805531

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10596057

Country of ref document: US