WO2005055483A1 - Radio communication apparatus and radio communication method - Google Patents

Radio communication apparatus and radio communication method Download PDF

Info

Publication number
WO2005055483A1
WO2005055483A1 PCT/JP2004/018031 JP2004018031W WO2005055483A1 WO 2005055483 A1 WO2005055483 A1 WO 2005055483A1 JP 2004018031 W JP2004018031 W JP 2004018031W WO 2005055483 A1 WO2005055483 A1 WO 2005055483A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
matrix
column vector
wireless communication
antenna
Prior art date
Application number
PCT/JP2004/018031
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Ohta
Takeshi Onizawa
Takafumi Fujita
Wenjie Jiang
Satoshi Kurosaki
Daisei Uchida
Yusuke Asai
Syuji Kubota
Satoru Aikawa
Takatoshi Sugiyama
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to JP2005515985A priority Critical patent/JP4188371B2/en
Publication of WO2005055483A1 publication Critical patent/WO2005055483A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals

Definitions

  • the present invention uses the same frequency channel, transmits independent data from a plurality of different transmitting antennas, receives signals using a plurality of receiving antennas, and uses a transfer function matrix between the respective transmitting and receiving antennas.
  • High-speed wireless access system and wireless communication method in a high-speed wireless access system that realizes wireless communication by demodulating data at the receiving station side, especially the 2.4-GHz band or 5-GHz band high-speed wireless access system ( The present invention relates to a wireless communication device and a wireless communication method that are used to increase the transmission speed of a wireless LAN system and realize good transmission characteristics while suppressing the circuit scale.
  • MIMO Multiple-Input Multiple-Output
  • This MIMO technology is that the transmitting station transmits different independent signals on the same channel from a plurality of transmitting antennas, and the receiving station receives the signals using the same plurality of antennas.
  • a transfer function matrix between the Z receiving antennas is obtained, and using this matrix, the transmitting station estimates independent signals transmitted from each antenna, and reproduces the data.
  • N transmission signals are transmitted using N transmission antennas and signals are received using M antennas.
  • NXM transmission paths between the antennas of the transmitting and receiving stations, and the transfer function when transmitted from the i-th transmitting antenna and received by the j-th receiving antenna is h, and this is (j, i)
  • H The matrix of N rows and M columns as components is denoted as H.
  • a transmission signal from the i-th transmission antenna is denoted by t, and a sequence of (t, t, t,---t) as a component.
  • the tuple is Tx
  • the received signal at the j-th receiving antenna is a column j 1 2 3 M with components (r, r, r, r, ⁇ )
  • Torr is denoted by n.
  • Rx is a received signal vector
  • H is a transfer function matrix
  • Tx is a transmitted signal column vector
  • is a thermal noise column vector
  • Equation 1 the inverse matrix H- 1 of the transfer function matrix is obtained, and a process of multiplying the inverse matrix H- 1 on both sides of the equation is performed. As a result, the following equation is obtained.
  • H- 1 is the inverse matrix of the transfer function matrix
  • Rx is the vector of the received signal
  • H is the transfer function matrix
  • Tx is the column vector of the transmitted signal
  • n is the column vector of the thermal noise.
  • N the number of signal points (hereinafter, referred to as N) that can be taken by a signal transmitted from one antenna is determined. All N antennas
  • the signal is transmitted to all candidates (N ⁇ kinds in total) that Tx can take as a signal
  • the received signal is predicted, and the one closest to the actual received signal is selected as the signal point with the highest estimation accuracy. That is, assuming that the k-th transmission signal candidate is represented by ⁇ x [k] , a value of k that minimizes the Euclidean distance E defined by the following equation is selected.
  • M H denotes a matrix that is a Hermitian conjugate of the matrix M with respect to the matrix M (or vector M).
  • FIG. 7 shows a configuration of a transmitting unit of a first wireless station (transmitting side wireless communication device) in the related art.
  • 100 is a data division circuit
  • 101-1—101—4 is a preamble assignment circuit
  • 102—1—102—4 is a modulation circuit
  • 103—1—103—4 is a radio section
  • — 4 indicates the transmitting antenna.
  • a transmitting station transmits data of four systems using four transmitting antennas will be described.
  • data division circuit 100 divides the data into four systems.
  • the data of the first system is input to the preamble adding circuit 101-1 and is input to the modulation circuit (Chi) 102-1 with the preamble signal added.
  • the modulation circuit performs a predetermined modulation, and the modulated signal is converted to a radio frequency by radio section 103-1 and transmitted from transmission antenna 104-1.
  • the data of the second system goes through 101-2-104-2
  • the data of the third system goes through 101-3-3-104-3
  • the data of the fourth system goes through 101-4-1-104-4. Each is sent individually.
  • FIG. 8 shows a configuration of a receiving unit of a wireless communication device using the MLD method in the related art.
  • 111-1 111-4 is a receiving antenna
  • 112-1 112-4 is a radio section
  • 113 is a channel estimation circuit
  • 114 is a received signal management section
  • 115 is a transfer function matrix management circuit
  • 116 is a replica signal generation.
  • Circuit 117 is a transmission signal generation circuit
  • 118 is a Euclidean distance calculation circuit
  • 119 is a selection circuit
  • 120 is a data synthesis circuit.
  • the first receiving antenna 111-1 to the fourth receiving antenna 1114 individually receive a received signal.
  • the received signal is input to the channel estimation circuit 113 via the radio section 112-1 to 112-4.
  • the transfer function between each transmitting antenna and the receiving antenna is obtained here by the channel estimation circuit 113.
  • the acquired information h of each transfer function is managed by the transfer function matrix management circuit 115 as a transfer function matrix H.
  • the data signal following the preamble signal is input to the reception signal management circuit 114 for each symbol.
  • the reception signal (r r ) is input to the reception signal management circuit 114 for each symbol.
  • the transmission signal generating circuit 117 as all signals pattern which can be outputted from the transmitting antenna, the N N kinds of transmission signal candidates ⁇ S [k] ⁇ to generate a (l ⁇ k ⁇ N N) .
  • the Jamaica signal generation circuit 116 calculates the product of the signal S [k] input from the transmission signal generation circuit 117 and the transfer function matrix H managed by the transfer function matrix management circuit 115, HXS [k], and calculates the Euclidean distance
  • the circuit 118 calculates the Euclidean distance between the result and the received signal vector Rx managed by the received signal management circuit 114.
  • the above Euclidean distance calculation processing is performed for all k values (total N N times). In the selection circuit 119, these max
  • the one having the shortest Euclidean distance is selected, and the signal having the highest estimation accuracy is determined to be a transmission signal.
  • These data are processed continuously over a plurality of symbols. After receiving a series of data, the data synthesis circuit 120 reconstructs the data and outputs the data.
  • FIG. 9 shows a transmission flow of the first wireless station (the wireless communication device on the transmission side) according to the related art.
  • the transmitting station divides the data into N data sequences (step S101), and a preamble signal is added to each of these signals (step S102).
  • the modulation process is performed individually for each (step S103).
  • the modulated signal is converted to a radio frequency by the radio unit, and the signal is transmitted (step S104).
  • FIG. 10 shows a reception flow of a wireless communication device using the MLD method in the conventional technology.
  • the receiving station Upon receiving the wireless packet (step S110), the receiving station detects a preamble (step S111) and performs channel estimation (step S112). Here, all transfer functions between each transmitting antenna and receiving antenna are acquired.
  • the signal received subsequent to the preamble signal is managed as a received signal vector Rx having a received signal r at each receiving antenna as a component for each symbol (step S113). N as all signal patterns that can be output from
  • the product HXS [k] is calculated (step S115, the Euclidean distance to the received signal Rx is calculated (step S116). This processing S114—S116 is actually performed N N times in total.
  • the calculated Euclidean distance for each of the N N transmission signal vectors is obtained.
  • the signal estimation transmitted from is determined (step S118). If the received data continues, the process returns to the processing step S113, and the processing steps S113 to S119 are repeated.
  • the reception data is completed (step S119), the reception data of each series is reconstructed, and the data on the transmission side is reproduced to output the data (step S120).
  • the biggest problem of the MLD method is that the calculation processing for calculating the Euclidean distance is reduced to N N times.
  • the challenge is to reduce the complexity.
  • Non-Patent Document l S. Kurosaki et.al., "A SDM-COFDM Scheme Employing a Simple Feed-Forward Inter-Channel Interference Canceller for MIMO Based Broadband Wireless LANs", IEICE TRANS. COMMUN., Vol.E86B. l January, 2003
  • Non-Patent Document 2 A. van Zelst et.al, "Space Division Multiplexing (SDM) for OFDM Systems", Proc.VTC2000 Spring, Vol.2, pp.1070-1074
  • an object of the present invention is to provide a wireless communication apparatus which can realize a good characteristic and realize a realistic circuit scale and computation amount when performing wireless communication using MIMO technology. And a wireless communication method.
  • a wireless communication apparatus includes: a first wireless station including N (N is an integer greater than 1) or more first antenna groups; A second radio station having a number of second antenna groups (greater than 1 and an integer), wherein the first radio station divides the input user data into N systems, Means for giving an individual known pattern signal to the data divided into systems to generate a first signal sequence of N systems, and simultaneously using the N first antenna groups at the same frequency. Means for superimposing and transmitting a first signal sequence, the wireless communication device in a wireless communication system,
  • the transmission between the antenna and the j-th antenna in the second antenna group Means for obtaining the transfer function h,
  • a predetermined number of signal points are selected from the values of the components of the column vector Tx 'and signal points that can be taken as transmission signals in the vicinity thereof, and these are combined, and candidates for the transmission signal transmitted from the first antenna group are selected.
  • one of the candidate signals is selected, and transmitted from the first wireless station based on the selected signal.
  • the means for generating a plurality of types of transmission signal candidate signals transmitted from the first antenna group includes:
  • N signal points including t (N is an integer less than or equal to N) including t, and the signal of the Nth component
  • Means for generating a plurality of types of signals that are candidates for the transmission signal are candidates for the transmission signal.
  • the means for reproducing and outputting the user data transmitted from the first wireless station includes:
  • Means for calculating a product of the transfer function matrix H and the column vector that is, a column vector given by H X S [k];
  • the means for obtaining the first approximate column vector Tx includes:
  • Means for calculating the product of the inverse matrix and the matrix ⁇ ⁇ ⁇ that is, a matrix of ⁇ rows and ⁇ columns ( ⁇ ⁇ X ⁇ ) 1 X ⁇ ⁇ ,
  • the received signal actually received by the m-th antenna of the second antenna group is denoted by!:, And a column vector of M rows in which each component is given by (r, r, r,. (H H XH) — 1
  • the circuit scale for calculating the Euclidean distance diverges exponentially in proportion to the signal type N N max with respect to the number N of superimposed transmission signals.
  • the means for obtaining the first approximated column vector Tx includes:
  • Means for calculating an inverse matrix of the transfer function matrix H that is, a matrix H ⁇ 1 of N rows and N columns, and a received signal actually received by the m-th antenna of the second antenna group as!: If Rx is the column vector of N rows given by (r, r, r, ⁇ 'r), then H— 1 X Rx
  • the means for obtaining the first approximate column vector Tx includes:
  • Means for calculating a matrix of M rows and M columns as a product of these vectors, that is, Y yXyH; and when the preamble signal extends over a plurality of symbols, the value of each component of the matrix Y is transmitted over a plurality of symbols. Means for averaging and replacing this,
  • Means for generating a matrix product of said matrices H H and Y— 1 that is, a matrix H H XY— 1 of N rows and M columns;
  • a received signal actually received by the m-th antenna of the second antenna group is represented by!:, And a column vector of M rows in which each component is given by (r, r, r,. H H XY
  • the MMSE method with better characteristics than the ZF method can be applied when providing initial information for transmission signal point search, and a simple realization method for further improving characteristics can be provided.
  • an orthogonal frequency division multiplexing (OFDM) modulation method using a plurality of subcarriers between the wireless stations may be used! ,.
  • the present invention also provides
  • N is greater than 1 and an integer
  • M is an integer greater than 1
  • a predetermined number of signal points are selected from the values of the components of the column vector Tx 'and signal points that can be taken as transmission signals in the vicinity thereof, and these are combined, and candidates for the transmission signal transmitted from the first antenna group are selected.
  • one of the candidate signals is selected, and transmitted from the first wireless station based on the selected signal. Playing and outputting the user data
  • the step of generating a plurality of types of signals that are candidates for transmission signals transmitted from the first antenna group includes:
  • N is an integer greater than 1) that can be taken as signal points, the first component
  • N signal points including t (N is an integer less than or equal to N) and signal of the second component
  • N (N is an integer less than or equal to N) signal points including t, signal points of the Nth component And select N signal points including t (N is an integer less than or equal to N)
  • the step of reproducing and outputting the user data transmitted from the first wireless station comprises:
  • the step of obtaining the first approximate column vector Tx includes:
  • the received signal actually received by the m-th antenna of the second antenna group is represented by!:, And each component is given by (r, r, r,... ⁇ ). If (H H XH) — 1
  • the step of obtaining the first approximated column vector Tx includes:
  • Each signal at the time of receiving the preamble signal step from the first radio station that generates an N rows and M columns matrix H H to be a Hermitian conjugate of the transfer function matrix H is transmitted at the second antenna group as component Obtaining a column vector y having
  • the preamble signal spans a plurality of symbols, averaging the value of each component of the matrix Y over a plurality of symbols and replacing the averaged value with the average value;
  • a step of generating a matrix product of the matrices H H and Y— 1 that is, an N-by-M matrix H H XY— 1 ;
  • the received signal actually received by the m-th antenna of the second antenna group is represented by!:, And each component is given by (r, r, r,... ⁇ ). If, ⁇ ⁇ ⁇ ⁇ - XR
  • the MMSE method with better characteristics than the ZF method can be applied when providing initial information for transmission signal point search, and a simple realization method for further improving characteristics can be provided.
  • N, ⁇ , ⁇ are determined according to the estimated signal-to-noise ratio of each antenna, and t2 t3 tN
  • the value of the number of transmission signal candidates (N, N, N..., N) is calculated as a matrix ⁇ ⁇ tl t2 t3 tN
  • H may be determined according to the eigenvalue of each antenna.
  • an orthogonal frequency division multiplexing (OFDM) modulation method using a plurality of subcarriers between the wireless stations may be used! ,.
  • OFDM orthogonal frequency division multiplexing
  • the present invention also provides a wireless communication system having the above-described wireless communication device on the receiving side and performing wireless transmission and reception.
  • the candidate group ⁇ S [k] ⁇ of transmission signals to be generated is all signals that can be taken as transmission signals, and the first group of transmission signal estimated values is
  • the first approximate column vector ⁇ ′ of the estimated value of the transmission signal is obtained based on the transfer function matrix ⁇ , and the candidate group is determined based on this. Limit the range of ⁇ S [k] ⁇ .
  • H H , H H XH, ( (H H XH) — ixH 11 is calculated sequentially.
  • the calculation of (H H XH) — ⁇ H XRX is performed to obtain a first approximation Tx of the estimated value of the transmitted signal. The approached ⁇ 'is found, and the transmission signal candidates are generated only in the vicinity of this Tx.
  • the signal type N N The circuit scale for calculating the Euclidean distance exponentially diverges in proportion to the exponential.
  • this is drastically suppressed, and a simplified method for realizing characteristics equivalent to the MLD method while suppressing the circuit scale is achieved. It is possible to provide a simple method.
  • the MMSE method with better characteristics than the ZF method can be applied when providing initial information for transmission signal point search, and a simple realization method for further improving characteristics can be provided.
  • the value of the vector (N 1, N 2, N,..., N) of the number of transmission signal candidates is set to tl t2 t3 tN for each antenna.
  • FIG. 1 is a diagram showing a configuration example of a receiving unit of a wireless communication device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of a receiving unit of a wireless communication device according to a second embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration example of a receiving unit of a wireless communication device according to a third embodiment of the present invention.
  • FIG. 4 is a diagram showing a reception flow of the wireless communication device according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a reception flow of the wireless communication device according to the second embodiment of the present invention.
  • FIG. 6 is a diagram showing a reception flow of a wireless communication device according to a third embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of a transmitting unit of a first wireless station in the related art.
  • FIG. 8 is a diagram showing a configuration of a receiving unit of a wireless communication device using the MLD method according to the related art.
  • FIG. 9 is a diagram showing a transmission flow of a first wireless station in the related art.
  • FIG. 10 is a diagram showing a reception flow of a wireless communication device using the MLD method in a conventional technique. Explanation of symbols
  • the difference between the present invention and the prior art lies in the configuration and processing content of the receiving unit of the wireless communication device.
  • the configuration and processing content of the transmitting unit of the wireless communication device on the transmitting side that is, shown in Figs.
  • the conventional example is common to the present invention. Therefore, hereinafter, the receiving section of the wireless communication device on the receiving side will be described.
  • various embodiments of the present invention will be described with reference to the drawings. In each figure, the product of the matrix is indicated by “ ⁇ ”.
  • FIG. 1 is a diagram illustrating a first embodiment of a wireless communication device according to the present invention, and is a diagram illustrating a configuration example of a receiving unit of the wireless communication device.
  • M 4
  • 1-1-1 1-4 are receiving antennas
  • 2-1 1 2-4 are radio sections
  • 3 is a channel estimation circuit
  • 4 is a received signal management circuit
  • 5 is a transfer function matrix management circuit
  • 6 is a transfer function matrix management circuit.
  • Matrix operation circuits # 1, 7 are matrix operation circuits # 2, 8 are hard decision circuits, 9 is a transmission signal candidate generation circuit, 10 is a replica generation circuit, 11 is a Euclidean distance operation circuit, 12 is a selection circuit, and 13 is data synthesis. The circuit is shown.
  • the first to fourth receiving antennas 11 to 14 individually receive received signals.
  • the received signal is input to the channel estimation circuit 3 via the radio units 2-1 to 2-4.
  • the transfer function between each transmitting antenna and the receiving antenna is acquired here by the channel estimation circuit 3 from the reception state of the predetermined preamble signal given on the transmitting side.
  • the obtained information h of each transfer function is used as a transfer function matrix H in the transfer function matrix management circuit 5.
  • the data signal following the preamble signal is input to the reception signal management circuit 4 for one symbol.
  • the received signal (r, r, r, r, r) of each antenna is
  • the obtained transfer function matrix H is also calculated sequentially as H H (Hermitian matrix of H), H H XH, (H H XH) " ⁇ (H H XH) 1 XH H .
  • the (H H XH) 1 XH H obtained here and the received signal vector Rx managed by the received signal management circuit 4 are integrated by the matrix operation circuit # 2 (7).
  • the signal point Tx (H H XH) — ix HH x Rx obtained here is the first approximation of the estimated value of the transmitted signal, but is generally the constellation of the transmitted signal that takes a discontinuous value due to the thermal noise term. It does not match the point on the lace. Therefore, the hard decision circuit 8 determines a transmission signal point Tx ′ that is close to Tx.
  • the transmission signal candidate generation circuit 9 generates a transmission signal candidate group ⁇ S [k] ⁇ that is close to Tx ′, including the transmission signal point Tx ′ obtained earlier.
  • this candidate The group ⁇ S [k] ⁇ is not related to the hard-decided transmission signal point ⁇ ' ⁇ max All possible max
  • N N is an integer greater than 1) signal points that can be taken as transmission signal points in the component max max
  • N is an integer less than or equal to N
  • N (N is an integer less than or equal to N) signal points including t as signal points and second component signal points
  • N is an integer less than or equal to N
  • N NXN ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ : ⁇ mid mid tl t2 tN is an integer
  • k the k-th (l ⁇ k ⁇ N: k is an integer) column vector mid mid
  • At least one element has a value smaller than N, so that N ⁇ N max mid ma ⁇ ⁇ ⁇ ⁇ .
  • the replica generation circuit 10 performs an integration process of the column vector S [k] generated by the transmission signal candidate generation circuit 9 with the transfer function matrix H managed by the transfer function matrix management circuit 5, Find the estimated value of the received signal when the transmitted signal is S [k]. A distance between this value and an actual received signal managed by the received signal management circuit 4, that is, a Euclidean distance is obtained by the Euclidean distance calculation circuit 11. After performing the same processing on all the transmission signal candidate groups ⁇ S [k] ⁇ , the selection circuit 12 selects the signal S [k] with the shortest Euclidean distance and selects the best.
  • the received signal determined for each symbol in this manner is synthesized for each symbol by the data synthesis circuit 13, and the N-sequence signals are combined into one series, and finally, the data on the transmission side is reproduced. Output.
  • processing to be performed on all of the plurality of transmission signal candidate groups ⁇ S [k] ⁇ is performed by a transmission signal candidate generation circuit 9, a replica generation circuit 10, and a Euclidean distance calculation circuit 11, each of which has one functional block.
  • Each function block has a predetermined number of calculations. You need a function to perform. For example, to reduce processing delays, similar circuits will be implemented in parallel for the number of operations.
  • FIG. 2 is a diagram illustrating a second embodiment of the wireless communication device according to the present invention, and is a diagram illustrating a configuration example of a receiving unit of the wireless communication device.
  • the matrix operation circuit # 1 indicated by 21 and the matrix operation circuit # 2 indicated by 22 all the processes are the same as those shown in FIG.
  • the matrix operation circuit # 1 (6) in Fig. 1 and the matrix operation circuit # 1 (21) in Fig. 2 the matrix operation circuit # 2 (7) in Fig. 1 and the matrix operation circuit # 2 (22) in Fig. 2
  • the matrix operation circuit # 1 indicated by 21
  • the matrix operation circuit # 2 indicated by 22 all the processes are the same as those shown in FIG.
  • the matrix operation circuit # 2 (7) in Fig. 1 and the matrix operation circuit # 2 (22) in Fig. 2 Are different from each other in the content of the processing performed internally.
  • the values of ⁇ and ⁇ are different, and the transfer function matrix ⁇ is a non-square matrix. For this reason, the matrix was converted to a square matrix by using the product of the Hermitian matrices ⁇ ⁇ and ⁇ of the transfer function matrix ⁇ . However, if the original matrix is a square matrix, such processing is unnecessary, and the matrix operation circuit # 1 (21) finds the inverse matrix ⁇ - 1 of the transfer function matrix ⁇ , and the matrix operation circuit # 2 ( 22) Then take the product of this inverse matrix and the received signal vector Rx! ,.
  • the conventional ZF method is used as the first approximation of the estimated value of the transmission signal.
  • other methods can be selected as the first approximation of the estimated value of the transmission signal.
  • the MMSE (Minimum Mean Square Error) method is one example.
  • FIG. 3 is a diagram illustrating a third embodiment of the present invention, and is a diagram illustrating a configuration example of a receiving unit of a wireless communication device.
  • a matrix operation circuit # 1 indicated by 31 and a row indicated by 32 Except for the received signal management circuits indicated by the column operation circuits # 2 and # 33, the processing contents are all the same as those shown in FIG. Also, the matrix operation circuit # 1 (6) of FIG. 1 and the matrix operation circuit # 1 (31) of FIG. 3, the matrix operation circuit # 2 (7) of FIG. 1, and the matrix operation circuit # 2 (31) of FIG.
  • the reception signal management circuit 33 has a function of extracting the preamble signal y from the received signals and inputting the extracted signal to the matrix operation circuit # 1 (31), in addition to the conventional function.
  • the matrix operation circuit # 1 (31) obtains the transfer function matrix H force H H obtained by the transfer function matrix management circuit 5 and, with respect to the preamble signal y input from the reception signal management circuit 33, its Hermitian conjugate. Generate a new vector y H and perform yXy H operation. If preamplifier Le signal is plural symbols, as an average value in the plurality of symbols, or as the raw value in the case of 1 symbol, to obtain a matrix Y as the average value of Yxy H.
  • the inverse matrix Y— and the matrix H H XY— 1 are sequentially calculated.
  • the above is the function of the matrix operation circuit # 1 (31).
  • the matrix operation circuit # 2 (32) the matrix product of the received signal Rx supplied from the matrix operation circuit # 1 (3 1) and H H XY _1 acquired from the received signal management circuit 33 operation I do.
  • This H H XY—XRx is the first approximation of the estimated value of the transmission signal in the present embodiment.
  • the received signal is actually received by the m-th antenna of the second antenna group, and each component is given by (r, r, r,... ⁇ ). ⁇ ⁇ ⁇ ⁇ 1 1 m 1 2 3 M
  • N signal points including t (N is an integer less than or equal to N) and signal of the second component
  • N (N is an integer less than or equal to N) signal points including t, signal points of the Nth component
  • the product of the transfer function matrix H and the column vector that is, the column vector given by H X S [k] is calculated. Also, the distance between the signal points between the column vector HXS [k] for each column vector S [k] and the actual received signal vector Rx is calculated, and the transmission distance that minimizes the signal point distance among all k is calculated. Select signal point S [k] and combine each element of this selected column vector
  • the matrix (H H XH) —E is used as the estimated value (first-order approximation) of the transmission signal. If it is possible to find the force (Equation 1) showing the one using ⁇ or H_1 or the solution (or approximate solution) of the equation omitting the thermal noise term in this equation, other means may be used. I don't know.
  • FIG. 4 shows a reception flow in the wireless communication device according to the first embodiment of the present invention (see FIG. 1).
  • the transmission signal candidate group ⁇ S [k] ⁇ generated in processing step S114 is all signals that can be taken as transmission signals, and the first approximation ⁇ , ⁇ ⁇ ⁇ , ⁇ ⁇ ⁇ ⁇ , ( ⁇ ⁇ ⁇ ⁇ ) " ⁇ ( ⁇ ⁇ ) based on the transfer function matrix ⁇ ⁇ after the channel estimation processing (step S3).
  • X ⁇ ) 1 X ⁇ ⁇ is sequentially calculated (step S4).
  • step S5 When the received signal of a certain symbol is Rx (step S5), the calculation of (H H XH) 1 XH H X Rx is performed (step S6). 1 Approximate Tx 'is calculated (step S7).
  • the transmission signal is generated only in the vicinity of the first approximation Tx of the estimated value of the transmission signal (step S8). Subsequent processing steps S10—S15 This is the same as the processing in the conventional processing steps S116 to S121 shown in FIG.
  • FIG. 5 is a diagram showing a reception flow in the wireless communication apparatus according to the second embodiment of the present invention (see FIG. 2).
  • the only difference from the reception flow shown in FIG. 4 is that the processing steps S4 and S6 shown in FIG. 4 are replaced by the processing steps S24 and S26 in FIG.
  • FIG. 6 is a diagram illustrating a reception flow of the wireless communication device according to the third embodiment of the present invention (see FIG. 3).
  • the difference from the reception flow shown in FIG. 4 is that the processing step S4 in FIG. 4 is replaced by the processing steps S45 to S47 in FIG. 6, and the processing step S6 is replaced by the processing S49. Further, the contents of each processing step correspond to the processing described in FIG.
  • the number of points is limited to five, ie, the number of points up to one proximity, the amount of calculation can be reduced to 5 N. Furthermore, when limited to 9 points including up to the second proximity, the operation amount is suppressed to 9 N.
  • the calculation amount in the conventional method 16,777,216 times, 6,561 times in the case of 9 N, 625 times in the case of 5 N, in the case of 4 N becomes 256 times. In this way, the amount of calculation can be dramatically reduced.
  • the value of the number of transmission signal candidates (N 1, N 2, N 2 '1, ⁇ ) for each transmission antenna is the same as tl t2 t3 tN, but may be different for each antenna.
  • N M
  • the estimated value of the signal-to-noise ratio of the signal corresponding to the i-th transmitting antenna can be obtained by the following equation.
  • g represents the j-th component of the inverse matrix of the transfer function matrix H.
  • the signal to noise ratio
  • N is set to a small value for such an antenna, and N is set to a large value for a poor antenna with a small signal-to-noise ratio. I do.
  • the eigenvalue of H H XH with respect to the transfer function matrix H is often used as an index indicating the reception status of the signal corresponding to each transmitting antenna.
  • the characteristic is good when the absolute value of the eigenvalue is large! / ⁇ , and the characteristic is bad when the absolute value of the eigenvalue is small. Therefore, when the absolute value of the eigenvalue is large, N is set to a small value, and when the absolute value of the eigenvalue is small,
  • the present invention when performing high-efficiency wireless communication using MIMO technology, while achieving the good characteristics of the MLD method, It is possible to greatly reduce the circuit scale and the amount of calculation. As a result, the receiving circuit can be implemented in a one-chip LSI. Also, the reduction in the amount of computation can be expected to have the side effect of directly reducing power consumption.
  • the viewpoint of suppressing the processing delay in a short time is realized as hardware, but the viewpoint of the circuit scale reduction is equivalent to the equivalent processing flow. It is also preferable to realize this by software processing having one.
  • the circuit size is significantly larger than that of the conventional MLD method.
  • the present invention can be applied to a wireless communication device, a wireless communication method, a wireless communication system, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

A first radio station having a first group of N or more antennas divides input user data into N systems, adds separate known pattern signals to these data to produce N systems of first signal systems, and simultaneously transmits them with the same frequency by use of the first group of antennas. A second radio station having a second group of M or more antennas receives the radio signals by use of the respective ones of the second group of antennas, and uses the known pattern signals added to the radio signals, as reference signals, to acquire a transfer function (hj,i) between the i-th antenna of the first group and the j-th antenna of the second group. A transfer function matrix (H), the (j,i)-th element of which is the transfer function (hj,i), is used to obtain the first approximate sequence vector (Tx) of an estimated value of the transmitted signal. A sequence vector (Tx'), in which a hard decision is made to each of transmission signal points given by the elements of the sequence vector (Tx), is obtained. Out of signal points available as the transmission signal points for the components of the sequence vector (Tx'), signal points in the vicinities of those respective components are selected and combined with each other, thereby producing a plurality of types of signals serving as candidates of the transmitted signals transmitted via the first group of antennas.

Description

明 細 書  Specification
無線通信装置及び無線通信方法  Wireless communication device and wireless communication method
技術分野  Technical field
[0001] 本発明は、同一の周波数チャネルを用い、異なる複数の送信アンテナより独立な データを送信し、複数の受信アンテナを用いて信号を受信し、各送受信アンテナ間 の伝達関数行列をもとに受信局側でデータの復調を行うことにより無線通信を実現 する高速無線アクセスシステムにおける無線通信装置、及び無線通信方法に関し、 特に、 2. 4GHz帯または 5GHz帯等を用いた高速無線アクセスシステム (または無線 LANシステム)の伝送速度の高速化を行うために利用され、回路規模を抑制しなが ら良好な伝送特性を実現する、無線通信装置、及び無線通信方法に関するものであ る。  [0001] The present invention uses the same frequency channel, transmits independent data from a plurality of different transmitting antennas, receives signals using a plurality of receiving antennas, and uses a transfer function matrix between the respective transmitting and receiving antennas. High-speed wireless access system and wireless communication method in a high-speed wireless access system that realizes wireless communication by demodulating data at the receiving station side, especially the 2.4-GHz band or 5-GHz band high-speed wireless access system ( The present invention relates to a wireless communication device and a wireless communication method that are used to increase the transmission speed of a wireless LAN system and realize good transmission characteristics while suppressing the circuit scale.
背景技術  Background art
[0002] 近年、 2. 4GHz帯または 5GHz帯を用いた高速無線アクセスシステムとして、 IEE E802. l lg規格、 IEEE802. 11a規格などの普及が目覚しい。これらのシステムで は、最大で 54Mbpsの伝送速度を実現しているが、無線 LANの普及に伴い更なる伝 送速度の高速ィ匕が求められている。  [0002] In recent years, the widespread use of the IEE E802.11g standard, IEEE802.11a standard, and the like as a high-speed wireless access system using the 2.4 GHz band or the 5 GHz band has been remarkable. These systems have achieved transmission speeds of up to 54 Mbps, but with the spread of wireless LAN, there is a need for even higher transmission speeds.
[0003] そのための技術としては、 MIMO (Multple- Input Multiple-Output)技術が有力で ある。この MIMO技術とは、送信局側において複数の送信アンテナから同一チヤネ ル上で異なる独立な信号を送信し、受信局側にぉ 、て同じく複数のアンテナを用い て信号を受信し、各送信アンテナ Z受信アンテナ間の伝達関数行列を求め、この行 列を用いて送信局側で各アンテナカゝら送信した独立な信号を推定し、データを再生 するものである。  [0003] As a technology for that, MIMO (Multiple-Input Multiple-Output) technology is promising. This MIMO technology is that the transmitting station transmits different independent signals on the same channel from a plurality of transmitting antennas, and the receiving station receives the signals using the same plurality of antennas. A transfer function matrix between the Z receiving antennas is obtained, and using this matrix, the transmitting station estimates independent signals transmitted from each antenna, and reproduces the data.
[0004] ここで、 N本の送信アンテナを用いて N系統の信号を送信し、 M本のアンテナを用 いて信号を受信する場合を考える。まず、送受信局の各アンテナ間には N X M個の 伝送のパスが存在し、第 i送信アンテナから送信され第 j受信アンテナで受信される場 合の伝達関数を h とし、これを第 (j ,i)成分とする N行 M列の行列を Hと表記する。  [0004] Now, consider a case where N transmission signals are transmitted using N transmission antennas and signals are received using M antennas. First, there are NXM transmission paths between the antennas of the transmitting and receiving stations, and the transfer function when transmitted from the i-th transmitting antenna and received by the j-th receiving antenna is h, and this is (j, i) The matrix of N rows and M columns as components is denoted as H.
 ,
[0005] さらに、第 i送信アンテナからの送信信号を tとし (t , t , t , - - -t )を成分とする列べ タトルを Tx、第 j受信アンテナでの受信信号 とし (r ,r ,r , · · τ )を成分とする列べ j 1 2 3 M [0005] Further, a transmission signal from the i-th transmission antenna is denoted by t, and a sequence of (t, t, t,---t) as a component. The tuple is Tx, the received signal at the j-th receiving antenna is a column j 1 2 3 M with components (r, r, r, r, τ)
タトルを Rx、第 j受信アンテナの熱雑音を nとし (η ,η ,η , · · ·η )を成分とする列べク j 1 2 3 M  A row vector j 1 2 3 M with components of (η, η, η,
トルを nと表記する。  Torr is denoted by n.
[0006] この場合、以下の関係式が成り立つ。  [0006] In this case, the following relational expression holds.
[0007] Rx=H XTx+n · · · (式 1)  [0007] Rx = H XTx + n (Equation 1)
ここで、 Rxは受信信号のベクトル、 Hは伝達関数行列、 Txは送信信号の列べタト ル、 ηは熱雑音の列ベクトルを示している。  Here, Rx is a received signal vector, H is a transfer function matrix, Tx is a transmitted signal column vector, and η is a thermal noise column vector.
[0008] したがって、受信局側で受信した信号 Rxをもとに、送信信号 Txを推定する技術が 求められている。この MIMO技術の最も基本的なものとしては、一般に ZF (Zero Fo rcing)法と呼ばれる方法があげられる (例えば、非特許文献 1参照)。  [0008] Therefore, there is a need for a technique for estimating a transmission signal Tx based on a signal Rx received on the receiving station side. The most basic of this MIMO technique is a method generally called a ZF (Zero Focusing) method (for example, see Non-Patent Document 1).
[0009] ここでは、上記の(式 1)に対し、伝達関数行列の逆行列 H—1を求め、これを式の両 辺の左カゝら掛け合わせる処理を行う。この結果、以下の式が得られる。 [0009] Here, for the above (Equation 1), the inverse matrix H- 1 of the transfer function matrix is obtained, and a process of multiplying the inverse matrix H- 1 on both sides of the equation is performed. As a result, the following equation is obtained.
[0010] H"1 XRx=Tx+H"1 X n · · · (式 2) [0010] H " 1 XRx = Tx + H" 1 X n
ここで、 H—1は伝達関数行列の逆行列、 Rxは受信信号のベクトル、 Hは伝達関数 行列、 Txは送信信号の列ベクトル、 nは熱雑音の列ベクトルを示している。 Here, H- 1 is the inverse matrix of the transfer function matrix, Rx is the vector of the received signal, H is the transfer function matrix, Tx is the column vector of the transmitted signal, and n is the column vector of the thermal noise.
[0011] つまり、各受信アンテナで受信した信号を合成し、所望の送信アンテナから以外の 信号による干渉を除去する処理を行うと、実際の送信信号ベクトル Txに微小な熱雑 音項 H_1 X nが加わった信号点が得られることになる。ここで、送信信号として、 BPS K、 QPSK、 16QAM、 64QAM等の多値変調を施した信号を用いる場合は、送信 信号として取りえる信号点は不連続である。したがって、 H— ^Rxとユークリッド距離 が最も近 、点を送信コンスタレーシヨン上で検索する硬判定処理を行 ヽ、真の送信 信号を推定する。 [0011] That is, by combining the signals received by each receiving antenna, when the process of removing the interference due to signals other than the desired transmit antenna, actual transmission signal vector Tx in small Netsuzatsu sound claim H _1 X A signal point to which n is added is obtained. Here, when a signal subjected to multi-level modulation such as BPSK, QPSK, 16QAM, or 64QAM is used as a transmission signal, signal points that can be taken as a transmission signal are discontinuous. Therefore, H- ^ Rx and the Euclidean distance are the closest, and a hard decision process for searching for a point on the transmission constellation is performed to estimate a true transmission signal.
[0012] 以上の ZF法においては、熱雑音項 H—1 X nが十分に小さぐ且つ各送信アンテナ 毎の成分が均等であると仮定できる場合には良好な特性が期待できる。しかし、一般 にはこの仮定は成り立たず、ある伝達関数行列に対して送信アンテナ毎の熱雑音 H_ の絶対値の期待値は異なる。さらには、もし伝達関数行列 Ηが逆行列をもたな い行列 (ないしはその行列式が非常に小さい)の場合には、送信信号の推定が非常 に不安定になる。この様な状況においては、受信特性が大幅に劣化する可能性があ る。この様な問題点を解決するための方法として、最も特性的に優れた方法が MLD (Maximum Likelihood Detection)法と呼ばれる方式である(例えば、非特許文献 2 参照)。 In [0012] or more ZF method, if the thermal noise term H- 1 X n is sufficiently small sag and components for each transmission antenna can be assumed to be equivalent can be expected good characteristics. However, in general, this assumption does not hold, and the expected value of the absolute value of the thermal noise H_ for each transmitting antenna differs for a certain transfer function matrix. Furthermore, if the transfer function matrix Η is a matrix without an inverse matrix (or its determinant is very small), the estimation of the transmitted signal becomes very unstable. In such a situation, the reception characteristics may be significantly deteriorated. The As a method for solving such a problem, a method excellent in characteristics is a method called MLD (Maximum Likelihood Detection) method (for example, see Non-Patent Document 2).
[0013] まず、各アンテナからの送信信号の変調方式が決まると、ひとつのアンテナから送 信される信号が取り得る信号点の数 (以降、 N と呼ぶ)が決まる。 N本のアンテナ全  [0013] First, when the modulation scheme of the transmission signal from each antenna is determined, the number of signal points (hereinafter, referred to as N) that can be taken by a signal transmitted from one antenna is determined. All N antennas
max  max
体で送信される信号ベクトルのバリエーションは N N種類となる。 MLD法では、送 There are N N variations of the signal vector transmitted by the body. In the MLD method,
max  max
信信号として Txの取りえる全ての候補 (全部で N Ν種)に対して、その信号が送信 The signal is transmitted to all candidates (N Ν kinds in total) that Tx can take as a signal
max  max
された場合の受信信号の予測を行い、それらの中で最も実際の受信信号に近いもの を推定精度の最も高い信号点として選択する。つまり、第 k番目の送信信号候補を τ x[k]で表したとすると、次の式で定義されるユークリッド距離 Eを最小にする kの値を選 択する。 In this case, the received signal is predicted, and the one closest to the actual received signal is selected as the signal point with the highest estimation accuracy. That is, assuming that the k-th transmission signal candidate is represented by τ x [k] , a value of k that minimizes the Euclidean distance E defined by the following equation is selected.
[0014] E= (Rx-H X TxLkJ) H X (Rx— H X Tx[k]) · · · (式 3) [0014] E = (Rx-H X Tx LkJ ) H X (Rx— HX Tx [k] )
[0015] なお、行列 M (ベクトル Mとしても可)に対して MHは、行列 Mのエルミート共役であ る行列をさす。以上の処理により、如何なる行列 Hに対しても、安定した受信処理が 可能であり、 ZF法に対して特性が大幅に改善する。 [0015] Note that M H denotes a matrix that is a Hermitian conjugate of the matrix M with respect to the matrix M (or vector M). With the above processing, stable reception processing is possible for any matrix H, and the characteristics are significantly improved compared to the ZF method.
[0016] ここで、図 7に従来技術における第 1の無線局(送信側の無線通信装置)の送信部 の構成を示す。図 7において、 100はデータ分割回路、 101—1— 101— 4はプリアン ブル付与回路、 102— 1— 102— 4は変調回路、 103— 1— 103— 4は無線部、 104— 1 一 104— 4は送信アンテナを示す。なお、ひとつの例として、送信局が 4つの送信アン テナを用いて 4系統のデータを送信する場合を例にとって説明する。  Here, FIG. 7 shows a configuration of a transmitting unit of a first wireless station (transmitting side wireless communication device) in the related art. In FIG. 7, 100 is a data division circuit, 101-1—101—4 is a preamble assignment circuit, 102—1—102—4 is a modulation circuit, 103—1—103—4 is a radio section, and 104—1—104. — 4 indicates the transmitting antenna. As an example, a case where a transmitting station transmits data of four systems using four transmitting antennas will be described.
[0017] データが入力されると、データ分割回路 100はデータを 4系統に分離する。例えば 、第 1系統のデータはプリアンブル付与回路 101— 1に入力され、プリアンブル信号が 付与された状態で変調回路 (Chi) 102— 1に入力される。変調回路では所定の変調 を実施し、変調された信号は無線部 103—1にて無線周波数に変換され、送信アンテ ナ 104-1より送信される。同様に、第 2系統のデータは 101— 2— 104-2、第 3系統 のデータは 101— 3— 104—3、第 4系統のデータは 101— 4一 104— 4を経由して、そ れぞれ個別に送信される。  When data is input, data division circuit 100 divides the data into four systems. For example, the data of the first system is input to the preamble adding circuit 101-1 and is input to the modulation circuit (Chi) 102-1 with the preamble signal added. The modulation circuit performs a predetermined modulation, and the modulated signal is converted to a radio frequency by radio section 103-1 and transmitted from transmission antenna 104-1. Similarly, the data of the second system goes through 101-2-104-2, the data of the third system goes through 101-3-3-104-3, and the data of the fourth system goes through 101-4-1-104-4. Each is sent individually.
[0018] 図 8に従来技術における MLD法を用いた無線通信装置の受信部の構成を示す。 図において、 111— 1一 111 4は受信アンテナ、 112— 1— 112— 4は無線部、 113は チャネル推定回路、 114は受信信号管理部、 115は伝達関数行列管理回路、 116 はレプリカ信号生成回路、 117は送信信号生成回路、 118はユークリッド距離演算回 路、 119は選択回路、 120はデータ合成回路を示す。 FIG. 8 shows a configuration of a receiving unit of a wireless communication device using the MLD method in the related art. In the figure, 111-1 111-4 is a receiving antenna, 112-1 112-4 is a radio section, 113 is a channel estimation circuit, 114 is a received signal management section, 115 is a transfer function matrix management circuit, and 116 is a replica signal generation. Circuit, 117 is a transmission signal generation circuit, 118 is a Euclidean distance calculation circuit, 119 is a selection circuit, and 120 is a data synthesis circuit.
[0019] 第 1の受信アンテナ 111—1から第 4の受信アンテナ 111 4は、それぞれ個別に受 信信号を受信する。無線部 112— 1一 112— 4を経由して、受信した信号はチャネル 推定回路 113に入力される。送信側で付与した所定のプリアンブル信号の受信状況 から、チャネル推定回路 113にて各送信アンテナと受信アンテナ間の伝達関数をこ こで取得する。取得された各伝達関数の情報 h は伝達関数行列管理回路 115にて 伝達関数行列 Hとして管理される。 [0019] The first receiving antenna 111-1 to the fourth receiving antenna 1114 individually receive a received signal. The received signal is input to the channel estimation circuit 113 via the radio section 112-1 to 112-4. From the reception state of the predetermined preamble signal given on the transmitting side, the transfer function between each transmitting antenna and the receiving antenna is obtained here by the channel estimation circuit 113. The acquired information h of each transfer function is managed by the transfer function matrix management circuit 115 as a transfer function matrix H.
[0020] プリアンブル信号に後続するデータ信号は、 1シンボル分づっ受信信号管理回路 114に入力される。受信信号管理回路 114では、各アンテナの受信信号 (r The data signal following the preamble signal is input to the reception signal management circuit 114 for each symbol. In the reception signal management circuit 114, the reception signal (r
1、 r 2、 r 3、 r )を成分とした受信信号ベクトル Rxとして一旦管理される。  1, r2, r3, r) are once managed as a received signal vector Rx having components as components.
4  Four
[0021] 一方、送信信号生成回路 117では、送信アンテナから出力され得る全ての信号パ ターンとして、 N N種類の送信信号の候補 {S [k]}(l≤k≤N N)を生成する。レブ max max [0021] On the other hand, the transmission signal generating circuit 117, as all signals pattern which can be outputted from the transmitting antenna, the N N kinds of transmission signal candidates {S [k]} to generate a (l≤k≤N N) . Rev max max
リカ信号生成回路 116では、送信信号生成回路 117から入力される信号 S [k]と伝達 関数行列管理回路 115で管理された伝達関数行列 Hの積、 H X S [k]を求め、ユー クリツド距離演算回路 118にて、この結果と受信信号管理回路 114で管理された受 信信号ベクトル Rxとのユークリッド距離を算出する。以上のユークリッド距離演算処 理は全ての kの値に対して実施 (合計 N N回)される。選択回路 119では、これらの max The Rica signal generation circuit 116 calculates the product of the signal S [k] input from the transmission signal generation circuit 117 and the transfer function matrix H managed by the transfer function matrix management circuit 115, HXS [k], and calculates the Euclidean distance The circuit 118 calculates the Euclidean distance between the result and the received signal vector Rx managed by the received signal management circuit 114. The above Euclidean distance calculation processing is performed for all k values (total N N times). In the selection circuit 119, these max
中でユークリッド距離が最短のものを選択し、最も推定精度の高 、送信信号と判断す る。これらのデータは複数シンボルに渡り連続的に処理される力 一連のデータを受 信後、データ合成回路 120にてデータとして再構成し、出力される。  Among them, the one having the shortest Euclidean distance is selected, and the signal having the highest estimation accuracy is determined to be a transmission signal. These data are processed continuously over a plurality of symbols. After receiving a series of data, the data synthesis circuit 120 reconstructs the data and outputs the data.
[0022] 図 9に、従来技術における第 1の無線局(送信側の無線通信装置)の送信フローを 示す。データが入力されると (ステップ S100)、送信局では N系統のデータ系列に分 割され (ステップ S 101)、これらの信号にはそれぞれプリアンブル信号が付与され (ス テツプ S102)、これに各系列毎に個別に変調処理を行う(ステップ S103)。変調され た信号は、無線部にて無線周波数に変換され信号が送信される (ステップ S 104)。 [0023] 図 10に、従来技術における MLD法を用いた無線通信装置の受信フローを示す。 受信局では無線パケットを受信すると (ステップ S110)、プリアンブルを検出し (ステツ プ S 111)、チャネル推定を実施する (ステップ S 112)。ここでは、各送信アンテナお よび受信アンテナ間の伝達関数を全て取得する。 FIG. 9 shows a transmission flow of the first wireless station (the wireless communication device on the transmission side) according to the related art. When data is input (step S100), the transmitting station divides the data into N data sequences (step S101), and a preamble signal is added to each of these signals (step S102). The modulation process is performed individually for each (step S103). The modulated signal is converted to a radio frequency by the radio unit, and the signal is transmitted (step S104). FIG. 10 shows a reception flow of a wireless communication device using the MLD method in the conventional technology. Upon receiving the wireless packet (step S110), the receiving station detects a preamble (step S111) and performs channel estimation (step S112). Here, all transfer functions between each transmitting antenna and receiving antenna are acquired.
[0024] プリアンブル信号に後続して受信される信号は、 1シンボル毎に各受信アンテナで の受信信号 rを成分としてもつ受信信号ベクトル Rxとして管理される (ステップ S113 ) oこれに対し、送信アンテナから出力され得る全ての信号パターンとして、 N  [0024] The signal received subsequent to the preamble signal is managed as a received signal vector Rx having a received signal r at each receiving antenna as a component for each symbol (step S113). N as all signal patterns that can be output from
max N種 類の送信信号の候補 {S [k] } (l≤k≤N N)を生成し、これと伝達関数行列 Hとの max N types of transmission signal candidates {S [k]} (l≤k≤N N ) are generated.
max  max
積 H X S [k]を計算し (ステップ S 115、受信信号 Rxとのユークリッド距離を計算する( ステップ S116)。この処理 S114— S116〖こは、実際には全体で N N回の処理を行 The product HXS [k] is calculated (step S115, the Euclidean distance to the received signal Rx is calculated (step S116). This processing S114—S116 is actually performed N N times in total.
max  max
う。つまり、処理 S114一 S116を N N偶並歹的【こ処理をしたり、な ヽし ίま S114→S Yeah. In other words, the processing S114-S116 is performed in the same manner as N N
max U  max U
115→S116→S114→S115→S116→S114→S115→S116→- · ·と N N回直 115 → S116 → S114 → S115 → S116 → S114 → S115 → S116 → - · · and N N Kaijika
max 列的に処理しても、な 、しはその組み合わせであっても構わな!/、。  max It can be processed in columns, or it can be a combination of! / ,.
[0025] いずれにせよ、算出された N N個の送信信号ベクトル毎のユークリッド距離が得ら In any case, the calculated Euclidean distance for each of the N N transmission signal vectors is obtained.
max  max
れたら、全体を比較して最小ユークリッド距離を与える送信信号ベクトル S [k ]を検  Then, the whole is compared and the transmission signal vector S [k] that gives the minimum Euclidean distance is detected.
best 索する(ステップ S117)。この S [k ]をもって、該当するシンボルの各送信アンテナ  Search for best (step S117). With this S [k], each transmit antenna of the corresponding symbol
best  best
から送信された信号推定を確定させる (ステップ S 118)。更に受信データが継続する 場合には処理ステップ S113に戻り、処理ステップ S 113— S 119を繰り返す。受信デ ータが終わった場合 (ステップ S 119)、一連の各系統の受信データを再構成し、送 信側でのデータを再現してデータを出力する (ステップ S 120)。  The signal estimation transmitted from is determined (step S118). If the received data continues, the process returns to the processing step S113, and the processing steps S113 to S119 are repeated. When the reception data is completed (step S119), the reception data of each series is reconstructed, and the data on the transmission side is reproduced to output the data (step S120).
[0026] この MLD法の最大の問題点は、ユークリッド距離を求める演算処理を N N回に [0026] The biggest problem of the MLD method is that the calculation processing for calculating the Euclidean distance is reduced to N N times.
max 渡って実施しなければならない点である。例えば、変調方式として 64QAMを用いる 場合、 N =64となる。この例を用いると、 N = 2の場合でユークリッド距離演算回数 max  This is a point that must be implemented over max. For example, when 64QAM is used as the modulation scheme, N = 64. Using this example, if N = 2, the number of Euclidean distance calculations max
は 642 (=4096)回、 N = 3の場合で 643 (=262144)回、 N=4の場合で 644 (= 167 77216)回と指数関数的に発散する。 Diverges exponentially 64 2 (= 4096) times, 64 3 (= 262144) times when N = 3, and 64 4 (= 167 77216) times when N = 4.
[0027] これを回路として実現する際には、図 10における処理ステップ S114— S116を順 次直列的に実施する方法と、並列的、つまり同時に処理する方法がある。しかし、直 列的に行う場合には 1シンボルの送信データを確定するのに N N回のループ処理 を行う必要があり、膨大な処理遅延が力かってしまう。一方、並列的に実施する場合 でも、同様の回路を N N個も実装しなければならず、 Nが 3以上になると回路規模 When implementing this as a circuit, there are a method in which processing steps S114 to S116 in FIG. 10 are sequentially performed in series, and a method in which processing is performed in parallel, that is, simultaneously. However, in the case of performing in series, it is necessary to perform N N loops to determine the transmission data for one symbol. And a huge processing delay is imposed. On the other hand, even in the case of parallel implementation, N N similar circuits must be implemented.
max  max
が爆発的に増大するため、 LSIへの実装は全く不可能となる。その中間的な組み合 わせの場合も考えられるが、回路規模と演算時間を両立することは困難である。  Will explode, making implementation on LSI impossible. Intermediate combinations may be possible, but it is difficult to achieve both circuit scale and computation time.
[0028] 全ての問題点は、演算の処理量が N Nに比例した値となることに起因し、この演 [0028] All the problems are caused by the fact that the processing amount of the calculation becomes a value proportional to NN.
max  max
算量を抑えることが課題となって 、る。  The challenge is to reduce the complexity.
非特許文献 l : S.Kurosaki et. al.,"A SDM- COFDM Scheme Employing a Simple Feed-Forward Inter-Channel Interference Canceller for MIMO Based Broadband Wireless LANs", IEICE TRANS. COMMUN.,Vol.E86B.No.l January, 2003  Non-Patent Document l: S. Kurosaki et.al., "A SDM-COFDM Scheme Employing a Simple Feed-Forward Inter-Channel Interference Canceller for MIMO Based Broadband Wireless LANs", IEICE TRANS. COMMUN., Vol.E86B. l January, 2003
非特許文献 2 :A.van Zelst et. al, "Space Division Multiplexing (SDM) forOFDM Systems", Proc. VTC2000 Spring, Vol.2, pp.1070—1074  Non-Patent Document 2: A. van Zelst et.al, "Space Division Multiplexing (SDM) for OFDM Systems", Proc.VTC2000 Spring, Vol.2, pp.1070-1074
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0029] 従って、本発明の目的は、 MIMO技術を用いた無線通信を行う際に、良好な特性 を実現しながらも、現実的な回路規模及び演算量にて実現可能な、無線通信装置、 及び無線通信方法を提供することにある。 [0029] Therefore, an object of the present invention is to provide a wireless communication apparatus which can realize a good characteristic and realize a realistic circuit scale and computation amount when performing wireless communication using MIMO technology. And a wireless communication method.
課題を解決するための手段  Means for solving the problem
[0030] 上記課題を解決するために、本発明の無線通信装置は、 N (Nは 1より大きい整数) 本以上の第 1のアンテナ群を備えた第 1の無線局と、 M (Mは 1より大き 、整数)本の 第 2のアンテナ群を備えた第 2の無線局により構成され、前記第 1の無線局が、入力 されたユーザデータを N系統に分割する手段と、前記の N系統に分割されたデータ に個別の既知のパターンの信号を付与して N系統の第 1の信号系列を生成する手段 と、 N本の前記第 1のアンテナ群を用いて同一周波数にて同時に前記第 1の信号系 列を重畳して送信する手段とを備える無線通信システムにおける無線通信装置であ つて、 [0030] In order to solve the above problem, a wireless communication apparatus according to the present invention includes: a first wireless station including N (N is an integer greater than 1) or more first antenna groups; A second radio station having a number of second antenna groups (greater than 1 and an integer), wherein the first radio station divides the input user data into N systems, Means for giving an individual known pattern signal to the data divided into systems to generate a first signal sequence of N systems, and simultaneously using the N first antenna groups at the same frequency. Means for superimposing and transmitting a first signal sequence, the wireless communication device in a wireless communication system,
M本の前記第 2のアンテナ群を用いて個別に無線信号を受信する手段と、 受信信号に付与された前記既知のパターンの信号を参照信号として、前記第 1の アンテナ群の内の第 iアンテナと前記第 2のアンテナ群の内の第 jアンテナとの間の伝 達関数 hを取得する手段と、 Means for individually receiving a wireless signal using the M second antenna groups, and using the signal of the known pattern given to the received signal as a reference signal, the i-th antenna in the first antenna group The transmission between the antenna and the j-th antenna in the second antenna group Means for obtaining the transfer function h,
 ,
前記伝達関数 hを第 (j,i)要素とする M行 N列の伝達関数行列 Hをもとに、送信信  Based on an M-by-N transfer function matrix H having the transfer function h as the (j, i) -th element,
 ,
号の推定値の第 1近似列ベクトル Txを求める手段と、  Means for obtaining a first approximated column vector Tx of the estimated value of the signal;
前記列ベクトル Τχの各要素で与えられる送信信号点に対してそれぞれ硬判定処 理を行った列ベクトル Tx'を求める手段と、  Means for obtaining a column vector Tx ′ by performing hard decision processing on the transmission signal points given by each element of the column vector Τχ,
前記列ベクトル Tx'の各成分の値及びその近傍の送信信号として取り得る信号点 の中から、所定数の信号点を選びこれらを組み合わせ、第 1のアンテナ群より送信さ れた送信信号の候補となる信号を複数種類生成する手段と、  A predetermined number of signal points are selected from the values of the components of the column vector Tx 'and signal points that can be taken as transmission signals in the vicinity thereof, and these are combined, and candidates for the transmission signal transmitted from the first antenna group are selected. Means for generating a plurality of types of signals,
前記生成された送信信号の候補となる信号及び前記伝達関数行列 Hに基づき、該 候補となる信号の中から 1つを選択し、この選択した信号に基づいて前記第 1の無線 局から送信されたユーザデータを再生し出力する手段と  Based on the generated transmission signal candidate signal and the transfer function matrix H, one of the candidate signals is selected, and transmitted from the first wireless station based on the selected signal. Means for reproducing and outputting the user data
を備えたことを特徴とする。  It is characterized by having.
[0031] 具体例として、前記第 1のアンテナ群より送信された送信信号の候補となる信号を 複数種類生成する手段は、 As a specific example, the means for generating a plurality of types of transmission signal candidate signals transmitted from the first antenna group includes:
前記列ベクトル Tx'の各成分を( t , t , t , · · 't )とした場合、各成分において送  If each component of the column vector Tx ′ is (t, t, t,.
1 2 3 N  1 2 3 N
信信号点として取り得る N 個 (N は 1より大きい整数)の信号点の中から、第 1成 max max  From among N (N is an integer greater than 1) signal points that can be taken as signal points, the first component max max
分の信号点としては tを含む N (N は N 以下の整数)個の信号点、第 2成分の信  N signal points including t (N is an integer less than or equal to N) including t
1 t丄 tl max  1 t 丄 tl max
号点としては tを含む N (N は N 以下の整数)個の信号点、 · · ·第 N成分の信号  N signal points including t (N is an integer less than or equal to N) including t, and the signal of the Nth component
2 t2 t2 max  2 t2 t2 max
点としては tを含む N (N は N 以下の整数)個の信号点を選びこれらを組み合  Select N signal points including t (N is an integer less than or equal to N) as points and combine them.
N tN tN max  N tN tN max
わせ、前記送信信号の候補となる信号を複数種類生成する手段  Means for generating a plurality of types of signals that are candidates for the transmission signal.
を有する。  Having.
[0032] この場合、前記第 1の無線局から送信されたユーザデータを再生し出力する手段 は、  [0032] In this case, the means for reproducing and outputting the user data transmitted from the first wireless station includes:
前記送信信号の候補である N 種類 (N =N X N Χ · · · Χ Ν : Ν は整数)の mid mid tl t2 tN mid 列ベクトルの中の第 k (l≤k≤N : kは整数)番目の列ベクトルを S[k]とした場合に mid  The k-th (l≤k≤N: k is an integer) number among the N types (N = NXN Χ · · Χ :: Ν is an integer) of the candidate of the transmission signal, Where S [k] is the column vector of
、伝達関数行列 Hと該列ベクトルの積すなわち H X S[k]で与えられる列ベクトルを算 出する手段と、  Means for calculating a product of the transfer function matrix H and the column vector, that is, a column vector given by H X S [k];
各列ベクトル S[k]に対する前記列ベクトル H X S[k]と実際の受信信号ベクトル Rx との信号点間距離を算出する手段と、 The column vector HXS [k] for each column vector S [k] and the actual received signal vector Rx Means for calculating the distance between signal points with
全ての kの中力 前記信号点間距離を最小にする送信信号点 S[k ]を選択する手 best  Best for selecting the transmission signal point S [k] that minimizes the distance between the signal points.
段と、  Steps and
該選択された列ベクトルの各要素を合成して前記第 1の無線局から送信されたュ 一ザデータを再生する手段と  Means for combining the elements of the selected column vector to reproduce the user data transmitted from the first wireless station;
を有するように構成しても良 、。  It may be configured to have
[0033] 前記第 1近似列ベクトル Txを求める手段は、 [0033] The means for obtaining the first approximate column vector Tx includes:
前記伝達関数行列 Ηのエルミート共役となる Ν行 Μ列行列 ΗΗを生成する手段と、 これらの行列の積即ち Ν行 Ν列の行列 ΗΗ X Ηを算出し、該行列の逆行列の Ν行 Ν 列の行列 (ΗΗ X Η) 1を算出する手段と、 Means for generating a Ν-row Μ-column matrix Η な which is a Hermitian conjugate of the transfer function matrix と; calculating a product of these matrices, that is, a Ν-row Ν-column matrix Η Η X 、; Means for calculating a matrix of rows and columns (Η Η X Η) 1 ;
前記逆行列と行列 ΗΗの積即ち Ν行 Μ列の行列 (ΗΗ X Η) 1 X ΗΗを算出する手段 と、 Means for calculating the product of the inverse matrix and the matrix Η 即 , that is, a matrix of Ν rows and Μ columns (Η Η X Η) 1 X Η ,
前記第 2のアンテナ群の第 mアンテナで実際に受信された受信信号を!:とし、各成 分が( r , r , r , · · 'r )で与えられる M行の列ベクトルを Rxとした場合、(HH X H)— 1 The received signal actually received by the m-th antenna of the second antenna group is denoted by!:, And a column vector of M rows in which each component is given by (r, r, r,. (H H XH) — 1
1 2 3 M 1 2 3 M
X HH X Rxで与えられる N行の列ベクトル Txを算出する手段と Means for calculating a column vector Tx of N rows given by XH H X Rx;
を有しても良い。  May be provided.
これにより、従来の MLD法では、送信信号の重畳数 Nに対し、信号の種類 N N max に比例してユークリッド距離を演算するための回路規模が指数関数的に発散するがAs a result, in the conventional MLD method, the circuit scale for calculating the Euclidean distance diverges exponentially in proportion to the signal type N N max with respect to the number N of superimposed transmission signals.
、本発明ではこれを大幅に抑制し、回路規模を抑制しながら MLD法と等価な特性を 実現するための簡易な方法を提供することが可能となる。 According to the present invention, it is possible to provide a simple method for greatly suppressing this and realizing characteristics equivalent to the MLD method while suppressing the circuit scale.
[0034] また、前記第 1近似列ベクトル Txを求める手段は、 N = Mの場合において、 [0034] Further, the means for obtaining the first approximated column vector Tx includes:
前記伝達関数行列 Hの逆行列即ち N行 N列の行列 H—1を算出する手段と、 前記第 2のアンテナ群の第 mアンテナで実際に受信された受信信号を!:とし、各成 分が( r , r , r , · · 'r )で与えられる N行の列ベクトルを Rxとした場合、 H— 1 X RxでMeans for calculating an inverse matrix of the transfer function matrix H, that is, a matrix H− 1 of N rows and N columns, and a received signal actually received by the m-th antenna of the second antenna group as!: If Rx is the column vector of N rows given by (r, r, r, ·· 'r), then H— 1 X Rx
1 2 3 M 1 2 3 M
与えられる N行の列ベクトル Txを算出する手段と、  Means for calculating a given N-row column vector Tx;
を有するようにしても良い。  May be provided.
これにより、送受信側のアンテナ数が同じ (N = M)場合は、より演算処理を簡略ィ匕 することができる。 [0035] また、前記第 1近似列ベクトル Txを求める手段は、 As a result, when the number of antennas on the transmitting and receiving sides is the same (N = M), the arithmetic processing can be further simplified. [0035] The means for obtaining the first approximate column vector Tx includes:
前記伝達関数行列 Ηのエルミート共役となる Ν行 Μ列行列 ΗΗを生成する手段と、 前記第 1の無線局が送信するプリアンブル信号を前記第 2のアンテナ群で受信した 際の各信号を成分としてもつ列ベクトル yを取得する手段と、 Means for generating a Ν row Μ column matrix な which is Hermitian conjugate of the transfer function matrix と, and each signal when a preamble signal transmitted by the first wireless station is received by the second antenna group is a component Means for obtaining a column vector y having
該列ベクトルのエルミート共役な行ベクトル yHを生成する手段と、 Means for generating a Hermitian conjugate row vector y H of the column vector;
これらのベクトルの積として M行 M列の行列すなわち Y=y X y Hを算出する手段と、 前記プリアンブル信号が複数シンボルにわたる場合には、前記行列 Yの各成分の 値を複数シンボルに渡って平均化しこれに置き換える手段と、  Means for calculating a matrix of M rows and M columns as a product of these vectors, that is, Y = yXyH; and when the preamble signal extends over a plurality of symbols, the value of each component of the matrix Y is transmitted over a plurality of symbols. Means for averaging and replacing this,
前記行列 Yの逆行列すなわち Y—1を算出する手段と、 Means for calculating an inverse matrix of the matrix Y, that is, Y- 1 ;
前記行列 HHおよび Y— 1の行列積すなわち N行 M列の行列 HH X Y—1を生成する手 段と、 Means for generating a matrix product of said matrices H H and Y— 1 , that is, a matrix H H XY— 1 of N rows and M columns;
前記第 2のアンテナ群の第 mアンテナで実際に受信された受信信号を!: とし、各成 分が( r , r , r , · · 'r )で与えられる M行の列ベクトルを Rxとした場合、 HH XY—ェA received signal actually received by the m-th antenna of the second antenna group is represented by!:, And a column vector of M rows in which each component is given by (r, r, r,. H H XY
1 2 3 Μ 1 2 3 Μ
Rxで与えられる Ν行の列ベクトル Txを算出する手段と、  Means for calculating a ベ ク ト ル -row column vector Tx given by Rx,
を有するようにしても良い。  May be provided.
これにより、送信信号点検索の初期情報を与える際に、 ZF法よりも特性の優れた M MSE法を適用することができ、特性をより改善するための簡易な実現方法を提供で きる。  As a result, the MMSE method with better characteristics than the ZF method can be applied when providing initial information for transmission signal point search, and a simple realization method for further improving characteristics can be provided.
[0036] 本無線通信装置において、前記無線局間で複数のサブキャリアを用いた直交周波 数分割多重(OFDM)変調方式を用いても良!、。  [0036] In the present wireless communication apparatus, an orthogonal frequency division multiplexing (OFDM) modulation method using a plurality of subcarriers between the wireless stations may be used! ,.
これにより、 MIMO技術の適用領域として、現在、 5GHz帯及び 2.4GHz帯を用い た高速無線 LANシステムの拡張が注目されており、これらの無線 LANシステムに本 発明を適用できる。  As a result, an extension of a high-speed wireless LAN system using the 5 GHz band and the 2.4 GHz band has attracted attention as an application area of the MIMO technology, and the present invention can be applied to these wireless LAN systems.
[0037] 本発明はまた、 [0037] The present invention also provides
N (Nは 1より大き 、整数)本以上の第 1のアンテナ群を備えた第 1の無線局と、 M ( Mは 1より大きい整数)本の第 2のアンテナ群を備えた第 2の無線局とにより構成され た無線通信システムにおける無線通信方法であって、  A first radio station having N (N is greater than 1 and an integer) or more first antenna groups, and a second radio station having M (M is an integer greater than 1) second antenna groups. A wireless communication method in a wireless communication system configured by a wireless station,
前記第 1の無線局により、 入力されたユーザデータを N系統に分割するステップと、 By the first radio station, Dividing the input user data into N systems;
前記の N系統に分割されたデータに個別の既知のパターンの信号を付与して N系 統の第 1の信号系列を生成するステップと、  Generating an N-system first signal sequence by adding a signal of an individual known pattern to the data divided into N systems,
N本の前記第 1のアンテナ群を用いて同一周波数にて同時に前記第 1の信号系列 を重畳して送信するステップと  Simultaneously superimposing and transmitting the first signal sequence at the same frequency using the N first antenna groups; and
が実施され、  Is implemented,
前記第 2の無線局により、  By the second radio station,
M本の前記第 2のアンテナ群を用いて個別に無線信号を受信するステップと、 受信信号に付与された既知のパターンの信号を参照信号として、前記第 1のアンテ ナ群の内の第 iアンテナと前記第 2のアンテナ群の内の第 jアンテナとの間の伝達関 数 h を取得するステップと、  Individually receiving a radio signal using the M second antenna group; and using a signal of a known pattern given to the received signal as a reference signal, the i-th antenna in the first antenna group. Obtaining a transfer function h between an antenna and a j-th antenna in the second antenna group;
J,i  J, i
前記伝達関数 h を第 (j,i)要素とする M行 N列の伝達関数行列 Hをもとに、送信信  Based on the transfer function matrix H of M rows and N columns with the transfer function h as the (j, i) element,
J,i  J, i
号の推定値の第 1近似列ベクトル Txを求めるステップと、 Determining a first approximated column vector Tx of the signal estimate;
前記列ベクトル Τχの各要素で与えられる送信信号点に対してそれぞれ硬判定処 理を行った列ベクトル Tx'を求めるステップと、  Obtaining a column vector Tx ′ by performing hard decision processing on the transmission signal point given by each element of the column vector 、,
前記列ベクトル Tx'の各成分の値及びその近傍の送信信号として取り得る信号点 の中から、所定数の信号点を選びこれらを組み合わせ、第 1のアンテナ群より送信さ れた送信信号の候補となる信号を複数種類生成するステップと、  A predetermined number of signal points are selected from the values of the components of the column vector Tx 'and signal points that can be taken as transmission signals in the vicinity thereof, and these are combined, and candidates for the transmission signal transmitted from the first antenna group are selected. Generating a plurality of types of signals,
前記生成された送信信号の候補となる信号及び前記伝達関数行列 Hに基づき、該 候補となる信号の中から 1つを選択し、この選択した信号に基づいて前記第 1の無線 局から送信されたユーザデータを再生し出力するステップと  Based on the generated transmission signal candidate signal and the transfer function matrix H, one of the candidate signals is selected, and transmitted from the first wireless station based on the selected signal. Playing and outputting the user data
が実施されることを特徴とする無線通信方法を提供する。  Is provided, a wireless communication method is provided.
具体例として、前記第 1のアンテナ群より送信された送信信号の候補となる信号を 複数種類生成するステップは、  As a specific example, the step of generating a plurality of types of signals that are candidates for transmission signals transmitted from the first antenna group includes:
前記列ベクトル Tx'の各成分を (t , t , t , - - -t )とした場合、各成分において送信  When each component of the column vector Tx 'is (t, t, t,---t), transmission is performed for each component.
1 2 3 N  1 2 3 N
信号点として取り得る N 個 (N は 1より大きい整数)の信号点の中から、第 1成分 From N signal points (N is an integer greater than 1) that can be taken as signal points, the first component
max max  max max
の信号点としては tを含む N (N は N 以下の整数)個の信号点、第 2成分の信号 N signal points including t (N is an integer less than or equal to N) and signal of the second component
1 tl tl max  1 tl tl max
点としては tを含む N (N は N 以下の整数)個の信号点、 · · ·第 N成分の信号点 としては tを含む N (N は N 以下の整数)個の信号点を選びこれらを組み合わN (N is an integer less than or equal to N) signal points including t, signal points of the Nth component And select N signal points including t (N is an integer less than or equal to N)
N tN tN max N tN tN max
せ、前記送信信号の候補となる信号を複数種類生成するステップ  Generating a plurality of types of signals that are candidates for the transmission signal.
を含む。  including.
[0039] この場合、前記第 1の無線局力 送信されたユーザデータを再生し出力するステツ プは、  [0039] In this case, the step of reproducing and outputting the user data transmitted from the first wireless station comprises:
前記送信信号の候補である N 種類 (N =N X N Χ · · · Χ Ν : Ν は整数)の mid mid tl t2 tN mid 列ベクトルの中の第 k (l≤k≤N : kは整数)番目の列ベクトルを S[k]とした場合に mid  The k-th (l≤k≤N: k is an integer) number among the N types (N = NXN Χ · · Χ :: Ν is an integer) of the candidate of the transmission signal, Where S [k] is the column vector of
、伝達関数行列 Hと該列ベクトルの積すなわち H X S[k]で与えられる列ベクトルを算 出するステップと、  Calculating the product of the transfer function matrix H and the column vector, that is, the column vector given by H X S [k];
各列ベクトル S[k]に対する前記列ベクトル H X S[k]と実際の受信信号ベクトル Rx との信号点間距離を算出するステップと、  Calculating a distance between signal points between the column vector H X S [k] and the actual received signal vector Rx for each column vector S [k];
全ての kの中力 前記信号点間距離を最小にする送信信号点 S[k ]を選択するス best  The best choice of the transmission signal point S [k] that minimizes the distance between the signal points.
テツプと、  With the steps
該選択された列ベクトルの各要素を合成して前記第 1の無線局から送信されたュ 一ザデータを再生するステップと  Combining the elements of the selected column vector to reproduce the user data transmitted from the first wireless station;
を有するようにしても良い。  May be provided.
[0040] 前記第 1近似列ベクトル Txを求めるステップは、 [0040] The step of obtaining the first approximate column vector Tx includes:
前記伝達関数行列 Ηのエルミート共役となる Ν行 Μ列行列 ΗΗを生成するステップと これらの行列の積即ち Ν行 Ν列の行列 ΗΗ X Ηを算出するステップと、 Generating a Ν row Μ column matrix Η that is Hermitian conjugate of the transfer function matrix と, and calculating a product of these matrices, that is, a Ν row Ν matrix Η Η X 、,
該行列の逆行列即ち Ν行 Ν列の行列 (ΗΗ X Η) 1を算出するステップと、 該逆行列と行列 ΗΗの積即ち Ν行 Μ列の行列 (ΗΗ X Η)— 1 X ΗΗを算出するステップ と、 Calculating said row inverse matrix i.e. Ν rows Ν columns of a matrix of columns Η X Η) 1, inverse matrix and the matrix Eta Eta product i.e. Ν rows Μ columns of the matrix (Η Η X Η) - 1 X Calculating Η ; and
前記第 2のアンテナ群の第 mアンテナで実際に受信された受信信号を!: とし、各成 分が(r , r , r , · · τ )で与えられる Μ行の列ベクトルを Rxとした場合、(HH X H)— 1 The received signal actually received by the m-th antenna of the second antenna group is represented by!:, And each component is given by (r, r, r,... Τ). If (H H XH) — 1
1 2 3 M  1 2 3 M
X HH X Rxで与えられる N行の列ベクトル Txを算出するステップと、 Calculating an N-row column vector Tx given by XH H X Rx;
を含むようにしても良い。  May be included.
これにより、従来の MLD法では、送信信号の重畳数 Nに対し、信号の種類 N N に比例してユークリッド距離を演算するための回路規模が指数関数的に発散するがAs a result, in the conventional MLD method, the signal type N N The circuit scale for calculating the Euclidean distance exponentially diverges in proportion to
、本発明ではこれを大幅に抑制し、回路規模を抑制しながら MLD法と等価な特性を 実現するための簡易な方法を提供することが可能となる。 According to the present invention, it is possible to provide a simple method for greatly suppressing this and realizing characteristics equivalent to the MLD method while suppressing the circuit scale.
[0041] また、前記第 1近似列べクトノレ Txを求めるステップは、 Ν = Μの場合において、 前記伝達関数行列 Ηの逆行列即ち Ν行 Ν列の行列 Η—1を算出するステップと、 前記第 2のアンテナ群の第 mアンテナで実際に受信された受信信号を!: とし、各成 分が(r , r , r , · · τ )で与えられる Ν行の列ベクトルを Rxとした場合、 Η— X Rxで与Further, the step of obtaining the first approximated column vector Tx includes, when Ν = Μ, calculating an inverse matrix of the transfer function matrix 即 ち, that is, a matrix Η− 1 of Ν rows and Ν columns, If the received signal actually received by the m-th antenna of the second antenna group is!:, And each component is given by (r, r, r, ··· τ), and the column vector of the Ν row is Rx , Η—given by X Rx
1 2 3 M 1 2 3 M
えられる N行の列ベクトル Txを算出するステップと、  Calculating the resulting N-row column vector Tx;
を含むようにしても良い。  May be included.
これにより、送受信側のアンテナ数が同じ (N = M)場合は、より演算処理を簡略ィ匕 することができる。  As a result, when the number of antennas on the transmitting and receiving sides is the same (N = M), the arithmetic processing can be further simplified.
[0042] また、前記第 1近似列べクトノレ Txを求めるステップは、 [0042] Further, the step of obtaining the first approximated column vector Tx includes:
前記伝達関数行列 Hのエルミート共役となる N行 M列行列 HHを生成するステップと 前記第 1の無線局が送信するプリアンブル信号を前記第 2のアンテナ群で受信した 際の各信号を成分としてもつ列ベクトル yを取得するステップと、 Each signal at the time of receiving the preamble signal step from the first radio station that generates an N rows and M columns matrix H H to be a Hermitian conjugate of the transfer function matrix H is transmitted at the second antenna group as component Obtaining a column vector y having
該列ベクトルのエルミート共役な行ベクトル yHを生成するステップと、 Generating a Hermitian conjugate row vector y H of the column vector;
これらのベクトルの積として M行 M列の行列すなわち Y=y X y Hを算出するステップ と、 Calculating an M-by-M matrix, that is, Y = y X y H as the product of these vectors;
前記プリアンブル信号が複数シンボルにわたる場合には、前記行列 Yの各成分の 値を複数シンボルに渡って平均化しこれに置き換えるステップと、  When the preamble signal spans a plurality of symbols, averaging the value of each component of the matrix Y over a plurality of symbols and replacing the averaged value with the average value;
前記行列 Yの逆行列すなわち Y—1を算出するステップと、 Calculating the inverse of the matrix Y, i.e., Y- 1 ;
前記行列 HHおよび Y— 1の行列積すなわち N行 M列の行列 HH X Y—1を生成するス テツプと、 A step of generating a matrix product of the matrices H H and Y— 1 , that is, an N-by-M matrix H H XY— 1 ;
前記第 2のアンテナ群の第 mアンテナで実際に受信された受信信号を!: とし、各成 分が(r , r , r , · · τ )で与えられる Μ行の列ベクトルを Rxとした場合、 ΗΗ Χ Υ— X RThe received signal actually received by the m-th antenna of the second antenna group is represented by!:, And each component is given by (r, r, r,... Τ). If, Η Η Χ Υ- XR
1 2 3 M 1 2 3 M
χで与えられる N行の列ベクトル Txを算出するステップと、  calculating an N-row column vector Tx given by χ;
を含むようにしても良い。 これにより、送信信号点検索の初期情報を与える際に、 ZF法よりも特性の優れた M MSE法を適用することができ、特性をより改善するための簡易な実現方法を提供で きる。 May be included. As a result, the MMSE method with better characteristics than the ZF method can be applied when providing initial information for transmission signal point search, and a simple realization method for further improving characteristics can be provided.
[0043] 上記無線通信装置または無線通信方法において、前記送信信号の候補数 (N , tl [0043] In the above wireless communication apparatus or wireless communication method, the number of transmission signal candidates (N, tl)
N ,Ν ···, Ν )の値を各アンテナ毎の信号対雑音比の推定値に応じて決定して t2 t3 tN N, Ν, Ν) are determined according to the estimated signal-to-noise ratio of each antenna, and t2 t3 tN
も良い。あるいは、前記送信信号の候補数 (N , N , N ···, N )の値を行列 ΗΗ· tl t2 t3 tN Is also good. Alternatively, the value of the number of transmission signal candidates (N, N, N..., N) is calculated as a matrix Η Η tl t2 t3 tN
Hの各アンテナ毎の固有値に応じて決定しても良い。  H may be determined according to the eigenvalue of each antenna.
これらにより、回路規模を抑えながら特性を改善するために最適な候補数 (N , N tl t2 Thus, the optimal number of candidates (N, N tl t2
,Ν ·'·,Ν )を選ぶための簡易な実現方法を提供することができる。 , Ν · '·,') can be provided.
t3 tN  t3 tN
また、本無線通信方法において、前記無線局間で複数のサブキャリアを用いた直 交周波数分割多重(OFDM)変調方式を用いても良!、。  Further, in this wireless communication method, an orthogonal frequency division multiplexing (OFDM) modulation method using a plurality of subcarriers between the wireless stations may be used! ,.
[0044] 本発明はまた、上述の無線通信装置を受信側に有して無線送受信を行う無線通信 システムを提供する。 [0044] The present invention also provides a wireless communication system having the above-described wireless communication device on the receiving side and performing wireless transmission and reception.
発明の効果  The invention's effect
[0045] 本発明の無線通信装置においては、従来方式では、生成する送信信号の候補群 { S[k]}は、送信信号として取り得る全ての信号であり、送信信号の推定値の第 1近似 Tx'とは無関係であった力 本発明では、チャネル推定処理後に伝達関数行列 Ηを もとに、送信信号の推定値の第 1近似列ベクトル Τχ'を求め、これをもとに候補群 {S[ k]}の範囲を限定する。  In the wireless communication apparatus of the present invention, in the conventional method, the candidate group {S [k]} of transmission signals to be generated is all signals that can be taken as transmission signals, and the first group of transmission signal estimated values is In the present invention, after the channel estimation processing, the first approximate column vector Τχ ′ of the estimated value of the transmission signal is obtained based on the transfer function matrix 、, and the candidate group is determined based on this. Limit the range of {S [k]}.
これにより、 MIMO技術を用いた無線通信を行う際に、良好な特性を実現しながら も、現実的な回路規模及び演算量にて実現可能な、無線通信装置、及び無線通信 方法を提供することができる。  As a result, it is possible to provide a wireless communication device and a wireless communication method that can realize a good characteristic and realize a realistic circuit scale and computation amount when performing wireless communication using MIMO technology. Can be.
具体例としては、チャネル推定処理後に伝達関数行列 Hをもとに、 HH、 HHXH、(
Figure imgf000015_0001
(HHXH)— ixH11と順次計算を行う。また、あるシンボルの受信信号がベ タトル Rxであるとき、(HHXH)— ^H XRXの演算を行い、送信信号の推定値の第 1 近似 Txを求め、さらに硬判定回路により Τχに最も接近した Τχ'を求め、送信信号の 候補は、この Tx,の近傍に限定して生成する。
As a specific example, based on the transfer function matrix H after the channel estimation processing, H H , H H XH, (
Figure imgf000015_0001
(H H XH) — ixH 11 is calculated sequentially. Also, when the received signal of a certain symbol is the vector Rx, the calculation of (H H XH) — ^ H XRX is performed to obtain a first approximation Tx of the estimated value of the transmitted signal. The approached Τχ 'is found, and the transmission signal candidates are generated only in the vicinity of this Tx.
これにより、従来の MLD法では、送信信号の重畳数 Nに対し、信号の種類 N N に比例してユークリッド距離を演算するための回路規模が指数関数的に発散するが 、本発明ではこれを大幅に抑制し、回路規模を抑制しながら MLD法と等価な特性を 実現するための簡易な方法を提供することが可能となる。 As a result, in the conventional MLD method, the signal type N N The circuit scale for calculating the Euclidean distance exponentially diverges in proportion to the exponential. However, in the present invention, this is drastically suppressed, and a simplified method for realizing characteristics equivalent to the MLD method while suppressing the circuit scale is achieved. It is possible to provide a simple method.
ここで、送受信側のアンテナ数が同じ (N = M)場合は、伝達関数行列 Hの逆行列 H— 1を算出し、受信信号べ外ル Rxとした場合、 H— ^Rxにより、送信信号の推定値 の第 1近似 Txを求める。 Here, when the number of antennas on the transmitting and receiving sides is the same (N = M), the inverse matrix H— 1 of the transfer function matrix H is calculated, and when the received signal level is Rx, the transmission signal is calculated by H— ^ Rx. Find the first approximation Tx of the estimated value of.
これにより、送受信側のアンテナ数が同じ (Ν = Μ)場合は、より演算処理を簡略ィ匕 することができる。  As a result, when the number of antennas on the transmitting and receiving sides is the same (Ν = 演算), the arithmetic processing can be further simplified.
[0046] また、各アンテナで受信したプリアンブル信号を信号成分としてもつ列ベクトル yを 取得し、該列ベクトルのエルミート共役な行ベクトル yHを生成し、 Y=y X y H、および 逆行列 Y—1を算出し、さらに行列 HH XY— 1を生成し、受信信号ベクトル Rxにより、 HH X Y—1 X Rxで与えられる送信信号の推定値の第 1近似 Txを求めることも可能である 。さらに硬判定回路により Txに最も接近した Tx'を求め、送信信号の候補は、この T x'の近傍に限定して生成する。 Also, a column vector y having a preamble signal received by each antenna as a signal component is obtained, a Hermitian conjugate row vector y H of the column vector is generated, and Y = y X y H and an inverse matrix Y — 1 is calculated, the matrix H H XY— 1 is further generated, and the first approximation Tx of the estimated value of the transmission signal given by H H XY— 1 X Rx can be obtained from the received signal vector Rx. . Further, Tx ′ closest to Tx is obtained by a hard decision circuit, and transmission signal candidates are generated only in the vicinity of Tx ′.
これにより、送信信号点検索の初期情報を与える際に、 ZF法よりも特性の優れた M MSE法を適用することができ、特性をより改善するための簡易な実現方法を提供で きる。  As a result, the MMSE method with better characteristics than the ZF method can be applied when providing initial information for transmission signal point search, and a simple realization method for further improving characteristics can be provided.
[0047] また、無線局間で複数のサブキャリアを用いた直交周波数分割多重 (OFDM: O rthogonalFrequency Division Multiplexing)変調方式を用いる場合には、 MIMO技 術の適用領域として、現在、 5GHz帯及び 2.4GHz帯を用いた高速無線 LANシステ ムの拡張が注目されていおり、これらの無線 LANシステムに本発明を適用できる。  [0047] In addition, when an orthogonal frequency division multiplexing (OFDM) modulation scheme using a plurality of subcarriers is used between wireless stations, MIMO technology is currently applied to the 5 GHz band and the 2.4 GHz band. Attention has been paid to expansion of high-speed wireless LAN systems using the GHz band, and the present invention can be applied to these wireless LAN systems.
[0048] また、送信信号の候補数のベクトル (N , N , N · · · , N )の値を各アンテナ毎の tl t2 t3 tN  Further, the value of the vector (N 1, N 2, N,..., N) of the number of transmission signal candidates is set to tl t2 t3 tN for each antenna.
信号対雑音比の推定値に応じて、あるいは、各アンテナ毎の固有値に応じて決定す ることができる。これにより、回路規模を抑えながら特性を改善するために最適な候補 数 (N , Ν , Ν · ' · , Ν )を選ぶための簡易な実現方法を提供することができる。  It can be determined according to the estimated value of the signal-to-noise ratio or according to the eigenvalue of each antenna. As a result, it is possible to provide a simple realization method for selecting the optimal number of candidates (N, Ν, Ν, ', Ν) to improve the characteristics while suppressing the circuit scale.
tl t2 t3 tN  tl t2 t3 tN
図面の簡単な説明  Brief Description of Drawings
[0049] [図 1]本発明の第 1の実施の形態における無線通信装置の受信部の構成例を示す 図。 [図 2]本発明の第 2の実施の形態における無線通信装置の受信部の構成例を示す 図。 FIG. 1 is a diagram showing a configuration example of a receiving unit of a wireless communication device according to a first embodiment of the present invention. FIG. 2 is a diagram illustrating a configuration example of a receiving unit of a wireless communication device according to a second embodiment of the present invention.
[図 3]本発明の第 3の実施の形態における無線通信装置の受信部の構成例を示す 図。  FIG. 3 is a diagram showing a configuration example of a receiving unit of a wireless communication device according to a third embodiment of the present invention.
[図 4]本発明の第 1の実施の形態における無線通信装置の受信フローを示す図。  FIG. 4 is a diagram showing a reception flow of the wireless communication device according to the first embodiment of the present invention.
[図 5]本発明の第 2の実施の形態における無線通信装置の受信フローを示す図。  FIG. 5 is a diagram showing a reception flow of the wireless communication device according to the second embodiment of the present invention.
[図 6]本発明の第 3の実施の形態における無線通信装置の受信フローを示す図。  FIG. 6 is a diagram showing a reception flow of a wireless communication device according to a third embodiment of the present invention.
[図 7]従来技術における第 1の無線局の送信部構成を示す図。  FIG. 7 is a diagram showing a configuration of a transmitting unit of a first wireless station in the related art.
[図 8]従来技術における MLD法を用いた無線通信装置の受信部の構成を示す図。  FIG. 8 is a diagram showing a configuration of a receiving unit of a wireless communication device using the MLD method according to the related art.
[図 9]従来技術における第 1の無線局の送信フローを示す図。  FIG. 9 is a diagram showing a transmission flow of a first wireless station in the related art.
[図 10]従来技術における MLD法を用いた無線通信装置の受信フローを示す図。 符号の説明  FIG. 10 is a diagram showing a reception flow of a wireless communication device using the MLD method in a conventional technique. Explanation of symbols
[0050] 1-1-1-4 送信アンテナ 2— 1一 2— 4 無線部 3 チャネル推定回路 4 受信 信号管理回路 5 伝達関数行列管理回路 6 行列演算回路 # 1 7 行列演算回 路 # 2 8 硬判定回路 9 送信信号候補生成回路 10 レプリカ生成回路 11 ュ ークリツド距離演算回路 12 選択回路 13 データ合成回路 21 行列演算回路 # 1 22 行列演算回路 # 2 31 行列演算回路 # 1 32 行列演算回路 # 2 33 受信信号管理回路 100 データ分割回路 101— 1一 101— 4 プリアンブル付与回 路 102— 1— 102 - 4 変調回路 103— 1— 103 - 4 無線部 104 - 1一 104 - 4 送 信アンテナ 111 1一 111 4 受信アンテナ 112— 1— 112— 4 無線部 113 チ ャネル推定回路 114 受信信号管理回路 115 伝達関数行列管理回路 116 レプリカ生成回路 117 送信信号生成回路 118 ユークリッド距離演算回路 119 選択回路 120 データ合成回路  [0050] 1-1-1-4 Transmitting antenna 2-1 1 2-4 Radio section 3 Channel estimation circuit 4 Received signal management circuit 5 Transfer function matrix management circuit 6 Matrix calculation circuit # 1 7 Matrix calculation circuit # 2 8 Hard decision circuit 9 Transmission signal candidate generation circuit 10 Replica generation circuit 11 Euclidean distance calculation circuit 12 Selection circuit 13 Data synthesis circuit 21 Matrix calculation circuit # 1 22 Matrix calculation circuit # 2 31 Matrix calculation circuit # 1 32 Matrix calculation circuit # 2 33 Received signal management circuit 100 Data division circuit 101—1-1 101—4 Preamble addition circuit 102—1—102—4 Modulation circuit 103—1—103—4 Radio section 104—1 104—4 Transmit antenna 111 1 1 111 4 Receiving antenna 112— 1— 112— 4 Radio section 113 Channel estimation circuit 114 Received signal management circuit 115 Transfer function matrix management circuit 116 Replica generation circuit 117 Transmission signal generation circuit 118 Euclidean distance calculation circuit 119 Selection circuit 120 Data synthesis Circuit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0051] 本発明と従来技術の異なる点は、無線通信装置の受信部の構成及び処理内容に あり、送信側の無線通信装置の送信部の構成及び処理内容、即ち図 7および図 9に 示す従来例は本発明においても共通である。したがって、以下には受信側の無線通 信装置の受信部に関する説明を行う。 [0052] 以下、本発明の種々の実施形態について、図を参照して説明する。なお、各図に おいては、行列の積を「·」で示している。 [0051] The difference between the present invention and the prior art lies in the configuration and processing content of the receiving unit of the wireless communication device. The configuration and processing content of the transmitting unit of the wireless communication device on the transmitting side, that is, shown in Figs. The conventional example is common to the present invention. Therefore, hereinafter, the receiving section of the wireless communication device on the receiving side will be described. Hereinafter, various embodiments of the present invention will be described with reference to the drawings. In each figure, the product of the matrix is indicated by “·”.
[0053] [第 1の実施の形態]  [First Embodiment]
図 1は、本発明の無線通信装置の第 1の実施の形態例を示す図であり、無線通信 装置の受信部の構成例を示す図である。ここではひとつの例として、受信アンテナ数 M=4の場合を例にとり説明する。図 1において、 1—1一 1-4は受信アンテナ、 2-1 一 2 - 4は無線部、 3はチャネル推定回路、 4は受信信号管理回路、 5は伝達関数行 列管理回路、 6は行列演算回路 # 1、 7は行列演算回路 # 2、 8は硬判定回路、 9は 送信信号候補生成回路、 10はレプリカ生成回路、 11はユークリッド距離演算回路、 12は選択回路、 13はデータ合成回路を示している。  FIG. 1 is a diagram illustrating a first embodiment of a wireless communication device according to the present invention, and is a diagram illustrating a configuration example of a receiving unit of the wireless communication device. Here, as an example, a case where the number of receiving antennas is M = 4 will be described. In FIG. 1, 1-1-1 1-4 are receiving antennas, 2-1 1 2-4 are radio sections, 3 is a channel estimation circuit, 4 is a received signal management circuit, 5 is a transfer function matrix management circuit, and 6 is a transfer function matrix management circuit. Matrix operation circuits # 1, 7 are matrix operation circuits # 2, 8 are hard decision circuits, 9 is a transmission signal candidate generation circuit, 10 is a replica generation circuit, 11 is a Euclidean distance operation circuit, 12 is a selection circuit, and 13 is data synthesis. The circuit is shown.
[0054] 第 1の受信アンテナ 1 1から第 4の受信アンテナ 1 4は、それぞれ個別に受信信 号を受信する。無線部 2— 1一 2— 4を経由して、受信した信号はチャネル推定回路 3 に入力される。送信側で付与した所定のプリアンブル信号の受信状況から、チャネル 推定回路 3にて各送信アンテナと受信アンテナ間の伝達関数をここで取得する。取 得された各伝達関数の情報 h は伝達関数行列管理回路 5にて伝達関数行列 Hとし  [0054] The first to fourth receiving antennas 11 to 14 individually receive received signals. The received signal is input to the channel estimation circuit 3 via the radio units 2-1 to 2-4. The transfer function between each transmitting antenna and the receiving antenna is acquired here by the channel estimation circuit 3 from the reception state of the predetermined preamble signal given on the transmitting side. The obtained information h of each transfer function is used as a transfer function matrix H in the transfer function matrix management circuit 5.
J,i  J, i
て管理される。  Managed.
[0055] プリアンブル信号に後続するデータ信号は、 1シンボル分づっ受信信号管理回路 4に入力される。受信信号管理回路 4では、各アンテナの受信信号 (r , r , r , r )を  The data signal following the preamble signal is input to the reception signal management circuit 4 for one symbol. In the received signal management circuit 4, the received signal (r, r, r, r, r) of each antenna is
1 2 3 4 成分とした受信信号ベクトル Rxとして一旦管理される。行列演算回路 # 1 (6)では、 取得した伝達関数行列 H力も HH (Hのエルミート行列)、 HH X H、 (HH X H)"\ (HH X H) 1 X HHと順次計算を行う。 It is once managed as the received signal vector Rx as the 1 2 3 4 component. In the matrix operation circuit # 1 (6), the obtained transfer function matrix H is also calculated sequentially as H H (Hermitian matrix of H), H H XH, (H H XH) "\ (H H XH) 1 XH H .
[0056] ここで求められた (HH X H) 1 X HHと、受信信号管理回路 4で管理する受信信号べ タトル Rxは、行列演算回路 # 2 (7)にて積算処理を行う。ここで得られた信号点 Tx= (HH X H)— i x HH x Rxは、送信信号の推定値の第 1近似であるが、一般には熱雑音 項により不連続な値をとる送信信号のコンスタレーシヨン上の点とは一致しない。そこ で、硬判定回路 8にて、 Txにもつとも近接した送信信号点 Tx'を判定する。 The (H H XH) 1 XH H obtained here and the received signal vector Rx managed by the received signal management circuit 4 are integrated by the matrix operation circuit # 2 (7). The signal point Tx = (H H XH) — ix HH x Rx obtained here is the first approximation of the estimated value of the transmitted signal, but is generally the constellation of the transmitted signal that takes a discontinuous value due to the thermal noise term. It does not match the point on the lace. Therefore, the hard decision circuit 8 determines a transmission signal point Tx ′ that is close to Tx.
[0057] 送信信号候補生成回路 9では、先に求めた送信信号点 Tx'を含め、 Tx'に近接し た送信信号の候補群 {S [k]}を生成する。従来の MLD法では、この送信信号の候補 群 {S [k] }は硬判定された送信信号点 Τχ'とは関係なぐ Ν Ν種類のとり得る全ての max The transmission signal candidate generation circuit 9 generates a transmission signal candidate group {S [k]} that is close to Tx ′, including the transmission signal point Tx ′ obtained earlier. In the conventional MLD method, this candidate The group {S [k]} is not related to the hard-decided transmission signal point Τχ ' Ν max All possible max
信号点を候補としていた。しかし、ここでは送信信号点 Τχ'を基準として、この信号点 に近接した信号点に限定する。  Signal points were candidates. However, here, the transmission signal point Τχ 'is used as a reference to limit the signal point to a signal point close to this signal point.
[0058] 例えば、送信信号点の列ベクトル Τχ,の各成分を( t , t , t , · · 't )とした場合、各 [0058] For example, when each component of the column vector 送信 of the transmission signal point is (t, t, t, ··· 't),
1 2 3 N  1 2 3 N
成分において送信信号点として取り得る N 個 (N は 1より大きい整数)の信号点 max max  N (N is an integer greater than 1) signal points that can be taken as transmission signal points in the component max max
の中から、第 1成分の信号点としては tを含む N (N は N 以下の整数)個の信号  Of the first component signal points are N (N is an integer less than or equal to N) signals containing t
1 tl tl max  1 tl tl max
点、第 2成分の信号点としては tを含む N (N は N 以下の整数)個の信号点、 · ·  N (N is an integer less than or equal to N) signal points including t as signal points and second component signal points
2 t2 t2 max  2 t2 t2 max
*第?^成分の信号点としては tを含む N (N は N 以下の整数)個の信号点を選  * Select N (N is an integer less than or equal to N) signal points including t as the signal points of the? ^
N tN tN max  N tN tN max
びこれらを組み合わせ、第 1のアンテナ群より送信された送信信号の候補となる信号 を複数種類生成し、送信信号の候補である N 種類 (N =N X N Χ · · · Χ Ν : Ν mid mid tl t2 tN は整数)の列ベクトルを生成し、この中の第 k (l≤k≤N : kは整数)番目の列べ mid mid  And combining them to generate a plurality of types of signals that are candidates for transmission signals transmitted from the first antenna group, and N types of transmission signal candidates (N = NXN Χ · · · Χ Ν: Ν mid mid tl t2 tN is an integer) column vector, and the k-th (l≤k≤N: k is an integer) column vector mid mid
タトルを S[k]とする。  Let the tuttle be S [k].
なお、(N , N , · '·,Ν )の中の一部の要素の値は Ν と一致していてもかまわな tl t2 tN max  Note that the value of some elements in (N, N, · '·,)) may be the same as Ν. Tl t2 tN max
いが、少なくとも 1つ以上の要素は N より小さな値をとり、その結果として N <N max mid ma χΝとなる様にする。 However, at least one element has a value smaller than N, so that N <N max mid ma χ と し て .
[0059] また、送信信号候補生成回路 9で生成した列ベクトル S[k]は伝達関数行列管理回 路 5にて管理された伝達関数行列 Hとの積算処理をレプリカ生成回路 10で実施し、 送信信号が S[k]であった場合の受信信号の推定値を求める。この値と、受信信号管 理回路 4で管理された実際の受信信号との距離、すなわちユークリッド距離をユーク リツド距離演算回路 11で求める。全ての送信信号候補群 {S[k] }に対して同様の処 理を実施した後、選択回路 12ではユークリッド距離が最短となる信号 S[k ]を選択 best する。  [0059] The replica generation circuit 10 performs an integration process of the column vector S [k] generated by the transmission signal candidate generation circuit 9 with the transfer function matrix H managed by the transfer function matrix management circuit 5, Find the estimated value of the received signal when the transmitted signal is S [k]. A distance between this value and an actual received signal managed by the received signal management circuit 4, that is, a Euclidean distance is obtained by the Euclidean distance calculation circuit 11. After performing the same processing on all the transmission signal candidate groups {S [k]}, the selection circuit 12 selects the signal S [k] with the shortest Euclidean distance and selects the best.
この様にしてシンボル毎に確定した受信信号は、データ合成回路 13にてシンボル毎 に合成すると共に、 N系列の信号をまとめて 1系列とし、最終的に、送信側でのデー タを再生して出力する。  The received signal determined for each symbol in this manner is synthesized for each symbol by the data synthesis circuit 13, and the N-sequence signals are combined into one series, and finally, the data on the transmission side is reproduced. Output.
[0060] なお、説明では複数の送信信号候補群 {S[k] }の全てに行うべき処理を、送信信号 候補生成回路 9、レプリカ生成回路 10、ユークリッド距離演算回路 11とそれぞれひと つの機能ブロックにまとめたが、それぞれの機能ブロック内には所定の回数の演算を 実施する機能が必要となる。例えば、処理遅延を短縮するためには、同様の回路を 演算回数分だけ並列的に実装することになる。また、回路規模を抑制するためには、 送信信号候補生成回路 9→レプリカ生成回路 10→ユークリッド距離演算回路 11→ 送信信号候補生成回路 9→レプリカ生成回路 10→ユークリッド距離演算回路 11→ 送信信号候補生成回路 9→· · ·とループ上に処理を実施する構成とすることも可能 である。 In the description, processing to be performed on all of the plurality of transmission signal candidate groups {S [k]} is performed by a transmission signal candidate generation circuit 9, a replica generation circuit 10, and a Euclidean distance calculation circuit 11, each of which has one functional block. Each function block has a predetermined number of calculations. You need a function to perform. For example, to reduce processing delays, similar circuits will be implemented in parallel for the number of operations. Also, in order to suppress the circuit scale, the transmission signal candidate generation circuit 9 → the replica generation circuit 10 → the Euclidean distance calculation circuit 11 → the transmission signal candidate generation circuit 9 → the replica generation circuit 10 → the Euclidean distance calculation circuit 11 → the transmission signal candidate It is also possible to adopt a configuration in which processing is performed on a loop with the generation circuit 9 →.
[0061] 以上の説明は、第 1のアンテナ群 (送信側)と第 2のアンテナ群 (受信側)のそれぞ れのアンテナ数が Νと Μで一般に異なる場合を例にとって示した。これに対し、 Ν = Μに限定した場合には、処理が若干簡単になる。  The above description has been given by taking as an example a case where the numbers of antennas of the first antenna group (transmitting side) and the second antenna group (receiving side) are generally different between Ν and Μ. On the other hand, when Ν = Μ is limited, the processing is slightly simplified.
[0062] [第 2の実施の形態]  [Second Embodiment]
図 2は、本発明の無線通信装置の第 2の実施の形態例を示す図であり、無線通信 装置の受信部の構成例を示す図である。図 2においては、 21で示す行列演算回路 # 1、 22で示す行列演算回路 # 2を除き、全て図 1に記載のものと処理の内容が同じ である。また、図 1の行列演算回路 # 1 (6)と図 2の行列演算回路 # 1 (21)、図 1の行 列演算回路 # 2 (7)と図 2の行列演算回路 # 2 (22)は、それぞれ内部で行う処理内 容が異なって!/ヽるだけである。  FIG. 2 is a diagram illustrating a second embodiment of the wireless communication device according to the present invention, and is a diagram illustrating a configuration example of a receiving unit of the wireless communication device. In FIG. 2, except for the matrix operation circuit # 1 indicated by 21 and the matrix operation circuit # 2 indicated by 22, all the processes are the same as those shown in FIG. Also, the matrix operation circuit # 1 (6) in Fig. 1 and the matrix operation circuit # 1 (21) in Fig. 2, the matrix operation circuit # 2 (7) in Fig. 1 and the matrix operation circuit # 2 (22) in Fig. 2 Are different from each other in the content of the processing performed internally.
[0063] 一般には Νと Μの値は異なり、伝達関数行列 Ηは非正方行列である。このため、伝 達関数行列 Ηのエルミート行列 ΗΗと Ηとの積を用いることにより、行列を正方行列に 変換していた。しかし、もともとの行列が正方行列であれば、その様な処理は不要で あり、行列演算回路 # 1 (21)では伝達関数行列 Ηの逆行列 Η—1を求め、行列演算回 路 # 2 (22)ではこの逆行列と受信信号ベクトル Rxの積を取れば良!、。 [0063] Generally, the values of Ν and Μ are different, and the transfer function matrix Η is a non-square matrix. For this reason, the matrix was converted to a square matrix by using the product of the Hermitian matrices Η Η and Η of the transfer function matrix Η. However, if the original matrix is a square matrix, such processing is unnecessary, and the matrix operation circuit # 1 (21) finds the inverse matrix Η- 1 of the transfer function matrix Η, and the matrix operation circuit # 2 ( 22) Then take the product of this inverse matrix and the received signal vector Rx! ,.
[0064] 以上、図 1および図 2の説明では、送信信号の推定値の第 1近似として従来の ZF 法を用いていた。これに対して、送信信号の推定値の第 1近似としてその他の方法を 選択することも可能である。例えば、 MMSE (Minimum Mean Square Error)法など がその一例にあげられる。  As described above, in the description of FIG. 1 and FIG. 2, the conventional ZF method is used as the first approximation of the estimated value of the transmission signal. On the other hand, other methods can be selected as the first approximation of the estimated value of the transmission signal. For example, the MMSE (Minimum Mean Square Error) method is one example.
[0065] [第 3の実施の形態]  [Third Embodiment]
図 3は、本発明の第 3の実施の形態例を示す図であり、無線通信装置の受信部の 構成例を示す図である。図 3においては、 31で示す行列演算回路 # 1、 32で示す行 列演算回路 #2、 33で示す受信信号管理回路を除き、全て図 1に記載のものと処理 内容が同じである。また、図 1の行列演算回路 #1(6)と図 3の行列演算回路 #1(31 )、図 1の行列演算回路 #2(7)と図 3の行列演算回路 #2(31)、図 1の受信信号管 理回路 4と図 3の受信信号管理回路 33はそれぞれ内部で行う処理内容が異なって いるだけである。 FIG. 3 is a diagram illustrating a third embodiment of the present invention, and is a diagram illustrating a configuration example of a receiving unit of a wireless communication device. In FIG. 3, a matrix operation circuit # 1 indicated by 31 and a row indicated by 32 Except for the received signal management circuits indicated by the column operation circuits # 2 and # 33, the processing contents are all the same as those shown in FIG. Also, the matrix operation circuit # 1 (6) of FIG. 1 and the matrix operation circuit # 1 (31) of FIG. 3, the matrix operation circuit # 2 (7) of FIG. 1, and the matrix operation circuit # 2 (31) of FIG. The received signal management circuit 4 shown in FIG. 1 and the received signal management circuit 33 shown in FIG.
[0066] 受信信号管理回路 33では、従来通りの機能に加えて、受信した信号のうちのプリ アンブル信号 yを抜き出して行列演算回路 # 1 (31)に入力する機能をもつ。行列演 算回路 # 1 (31)では、伝達関数行列管理回路 5で取得した伝達関数行列 H力 HH を求めると共に、受信信号管理回路 33から入力されたプリアンブル信号 yに対し、そ のエルミート共役なベクトル yHを生成し、さらに yXyHの演算を実施する。プリアンプ ル信号が複数シンボルである場合には、複数シンボルでの平均値として、または 1シ ンボルの場合にはそのままの値として、行列 Yを yXyHの平均値として取得する。さら に、この逆行列 Y— および行列 HHXY— 1を順次計算する。以上が行列演算回路 #1 (31)の機能である。これに対し、行列演算回路 #2 (32)では、行列演算回路 #1(3 1)から取得した HHXY_1と受信信号管理回路 33から入力される受信信号 Rxとの行 列積を演算する。この HHXY— XRxが、本実施例における送信信号の推定値の第 1 近似となる。 The reception signal management circuit 33 has a function of extracting the preamble signal y from the received signals and inputting the extracted signal to the matrix operation circuit # 1 (31), in addition to the conventional function. The matrix operation circuit # 1 (31) obtains the transfer function matrix H force H H obtained by the transfer function matrix management circuit 5 and, with respect to the preamble signal y input from the reception signal management circuit 33, its Hermitian conjugate. Generate a new vector y H and perform yXy H operation. If preamplifier Le signal is plural symbols, as an average value in the plurality of symbols, or as the raw value in the case of 1 symbol, to obtain a matrix Y as the average value of Yxy H. Further, the inverse matrix Y— and the matrix H H XY— 1 are sequentially calculated. The above is the function of the matrix operation circuit # 1 (31). In contrast, in the matrix operation circuit # 2 (32), the matrix product of the received signal Rx supplied from the matrix operation circuit # 1 (3 1) and H H XY _1 acquired from the received signal management circuit 33 operation I do. This H H XY—XRx is the first approximation of the estimated value of the transmission signal in the present embodiment.
[0067] それから、図 1に示す場合と同様に、第 2のアンテナ群の第 mアンテナで実際に受 信された受信信号 とし、各成分が( r ,r ,r ,··τ )で与えられる Μ行の列べタト m 1 2 3 M  Then, as in the case shown in FIG. 1, the received signal is actually received by the m-th antenna of the second antenna group, and each component is given by (r, r, r,... Τ). Μ 列 列 列 1 1 m 1 2 3 M
ルを Rxとした場合、 HHXY— ^Rxで与えられる N行の列ベクトル Txを算出し、該列 ベクトル Τχの各要素で与えられる送信信号点に対してそれぞれ硬判定処理を行つ た列べクトノレ Τχ'を求める。 When Rx is Rx, a column vector Tx of N rows given by H H XY— ^ Rx is calculated, and hard decision processing is performed on the transmission signal point given by each element of the column vector Τχ. Find the column vector Τχ '.
[0068] 該列ベクトル Τχ,の各成分を( t , t , t ,· · 't )とした場合、各成分において送信 When each component of the column vector Τχ is (t, t, t,..., 'T), transmission is performed for each component.
1 2 3 N  1 2 3 N
信号点として取り得る N 個 (N は 1より大きい整数)の信号点の中から、第 1成分 max max  From among N (N is an integer greater than 1) signal points that can be taken as signal points, the first component max max
の信号点としては tを含む N (N は N 以下の整数)個の信号点、第 2成分の信号  N signal points including t (N is an integer less than or equal to N) and signal of the second component
1 tl tl max  1 tl tl max
点としては tを含む N (N は N 以下の整数)個の信号点、 ···第 N成分の信号点  N (N is an integer less than or equal to N) signal points including t, signal points of the Nth component
2 t2 t2 max  2 t2 t2 max
としては tを含む N (N は N 以下の整数)個の信号点を選びこれらを組み合わ  And select N signal points including t (N is an integer less than or equal to N)
N tN tN max  N tN tN max
せ、第 1のアンテナ群より送信された送信信号の候補となる信号を複数種類生成する [0069] それから、送信信号の候補である N 種類(N =N X N Χ · · · Χ Ν : Ν は整 And generate a plurality of types of signals that are candidates for transmission signals transmitted from the first antenna group. [0069] Then, N kinds of transmission signal candidates (N = NXN Χ · · · Χ Ν: Ν is an integer
mid mid tl t2 tN mid 数)の列ベクトルの中の第 k(l≤k≤N : kは整数)番目の列ベクトルを S[k]とした場  If the k-th (l≤k≤N: k is an integer) column vector in the mid mid tl t2 tN mid number column vector is S [k]
mid  mid
合に、伝達関数行列 Hと該列ベクトルの積すなわち H X S[k]で与えられる列ベクトル を算出する。また、各列ベクトル S[k]に対する前記列ベクトル H X S[k]と実際の受信 信号ベクトル Rxとの信号点間距離を算出し、全ての kの中から前記信号点間距離を 最小にする送信信号点 S[k ]を選択し、この選択された列ベクトルの各要素を合成  In this case, the product of the transfer function matrix H and the column vector, that is, the column vector given by H X S [k] is calculated. Also, the distance between the signal points between the column vector HXS [k] for each column vector S [k] and the actual received signal vector Rx is calculated, and the transmission distance that minimizes the signal point distance among all k is calculated. Select signal point S [k] and combine each element of this selected column vector
best  best
して前記第 1の無線局力 送信されたユーザデータを再生し出力する。  And reproduces and outputs the user data transmitted from the first wireless station.
なお、以上の説明においては、送信信号の推定値 (一次近似)として、行列 (HH X H)—ェ !^または H_1を用いるものを示した力 (式 1)または、この式の熱雑音の項を 省略した式の解 (または近似解)を求められるのであれば、他の手段を用いてもかま わない。 In the above description, the matrix (H H XH) —E is used as the estimated value (first-order approximation) of the transmission signal. If it is possible to find the force (Equation 1) showing the one using ^ or H_1 or the solution (or approximate solution) of the equation omitting the thermal noise term in this equation, other means may be used. I don't know.
[0070] なお、 MIMO技術の適用領域として、現在、 5GHz帯及び 2.4GHz帯等を用いた 高速無線 LANシステムの拡張が注目されている。これらの無線 LANシステムでは、 複数のサブキャリアを用いた直交周波数分割多重(OFDM: Orthogonal Frequency Division Multiplexing)変調方式を用いており、これらのシステムに本発明に適用す る場合には、各サブキャリア毎に前述の処理を実施することになる。  [0070] As an application area of the MIMO technology, an extension of a high-speed wireless LAN system using a 5GHz band, a 2.4GHz band, or the like is currently receiving attention. In these wireless LAN systems, an orthogonal frequency division multiplexing (OFDM) modulation method using a plurality of subcarriers is used. When the present invention is applied to these systems, each subcarrier is used. The above-described processing is performed every time.
[0071] [受信フローによる説明]  [Description by Receiving Flow]
また、図 4は、本発明の第 1の実施の形態(図 1参照)の無線通信装置における受 信フローを示したものである。図 10に示した従来方式では、処理ステップ S114にて 生成する送信信号の候補群 {S[k] }は、送信信号として取り得る全ての信号であり、 送信信号の推定値の第 1近似 Τχ'とは無関係であつたが、本発明では、チャネル推 定処理 (ステップ S3)後に伝達関数行列 Ηをもとに、 ΗΗ、ΗΗ Χ Η、 (ΗΗ Χ Η)"\ (ΗΗ X Η) 1 X ΗΗと順次計算を行う (ステップ S4)。 FIG. 4 shows a reception flow in the wireless communication device according to the first embodiment of the present invention (see FIG. 1). In the conventional method shown in FIG. 10, the transmission signal candidate group {S [k]} generated in processing step S114 is all signals that can be taken as transmission signals, and the first approximation 推定, では Η , Η Η Χ Η, (Η Η Χ Η) "\ (Η Η ) based on the transfer function matrix 後 に after the channel estimation processing (step S3). X Η) 1 X Η Η is sequentially calculated (step S4).
[0072] あるシンボルの受信信号が Rxであるとき(ステップ S 5)、 (HH X H) 1 X HH X Rxの 演算を行 、 (ステップ S6)、硬判定処理により送信信号の推定値の第 1近似 Tx'を求 める (ステップ S7)。送信信号の候補の生成処理は、この送信信号の推定値の第 1近 似 Tx,の近傍に限定して生成する(ステップ S8)。以降の処理ステップ S10— S15に ついては、図 10に示す従来方式の処理ステップ S116— S121の処理と同一である When the received signal of a certain symbol is Rx (step S5), the calculation of (H H XH) 1 XH H X Rx is performed (step S6). 1 Approximate Tx 'is calculated (step S7). In the transmission signal candidate generation process, the transmission signal is generated only in the vicinity of the first approximation Tx of the estimated value of the transmission signal (step S8). Subsequent processing steps S10—S15 This is the same as the processing in the conventional processing steps S116 to S121 shown in FIG.
[0073] また、図 5は、本発明の第 2の実施の形態(図 2参照)の無線通信装置における受 信フローを示す図である。図 4に示す受信フローと異なる点は、図 4で示す処理ステ ップ S4及び処理ステップ S6の行列演算処理の内容力 図 5に処理ステップ S24及 び処理ステップ S26に置き換わったのみである。 FIG. 5 is a diagram showing a reception flow in the wireless communication apparatus according to the second embodiment of the present invention (see FIG. 2). The only difference from the reception flow shown in FIG. 4 is that the processing steps S4 and S6 shown in FIG. 4 are replaced by the processing steps S24 and S26 in FIG.
[0074] また、図 6は、本発明の第 3の実施の形態(図 3参照)における無線通信装置の受 信フローを示す図である。図 4に示す受信フローと異なる点は、図 4における処理ス テツプ S4力 図 6の処理ステップ S45— S47に置き換わった点、及び処理ステップ S 6が処理 S49に置き換わった点である。また、各処理ステップにおけるそれぞれの内 容は、図 3で説明した処理に対応する。  FIG. 6 is a diagram illustrating a reception flow of the wireless communication device according to the third embodiment of the present invention (see FIG. 3). The difference from the reception flow shown in FIG. 4 is that the processing step S4 in FIG. 4 is replaced by the processing steps S45 to S47 in FIG. 6, and the processing step S6 is replaced by the processing S49. Further, the contents of each processing step correspond to the processing described in FIG.
[0075] 以上説明したように、送信信号の推定値の第 1近似の取得方法は幾つか異なるが 、求められた第 1近似の送信信号点の近傍にユークリッド距離最小となる信号点を検 索する範囲を限定することが本発明の特徴である。ひとつの例として、 64QAMを想 定すると N =64である。しかし、各送信アンテナ毎の候補を Tx'の各成分とその第 max  As described above, the method of acquiring the first approximation of the estimated value of the transmission signal is different, but a signal point having the minimum Euclidean distance near the obtained first approximation transmission signal point is searched for. It is a feature of the present invention to limit the range to be performed. As an example, assuming 64QAM, N = 64. However, the candidate for each transmitting antenna is represented by each component of Tx 'and its max.
1近接までの点の 5点に限定すれば、演算量は 5Nに抑えられる。また、第 2近接まで 含めた 9点に限定した場合には、演算量は 9Nに抑えられる。 If the number of points is limited to five, ie, the number of points up to one proximity, the amount of calculation can be reduced to 5 N. Furthermore, when limited to 9 points including up to the second proximity, the operation amount is suppressed to 9 N.
また、必ずしも Tx'の各成分に等方的である必要もない。送信信号点が格子状に 並んでいる場合、 Txの各成分が含まれる格子の四隅の点として、 Tx'の各成分を含 む様に候補を選択しても良い。この場合は演算量は 4Nとなる。 Also, it is not always necessary to be isotropic for each component of Tx '. When the transmission signal points are arranged in a grid, candidates may be selected so as to include each component of Tx 'as points at the four corners of the grid including each component of Tx. In this case, the calculation amount is 4 N.
N=4の場合を例に取れば、従来方式での演算量は 16,777,216回、 9Nの場合は 6,561回、 5Nの場合は 625回、 4Nの場合は 256回となる。この様に、演算量を画期 的に抑制することが可能となる。 Taking the case of N = 4 as an example, the calculation amount in the conventional method 16,777,216 times, 6,561 times in the case of 9 N, 625 times in the case of 5 N, in the case of 4 N becomes 256 times. In this way, the amount of calculation can be dramatically reduced.
[0076] なお、ここでは送信アンテナ毎の送信信号の候補数 (N , N , N · ' · ,Ν )の値を tl t2 t3 tN 同一としたが、アンテナ毎に異なる値としても構わない。例えば、 N = Mの場合に例 をとれば、第 i送信アンテナに対応した信号の信号対雑音比の推定値は以下の式で 求めることができる。 Here, the value of the number of transmission signal candidates (N 1, N 2, N 2 '1, Ν) for each transmission antenna is the same as tl t2 t3 tN, but may be different for each antenna. For example, taking an example in the case of N = M, the estimated value of the signal-to-noise ratio of the signal corresponding to the i-th transmitting antenna can be obtained by the following equation.
[数 1]
Figure imgf000024_0001
[Number 1]
Figure imgf000024_0001
[0077] ここで、 g は伝達関数行列 Hの逆行列の第 j,诚分を表す。一般に、信号対雑音比 , Here, g represents the j-th component of the inverse matrix of the transfer function matrix H. In general, the signal to noise ratio,
の大きな良好な状態では熱雑音による誤差が小さいので、その様なアンテナに対し ては Nを小さな値とし、信号対雑音比の小さな劣悪のアンテナに対しては Nを大き ti ti な値として設定する。  In a good condition where the error due to thermal noise is small, N is set to a small value for such an antenna, and N is set to a large value for a poor antenna with a small signal-to-noise ratio. I do.
なお、ここで用いた式と異なる演算によっても、同様の信号対雑音比を求めることは 可能であり、その様な類似の物理量を用いることも可能である。  Note that a similar signal-to-noise ratio can be obtained by an operation different from the equation used here, and such a similar physical quantity can be used.
[0078] また、各送信アンテナに対応した信号の受信状況を示す指標として、伝達関数行 列 Hに対して HH X Hの固有値も良く用いられる。一般には固有値の絶対値が大き!/ヽ 場合ほど特性が良ぐ固有値の絶対値が小さい場合には特性が悪い。したがって、 固有値の絶対値が大きい場合には Nを小さな値とし、固有値の絶対値が小さい場 Also, the eigenvalue of H H XH with respect to the transfer function matrix H is often used as an index indicating the reception status of the signal corresponding to each transmitting antenna. In general, the characteristic is good when the absolute value of the eigenvalue is large! / ヽ, and the characteristic is bad when the absolute value of the eigenvalue is small. Therefore, when the absolute value of the eigenvalue is large, N is set to a small value, and when the absolute value of the eigenvalue is small,
ti  ti
合には Nを大きな値として設定する。  In this case, set N as a large value.
ti  ti
[0079] さらに、実際の受信信号とレプリカ信号との信号点間距離として、ここではユークリツ ド距離を用いた例を示したが、その他の信号点間距離 (例えば、ユークリッド距離に 対する近似値等)を用いても構わな ヽ。  [0079] Furthermore, an example in which the Euclidean distance is used as the distance between signal points between the actual received signal and the replica signal has been described here. ) May be used.
[0080] 以上説明した様に、本発明によれば、 MIMO技術を用いた高能率な無線通信を 行う際に、 MLD法のもつ良好な特性を実現しながらも、従来の MLD法に比べて大 幅に回路規模及び演算量を削減可能という効果を得ることが可能である。この結果、 受信回路を 1チップの LSI内に実装することが可能となる。また、演算量の削減は、 直接、消費電力を削減するという副次的な効果も期待できる。  As described above, according to the present invention, when performing high-efficiency wireless communication using MIMO technology, while achieving the good characteristics of the MLD method, It is possible to greatly reduce the circuit scale and the amount of calculation. As a result, the receiving circuit can be implemented in a one-chip LSI. Also, the reduction in the amount of computation can be expected to have the side effect of directly reducing power consumption.
また、以上の技術を実現する際に、処理遅延を短時間に抑える観点力 はハードウ エアとして実現することが好ましいが、回路規模削減の観点力もは、等価な処理フロ 一を備えたソフトウェア処理により実現することも好ましい。 Also, when implementing the above technology, it is preferable that the viewpoint of suppressing the processing delay in a short time is realized as hardware, but the viewpoint of the circuit scale reduction is equivalent to the equivalent processing flow. It is also preferable to realize this by software processing having one.
[0081] なお、以上述べた実施形態は全て本発明を例示的に示すものであって限定的に 示すものではなぐ本発明は他の種々の変形態様及び変更態様で実施することが出 来る。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定 されるちのである。  The embodiments described above are all illustrative of the present invention and are not intended to limit the present invention. The present invention may be embodied in various other modified forms and modified forms. Therefore, the scope of the present invention is to be defined only by the appended claims and their equivalents.
産業上の利用可能性  Industrial applicability
[0082] 本発明にお 、ては、 MIMO技術を用いた高能率な無線通信を行う際に、 MLD法 のもつ良好な特性を実現しながらも、従来の MLD法に比べて大幅に回路規模及び 演算量を削減可能という効果を奏するので、本発明は、無線通信装置、及び無線通 信方法、無線通信システムなどに適用できる。 According to the present invention, when performing highly efficient wireless communication using MIMO technology, while achieving the good characteristics of the MLD method, the circuit size is significantly larger than that of the conventional MLD method. The present invention can be applied to a wireless communication device, a wireless communication method, a wireless communication system, and the like.

Claims

請求の範囲 The scope of the claims
[1] N (Nは 1より大きい整数)本以上の第 1のアンテナ群を備えた第 1の無線局と、 M ( Mは 1より大きい整数)本の第 2のアンテナ群を備えた第 2の無線局により構成され、 前記第 1の無線局が、入力されたユーザデータを N系統に分割する手段と、前記の N系統に分割されたデータに個別の既知のパターンの信号を付与して N系統の第 1 の信号系列を生成する手段と、 N本の前記第 1のアンテナ群を用いて同一周波数に て同時に前記第 1の信号系列を重畳して送信する手段とを備える無線通信システム における無線通信装置であって、  [1] A first radio station having at least N (N is an integer greater than 1) first antenna groups, and a first radio station having M (M is an integer greater than 1) second antenna groups. The first wireless station is configured to divide the input user data into N systems, and to apply a signal of an individual known pattern to the data divided into the N systems. A wireless communication system comprising: means for generating a first signal sequence of N systems, and means for simultaneously superimposing and transmitting the first signal sequence at the same frequency using the N first antenna groups. Wireless communication device in the system,
M本の前記第 2のアンテナ群を用いて個別に無線信号を受信する手段と、 受信信号に付与された前記既知のパターンの信号を参照信号として、前記第 1の アンテナ群の内の第 iアンテナと前記第 2のアンテナ群の内の第 jアンテナとの間の伝 達関数 h を取得する手段と、  Means for individually receiving a wireless signal using the M second antenna groups, and using the signal of the known pattern given to the received signal as a reference signal, the i-th antenna in the first antenna group Means for obtaining a transfer function h between an antenna and a j-th antenna in the second antenna group;
J,i  J, i
前記伝達関数 h を第 (j,i)要素とする M行 N列の伝達関数行列 Hをもとに、送信信  Based on the transfer function matrix H of M rows and N columns with the transfer function h as the (j, i) element,
J,i  J, i
号の推定値の第 1近似列ベクトル Txを求める手段と、  Means for obtaining a first approximated column vector Tx of the estimated value of the signal;
前記列ベクトル Τχの各要素で与えられる送信信号点に対してそれぞれ硬判定処 理を行った列ベクトル Tx'を求める手段と、  Means for obtaining a column vector Tx ′ by performing hard decision processing on the transmission signal points given by each element of the column vector Τχ,
前記列ベクトル Tx'の各成分の値及びその近傍の送信信号として取り得る信号点 の中から、所定数の信号点を選びこれらを組み合わせ、第 1のアンテナ群より送信さ れた送信信号の候補となる信号を複数種類生成する手段と、  A predetermined number of signal points are selected from the values of the components of the column vector Tx 'and signal points that can be taken as transmission signals in the vicinity thereof, and these are combined, and candidates for the transmission signal transmitted from the first antenna group are selected. Means for generating a plurality of types of signals,
前記生成された送信信号の候補となる信号及び前記伝達関数行列 Hに基づき、該 候補となる信号の中から 1つを選択し、この選択した信号に基づいて前記第 1の無線 局から送信されたユーザデータを再生し出力する手段と  Based on the generated transmission signal candidate signal and the transfer function matrix H, one of the candidate signals is selected, and transmitted from the first wireless station based on the selected signal. Means for reproducing and outputting the user data
を備えたことを特徴とする無線通信装置。  A wireless communication device comprising:
[2] 請求項 1に記載の無線通信装置において、 [2] The wireless communication device according to claim 1,
前記第 1近似列ベクトル Txを求める手段は、  The means for obtaining the first approximate column vector Tx includes:
前記伝達関数行列 Hのエルミート共役となる N行 M列行列 HHを生成する手段と、 これらの行列の積即ち N行 N列の行列 HH X Hを算出し、該行列の逆行列の N行 N 列の行列 (HH X H) 1を算出する手段と、 前記逆行列と行列 HHの積即ち N行 M列の行列 (HH X H) 1 X HHを算出する手段 と、 Means for generating an N-row M-column matrix H H that is a Hermitian conjugate of the transfer function matrix H; calculating a product of these matrices, that is, an N-row N-column matrix H H XH; Means for calculating an N-column matrix (H H XH) 1 ; Means for calculating a product i.e. matrix of N rows M columns (H H XH) 1 XH H of the inverse matrix and the matrix H H,
前記第 2のアンテナ群の第 mアンテナで実際に受信された受信信号を!:とし、各成 分が( r , r , r , · · 'r )で与えられる M行の列ベクトルを Rxとした場合、(HH X H)— 1 The received signal actually received by the m-th antenna of the second antenna group is denoted by!:, And a column vector of M rows in which each component is given by (r, r, r,. (H H XH) — 1
1 2 3 M 1 2 3 M
X HH X Rxで与えられる N行の列ベクトル Txを算出する手段と Means for calculating a column vector Tx of N rows given by XH H X Rx;
を有することを特徴とする無線通信装置。  A wireless communication device comprising:
[3] 請求項 1に記載の無線通信装置において、 [3] The wireless communication device according to claim 1,
前記第 1近似列ベクトル Txを求める手段は、 Ν = Μの場合において、  The means for obtaining the first approximate column vector Tx is, in the case of Ν = Μ,
前記伝達関数行列 Ηの逆行列即ち Ν行 Ν列の行列 Η—1を算出する手段と、 前記第 2のアンテナ群の第 mアンテナで実際に受信された受信信号を!:とし、各成 分が( r , r , r , · · 'r )で与えられる N行の列ベクトルを Rxとした場合、 H— 1 X RxでWherein the transfer function matrix means for calculating a matrix .eta. 1 of the inverse matrix i.e. Ν rows Ν columns of Eta, the second received signal actually received at the m antenna antenna group: and then, KakuNaru min If Rx is the column vector of N rows given by (r, r, r, ·· 'r), then H— 1 X Rx
1 2 3 M 1 2 3 M
与えられる N行の列ベクトル Txを算出する手段と、  Means for calculating a given N-row column vector Tx;
を有することを特徴とする無線通信装置。  A wireless communication device comprising:
[4] 請求項 1に記載の無線通信装置において、 [4] The wireless communication device according to claim 1,
前記第 1近似列ベクトル Txを求める手段は、  The means for obtaining the first approximate column vector Tx includes:
前記伝達関数行列 Hのエルミート共役となる N行 M列行列 HHを生成する手段と、 前記第 1の無線局が送信するプリアンブル信号を前記第 2のアンテナ群で受信した 際の各信号を成分としてもつ列ベクトル yを取得する手段と、 Means for generating an N-row M-column matrix H H which is a Hermitian conjugate of the transfer function matrix H, and each signal when a preamble signal transmitted by the first wireless station is received by the second antenna group Means for obtaining a column vector y having
該列ベクトルのエルミート共役な行ベクトル yHを生成する手段と、 Means for generating a Hermitian conjugate row vector y H of the column vector;
これらのベクトルの積として M行 M列の行列すなわち Y=y X y Hを算出する手段と、 前記プリアンブル信号が複数シンボルにわたる場合には、前記行列 Yの各成分の 値を複数シンボルに渡って平均化しこれに置き換える手段と、  Means for calculating a matrix of M rows and M columns as a product of these vectors, that is, Y = yXyH; and when the preamble signal extends over a plurality of symbols, the value of each component of the matrix Y is transmitted over a plurality of symbols. Means for averaging and replacing this,
前記行列 Yの逆行列すなわち Y—1を算出する手段と、 Means for calculating an inverse matrix of the matrix Y, that is, Y- 1 ;
前記行列 HHおよび Y— 1の行列積すなわち N行 M列の行列 HH X Y—1を生成する手 段と、 Means for generating a matrix product of said matrices H H and Y— 1 , that is, a matrix H H XY— 1 of N rows and M columns;
前記第 2のアンテナ群の第 mアンテナで実際に受信された受信信号を!:とし、各成 分が( r , r , r , · · 'r )で与えられる M行の列ベクトルを Rxとした場合、 HH X Y—ェThe received signal actually received by the m-th antenna of the second antenna group is denoted by!:, And a column vector of M rows in which each component is given by (r, r, r,. H H XY
1 2 3 Μ 1 2 3 Μ
Rxで与えられる Ν行の列ベクトル Txを算出する手段と、 を有することを特徴とする無線通信装置。 Means for calculating a ベ ク ト ル -row column vector Tx given by Rx, A wireless communication device comprising:
[5] 前記請求項 1に記載の無線通信装置にお!、て、 [5] The wireless communication device according to claim 1, wherein:
前記第 1のアンテナ群より送信された送信信号の候補となる信号を複数種類生成 する手段は、  The means for generating a plurality of types of signals that are candidates for transmission signals transmitted from the first antenna group,
前記列ベクトル Tx'の各成分を( t , t , t , · · 't )とした場合、各成分において送  If each component of the column vector Tx ′ is (t, t, t,.
1 2 3 N  1 2 3 N
信信号点として取り得る N 個 (N は 1より大きい整数)の信号点の中から、第 1成 max max  From among N (N is an integer greater than 1) signal points that can be taken as signal points, the first component max max
分の信号点としては tを含む N (N は N 以下の整数)個の信号点、第 2成分の信  N signal points including t (N is an integer less than or equal to N) including t
1 t丄 tl max  1 t 丄 tl max
号点としては tを含む N (N は N 以下の整数)個の信号点、 · · ·第 N成分の信号  N signal points including t (N is an integer less than or equal to N) including t, and the signal of the Nth component
2 t2 t2 max  2 t2 t2 max
点としては tを含む N (N は N 以下の整数)個の信号点を選びこれらを組み合  Select N signal points including t (N is an integer less than or equal to N) as points and combine them.
N tN tN max  N tN tN max
わせ、前記送信信号の候補となる信号を複数種類生成する手段  Means for generating a plurality of types of signals that are candidates for the transmission signal.
を有することを特徴とする無線通信装置。  A wireless communication device comprising:
[6] 前記請求項 5に記載の無線通信装置にお 、て、 [6] The wireless communication device according to claim 5, wherein
前記第 1の無線局力 送信されたユーザデータを再生し出力する手段は、 前記送信信号の候補である N 種類 (N =N X N Χ · · · Χ Ν : Ν は整数)の mid mid tl t2 tN mid 列ベクトルの中の第 k (l≤k≤N : kは整数)番目の列ベクトルを S[k]とした場合に mid  The means for reproducing and outputting the user data transmitted by the first wireless station comprises: N types (N = NXN Χ · : Ν: Ν is an integer) of the transmission signal candidates; mid If the k-th (l≤k≤N: k is an integer) column vector in the column vector is S [k], mid
、伝達関数行列 Hと該列ベクトルの積すなわち H X S[k]で与えられる列ベクトルを算 出する手段と、  Means for calculating a product of the transfer function matrix H and the column vector, that is, a column vector given by H X S [k];
各列ベクトル S[k]に対する前記列ベクトル H X S[k]と実際の受信信号ベクトル Rx との信号点間距離を算出する手段と、  Means for calculating a signal point distance between the column vector H X S [k] for each column vector S [k] and the actual received signal vector Rx;
全ての kの中力 前記信号点間距離を最小にする送信信号点 S[k ]を選択する手 best  Best for selecting the transmission signal point S [k] that minimizes the distance between the signal points.
段と、  Steps and
該選択された列ベクトルの各要素を合成して前記第 1の無線局から送信されたュ 一ザデータを再生する手段と  Means for combining the elements of the selected column vector to reproduce the user data transmitted from the first wireless station;
を有することを特徴とする無線通信装置。  A wireless communication device comprising:
[7] 前記請求項 1に記載の無線通信装置にお!、て、 [7] The wireless communication device according to claim 1!
前記無線局間で複数のサブキャリアを用いた直交周波数分割多重(OFDM)変調 方式を用いること  Using orthogonal frequency division multiplexing (OFDM) modulation using a plurality of subcarriers between the radio stations;
を特徴とする無線通信装置。 A wireless communication device characterized by the above-mentioned.
[8] 前記請求項 1に記載の無線通信装置にお!、て、 [8] The wireless communication device according to claim 1!
前記送信信号の候補数 (N , N , Ν · · · , Ν )の値を各アンテナ毎の信号対雑 音比の推定値に応じて決定することを特徴とする無線通信装置。  A wireless communication apparatus characterized in that a value of the number of transmission signal candidates (N 1, N 2,..., Ν) is determined according to an estimated signal-to-noise ratio for each antenna.
[9] 前記請求項 1に記載の無線通信装置にお!、て、 [9] The wireless communication device according to claim 1!
前記送信信号の候補数 (N , N , Ν · · · , Ν )の値を行列 ΗΗ · Ηの各アンテナ毎 の固有値に応じて決定することを特徴とする無線通信装置。 A wireless communication apparatus, wherein the value of the number of transmission signal candidates (N, N, Ν, ·, Ν) is determined according to the eigenvalue of each antenna of the matrix Η Η , Η.
[10] N (Nは 1より大きい整数)本以上の第 1のアンテナ群を備えた第 1の無線局と、 M ( Mは 1より大きい整数)本の第 2のアンテナ群を備えた第 2の無線局とにより構成され た無線通信システムにおける無線通信方法であって、  [10] A first radio station having at least N (N is an integer greater than 1) first antenna groups, and a first radio station having M (M is an integer greater than 1) second antenna groups. A wireless communication method in a wireless communication system configured by two wireless stations,
前記第 1の無線局により、  By the first radio station,
入力されたユーザデータを N系統に分割するステップと、  Dividing the input user data into N systems;
前記の N系統に分割されたデータに個別の既知のパターンの信号を付与して N系 統の第 1の信号系列を生成するステップと、  Generating an N-system first signal sequence by adding a signal of an individual known pattern to the data divided into N systems,
N本の前記第 1のアンテナ群を用いて同一周波数にて同時に前記第 1の信号系列 を重畳して送信するステップと  Simultaneously superimposing and transmitting the first signal sequence at the same frequency using the N first antenna groups; and
が実施され、  Is implemented,
前記第 2の無線局により、  By the second radio station,
M本の前記第 2のアンテナ群を用いて個別に無線信号を受信するステップと、 受信信号に付与された既知のパターンの信号を参照信号として、前記第 1のアンテ ナ群の内の第 iアンテナと前記第 2のアンテナ群の内の第 jアンテナとの間の伝達関 数 h を取得するステップと、  Individually receiving a radio signal using the M second antenna group; and using a signal of a known pattern given to the received signal as a reference signal, the i-th antenna in the first antenna group. Obtaining a transfer function h between an antenna and a j-th antenna in the second antenna group;
 ,
前記伝達関数 h を第 (j ,i)要素とする M行 N列の伝達関数行列 Hをもとに、送信信  Based on an M-by-N transfer function matrix H having the transfer function h as the (j, i) -th element, the transmission signal
 ,
号の推定値の第 1近似列ベクトル Txを求めるステップと、  Determining a first approximated column vector Tx of the signal estimate;
前記列ベクトル Τχの各要素で与えられる送信信号点に対してそれぞれ硬判定処 理を行った列ベクトル Tx'を求めるステップと、  Obtaining a column vector Tx ′ by performing hard decision processing on the transmission signal point given by each element of the column vector 、,
前記列ベクトル Tx'の各成分の値及びその近傍の送信信号として取り得る信号点 の中から、所定数の信号点を選びこれらを組み合わせ、第 1のアンテナ群より送信さ れた送信信号の候補となる信号を複数種類生成するステップと、 前記生成された送信信号の候補となる信号及び前記伝達関数行列 Hに基づき、該 候補となる信号の中から 1つを選択し、この選択した信号に基づいて前記第 1の無線 局から送信されたユーザデータを再生し出力するステップと A predetermined number of signal points are selected from the values of the components of the column vector Tx 'and signal points that can be taken as transmission signals in the vicinity thereof, and these are combined, and candidates for the transmission signal transmitted from the first antenna group are selected. Generating a plurality of types of signals, Based on the generated transmission signal candidate signal and the transfer function matrix H, one of the candidate signals is selected, and transmitted from the first wireless station based on the selected signal. Playing and outputting the user data
が実施されることを特徴とする無線通信方法。  Is carried out.
[11] 請求項 10に記載の無線通信方法において、 [11] The wireless communication method according to claim 10,
前記第 1近似列ベクトル Txを求めるステップは、  The step of obtaining the first approximate column vector Tx includes:
前記伝達関数行列 Ηのエルミート共役となる Ν行 Μ列行列 ΗΗを生成するステップと これらの行列の積即ち Ν行 Ν列の行列 ΗΗ X Ηを算出するステップと、 Generating a Ν row Μ column matrix Η that is Hermitian conjugate of the transfer function matrix と, and calculating a product of these matrices, that is, a Ν row Ν matrix Η Η X 、,
該行列の逆行列即ち Ν行 Ν列の行列 (ΗΗ X Η) 1を算出するステップと、 該逆行列と行列 ΗΗの積即ち Ν行 Μ列の行列 (ΗΗ X Η)— 1 X ΗΗを算出するステップ と、 Calculating said row inverse matrix i.e. Ν rows Ν columns of a matrix of columns Η X Η) 1, inverse matrix and the matrix Eta Eta product i.e. Ν rows Μ columns of the matrix (Η Η X Η) - 1 X Calculating Η ; and
前記第 2のアンテナ群の第 mアンテナで実際に受信された受信信号を!: とし、各成 分が(r , r , r , · · τ )で与えられる Μ行の列ベクトルを Rxとした場合、(HH X H)— 1 The received signal actually received by the m-th antenna of the second antenna group is represented by!:, And each component is given by (r, r, r,... Τ). If (H H XH) — 1
1 2 3 M 1 2 3 M
X HH X Rxで与えられる N行の列ベクトル Txを算出するステップと、 Calculating an N-row column vector Tx given by XH H X Rx;
を含むことを特徴とする無線通信方法。  A wireless communication method comprising:
[12] 請求項 10に記載の無線通信方法において、 [12] The wireless communication method according to claim 10,
前記第 1近似列ベクトル Txを求めるステップは、 N = Mの場合において、 前記伝達関数行列 Hの逆行列即ち N行 N列の行列 H—1を算出するステップと、 前記第 2のアンテナ群の第 mアンテナで実際に受信された受信信号を!: とし、各成 分が(r , r , r , · · τ )で与えられる Ν行の列ベクトルを Rxとした場合、 Η— X Rxで与The step of obtaining the first approximate column vector Tx includes, when N = M, calculating an inverse matrix of the transfer function matrix H, that is, a matrix H− 1 of N rows and N columns; and The received signal actually received by the m-th antenna is!: And each component is given by (r, r, r,... Τ). If the column vector of the Ν row is Rx, then Η— X Rx Giving
1 2 3 M 1 2 3 M
えられる N行の列ベクトル Txを算出するステップと、  Calculating the resulting N-row column vector Tx;
を含むことを特徴とする無線通信方法。  A wireless communication method comprising:
[13] 請求項 10に記載の無線通信方法において、 [13] The wireless communication method according to claim 10,
前記第 1近似列ベクトル Txを求めるステップは、  The step of obtaining the first approximate column vector Tx includes:
前記伝達関数行列 Hのエルミート共役となる N行 M列行列 HHを生成するステップと 前記第 1の無線局が送信するプリアンブル信号を前記第 2のアンテナ群で受信した 際の各信号を成分としてもつ列ベクトル yを取得するステップと、 Receiving a preamble signal step from the first radio station that generates an N rows and M columns matrix H H to be a Hermitian conjugate of the transfer function matrix H is transmitted at the second antenna group Obtaining a column vector y having each signal as a component at the time,
該列ベクトルのエルミート共役な行ベクトル yHを生成するステップと、 Generating a Hermitian conjugate row vector y H of the column vector;
これらのベクトルの積として M行 M列の行列すなわち Y=yX yHを算出するステップ と、 Calculating an M-by-M matrix, ie, Y = yX y H , as the product of these vectors;
前記プリアンブル信号が複数シンボルにわたる場合には、前記行列 Yの各成分の 値を複数シンボルに渡って平均化しこれに置き換えるステップと、  When the preamble signal spans a plurality of symbols, averaging the value of each component of the matrix Y over a plurality of symbols and replacing the averaged value with the average value;
前記行列 Yの逆行列すなわち Y—1を算出するステップと、 Calculating the inverse of the matrix Y, i.e., Y- 1 ;
前記行列 HHおよび Y— 1の行列積すなわち N行 M列の行列 HH X Y—1を生成するス テツプと、 A step of generating a matrix product of the matrices H H and Y— 1 , that is, an N-by-M matrix H H XY— 1 ;
前記第 2のアンテナ群の第 mアンテナで実際に受信された受信信号を!:とし、各成 分が(r , r , r ,··τ )で与えられる Μ行の列ベクトルを Rxとした場合、 ΗΗΧΥ— XR The received signal actually received by the m-th antenna of the second antenna group is denoted by!:, And each component is given by (r, r, r,... Τ). Η Η ΧΥ— XR
1 2 3 M  1 2 3 M
χで与えられる N行の列ベクトル Txを算出するステップと、  calculating an N-row column vector Tx given by χ;
を含むことを特徴とする無線通信方法。  A wireless communication method comprising:
[14] 前記請求項 10に記載の無線通信方法において、 [14] In the wireless communication method according to claim 10,
前記第 1のアンテナ群より送信された送信信号の候補となる信号を複数種類生成 するステップは、  Generating a plurality of types of signals that are candidates for transmission signals transmitted from the first antenna group,
前記列ベクトル Tx'の各成分を (t , t , t ,---t )とした場合、各成分において送信  When each component of the column vector Tx 'is (t, t, t, --- t), transmission is performed for each component.
1 2 3 N  1 2 3 N
信号点として取り得る N 個 (N は 1より大きい整数)の信号点の中から、第 1成分 max max  From among N (N is an integer greater than 1) signal points that can be taken as signal points, the first component max max
の信号点としては tを含む N (N は N 以下の整数)個の信号点、第 2成分の信号  N signal points including t (N is an integer less than or equal to N) and signal of the second component
1 tl tl max  1 tl tl max
点としては tを含む N (N は N 以下の整数)個の信号点、 ···第 N成分の信号点  N (N is an integer less than or equal to N) signal points including t, signal points of the Nth component
2 t2 t2 max  2 t2 t2 max
としては tを含む N (N は N 以下の整数)個の信号点を選びこれらを組み合わ  And select N signal points including t (N is an integer less than or equal to N)
N tN tN max  N tN tN max
せ、前記送信信号の候補となる信号を複数種類生成するステップ  Generating a plurality of types of signals that are candidates for the transmission signal.
を含むことを特徴とする無線通信方法。  A wireless communication method comprising:
[15] 前記請求項 14に記載の無線通信方法において、 [15] In the wireless communication method according to claim 14,
前記第 1の無線局力 送信されたユーザデータを再生し出力するステップは、 前記送信信号の候補である N 種類 (N =N XN Χ ··· ΧΝ : Ν は整数)の mid mid tl t2 tN mid 列ベクトルの中の第 k(l≤k≤N : kは整数)番目の列ベクトルを S[k]とした場合に mid  The step of reproducing and outputting the transmitted user data in the first radio station comprises: N kinds (N = N XN Χ :: : is an integer) of the transmission signal candidates; mid When the k-th (l≤k≤N: k is an integer) column vector in a column vector is S [k], mid
、伝達関数行列 Hと該列ベクトルの積すなわち H X S[k]で与えられる列ベクトルを算 出するステップと、 Calculates the product of the transfer function matrix H and the column vector, that is, the column vector given by HXS [k]. Steps to issue,
各列ベクトル S[k]に対する前記列ベクトル H X S[k]と実際の受信信号ベクトル Rx との信号点間距離を算出するステップと、  Calculating a distance between signal points between the column vector H X S [k] and the actual received signal vector Rx for each column vector S [k];
全ての kの中力 前記信号点間距離を最小にする送信信号点 S[k ]を選択するス best  The best choice of the transmission signal point S [k] that minimizes the distance between the signal points.
テツプと、  With the steps
該選択された列ベクトルの各要素を合成して前記第 1の無線局から送信されたュ 一ザデータを再生するステップと  Combining the elements of the selected column vector to reproduce the user data transmitted from the first wireless station;
を有することを特徴とする無線通信方法。  A wireless communication method comprising:
[16] 前記請求項 10に記載の無線通信方法において、 [16] In the wireless communication method according to claim 10,
前記送信信号の候補数 (N , N , Ν · · · , Ν )の値を各アンテナ毎の信号対雑 tl t2 t3 tN  The value of the number of transmission signal candidates (N, N, Ν, Ν, を) is calculated as
音比の推定値に応じて決定することを特徴とする無線通信方法。  A wireless communication method characterized in that it is determined according to an estimated value of a sound ratio.
[17] 前記請求項 10に記載の無線通信方法において、 [17] In the wireless communication method according to claim 10,
前記送信信号の候補数 (N , N , Ν · · · , Ν )の値を行列 ΗΗ·Ηの各アンテナ毎 tl t2 t3 tN The value of the number of transmission signal candidates (N, N, Ν, ,, Ν) is calculated for each antenna of the matrix Η Η Η tl t2 t3 tN
の固有値に応じて決定することを特徴とする無線通信方法。  A wireless communication method characterized in that it is determined according to the eigenvalue of the wireless communication.
[18] 前記請求項 10に記載の無線通信方法において、 [18] In the wireless communication method according to claim 10,
前記無線局間で複数のサブキャリアを用いた直交周波数分割多重(OFDM)変調 方式を用いること  Using orthogonal frequency division multiplexing (OFDM) modulation using a plurality of subcarriers between the radio stations;
を特徴とする無線通信方法。  A wireless communication method comprising:
[19] 請求項 1に記載の無線通信装置を受信側に有して無線送受信を行う無線通信シス テム。 [19] A wireless communication system having the wireless communication device according to claim 1 on a receiving side to perform wireless transmission and reception.
PCT/JP2004/018031 2003-12-05 2004-12-03 Radio communication apparatus and radio communication method WO2005055483A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515985A JP4188371B2 (en) 2003-12-05 2004-12-03 Wireless communication apparatus and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003408239 2003-12-05
JP2003-408239 2003-12-05

Publications (1)

Publication Number Publication Date
WO2005055483A1 true WO2005055483A1 (en) 2005-06-16

Family

ID=34650394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018031 WO2005055483A1 (en) 2003-12-05 2004-12-03 Radio communication apparatus and radio communication method

Country Status (2)

Country Link
JP (1) JP4188371B2 (en)
WO (1) WO2005055483A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300586A (en) * 2006-05-01 2007-11-15 Tokyo Institute Of Technology Mimo detection system
US9178579B2 (en) 2012-03-16 2015-11-03 Fujitsu Limited Wireless device and wireless communication method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10419084B2 (en) 2016-05-26 2019-09-17 Hitachi Kokusai Electric Inc. Wireless communication device and wireless communication method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134094A (en) * 2001-09-13 2003-05-09 Texas Instruments Inc Method and device for multi-input/multi-output hybrid automatic repeat request by using basis hopping
JP2004538205A (en) * 2001-08-16 2004-12-24 アトランティック リサーチ コーポレーション Small multi-stage inflator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538205A (en) * 2001-08-16 2004-12-24 アトランティック リサーチ コーポレーション Small multi-stage inflator
JP2003134094A (en) * 2001-09-13 2003-05-09 Texas Instruments Inc Method and device for multi-input/multi-output hybrid automatic repeat request by using basis hopping

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI J. ET AL.: "Multi-stage low complexity maximum likelihood detection for OFDM/SDMA wireless LANs", ICC 2001, vol. 4, 11 June 2001 (2001-06-11) - 14 June 2001 (2001-06-14), pages 1152 - 1156, XP010553509 *
PAMMER V. ET AL.: "A low complexity suboptimal MIMO reciever: The combined ZF-MLD algorithm", PIMRC 2003, vol. 3, 7 October 2003 (2003-10-07) - 10 September 2003 (2003-09-10), pages 2271 - 2275, XP010678035 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300586A (en) * 2006-05-01 2007-11-15 Tokyo Institute Of Technology Mimo detection system
US9178579B2 (en) 2012-03-16 2015-11-03 Fujitsu Limited Wireless device and wireless communication method

Also Published As

Publication number Publication date
JPWO2005055483A1 (en) 2007-07-05
JP4188371B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP6219334B2 (en) Efficient computation of spatial filter matrix for steering transmit diversity in MIMO communication system
CN101997814B (en) Multi-carrier transmission using multiple symbol lengths
RU2404511C2 (en) Ofdm mimo system with controlled low-complexity directional diagram
CN101582873B (en) Multi-mode terminal in a wireless mimo system with spatial multiplexing
KR20050055592A (en) Apparatus and method for transmitting data by selected eigenvector in closed loop multiple input multiple output mobile communication system
WO2009122842A1 (en) Mobile communication system, reception device, and method
WO2013074830A1 (en) A method for scheduling and mu-mimo transmission over ofdm via interference alignment based on user multipath intensity profile information
JP4503539B2 (en) Wireless communication system and spatial multiplexing wireless communication method
JP4308159B2 (en) Spatial multiplexed signal detection circuit
JP4503540B2 (en) Base station apparatus for wireless communication system and wireless communication method thereof
JP4455511B2 (en) Wireless communication method, wireless communication system, and wireless terminal station
WO2005055483A1 (en) Radio communication apparatus and radio communication method
JP4246164B2 (en) Wireless communication apparatus and wireless communication method
JP4246169B2 (en) Wireless communication apparatus and wireless communication method
JP4198583B2 (en) Wireless communication apparatus and wireless communication method
JP4105181B2 (en) Wireless communication system and method
JP4230343B2 (en) Wireless communication method, wireless communication system, and reception processing program
JP2007110203A (en) Radio communication system, radio communication equipment and wireless communication method, and computer program
JP4327207B2 (en) Wireless communication method and wireless communication device
JP4322893B2 (en) Wireless transmission apparatus and wireless transmission method
JP2009105898A (en) Adaptive modulation method and device
JP4105175B2 (en) Wireless communication apparatus and method
JP2007214992A (en) Radio communication system, and transmission directivity controlling method
JP2005333443A (en) Method for performing transmission diversity, radio device, and communication system using the same
JP2007104547A (en) Radio communication system, radio communication apparatus, radio communication method, and computer program

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005515985

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 04819928

Country of ref document: EP

Kind code of ref document: A1