WO2005054396A1 - Cooling fluid composition - Google Patents

Cooling fluid composition Download PDF

Info

Publication number
WO2005054396A1
WO2005054396A1 PCT/JP2003/015329 JP0315329W WO2005054396A1 WO 2005054396 A1 WO2005054396 A1 WO 2005054396A1 JP 0315329 W JP0315329 W JP 0315329W WO 2005054396 A1 WO2005054396 A1 WO 2005054396A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
strontium
salt
aluminum
carbon atoms
Prior art date
Application number
PCT/JP2003/015329
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Egawa
Nobuyuki Kaga
Original Assignee
Shishiai-Kabushikigaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai-Kabushikigaisha filed Critical Shishiai-Kabushikigaisha
Priority to JP2005511253A priority Critical patent/JPWO2005054396A1/en
Priority to PCT/JP2003/015329 priority patent/WO2005054396A1/en
Priority to AU2003304581A priority patent/AU2003304581A1/en
Publication of WO2005054396A1 publication Critical patent/WO2005054396A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials

Definitions

  • the present invention mainly has an excellent effect of preventing corrosion of aluminum or aluminum alloy, iron, steel, etc. used for a long term in a cooling system of an internal combustion engine.
  • the present invention relates to a cooling liquid composition having excellent hard water stability even when a phosphate is contained.
  • metals such as aluminum or aluminum alloy, iron, steel, brass, solder, and copper have been used for cooling systems of internal combustion engines such as engines.
  • aluminum or aluminum alloy has been widely used for cooling system components for the purpose of reducing the weight of automobile bodies. These metals corrode on contact with water or air.
  • the coolant composition used in the cooling system of internal combustion engines includes phosphates, amine salts, borates, nitrates, nitrites, silicates, and organic acid salts. Contained a corrosion inhibitor.
  • phosphates have been used in many cooling compositions because of their superior corrosion of aluminum or aluminum alloys. For example, some were characterized by containing a melting point depressant selected from alcohols or glycols, phosphate, 2-phosphonobutane-1,2,4 tricarboxylic acid, and a calcium compound ( Japanese Patent Application Laid-Open No. 2002-3222467).
  • a non-phosphorus-based coolant composition containing no phosphate has been proposed.
  • a glycol as a main component at least one of sebacic acid or an alkali metal salt thereof is 0.5 to 4. Owt%, and at least one of p-tert-butylbenzoic acid or an alkali metal salt thereof is 0.5. 3.
  • An antifreeze (coolant composition) that contains Owt% and triazoles in the range of 0.05 to 1. Owt% and does not contain phosphate in its components has been proposed. I have. In the case of this cooling liquid composition, even when diluted with hard water, no precipitate is formed due to the absence of phosphate (see, for example, JP-A-4-1117481). However, this cooling liquid composition had a poor function of preventing corrosion of aluminum under running water, and had a problem that aluminum was corroded. On the other hand, a cooling liquid composition to which a scale inhibitor has been added has been proposed in order to suppress the formation of a precipitate when diluted with hard water.
  • the coolant composition (a) Monoe ethylenic unsaturated C 3 ⁇ C 6 _ homo- and copolymers of mono- force Rupon acid and salts thereof; (b) monoethylenically unsaturated C 3 -C 6 - Monokarupon acid and A homopolymer of the salt (the polymer is modified with a secondary alcohol); (c) a monomeric unit consisting of a monoethylenically unsaturated C4-C6-dicarboxylic acid and its salts and at least one other (D) monoethylenically unsaturated C 4 containing a monoethylenically unsaturated substituted monomer of formula (I) wherein the substituents are selected from the group consisting of alkyl vinyl ethers, olefins and vinyl esters and amides of carboxylic acids; At least one polycarbonate having a molecular weight range of from about 1200 to about 250,000 selected from the group consisting of -C6 monodicarbox
  • Containing over bets it is characterized in.
  • this cooling liquid composition a small amount selected from the group consisting of (a) to (d) is used.
  • At least one polycarboxylate is intended to reduce or eliminate hard water precipitation.
  • a coolant composition is effective in suppressing or preventing the formation of precipitates, it has a low aluminum corrosion prevention function.
  • JP-A-5-247433 DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention has been made in view of such circumstances, and is excellent in the function of preventing corrosion of aluminum or aluminum alloy, iron, steel, and the like, and in the presence of phosphate.
  • Means for Solving the Problems In order to achieve the above-mentioned object, in a coolant composition containing glycols as a main component, (a) 0.1 to 10% by weight of an alkylbenzoic acid or a salt thereof. At least one of
  • the coolant composition of the present invention contains glycols as a main component.
  • the glycols include ethylene glycol, propylene glycol, 1,3-butylene glycol, hexylene glycol, diethylene glycol, glycerin and the like.
  • ethylene glycol or propylene glycol is preferable in terms of chemical stability, handleability, price, availability, and the like.
  • the coolant composition of the present invention contains the above four components (a) to (d) in daricols, which are the main components, and aluminum or an aluminum alloy, iron, and iron due to a synergistic effect of these components. It has the effect of preventing corrosion of steel and the like.
  • alkylbenzoic acid that is a component of the coolant composition of the present invention include p-toluic acid, p-ethylbenzoic acid, p-propylbenzoic acid, p-butylbenzoic acid, p-isopropylbenzoic acid, p- Examples include tert-butyl benzoic acid, or an alkali metal salt, an ammonium salt, or an amine salt thereof.
  • alkylbenzoic acid among carboxylic acids, it is possible to ensure the function of preventing corrosion of aluminum, aluminum alloy, iron and steel for a long period of time. Above all, p-toluic acid and p-tert-butyl benzoic acid are excellent in the corrosion inhibiting performance of aluminum or aluminum alloy, and it is desirable that at least one of them is contained. Alkyl benzoic acid also has a function of suppressing precipitation due to reaction with hard water components in the liquid. The content of the alkyl benzoic acid or a salt thereof was set to 0.1 to 10% by weight. If the content is less than 1% by weight, a sufficient corrosion-preventing function cannot be exhibited.
  • the 2-phosphonobutane-1,1,2,4-tricarboxylic acid or a salt thereof can provide an effect of preventing corrosion of aluminum or aluminum alloys, iron and steel, etc., and particularly, an effect of improving corrosion prevention in a high temperature range.
  • Examples of the salt of 2-phosphonobutane-11,2,4 tricarboxylic acid include its sodium salt and potassium salt.
  • 2-Phosphonobtan-1,2,4 tricarboxylic acid is contained in the range of 0.01 to 0.5% by weight. If the content is outside this range, the above effects cannot be achieved or the economy becomes uneconomical.
  • the strontium compound By containing the strontium compound, the function of preventing corrosion of aluminum or aluminum alloy is improved, particularly the function of preventing corrosion of aluminum or aluminum alloy at high temperatures is enhanced, and more effective corrosion prevention is achieved. become.
  • the strontium compound is contained in the range of 0.001 to 0.1% by weight. If the content is out of the above range, sufficient effect of preventing corrosion of aluminum or an aluminum alloy, particularly, an effect of improving corrosion prevention in a high temperature range may not be obtained, or it may be uneconomical.
  • the strontium compound has a function of preventing blackening of aluminum or an aluminum alloy and suppressing corrosion in cooperation with 2-phosphonobutane-1,2,4-tricarboxylic acid.
  • a calcium compound can be used instead of the strontium compound or in addition to the stonium compound.
  • Calcium compounds include formic acid, calcium formate, calcium acetate, calcium propionate, calcium butyrate, calcium valerate, calcium laurate, calcium stearate, calcium oleate, calcium glutamate, calcium lactate, calcium succinate, calcium phosphate, tartaric acid Calcium, calcium maleate, calcium citrate, calcium oxalate, calcium malonate, calcium sebacate, calcium benzoate, calcium phthalate, calcium salicylate, calcium mandelate, calcium oxide, calcium hydroxide, permanganate Calcium, calcium chromate, calcium fluoride, calcium iodide, calcium carbonate, calcium nitrate, calcium sulfate, titanate Calcium, calcium tungstate, calcium borate, calcium phosphate, Ru can be exemplified dihydrogen phosphate calcium.
  • this calcium compound By containing this calcium compound, it has a function of preventing corrosion of aluminum or aluminum alloy, and particularly has a function of preventing corrosion of aluminum or aluminum alloy at high temperatures.
  • the total amount of the calcium compound or the strontium compound is in the range of 0.001 to 0.1% by weight for the same reason as that of the strontium.
  • polycarboxylic acid (d) examples include monoethylene dicarboxylic acids such as maleic acid and fumaric acid, and alkali metal salts and ammonium salts thereof.
  • a polymer or copolymer of monoethylene monocarboxylic acids such as methacrylic acid or their alkali metal salts and ammonium salts, or the above monoethylene dicarboxylic acids and monoethylene monocarboxylic acid It comprises at least one selected from copolymers composed of acids. Specific examples include polymers or copolymers of polymaleic acid, polyacrylic acid, maleic acid / acrylic acid, and the like.
  • polycarboxylic acids together with the 2-phosphonobutane-1,2-, 4-tricarboxylic acid, have an excellent corrosion-inhibiting function against aluminum or aluminum alloys, and particularly, the heat transfer surface of aluminum at high temperatures. It works very effectively to control corrosion.
  • the coexistence of the above-mentioned polycarboxylic acids and the above-mentioned 2-phosphonobutane-1,1,2,4 tricarbonates exerts a function with excellent hard water stability even in the presence of phosphate. In other words, it has a function to effectively prevent the hard water component contained in the cooling liquid from reacting with the phosphate to form a precipitate, and functions as a dispersant having excellent stability upon dilution with hard water. .
  • polymaleic acid, or its sodium salt, potassium salt, or ammonium salt has excellent stability when diluted with hard water.
  • these polycarboxylic acids have a protective property against aluminum or an aluminum alloy under a high temperature for a long time due to the coexistence of the 2-phosphonobutane-1,2,4 tricarboxylic acid and a strontium compound or a Z and calcium compound. Can be improved.
  • the molecular weight of the polymer or copolymer in the above-mentioned polycarboxylic acids and the like is preferably 100 to 2000. If the molecular weight is less than 1000, a sufficient corrosion-inhibiting function cannot be obtained, and if the molecular weight is more than 2000, it becomes difficult to dissolve in the composition.
  • the polymer is in a polymerization form such as random polymerization or block polymerization.
  • the content of the polycarboxylic acids and the like is preferably 0.01 to 0.5% by weight, More preferably, it is 0.05 to 0.3% by weight.
  • the content of the polycarboxylic acid is less than 0.01% by weight, the function of preventing corrosion of aluminum or aluminum alloy and the function of suppressing the formation of precipitates under flowing water or at a high temperature are not sufficiently exhibited. If it exceeds, there is no effect as much as it exceeds, and it becomes uneconomical.
  • the content ratio of 2-phosphonobutane-1,2,4 tricarboxylic acid to polycarboxylic acids is not particularly limited, but is preferably 3: 1 to 1: 3. With this content ratio, even if phosphate is present, the reaction between the hard water component in the coolant and the phosphate is suppressed, and corrosion to aluminum or aluminum alloy under flowing water or at high temperatures is prevented. The prevention function will be exhibited reliably.
  • the composition of the present invention can take a form containing a phosphate in addition to the above components (a) to (d).
  • the phosphate examples include orthophosphoric acid, pyrophosphoric acid, trimetaphosphoric acid, and tetrametaphosphoric acid, and corrosion of aluminum or an aluminum alloy by containing one or two or more thereof is included. The prevention will be further improved.
  • the content of the phosphate is preferably in the range of 0.01 to 2.0% by weight. Even in the presence of such a phosphate, the cooling composition of the present invention exhibits stability upon dilution with hard water due to a synergistic effect of the four components (a) to (d) in the glycols as the main components. Can be secured.
  • the coolant composition of the present invention can contain triazoles such as tolyltriazole and benzotriazole, which have an excellent corrosion inhibiting function for metals, particularly copper.
  • the content of triazoles is preferably 0.05 to 1.0% by weight.
  • the coolant composition of the present invention may contain an antifoaming agent, a coloring agent, and the like in addition to the above components.Also, conventionally known corrosion inhibitors such as molybdate, tungstate, nitrate, Sulfates, thiazoles and the like can also be used. Effects of the Invention In the coolant composition of the present invention, (a) 0 :!
  • the components (a) to (d) are (a) toluic acid, (b) 2-phosphonobutane-1,2,4 tricarboxylic acid, (c) strontium nitrate, and (d) polymalein, respectively.
  • Experiments were carried out using the compositions of the following Examples and Comparative Examples using an acid.
  • Example 2 Composition containing all components (a) to (cl) and phosphoric acid (Comparative Example 1) ... Composition containing only component (a) and components (b) to (d) Composition with no components and no phosphoric acid
  • Examples 1 and 2 and Comparative Examples 1 to 6 were subjected to a metal corrosion test using hard water dilution water to confirm the change in mass (mg / cm 2 ) of each metal and the presence or absence of abnormalities in appearance. It was confirmed. Table 2 shows the results.
  • the metal corrosion test was performed in accordance with JIS K2234 Metal Corrosion Rules, and aluminum metal, iron, steel, brass, solder, and copper test pieces were used as the metals for this test. .
  • As the dilution water prepared water prepared by adding calcium chloride to ion-exchanged water to adjust the total hardness to 80 Omg.
  • Table 2 shows that the samples according to Examples 1 and 2 both have excellent corrosion prevention properties against metals, and particularly have excellent corrosion protection properties against aluminum-based metals as compared with Comparative Examples. It was confirmed that there was little change in appearance. On the other hand, it was confirmed that all of Comparative Examples 1 to 6 had poor corrosion prevention properties.
  • a long-term metal corrosion test was performed on each of the samples of Examples 1 and 2 and Comparative Examples 1 to 6 to confirm the change in mass (mg / cm 2 ) of each metal, and to determine whether there was any abnormality in appearance. confirmed.
  • the long-term metal corrosion test was performed based on the JISK2324 metal corrosion test, and the test time was 100 hours. Less than margin
  • Example 1 and Example 2 showed little change in mass and no change in appearance for all metals as compared with the comparative example. In particular, it was confirmed that there was almost no change in mass with respect to aluminum-based metal and that it had excellent corrosion protection. On the other hand, in Comparative Examples, except for Comparative Examples 3 and 6, skin roughness and local corrosion were caused, and it was confirmed that long-term corrosion prevention was poor. Next, a hard water stability test was performed on Example 2 and Comparative Examples 3, 4, and 6 containing a phosphate. Phosphate reacts with hard water components to form a precipitate, and when diluted with hard water, a large amount of precipitate is generated.
  • Example 2 The formation of sediment not only degrades the coolant's ability to prevent corrosion, but can also cause the sediment to accumulate in the cooling circuit circuit and block the cooling system.
  • This test confirms the magnitude of the function of inhibiting the reaction with hard water components (hard water stability), including sodium sulfate 48 mg, sodium chloride 165 mg, sodium hydrogencarbonate 138 mg, and calcium chloride.
  • hard water stability including sodium sulfate 48 mg, sodium chloride 165 mg, sodium hydrogencarbonate 138 mg, and calcium chloride.
  • the sample of Example 2 and Comparative Examples 3, 4 and 6 was used as a test solution having a concentration of 50% using synthetic hard water prepared by dissolving 275 mg of the compound in 11 distilled water. The appearance of the test solution (presence or absence of precipitation) at 24 hours at 88 ° C was confirmed. Table 4 shows the results.
  • Example 12 Replacement paper (Rule 26) Table 4 As is evident from Table 4, no precipitate was observed in Comparative Example 4, but in Comparative Examples 3 and 6, precipitation was observed, whereas in Example 2 there was no precipitate and the hard water stability was excellent. It was confirmed that.
  • a high-temperature aluminum heat transfer surface test was performed to confirm the amount of corrosion (mg Z cm 2 ) of each metal and to determine whether there was any abnormal appearance. confirmed.
  • the high-temperature aluminum heat transfer surface test was performed in accordance with the JISK2234 aluminum aluminum heat transfer surface corrosion test. The test temperature was set at 160 ° C, and the heat-resistant glass cell used as the test container was made of stainless steel. The one made of steel was used. Table 5 shows the test results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

A cooling fluid composition containing a glycol as a primary component, which further comprises (a) 0.1 to 10 wt % of at least one of alkylbenzoic acids and salts thereof, (b) 0.01 to 0.5 wt % of 2-phosphonobutane-1, 2, 4-tricarboxylic acid or a salt thereof, (c) 0.0001 to 0.1 wt % of a strontium compound and (d) 0.01 to 0.5 wt % of at least one selected from among polymers or copolymers of unsaturated monoethylene dicarboxylic acids having four to six carbon atoms or salts thereof, polymers or copolymers of unsaturated monoethylene monocarboxylic acids having four to six carbon atoms or salts thereof and copolymers of the above unsaturated monoethylene dicarboxylic acid having four to six carbon atoms or a salt thereof and the above unsaturated monoethylene monocarboxylic acid having four to six carbon atoms or a salt thereof. The cooling fluid composition exhibits excellent capability for the prevention of corrosion of aluminum or an aluminum alloy, a cast iron, steel and the like, and also is excellent in the stability to a hard water even in the presence of a phosphate.

Description

明糸田書 冷却液組成物 技術分野 本発明は、 主として、 長期に渡って内燃機関の冷却系統に使用されるアルミ二 ゥム又はアルミニウム合金、 铸鉄、 鋼等の腐食防止効果に優れ、 また、 リン酸塩 が含有している場合においても硬水安定性に優れる冷却液組成物に関する。 背景技術 従来より、 エンジン等の内燃機関の冷却系統には、 アルミニウムまたはアルミ ニゥム合金、 錶鉄、 鋼、 黄銅、 はんだ、 銅などの金属が使用されている。 とくに 近年自動車車体の軽量化を目的として冷却系統部品にはアルミニウムまたはアル ミニゥム合金が多用されるに至っている。 これらの金属は、 水あるいは空気との接触により腐食を生じる。 これを防止す るため、 エンジン等の内燃機関の冷却系統に使用される冷却液組成物には、 リン 酸塩、 アミン塩、 ホウ酸塩、 硝酸塩、 亜硝酸塩、 ケィ酸塩、 有機酸塩などの腐食 防止剤が含まれていた。 特に、 リン酸塩はアルミニウムまたはアルミニウム合金 の腐食に優れることから、 多くの冷却組成物に使用されていた。 たとえば、 アル コール類またはグリコール類から選ばれる融点降下剤と、 リン酸塩と、 2—ホス ホノブタンー1, 2 , 4トリカルボン酸と、 カルシウム化合物とを含むことを特 徵とするものがあった (特開平 2 0 0 2— 3 2 2 4 6 7号公報参照)。 ところが、 リン酸塩を含有する冷却液組成物にあっては、 リン酸が冷却液中の 硬水成分と反応して沈殿を生じることから、 硬水で希釈した場合には、 多量の沈 殿物が生成していた。 沈殿物の生成は、 冷却液の腐食防止機能を低下させるだけ ではなく、 生成した沈殿物が冷却系統の循環路に堆積し冷却系統を閉塞してしま うという事態を引き起こしていた。 これに対して、リン酸塩を含まない非リン系の冷却液組成物も提案されている。 例えば、 グリコール類を主成分とし、 セバシン酸又はそのアルカリ金属塩のうち 少なくとも 1を 0. 5〜4. Owt %、 p— t e r t—ブチル安息香酸又はその アルカリ金属塩のうち少なくとも 1を 0. 5〜3. Owt%、 トリァゾ一ル類を 0. 05〜1. Ow t %の範囲で含有しており、 その成分中にリン酸塩を含有し ない不凍液 (冷却液組成物) について提案されている。 この冷却液組成物にあつ ては、 硬水で希釈しても、 リン酸塩が存在しないため沈殿が生成することがない (例えば、 特開平 4一 117481号公報参照)。 し力 ^し、 この冷却液組成物にあっては、 流水下でのアルミの腐食防止機能が低 く、 アルミが腐食するという不具合があった。 一方、 硬水で希釈した場合の沈殿物の生成を抑制するために、 スケール防止剤 を添加した冷却液組成物も提案されている。 この冷却液組成物は、 (a) モノエ チレン性不飽和 C 3〜 C 6 _モノ力ルポン酸およびその塩のホモおよびコポリマー ; (b) モノエチレン性不飽和 C3〜C 6—モノカルポン酸およびその塩のホモポ リマー (ポリマーは第二級アルコールで変性されている。) ; (c) モノエチレン 性不飽和 C 4〜 C 6—ジカルボン酸およびその塩からなるモノマー単位および少な くとも 1つの他のモノエチレン性不飽和置換モノマー (置換基はアルキルビニル ェ一テル、 ォレフィンおよびビニルエステルおよびカルポン酸のアミドからなる 群から選択される) を含有するコボリマー;(d) モノエチレン性不飽和 C4〜C 6一ジカルポン酸およびその塩からなるコポリマーからなる群から選択される約 1200〜約 250000の分子量範囲を有する少なくとも 1つのポリカルポキ シレートを含有する、 ことを特徴とするものである。 この冷却液組成物にあっては、 (a) 〜 (d) からなる群から選択される少 なくとも 1つのポリカルボキシレートが、 硬水沈殿を減少または除去するように なっている。 しかし、 このような冷却液組成物は沈殿生成の抑制又は防止に対しては、 効果 的であっても、 アルミの腐食防止機能が低く、 特に高温でのアルミ伝熱面腐食性 試験では腐食量が多いという不具合があった (例えば、 特開平 5— 247433 号公報参照)。 発明の開示 発明が解決しょうとする課題 本発明は、 このような事情に鑑みてなされたものであり、 アルミニウムまたは アルミニウム合金、 鎢鉄、 鋼等の腐食防止機能に優れるとともに、 リン酸塩存在 下においても硬水安定性に優れる冷却液組成物を提供することを目的とするもの である。 課題を解決するための手段 上記目的を達成するために、 グリコ一ル類を主成分とする冷却液組成物におい て、 (a) 0. 1〜1 0重量%のアルキル安息香酸類またはそれらの塩の少なく とも 1種と、 TECHNICAL FIELD The present invention mainly has an excellent effect of preventing corrosion of aluminum or aluminum alloy, iron, steel, etc. used for a long term in a cooling system of an internal combustion engine. The present invention relates to a cooling liquid composition having excellent hard water stability even when a phosphate is contained. BACKGROUND ART Conventionally, metals such as aluminum or aluminum alloy, iron, steel, brass, solder, and copper have been used for cooling systems of internal combustion engines such as engines. Particularly in recent years, aluminum or aluminum alloy has been widely used for cooling system components for the purpose of reducing the weight of automobile bodies. These metals corrode on contact with water or air. To prevent this, the coolant composition used in the cooling system of internal combustion engines such as engines includes phosphates, amine salts, borates, nitrates, nitrites, silicates, and organic acid salts. Contained a corrosion inhibitor. In particular, phosphates have been used in many cooling compositions because of their superior corrosion of aluminum or aluminum alloys. For example, some were characterized by containing a melting point depressant selected from alcohols or glycols, phosphate, 2-phosphonobutane-1,2,4 tricarboxylic acid, and a calcium compound ( Japanese Patent Application Laid-Open No. 2002-3222467). However, in a coolant composition containing phosphate, phosphoric acid reacts with the hard water component in the coolant to form a precipitate, and when diluted with hard water, a large amount of precipitate is formed. Had been generated. Precipitate formation only reduces the corrosion protection of the coolant Instead, the generated sediment accumulated in the cooling system circuit and blocked the cooling system. On the other hand, a non-phosphorus-based coolant composition containing no phosphate has been proposed. For example, a glycol as a main component, at least one of sebacic acid or an alkali metal salt thereof is 0.5 to 4. Owt%, and at least one of p-tert-butylbenzoic acid or an alkali metal salt thereof is 0.5. 3. An antifreeze (coolant composition) that contains Owt% and triazoles in the range of 0.05 to 1. Owt% and does not contain phosphate in its components has been proposed. I have. In the case of this cooling liquid composition, even when diluted with hard water, no precipitate is formed due to the absence of phosphate (see, for example, JP-A-4-1117481). However, this cooling liquid composition had a poor function of preventing corrosion of aluminum under running water, and had a problem that aluminum was corroded. On the other hand, a cooling liquid composition to which a scale inhibitor has been added has been proposed in order to suppress the formation of a precipitate when diluted with hard water. The coolant composition, (a) Monoe ethylenic unsaturated C 3 ~ C 6 _ homo- and copolymers of mono- force Rupon acid and salts thereof; (b) monoethylenically unsaturated C 3 -C 6 - Monokarupon acid and A homopolymer of the salt (the polymer is modified with a secondary alcohol); (c) a monomeric unit consisting of a monoethylenically unsaturated C4-C6-dicarboxylic acid and its salts and at least one other (D) monoethylenically unsaturated C 4 containing a monoethylenically unsaturated substituted monomer of formula (I) wherein the substituents are selected from the group consisting of alkyl vinyl ethers, olefins and vinyl esters and amides of carboxylic acids; At least one polycarbonate having a molecular weight range of from about 1200 to about 250,000 selected from the group consisting of -C6 monodicarboxylic acids and copolymers thereof. Containing over bets, it is characterized in. In this cooling liquid composition, a small amount selected from the group consisting of (a) to (d) is used. At least one polycarboxylate is intended to reduce or eliminate hard water precipitation. However, even though such a coolant composition is effective in suppressing or preventing the formation of precipitates, it has a low aluminum corrosion prevention function. (See, for example, JP-A-5-247433). DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention has been made in view of such circumstances, and is excellent in the function of preventing corrosion of aluminum or aluminum alloy, iron, steel, and the like, and in the presence of phosphate. It is also an object of the present invention to provide a coolant composition having excellent hard water stability. Means for Solving the Problems In order to achieve the above-mentioned object, in a coolant composition containing glycols as a main component, (a) 0.1 to 10% by weight of an alkylbenzoic acid or a salt thereof. At least one of
(b) 0. 01〜0. 5重量%の 2—ホスホノブタン一 1, 2, 4トリカルボ ン酸又はその塩と、 (c) 0. 000 1〜0. 1重量%のストロンチウム化合物 と、 (d) 0. 01〜0. 5重量%の炭素数 4〜6の不飽和モノエチレンジカル ボン酸またはその塩の重合体および共重合体 (以下 「モノエチレンジカルボン酸 類」 という。)、 炭素数 4〜6の不飽和モノエチレンモノカルボン酸またはその塩 の重合体および共重合体 (以下 「モノエチレンものカルボン酸類」 という。)、 あ るいは前記炭素数 4〜 6の不飽和モノエチレンジカルボン酸またはその塩と炭素 数 4〜 6の不飽和モノエチレンモノカルボン酸またはその塩の共重合体(以下「力 ルボン酸類」 という。) の中から選ばれる少なくとも 1種と、 を含有することを 特徴とする冷却液組成物をその要旨とした。 本発明の冷却液組成物は、 グリコール類を主成分としている。 グリコール類と しては、 エチレングリコール、 プロピレングリコール、 1 , 3プチレングリコー ル、へキシレンダリコール、ジエチレングリコール、グリセリン等が挙げられる。 その中でもエチレングリコールあるいはプロピレングリコールが、化学的安定性、 取り扱い性、 価格、 入手容易性などの点から好ましい。 本発明の冷却液組成物は、上記主成分であるダリコール類中に上記( a )〜(d ) の 4成分を含有しており、 これら成分の相乗効果によって、 アルミニウムまたは アルミニウム合金、 踌鉄及び鋼等の腐食防止効果を有している。 また、 アルミ二 ゥムまたはアルミニウム合金においては、 1 0 0 °Cを超える高温域において腐食 防止性に優れるという効果を導き出せるようになつている。 本発明の冷却液組成物の成分であるアルキル安息香酸としては、 p—卜ルイル 酸、 p—ェチル安息香酸、 p—プロピル安息香酸、 p _ブチル安息香酸、 p—ィ ソプロピル安息香酸、 p— t e r tブチル安息香酸、 またはこれらのアルカリ金 属塩、 アンモニゥム塩、 アミン塩などを挙げることができる。 カルボン酸の中でも、 アルキル安息香酸を用いることにより、 長期に渡ってァ ルミ二ゥム、 アルミニウム合金、 錶鉄及び鋼に対する腐食防止機能を確保するこ とができる。 中でも、 p—卜ルイル酸、 p— t e r tプチル安息香酸は、 アルミ ニゥムまたはアルミニウム合金の腐食防止性能に優れており、 これらの少なくと も 1種が含まれていることが望ましい。 また、 アルキル安息香酸は、 液中の硬水 成分との反応による沈殿生成を抑制する機能を有している。 アルキル安息香酸又はその塩の含有量を 0 . 1〜1 0重量%としたのは、 0 . 1重量%未満であっては、 十分な腐食防止機能が発現できず、 一方、 1 0重量% を越えて含有しても、 腐食防止機能は向上しないばかりか、 経済的に無駄だから である。 2 _ホスホノブタン一 1, 2 , 4トリカルボン酸またはその塩は、 アルミニゥ ムまたはアルミニウム合金、 铸鉄及び鋼等の腐食防止、 特には高温域における腐 食防止性の向上効果をもたらすことができる。 2—ホスホノブタン一 1 , 2 , 4 トリカルボン酸の塩としては、 そのナトリウム塩、 カリウム塩などを挙げること ができる。 2—ホスホノブタン一 1, 2, 4トリカルボン酸は、 0 . 0 1〜0 . 5重量%の範囲で含まれている。 この範囲以外の含有量では上記の効果が発揮さ れなかったり、 不経済になったりするからである。 本発明の冷却液組成物の成分であるストロンチウム化合物としては、 例えば、 酸化ストロンチウム、 水酸化ストロンチウム、 弗化ストロンチウム、 ヨウ化スト ロンチウム、 硫酸ストロンチウム、 硝酸ストロンチウム、 チタン酸ストロンチウ ム、 ホウ酸ストロンチウム、 タングステン酸ストロンチウム、 燐酸ストロンチウ ム、 燐酸二水素ストロンチウム、 蟻酸ストロンチウム、 酢酸ストロンチウム、 プ ロピオン酸ストロンチウム、 酪酸ストロンチウム、 吉草酸ストロンチウム、 ラウ リン酸ストロンチウム、 ステアリン酸ストロンチウム、 ォレイン酸ストロンチウ ム、 グルタミン酸ストロンチウム、 乳酸ストロンチウム、 コハク酸ストロンチウ ム、 リンゴ酸ストロンチウム、 酒石酸ストロンチウム、 マレイン酸ストロンチウ ム、 クェン酸ストロンチウム、 蓚酸ストロンチウム、 マロン酸ストロンチウム、 セバシン酸ストロンチウム、安息香酸ストロンチウム、フタル酸ストロンチウム、 サリチル酸ストロンチウム、 マンデル酸ストロンチウムなどを挙げることができ る。 このストロンチウム化合物を含有することで、 アルミニウムまたはアルミニゥ ム合金の腐食防止機能の向上、 特に高温下におけるアルミニウムまたはアルミ二 ゥム合金に対する腐食防止機能が高まり、 より効果的な腐食防止がなされること になる。 このストロンチウム化合物は、 0 . 0 0 0 1〜0 . 1重量%の範囲で含 まれている。 含有量が前記範囲外の場合、 十分なアルミニウムまたはアルミニゥ ム合金の腐食防止、 特には、 高温域における腐食防止性の向上効果が得られなか つたり、不経済になったりするからである。 また、 このストロンチウム化合物は、 アルミニウムまたはアルミニウム合金の黒変を防止し、 かつ、 2 —ホスホノブ夕 ンー 1 , 2 , 4トリカルボン酸と協動して腐食を抑制する働きがある。 また、 このストロンチウム化合物に代えて、 又はスト口ンチウム化合物に加え てカルシウム化合物を用いることもできる。 カルシウム化合物としては、 蟻酸力 ルシゥム、 酢酸カルシウム、 プロピオン酸カルシウム、 酪酸カルシウム、 吉草酸 カルシウム、 ラウリン酸カルシウム、 ステアリン酸カルシウム、 ォレイン酸カル シゥム、 グルタミン酸カルシウム、 乳酸カルシウム、 コハク酸カルシウム、 リン ゴ酸カルシウム、 酒石酸カルシウム、 マレイン酸カルシウム、 クェン酸カルシゥ ム、 シユウ酸カルシウム、 マロン酸カルシウム、 セバシン酸カルシウム、 安息香 酸カルシウム、 フタル酸カルシウム、 サリチル酸カルシウム、 マンデル酸カルシ ゥム、 酸化カルシウム、 水酸化カルシウム、 過マンガン酸カルシウム、 クロム酸 カルシウム、 弗化カルシウム、 ヨウ化カルシウム、 炭酸カルシウム、 硝酸カルシ ゥム、 硫酸カルシウム、 チタン酸カルシウム、 タングステン酸カルシウム、 ホウ 酸カルシウム、 リン酸カルシウム、 リン酸ニ水素カルシウムを挙げることができ る。 このカルシウム化合物も含有することで、 アルミニウムまたはアルミニウム合 金の腐食防止機能の向上、 特に高温下におけるアルミニウムまたはアルミニウム 合金に対する腐食防止機能を有する。 このカルシウム化合物又はストロンチウム 化合物との総量は、 上記ストロンチウムと同様の理由で 0 . 0 0 0 1〜0 . 1重 量%の範囲で含まれている。 (b) 0.01 to 0.5% by weight of 2-phosphonobutane-1,2,4 tricarboxylic acid or a salt thereof; (c) 0.001 to 0.1% by weight of a strontium compound; (d 0.01 to 0.5% by weight of a polymer and copolymer of unsaturated monoethylene dicarboxylic acid or a salt thereof having 4 to 6 carbon atoms (hereinafter referred to as "monoethylene dicarboxylic acids"), 4 carbon atoms Polymers and copolymers of unsaturated monoethylene monocarboxylic acids or their salts (hereinafter referred to as "monoethylene carboxylic acids"), or the aforementioned unsaturated monoethylene dicarboxylic acids having 4 to 6 carbon atoms or Its salt and carbon And at least one selected from copolymers of unsaturated monoethylene monocarboxylic acids of the formulas 4 to 6 or salts thereof (hereinafter, referred to as "carboxylic acids"), and a cooling liquid composition comprising: The thing was the gist. The coolant composition of the present invention contains glycols as a main component. Examples of the glycols include ethylene glycol, propylene glycol, 1,3-butylene glycol, hexylene glycol, diethylene glycol, glycerin and the like. Among them, ethylene glycol or propylene glycol is preferable in terms of chemical stability, handleability, price, availability, and the like. The coolant composition of the present invention contains the above four components (a) to (d) in daricols, which are the main components, and aluminum or an aluminum alloy, iron, and iron due to a synergistic effect of these components. It has the effect of preventing corrosion of steel and the like. In addition, in the case of aluminum or an aluminum alloy, it is possible to derive the effect of excellent corrosion prevention in a high temperature range exceeding 100 ° C. Examples of the alkylbenzoic acid that is a component of the coolant composition of the present invention include p-toluic acid, p-ethylbenzoic acid, p-propylbenzoic acid, p-butylbenzoic acid, p-isopropylbenzoic acid, p- Examples include tert-butyl benzoic acid, or an alkali metal salt, an ammonium salt, or an amine salt thereof. By using alkylbenzoic acid among carboxylic acids, it is possible to ensure the function of preventing corrosion of aluminum, aluminum alloy, iron and steel for a long period of time. Above all, p-toluic acid and p-tert-butyl benzoic acid are excellent in the corrosion inhibiting performance of aluminum or aluminum alloy, and it is desirable that at least one of them is contained. Alkyl benzoic acid also has a function of suppressing precipitation due to reaction with hard water components in the liquid. The content of the alkyl benzoic acid or a salt thereof was set to 0.1 to 10% by weight. If the content is less than 1% by weight, a sufficient corrosion-preventing function cannot be exhibited. On the other hand, if the content exceeds 10% by weight, the corrosion-preventing function does not only improve, but is economically wasteful. The 2-phosphonobutane-1,1,2,4-tricarboxylic acid or a salt thereof can provide an effect of preventing corrosion of aluminum or aluminum alloys, iron and steel, etc., and particularly, an effect of improving corrosion prevention in a high temperature range. Examples of the salt of 2-phosphonobutane-11,2,4 tricarboxylic acid include its sodium salt and potassium salt. 2-Phosphonobtan-1,2,4 tricarboxylic acid is contained in the range of 0.01 to 0.5% by weight. If the content is outside this range, the above effects cannot be achieved or the economy becomes uneconomical. Examples of the strontium compound as a component of the coolant composition of the present invention include strontium oxide, strontium hydroxide, strontium fluoride, strontium iodide, strontium sulfate, strontium nitrate, strontium titanate, strontium titanate, strontium borate, and tungsten. Strontium phosphate, strontium phosphate, strontium dihydrogen phosphate, strontium formate, strontium acetate, strontium propionate, strontium butyrate, strontium valerate, strontium laurate, strontium stearate, strontium strontium strontium, strontium strontium strontium, strontium strontium strontium strontium strontium strontium strontium strontium strontium strontium strontium strontium strontium strontium strontium strontium strontium strontium strontium strontium strontium Strontium succinate, strontium malate, strontium tartrate, strontium maleate Arm, Kuen strontium oxalate, strontium malonate, strontium sebacate, strontium benzoate, phthalic acid strontium salicylate, strontium, Ru and the like can be illustrated mandelic strontium. By containing the strontium compound, the function of preventing corrosion of aluminum or aluminum alloy is improved, particularly the function of preventing corrosion of aluminum or aluminum alloy at high temperatures is enhanced, and more effective corrosion prevention is achieved. become. The strontium compound is contained in the range of 0.001 to 0.1% by weight. If the content is out of the above range, sufficient effect of preventing corrosion of aluminum or an aluminum alloy, particularly, an effect of improving corrosion prevention in a high temperature range may not be obtained, or it may be uneconomical. In addition, the strontium compound has a function of preventing blackening of aluminum or an aluminum alloy and suppressing corrosion in cooperation with 2-phosphonobutane-1,2,4-tricarboxylic acid. In addition, a calcium compound can be used instead of the strontium compound or in addition to the stonium compound. Calcium compounds include formic acid, calcium formate, calcium acetate, calcium propionate, calcium butyrate, calcium valerate, calcium laurate, calcium stearate, calcium oleate, calcium glutamate, calcium lactate, calcium succinate, calcium phosphate, tartaric acid Calcium, calcium maleate, calcium citrate, calcium oxalate, calcium malonate, calcium sebacate, calcium benzoate, calcium phthalate, calcium salicylate, calcium mandelate, calcium oxide, calcium hydroxide, permanganate Calcium, calcium chromate, calcium fluoride, calcium iodide, calcium carbonate, calcium nitrate, calcium sulfate, titanate Calcium, calcium tungstate, calcium borate, calcium phosphate, Ru can be exemplified dihydrogen phosphate calcium. By containing this calcium compound, it has a function of preventing corrosion of aluminum or aluminum alloy, and particularly has a function of preventing corrosion of aluminum or aluminum alloy at high temperatures. The total amount of the calcium compound or the strontium compound is in the range of 0.001 to 0.1% by weight for the same reason as that of the strontium.
( d ) 成分であるポリカルボン酸類としては、 マレイン酸ゃフマル酸など、 ま たそれらのアルカリ金属塩やアンモニゥム塩などのモノエチレンジカルボン酸類 の重合体又は共重合体、 メタクリル酸など、 またはそれらのアルカリ金属塩ゃァ ンモニゥム塩などのモノエチレンモノカルボン酸類の重合体又は共重合体、 ある いは前記モノエチレンジカルボン酸類とモノエチレンモノカルボン酸類とからな る共重合体の中から選ばれる少なくとも 1種からなる。 具体的にはポリマレイン 酸、 ポリアクリル酸、 マレイン酸/アクリル酸などの重合体又は共重合体などが ある。 これらポリカルボン酸類は、 前記 2—ホスホノブタン一 1 , 2, 4トリ力ルポ ン酸とともに、 アルミニウムまたはアルミニウム合金に対して優れた腐食防止機 能を有し、特には高温時のアルミの伝熱面腐食の抑制にきわめて有効に作用する。 なお、 上記ポリカルボン酸類と、 上記 2—ホスホノブタン一 1, 2 , 4トリカル ボンが共存することで、 リン酸塩存在下においても硬水安定性に優れた機能を発 揮する。 すなわち、 冷却液中に含まれる硬水成分とリン酸塩とが反応して沈殿を 生じるのを効果的に抑制する機能を有しており、 硬水希釈時の安定性に優れた分 散剤として機能する。 特に、 ポリマレイン酸、 またはそのナトリウム塩、 力リウ ム塩、 またはアンモニゥム塩は硬水希釈時の安定性に優れている。 さらに、 これらポリカルボン酸類は、 前記 2—ホスホノブタン一 1, 2, 4ト リカルボン酸とストロンチウム化合物又は Z及びカルシウム化合物との共存によ り、 長期間高温下においてアルミニウムまたはアルミニウム合金に対する防鲭性 能を向上させることができる。 上記ポリカルボン酸類等における重合体又は共重合体の分子量は、 好ましくは 1 0 0 0〜 2 0 0 0 0である。 分子量が 1 0 0 0を下回る場合十分な腐食防止機 能が得られなくなり、 分子量が 2 0 0 0 0を上回る場合には、 該組成物中に溶解 しがたくなるからである。 また前記ポリマーは、 ランダム重合やブロック重合と いつた重合形態となっている。 ポリカルボン酸類等の含有量としては、 好ましくは 0 . 0 1〜0 . 5重量%、 より好ましくは、 0 . 0 5〜0 . 3重量%である。 ポリカルボン酸類の含有量が 0 . 0 1重量%を下回る場合、 流水下または高温下におけるアルミニウムまたは アルミニウム合金に対する腐食防止機能および沈殿の生成抑制機能が十分に発揮 されず、 0 . 5重量%を上回る場合には上回る分だけの効果がなく、 不経済とな る。 Examples of the polycarboxylic acid (d) include monoethylene dicarboxylic acids such as maleic acid and fumaric acid, and alkali metal salts and ammonium salts thereof. Or a polymer or copolymer of monoethylene monocarboxylic acids such as methacrylic acid or their alkali metal salts and ammonium salts, or the above monoethylene dicarboxylic acids and monoethylene monocarboxylic acid It comprises at least one selected from copolymers composed of acids. Specific examples include polymers or copolymers of polymaleic acid, polyacrylic acid, maleic acid / acrylic acid, and the like. These polycarboxylic acids, together with the 2-phosphonobutane-1,2-, 4-tricarboxylic acid, have an excellent corrosion-inhibiting function against aluminum or aluminum alloys, and particularly, the heat transfer surface of aluminum at high temperatures. It works very effectively to control corrosion. The coexistence of the above-mentioned polycarboxylic acids and the above-mentioned 2-phosphonobutane-1,1,2,4 tricarbonates exerts a function with excellent hard water stability even in the presence of phosphate. In other words, it has a function to effectively prevent the hard water component contained in the cooling liquid from reacting with the phosphate to form a precipitate, and functions as a dispersant having excellent stability upon dilution with hard water. . In particular, polymaleic acid, or its sodium salt, potassium salt, or ammonium salt, has excellent stability when diluted with hard water. In addition, these polycarboxylic acids have a protective property against aluminum or an aluminum alloy under a high temperature for a long time due to the coexistence of the 2-phosphonobutane-1,2,4 tricarboxylic acid and a strontium compound or a Z and calcium compound. Can be improved. The molecular weight of the polymer or copolymer in the above-mentioned polycarboxylic acids and the like is preferably 100 to 2000. If the molecular weight is less than 1000, a sufficient corrosion-inhibiting function cannot be obtained, and if the molecular weight is more than 2000, it becomes difficult to dissolve in the composition. The polymer is in a polymerization form such as random polymerization or block polymerization. The content of the polycarboxylic acids and the like is preferably 0.01 to 0.5% by weight, More preferably, it is 0.05 to 0.3% by weight. When the content of the polycarboxylic acid is less than 0.01% by weight, the function of preventing corrosion of aluminum or aluminum alloy and the function of suppressing the formation of precipitates under flowing water or at a high temperature are not sufficiently exhibited. If it exceeds, there is no effect as much as it exceeds, and it becomes uneconomical.
2—ホスホノブタン— 1 , 2 , 4トリカルボン酸とポリカルボン酸類の含有比 率としては、 特に限定されないが、 好ましくは 3 : 1〜1 : 3である。 この含有 比率とすることで、 リン酸塩が存在していても冷却液中の硬水成分とリン酸塩と の反応を抑制し、 かつ流水下または高温下におけるアルミニウムまたはアルミ二 ゥム合金に対する腐食防止機能が確実に発揮されることとなる。 本発明の組成物は、 上記 (a ) 〜 (d ) の成分のほかに、 リン酸塩を含有する 形態を採ることができる。 リン酸塩としては、 正リン酸、 ピロリン酸、 トリメタ リン酸、 あるいはテトラメタリン酸などを挙げることができ、 これらの 1種もし くは 2種以上を含ませることで、 アルミニウムまたはアルミニゥム合金に対する 腐食防止性はより向上することになる。 リン酸塩の含有量としては、 0 . 0 1〜 2 . 0重量%の範囲が望ましい。 このようなリン酸塩存在下においても、 本発明 の冷却組成物は、 上記主成分であるグリコール類中に (a ) 〜 (d ) の 4成分の 相乗効果によって、 硬水希釈時の安定性を確保することができる。 本発明の冷却液組成物には、 金属、 特には銅に対し優れた腐食防止機能を有す るトリルトリアゾールやべンゾトリァゾールなどのトリァゾール類を含ませるこ とができる。 トリァゾール類の含有量としては、 0 . 0 5〜1 . 0重量%が好ま しい。 なお、 本発明の冷却液組成物には、 上記成分のほかに消泡剤、 着色剤などを含 ませてもよく、 また従来公知の腐食防止剤であるモリブデン酸塩、 タングステン 酸塩、 硝酸塩、 硫酸塩、 チアゾール類などを使用することもできる。 発明の効果 本発明の冷却液組成物にあっては、 (a) 0. :!〜 10重量%のアルキル安息 香酸類またはそれらの塩の少なくとも 1種と、 (b) 0. 01〜0. 5重量%の 2—ホスホノブタン一 1, 2, 4トリカルボン酸又はその塩と、 (c) 0. 00 01〜0. 1重量%のストロンチウム化合物と、 (d) 0. 01〜0. 5重量% の炭素数 4〜 6の不飽和モノエチレンジカルボン酸またはその塩の重合体および 共重合体、 炭素数 4〜 6の不飽和モノエチレンモノカルボン酸またはその塩の重 合体および共重合体、 あるいは前記炭素数 4〜 6の不飽和モノエチレンジカルポ ン酸またはその塩と炭素数 4〜 6の不飽和モノエチレンモノカルボン酸またはそ の塩の共重合体の中から選ばれる少なくとも 1種と、 を含有することから、 アル ミニゥムまたはアルミニウム合金、 錶鉄、 鋼等の腐食防止機能に優れるという効 果を有する。 また、 リン酸塩存在下においても硬水希釈時の安定性に優れるとい う効果を有する。 発明を実施するための最良の形態 以下に本発明の組成物をさらに詳しく説明する。実施例及び比較例として( a ) から (d) の成分として、 それぞれ (a) トルィル酸、 (b) 2—ホスホノブ夕 ンー 1, 2, 4トリカルボン酸、 (c) 硝酸ストロンチウム、 (d) ポリマレイン 酸を用いて以下の実施例及び比較例の組成物を用いて実験を行つた。 The content ratio of 2-phosphonobutane-1,2,4 tricarboxylic acid to polycarboxylic acids is not particularly limited, but is preferably 3: 1 to 1: 3. With this content ratio, even if phosphate is present, the reaction between the hard water component in the coolant and the phosphate is suppressed, and corrosion to aluminum or aluminum alloy under flowing water or at high temperatures is prevented. The prevention function will be exhibited reliably. The composition of the present invention can take a form containing a phosphate in addition to the above components (a) to (d). Examples of the phosphate include orthophosphoric acid, pyrophosphoric acid, trimetaphosphoric acid, and tetrametaphosphoric acid, and corrosion of aluminum or an aluminum alloy by containing one or two or more thereof is included. The prevention will be further improved. The content of the phosphate is preferably in the range of 0.01 to 2.0% by weight. Even in the presence of such a phosphate, the cooling composition of the present invention exhibits stability upon dilution with hard water due to a synergistic effect of the four components (a) to (d) in the glycols as the main components. Can be secured. The coolant composition of the present invention can contain triazoles such as tolyltriazole and benzotriazole, which have an excellent corrosion inhibiting function for metals, particularly copper. The content of triazoles is preferably 0.05 to 1.0% by weight. In addition, the coolant composition of the present invention may contain an antifoaming agent, a coloring agent, and the like in addition to the above components.Also, conventionally known corrosion inhibitors such as molybdate, tungstate, nitrate, Sulfates, thiazoles and the like can also be used. Effects of the Invention In the coolant composition of the present invention, (a) 0 :! (B) 0.01 to 0.5% by weight of 2-phosphonobutane-1,2,4 tricarboxylic acid or a salt thereof, and (c) 0.01 to 0.5% by weight of an alkylbenzoic acid or at least one salt thereof. ) 0.001 to 0.1% by weight of a strontium compound, and (d) 0.01 to 0.5% by weight of a polymer and copolymer of an unsaturated monoethylenedicarboxylic acid having 4 to 6 carbon atoms or a salt thereof having 4 to 6 carbon atoms. And a polymer or copolymer of an unsaturated monoethylene monocarboxylic acid having 4 to 6 carbon atoms or a salt thereof, or an unsaturated monoethylene dicarboxylic acid or a salt thereof having 4 to 6 carbon atoms and 4 to 6 carbon atoms. And at least one selected from copolymers of unsaturated monoethylene monocarboxylic acids or salts thereof in (6), so that it is excellent in the function of preventing corrosion of aluminum or aluminum alloys, iron and steel, etc. It has the effect. Also, it has the effect of being excellent in stability when diluted with hard water even in the presence of phosphate. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the composition of the present invention will be described in more detail. As examples and comparative examples, the components (a) to (d) are (a) toluic acid, (b) 2-phosphonobutane-1,2,4 tricarboxylic acid, (c) strontium nitrate, and (d) polymalein, respectively. Experiments were carried out using the compositions of the following Examples and Comparative Examples using an acid.
(実施例 1) … (a) 〜 (d) のすベての成分を含み、 かつリン酸を含まない組 成物  (Example 1) ... A composition containing all the components (a) to (d) and containing no phosphoric acid
(実施例 2) … (a) 〜 (cl) のすベての成分を含み、 かつリン酸を含む組成物 (比較例 1) … (a) 成分のみを含み (b) 〜 (d) の成分を含まず、 さらにリ ン酸を含まない組成物  (Example 2) ... Composition containing all components (a) to (cl) and phosphoric acid (Comparative Example 1) ... Composition containing only component (a) and components (b) to (d) Composition with no components and no phosphoric acid
(比較例 2) … (a) および (d) の成分を含みかつ (b) および (c) の成分 を含まず、 さらにリン酸を含む組成物 (比較例 3) … (a) 及び (c) の成分を含みかつ (b) および (d) の成分を 含まず、 さらにリン酸を含む組成物 (Comparative Example 2) ... A composition containing the components (a) and (d) and not containing the components (b) and (c), and further containing phosphoric acid (Comparative Example 3) ... A composition containing the components (a) and (c), excluding the components (b) and (d), and further containing phosphoric acid
(比較例 4) … (b) 〜 (d) の成分を含みかつ (a) 成分を含まず、 さらにリ ン酸を含む組成物  (Comparative Example 4) A composition containing the components (b) to (d) and containing no component (a) and further containing phosphoric acid
(比較例 5) … (a) 及び (b) の成分を含みかつ (c) 及び (d) の成分を含 まず、 かつリン酸を含まない組成物  (Comparative Example 5) ... A composition containing the components (a) and (b) and not containing the components (c) and (d), and containing no phosphoric acid
(比較例 6) … (a) 成分のみを含み (b) 〜 (d) の成分を含まず、 さらにリ ン酸を含む組成物  (Comparative Example 6) A composition containing only the component (a), no components (b) to (d), and further containing phosphoric acid
表 1  table 1
Figure imgf000011_0001
Figure imgf000011_0001
表 1中の各例における pH値 (30%)はいずれも 7.9である  The pH value (30%) in each example in Table 1 is 7.9
上記実施例 1および 2、 並びに比較例 1〜 6の各サンプルについて硬水希釈水 による金属腐食試験を行い、 各金属の質量変化 (mg/cm2) を確認するとと もに、 外観の異状の有無を確認した。 その結果を表 2に示した。 尚、 金属腐食試 験は、 J I S K2234 金属腐食性の規定に基づいて行い、 この試験に供す る金属にはアルミニウム铸物、 錶鉄、 鋼、 黄銅、 はんだ、 銅の各試験片を使用し た。 希釈水は、 イオン交換水に塩化カルシウムを加えて全硬度が 80 Omg. となるように調整した調合水を用いた。 The samples of Examples 1 and 2 and Comparative Examples 1 to 6 were subjected to a metal corrosion test using hard water dilution water to confirm the change in mass (mg / cm 2 ) of each metal and the presence or absence of abnormalities in appearance. It was confirmed. Table 2 shows the results. The metal corrosion test was performed in accordance with JIS K2234 Metal Corrosion Rules, and aluminum metal, iron, steel, brass, solder, and copper test pieces were used as the metals for this test. . As the dilution water, prepared water prepared by adding calcium chloride to ion-exchanged water to adjust the total hardness to 80 Omg.
以下余白  Below margin
10 差替え用絍 mm^\ 表 2 10 Replacement 絍 mm ^ \ Table 2
Figure imgf000012_0001
Figure imgf000012_0001
表 2から実施例 1および 2に係るサンプルは、 いずれも金属に対し、 優れた腐 食防止性を有していること、 特に比較例に対して、 アルミニウム系金属に優れた 腐食防止性を有していることが確認できるとともに、 外観変化も少ないことが確 認された。 一方、 比較例 1〜6につい Tは、 いずれも腐食防止性に乏しいことが 確認された。 次に、 上記実施例 1及び 2、 並びに比較例 1〜6の各サンプルについて、 長期 金属腐食試験を行い、 各金属の質量変化 (m g / c m2) を確認するとともに、 外観の異状の有無を確認した。 尚、 長期金属腐食試験は、 J I S K 2 2 3 4 金属腐食性の規定に基づいて行い、 試験時間は、 1 0 0 0時間の条件で行った。 以下 余白 Table 2 shows that the samples according to Examples 1 and 2 both have excellent corrosion prevention properties against metals, and particularly have excellent corrosion protection properties against aluminum-based metals as compared with Comparative Examples. It was confirmed that there was little change in appearance. On the other hand, it was confirmed that all of Comparative Examples 1 to 6 had poor corrosion prevention properties. Next, a long-term metal corrosion test was performed on each of the samples of Examples 1 and 2 and Comparative Examples 1 to 6 to confirm the change in mass (mg / cm 2 ) of each metal, and to determine whether there was any abnormality in appearance. confirmed. In addition, the long-term metal corrosion test was performed based on the JISK2324 metal corrosion test, and the test time was 100 hours. Less than margin
11 差替え ffl絍 麵 ίί?. 表 3 11 Replacement ffl 絍 麵 ίί ?. Table 3
Figure imgf000013_0001
表 3から、 実施例 1及び実施例 2のサンプルは、 比較例に比べてすべての金属 に対し質量変化が少なくしかも外観変化もなかった。 特にアルミニウム系金属に 対しては、 ほとんど質量変化がなく優れた腐食防止性を有していることが確認さ れた。一方比較例は、比較例 3及び 6を除き、肌あれや局部腐食を起こしており、 長期腐食防止性に乏しいことが確認された。 次にリン酸塩を含む実施例 2、 比較例 3、 4及び 6について、 硬水安定性試験 を行った。 リン酸塩は、 硬水成分と反応して沈殿を生成することから、 硬水で希 釈した場合には多量の沈殿を生じる。 沈殿物の生成は、 冷却液の腐食防止機能を 低下させるだけでなく、 生成した沈殿物が冷却系統の循環路に堆積し、 冷却系統 を閉塞するという事態と引き起こすおそれがある。 本試験は、 硬水成分との反応 抑制機能(硬水安定性)の大小を確認するものであり、硫酸ナトリウム 4 8 m g、 塩化ナトリウム 1 6 5 m g、 炭酸水素ナトリウム 1 3 8 m g、 および塩化カルシ ゥム 2 7 5 m gを 1 1の蒸留水に溶解させた合成硬水を用い、 該合成硬水で実施 例 2および比較例 3、 4及び 6の各サンプルを 5 0 %濃度の試験液とし、 この試 験液について 8 8 °C、 2 4時間後の試験液の外観の異状 (沈殿の有無) を確認し た。 その結果を表 4に示した。
Figure imgf000013_0001
From Table 3, it was found that the samples of Example 1 and Example 2 showed little change in mass and no change in appearance for all metals as compared with the comparative example. In particular, it was confirmed that there was almost no change in mass with respect to aluminum-based metal and that it had excellent corrosion protection. On the other hand, in Comparative Examples, except for Comparative Examples 3 and 6, skin roughness and local corrosion were caused, and it was confirmed that long-term corrosion prevention was poor. Next, a hard water stability test was performed on Example 2 and Comparative Examples 3, 4, and 6 containing a phosphate. Phosphate reacts with hard water components to form a precipitate, and when diluted with hard water, a large amount of precipitate is generated. The formation of sediment not only degrades the coolant's ability to prevent corrosion, but can also cause the sediment to accumulate in the cooling circuit circuit and block the cooling system. This test confirms the magnitude of the function of inhibiting the reaction with hard water components (hard water stability), including sodium sulfate 48 mg, sodium chloride 165 mg, sodium hydrogencarbonate 138 mg, and calcium chloride. The sample of Example 2 and Comparative Examples 3, 4 and 6 was used as a test solution having a concentration of 50% using synthetic hard water prepared by dissolving 275 mg of the compound in 11 distilled water. The appearance of the test solution (presence or absence of precipitation) at 24 hours at 88 ° C was confirmed. Table 4 shows the results.
以下余白  Below margin
12 差替え用紙 (規則 26) 表 4
Figure imgf000014_0001
表 4から明らかなように、 比較例 4については沈殿が見られないものの、 比較 例 3 、 6は沈殿の生成が見られたのに対し、 実施例 2は沈殿はなく、 硬水安定性 に優れていることが確認された。 次に、 実施例 1、 比較例 1から 3 、 5及び 6について、 高温アルミニウム伝熱 面試験を行い、 各金属の腐食量 (m g Z c m2) を確認するとともに、 外観の異 状の有無を確認した。 尚、 高温アルミニウム伝熱面試験は、 J I S K 2 2 3 4 アルミニウム鍀物伝熱面腐食性試験に準拠して行い、試験温度は 1 6 0 °Cとし、 試験容器である耐熱性ガラスセルはステンレススチール製のものを使用した。 そ の試験結果を表 5に示した。
12 Replacement paper (Rule 26) Table 4
Figure imgf000014_0001
As is evident from Table 4, no precipitate was observed in Comparative Example 4, but in Comparative Examples 3 and 6, precipitation was observed, whereas in Example 2 there was no precipitate and the hard water stability was excellent. It was confirmed that. Next, for Example 1 and Comparative Examples 1 to 3, 5, and 6, a high-temperature aluminum heat transfer surface test was performed to confirm the amount of corrosion (mg Z cm 2 ) of each metal and to determine whether there was any abnormal appearance. confirmed. The high-temperature aluminum heat transfer surface test was performed in accordance with the JISK2234 aluminum aluminum heat transfer surface corrosion test. The test temperature was set at 160 ° C, and the heat-resistant glass cell used as the test container was made of stainless steel. The one made of steel was used. Table 5 shows the test results.
表 5
Figure imgf000014_0002
表 5から明らかなように比較例 2 、 5 、 6については局部腐食又は全面腐食が 確認されたのに対し、 実施例 1はほとんど質量変化もなく高温アルミニウム伝熱 面試験においても効果的であることが確かめられた。 以上の実験の結果、 硬水希釈水による金属腐食試験、 長期金属腐食試験、 硬水 安定性試験及び高温伝熱面試験のすべてにおいて、 良好な実験結果を得られたの は、 (a ) 〜 (d ) のすベての成分を含んでいる組成物であり、 これらの組み合 わせによる相乗作用によって、 良好な効果をもたらすものであることが証明され た。
Table 5
Figure imgf000014_0002
As is evident from Table 5, localized corrosion or general corrosion was confirmed in Comparative Examples 2, 5, and 6, whereas Example 1 was effective in a high-temperature aluminum heat transfer surface test with little change in mass. It was confirmed. As a result of the above experiments, in all of the metal corrosion test using hard water dilution water, the long-term metal corrosion test, the hard water stability test and the high-temperature heat transfer surface test, good experimental results were obtained from (a) to (d). ) Is a composition containing all the components, and it has been proved that a good effect is obtained by synergistic action of these combinations.
13 差替え用紙 (規則 26) 13 Replacement Form (Rule 26)

Claims

請求の範囲 The scope of the claims
1. ダリコール類を主成分とする冷却液組成物において、 1. In a coolant composition mainly composed of daricols,
(a) 0. ;!〜 10重量%のアルキル安息香酸類またはそれらの塩の少なくと も 1種と、  (a) 0.1 to 10% by weight of at least one of alkyl benzoic acids or salts thereof;
(b) 0. 01〜 5重量%の 2—ホスホノブタン一 1, 2, 4トリ力ルポ ン酸又はその塩と、  (b) 0.01-5% by weight of 2-phosphonobutane-1,2,4 tricarboxylic acid or a salt thereof;
(c) 0. 0001〜0. 1重量%のストロンチウム化合物と、  (c) 0.0001 to 0.1% by weight of a strontium compound;
(d) 0. 01〜0. 5重量%の炭素数 4〜6の不飽和モノエチレンジカルポ ン酸またはその塩の重合体および共重合体、 炭素数 4〜 6の不飽和モノエチレン モノカルボン酸またはその塩の重合体および共重合体、 あるいは前記炭素数 4〜 6の不飽和モノエチレンジカルボン酸またはその塩と炭素数 4〜 6の不飽和モノ エチレンモノカルボン酸またはその塩の共重合体の中から選ばれる少なくとも 1 種と、 を含有することを特徴とする冷却液組成物。  (d) 0.01 to 0.5% by weight of a polymer or copolymer of an unsaturated monoethylene dicarboxylic acid having 4 to 6 carbon atoms or a salt thereof, and an unsaturated monoethylene monocarboxylic acid having 4 to 6 carbon atoms. Polymer or copolymer of acid or salt thereof, or copolymer of unsaturated monoethylene dicarboxylic acid having 4 to 6 carbon atoms or salt thereof and unsaturated monoethylene monocarboxylic acid or salt thereof having 4 to 6 carbon atoms A coolant composition comprising at least one member selected from the group consisting of:
2. アルキル安息香酸類が、 p -トルィル酸または p— t e r t一プチル安 息香酸であることを特徴とする請求項 1に記載の冷却液組成物。 2. The cooling liquid composition according to claim 1, wherein the alkyl benzoic acid is p-toluic acid or p-tert-butyl benzoic acid.
3. ストロンチウム化合物に代えて、 又はス卜口ンチゥム化合物に加えて力 ルシゥム化合物が含有されていることを特徴とする請求項 1に記載の冷却液組成 物。 3. The coolant composition according to claim 1, further comprising a potassium compound instead of or in addition to the strontium compound.
4. ストロンチウム化合物に代えて、 又はストロンチウム化合物に加えて力 ルシゥム化合物が含有されていることを特徴とする請求項 2に記載の冷却液組成 物。 4. The coolant composition according to claim 2, further comprising a potassium compound instead of or in addition to the strontium compound.
5. リン酸塩が含有されていることを特徵とする請求項 1から 4のいずれか に記載の冷却液組成物。 5. The coolant composition according to any one of claims 1 to 4, wherein the composition contains a phosphate.
6 . 不飽和モノエチレンジカルボン酸がポリマレイン酸、 あるいはそのアル 力リ金属塩またはアンモニゥム塩であることを特徴とする請求項 1から 4のいず れかに記載の冷却液組成物。 6. The cooling liquid composition according to any one of claims 1 to 4, wherein the unsaturated monoethylenedicarboxylic acid is polymaleic acid, or an alkali metal salt or an ammonium salt thereof.
7 . リン酸塩が含有されていることを特徴とする請求項 6に記載の冷却液組成 物。 7. The coolant composition according to claim 6, wherein the composition contains a phosphate.
PCT/JP2003/015329 2003-12-01 2003-12-01 Cooling fluid composition WO2005054396A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005511253A JPWO2005054396A1 (en) 2003-12-01 2003-12-01 Coolant composition
PCT/JP2003/015329 WO2005054396A1 (en) 2003-12-01 2003-12-01 Cooling fluid composition
AU2003304581A AU2003304581A1 (en) 2003-12-01 2003-12-01 Cooling fluid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/015329 WO2005054396A1 (en) 2003-12-01 2003-12-01 Cooling fluid composition

Publications (1)

Publication Number Publication Date
WO2005054396A1 true WO2005054396A1 (en) 2005-06-16

Family

ID=34640415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015329 WO2005054396A1 (en) 2003-12-01 2003-12-01 Cooling fluid composition

Country Status (3)

Country Link
JP (1) JPWO2005054396A1 (en)
AU (1) AU2003304581A1 (en)
WO (1) WO2005054396A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012166A (en) * 2009-07-01 2011-01-20 Sakamoto Yakuhin Kogyo Co Ltd Antifreeze composition
CN107629764A (en) * 2017-09-04 2018-01-26 可附特汽车零部件制造(北京)有限公司 A kind of deicing fluid compositions for the four seasons

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360834A (en) * 1976-11-12 1978-05-31 Sakai Chemical Industry Co Corrosion inhibitor
JPS53146279A (en) * 1977-05-26 1978-12-20 Kurita Water Ind Ltd Corrosion, scale, and stain inhibitor in aqueous system
EP1081250A1 (en) * 1999-09-02 2001-03-07 CCI Kabushiki Kaisha Low phosphorus coolant composition
JP2002294227A (en) * 2001-03-29 2002-10-09 Komatsu Ltd Antifreeze/coolant composition
JP2003213465A (en) * 2002-01-16 2003-07-30 Toyota Motor Corp Method of reclaiming cooling water for automobile and additive for reclamation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69828205T2 (en) * 1998-05-06 2005-12-15 Shishiai-K.K., Seki DILUTED COOLANT
JP2001279235A (en) * 2000-03-29 2001-10-10 Cci Corp Antifreeze/coolant composition
JP2002332479A (en) * 2001-05-11 2002-11-22 Ipposha Oil Ind Co Ltd Cooling solution composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360834A (en) * 1976-11-12 1978-05-31 Sakai Chemical Industry Co Corrosion inhibitor
JPS53146279A (en) * 1977-05-26 1978-12-20 Kurita Water Ind Ltd Corrosion, scale, and stain inhibitor in aqueous system
EP1081250A1 (en) * 1999-09-02 2001-03-07 CCI Kabushiki Kaisha Low phosphorus coolant composition
JP2002294227A (en) * 2001-03-29 2002-10-09 Komatsu Ltd Antifreeze/coolant composition
JP2003213465A (en) * 2002-01-16 2003-07-30 Toyota Motor Corp Method of reclaiming cooling water for automobile and additive for reclamation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012166A (en) * 2009-07-01 2011-01-20 Sakamoto Yakuhin Kogyo Co Ltd Antifreeze composition
CN107629764A (en) * 2017-09-04 2018-01-26 可附特汽车零部件制造(北京)有限公司 A kind of deicing fluid compositions for the four seasons

Also Published As

Publication number Publication date
AU2003304581A1 (en) 2005-06-24
JPWO2005054396A1 (en) 2007-06-28

Similar Documents

Publication Publication Date Title
AU2002256500B2 (en) Monocarboxylic acid based antifreeze composition
US4851145A (en) Corrosion-inhibited antifreeze/coolant composition
US5085793A (en) Corrosion-inhibited antifreeze/coolant composition
US7258814B2 (en) Coolant composition and methods of use thereof
JPH0195179A (en) Anticorrosive antifreeze liquid blend
AU2002256500A1 (en) Monocarboxylic acid based antifreeze composition
JP3941030B2 (en) Low phosphorus coolant composition
WO2011121660A1 (en) Cooling liquid composition
US20060237686A1 (en) Coolant composition
EP1159372B1 (en) Monocarboxylic acid based antifreeze composition for diesel engines
WO2005052086A1 (en) Cooling fluid composition
WO2000050532A1 (en) Monocarboxylic acid based antifreeze composition for diesel engines
US6290870B1 (en) Monocarboxylic acid based antifreeze composition for diesel engines
JP2011074181A (en) Coolant composition
WO2005054396A1 (en) Cooling fluid composition
JP2005187905A (en) Cooling liquid composition
JP2005187748A (en) Cooling liquid composition
JP2004300512A (en) Cooling liquid composition
JP2002332479A (en) Cooling solution composition
ES2358575T3 (en) ANTI-LONG COMPOSITION BASED ON MONOCARBOXYL ACID FOR DIESEL ENGINES.
WO2005037951A1 (en) Cooling fluid composition
WO2005054399A1 (en) Coolant composition
JPWO2005054397A1 (en) Coolant composition
WO2000060020A1 (en) Blackening inhibitors and antifreeze fluid/cooling fluid compositions with the use thereof
JPWO2005054398A1 (en) Coolant composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005511253

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase