WO2005053145A1 - Driving element - Google Patents

Driving element Download PDF

Info

Publication number
WO2005053145A1
WO2005053145A1 PCT/JP2004/017703 JP2004017703W WO2005053145A1 WO 2005053145 A1 WO2005053145 A1 WO 2005053145A1 JP 2004017703 W JP2004017703 W JP 2004017703W WO 2005053145 A1 WO2005053145 A1 WO 2005053145A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving element
driving
annular
solid electrolyte
layer
Prior art date
Application number
PCT/JP2004/017703
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeki Fujiwara
Kenji Kato
Minoru Nakayama
Original Assignee
Eamex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eamex Corporation filed Critical Eamex Corporation
Publication of WO2005053145A1 publication Critical patent/WO2005053145A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/006Motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors

Definitions

  • the present invention relates to an annular driving element and its use.
  • a bellows pump exerts the function of a pump by sucking and discharging a fluid by expanding and contracting a bellows forming a pump space.
  • the plunger pump performs a pump function by sucking and discharging fluid by increasing and decreasing the volume of the pump chamber due to the reciprocating movement of the piston.
  • a motor can be used as a driving element.
  • a method for extending and retracting a bellows or plunger using a motor is to connect a motion conversion mechanism to a rotary motion body such as a motor shaft to convert the rotary motion into a reciprocating motion. It is normal to change the bellows to expand and contract (for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-329068
  • a motion conversion device for converting a rotation direction into a linear direction is usually required.
  • the above-described pump requires a conversion device in addition to the drive device.
  • the conversion device supports, for example, a drive cam fixed to a motor shaft, a yoke cam mounted on the drive cam, and the yoke cam.
  • a drive cam fixed to a motor shaft a drive cam fixed to a motor shaft
  • a yoke cam mounted on the drive cam
  • the yoke cam As with a device having a connecting rod fixed to a frame, a large number of components are required, and the device configuration is complicated.
  • the conversion device is generally made of a metal material to ensure durability, and it is necessary to have a certain size or more in order to facilitate assembly. Heavier than devices made of polymeric materials.
  • the drive mechanism equipped with a motor and a motion conversion device attached to the motor shaft of the motor has a structure that is at least a certain size due to the configuration of the motor and can fit in a cube with one side of several centimeters. It is difficult to make.
  • an apparatus using a motor is not suitable for applications such as home use and medical use where noise is large. Therefore, it is desirable that the driving element be silent.
  • An object of the present invention is a driving element that can be used in a device that is driven by linear motion, and that has a simple structure, is lightweight, and can be easily miniaturized. It is to provide.
  • the present invention is an annular driving element having a stacked structure in which a solid electrolyte layer is sandwiched between electrode layers in a thickness direction.
  • the driving element can generate driving in a linear direction, and has a simple structure, light weight, and easy downsizing.
  • the present invention is also a driving element assembly including two or more annular driving elements, wherein the driving elements are arranged concentrically with each other, and formed in a multiple ring shape.
  • a drive element assembly is characterized in that the drive element is characterized in that it can be driven in a linear direction, has a simple structure, is lightweight, and can be easily reduced in size.
  • the driving elements are arranged in parallel on a pad and a comparator. Therefore, the driving element assembly can generate a force obtained by summing the forces of two or more driving elements in a compact configuration, and has an advantageous structure in various device configurations.
  • the present invention provides a laminated structure in which a solid electrolyte layer is sandwiched between electrode layers in the thickness direction, It is also a disk-shaped driving element in which an annular electrode layer is formed on a disk-shaped solid electrolyte.
  • the driving element By using the driving element, the solid electrolyte layer in the central portion does not have the electrode layer, and therefore can be deformed and immediately exhibit the same effect as the above-mentioned annular driving element.
  • the present invention is a focus adjusting device using the above-described driving element.
  • the above-mentioned driving element force A driving in a linear direction can be generated, and the force can be reduced.Since the structure is simple, the weight is small, and the size can be easily reduced. It is easy to use.
  • FIG. 1 is a top view of a driving element according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the driving element of FIG.
  • FIG. 3 is a cross-sectional view of the driving element 1 of FIG. 2 in a state where the driving element is driven.
  • FIG. 4 is a top view of a driving element assembly according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the driving element assembly of FIG.
  • FIG. 6 is a cross-sectional view showing a state where the driving element assembly of FIG. 5 is driven.
  • FIG. 7 is a cross-sectional view of an example of an embodiment in which driving element assemblies according to the present invention are stacked.
  • FIG. 8 is a cross-sectional view showing a state where the driving element assembly of FIG. 7 is driven.
  • FIG. 9 (a) is a cross-sectional view of an embodiment of the focus adjusting device according to the present invention.
  • FIG. 10 (a) is a sectional view of an embodiment of the zoom lens unit according to the present invention.
  • (B) A cross-sectional view of the focus adjusting device in a state where each driving element of the zoom lens unit in FIG. 10 (a) is driven.
  • FIG. 1 is a top view of a driving element according to an embodiment of the present invention.
  • the annular driving element 1 has a space 2 inside.
  • FIG. 2 is a cross-sectional view of the driving element 1 shown in FIG. 1 cut along a plane passing through the center of the outer periphery in parallel with the thickness direction.
  • the annular driving element 1 has a laminated structure in the thickness direction, and has electrode layers 6 and 6 ′ on the solid electrolyte layer 5.
  • the electrode layer 6 and the electrode layer 6 ' are formed on both sides of the solid electrolyte so as to sandwich the solid electrode layer.
  • FIG. 3 is a cross-sectional view of the driving element 1 of FIG. 2 in a state where electrodes are applied to the electrode layers 6 and 6 ′ to drive the driving element 1.
  • FIG. 6 shows a case where a cation is contained inside the solid electrolyte layer 5.
  • the driving element 1 when a negative voltage is applied to the electrode layer 6 and a positive voltage is applied to the electrode 6 ', ions contained in the solid electrode layer move. Since the cations are unevenly distributed on the negative electrode layer 6, the electrode layer on the side where the negative voltage is applied becomes convex outside the laminated structure.
  • the driving element is convex so that the center A with respect to the width of the driving element 1 is the top. Due to such deformation, the driving element 1 can generate a force in a linear direction to drive in the upward direction in FIG.
  • the driving element 1 has an outer periphery 3 and an inner periphery 4 formed in a circular shape, and the outer periphery and the inner periphery are formed concentrically.
  • the outer shape of the driving element of the present invention is not particularly limited, and may be a circular shape or a polygonal shape of a quadrangle or more.
  • the outer peripheral shape can be easily grounded on the surface on which the driving element is installed by driving by applying a voltage to the electrode layer as shown in FIG. 3, and exerts a stronger force than the polygonal shape. Therefore, it is preferable to be on the circumference.
  • the inner periphery of the driving element is not particularly limited, but the same shape as the outer periphery makes it possible to generate a force generated by deformation as soon as possible, and as soon as the outer periphery is concentric with the outer periphery. Preferably, it is the inner circumference of.
  • the solid electrolyte used in the driving element of the present invention is preferably a solid electrolyte that can be bent by the movement of ions as shown in FIG. Can be easily formed by a known electroless plating method Therefore, it is more preferable that the resin is an ion exchange resin.
  • the electrode layer is not particularly limited as long as it can be bent by the movement of ions as shown in FIG.
  • a metal electrode layer formed by an electroless plating method is preferable because it can be easily formed on the porous layer and the interlayer is not separated even by the above-mentioned curved driving.
  • the metal layer be a porous metal layer because bending is easy.
  • FIG. 4 is a top view of an embodiment of the driving element assembly according to the present invention.
  • the driving element assembly 7 includes two annular driving elements 8 and 9, a space 10 between the outer driving element 8 and the inner driving element 9, and a space 11 inside.
  • FIG. 5 is a cross-sectional view of the driving element assembly 7 shown in FIG. 4 cut along a plane passing through the center point of the outer periphery of the annular driving elements 8 and 9 in parallel with the thickness direction.
  • the annular driving element 8 has a laminated structure in the thickness direction, and has electrode layers 13 and 13 ′ on the solid electrolyte layer 12.
  • the annular driving element 9 has a laminated structure in the thickness direction, and has electrode layers 15 and 15 ′ on the solid electrolyte layer 14.
  • FIG. 6 is a cross-sectional view showing a state where the driving element assembly 7 shown in FIG. 5 is driven.
  • a negative voltage is applied to the electrode layers 13 and 15 of each driving element and a positive voltage is applied to the electrode layers 13 'and 15' by the same driving mechanism as that for driving the driving elements in FIG.
  • the electrode layer on the side to which the negative voltage is applied is deformed so as to be convex outside the laminated structure. Due to such a deformation, the driving element assembly 7 can generate a linear force in order to drive in the upward direction in FIG. Further, since the driving element assembly includes two or more driving elements in the radial direction in parallel, it is possible to generate a force corresponding to the number of driving elements.
  • the driving element assembly may have a structure in which the structure in which the driving elements shown in FIGS. 4 to 6 are arranged in parallel is further laminated.
  • FIG. 7 is a cross-sectional view of one example of an embodiment in a case where the driving element assemblies of the present invention are stacked.
  • FIG. 8 is a cross-sectional view showing a state where the driving element assembly of FIG. 7 is driven.
  • the actuator 20 has an annular inner space formed by the container 21 and the lid 22, in which an annular driving element is disposed on the outer periphery L and the inner periphery M, and is provided with an energizing metal layer and a Z or resin layer. It is laminated. There is a gap D between the outer circumference L and the inner circumference M.
  • the actuator 20 has two driving elements, an outer circumference L and an inner circumference M, in the circumferential direction, and four driving elements including an N layer, an O layer, a P layer, and a Q layer in the height direction. It has a layer of drive elements and has a total of eight drive elements.
  • the first current-carrying metal layer 23 is formed so as to be in contact with the top surface of the lid 22 of the actuator 20.
  • the first driving element having a laminated structure in which the solid electrolyte layer 25 is sandwiched between the electrode layer 24 and the electrode layer 26 is provided so that the first current-carrying metal layer 23 and the electrode layer 24 are in contact with each other. ing.
  • the first driving element is a driving element located on the N layer in the height direction and on the outer periphery L in the circumferential direction.
  • the electrode layer 26 is in contact with a second current-carrying metal layer 27 formed on a resin layer 28 which is an insulating layer.
  • a third current-carrying metal layer 29 is formed on the back side of the second current-carrying metal layer 27 with the resin layer 28 interposed therebetween, and a fourth current-carrying metal layer 30 is interposed via a second drive element. Is formed. Further, in FIG. 7, a third driving element is formed below the fourth current-carrying metal layer 30. In FIG. 7, a fourth energizing metal layer 31 and a sixth energizing metal layer 33 are provided under a third driving element via a resin layer 32 provided on both sides thereof. A driving element is arranged. Further, a seventh current-carrying metal layer 34 is arranged between the fourth driving element and the bottom surface of the container 21.
  • the second driving element is a driving element located on the O layer in the height direction and on the outer periphery L in the circumferential direction.
  • the third driving element is a driving element located on the P layer in the height direction and on the outer periphery L in the circumferential direction.
  • the fourth driving element is a driving element located on the Q layer in the height direction and on the outer periphery L in the circumferential direction.
  • the actuator 20 has lead wires 35 and 36 and is connected to a current-carrying metal layer.
  • the first current-carrying metal layer, the fourth current-carrying metal layer, and the seventh current-carrying metal layer are connected to a power supply via a lead wire 35 so that a negative voltage is applied.
  • the second conductive metal layer, the third conductive metal layer, the fifth conductive metal layer, and the sixth conductive metal The metal layer is connected to a power supply via a lead wire 36 so that a positive voltage is applied.
  • the wiring inside the actuator 20 can be performed by a known method, and is omitted for convenience of describing the configuration of the driving element.
  • the resin layer 28 When the same voltage is applied to the second current-carrying metal layer and the third current-carrying metal layer, the resin layer 28 may not be provided. When the same voltage is applied to the fifth energizing metal layer and the sixth energizing metal layer, a resin layer as an intervening layer may not be provided.
  • the actuator 20 applies a negative voltage to the first energizing metal layer 23 in FIG. 7 and applies a positive voltage to the second energizing metal layer 27 in FIG.
  • the element becomes an upwardly convex state in FIG. 8 and is driven upward.
  • a positive voltage is applied to the third current-carrying metal layer 29 and a negative voltage is applied to the fourth current-carrying electrode layer 30, the second drive element becomes convex downward.
  • a voltage is applied to the electrode layers of the first to fourth driving elements, and the voltage release actuator 20 is driven as shown in FIG. Can generate force. Further, by releasing the voltage applied to each electrode layer of the first to fourth driving elements, the state shown in FIG. 7 can be obtained, and the actuator is driven in the vertical direction, that is, linearly. Driving.
  • the present invention is also a disc-shaped driving element having a laminated structure in which a solid electrolyte layer is sandwiched between electrode layers in a thickness direction, and an annular electrode layer formed on a disc-shaped solid electrolyte.
  • the solid electrolyte is a gel electrolyte such as an electrolyte containing ion-exchange resin, it has sufficient flexibility, so that a negative voltage is applied to one electrode layer of the solid electrolyte, and the solid electrolyte is formed on the back surface. It is also possible to apply a positive voltage to the other electrode layer to bend as shown in FIG.
  • the present invention is also a focus adjustment device that adjusts a focus by driving a movable lens by a driving unit, wherein the driving unit has the above-described laminated structure in which a solid electrolyte layer is sandwiched between electrode layers.
  • a focus adjusting device including an annular driving element provided in the thickness direction.
  • FIGS. 9A and 9B are cross-sectional views of an embodiment of the focus adjusting device.
  • the focus adjustment device 40 includes lenses 42 and 43 in an internal space of a housing 41 having openings on the upper surface and the lower surface.
  • the lenses 42 and 43 are stacked annular driving elements 44-51 are provided.
  • a first conductive plate 53 having the same shape as each driving element is provided on the annular driving element 44.
  • a lens 42 which is a convex lens
  • the lens 42 which is a convex lens, is fixed so that the convex portion fits into the inner space of the lens installation plate 44.
  • the convex portion of the lens 43 is also fixed so as to fit into the inner space of the sixth energizing plate 58 provided between the driving element 52 and the convex lens 42.
  • a plurality of driving elements are provided between the driving element 44 and the driving element 51.
  • Each of the driving elements 44-52 has a configuration similar to that of the driving elements shown in FIGS. Lead wires are connected to the respective driving elements. For example, by applying a negative voltage to the first energizing plate 53, applying a negative voltage to the electrode layer on the lens 42 side of the driving element 44, and applying a positive voltage to the second energizing plate 54, A positive voltage is applied to the electrode layer on the lens 43 side of the device 44. By such a method of applying a voltage to the driving element 44 via the current-carrying plate, the driving element 44 becomes convex upward as shown in FIG. 9 (b).
  • a positive voltage is applied to the second energizing plate 54, and a positive voltage is applied to the electrode layer of the driving element 45 on the lens 42 side.
  • a negative voltage is applied to the electrode layer on the lens 43 side of the driving element 45
  • the electrode layer on the lens 42 side of the driving element 46 is also applied to the negative electrode, and is applied via the third current-carrying plate 55.
  • a positive voltage is applied to the electrode layer on the lens 43 side of the driving element 46, and the driving element 45 and the driving element 45 are driven so that the convex directions of the driving element 45 and the driving element 46 face each other.
  • the element 46 can be modified.
  • Each driving element can be deformed as shown in FIG. 9 (b) by applying a voltage to each electrode provided in each driving element.
  • Each conductive plate is not particularly limited as long as it has electrical conductivity.However, since it has physical strength and is easy to process, an annular metal plate having electrical conductivity is used. preferable.
  • the distance ⁇ between the top surface of the focus adjusting device 40 and the lens 42 in FIG. 9 (a) can be eliminated.
  • the distance between the lens 42 and the lens 43 can be changed to an arbitrary distance.
  • the focus adjustment device can easily secure an optical path by arranging the driving element so that light from a subject passes through the space inside the driving element. Also, since there is no need for a special lens fixing member, a light and small focus adjusting device can be easily formed.
  • the focus adjusting device is an annular driving element having a stacked structure in which a solid electrolyte layer is sandwiched between electrode layers in the thickness direction, and thus each driving element is driven in order to drive each driving element. It is necessary to apply a voltage to the electrode layer of the device.
  • a lead wire can be connected to each electrode layer by a known connection method, and a voltage can be applied from a power supply.
  • a voltage as shown in FIG. 9, the same voltage is applied to the electrode layer of one driving element and the electrode layer of another driving element that is in contact with the electrode layer.
  • the element can be driven by alternately changing its deformation direction. By alternately changing the directions in which the driving elements are deformed up and down, the focus adjusting device does not need to provide an insulating layer between the driving elements.
  • the focus adjusting device uses a single annular driving element in each of FIGS. 9 (a) and 9 (b).
  • each of the driving elements has a multiple annular shape.
  • a focus adjusting device including two or more driving elements and arranged concentrically with each other so that the driving elements form a multiple ring can be provided. Since each driving element of this focus adjusting device is formed in a multiple ring shape, the driving elements are arranged in parallel, so that even if the lens weight becomes heavy, the focus can be easily adjusted according to the application. .
  • the present invention is also a zoom lens unit that adjusts a focal length by driving a movable lens by a driving unit, wherein the driving unit is the driving element described above.
  • FIG. 10 is a cross-sectional view of one embodiment of the zoom lens unit of the present invention.
  • the zoom lens unit 60 includes a lid 62 having an opening in a direction facing the objective on the case 61.
  • partition plates 63 and 64 each having an opening through which light from a subject can pass are provided.
  • Driving elements 65 and 66 are installed on the partition plates 63 and 64, respectively, and are mounted on the driving elements via installation plates 67 and 68, respectively.
  • a first lens 69 or a second lens 70 is provided.
  • the case 61 includes a third lens 72 fitted on the bottom frame 71.
  • the zoom lens unit 60 is driven by applying a voltage to the electrode layers provided on both sides of the solid electrolyte layers of the driving elements 65 and 66, and applying the voltage shown in FIG.
  • the state can be changed from the state to the state where the voltage shown in FIG. 10B is applied, and the position of the lens can be changed.
  • the focal length can be changed.
  • the zoom lens unit includes the above-described driving element, the structure is simple, lightweight, and easy to reduce in size. Further, since the driving element has a space inside the driving element, as shown in FIGS. 10 (a) and 10 (b), light from a subject is applied to the driving element. By arranging the driving element so as to pass through the space inside the driving element, the zoom lens unit can have a simple device configuration.
  • force driving elements each using a single annular driving element are arranged so as to form a multiple annular shape, and are arranged concentrically with each other. It is possible to provide a zoom lens unit including two or more driving elements, which are arranged concentrically with each other such that the driving elements form a multiple ring.
  • This zoom lens unit has a structure in which the driving elements are arranged in parallel by making each driving element a multiple ring, so even if the lens weight becomes heavy depending on the application, focus adjustment is easy. You can do.
  • the driving element of the present invention can be driven linearly, has a simple force, and is light in weight, so that it can be easily reduced in size. Therefore, the driving element of the present invention can be suitably used for a driving unit of a positioning device, a posture control device, a lifting device, a transport device, a moving device, an adjusting device, an adjusting device, a guiding device, or a joint device.
  • the driving element of the present invention has a simple structure, is lightweight, and can be easily miniaturized, so that it can be suitably used as a focus adjusting device and a zoom lens unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lens Barrels (AREA)
  • Reciprocating Pumps (AREA)
  • Focusing (AREA)

Abstract

A circular driving element having a multilayer structure in the thickness direction where a solid electrolyte layer is sandwiched between electrode layers. A driving element assembly having two or more circular driving elements which are so disposed concentrically to form multiple rings is also disclosed. The driving element has features such as generation of a drive in a linear direction, a simple structure, a light weight and reduction in size. In addition to the features of the driving element, the driving element assembly has a feature that the driving elements are disposed in parallel compactly. A disc-like driving element having a multilayer structure in the thickness direction where a solid electrolyte is sandwiched between electrode layers and circular electrode layers are formed on a disc-like solid electrolyte is also disclosed.

Description

明 細 書  Specification
駆動用素子  Driving element
技術分野  Technical field
[0001] 本発明は、環状の駆動用素子及びその用途に関する。  The present invention relates to an annular driving element and its use.
背景技術  Background art
[0002] ポンプには種々の装置があり、代表的なポンプ装置として、直線的な運動により駆 動するべローズポンプやプランジャーポンプがある。例えば、ベローズポンプは、ポン プ空間を形成するべローズを伸縮運動させることにより、流体が吸排出されてポンプ の機能を発揮する。また、プランジャーポンプは、ピストンが往復運動することにより、 ポンプ室の体積が増減して、流体の吸排出をし、ポンプ機能を発揮する。このような ポンプを、例えば 2Vのような低電圧で駆動するには、モーターを駆動用素子として 使うことができる。  [0002] There are various types of pumps, and typical pump devices include bellows pumps and plunger pumps driven by linear motion. For example, a bellows pump exerts the function of a pump by sucking and discharging a fluid by expanding and contracting a bellows forming a pump space. In addition, the plunger pump performs a pump function by sucking and discharging fluid by increasing and decreasing the volume of the pump chamber due to the reciprocating movement of the piston. To drive such a pump at a low voltage, for example, 2V, a motor can be used as a driving element.
[0003] 上記のようにべローズやプランジャーを、モーターを用いて伸縮運動させるための 方法としては、モーターシャフト等の回転運動体に運動変換機構を接続して、回転運 動を往復運動に変化してベローズを伸縮運動させるのが通常である(例えば、特許 文献 1)。  [0003] As described above, a method for extending and retracting a bellows or plunger using a motor is to connect a motion conversion mechanism to a rotary motion body such as a motor shaft to convert the rotary motion into a reciprocating motion. It is normal to change the bellows to expand and contract (for example, Patent Document 1).
[0004] 特許文献 1:特開 2000— 329068号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2000-329068
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、上記のように伸縮運動または往復運動を得るための駆動装置としては、回 転方向から直線方向へ変換する運動変換装置が必要であるのが通常である。つまり 、上述のポンプでは、駆動装置以外に、変換装置が必要となる、前記変換装置は、 例えば、モーターシャフトに固定されたドライブカム、該ドライブカムに装着されたョー クカム、該ヨークカムを支持してフレームに固定されたコンロッドを備えた装置であるよ うに、多数の部品構成力もなり、装置構成が複雑である。 [0005] However, as a driving device for obtaining the expansion and contraction motion or the reciprocating motion as described above, a motion conversion device for converting a rotation direction into a linear direction is usually required. In other words, the above-described pump requires a conversion device in addition to the drive device. The conversion device supports, for example, a drive cam fixed to a motor shaft, a yoke cam mounted on the drive cam, and the yoke cam. As with a device having a connecting rod fixed to a frame, a large number of components are required, and the device configuration is complicated.
[0006] また、前記変換装置は、耐久性の確保のため金属材料により構成されているのが 通常であり、組み立てを容易にするために一定以上の大きさとする必要があるので、 高分子材料で形成された装置に比べて重い。さらに、モーター及びそのモーターの モーターシャフトに取付けられる運動変換装置を備えた駆動機構は、モーターの装 置構成上、一定以上の大きさを有し、 1辺が数センチ程度の立方体に収まる構造を 作ることは難し 、。 [0006] Further, the conversion device is generally made of a metal material to ensure durability, and it is necessary to have a certain size or more in order to facilitate assembly. Heavier than devices made of polymeric materials. Furthermore, the drive mechanism equipped with a motor and a motion conversion device attached to the motor shaft of the motor has a structure that is at least a certain size due to the configuration of the motor and can fit in a cube with one side of several centimeters. It is difficult to make.
[0007] また、ベローズポンプ及びプランジャーポンプに限らず、焦点調節装置など直線方 向に駆動する装置においても、モーターを用いて装置を構成した場合には、装置構 成が複雑になり、重量も重ぐ小型の装置を作ることは難しい。  [0007] Further, not only the bellows pump and the plunger pump, but also in a device driven in a straight line such as a focus adjusting device, if the device is configured by using a motor, the device configuration becomes complicated and the weight becomes heavy. It is difficult to make a small device that is too heavy.
[0008] 更に、モーターを用いた装置は、雑音が大きぐ家庭用や医療用などの用途に不 向きである。そのため、駆動用素子が無音であることが望ましい。  [0008] Further, an apparatus using a motor is not suitable for applications such as home use and medical use where noise is large. Therefore, it is desirable that the driving element be silent.
[0009] つまり、直線的な運動により駆動する装置を駆動させるために、モーターに代表さ れる回転運動をする駆動用素子を用いた場合には、装置構成は複雑になり、重量も 重ぐ小型のポンプを作ることは難しい。  [0009] In other words, when a driving element that performs a rotary motion typified by a motor is used to drive a device that is driven by a linear motion, the configuration of the device becomes complicated, and the device is heavy and small. It is difficult to make a pump.
[0010] 本発明の目的は、直線的運動により駆動する装置に用いることができる駆動用素 子であって、構造が簡単であり、軽量であり、容易に小型化することができる駆動用 素子を提供することである。  [0010] An object of the present invention is a driving element that can be used in a device that is driven by linear motion, and that has a simple structure, is lightweight, and can be easily miniaturized. It is to provide.
課題を解決するための手段  Means for solving the problem
[0011] そこで、本発明者らは、鋭意検討の結果、本願発明に至った。  [0011] The inventors of the present invention have conducted intensive studies and have arrived at the present invention.
[0012] 本願発明は、電極層間に固体電解質層が挟まれた積層構造を厚さ方向に備えた 環状の駆動用素子である。前記駆動用素子は、直線的な方向への駆動を発生する ことができ、し力も、構造が簡単であり、軽量であり、容易に小型化することができる。  The present invention is an annular driving element having a stacked structure in which a solid electrolyte layer is sandwiched between electrode layers in a thickness direction. The driving element can generate driving in a linear direction, and has a simple structure, light weight, and easy downsizing.
[0013] 本発明は前記の環状の駆動用素子を 2以上備え、該駆動用素子が互いに同心的 に配置され、多重環状に形成された駆動用素子集合体でもある。かかる駆動用素子 集合体は、前記駆動用素子の特徴である、直線的な方向への駆動の発生、構造が 簡単であること、軽量であること、及び小型化が容易に可能であることにカ卩え、コンパ タトに前記駆動用素子が並列的に配置されている。従って、前記駆動用素子集合体 は、 2以上の駆動用素子による力を合計した力をコンパクトな構成で発生することが でき、各種の装置構成上有利な構造を備えている。  [0013] The present invention is also a driving element assembly including two or more annular driving elements, wherein the driving elements are arranged concentrically with each other, and formed in a multiple ring shape. Such a drive element assembly is characterized in that the drive element is characterized in that it can be driven in a linear direction, has a simple structure, is lightweight, and can be easily reduced in size. The driving elements are arranged in parallel on a pad and a comparator. Therefore, the driving element assembly can generate a force obtained by summing the forces of two or more driving elements in a compact configuration, and has an advantageous structure in various device configurations.
[0014] 本発明は、電極層間に固体電解質層が挟まれた積層構造を厚さ方向に備え、円 盤状の固体電解質上に環状の電極層が形成された円盤状駆動用素子でもある。前 記駆動用素子を用いることにより、中央部分の固体電解質層が電極層を備えていな いので、変形しやすぐ上記の環状の駆動用素子と同様の効果を発揮することができ る。 The present invention provides a laminated structure in which a solid electrolyte layer is sandwiched between electrode layers in the thickness direction, It is also a disk-shaped driving element in which an annular electrode layer is formed on a disk-shaped solid electrolyte. By using the driving element, the solid electrolyte layer in the central portion does not have the electrode layer, and therefore can be deformed and immediately exhibit the same effect as the above-mentioned annular driving element.
[0015] また、本発明は、上記の駆動用素子を用いた焦点調節装置である。上記駆動用素 子力 直線的な方向への駆動を発生することができ、し力も、構造が簡単であり、軽 量であり、容易に小型化することができることから、小型の焦点調整装置を容易に用 いることがでさる。  [0015] Further, the present invention is a focus adjusting device using the above-described driving element. The above-mentioned driving element force A driving in a linear direction can be generated, and the force can be reduced.Since the structure is simple, the weight is small, and the size can be easily reduced. It is easy to use.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の駆動用素子の一実施態様例についての上面図。 FIG. 1 is a top view of a driving element according to an embodiment of the present invention.
[図 2]図 1の駆動用素子についての断面図。  FIG. 2 is a cross-sectional view of the driving element of FIG.
[図 3]図 2の駆動用素子 1について駆動用素子を駆動させた状態の断面図。  FIG. 3 is a cross-sectional view of the driving element 1 of FIG. 2 in a state where the driving element is driven.
[図 4]本発明の駆動用素子集合体の一実施態様例についての上面図。  FIG. 4 is a top view of a driving element assembly according to an embodiment of the present invention.
[図 5]図 4の駆動用素子集合体についての断面図。  FIG. 5 is a cross-sectional view of the driving element assembly of FIG.
[図 6]図 5の駆動用素子集合体が駆動した状態の断面図。  FIG. 6 is a cross-sectional view showing a state where the driving element assembly of FIG. 5 is driven.
[図 7]本発明の駆動用素子集合体が積層された場合における一実施態様例の断面 図。  FIG. 7 is a cross-sectional view of an example of an embodiment in which driving element assemblies according to the present invention are stacked.
[図 8]図 7の駆動用素子集合体が駆動した状態の断面図。  FIG. 8 is a cross-sectional view showing a state where the driving element assembly of FIG. 7 is driven.
[図 9] (a) 本発明の焦点調節装置の一実施態様例の断面図。(b) 図 9 (a)の焦点 調節装置の各駆動用素子を駆動させた状態における該焦点調節装置の断面図。  FIG. 9 (a) is a cross-sectional view of an embodiment of the focus adjusting device according to the present invention. (B) A cross-sectional view of the focus adjusting device in a state where each driving element of the focus adjusting device in FIG. 9A is driven.
[図 10] (a) 本発明のズームレンズユニットの一実施態様例の断面図。(b) 図 10 (a) のズームレンズユニットの各駆動用素子を駆動させた状態における該焦点調節装置 の断面図。  FIG. 10 (a) is a sectional view of an embodiment of the zoom lens unit according to the present invention. (B) A cross-sectional view of the focus adjusting device in a state where each driving element of the zoom lens unit in FIG. 10 (a) is driven.
符号の説明  Explanation of symbols
[0017] 1 環状の駆動用素子 [0017] 1 annular driving element
2 空間部 固体電解質層 2 space Solid electrolyte layer
、 6' 電極層 The 6 'electrode layer
駆動用素子集合体 外側の環状の駆動用素子 内側の環状の駆動用素子0 間隔 Driving element assembly Outer annular driving element Inner annular driving element 0 spacing
1 空間部1 space
2 固体電解質層2 Solid electrolyte layer
3 電極層3 Electrode layer
4 固体電解質層4 Solid electrolyte layer
5 電極層5 Electrode layer
0 ァクチユエータ0 Actuator
1 容器1 container
2 蓋2 lid
3 第 1の通電用電極層4、 26 電極層3 First conducting electrode layer 4, 26 electrode layer
5 固体電解質層5 Solid electrolyte layer
7 第 2の通電用電極層8 樹脂層7 Second energizing electrode layer 8 Resin layer
9 第 3の通電用金属層0 第 4の通電用金属層1 第 5の通電用金属層2 樹脂層9 Third conducting metal layer 0 Fourth conducting metal layer 1 Fifth conducting metal layer 2 Resin layer
3 第 6の通電用金属層4 第 7の通電用金属層0 焦点調節装置3 Sixth conductive metal layer 4 Seventh conductive metal layer 0 Focus adjustment device
1 筐体1 housing
2、 43 レンズ 44一 52 環状の駆動用素子 2, 43 lens 44-52 Ring drive element
53 第 1の通電用板  53 1st energizing plate
54 第 2の通電用板  54 Second energizing plate
55 第 3の通電用板  55 Third energizing plate
56 第 4の通電用板  56 Fourth energizing plate
57 第 5の通電用板  57 Fifth energizing plate
58 第 6の通電用板  58 Sixth energizing plate
59, 59' 開口部 59, 59 'opening
60 ズームレンズユニット  60 Zoom lens unit
61 ケース  61 cases
62 蓋  62 lid
63、 64 仕切り板  63, 64 divider
65、 66 駆動用素子 65, 66 Driving element
67、 68 設置板 67, 68 Installation plate
69 第 1レンズ  69 1st lens
70 第 2レンズ  70 Second lens
71 底枠  71 Bottom frame
72 第 3レンズ  72 Third lens
A 中央部 A center
L 外側周  L Outer circumference
M 内側周  M inner circumference
N 駆動用素子の第 1層  N First layer of driving element
O 駆動用素子の第 2層  O Second layer of driving element
P 駆動用素子の第 3層  Third layer of P driving element
Q 駆動用素子の第 4層  4th layer of Q driving element
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明について、図を用いて説明するが、本発明はこれらに限定されるもの ではない。 [0019] 図 1は、本発明の駆動用素子の一実施態様例についての上面図である。環状の駆 動用素子 1は、内側に空間部 2を備えている。図 2は、図 1に記載の駆動用素子 1に ついて、外周の中心を通る平面によって、厚さ方向と平行に切断された断面図である 。環状の駆動用素子 1は、厚さ方向に積層構造を備えており、固体電解質層 5上に 電極層 6及び 6 'を備えている。前記電極層 6と電極層 6'とは、固体電極層を挟むよう に、固体電解質の両側に形成されている。 Hereinafter, the present invention will be described with reference to the drawings, but the present invention is not limited thereto. FIG. 1 is a top view of a driving element according to an embodiment of the present invention. The annular driving element 1 has a space 2 inside. FIG. 2 is a cross-sectional view of the driving element 1 shown in FIG. 1 cut along a plane passing through the center of the outer periphery in parallel with the thickness direction. The annular driving element 1 has a laminated structure in the thickness direction, and has electrode layers 6 and 6 ′ on the solid electrolyte layer 5. The electrode layer 6 and the electrode layer 6 'are formed on both sides of the solid electrolyte so as to sandwich the solid electrode layer.
[0020] 図 3は、図 2の駆動用素子 1について、電極層 6及び 6'に電極を印加することで駆 動用素子 1を駆動させた状態の断面図である。図 6については、固体電解質層 5の 内部に陽イオンを含む場合である。前記駆動用素子 1は、電極層 6にマイナスの電圧 を印加し、電極 6'プラスの電圧を印加することで、固体電極層内部に含まれるイオン の移動が生じる。陽イオンがマイナス側の電極層 6に偏在することで、マイナスの電 圧に印カロした側の電極層が積層構造の外側に凸となる。前記駆動用素子は、駆動 用素子 1の幅に対する中央部 Aが頂部となるように凸となる。このような変形により、駆 動用素子 1は、図 3における上方向に駆動するために、直線的な方向の力を発生す ることがでさる。  FIG. 3 is a cross-sectional view of the driving element 1 of FIG. 2 in a state where electrodes are applied to the electrode layers 6 and 6 ′ to drive the driving element 1. FIG. 6 shows a case where a cation is contained inside the solid electrolyte layer 5. In the driving element 1, when a negative voltage is applied to the electrode layer 6 and a positive voltage is applied to the electrode 6 ', ions contained in the solid electrode layer move. Since the cations are unevenly distributed on the negative electrode layer 6, the electrode layer on the side where the negative voltage is applied becomes convex outside the laminated structure. The driving element is convex so that the center A with respect to the width of the driving element 1 is the top. Due to such deformation, the driving element 1 can generate a force in a linear direction to drive in the upward direction in FIG.
[0021] 前記駆動用素子 1は、図 1に記載されているように、外周 3と内周 4とが円周状に形 成され、さらに前記外周と前記内周とが、同心円的に形成されている。本発明の駆動 用素子は、外周の形状が特に限定されるものではなぐ円周状であっても、四角形以 上の多角形状の外周であってもよい。前記外周の形状は、図 3に示すような電極層 に対する電圧印可による駆動により、駆動用素子が設置された面上に容易に接地す ることができ、多角形状よりも強い力を発揮することができることから、円周上であるこ とが好ましい。  As shown in FIG. 1, the driving element 1 has an outer periphery 3 and an inner periphery 4 formed in a circular shape, and the outer periphery and the inner periphery are formed concentrically. Have been. The outer shape of the driving element of the present invention is not particularly limited, and may be a circular shape or a polygonal shape of a quadrangle or more. The outer peripheral shape can be easily grounded on the surface on which the driving element is installed by driving by applying a voltage to the electrode layer as shown in FIG. 3, and exerts a stronger force than the polygonal shape. Therefore, it is preferable to be on the circumference.
[0022] また、前記駆動用素子の内周は、特に限定されるものではないが、外周と同じ形状 であることが、変形による力を発生する力が均一になりやすぐ特に外周と同心円状 の内周であることが好まし 、。  Further, the inner periphery of the driving element is not particularly limited, but the same shape as the outer periphery makes it possible to generate a force generated by deformation as soon as possible, and as soon as the outer periphery is concentric with the outer periphery. Preferably, it is the inner circumference of.
[0023] 本発明の駆動用素子に用いられる固体電解質は、図 3に示すようにイオンの移動 により湾曲することが可能である固体電解質であることが好ましぐ入手が用意であり 、電極層との積層構造を公知の無電解メツキ法により容易に形成することができること から、イオン交換榭脂であることがより好ましい。 The solid electrolyte used in the driving element of the present invention is preferably a solid electrolyte that can be bent by the movement of ions as shown in FIG. Can be easily formed by a known electroless plating method Therefore, it is more preferable that the resin is an ion exchange resin.
[0024] 前記電極層は、前記固体電解質と同様に、図 3に示すようにイオンの移動により湾 曲することが可能である電極層であれば、特に限定されるものではないが、固体電解 質層上に容易に形成することができ、上記の湾曲する駆動によっても層間の剥離を 生じることがな ヽことから、無電解メツキ法により形成された金属電極層であることが 好ましい。特に、前記金属層は、ポーラスな金属層であることが、屈曲が容易である ために好ましい。  [0024] Like the solid electrolyte, the electrode layer is not particularly limited as long as it can be bent by the movement of ions as shown in FIG. A metal electrode layer formed by an electroless plating method is preferable because it can be easily formed on the porous layer and the interlayer is not separated even by the above-mentioned curved driving. In particular, it is preferable that the metal layer be a porous metal layer because bending is easy.
[0025] 図 4は、本発明の駆動用素子集合体の一実施態様例についての上面図である。駆 動用素子集合体 7は、 2つの環状の駆動用素子 8及び 9を備え、外側の駆動用素子 8と内側の駆動用素子 9との間には間隔 10を備え、内側には空間部 11を備えて!/、る 。図 5は、図 4に記載の駆動用素子集合体 7について、環状の駆動用素子 8及び 9の 外周の中心点を通る平面によって、厚さ方向と平行に切断された断面図である。環 状の駆動用素子 8は、厚さ方向に積層構造を備えており、固体電解質層 12上に電 極層 13及び 13'を備えている。駆動用素子 8と同様に、環状の駆動用素子 9は、厚さ 方向に積層構造を備えており、固体電解質層 14上に電極層 15及び 15 'を備えて!/ヽ る。  FIG. 4 is a top view of an embodiment of the driving element assembly according to the present invention. The driving element assembly 7 includes two annular driving elements 8 and 9, a space 10 between the outer driving element 8 and the inner driving element 9, and a space 11 inside. With! / FIG. 5 is a cross-sectional view of the driving element assembly 7 shown in FIG. 4 cut along a plane passing through the center point of the outer periphery of the annular driving elements 8 and 9 in parallel with the thickness direction. The annular driving element 8 has a laminated structure in the thickness direction, and has electrode layers 13 and 13 ′ on the solid electrolyte layer 12. Like the driving element 8, the annular driving element 9 has a laminated structure in the thickness direction, and has electrode layers 15 and 15 ′ on the solid electrolyte layer 14.
[0026] 図 6は、図 5に記載の駆動用素子集合体 7が駆動した状態の断面図である。図 3に おける駆動用素子の駆動と同様の駆動メカニズムにより、各駆動用素子の電極層 13 及び電極層 15とにマイナスの電圧を印加し、電極層 13 '及び電極層 15 'とにプラス の電圧を印加することで、マイナスの電圧に印加した側の電極層が積層構造の外側 に凸となるように変形する。このような変形により、駆動用素子集合体 7は、図 3におけ る上方向に駆動するために、直線的な方向の力を発生することができる。さらに、前 記駆動用素子集合体は、半径方向に 2以上の駆動用素子を、並列的に備えているこ とから、駆動用素子の個数分だけの力を発生させることができる。  FIG. 6 is a cross-sectional view showing a state where the driving element assembly 7 shown in FIG. 5 is driven. A negative voltage is applied to the electrode layers 13 and 15 of each driving element and a positive voltage is applied to the electrode layers 13 'and 15' by the same driving mechanism as that for driving the driving elements in FIG. By applying the voltage, the electrode layer on the side to which the negative voltage is applied is deformed so as to be convex outside the laminated structure. Due to such a deformation, the driving element assembly 7 can generate a linear force in order to drive in the upward direction in FIG. Further, since the driving element assembly includes two or more driving elements in the radial direction in parallel, it is possible to generate a force corresponding to the number of driving elements.
[0027] また、前記駆動用素子集合体は、図 4乃至図 6に示した駆動用素子が並列的に配 置された構造が、更に積層された構造を備えていても良い。  Further, the driving element assembly may have a structure in which the structure in which the driving elements shown in FIGS. 4 to 6 are arranged in parallel is further laminated.
[0028] 図 7は、本発明の駆動用素子集合体が積層された場合における一実施態様例の 断面図である。図 8は、図 7の駆動用素子集合体が駆動した状態の断面図である。ァ クチユエータ 20は、容器 21と蓋 22とにより形成された環状の内部空間には、環状の 駆動用素子が外周 Lと内周 Mとに配置され、通電用金属層及び Zまたは榭脂層を介 して積層されている。外周 Lと内周 Mとの間には間隔 Dを有している。図 7においては 、ァクチユエータ 20は、周方向には外周 Lと内周 Mとの 2つの駆動用素子を有し、高 さ方向に N層、 O層、 P層及び Q層からなる 4つの駆動用素子の層を有し、合計で駆 動用素子を 8つ備えている。 FIG. 7 is a cross-sectional view of one example of an embodiment in a case where the driving element assemblies of the present invention are stacked. FIG. 8 is a cross-sectional view showing a state where the driving element assembly of FIG. 7 is driven. A The actuator 20 has an annular inner space formed by the container 21 and the lid 22, in which an annular driving element is disposed on the outer periphery L and the inner periphery M, and is provided with an energizing metal layer and a Z or resin layer. It is laminated. There is a gap D between the outer circumference L and the inner circumference M. In FIG. 7, the actuator 20 has two driving elements, an outer circumference L and an inner circumference M, in the circumferential direction, and four driving elements including an N layer, an O layer, a P layer, and a Q layer in the height direction. It has a layer of drive elements and has a total of eight drive elements.
図 7に示すように、ァクチユエータ 20が有する蓋 22の天面に接するように第 1通電用 金属層 23が形成されて 、る。電極層 24と電極層 26との間に固体電解質層 25が挟 まれた積層構造を有する第 1の駆動用素子は、第 1の通電用金属層 23と電極層 24 とが接するように設けられている。第 1の駆動用素子は、高さ方向には N層に位置し、 周方向には外周 Lに位置する駆動用素子である。前記電極層 26は、絶縁層である 榭脂層 28の上に形成された第 2の通電用金属層 27と接して 、る。榭脂層 28を挟ん で第 2の通電用金属層 27の裏側には、第 3の通電用金属層 29が形成され、更に第 2の駆動用素子を介して第 4の通電用金属層 30が形成されている。更に、図 7にお いて、第 4の通電用金属層 30の下側に第 3の駆動用素子が形成されている。図 7に おいて、第 3の駆動用素子の下には、第 5の通電用金属層 31と第 6の通電用金属層 33とを両面に備えた榭脂層 32を介して第 4の駆動用素子が配置されている。さらに 第 4の駆動用素子と容器 21の底面との間には第 7の通電用金属層 34が配されてい る。また、同様の構成を、容器 21と蓋 22とのにより形成された環状の内部空間の内 側においても形成されている。なお、第 2の駆動用素子は、高さ方向には O層に位置 し、周方向には外周 Lに位置する駆動用素子である。第 3の駆動用素子は、高さ方 向には P層に位置し、周方向には外周 Lに位置する駆動用素子である。第 4の駆動 用素子は、高さ方向には Q層に位置し、周方向には外周 Lに位置する駆動用素子で ある。 As shown in FIG. 7, the first current-carrying metal layer 23 is formed so as to be in contact with the top surface of the lid 22 of the actuator 20. The first driving element having a laminated structure in which the solid electrolyte layer 25 is sandwiched between the electrode layer 24 and the electrode layer 26 is provided so that the first current-carrying metal layer 23 and the electrode layer 24 are in contact with each other. ing. The first driving element is a driving element located on the N layer in the height direction and on the outer periphery L in the circumferential direction. The electrode layer 26 is in contact with a second current-carrying metal layer 27 formed on a resin layer 28 which is an insulating layer. A third current-carrying metal layer 29 is formed on the back side of the second current-carrying metal layer 27 with the resin layer 28 interposed therebetween, and a fourth current-carrying metal layer 30 is interposed via a second drive element. Is formed. Further, in FIG. 7, a third driving element is formed below the fourth current-carrying metal layer 30. In FIG. 7, a fourth energizing metal layer 31 and a sixth energizing metal layer 33 are provided under a third driving element via a resin layer 32 provided on both sides thereof. A driving element is arranged. Further, a seventh current-carrying metal layer 34 is arranged between the fourth driving element and the bottom surface of the container 21. Further, the same configuration is formed inside the annular internal space formed by the container 21 and the lid 22. The second driving element is a driving element located on the O layer in the height direction and on the outer periphery L in the circumferential direction. The third driving element is a driving element located on the P layer in the height direction and on the outer periphery L in the circumferential direction. The fourth driving element is a driving element located on the Q layer in the height direction and on the outer periphery L in the circumferential direction.
前記ァクチユエータ 20は、リード線 35、 36を有し、通電用金属層へと接続される。 図 7においては、第 1の通電用金属層、第 4の通電用金属層及び第 7の通電用金属 層は、負の電圧が印加されるように、リード線 35を介して電源に接続されている。第 2 の通電用金属層、第 3の通電用金属層、第 5の通電用金属層及び第 6の通電用金 属層は、正の電圧が印加されるようにリード線 36を介して電源に接続されている。な お、ァクチユエータ 20の内部における配線は、公知の方法で行うことができ、駆動用 素子の構成を説明する都合のために、省略している。なお、第 2の通電用金属層と第 3の通電用金属層とは同じ極の電圧が印加される場合には、榭脂層 28を設けなくて も良い。また、第 5の通電用金属層と、第 6の通電用金属層とは、同極の電圧が印カロ される場合には、介在層としての榭脂層を設けなくても良い。 The actuator 20 has lead wires 35 and 36 and is connected to a current-carrying metal layer. In FIG. 7, the first current-carrying metal layer, the fourth current-carrying metal layer, and the seventh current-carrying metal layer are connected to a power supply via a lead wire 35 so that a negative voltage is applied. ing. The second conductive metal layer, the third conductive metal layer, the fifth conductive metal layer, and the sixth conductive metal The metal layer is connected to a power supply via a lead wire 36 so that a positive voltage is applied. The wiring inside the actuator 20 can be performed by a known method, and is omitted for convenience of describing the configuration of the driving element. When the same voltage is applied to the second current-carrying metal layer and the third current-carrying metal layer, the resin layer 28 may not be provided. When the same voltage is applied to the fifth energizing metal layer and the sixth energizing metal layer, a resin layer as an intervening layer may not be provided.
[0030] 前記ァクチユエータ 20は、図 7における第 1の通電用金属層 23にマイナスの電圧を 印加し、第 2の通電用金属層 27にプラスの電圧を印加することで、第 1の駆動用素子 は図 8の上向きに凸の状態となり上方向に駆動する。また、第 3の通電用金属層 29 にプラスの電圧を印加し、第 4の通電用電極層 30にマイナスの電圧を印加すること で第 2の駆動用素子は下向きに凸となる。このような方法により、第 1乃至第 4の駆動 用素子の電極層に電圧を印加して、また、電圧の解除ァクチユエータ 20を図 8に示 したように駆動させることで、図 8の上方向に力を発生することができる。また、第 1乃 至第 4の駆動用素子の各電極層に印加された電圧を解除することにより、図 7に示し た状態とすることができ、前記ァクチユエータは上下方向の駆動、即ち直線的な駆動 をすることができる。 The actuator 20 applies a negative voltage to the first energizing metal layer 23 in FIG. 7 and applies a positive voltage to the second energizing metal layer 27 in FIG. The element becomes an upwardly convex state in FIG. 8 and is driven upward. When a positive voltage is applied to the third current-carrying metal layer 29 and a negative voltage is applied to the fourth current-carrying electrode layer 30, the second drive element becomes convex downward. With this method, a voltage is applied to the electrode layers of the first to fourth driving elements, and the voltage release actuator 20 is driven as shown in FIG. Can generate force. Further, by releasing the voltage applied to each electrode layer of the first to fourth driving elements, the state shown in FIG. 7 can be obtained, and the actuator is driven in the vertical direction, that is, linearly. Driving.
[0031] また、電極層間に固体電解質層が挟まれた積層構造を厚さ方向に備え、円盤状の 固体電解質上に環状の電極層が形成された円盤状駆動用素子でもある。前記固体 電解質がイオン交換榭脂を含む電解質のようなゲル電解質である場合には、十分な 柔軟性を有するので、固体電解質の一方の電極層にマイナスの電圧を印加し、その 裏面に形成された他方の電極層にプラスの電圧を印加して図 3に示したような屈曲を することも可會である。  [0031] Further, the present invention is also a disc-shaped driving element having a laminated structure in which a solid electrolyte layer is sandwiched between electrode layers in a thickness direction, and an annular electrode layer formed on a disc-shaped solid electrolyte. When the solid electrolyte is a gel electrolyte such as an electrolyte containing ion-exchange resin, it has sufficient flexibility, so that a negative voltage is applied to one electrode layer of the solid electrolyte, and the solid electrolyte is formed on the back surface. It is also possible to apply a positive voltage to the other electrode layer to bend as shown in FIG.
[0032] また、本発明は、可動レンズが駆動部により駆動することで焦点を調節する焦点調 節装置であって、前記駆動部が上記の、電極層間に固体電解質層が挟まれた積層 構造を厚さ方向に備えた環状の駆動用素子を含む焦点調節装置でもある。  [0032] The present invention is also a focus adjustment device that adjusts a focus by driving a movable lens by a driving unit, wherein the driving unit has the above-described laminated structure in which a solid electrolyte layer is sandwiched between electrode layers. Is also a focus adjusting device including an annular driving element provided in the thickness direction.
[0033] 図 9 (a) (b)は、前記焦点調節装置の一実施態様例の断面図である。図 9 (a)にお いて、焦点調節装置 40は、上面及び下面に開口部を備えた筐体 41の内部空間に レンズ 42及び 43を備えている。レンズ 42及び 43は、積層された環状の駆動用素子 44一 51を挟むように設けられている。各駆動用素子と同様の形状を有する第 1の通 電用板 53は、環状の駆動用素子 44の上に設けられている。第 1の通電用板 53の上 には凸レンズであるレンズ 42が設置されている。凸レンズであるレンズ 42は、その凸 部分がレンズ設置用板 44の内側空間部に嵌合するように固定されている。またレン ズ 43も、その凸部分が、駆動用素子 52と凸レンズ 42の間に設けられた第 6の通電用 板 58の内側空間部に嵌合するように固定されている。 FIGS. 9A and 9B are cross-sectional views of an embodiment of the focus adjusting device. In FIG. 9A, the focus adjustment device 40 includes lenses 42 and 43 in an internal space of a housing 41 having openings on the upper surface and the lower surface. The lenses 42 and 43 are stacked annular driving elements 44-51 are provided. A first conductive plate 53 having the same shape as each driving element is provided on the annular driving element 44. On the first energizing plate 53, a lens 42, which is a convex lens, is provided. The lens 42, which is a convex lens, is fixed so that the convex portion fits into the inner space of the lens installation plate 44. The convex portion of the lens 43 is also fixed so as to fit into the inner space of the sixth energizing plate 58 provided between the driving element 52 and the convex lens 42.
[0034] 駆動用素子 44と駆動用素子 51との間には、複数の駆動用素子が設けられている。  [0034] A plurality of driving elements are provided between the driving element 44 and the driving element 51.
各駆動用素子 44一 52は、図 1乃至図 3に示した駆動用素子と同様の構成を示した 構成をしている。各駆動用素子にリード線を接続されている。例えば、第 1の通電用 板 53にマイナス電圧を印加して、駆動用素子 44のレンズ 42側の電極層をマイナス に印加し、第 2の通電用板 54にプラス電圧を印加して、駆動用素子 44のレンズ 43側 の電極層にプラス電圧を印加する。このような通電用板を介して駆動用素子 44に電 圧を印加する方法により、駆動用素子 44は図 9 (b)に示すように上向きに凸となる。  Each of the driving elements 44-52 has a configuration similar to that of the driving elements shown in FIGS. Lead wires are connected to the respective driving elements. For example, by applying a negative voltage to the first energizing plate 53, applying a negative voltage to the electrode layer on the lens 42 side of the driving element 44, and applying a positive voltage to the second energizing plate 54, A positive voltage is applied to the electrode layer on the lens 43 side of the device 44. By such a method of applying a voltage to the driving element 44 via the current-carrying plate, the driving element 44 becomes convex upward as shown in FIG. 9 (b).
[0035] また、第 2の通電用板 54にプラス電圧を印加して、駆動用素子 45におけるレンズ 4 2側の電極層にプラス電圧を印加する。駆動用素子 45におけるレンズ 43側の電極 層にマイナス電圧を印加することで、駆動用素子 46のレンズ 42側の電極層をマイナ スにも印加して、第 3の通電用板 55を介して駆動用素子 46におけるレンズ 43側の電 極層にプラス電圧を印加して、駆動用素子 45と駆動用素子 46との凸となる方向が互 いに向かい合うように、駆動用素子 45と駆動用素子 46とを変形することができる。各 駆動用素子は、各駆動用素子がそれぞれ備える電極に電圧を印加することで、図 9 ( b)に示すように変形することができる。なお、各通電用板は、通電性を通電性を備え ていれば特に限定されるものではないが、物理的強度を備え、加工も容易であること から、通電性を有する環状の金属板が好ましい。  Further, a positive voltage is applied to the second energizing plate 54, and a positive voltage is applied to the electrode layer of the driving element 45 on the lens 42 side. By applying a negative voltage to the electrode layer on the lens 43 side of the driving element 45, the electrode layer on the lens 42 side of the driving element 46 is also applied to the negative electrode, and is applied via the third current-carrying plate 55. A positive voltage is applied to the electrode layer on the lens 43 side of the driving element 46, and the driving element 45 and the driving element 45 are driven so that the convex directions of the driving element 45 and the driving element 46 face each other. The element 46 can be modified. Each driving element can be deformed as shown in FIG. 9 (b) by applying a voltage to each electrode provided in each driving element. Each conductive plate is not particularly limited as long as it has electrical conductivity.However, since it has physical strength and is easy to process, an annular metal plate having electrical conductivity is used. preferable.
[0036] 図 9 (b)に示したように各駆動用素子が変形することで、図 9 (a)の焦点調節装置 4 0の天面とレンズ 42との間隔 δをなくすことができる。また、各駆動用素子に印加する 電圧の大きさを調整することにより、レンズ 42とレンズ 43との距離を任意の距離に変 ィ匕させることができる。このようにしてレンズ間距離を調節することにより、上面の開口 部 59からの光は、レンズ 42を通過し、更に各駆動用素子の内側空間部を通過して、 レンズ 43へと到達し、開口部 59'から外と通過する。このように、前記焦点調節装置 は、被写体からの光が前記駆動用素子の内側の空間部を通過するように前記駆動 用素子を配置することで、容易に光路を確保することができ、しカゝも、特殊なレンズ固 定部材の必要もないことから、軽量で、小型の焦点調節装置を容易に形成することが できる。 As shown in FIG. 9 (b), by deforming each driving element, the distance δ between the top surface of the focus adjusting device 40 and the lens 42 in FIG. 9 (a) can be eliminated. Further, by adjusting the magnitude of the voltage applied to each driving element, the distance between the lens 42 and the lens 43 can be changed to an arbitrary distance. By adjusting the distance between the lenses in this manner, the light from the opening 59 on the upper surface passes through the lens 42, further passes through the inner space of each driving element, and It reaches the lens 43 and passes out through the opening 59 '. In this way, the focus adjustment device can easily secure an optical path by arranging the driving element so that light from a subject passes through the space inside the driving element. Also, since there is no need for a special lens fixing member, a light and small focus adjusting device can be easily formed.
[0037] 前記焦点調節装置は、各駆動用素子が電極層間に固体電解質層が挟まれた積層 構造を厚さ方向に備えた環状の駆動用素子であるために、駆動させるために各駆動 用素子の電極層に電圧を印加する必要がある。各駆動用素子の電極層に電圧を印 加する方法としては、公知の接続方法で各電極層にリード線を接続して、電源より電 圧を印加することができる。電圧を印加する際において、図 9に示すように、一の駆動 用素子の電極層と、当該電極層と接触する他の駆動用素子の電極層とに、同じ電圧 を印加させて、駆動用素子が変形する方向を交互に変えて駆動させることができる。 各駆動用素子の変形する方向を上下に交互にさせることで、前記焦点調節装置は、 駆動用素子間に絶縁層を設ける必要がない。  [0037] The focus adjusting device is an annular driving element having a stacked structure in which a solid electrolyte layer is sandwiched between electrode layers in the thickness direction, and thus each driving element is driven in order to drive each driving element. It is necessary to apply a voltage to the electrode layer of the device. As a method of applying a voltage to the electrode layer of each driving element, a lead wire can be connected to each electrode layer by a known connection method, and a voltage can be applied from a power supply. When applying a voltage, as shown in FIG. 9, the same voltage is applied to the electrode layer of one driving element and the electrode layer of another driving element that is in contact with the electrode layer. The element can be driven by alternately changing its deformation direction. By alternately changing the directions in which the driving elements are deformed up and down, the focus adjusting device does not need to provide an insulating layer between the driving elements.
[0038] また、前記焦点調節装置は、図 9 (a)及び図 9 (b)においては、単一の環状の駆動 素子をそれぞれ用いているが、各駆動用素子を多重環状とすることで、駆動用素子 を 2以上備えていて該駆動用素子が多重環状となるように互いに同心的に配置され た焦点調節装置とすることができる。この焦点調節装置各駆動用素子は、多重環状 とするにより、駆動素子が並列的に配置されているので、用途に応じて、レンズ重量 が重くなる場合でも、容易に焦点調節をすることができる。  Further, the focus adjusting device uses a single annular driving element in each of FIGS. 9 (a) and 9 (b). However, each of the driving elements has a multiple annular shape. In addition, a focus adjusting device including two or more driving elements and arranged concentrically with each other so that the driving elements form a multiple ring can be provided. Since each driving element of this focus adjusting device is formed in a multiple ring shape, the driving elements are arranged in parallel, so that even if the lens weight becomes heavy, the focus can be easily adjusted according to the application. .
[0039] また、本発明は、可動レンズが駆動部により駆動することで焦点距離を調節するズ ームレンズユニットであって、前記駆動部が上記の駆動用素子であるズームレンズュ ニットでもある。  [0039] Further, the present invention is also a zoom lens unit that adjusts a focal length by driving a movable lens by a driving unit, wherein the driving unit is the driving element described above.
[0040] 図 10は、本発明のズームレンズユニットの一実施態様例についての断面図である 。ズームレンズユニット 60は、ケース 61に対物に面する方向に、開口部を有する蓋 6 2を備える。ケース 61の内側の空間には、被写体からの光を通過できる開口部を備 えた仕切り板 63及び 64が設けられている。仕切り板 63及び 64の上には、それぞれ 駆動用素子 65、 66が設置され、該駆動用素子上にそれぞれ設置板 67、 68を介し て、第 1レンズ 69または第 2レンズ 70が設置されている。さらに、ケース 61には底枠 7 1に嵌められた第 3レンズ 72を備えている。ズームレンズユニット 60は、駆動用素子 6 5、 66の固体電解質層の両側に備えられた電極層に電圧を印加することで駆動し、 図 10 (a)に示した電圧を印加して 、な 、状態から、図 10 (b)に示す電圧が印加され た状態へと変化させ、レンズの位置を変化させることができる。駆動用素子 65と駆動 用素子 66とをそれぞれ独立に、電極層に電圧を印加させることで、焦点距離を変え ることがでさる。 FIG. 10 is a cross-sectional view of one embodiment of the zoom lens unit of the present invention. The zoom lens unit 60 includes a lid 62 having an opening in a direction facing the objective on the case 61. In the space inside the case 61, partition plates 63 and 64 each having an opening through which light from a subject can pass are provided. Driving elements 65 and 66 are installed on the partition plates 63 and 64, respectively, and are mounted on the driving elements via installation plates 67 and 68, respectively. In addition, a first lens 69 or a second lens 70 is provided. Further, the case 61 includes a third lens 72 fitted on the bottom frame 71. The zoom lens unit 60 is driven by applying a voltage to the electrode layers provided on both sides of the solid electrolyte layers of the driving elements 65 and 66, and applying the voltage shown in FIG. The state can be changed from the state to the state where the voltage shown in FIG. 10B is applied, and the position of the lens can be changed. By applying a voltage to the electrode layer independently of the driving element 65 and the driving element 66, the focal length can be changed.
[0041] 前記ズームレンズユニットは、上記の駆動用素子を備えて 、るので、構造が簡単で あり、軽量であり、小型化することが容易である。また、前記駆動用素子が、空間部を 該駆動用素子の内側に備えていることから、図 10 (a)及び図 10 (b)に示すように、駆 動用素子を被写体からの光が前記駆動用素子の内側の空間部を通過するように前 記駆動用素子が配置することで、前記ズームレンズユニットは、簡単な装置構成とす ることがでさる。  [0041] Since the zoom lens unit includes the above-described driving element, the structure is simple, lightweight, and easy to reduce in size. Further, since the driving element has a space inside the driving element, as shown in FIGS. 10 (a) and 10 (b), light from a subject is applied to the driving element. By arranging the driving element so as to pass through the space inside the driving element, the zoom lens unit can have a simple device configuration.
[0042] 図 10 (a)及び図 10 (b)においては、単一の環状の駆動素子をそれぞれ用いている 力 駆動用素子を多重環状となるように配置して、互いに同心的に配置された記載 駆動用素子を 2以上備え、該駆動用素子が多重環状となるように互いに同心的に配 置されたズームレンズユニットとすることができる。このズームレンズユニットは、各駆 動用素子を多重環状とするにより駆動素子が並列的に配置された構造をしているの で、用途に応じて、レンズ重量が重くなる場合でも、容易に焦点調節をすることができ る。  In FIG. 10 (a) and FIG. 10 (b), force driving elements each using a single annular driving element are arranged so as to form a multiple annular shape, and are arranged concentrically with each other. It is possible to provide a zoom lens unit including two or more driving elements, which are arranged concentrically with each other such that the driving elements form a multiple ring. This zoom lens unit has a structure in which the driving elements are arranged in parallel by making each driving element a multiple ring, so even if the lens weight becomes heavy depending on the application, focus adjustment is easy. You can do.
産業上の利用可能性  Industrial applicability
[0043] 本発明の駆動用素子は、直線的に駆動することができ、し力も、構造が簡単であり 、軽量であることから、容易に小型化することができる。従って、本発明の駆動用素子 は、位置決め装置、姿勢制御装置、昇降装置、搬送装置、移動装置、調節装置、調 整装置、誘導装置、または関節装置の駆動部に好適に用いることができる。特に、本 発明の駆動用素子は、構造が簡単であり、軽量であり、小型化が容易であることから 焦点調節装置及びズームレンズユニットとして好適に用いることができる。 [0043] The driving element of the present invention can be driven linearly, has a simple force, and is light in weight, so that it can be easily reduced in size. Therefore, the driving element of the present invention can be suitably used for a driving unit of a positioning device, a posture control device, a lifting device, a transport device, a moving device, an adjusting device, an adjusting device, a guiding device, or a joint device. In particular, the driving element of the present invention has a simple structure, is lightweight, and can be easily miniaturized, so that it can be suitably used as a focus adjusting device and a zoom lens unit.

Claims

請求の範囲 The scope of the claims
[1] 電極層間に固体電解質層が挟まれた積層構造を厚さ方向に備えた環状の駆動用素 子。  [1] An annular driving element having a laminated structure in which a solid electrolyte layer is sandwiched between electrode layers in the thickness direction.
[2] 外周と同心円状の内周を備えた円環状体である請求の範囲第 1項に記載の駆動用 素子。  [2] The driving element according to claim 1, wherein the driving element is an annular body having an inner periphery concentric with the outer periphery.
[3] 前記電極層が金属電極層であり、前記固体電解質層がイオン交換榭脂を含む請求 の範囲第 1項に記載の駆動用素子。  3. The driving element according to claim 1, wherein the electrode layer is a metal electrode layer, and the solid electrolyte layer contains an ion exchange resin.
[4] 請求の範囲第 1項に記載の環状の駆動用素子を 2以上備え、該駆動用素子が互い に同心的に配置され、多重環状に形成された駆動用素子集合体。 [4] A driving element assembly comprising two or more annular driving elements according to claim 1, wherein the driving elements are arranged concentrically with each other, and formed into a multi-ring.
[5] 一の前記駆動用素子の内周と、当該駆動用素子の内側に隣接する駆動用素子の外 周との間に間隔を備えた請求の範囲第 4項に記載の駆動用素子集合体。 [5] The driving element set according to claim 4, wherein an interval is provided between an inner periphery of the one driving element and an outer periphery of a driving element adjacent to the inside of the driving element. body.
[6] 電極層間に固体電解質層が挟まれた積層構造を厚さ方向に備え、円盤状の固体電 解質上に環状の電極層が形成された円盤状駆動用素子。 [6] A disc-shaped driving element having a laminated structure in which a solid electrolyte layer is sandwiched between electrode layers in the thickness direction, and an annular electrode layer formed on a disc-shaped solid electrolyte.
[7] 可動レンズが駆動部により駆動することで焦点を調節する焦点調節装置であって、 前記駆動部が請求の範囲第 1項に記載の駆動用素子を含む焦点調節装置。 [7] A focus adjustment device which adjusts a focus by driving a movable lens by a drive unit, wherein the drive unit includes the drive element according to claim 1.
[8] 前記駆動用素子が環状であり、被写体からの光が前記駆動用素子の内側の空間部 を通過するように前記駆動用素子が配置された請求の範囲第 7項に記載の焦点調 節装置。 [8] The focus adjustment according to claim 7, wherein the driving element is annular, and the driving element is arranged such that light from a subject passes through a space inside the driving element. Knot device.
[9] 可動レンズが駆動部により駆動することで焦点距離を調節するズームレンズユニット であって、前記駆動部が請求の範囲第 1項に記載の駆動用素子であるズームレンズ ユニット。  [9] A zoom lens unit that adjusts a focal length by driving a movable lens by a driving unit, wherein the driving unit is the driving element according to claim 1.
[10] 前記駆動用素子が環状であり、被写体からの光が前記駆動用素子の内側の空間部 を通過するように前記駆動用素子が配置された請求の範囲第 9項に記載のズームレ ンズュニット。  10. The zoom lens unit according to claim 9, wherein the driving element is annular, and the driving element is arranged such that light from a subject passes through a space inside the driving element. .
PCT/JP2004/017703 2003-11-28 2004-11-29 Driving element WO2005053145A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-399877 2003-11-28
JP2003399877A JP4447290B2 (en) 2003-11-28 2003-11-28 Driving element and its use

Publications (1)

Publication Number Publication Date
WO2005053145A1 true WO2005053145A1 (en) 2005-06-09

Family

ID=34631621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017703 WO2005053145A1 (en) 2003-11-28 2004-11-29 Driving element

Country Status (2)

Country Link
JP (1) JP4447290B2 (en)
WO (1) WO2005053145A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711765B2 (en) * 2005-07-14 2011-06-29 イーメックス株式会社 Linear motion type polymer actuator device
US8013897B2 (en) 2007-02-27 2011-09-06 Casio Computer Co., Ltd. Apparatus for correcting camera shake and image capturing apparatus
JP5679733B2 (en) * 2010-08-06 2015-03-04 キヤノン株式会社 Actuator
JP2012125087A (en) * 2010-12-10 2012-06-28 Iai:Kk Polymer actuator and actuator device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932718A (en) * 1995-07-19 1997-02-04 Terumo Corp Actuator element
JPH0937571A (en) * 1995-07-19 1997-02-07 Denso Corp Stacked-type actuator and moving device
JP2001295882A (en) * 2000-04-12 2001-10-26 Toyo Tire & Rubber Co Ltd Liquid filled vibration control mount
JP2002332956A (en) * 2001-05-02 2002-11-22 National Institute Of Advanced Industrial & Technology Film type actuator, and liquid-filled vibration control device and fluid controller using actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932718A (en) * 1995-07-19 1997-02-04 Terumo Corp Actuator element
JPH0937571A (en) * 1995-07-19 1997-02-07 Denso Corp Stacked-type actuator and moving device
JP2001295882A (en) * 2000-04-12 2001-10-26 Toyo Tire & Rubber Co Ltd Liquid filled vibration control mount
JP2002332956A (en) * 2001-05-02 2002-11-22 National Institute Of Advanced Industrial & Technology Film type actuator, and liquid-filled vibration control device and fluid controller using actuator

Also Published As

Publication number Publication date
JP4447290B2 (en) 2010-04-07
JP2005168088A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
KR100510224B1 (en) Electroactive polymer actuator and diaphragm pump using the same
US6184609B1 (en) Piezoelectric actuator or motor, method therefor and method for fabrication thereof
US7902723B2 (en) Screw thread driving polyhedral ultrasonic motor
JP5360778B2 (en) Lens transfer device with piezoelectric actuator
EP1861885B1 (en) High-performance electroactive polymer transducers
EP1923730A1 (en) Deformable mirror
US20090161239A1 (en) Camera diaphragm and lens positioning system employing a dielectrical polymer actuator
US20100239444A1 (en) Layered piezoelectric element and piezoelectric pump
CN101206297B (en) Piezo-electricity drive type optical lens
US8928205B2 (en) Actuator
CN103339380A (en) Fluid-control device, and method for adjusting fluid-control device
KR100996521B1 (en) Piezoelectric electromechanical drive unit
WO2005053145A1 (en) Driving element
US6140745A (en) Motor mounting for piezoelectric transducer
JP2005507323A5 (en)
JP2005507323A (en) Curved electric start actuator
EP0719472B1 (en) Piezoelectric actuator device
KR20110001033A (en) Ultrasonic motor and method for manufacturing the ultrasonic motor
US20170126149A1 (en) Power Generation Device
EP1271668A2 (en) Stacked type electro-mechanical energy conversion element and vibration wave driving apparatus using the same
KR20110071475A (en) Piezoelectric linear motor
JP2002532655A (en) Ferroelectric pump
JP4562507B2 (en) Telescopic drive element
JP2007114748A (en) Lens module
JPS61180583A (en) Piezoelectric drive mechanism

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase