WO2005052379A1 - Micro flow rate generator, pump and pump system - Google Patents

Micro flow rate generator, pump and pump system Download PDF

Info

Publication number
WO2005052379A1
WO2005052379A1 PCT/JP2004/011559 JP2004011559W WO2005052379A1 WO 2005052379 A1 WO2005052379 A1 WO 2005052379A1 JP 2004011559 W JP2004011559 W JP 2004011559W WO 2005052379 A1 WO2005052379 A1 WO 2005052379A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
pump
voltage
flow rate
thin film
Prior art date
Application number
PCT/JP2004/011559
Other languages
French (fr)
Japanese (ja)
Inventor
Tomiiti Hasegawa
Makoto Morita
Original Assignee
Niigata Tlo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Tlo Corporation filed Critical Niigata Tlo Corporation
Priority to US10/572,451 priority Critical patent/US20070201987A1/en
Priority to JP2005515732A priority patent/JP4065916B2/en
Priority to TW093136330A priority patent/TW200523706A/en
Publication of WO2005052379A1 publication Critical patent/WO2005052379A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps

Definitions

  • the present invention relates to a method capable of controlling a minute flow rate of a liquid, a pump using the same, and a pump system using the same, and particularly suitable for use in analyzing biological substances, drugs, foods, and the like.
  • the present invention relates to a micro flow generator, a pump, and a pump system using the same.
  • Patent Literature 1 discloses a chemical solution supply device including a chemical solution supply pump which is a diaphragm pump that performs an operation of vibrating a chemical solution storage tank.
  • Patent Literature 2 discloses a cleaning water discharge device that includes a bubble mixing unit that mixes bubbles into cleaning water, and discharges a bubble flow in which a large number of fine bubbles are dispersed in the cleaning water.
  • Patent Document 3 includes a fluid storage unit, a pressure transmission unit, and an electrochemical cell unit using, as a cathode, a metal oxide added with an anion exchange resin and a conductive agent as a medium for moving anion.
  • a fluid supply device is disclosed.
  • FIG. 1 discloses an example in which after a sample solution is introduced into a quartz capillary tube, a high voltage is applied to one end of the capillary to cause electrophoresis to move the electrophoretic separation component. ing.
  • Patent Document 1 According to Non-Patent Document 1, it is described that a minute flow rate can be suitably controlled by using a sodium aqueous solution or a potassium aqueous solution having a high degree of ionization as a solution.
  • Patent Document 1 JP-A-2000-265945
  • Patent Document 2 International Publication WO99Z09265
  • Patent Document 3 JP-A-9-192213
  • Patent Document 4 JP-A-9-1281077
  • Non-Patent Document 1 Sugitani, Hasegawa, Narumi: "Flow characteristics of fluid through a porous thin film when voltage is applied", Proc. (March 8, 2002)
  • a solution containing blood, DNA, itoda cells, or the like is allowed to flow in a microchannel, and an object is magnified and observed with a microscope.
  • the pump flow rate fluctuates or pulsates
  • the magnified image of the object will be blurred, making accurate observation impossible. Therefore, a pump without pulsation fluctuation is desired. It is also required that a stable flow rate without clogging can be ensured, and that it should be easy to handle and inexpensive.
  • the method of generating a minute flow rate by using electroosmotic flow or electrophoresis using a capillary such as a cabillary described in Patent Document 4 requires a high voltage of 100 V or more. On the other hand, since the obtained flow rate is small, it is difficult to control the minute flow rate.
  • Non-Patent Document 1 the invention relating to control of a minute flow rate using a porous thin film described in Non-Patent Document 1 is an invention in the process of research and development, and includes several problems to be solved in practical use.
  • One of them is to use sodium or potassium aqueous solution as working fluid, so that hydrogen or bubbles are generated inside by applying voltage, and the flow characteristics change.
  • An object of the present invention is to solve the above-mentioned problems, and to generate a pulseless pulse free of hydrogen and bubbles in a fluid. It is an object of the present invention to provide a micro-flow generator and a pump and a pump system for low-flow or low-pulsation flow.
  • Another object of the present invention is to provide a non-pulsating or low-pulsating micro flow generator, a pump and a pump system, which require a relatively low voltage and can easily control the flow.
  • Another object of the present invention is to provide an inexpensive micro flow generating device, a pump, and a pump system that can secure a stable flow rate without clogging and that are easy to handle.
  • the features of the present invention include a porous thin film disposed in a flow channel, a pair of electrodes disposed on both sides of the porous thin film, a means for supplying a solution to the flow channel, and the pair of electrodes.
  • a DC power supply for applying a DC voltage between the two electrodes, wherein the solution is a solution that has been treated so that electrolysis does not occur.
  • a micro flow generator for generating the flow of the solution through the thin film.
  • Another feature of the present invention resides in that an oxidizing agent is added to the solution as a solution treated so as not to cause the electrolysis.
  • the solution treated so as not to cause the electrolysis is a liquid in which fine particles having a particle size of 0.5 Ol z m-0.5 z m are suspended in a medium. It is in.
  • Another feature of the present invention resides in a pump or a pump system using the micro flow generator.
  • a porous thin film is mounted in the flow path, and the porous thin film is disposed so that the inflow side of the solution is the anode and the outflow side is the cathode.
  • a DC voltage is applied to the pair of electrodes.
  • the relationship between the voltage and the flow rate varies depending on the combination of the types of the solution, the electrode, and the membrane, and the degree of ionization of the solution.
  • aqueous solutions of sodium and potassium have a high degree of ionization. If is used as a solution, the minute flow rate can be suitably controlled, but bubbles are generated as described above.
  • an oxidizing agent such as hydrogen peroxide solution
  • a colloidal solution in which fine particles are dispersed as a solution are used. It was found that no hydrogen or bubbles were generated in the liquid, and that the flow rate could be suitably controlled by a very small voltage, thus completing the present invention.
  • the micro flow generator includes the porous thin film disposed in the solution flow path and a pair of electrodes, and a relatively low voltage, for example, a DC voltage of about 10 V, is provided between the electrodes.
  • a relatively low voltage for example, a DC voltage of about 10 V.
  • FIG. 1A is a schematic diagram illustrating the principle of the micro flow rate generator according to the present invention.
  • FIG. 1B is a perspective view showing a main part of the minute flow rate generating device of the present invention.
  • a porous thin film 2 is attached via a support 3 in a direction perpendicular to the axial direction of this channel.
  • a pair of electrodes 4 and 5 are installed on the upstream and downstream sides of the porous thin film 2.
  • the circular opening of the support 3, that is, the circular region where the porous thin film 2 faces the flow, and the circular openings provided in the pair of electrodes 4 and 5 have substantially the same radius, and The center is located on the axis of the channel.
  • the solution 20 is treated so that electrolysis does not occur.
  • an oxidizing agent is added to the solution.
  • a zinc electrode may be used for the cathode, or a combination of such a solution and a zinc electrode may be used.
  • the solution 20 may be a liquid in which fine particles having a particle diameter of 0.01 / im-0.5 ⁇ m are suspended in a medium.
  • the fine particles have a property of being charged in the liquid.
  • a colloidal solution in which fine particles are separated from a solution can be used.
  • a pair of electrodes arranged with the porous thin film 2 interposed therebetween has a predetermined DC voltage of 100 V or less from a DC power supply 6 via a switch 7 so that the inflow side of the solution is the anode 4 and the outflow side is the cathode 5. Pressure is applied.
  • the anode 4 is on the left and the cathode 5 is on the right, and the solution 20 flows in the direction of the arrow.
  • the current flowing between the electrodes is a very small current of about 30 ⁇ —100 ⁇ , and the power consumption is extremely small. It is a feature.
  • the applied voltage may vary depending on the combination of the types and materials of the constituent components of the solution, the electrode, and the porous thin film, and the conditions such as the degree of ionization of the solution.
  • the relationship of the flow rate is different. Therefore, a pump capable of controlling a desired flow rate can be obtained by a combination of these components.
  • FIG. 2 is a longitudinal sectional view showing the configuration of one embodiment of the micro flow control pump of the present invention.
  • the porous thin film 2 is held in the first channel 1 via the support 3.
  • the first channel 1 and the support 3 are made of an electrically insulating material.
  • the porous thin film 2 is made of nickel having a thickness of 11 / im, and 55600 holes having a hole diameter of about 5 / m are regularly provided in a circular region having a diameter of 8 mm.
  • An anode 4 and a cathode 5 are provided on both sides of the porous thin film 2.
  • the support 3 holding the porous thin film 2 and a pair of electrodes are plate-shaped, and are fixed to the first channel 1 with a sealing material interposed therebetween.
  • the pore diameter of the porous material is desirably in the range of 1 ⁇ ⁇ -100 / im.
  • the distance between each electrode and the porous thin film 2 is preferably in the range of about 1 mm to 1 cm.
  • the DC power supply 6 is a power supply for supplying a DC voltage of about 100 V or less to the pair of electrodes, and can use a battery.
  • the DC power supply 6 may be a power supply device that obtains a DC power supply from an AC power supply via a converter. It is also assumed that a voltage adjusting means such as a variable resistor is provided.
  • the switching switch 7 has a switching function of switching the polarity of the voltage with respect to the pair of electrodes or turning off the voltage.
  • Inlet path of first channel 1 The pipe 27 is connected to a solution tank (not shown).
  • the height of the solution tank and the first channel 1 is basically the same, ie, the head is zero.
  • a desired flow rate characteristic according to the application can be obtained.
  • the circular openings provided in the pair of electrodes 4 and 5 do not necessarily have to be the same size as the circular openings of the support 3.
  • the opening provided in the pair of electrodes 4 and 5 may be configured as an opening having a larger radius than the opening of the support 3 and having a plurality of narrow openings.
  • the second channel 10 connected to the outflow pipe 26 of the first channel 1 is divided into an inflow channel section 8 and an outflow channel section 9 and connected by a thin pipe 22.
  • the lower part of the inflow-side channel section 8 is filled with a solution (drive liquid) 20.
  • an intermediate medium 21 is filled in the narrow pipe 22, the upper part of the inflow-side channel part 8, and the upper part of the outflow-side channel part 9.
  • a discharge liquid 23 such as water or blood is filled in an outlet channel 9 serving as an outlet of the pump, and is connected to an outlet pipe 28.
  • FIG. 3 shows an example of a combination of a solution, a porous thin film, and the like.
  • the solution (driving liquid) 20 water is used as the medium, and the aqueous electrolyte solution is made of sodium chloride or potassium chloride.
  • the porous thin film 2 is made of nickel, and the electrodes are a combination of silver for the anode 4 and zinc for the cathode 5.
  • a combination of silver and silver salt (AgCl) it can be configured as a reversible electrode that switches between an anode and a cathode. Hydrogen peroxide or potassium dichromate is added to the solution as an oxidizing agent.
  • the combination in FIG. 3 is an example, and it goes without saying that other elements having similar characteristics may be combined.
  • a combination of a zinc plate (cathode) and a silver plate (anode) may be used for the electrodes.
  • FIG. 4 shows another example of a combination of a solution, a porous thin film, and the like.
  • a colloidal solution in which fine particles are dispersed is used as the solution (drive liquid) 20. That is, the colloid solution as a solution uses water or ion-exchanged water from which ions have been removed by an ion exchanger as a medium, into which fine particles such as polystyrene particles or silica particles are mixed.
  • the colloid solution may be a mixture of oil and fine particles.
  • the porous thin film 2 uses nickel or nonmetallic polycarbonate. A non-metallic acrylic resin can also be used as a material for the porous thin film.
  • the electrode is a stainless steel plate for both the anode and cathode.
  • the thickness is llxm, and a circle having a diameter of 10 mm is provided with 320000 holes having a hole diameter of about 5 zm.
  • the colloid solution may be a suspension of fine particles in water or a suspension of fine particles in oil or an organic solvent.
  • the solution (drive liquid) 20 that can be used is not limited to a colloid solution.
  • a suspension in which fine particles are dispersed in ion exchange water as a medium may be used.
  • the solution (driving liquid) 20 that can be used in the pump of the present invention may be any liquid in which fine particles having a particle size of 0.01 ⁇ m to 0.5 ⁇ m are suspended in a medium.
  • any kind of metal or nonmetal can be used.
  • alumina particles may be used as the fine particles.
  • a colloidal solution in which an aqueous electrolyte solution (see FIG. 3) or fine particles (see FIG. 4) is dispersed in the solution tank as the driving solution 20 is supplied into the first channel 1 and the inflow-side channel portion 8 of the second channel 10. Fill the inner bottom. Then, the lower part of the outlet side channel portion 9 serving as the outlet side of the pump is filled with a discharge liquid 23 such as water, sewage or blood.
  • the sodium aqueous solution 20 flows to the inflow side of the second channel, which pushes the intermediate medium (silicon oil, transformer oil, etc.) 21, and the discharged liquid (Water, sewage, etc.) 23 is pushed out to the outflow pipe 28.
  • the voltage application to the anode 4 and the cathode 5 is stopped, the flow of the solution is stopped. By such an operation, a very small flow rate of the solution can be generated.
  • aqueous solution for example, a sodium aqueous solution
  • hydrogen or bubbles are generated by applying a voltage, which affects the flow rate.
  • an oxidizing agent such as aqueous hydrogen peroxide or lithium nichrome acid can prevent the generation of hydrogen and bubbles.
  • the flow rate can be generated by applying a lower voltage.
  • Water can also be obtained by a method using a colloid solution from which ions have been removed by an ion exchanger. There is no elementary generation.
  • FIG. 5 is a diagram showing one result of the flow characteristics of the pump obtained by performing an experiment based on the combination of the elements shown in FIG. 3 using the micro flow control pump shown in FIG.
  • the test solution was 0.9% saline, the applied voltage was 5 V, the porous thin film 2 used was nickel foil, and the pore size was 5.01 ⁇ m.
  • the electrodes are a zinc plate (cathode) and a silver plate (anode), respectively.
  • the height (water column) of the solution tank is 0 mm.
  • a zinc plate was used for the cathode and a silver plate was used for the anode as the electrodes. From this figure, it can be seen that the flow occurs immediately after the voltage is applied.
  • the fluid transfer device of the present invention is characterized in that there is no pulsation in principle unlike a pump using a diaphragm or a piston.
  • the data in Fig. 5 shows a slight pulsation in the flow rate, but when combined with the results of our other experiments performed later, the pulsation on the data showed that the pulsation on the data was mainly due to the instability of the electronic balance used for flow rate measurement. Probably due to program problems. This is because the same fluctuation is observed even before the voltage is applied (the flow rate is zero). Therefore, it is considered that the pulsation caused by the pump is smaller than the illustrated data value. Also, the time required to obtain a stable and constant flow rate is 50 seconds in the data, but there is a delay due to a problem in the measurement program. It is considered that a stable and constant flow rate was obtained in about seconds.
  • FIG. 6 shows a graph of the flow rate characteristics of the pump when the voltage is increased to 8 V for comparison.
  • the flow rate is about 2.0 (mm 3 / s)
  • the flow rate is about 4.0 (mmVs).
  • the flow rate increases.
  • FIG. 7 is a diagram showing an aqueous solution of ion-exchanged water based on the combination of elements shown in FIG.
  • the test solution is a 0.01% monodisperse polystyrene colloid solution
  • the applied voltage is 5 V
  • the porous thin film 2 used is a nickel foil having a pore diameter of about 5 ⁇ .
  • the electrode is a stainless steel plate for both the cathode and anode. Since the ion-exchanged colloid solution does not generate hydrogen or chlorine, a stainless steel plate can be used for the electrode.
  • FIG. 8 shows an example of a result obtained when a polycarbonate film is used as the porous thin film based on the combination of the elements shown in FIG.
  • the test solution was a colloid solution containing 0.01 Q / o monodisperse polystyrene particles, the applied voltage was 5 V, the porous thin film 2 used was a polycarbonate film, and the pore size was about 5 / im.
  • the electrode is a stainless steel plate for both the anode and the cathode. At the beginning of the experiment, start with zero voltage, and apply voltage after 300 seconds. From this figure, it can be seen that the flow occurs immediately after the voltage is applied, and the flow rate is approximately 1.0 (mm 3 / s), which is almost constant. Repeated experiments have confirmed the reproducibility of this experiment.
  • the advantages of the polycarbonate film are that the film is less corroded, can be used for a long time, and has a low cost.
  • the pump input is V XI.
  • the pump output is given by P X Q. Therefore, if the efficiency is 77,
  • FIG. 10 shows a comparison between equation (2) and experimental values.
  • the straight line labeled Poiseuille flow shows equation (2)
  • the black circles show the experimental values. Both agree well, indicating that the pores opened in the membrane can be approximated by thin tubes. From equation (2), if the constant determined by the device is C,
  • ⁇ and C differ depending on the actual combination of pump and fluid tip. If this is experimentally determined at the time of shipping, the desired flow rate Q can be obtained from the following equation (4) obtained from equations (1) and (3). It is obtained by giving power VI (actually, voltage V since current I is constant).
  • Fig. 11 shows the results of measuring the pump discharge amount with respect to the applied voltage using the pump of the present invention.
  • one or the head of the solution tank may be zero.
  • the phenomenon in which the head is set to zero and the flow occurs from the + pole to the-pole is considered to be mainly due to electroosmotic flow or electrophoresis.
  • the electroosmotic flow refers to a phenomenon in which an electric double layer is formed in a flow path such as a fine tube, and the double layer moves to a negative pole by a cooler to generate a flow in one direction. .
  • FIG. 12 is a schematic diagram of an electroosmotic flow when an aqueous electrolyte solution (sodium chloride, potassium salt) is used in the pump of the present invention.
  • aqueous electrolyte solution sodium chloride, potassium salt
  • the wall surface of the flow path of the fine tube is negatively charged, whereby positive ions gather near the wall surface to form an electric double layer.
  • the electric double layer moves to the minus pole due to Coulomb force.
  • the surrounding playons move one after another to the wall and always form an electric double layer.
  • the positive ions of the electric double layer are pulled and the negative ions move.
  • a force such as an electrostatic force acts, so that a flow is generated in the negative pole as a whole.
  • an object immersed in a liquid is negatively charged in most cases, and a prion in a solution is attracted (adsorbed) thereto.
  • the colloid particles are also negatively charged, but the negative ions in the liquid are attracted and absorbed around them, and the whole particles are similar to particles with positive ions. Therefore, for simplicity, we draw the colloid particles that have adsorbed positive ions as shown in Figure 13.
  • FIG. 15 when the colloidal particles of a diameter of 0. 1 beta m in pump of the present invention changes the size of the use les ,, porous thin film 2 of the micropores, and the other conditions are the same It shows the flow characteristics of the above.
  • the applied voltage is 5V.
  • the experimental pore diameters were 4 types: 2 / im, 5 / im, 12 / im, and 40 ⁇ m. At the diameters of 2 ⁇ m and 5 ⁇ m, almost the same pump effect was obtained. However, it was confirmed that when the diameter was 12 ⁇ ⁇ ⁇ , the flow rate decreased slightly, and when the diameter was 40 / im, the pump effect did not occur.
  • the gap between the pair of electrodes and the porous thin film 2 also has a significant effect on the characteristics. If the gap is too narrow, the electric resistance between the pair of electrodes will be small, and an excessive current will flow. Conversely, if the gap is too wide, an electric field of sufficient strength cannot be generated for the solution before and after the porous thin film 2, so that the target flow rate cannot be secured. For this reason, the gap between the pair of electrodes and the porous thin film 2 is preferably in the range of 1 mm to 1 cm.
  • FIG. 17A to FIG. 17C show simplified cases where the colloidal particles pass through micropores (hereinafter simply referred to as “pores”) opened in the porous thin film 2.
  • the horizontal straight line portion in each figure represents the cross section of the hole opened in the porous thin film, and indicates that the surface is negatively charged at the boundary surface with the liquid by one.
  • the colloid particles that have adsorbed the positive ions shown in Fig. 13 are adsorbed.
  • minus and plus electrodes are placed on the left and right sides of the membrane.
  • the pore size is too small in relation to the colloid particles, the colloid particles try to go to the negative electrode but cannot pass through the pore, and no pump effect occurs.
  • the colloid particles move through the pore to the negative electrode side with the surrounding liquid.
  • the colloid particles that have already been adsorbed at the interface between the membrane / pore and the liquid act to block the backflow of the colloid particles passing through the pore (blocking action). Therefore, a pump effect occurs.
  • the use of colloidal particles having a large diameter produces a pump effect up to a membrane having a large pore size, and the flow rate generated at this time is also large.
  • the pump effect can be improved by selecting a combination of a particle and a membrane with a high degree of adsorption.
  • FIG. 18 shows a flow rate characteristic when a colloid solution using polystyrene particles as a driving liquid is used and the combination of electrodes is changed.
  • stainless steel (anode) -stainless steel (negative electrode) experiments were conducted on silver (anode) -stainless steel (cathode) and silver (anode) -zinc (cathode), and it was found that the flow characteristics were almost the same.
  • stainless steel (anode) -stainless steel (negative electrode) experiments were conducted on silver (anode) -stainless steel (cathode) and silver (anode) -zinc (cathode), and it was found that the flow characteristics were almost the same.
  • silver (anode) -stainless steel (cathode) and silver (anode) -zinc cathode
  • FIG. 19 shows the results when a colloidal particle solution using polyethylene particles as the driving liquid was used, and the packing ratio of the porethylene particles was changed in the range of 0.1% to 0.0001%. At 0.0001%, the flow rate decreases slightly, but at higher filling rates, almost the same flow rate is obtained.
  • FIG. 20 shows the results when the same experiment as in FIG. 19 was performed by changing the particles to silica particles.
  • the filling rate is 0.0001%
  • the flow rate slightly decreases, but at higher filling rates, almost the same flow rate characteristics are obtained.
  • the pore size of the porous material is in the range of 1 ⁇ m to 100 ⁇ m, whereas the particle size is 0.01 ⁇ m. It is considered to be preferable to use those having a range of ⁇ m-0.5 / im.
  • FIG. 21 is a block diagram of another embodiment of the second channel 4 of the pump, in which the intermediate medium 21 is placed in the middle of one pipe (such as a glass tube), and the discharge liquid 23 is drawn. In 21, it is pushed out from left to right. With this thin single pipe 26, it is not necessary to consider the influence of the head difference.
  • various types of pumps can be realized by using the generation of flow by voltage application as a power source.
  • FIG. 22 and FIG. 23 are configuration diagrams of another embodiment of the pump of the present invention.
  • the anode and the cathode to which a DC voltage is applied are switched to enable the fluid to reciprocate.
  • the fluid used for the driving part is a colloidal solution, thereby enabling the fluid to reciprocate.
  • the flow of the colloid occurs in the direction of the arrow, that is, from the anode to the cathode, pushing the intermediate medium 21 to the right and discharging the discharge liquid 23 from the pipe 28. At this time, the discharge liquid 23 is prevented from flowing in the direction of the supply tank 33 by the valve 34.
  • FIG. 22 is a colloidal solution
  • FIGS. 1A, IB, and 2 application examples of the micro flow pump of the present invention shown in FIGS. 1A, IB, and 2 will be described.
  • FIG. 24 is a plan view of an embodiment of a pump system to which the present invention is applied
  • FIG. 25 is a sectional view taken along line AA of FIG.
  • the pump 100 is mounted on a table 201.
  • the pump 100 has a flat plate configuration. This is because when the flat base 201 is placed on a flat surface on a desk, the structure of the pump 100 is easy to assemble if the pump 100 is configured in a flat shape.
  • the pump 100 has an upper frame 101 and a lower frame 102, and a casing 103 is mounted on the upper frame 101. Inside the casing 103, the minute flow rate generator 106 shown in FIGS. 1A, IB and 2 is incorporated.
  • the plane of the porous thin film 2 in the minute flow rate generator 106 and the plane of the upper frame 101 are arranged in the same direction.
  • a passage 110 is provided on the inner surface of the upper frame 101, and communicates with the contacts 109 and 111.
  • the solution passes through the input pipe 104 and the expansion path 107, passes through the micro flow generation unit 106, the expansion path 108, the communication port 109, and the passage 110.
  • the air is discharged from the outlet pipe 105 through the connecting passage 111 to a target place.
  • the passage 110 may be provided on the upper surface of the force lower frame 102 provided on the upper frame 101.
  • the upper frame 101 and the upper frame 102 are separated from each other because the passage 110 is easily processed.
  • the upper frame 101 and the lower frame 102 may be integrally formed.
  • the pump 100 configured as described above has a force mounted on a flat base 201.
  • the base 201 has a battery 117, a voltage regulator (variable resistor) 116, an on / off switch 115, and a battery storage unit.
  • a lid 118 is located.
  • the voltage regulator 116 is connected to a controller (not shown). In the controller, the applied voltage value for the required flow rate is calculated based on the data of the preset conditions as described above and the relationships shown in Equations (4) and (5), and the voltage value is set to this voltage value. Is controlled so as to secure a predetermined flow rate by adjusting the voltage regulator. The user operates the voltage regulator 116 directly with reference to the characteristics shown in FIG. May be.
  • the micro flow generator 106 has a feature that the solution can be transported by a low-voltage power supply such as a battery, so that it can be driven by a dry battery and does not require a separate large power supply. Les ,. For this reason, it is possible to adopt a configuration in which the stand 201 has a W battery 117, a resistor 116, and a switch 115 which are all built-in and which are easy to carry.
  • the voltage generated from the battery 117 can be applied to the electrodes (anode and cathode) of the micro flow generator 106 using the lead wires 112, 113, and 114, and this voltage is interposed between the lead wires 114. It can be adjusted by the resistor 116 and the power can be disconnected from the power supply by the switch 115.
  • FIG. 26 is a configuration diagram of another embodiment of the pump system of the present invention.
  • This example shows a method of contact-coupling the solution 20 as the driving liquid and the discharge liquid 23.
  • a tank 202 is provided at the outlet of the outlet pipe 105 of the pump 100, and a partition wall 220 is provided inside the tank 202.
  • the outlet end of the outlet pipe 105 is connected to the space on the left side of the partition wall 202, and the bellows 214 are provided in the space on the right side of the partition wall 220 via the pipe 213, the knob 211, and the pipe 212.
  • Tank 203 is connected.
  • the discharged liquid 23 enters the tank 203 and is laid.
  • the gas is supplied to the tank 202 through the pipe 212, the knob 211, and the pipe 213, and then the supply can be stopped by closing the valve 211. Further, a pipe 207 is connected to the left side of the tank 202, and the discharged liquid 23 in the tank 202 is discharged into a separate tank 205 via the vanoleb 208 and the pipe 206. I have.
  • the driving liquid 20 in the tank 204 is sucked up via the pipe 217 and the upper frame 101 Through the passage 110 in the inside and further through the pipe 105 into the left compartment in the tank 202.
  • This solution enters the small chamber on the right through the small hole in the partition wall 220, and pushes up the discharge liquid 23 provided on the upper part.
  • the discharged liquid 23 is discharged into the tank 205 through the pipe 206. If the specific gravity S of the discharged liquid is smaller than the specific gravity of the solution, they may be brought into contact with the small chamber on the right side of the tank 202 as shown in the figure.
  • FIG. 27 is a configuration diagram of another embodiment of the pump 100 of the present invention.
  • a thick pipe 119 with a valve 120 is provided above the upper frame 101, and after introducing the solution 23 into the pipe 119, the valve 120 is closed during the test.
  • FIG. 28 is a configuration diagram of another embodiment of the pump 100 of the present invention.
  • This is provided with a tank 204 above the input pipe 104 connected to the casing 103, filling the tank 204 with the driving liquid 20, and supplying the driving liquid by gravity to the pipe 110 via the pipe 104 and the minute flow rate generating section 106 to the passage 110.
  • the discharge liquid 23 is discharged from the outlet pipe 105 to a target place via the intermediate medium 21.
  • This flow rate is a force that varies depending on the height of the tank 204 provided above the minute flow rate generation unit 106.
  • the way of applying the voltage applied to the electrode of the minute flow rate generation unit 106 is adjusted. I do.
  • a positive voltage may be applied to increase the flow rate.
  • FIG. 29 is a configuration diagram of another embodiment of the pump of the present invention.
  • a closed portion 101-a is provided in the middle of a passage 110
  • pipes 122 and 123 are provided in a lower frame 102 at a boundary
  • a long pipe 121 is provided therebetween to form a closed loop.
  • a pipe 124 is branched and connected to a part of the long pipe 121 serving as a closed loop, and the discharge liquid 23 is filled inside through a valve 125.
  • the intermediate medium 21 is placed in the middle of the pipe 122. In this way, a desired flow rate can be obtained without stopping the flow for a long time.
  • the same effect can be obtained by providing a tank 202 having a partition wall 220 shown in FIG. 26 instead of the long pipe 121.
  • FIG. 30 is a configuration diagram of another embodiment of the pump of the present invention. Similar to FIG. 29, a closed portion 110 is provided in the middle of the passage 110, and pipes 122 and 123 are provided in the lower frame 102 at the boundary and connected in a U-shape, and the inside is filled with the intermediate medium 21. . A part of the nozzle 122 is provided with a valve 126 through which the solution (the driving liquid 20) is charged, while the pipe 123 is connected The part is provided with a valve 127 through which the discharge liquid 23 is introduced. In this figure, the upper ends of the pipes 122 and 123 are attached to the upper part of the upper frame 101, and the upper ends of the pipes 122 and 123 are equipped with valves 126 and 127. Branch pipes may be provided in part of the V-shaped pipes 122 and 123 and valves 126 and 127 may be attached.
  • the pump and the pump system of the present invention described above are suitable for use in analyzing biological substances, drugs, foods, and the like.
  • FIG. 31 shows an example in which the pump system of the present invention is incorporated into an analysis system for blood or the like.
  • the analysis system shown in FIG. 31 includes an analysis device 300 having a computer, a display device 302 thereof, and a microscope 304 in addition to the pump system of the present invention.
  • the pump of the present invention since there is no fluctuation or pulsation in the pump flow rate, the enlarged image of the object is not blurred, and high-precision observation can be performed.
  • conventional pumps could not easily change the flow direction, but this pump can reverse the flow easily by changing the polarity of the electrodes.
  • the present pump In addition to being free from fluctuations and pulsations as described above and being capable of reversing the flow, the present pump further has the following features.
  • the flow rate can be easily and freely controlled by changing the voltage.
  • the pump of the present invention can greatly expand the scope of bio-related experiments and research. Furthermore, it can be used by incorporating it into various medical devices.
  • FIG. 1A is a schematic diagram showing the principle of the micro flow rate generating device of the present invention.
  • FIG. IB is a perspective view showing a main part of the minute flow rate generating device of the present invention.
  • Garden 3 is a diagram showing an example of a combination of a solution, a porous thin film and the like used in an embodiment of the present invention.
  • Garden 4 is a diagram showing an example of another combination such as a solution and a porous thin film used in an embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of a flow rate characteristic of the present invention.
  • FIG. 6 is a view showing another example of the flow characteristics of the present invention.
  • FIG. 8 is a view showing another example of the flow characteristics of the present invention.
  • FIG. 9 is a view showing a pump output PQ obtained by using the pump of the present invention with respect to a pressure P.
  • FIG. 12 is a schematic diagram of an electroosmotic flow when an aqueous electrolyte solution (sodium chloride, potassium chloride) is used in the pump of the present invention.
  • aqueous electrolyte solution sodium chloride, potassium chloride
  • FIG. 14 shows a flow state when a colloidal solution is used in the pump of the present invention.
  • FIG. 15 shows flow rate characteristics when the pump of the present invention uses colloidal particles having a diameter of 0.1 ⁇ , and changes the diameter of the fine pores of the porous thin film, while keeping the other conditions the same. is there.
  • Garden 16 is a diagram illustrating the relationship between the diameter R of the colloid particles, the diameter E of the micropores, and the film thickness D.
  • Garden 17A] is a diagram illustrating the situation where the colloid particles pass through the micropores opened in the porous thin film.
  • 17B] is an illustration of the situation where colloid particles pass through micropores opened in a porous thin film
  • 17C is an illustration of the situation where colloid particles pass through micropores opened in a porous thin film
  • FIG. 18 is a view showing another example of the flow characteristics of the pump of the present invention.
  • FIG. 19 is a view showing another example of the flow characteristics of the pump of the present invention.
  • FIG. 20 is a view showing another example of the flow characteristics of the pump of the present invention.
  • FIG. 21 is a view showing a modification of the pump of the present invention.
  • FIG. 22 is a view showing a configuration diagram of another embodiment of the pump of the present invention.
  • FIG. 23 is a view showing one operation of the pump shown in FIG. 22.
  • FIG. 24 is a plan view showing one embodiment of the pump system of the present invention.
  • FIG. 25 is a diagram showing a cross-sectional view along AA in FIG. 24.
  • FIG. 26 is a view showing a configuration diagram of another embodiment of the pump system of the present invention.
  • FIG. 27 is a diagram showing a configuration diagram of another embodiment of the pump section in the pump system of the present invention.
  • FIG. 28 is a diagram showing a configuration diagram of another embodiment of the pump section in the pump system of the present invention.
  • FIG. 29 is a diagram showing a configuration diagram of another embodiment of the pump section in the pump system of the present invention.
  • FIG. 30 is a diagram showing a configuration diagram of another embodiment of the pump section in the pump system of the present invention.
  • FIG. 31 is a diagram showing an application example of the pump system of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

A micro flow rate generator comprising a porous thin film placed in a channel, a pair of electrodes arranged on the opposite sides of the porous thin film, a means for supplying solution to the channel, and a DC power supply for applying a DC voltage between the pair of electrodes, characterized in that the solution has been processed so as not to cause electrolysis and a flow of the solution passing through the porous thin film is generated by applying a DC voltage between the pair of electrodes.

Description

明 細 書  Specification
微少流量発生装置及びポンプ及びポンプシステム  Micro flow generator, pump and pump system
技術分野  Technical field
[0001] 本発明は、液体の微少流量を制御できる方法、及びそれを用いたポンプ、及びそ れを用いたポンプシステムに係り、特に、生体物質や薬品、食品などの分析に用いる のに好適な微少流量発生装置及びポンプ及びそれを用いたポンプシステムに関す るものである。  The present invention relates to a method capable of controlling a minute flow rate of a liquid, a pump using the same, and a pump system using the same, and particularly suitable for use in analyzing biological substances, drugs, foods, and the like. The present invention relates to a micro flow generator, a pump, and a pump system using the same.
背景技術  Background art
[0002] 管内を通る液体の流量制御は、従来、機械的なバルブを用いて開度を変えたり、 圧力を調整する方法により行われてきた。例えば、特許文献 1には、薬液貯蔵タンク 力 薬液を振動的に送り出す動作を行うダイヤフラムポンプである薬液供給ポンプを 備えた薬液供給装置が開示されている。さらに、特許文献 2には、洗浄水に気泡を混 入させる気泡混入手段を備え、多量の微細気泡が洗浄水中に分散する気泡流れを 吐出する洗浄水吐出装置が開示されている。  [0002] Flow rate control of a liquid passing through a pipe has conventionally been performed by a method of changing an opening degree or adjusting a pressure using a mechanical valve. For example, Patent Literature 1 discloses a chemical solution supply device including a chemical solution supply pump which is a diaphragm pump that performs an operation of vibrating a chemical solution storage tank. Further, Patent Literature 2 discloses a cleaning water discharge device that includes a bubble mixing unit that mixes bubbles into cleaning water, and discharges a bubble flow in which a large number of fine bubbles are dispersed in the cleaning water.
し力 ながら、これらの方法は、脈流を生ずるため、微少流量を精度良く制御する 必要のある用途には適していない。  However, these methods are not suitable for applications that require precise control of minute flow rates due to pulsating flow.
一方、特許文献 3には、流体貯蔵部と、圧力伝送部と、ァニオン移動の媒体として のァニオン交換樹脂及び導電剤とを添加した金属酸化物を陰極に用いた電気化学 セル部とを備えた流体供給装置が開示されている。  On the other hand, Patent Document 3 includes a fluid storage unit, a pressure transmission unit, and an electrochemical cell unit using, as a cathode, a metal oxide added with an anion exchange resin and a conductive agent as a medium for moving anion. A fluid supply device is disclosed.
[0003] また、無脈流あるいは低脈流でかつ低流量のポンプを得るために、細長いキヤピラ リー体による電気浸透流や電気泳動を利用して微少流量を発生する方法が、特許文 献 4に開示されている。例えば、その図 1には、石英キヤピラリー管に一端力 試料溶 液を導入した後、キヤビラリ一両端に高電圧を印加して電気泳動を行わせ、電気泳 動分離成分を移動させる例が開示されている。 [0003] Further, in order to obtain a pump with no or low pulsating flow and a low flow rate, a method of generating a minute flow rate by using an electroosmotic flow or electrophoresis by an elongated capillary body is disclosed in Patent Document 4 Is disclosed. For example, FIG. 1 discloses an example in which after a sample solution is introduced into a quartz capillary tube, a high voltage is applied to one end of the capillary to cause electrophoresis to move the electrophoretic separation component. ing.
[0004] さらに、高電圧をかけずに、電池などの比較的低い電圧を用いて多孔質薄膜により 溶液の微少流量を発生または制御する発明が、本願の発明者等による研究の成果 として、非特許文献 1に開示されている。 非特許文献 1によれば、溶液としてイオン化の程度が大きいナトリウム水溶液やカリ ゥム水溶液を使用すれば、微少流量を好適に制御できることが記載されてレ、る。 [0004] Further, an invention of generating or controlling a minute flow rate of a solution by a porous thin film using a relatively low voltage of a battery or the like without applying a high voltage has been reported as a result of research by the inventors of the present application. It is disclosed in Patent Document 1. According to Non-Patent Document 1, it is described that a minute flow rate can be suitably controlled by using a sodium aqueous solution or a potassium aqueous solution having a high degree of ionization as a solution.
[0005] 特許文献 1 :特開 2000— 265945号公報  Patent Document 1: JP-A-2000-265945
特許文献 2:国際公開 WO99Z09265  Patent Document 2: International Publication WO99Z09265
特許文献 3 :特開平 9 - 192213号公報  Patent Document 3: JP-A-9-192213
特許文献 4 :特開平 9一 281077号公報  Patent Document 4: JP-A-9-1281077
非特許文献 1 :杉谷、長谷川、鳴海:「電圧付加時の多孔質薄膜を通る流体の流動特 性」、 日本機械学会北陸信越支部第 39期総会、講演論文集 [No027 - 1] P93 94 , (2002年 3月 8曰)  Non-Patent Document 1: Sugitani, Hasegawa, Narumi: "Flow characteristics of fluid through a porous thin film when voltage is applied", Proc. (March 8, 2002)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 微少流量の制御を行うものとして、例えば、マイクロチャネル内に血液や DNA、糸田 胞等を含む溶液を流し、対象物を顕微鏡によって拡大し観察することが行われてレ、 る。この場合、ポンプ流量に変動や脈動があると拡大された対象物の像がブレてしま い精確な観察ができなレ、。このため、脈動'変動のないポンプが渴望されている。ま た、 目詰りがなく安定した流量を確保でき、しかも、取り扱性の良いことや安価なことも 求められる。 [0006] As a method for controlling a minute flow rate, for example, a solution containing blood, DNA, itoda cells, or the like is allowed to flow in a microchannel, and an object is magnified and observed with a microscope. In this case, if the pump flow rate fluctuates or pulsates, the magnified image of the object will be blurred, making accurate observation impossible. Therefore, a pump without pulsation fluctuation is desired. It is also required that a stable flow rate without clogging can be ensured, and that it should be easy to handle and inexpensive.
[0007] しかし、現時点でこのような要求を充分に満足すべきポンプはなレ、。特に、従来の ポンプでは流れの正逆を簡単に変えることは出来なかった。  [0007] However, at present, there is no pump that can sufficiently satisfy such a demand. In particular, conventional pumps could not easily change the flow direction.
[0008] 例えば、前記特許文献 4に記載のキヤビラリ一体のような細管を用いた電気浸透流 や電気泳動を利用して微少流量を発生する方法は、 100V以上の高電圧を要するも のであり、その反面、得られる流量が少ないため、微少流量の制御が難しい。  [0008] For example, the method of generating a minute flow rate by using electroosmotic flow or electrophoresis using a capillary such as a cabillary described in Patent Document 4 requires a high voltage of 100 V or more. On the other hand, since the obtained flow rate is small, it is difficult to control the minute flow rate.
一方、前記非特許文献 1に記載された多孔質薄膜を用いた微少流量の制御に関 する発明は、研究開発の過程における発明であり、実用化に当たっては解決すべき 幾つかの課題を含んでいた。その 1つは、作動流体として、ナトリウムやカリウムの入 つてレ、る水溶液を使用してレ、るので、電圧印加により内部に水素や気泡が発生し、 流量特性が変化することである。  On the other hand, the invention relating to control of a minute flow rate using a porous thin film described in Non-Patent Document 1 is an invention in the process of research and development, and includes several problems to be solved in practical use. Was. One of them is to use sodium or potassium aqueous solution as working fluid, so that hydrogen or bubbles are generated inside by applying voltage, and the flow characteristics change.
[0009] 本発明の目的は、上記課題を解決し、流体内に水素や気泡の発生の無い、無脈 流あるいは低脈流の微少流量発生装置及びポンプ及びポンプシステムを提供するこ とにある。 [0009] An object of the present invention is to solve the above-mentioned problems, and to generate a pulseless pulse free of hydrogen and bubbles in a fluid. It is an object of the present invention to provide a micro-flow generator and a pump and a pump system for low-flow or low-pulsation flow.
本発明の他の目的は、比較的低い電圧で足り、流量制御の容易な、無脈流あるい は低脈流の微少流量発生装置及びポンプ及びポンプシステムを提供することにある  Another object of the present invention is to provide a non-pulsating or low-pulsating micro flow generator, a pump and a pump system, which require a relatively low voltage and can easily control the flow.
[0010] 本発明の他の目的は、 目詰りがなく安定した流量を確保でき、しかも、取り扱性が 良ぐ安価な微少流量発生装置及びポンプ及びポンプシステムを提供することにある 課題を解決するための手段 Another object of the present invention is to provide an inexpensive micro flow generating device, a pump, and a pump system that can secure a stable flow rate without clogging and that are easy to handle. Means to
[0011] 本発明の特徴は、流路中に配置された多孔質薄膜と、該多孔質薄膜の両側に設 置された一対の電極と、前記流路に溶液を供給する手段と、前記一対の電極間に直 流電圧を印加する直流電源とを備えており、前記溶液が電気分解の発生しないよう に処理された溶液であり、前記一対の電極間に直流電圧を印加することにより前記 多孔質薄膜を経由した前記溶液の流れを発生させる微少流量発生装置にある。  [0011] The features of the present invention include a porous thin film disposed in a flow channel, a pair of electrodes disposed on both sides of the porous thin film, a means for supplying a solution to the flow channel, and the pair of electrodes. A DC power supply for applying a DC voltage between the two electrodes, wherein the solution is a solution that has been treated so that electrolysis does not occur. A micro flow generator for generating the flow of the solution through the thin film.
[0012] 本発明の他の特徴は、前記電気分解の発生しないように処理された溶液として、前 記溶液中に酸化剤を添加したことにある。  [0012] Another feature of the present invention resides in that an oxidizing agent is added to the solution as a solution treated so as not to cause the electrolysis.
本発明の他の特徴は、前記電気分解の発生しないように処理された溶液として、前 記溶液が媒体に粒径 0. Ol z m-0. 5 z mの微粒子を浮遊させた液体であることに ある。  Another feature of the present invention is that, as the solution treated so as not to cause the electrolysis, the solution is a liquid in which fine particles having a particle size of 0.5 Ol z m-0.5 z m are suspended in a medium. It is in.
本発明の他の特徴は、前記微少流量発生装置を用いたポンプ又はポンプシステム にある。  Another feature of the present invention resides in a pump or a pump system using the micro flow generator.
[0013] 本発明の微少流量発生装置やポンプ又はポンプシステムでは、流路の中に多孔 質薄膜を取り付け、溶液の流入側が陽極、流出側が陰極となるように多孔質薄膜を 挟んで配置された一対の電極に直流電圧を印加する。この中で、溶液、電極、膜の 種類の組み合わせや、溶液のイオン化の程度等の条件によって電圧対流量の関係 が異なるので、この組み合わせによって微少流量の制御が可能となる。上記諸条件 を適宜設定することで、印加電圧にほぼ比例した流量の得られるポンプが得られる。  [0013] In the micro flow generator or the pump or the pump system of the present invention, a porous thin film is mounted in the flow path, and the porous thin film is disposed so that the inflow side of the solution is the anode and the outflow side is the cathode. A DC voltage is applied to the pair of electrodes. Among them, the relationship between the voltage and the flow rate varies depending on the combination of the types of the solution, the electrode, and the membrane, and the degree of ionization of the solution. By appropriately setting the above conditions, a pump having a flow rate substantially proportional to the applied voltage can be obtained.
[0014] 例えば、ナトリウム水溶液やカリウム水溶液はイオンィ匕の程度が大きいので、これら を溶液として使用すれば、微少流量を好適に制御できるが、前述のように気泡が発 生する。発明者は、鋭意研究した結果、ナトリウム水溶液やカリウム水溶液の電解質 のものでも、水溶液中に過酸化水素水などの酸化剤を添加する方法や、溶液として 微粒子を分散させたコロイド溶液を用いると、液体中に水素や気泡が発生せず、微 少な電圧により好適に流量が制御できることが分り、本発明を完成することができた。 発明の効果 [0014] For example, aqueous solutions of sodium and potassium have a high degree of ionization. If is used as a solution, the minute flow rate can be suitably controlled, but bubbles are generated as described above. As a result of intense research, the inventor has found that even in the case of electrolytes such as sodium aqueous solution and potassium aqueous solution, a method of adding an oxidizing agent such as hydrogen peroxide solution to the aqueous solution or a colloidal solution in which fine particles are dispersed as a solution are used. It was found that no hydrogen or bubbles were generated in the liquid, and that the flow rate could be suitably controlled by a very small voltage, thus completing the present invention. The invention's effect
[0015] 本発明によれば、微少流量発生装置が、溶液の流路中に配置した多孔質薄膜と一 対の電極を備えており、この電極間に比較的低い電圧、例えば 10V程度の直流電 圧を印加することで、脈動の無い溶液の微少流量を発生させることができる。この流 量は、印加電圧にほぼ比例したものとなり、流量の制御が容易であり、取り扱性が良 ぐ安価となる。また、 目詰りがなく安定した流量を確保できる、すなわち、溶液の内 部に水素や気泡が発生せず何回繰り返しても流量特性が変化しないという効果があ る。  According to the present invention, the micro flow generator includes the porous thin film disposed in the solution flow path and a pair of electrodes, and a relatively low voltage, for example, a DC voltage of about 10 V, is provided between the electrodes. By applying pressure, a very small flow rate of the solution without pulsation can be generated. This flow rate is almost proportional to the applied voltage, so that the flow rate can be easily controlled, and the handling is good and the cost is low. In addition, there is an effect that a stable flow rate can be secured without clogging, that is, there is no generation of hydrogen or bubbles inside the solution, and the flow rate characteristic does not change even if it is repeated many times.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の実施の形態を説明する。まず、本発明の微少流量発生装置の基本 的な構成を説明する。  Hereinafter, embodiments of the present invention will be described. First, the basic configuration of the minute flow rate generating device of the present invention will be described.
図 1Aは、本発明の微少流量発生装置の原理を示す概略図である。図 1Bは、本発 明の微少流量発生装置の要部を示す斜視図である。溶液 20を流すチャネル (流路) 1の途中に、このチャネルの軸線方向と垂直な方向に支持体 3を介して多孔質薄膜 2 を取り付ける。そして、この多孔質薄膜 2を挟んで上流側及び下流側に一対の電極 4 , 5を設置する。支持体 3の円形の開口部すなわち多孔質薄膜 2が流れに面する円 形の領域と、一対の電極 4, 5に設けられた円形の開口部とは実質的に同じ半径を有 し、各中心がチャネルの軸線上に位置している。  FIG. 1A is a schematic diagram illustrating the principle of the micro flow rate generator according to the present invention. FIG. 1B is a perspective view showing a main part of the minute flow rate generating device of the present invention. In the middle of a channel (flow channel) 1 through which the solution 20 flows, a porous thin film 2 is attached via a support 3 in a direction perpendicular to the axial direction of this channel. Then, a pair of electrodes 4 and 5 are installed on the upstream and downstream sides of the porous thin film 2. The circular opening of the support 3, that is, the circular region where the porous thin film 2 faces the flow, and the circular openings provided in the pair of electrodes 4 and 5 have substantially the same radius, and The center is located on the axis of the channel.
[0017] 溶液 20は、電気分解が発生しないように処理されている。そのために、溶液中に酸 化剤を添加する。陰極に亜鉛電極を用いても良ぐあるいは、このような溶液と亜鉛 電極の組み合わせを用いても良レ、。  [0017] The solution 20 is treated so that electrolysis does not occur. For this purpose, an oxidizing agent is added to the solution. A zinc electrode may be used for the cathode, or a combination of such a solution and a zinc electrode may be used.
[0018] また、他の方法として、溶液 20は、媒体に粒径 0. 01 /i m— 0. 5 μ mの微粒子を浮 遊させた液体でも良い。この場合、微粒子は、液体中で帯電する性質を有している 必要がある。例えば、溶液中に微粒子を分離させたコロイド状溶液を用いることがで きる。 As another method, the solution 20 may be a liquid in which fine particles having a particle diameter of 0.01 / im-0.5 μm are suspended in a medium. In this case, the fine particles have a property of being charged in the liquid. There is a need. For example, a colloidal solution in which fine particles are separated from a solution can be used.
[0019] 多孔質薄膜 2を挟んで配置される一対の電極は、溶液の流入側が陽極 4、流出側 が陰極 5となるように、直流電源 6からスィッチ 7を介して 100V以下の所定の直流電 圧が印加される。図示の例は左側を陽極 4、右側を陰極 5とした場合であり、矢印の 方向に溶液 20が流れる。なお、一対の電極間に 10V 20Vの電圧を印加したとき、 電極間に流れる電流は 30 μ Α— 100 μ Α程度の微少電流であり、電力消費か極め て少ないのが、本発明の 1つの特徴である。  [0019] A pair of electrodes arranged with the porous thin film 2 interposed therebetween has a predetermined DC voltage of 100 V or less from a DC power supply 6 via a switch 7 so that the inflow side of the solution is the anode 4 and the outflow side is the cathode 5. Pressure is applied. In the illustrated example, the anode 4 is on the left and the cathode 5 is on the right, and the solution 20 flows in the direction of the arrow. When a voltage of 10 V and 20 V is applied between a pair of electrodes, the current flowing between the electrodes is a very small current of about 30 μΑ—100 μΑ, and the power consumption is extremely small. It is a feature.
[0020] なお、後で詳細に述べるように、構成要素である溶液、電極、及び多孔質薄膜の種 類や材料等の組み合わせや、溶液のイオン化の程度等の各条件によって、印加電 圧対流量の関係が異なってくる。よって、これらの構成要素の組み合わせによって、 所望の流量の制御が可能なポンプが得られる。  As will be described in detail later, the applied voltage may vary depending on the combination of the types and materials of the constituent components of the solution, the electrode, and the porous thin film, and the conditions such as the degree of ionization of the solution. The relationship of the flow rate is different. Therefore, a pump capable of controlling a desired flow rate can be obtained by a combination of these components.
[0021] 図 2は、本発明の微少流量制御ポンプの一実施例の構成を示す縦断面図である。  FIG. 2 is a longitudinal sectional view showing the configuration of one embodiment of the micro flow control pump of the present invention.
第一のチャネル 1内に、支持体 3を介して多孔質薄膜 2が保持されている。第一のチ ャネル 1及び支持体 3は、電気的に絶縁性の材料で構成されている。多孔質薄膜 2 は、一例として、厚さが 11 /i mのニッケル製で、直径 8mmの円形の領域内に孔径約 5 / mの穴が 55600個規則的に設けられている。また、多孔質薄膜 2の両側に陽極 4 と陰極 5が設置されている。図 1Bに示したように、多孔質薄膜 2を保持した支持体 3 及び一対の電極は平板状であり、間にシール材を挟んで第一のチャネル 1に固定さ れている。  The porous thin film 2 is held in the first channel 1 via the support 3. The first channel 1 and the support 3 are made of an electrically insulating material. As an example, the porous thin film 2 is made of nickel having a thickness of 11 / im, and 55600 holes having a hole diameter of about 5 / m are regularly provided in a circular region having a diameter of 8 mm. An anode 4 and a cathode 5 are provided on both sides of the porous thin film 2. As shown in FIG. 1B, the support 3 holding the porous thin film 2 and a pair of electrodes are plate-shaped, and are fixed to the first channel 1 with a sealing material interposed therebetween.
[0022] 後で述べるように、多孔質の孔径は 1 μ ΐη— 100 /i mの範囲が望ましレ、。また、各 電極と多孔質薄膜 2との間隔は、 1mmないし lcm程度の範囲が望ましい。これら一 対の電極は切替えスィッチ 7を介して直流電源 6に接続されている。直流電源 6は、 一対の電極に 100V程度以下の直流電圧を供給するための電源であり、電池を用い ること力 Sできる。あるいはまた、直流電源 6として、交流電源からコンバーターを介して 直流電源を得る電源装置であっても良い。また、可変抵抗器などの電圧調整手段を 具備しているものとする。切替えスィッチ 7は、一対の電極に対する電圧の極性を切り 替え、あるいは、オフにする切替え機能を有している。第一のチャネル 1の流入側パ ィプ 27は、溶液タンク(図示略)に接続されている。溶液タンクと第一のチャネル 1の 高さは基本的には同じ、すなわちヘッドがゼロである。後の実施例で述べるように、用 途に応じてこのヘッドを変えることにより、用途に応じた所望の流量特性を得ることも できる。 [0022] As will be described later, the pore diameter of the porous material is desirably in the range of 1 μ μη-100 / im. The distance between each electrode and the porous thin film 2 is preferably in the range of about 1 mm to 1 cm. These pairs of electrodes are connected to a DC power supply 6 via a switching switch 7. The DC power supply 6 is a power supply for supplying a DC voltage of about 100 V or less to the pair of electrodes, and can use a battery. Alternatively, the DC power supply 6 may be a power supply device that obtains a DC power supply from an AC power supply via a converter. It is also assumed that a voltage adjusting means such as a variable resistor is provided. The switching switch 7 has a switching function of switching the polarity of the voltage with respect to the pair of electrodes or turning off the voltage. Inlet path of first channel 1 The pipe 27 is connected to a solution tank (not shown). The height of the solution tank and the first channel 1 is basically the same, ie, the head is zero. As will be described in a later embodiment, by changing the head according to the application, a desired flow rate characteristic according to the application can be obtained.
[0023] なお、一対の電極 4, 5に設けられた円形の開口部は、必ずしも支持体 3の円形の 開口部と同じ大きさである必要はなレ、。例えば、一対の電極 4, 5に設けられた開口 部は、支持体 3の開口部よりも半径が大きぐかつ、複数の細口を有する開口部とし て構成しても良い。  Note that the circular openings provided in the pair of electrodes 4 and 5 do not necessarily have to be the same size as the circular openings of the support 3. For example, the opening provided in the pair of electrodes 4 and 5 may be configured as an opening having a larger radius than the opening of the support 3 and having a plurality of narrow openings.
[0024] 第一のチャネル 1の流出側パイプ 26に連なる第二のチャネル 10は、流入側チヤネ ル部 8と流出側チャネル部 9とに分かれており、細パイプ 22によって結合されている。 流入側チャネル部 8の下部は溶液 (駆動液) 20で満たされる。一方、この細パイプ 22 と流入側チャネル部 8の上部、流出側チャネル部 9の上部には中間媒体 21が満たさ れている。さらに、ポンプの流出側となる流出側チャネル 9部内には、水や血液等の 吐出液 23が満たされており、流出側パイプ 28に接続されてレ、る。  The second channel 10 connected to the outflow pipe 26 of the first channel 1 is divided into an inflow channel section 8 and an outflow channel section 9 and connected by a thin pipe 22. The lower part of the inflow-side channel section 8 is filled with a solution (drive liquid) 20. On the other hand, an intermediate medium 21 is filled in the narrow pipe 22, the upper part of the inflow-side channel part 8, and the upper part of the outflow-side channel part 9. Further, a discharge liquid 23 such as water or blood is filled in an outlet channel 9 serving as an outlet of the pump, and is connected to an outlet pipe 28.
[0025] 図 3に、溶液、多孔質薄膜などの組み合わせの一例を示す。図 3の例では、溶液( 駆動液) 20として、媒体は水、電解質水溶液は塩化ナトリウムあるいは塩ィ匕カリウムを 用いている。多孔質薄膜 2はニッケル製で、電極は陽極 4が銀、陰極 5が亜鉛の組み 合わせである。また、銀と塩ィ匕銀 (AgCl)の組み合わせを採用すれば、陽極、陰極を 切り替える可逆電極として構成できる。溶液には、酸化剤として、過酸化水素水ある いはニクロム酸カリウムが添加されてレ、る。  FIG. 3 shows an example of a combination of a solution, a porous thin film, and the like. In the example of FIG. 3, as the solution (driving liquid) 20, water is used as the medium, and the aqueous electrolyte solution is made of sodium chloride or potassium chloride. The porous thin film 2 is made of nickel, and the electrodes are a combination of silver for the anode 4 and zinc for the cathode 5. In addition, if a combination of silver and silver salt (AgCl) is adopted, it can be configured as a reversible electrode that switches between an anode and a cathode. Hydrogen peroxide or potassium dichromate is added to the solution as an oxidizing agent.
[0026] 図 3の組み合わせは、一例であり、同様な特性の他の要素を組み合わせても良いこ とはいうまでもない。例えば、電極に、亜鉛板(陰極)、銀板(陽極)の組み合わせを用 いても良い。  The combination in FIG. 3 is an example, and it goes without saying that other elements having similar characteristics may be combined. For example, a combination of a zinc plate (cathode) and a silver plate (anode) may be used for the electrodes.
[0027] さらに、図 4に、溶液、多孔質薄膜などの組み合わせに関する他の例を示す。図 4 の例では、溶液 (駆動液) 20として、微粒子を分散させたコロイド溶液を用いている。 すなわち、溶液としてのコロイド溶液は、水、またはイオン交換機によりイオンを取り除 いたイオン交換水を媒体として、これにポリスチレン粒子あるいはシリカ粒子などの微 粒子が混入されている。コロイド溶液は、油に微粒子を混入したものでも良い。 [0028] また、多孔質薄膜 2は、ニッケルあるいは非金属のポリカーボネイトを用いている。 多孔質薄膜の材料として、非金属アクリル樹脂も適用できる。電極は陽極、陰極共に ステンレス鋼の板である。ポリカーボネイト製の多孔質薄膜 2の具体的な構成例として 、例えば、厚さは l l x mであり、直径 10mmの円内に孔径約 5 z mの穴が 320000 個設けられている。 FIG. 4 shows another example of a combination of a solution, a porous thin film, and the like. In the example of FIG. 4, a colloidal solution in which fine particles are dispersed is used as the solution (drive liquid) 20. That is, the colloid solution as a solution uses water or ion-exchanged water from which ions have been removed by an ion exchanger as a medium, into which fine particles such as polystyrene particles or silica particles are mixed. The colloid solution may be a mixture of oil and fine particles. [0028] The porous thin film 2 uses nickel or nonmetallic polycarbonate. A non-metallic acrylic resin can also be used as a material for the porous thin film. The electrode is a stainless steel plate for both the anode and cathode. As a specific configuration example of the porous thin film 2 made of polycarbonate, for example, the thickness is llxm, and a circle having a diameter of 10 mm is provided with 320000 holes having a hole diameter of about 5 zm.
[0029] なお、コロイド溶液は、水に微粒子を懸濁させたものでもよいし、油や有機溶媒中に 微粒子を懸濁させたものでもよい。  [0029] The colloid solution may be a suspension of fine particles in water or a suspension of fine particles in oil or an organic solvent.
[0030] 溶液 (駆動液) 20として使用できるのは、コロイド溶液に限らなレ、。例えば、イオン交 換水を媒体としてこれに微粒子を分散させた懸濁液でもよい。  [0030] The solution (drive liquid) 20 that can be used is not limited to a colloid solution. For example, a suspension in which fine particles are dispersed in ion exchange water as a medium may be used.
[0031] このように、本発明のポンプで使用できる溶液 (駆動液) 20としては、媒体に粒径 0 . 01 μ m— 0. 5 μ mの微粒子を浮遊させた、液体であれば良い。この場合、微粒子 は、液体中で帯電する性質を有している物であれば、金属、非金属を問わず、何でも 利用可能である。例えば、微粒子としてアルミナの粉末を用いても良い。  As described above, the solution (driving liquid) 20 that can be used in the pump of the present invention may be any liquid in which fine particles having a particle size of 0.01 μm to 0.5 μm are suspended in a medium. . In this case, as long as the fine particles have a property of being charged in a liquid, any kind of metal or nonmetal can be used. For example, alumina particles may be used as the fine particles.
[0032] 次に、図 2の実施例の動作を説明する。溶液タンクに駆動液 20として電解質水溶 液(図 3参照)、または微粒子(図 4参照)を分散させたコロイド溶液を、第一のチヤネ ノレ 1内と第二のチャネル 10の流入側チャネル部 8内下部に満たす。そして、ポンプの 流出側となる流出側チャネル部 9内下部に水、汚水や血液等の吐出液 23を満たす。  Next, the operation of the embodiment of FIG. 2 will be described. A colloidal solution in which an aqueous electrolyte solution (see FIG. 3) or fine particles (see FIG. 4) is dispersed in the solution tank as the driving solution 20 is supplied into the first channel 1 and the inflow-side channel portion 8 of the second channel 10. Fill the inner bottom. Then, the lower part of the outlet side channel portion 9 serving as the outlet side of the pump is filled with a discharge liquid 23 such as water, sewage or blood.
[0033] 陽極 4と陰極 5への直流電圧の印加によって、ナトリウム水溶液 20が第二のチヤネ ルの流入側に流れ、それが中間媒体 (シリコンオイル、トランス油など) 21を押し、吐 出液 (水、汚水など) 23を流出側パイプ 28へ押し出す。陽極 4と陰極 5への電圧印加 を止めれば、溶液の流れは停止する。このような操作によって溶液の微少流量を発 生させることができる。  [0033] By applying a DC voltage to the anode 4 and the cathode 5, the sodium aqueous solution 20 flows to the inflow side of the second channel, which pushes the intermediate medium (silicon oil, transformer oil, etc.) 21, and the discharged liquid (Water, sewage, etc.) 23 is pushed out to the outflow pipe 28. When the voltage application to the anode 4 and the cathode 5 is stopped, the flow of the solution is stopped. By such an operation, a very small flow rate of the solution can be generated.
[0034] なお、溶液である電解質水溶液 (例えばナトリウム水溶液) 20は、電圧印加により水 素や気泡が発生し、流量へ影響を与える。しかし、過酸化水素水やニクロム酸力リウ ム等の酸化剤を添加すれば、水素や気泡の発生を防ぐことができる。このような対策 をした後、電解質の強い溶液を使うと、さらに低い電圧印加で流量を発生させること ができる。  [0034] In the electrolyte aqueous solution (for example, a sodium aqueous solution) 20, which is a solution, hydrogen or bubbles are generated by applying a voltage, which affects the flow rate. However, the addition of an oxidizing agent such as aqueous hydrogen peroxide or lithium nichrome acid can prevent the generation of hydrogen and bubbles. After taking such measures, if a strong solution of electrolyte is used, the flow rate can be generated by applying a lower voltage.
[0035] またイオン交換機によりイオンを取り除いたコロイド溶液を用いる方法によっても水 素の発生はなくなる。 [0035] Water can also be obtained by a method using a colloid solution from which ions have been removed by an ion exchanger. There is no elementary generation.
図 5は、図 2に示す微少流量制御ポンプを用い、図 3に示した要素の組み合わせに 基づき、実験を行って得られたポンプの流量特性の一結果を示す図である。供試液 は 0. 9%食塩水、印加電圧は 5V、使用した多孔質薄膜 2はニッケル箔で、その孔径 は 5. 01 μ mのものである。電極はそれぞれ亜鉛板(陰極)、銀板(陽極)である。また 、溶液タンクの高さ(水柱)は、 0mmである。ここで電極としては陰極に亜鉛板、陽極 に銀板を用いた。この図から電圧付加直後に流れが生じていることがわかる。実験開 始時は電圧零の状態で始め、 300秒経過した時点で 5Vの電圧を印加する。電圧印 加後、流量が増加し、 350秒経過した時点では約 2. 0 (mm3/s)の流量となり、以降 、継続してほぼ一定の流量が得られている。 FIG. 5 is a diagram showing one result of the flow characteristics of the pump obtained by performing an experiment based on the combination of the elements shown in FIG. 3 using the micro flow control pump shown in FIG. The test solution was 0.9% saline, the applied voltage was 5 V, the porous thin film 2 used was nickel foil, and the pore size was 5.01 μm. The electrodes are a zinc plate (cathode) and a silver plate (anode), respectively. The height (water column) of the solution tank is 0 mm. Here, a zinc plate was used for the cathode and a silver plate was used for the anode as the electrodes. From this figure, it can be seen that the flow occurs immediately after the voltage is applied. At the beginning of the experiment, start at zero voltage and apply a voltage of 5V after 300 seconds. After the application of the voltage, the flow rate increased, and when 350 seconds had passed, the flow rate was about 2.0 (mm 3 / s), and thereafter, a substantially constant flow rate was continuously obtained.
[0036] 本発明の流体移送装置はダイヤフラムやピストンを利用するポンプと違って原理的 に脈動がないことが特徴である。図 5のデータでは流量に若干の脈動が見られるが、 後で行った我々の他の実験結果とも合わせ、検討した結果、データ上の脈動は主に 流量測定に用いた電子天秤の不安定及びプログラム上の問題に基づくものと思われ る。なぜなら、電圧を付加する以前 (流量が零)の状態でも同様の変動が見られるか らである。よって、ポンプによる脈動は図示のデータ値よりも小さいと考えられる。また 、安定した一定の流量が得られる間での時間も、データ上は 50秒経過しているが、 測定用プログラム上の問題に基づく遅れ等があり、実際には電圧印加後、 5— 10秒 程度で安定した一定の流量が得られていると考えられる。  The fluid transfer device of the present invention is characterized in that there is no pulsation in principle unlike a pump using a diaphragm or a piston. The data in Fig. 5 shows a slight pulsation in the flow rate, but when combined with the results of our other experiments performed later, the pulsation on the data showed that the pulsation on the data was mainly due to the instability of the electronic balance used for flow rate measurement. Probably due to program problems. This is because the same fluctuation is observed even before the voltage is applied (the flow rate is zero). Therefore, it is considered that the pulsation caused by the pump is smaller than the illustrated data value. Also, the time required to obtain a stable and constant flow rate is 50 seconds in the data, but there is a delay due to a problem in the measurement program. It is considered that a stable and constant flow rate was obtained in about seconds.
[0037] 我々は、何回かの実験を繰り返し、水素や気泡の発生のないことを確認している。  [0037] We have repeated several experiments and confirmed that no hydrogen or bubbles were generated.
陰極に亜鉛板を用いると、水素の発生が防ぐことができる。また、陽極に銀板を用い ると、塩素による膜の腐食を防ぐことができる。さらに、陰極に AgClの可逆電極を用 レ、ると一層の効果がある。また、酸化剤として過酸素水素水、ニクロム酸カリウムを添 加するとさらに効果を高める。  When a zinc plate is used for the cathode, generation of hydrogen can be prevented. When a silver plate is used for the anode, corrosion of the film due to chlorine can be prevented. Furthermore, the use of an AgCl reversible electrode as the cathode has a further effect. The effect is further enhanced by adding hydrogen peroxide solution and potassium dichromate as oxidizing agents.
[0038] また図 6に、比較のために、電圧を 8Vに増加したときのポンプの流量特性のグラフ を示す。電圧 5Vでは流量が約 2. 0 (mm3/s)、電圧 8Vでは流量が約 4. 0 (mmVs) と、電圧を増すと流量も大きくなつている。 FIG. 6 shows a graph of the flow rate characteristics of the pump when the voltage is increased to 8 V for comparison. At a voltage of 5 V, the flow rate is about 2.0 (mm 3 / s), and at a voltage of 8 V, the flow rate is about 4.0 (mmVs). As the voltage increases, the flow rate increases.
[0039] 図 7は、図 4に示した要素の組み合わせに基づき、水溶液としてイオン交換水の中 に単分散ポリスチレン粒子を入れたコロイド溶液を用いた場合の結果である。供試液 は 0. 01%の単分散ポリスチレンコロイド溶液、付加電圧は 5V、使用した多孔質薄膜 2はニッケル箔でその孔径は約 5 μ ΐηのものである。電極は陰極、陽極ともにステンレ ス板である。イオン交換されたコロイド溶液では水素や塩素の発生がないので、電極 はステンレス板を用いることが可能である。 [0039] FIG. 7 is a diagram showing an aqueous solution of ion-exchanged water based on the combination of elements shown in FIG. Are the results when a colloidal solution containing monodisperse polystyrene particles was used. The test solution is a 0.01% monodisperse polystyrene colloid solution, the applied voltage is 5 V, and the porous thin film 2 used is a nickel foil having a pore diameter of about 5 μΐη. The electrode is a stainless steel plate for both the cathode and anode. Since the ion-exchanged colloid solution does not generate hydrogen or chlorine, a stainless steel plate can be used for the electrode.
[0040] 実験開始時は電圧零の状態で始め、 300秒経過した時点で電圧を印加した。この 図から、電圧印加直後、流れが生じ、約 1. 0 (mm3/s)のほぼ一定の流量が得られて レ、ることが分かる。濃度や電圧をかえることによって流量は調整できる。 [0040] At the start of the experiment, a voltage of zero was started, and a voltage was applied when 300 seconds had elapsed. From this figure, it can be seen that a flow occurs immediately after the application of the voltage, and a nearly constant flow rate of about 1.0 (mm 3 / s) is obtained. The flow rate can be adjusted by changing the concentration or the voltage.
[0041] コロイド溶液での利点は、電気分解しないので、何度も同じ溶液が使用できること、 気泡や水素が発生しなレ、ことである。これは繰返し実験で確認してレ、る。  The advantages of the colloid solution are that the same solution can be used many times because no electrolysis is performed, and that bubbles and hydrogen are not generated. This has been confirmed by repeated experiments.
[0042] 図 8は、図 4に示した要素の組み合わせに基づき、多孔質薄膜にポリカーボネイト 膜を用いた場合の結果の一例である。供試液は 0. 01 Q/oの単分散ポリスチレン粒子 を入れたコロイド溶液、付加電圧は 5V、使用した多孔質薄膜 2はポリカーボネイト膜 で、その孔径は約 5 /i mである。電極は陽極、陰極ともステンレス板である。実験開始 時は電圧ゼロの状態で始め、 300秒経過した時点で電圧を付加する。この図から、 電圧付加直後に流れが生じ、約 1. 0 (mm3/s)のほぼ一定の流量となっていることが 分かる。繰返し実験で、この実験の再現性を確認している。ポリカーボネイト膜の利点 は膜の腐食が少なく長く使用できること、低コストであることである。 FIG. 8 shows an example of a result obtained when a polycarbonate film is used as the porous thin film based on the combination of the elements shown in FIG. The test solution was a colloid solution containing 0.01 Q / o monodisperse polystyrene particles, the applied voltage was 5 V, the porous thin film 2 used was a polycarbonate film, and the pore size was about 5 / im. The electrode is a stainless steel plate for both the anode and the cathode. At the beginning of the experiment, start with zero voltage, and apply voltage after 300 seconds. From this figure, it can be seen that the flow occurs immediately after the voltage is applied, and the flow rate is approximately 1.0 (mm 3 / s), which is almost constant. Repeated experiments have confirmed the reproducibility of this experiment. The advantages of the polycarbonate film are that the film is less corroded, can be used for a long time, and has a low cost.
[0043] ここで、本発明の微少流量制御ポンプの動作原理にっレ、て、説明する。まず、印加 電圧とポンプ流量の関係について述べる。  Here, the operation principle of the micro flow control pump of the present invention will be described. First, the relationship between the applied voltage and the pump flow rate will be described.
ポンプに付加する電圧を V、電流を Iとすると、ポンプ入力は V X Iである。また、ポン プの吐出し圧力を P、流量を Qとすると、ポンプ出力は P X Qで与えられる。従って、 効率を 77とすると  If the voltage applied to the pump is V and the current is I, the pump input is V XI. Also, assuming that the discharge pressure of the pump is P and the flow rate is Q, the pump output is given by P X Q. Therefore, if the efficiency is 77,
r] =PQ/ (VI) (1)  r] = PQ / (VI) (1)
となる。  It becomes.
[0044] 図 9は、本発明のポンプを用いて得られたポンプ出力 PQを圧力 Pに対して示して いる。この図力も圧力を変化させてもポンプ出力はほぼ一定であることがわかる。この とき負荷した電圧 Vは 5ボルトであり、実験によれば圧力 Pを変えても電流 Iは 3 X 10— 5 アンペアでほぼ一定であった。すなわち、ポンプ入力 VI = 1. 5 X 10 ワットのときに ポンプ出力 PQは約 10_8ワットという一定値をとっていることがわかる。従って、 Ρが変 化しそれに対応して Qも変化するが入力が一定であれば PQ= 77 VI =—定の関係が あり、効率 は式(1 )から = 0. 67 X 10— 5となる。一方、厚さ Lの膜に開いている半 径 Rの孔を長さ L半径 Rの細管で近似すると、流量 Qの流体がこの孔を通る際の圧力 損失 Pは次式で与えられる(流れは層流とする)。 FIG. 9 shows the pump output PQ obtained using the pump of the present invention with respect to the pressure P. It can be seen that the pump output is substantially constant even when the pressure is changed. Voltage V-loaded at this time is 5 volts, the current I be varied pressure P according to the experiment 3 X 10- 5 It was almost constant in amps. That is, the pump output PQ when the pump input VI = 1. 5 X 10 watts it can be seen that taking a constant value of about 10_ 8 watts. Thus, [rho is strange turned into if the input varies even Q correspondingly constant PQ = 77 VI = - has a constant relationship, efficiency is = 0. 67 X 10- 5 from equation (1) . On the other hand, if a hole with a radius R opened in a film with a thickness L is approximated by a thin tube with a length L and a radius R, the pressure loss P when a fluid with a flow rate Q passes through this hole is given by the following equation. Is laminar flow).
ここに、 / は流体粘度である。 Where / is the fluid viscosity.
図 10は、式(2)と実験値との比較を示す。同図中のポアズイユ流(Poiseuille flow)と 書かれた直線は式(2)を示し、黒丸は実験値を示す。両者はよく一致しており膜に開 いた孔を細管で近似してよいことが分かる。式(2)から装置によって決まる定数を Cと すれば  FIG. 10 shows a comparison between equation (2) and experimental values. In the figure, the straight line labeled Poiseuille flow shows equation (2), and the black circles show the experimental values. Both agree well, indicating that the pores opened in the membrane can be approximated by thin tubes. From equation (2), if the constant determined by the device is C,
Q = CP ( 3 )  Q = CP (3)
となる。 It becomes.
ηと Cの値は実際のポンプと流体チップの組み合わせによって異なる力 これを出 荷時に実験的に決めておけば、所望の流量 Qは式(1 ) (3)から求められる次式 (4) により電力 VI (実際は電流 Iが一定になるので実質的には電圧 V)を与えることにより 求まる。
Figure imgf000012_0001
The values of η and C differ depending on the actual combination of pump and fluid tip. If this is experimentally determined at the time of shipping, the desired flow rate Q can be obtained from the following equation (4) obtained from equations (1) and (3). It is obtained by giving power VI (actually, voltage V since current I is constant).
Figure imgf000012_0001
77と Cが出荷時に所定値に設定され、 Rも一定とした場合、 V=RIの関係から、式 ( 4)を書き直すと、次式が求まる。  If 77 and C are set to predetermined values at the time of shipment and R is also constant, rewriting equation (4) from the relationship of V = RI gives the following equation.
Q =k -V  Q = k -V
(ただし kは定数)  (Where k is a constant)
式(5)から、 ηや Cの条件をあらカ^め設定しておけば、流量 Qは、印加電圧 Vに 比例すると言える。  From equation (5), it can be said that the flow rate Q is proportional to the applied voltage V if the conditions of η and C are set in advance.
図 1 1は、本発明のポンプ用いて、印加電圧に対するポンプ吐出量を測定した結果 の一例を示したものである。この図からも、本発明のポンプにおける流量 Qは、流量 Q の少ない領域を除いて、印加電圧 Vにほぼ比例することがわかる。 Fig. 11 shows the results of measuring the pump discharge amount with respect to the applied voltage using the pump of the present invention. FIG. From this figure, it can be seen that the flow rate Q in the pump of the present invention is almost proportional to the applied voltage V except in a region where the flow rate Q is small.
[0048] 一般に、微少流量ポンプでは、流量計で直接流量 Qを測定しながら使用するのは 困難である。従って、微少流量ポンプで正確な設定流量を確保するためには、前も つて、図 11のような印加電圧 Vと流量 Qの関係を与える特性線図を実験で取得して おき、この特性線図に沿って電圧を調節し、所定の流量を得るようにするのが望まし レ、。 In general, it is difficult to use a micro flow pump while measuring the flow Q directly with a flow meter. Therefore, in order to secure an accurate set flow rate with a micro flow pump, a characteristic diagram that gives the relationship between the applied voltage V and the flow rate Q as shown in Fig. 11 must be obtained by experiments in advance, and this characteristic line It is desirable to adjust the voltage according to the figure to obtain a predetermined flow rate.
[0049] 次に、本発明のポンプで、印加電圧 Vに比例した流量 Qが得られる点に関して、説 明する。  Next, the point that the pump of the present invention can obtain a flow rate Q proportional to the applied voltage V will be described.
本発明のポンプにおいて、溶液タンクの一すなわちヘッドは、ゼロでも良い。ヘッド をゼロとし、 +極から -極へ流れが発生する現象は、おもに電気浸透流や電気泳動 によるものと考えられる。  In the pump of the present invention, one or the head of the solution tank may be zero. The phenomenon in which the head is set to zero and the flow occurs from the + pole to the-pole is considered to be mainly due to electroosmotic flow or electrophoresis.
そこで、ヘッドをゼロとしたときの電圧のみの影響を調べてみると、多孔質薄膜をつ けた状態だと流量が発生することがわかった。これは、膜をつけていない状態では流 量が発生しないことから、微小領域での流れ特有の現象と考えられる。そこで、ここで は、多孔質薄膜の微細孔前後に設けられた電極で、電圧を付加することにより流量 が発生する原理にっレ、て考察してレ、く。  Therefore, when examining the effect of only the voltage when the head was set to zero, it was found that a flow rate was generated when the porous thin film was attached. This is considered to be a phenomenon peculiar to the flow in a minute area because the flow does not occur in the state without the membrane. Therefore, here, let us consider the principle that the flow rate is generated by applying a voltage to the electrodes provided before and after the micropores of the porous thin film.
[0050] 電気浸透流とは、微細管などの流路内で電気二重層ができ、その二重層がクーロ ンカによりマイナス極に移動し、一方向に流れが発生する現象のことをレ、う。 [0050] The electroosmotic flow refers to a phenomenon in which an electric double layer is formed in a flow path such as a fine tube, and the double layer moves to a negative pole by a cooler to generate a flow in one direction. .
[0051] 図 12は、本発明のポンプで、電解質水溶液 (塩化ナトリウム、塩ィ匕カリウム)を用い た場合の電気浸透流の概略図である。図 12のように微細管の流路の壁面がマイナ スに帯電し、それによつて壁面付近には、プラスイオンが集まり電気二重層を形成す る。その電気二重層は、クーロン力によってマイナス極に移動する。周りのプラスィォ ンは次々に壁面に移動し電気二重層を常に形成する。また、電気二重層の周りでは 、電気二重層のプラスイオンに引っ張られ、マイナスイオンも移動する。このとき静電 気力などの力も働くため、全体としてマイナス極に流れが発生する。 FIG. 12 is a schematic diagram of an electroosmotic flow when an aqueous electrolyte solution (sodium chloride, potassium salt) is used in the pump of the present invention. As shown in Fig. 12, the wall surface of the flow path of the fine tube is negatively charged, whereby positive ions gather near the wall surface to form an electric double layer. The electric double layer moves to the minus pole due to Coulomb force. The surrounding playons move one after another to the wall and always form an electric double layer. In addition, around the electric double layer, the positive ions of the electric double layer are pulled and the negative ions move. At this time, a force such as an electrostatic force acts, so that a flow is generated in the negative pole as a whole.
これが本発明による、図 3に示した電解質水溶液を用いた場合の、ポンプ効果、特 に一定流量を吐出、吸入できる効果の原因と考えられる。 [0052] 次に、本発明のポンプで、図 4に示したコロイド溶液によってポンプ効果が生じる理 由は、以下のようなものであると考えられる。 This is considered to be the cause of the pump effect, particularly the effect of discharging and inhaling a constant flow rate, when the electrolyte aqueous solution shown in FIG. 3 is used according to the present invention. Next, in the pump of the present invention, the reason why the pump effect is produced by the colloid solution shown in FIG. 4 is considered to be as follows.
[0053] 一般に液体に浸された物体はほとんどの場合負に帯電し、そこに溶液中のプラスィ オンが引き寄せられる(吸着する)。コロイド粒子も負に帯電するが、その周りには液 体中のマイナスイオンが引き寄せられて吸着し、粒子全体がプラスイオンを帯びた粒 子と同類になる。そこで簡単のために、プラスイオンを吸着したコロイド粒子を、図 13 のように描くことにする。  In general, an object immersed in a liquid is negatively charged in most cases, and a prion in a solution is attracted (adsorbed) thereto. The colloid particles are also negatively charged, but the negative ions in the liquid are attracted and absorbed around them, and the whole particles are similar to particles with positive ions. Therefore, for simplicity, we draw the colloid particles that have adsorbed positive ions as shown in Figure 13.
[0054] コロイド溶液の場合も、図 12とほぼ同じである。ただ、コロイド溶液の場合、—の粒子 にプラスの電荷がまわりにくっつき、全体として見かけ上はプラスの粒子になり、その プラスの粒子が電気浸透流や電気泳動、吸着など、特に微小な領域特有の現象で、 流れが生じると考えられる。すなわち、コロイド溶液では一の粒子がなぐ図 14のよう な状態で流れが生じると予想される。  The case of the colloid solution is almost the same as that of FIG. However, in the case of a colloidal solution, a positive charge is attached to the negative particles around it, and the particles become apparently positive particles as a whole, and the positive particles are unique to a particularly small area such as electroosmotic flow, electrophoresis, and adsorption. It is thought that a flow occurs due to the phenomenon described above. In other words, it is expected that a flow will occur in a colloidal solution as shown in Fig. 14 where one particle forms.
[0055] 次に、図 15は、本発明のポンプで 0. 1 β mの直径のコロイド粒子を用レ、、多孔質 薄膜 2の微細孔の径を変え、他の条件は同じとした場合の、流量特性を示したもので ある。印加電圧は 5Vである。実験した微細孔の径は、 2 /i m、 5 /i m、 12 /i m、及び 40 μ mの 4種類である。径が 2 μ mと 5 μ mではほぼ同じポンプ効果が得られた。しか し、径が 12 μ ΐηでは、流量が若干低下し、径が 40 /i mではポンプ効果が生じないこ とが確かめられた。関連して、孔径が極端に大きくなると膜(孔)が無い場合になるが この場合はポンプ効果が生じないことを我々は実験的に確かめている。逆に、孔径 が極端に細くなつてもポンプ効果が生じない。これらのことから、微細孔の径は、コロ イド粒子の径に対して適度の大きさが必要なものの、あまり大きすぎても小さすぎても 良くないことがわかる。 [0055] Next, FIG. 15, when the colloidal particles of a diameter of 0. 1 beta m in pump of the present invention changes the size of the use les ,, porous thin film 2 of the micropores, and the other conditions are the same It shows the flow characteristics of the above. The applied voltage is 5V. The experimental pore diameters were 4 types: 2 / im, 5 / im, 12 / im, and 40 μm. At the diameters of 2 μm and 5 μm, almost the same pump effect was obtained. However, it was confirmed that when the diameter was 12 μ 流量 η, the flow rate decreased slightly, and when the diameter was 40 / im, the pump effect did not occur. Relatedly, if the pore size becomes extremely large, there will be no membrane (hole), but in this case we have experimentally confirmed that no pumping effect occurs. Conversely, even if the hole diameter is extremely small, no pumping effect occurs. From these facts, it is understood that the diameter of the micropores needs to be moderately large with respect to the diameter of the colloid particles, but it may not be too large or small.
[0056] 我々は、実験により次の点を確認した。一例として、図 16において、コロイド粒子の 直径 R=0. 09 x m、多孔質薄膜 2の高さ H= 13mm、孔数 = 55600個としたとき、 膜厚 D = 10 μ m、多孔質薄膜 2の微細孔の径 E = 5 μ mが望ましい。  [0056] We have confirmed the following points through experiments. As an example, in FIG. 16, when the diameter of the colloid particles is R = 0.09 xm, the height of the porous thin film 2 is H = 13 mm, and the number of holes is 55,600, the film thickness D = 10 μm, the porous thin film 2 It is desirable that the micropore diameter of E is 5 μm.
[0057] また、実験を繰り返した結果、膜厚 Dは、流量に反比例の関係があること、及び、 E = (10— 200) Rの範囲が有効であり、膜厚 Dは、 D= (1Z5 2) Eの範囲が有効で あると考えられる。実用的には、多孔質薄膜の厚さは 5 x m— 200 x mの範囲とする のが望ましい。 Further, as a result of repeating the experiment, it is found that the film thickness D is inversely proportional to the flow rate, and that the range of E = (10−200) R is effective. 1Z5 2) E range is considered to be effective. Practically, the thickness of the porous thin film should be in the range of 5 xm-200 xm It is desirable.
[0058] また、一対の電極と多孔質薄膜 2との間隙も、特性に大きく影響する。間隙が狭す ぎると、一対の電極間の電気抵抗が小さくなり、過大な電流が流れてしまう。逆に、間 隙が広すぎると、多孔質薄膜 2の前後の溶液に対して充分な強度の電界を生成でき ないため、 目標の流量を確保することが出来なレ、。このようなことから、一対の電極と 多孔質薄膜 2との間隙は、 1mmないし lcmの範囲が望ましい。  [0058] The gap between the pair of electrodes and the porous thin film 2 also has a significant effect on the characteristics. If the gap is too narrow, the electric resistance between the pair of electrodes will be small, and an excessive current will flow. Conversely, if the gap is too wide, an electric field of sufficient strength cannot be generated for the solution before and after the porous thin film 2, so that the target flow rate cannot be secured. For this reason, the gap between the pair of electrodes and the porous thin film 2 is preferably in the range of 1 mm to 1 cm.
[0059] なお、これら膜厚 D、微細孔の径、電極間隔等の数値範囲は、懸濁液に微少粉末 を混合した溶液や、電解質水溶液の場合にも、同様に効果がある。  [0059] These numerical ranges such as the film thickness D, the diameter of the fine pores, the electrode spacing, and the like are similarly effective for a solution obtained by mixing a fine powder with a suspension or an aqueous electrolyte solution.
[0060] 図 17Aないし図 17Cに、多孔質薄膜 2に開いた微細孔(以下単に孔)をコロイド粒 子が通過する場合を簡単化して表わす。各図中の水平の直線部分は多孔質薄膜中 に開いた孔の断面を表し、液体との境界面で負に帯電してレ、ることを一で表わしてレヽ る。この境界面には図 13で示したプラスイオンを吸着したコロイド粒子が吸着してい る。このような状態で膜の左右にマイナス.プラスの電極を置く。図 17Aに示すように、 コロイド粒子との相対関係で孔径が小さすぎる場合、コロイド粒子は負の電極に向か おうとするが孔を通過することができずポンプ効果は生じない。  FIG. 17A to FIG. 17C show simplified cases where the colloidal particles pass through micropores (hereinafter simply referred to as “pores”) opened in the porous thin film 2. The horizontal straight line portion in each figure represents the cross section of the hole opened in the porous thin film, and indicates that the surface is negatively charged at the boundary surface with the liquid by one. At this interface, the colloid particles that have adsorbed the positive ions shown in Fig. 13 are adsorbed. In this state, minus and plus electrodes are placed on the left and right sides of the membrane. As shown in FIG. 17A, if the pore size is too small in relation to the colloid particles, the colloid particles try to go to the negative electrode but cannot pass through the pore, and no pump effect occurs.
[0061] 図 17Bに示すように、孔径が適切な場合、コロイド粒子は孔を通過して負電極側に 周りの液体を伴って移動する。この際、膜 ·孔と液体の境界面に既に吸着しているコ ロイド粒子は孔を通過したコロイド粒子の逆流を阻止する作用(ブロック作用)をする。 従ってポンプ効果が生じる。  As shown in FIG. 17B, when the pore size is appropriate, the colloid particles move through the pore to the negative electrode side with the surrounding liquid. At this time, the colloid particles that have already been adsorbed at the interface between the membrane / pore and the liquid act to block the backflow of the colloid particles passing through the pore (blocking action). Therefore, a pump effect occurs.
[0062] 図 17Cに示すように、孔径が大きすぎる場合、孔の中心付近のコロイド粒子は負電 極方向に移動するけれども孔が大きいため境界面にあるコロイド粒子によるブロック 作用は無効となり孔の中心付近と境界面の間でコロイド粒子の逆流が生じ、結果的 にポンプ効果は生じない。  [0062] As shown in Fig. 17C, when the pore diameter is too large, the colloid particles near the center of the pore move in the negative electrode direction, but the pores are large, so that the blocking action by the colloid particles at the boundary becomes invalid and the center of the pore becomes invalid. Backflow of the colloid particles occurs between the vicinity and the interface, and as a result, no pumping effect occurs.
[0063] 以上のポンプ効果発生の原因を基にすれば、直径の大きなコロイド粒子を用いれ ば大きな孔径の膜までポンプ効果が生じ、この際生じる流量も大きなものとなる。また 吸着の度合いが強い粒子と膜の組合せを選ぶことによりポンプ効果の改善が可能で ある。  Based on the cause of the occurrence of the pump effect described above, the use of colloidal particles having a large diameter produces a pump effect up to a membrane having a large pore size, and the flow rate generated at this time is also large. In addition, the pump effect can be improved by selecting a combination of a particle and a membrane with a high degree of adsorption.
[0064] 次に、粒子を入れたコロイド溶液に関し、条件を種々変えて汎用性のあることを確 認した。以下その結果を示す。 Next, regarding the colloid solution containing the particles, it was confirmed that the versatility was obtained by changing various conditions. I accepted. The results are shown below.
[0065] 図 18は、駆動液としてポリスチレン粒子を用いたコロイド溶液を用レ、、電極の組合 わせを変えた場合の流量特性を示したものである。ステンレス(陽極)一ステンレス(陰 極)の場合、銀 (陽極) -ステンレス(陰極)、銀 (陽極)-亜鉛 (陰極)の場合について 実験を行ない、流量特性は、ほとんど同じであることが分った。  FIG. 18 shows a flow rate characteristic when a colloid solution using polystyrene particles as a driving liquid is used and the combination of electrodes is changed. In the case of stainless steel (anode) -stainless steel (negative electrode), experiments were conducted on silver (anode) -stainless steel (cathode) and silver (anode) -zinc (cathode), and it was found that the flow characteristics were almost the same. Was.
[0066] 図 19は、駆動液としてポリエチレン粒子を用いたコロイド粒子溶液を用レ、、ポロェチ レン粒子の充填率を 0.1%— 0.0001%の範囲で変えた場合の結果である。 0.0001% では、若干流量が減少するものの、それ以上の充填率では、ほぼ同じ流量が得られ ている。  FIG. 19 shows the results when a colloidal particle solution using polyethylene particles as the driving liquid was used, and the packing ratio of the porethylene particles was changed in the range of 0.1% to 0.0001%. At 0.0001%, the flow rate decreases slightly, but at higher filling rates, almost the same flow rate is obtained.
[0067] 図 20は、粒子をシリカ粒子に変えて、図 19と同様の実験を行った場合の結果であ る。図 19と同様に、充填率が 0.0001%では、若干流量は減少するものの、それ以上 の充填率では、ほぼ同じ流量特性が得られている。  FIG. 20 shows the results when the same experiment as in FIG. 19 was performed by changing the particles to silica particles. As in Fig. 19, when the filling rate is 0.0001%, the flow rate slightly decreases, but at higher filling rates, almost the same flow rate characteristics are obtained.
[0068] ナトリウムやカリウム等の電解質溶液の場合も、また前記コロイド溶液の場合も、多 孔質の孔径は、 1 μ m— 100 μ mの範囲がよぐこれに対し粒子の径は、 0.01 μ m— 0.5 /i mの範囲のものを用いるのが好適であると考えられる。  [0068] In the case of an electrolyte solution such as sodium or potassium, and in the case of the above-mentioned colloid solution, the pore size of the porous material is in the range of 1 μm to 100 μm, whereas the particle size is 0.01 μm. It is considered to be preferable to use those having a range of μm-0.5 / im.
[0069] 図 21は、ポンプの第二のチャネル 4部の他の実施例の構成図で、 1本のパイプ(ガ ラス管など)の中間部に中間媒体 21を入れ、吐出液 23を図 21では左から右へ押し 出し流すものである。この細い一本のパイプ 26ではヘッド差による影響は考えなくて よい。このように、電圧印加による流れの発生を動力源とすれば、さまざまな型のボン プが実現できる。  FIG. 21 is a block diagram of another embodiment of the second channel 4 of the pump, in which the intermediate medium 21 is placed in the middle of one pipe (such as a glass tube), and the discharge liquid 23 is drawn. In 21, it is pushed out from left to right. With this thin single pipe 26, it is not necessary to consider the influence of the head difference. As described above, various types of pumps can be realized by using the generation of flow by voltage application as a power source.
[0070] 図 22、図 23は、本発明のポンプの他の実施例の構成図である。この例では、図 2 に示した微少流量発生装置において、直流電圧を印加する陽極、陰極を切替えて、 流体の往復を可能としたものである。この場合、駆動部分に用いる流体をコロイド溶 液にすることで、流体の往復を可能にしている。図 22では、矢印方向つまり陽極から 陰極側にコロイドの流れが生じ、中間媒体 21を右側へ押し、吐出液 23をパイプ 28か ら吐出する。このとき供給タンク 33方向には弁 34によって吐出液 23が流れないよう になる。一方、図 23では全く逆の方向に流れが生じ、中間媒体 21を引き、供給タン ク 33の吐出液 23を連結パイプ 31内に供給する。この時、弁 35によって吐出側の吐 出液 23をパイプ 28から吸い込まないようにする。これによつて、吸入 '吐出ができ、長 期の連続使用が可能となる。 FIG. 22 and FIG. 23 are configuration diagrams of another embodiment of the pump of the present invention. In this example, in the micro flow generator shown in FIG. 2, the anode and the cathode to which a DC voltage is applied are switched to enable the fluid to reciprocate. In this case, the fluid used for the driving part is a colloidal solution, thereby enabling the fluid to reciprocate. In FIG. 22, the flow of the colloid occurs in the direction of the arrow, that is, from the anode to the cathode, pushing the intermediate medium 21 to the right and discharging the discharge liquid 23 from the pipe 28. At this time, the discharge liquid 23 is prevented from flowing in the direction of the supply tank 33 by the valve 34. On the other hand, in FIG. 23, a flow is generated in the completely opposite direction, pulling the intermediate medium 21 and supplying the discharge liquid 23 of the supply tank 33 into the connecting pipe 31. At this time, the discharge on the discharge side is Do not draw effluent 23 from pipe 28. As a result, inhalation and discharge can be performed, and long-term continuous use is possible.
[0071] 次に、図 1A、図 IBや図 2に示した本発明の微少流量ポンプの応用例について説 明する。 Next, application examples of the micro flow pump of the present invention shown in FIGS. 1A, IB, and 2 will be described.
まず、図 24は、本発明を応用したポンプシステムの一実施例の平面図であり、図 2 5はその A— A断面図である。  First, FIG. 24 is a plan view of an embodiment of a pump system to which the present invention is applied, and FIG. 25 is a sectional view taken along line AA of FIG.
[0072] ポンプシステム 200は、台 201の上にポンプ 100が載せてある。このポンプ 100は、 平板状の構成となっている。これは、机上の平面に平面状の台 201を乗せた場合、 ポンプ 100の構造は平面状に構成しておくと組み立て易レ、からである。ポンプ 100は 、上枠 101と下枠 102力 成ってレ、て、上枠 101の上部にケーシング 103が搭載され ている。このケーシング 103内に、図 1A、図 IBや図 2に示した微少流量発生装置 10 6が内蔵されている。ここで構成上重要なことは、微少流量発生装置 106内の多孔質 薄膜 2の平面と上枠 101の平面とが同一方向に配設しておくことである。このようにす ると装置の作り方が容易となり、溶液の流路の折曲り部を少なくすることができる。上 枠 101の内面には、通路 110が設けてあり連絡 109と 111に連なっている。微少流 量発生部 106の一対の電極に直流電圧が印加されると溶液は入力パイプ 104、拡 大路 107を通って、微少流量発生部 106を介して拡大路 108、連絡口 109、通路 11 0、連絡路 111を通って出口パイプ 105から、 目的とする場所に排出される。通路 11 0は上枠 101に設けてある力 下枠 102の上面に設けてもょレ、ものである。上枠 101 と上枠 102とは切り離せる構成にしてあるのは、通路 110の加工が容易なためである 。勿論、上枠 101と下枠 102とは一体的に作ってもよいものである。  [0072] In the pump system 200, the pump 100 is mounted on a table 201. The pump 100 has a flat plate configuration. This is because when the flat base 201 is placed on a flat surface on a desk, the structure of the pump 100 is easy to assemble if the pump 100 is configured in a flat shape. The pump 100 has an upper frame 101 and a lower frame 102, and a casing 103 is mounted on the upper frame 101. Inside the casing 103, the minute flow rate generator 106 shown in FIGS. 1A, IB and 2 is incorporated. Here, what is important in the configuration is that the plane of the porous thin film 2 in the minute flow rate generator 106 and the plane of the upper frame 101 are arranged in the same direction. This makes it easier to fabricate the device, and reduces the number of bent portions in the solution flow path. A passage 110 is provided on the inner surface of the upper frame 101, and communicates with the contacts 109 and 111. When a DC voltage is applied to the pair of electrodes of the micro flow generation unit 106, the solution passes through the input pipe 104 and the expansion path 107, passes through the micro flow generation unit 106, the expansion path 108, the communication port 109, and the passage 110. The air is discharged from the outlet pipe 105 through the connecting passage 111 to a target place. The passage 110 may be provided on the upper surface of the force lower frame 102 provided on the upper frame 101. The upper frame 101 and the upper frame 102 are separated from each other because the passage 110 is easily processed. Of course, the upper frame 101 and the lower frame 102 may be integrally formed.
[0073] このように構成されたポンプ 100は、平板状の台 201に搭載されている力 この台 2 01には電池 117、電圧調整器(可変抵抗) 116、オンオフスィッチ 115及び電池収納 部の蓋 118が配置されている。電圧調整器 116は、コントローラ(図示略)に接続され ている。コントローラ内では、前に述べたような、予め設定された条件のデータと式 (4 )、式(5)に示した関係により、必要流量に対する印加電圧値を算出し、この電圧値 になるように電圧調整器を調整して所定の流量を確保するように、制御がなされる。 なお、利用者が、図 11の特性を参照して、電圧調整器 116を直接操作するようにし ても良い。 The pump 100 configured as described above has a force mounted on a flat base 201. The base 201 has a battery 117, a voltage regulator (variable resistor) 116, an on / off switch 115, and a battery storage unit. A lid 118 is located. The voltage regulator 116 is connected to a controller (not shown). In the controller, the applied voltage value for the required flow rate is calculated based on the data of the preset conditions as described above and the relationships shown in Equations (4) and (5), and the voltage value is set to this voltage value. Is controlled so as to secure a predetermined flow rate by adjusting the voltage regulator. The user operates the voltage regulator 116 directly with reference to the characteristics shown in FIG. May be.
[0074] この微少流量発生装置 106は、電池などの低電圧電源によって溶液を輸送できる という特徴を有しているので、乾電池で駆動することができ、別置の大型な電源を必 要としなレ、。このため台 201き Wこ電池 117、抵抗 116、スィッチ 115を全て内蔵し、持 ち運びを容易にした構成とすることが可能である。電池 117から発生する電圧は、リ ード線 112、 113、 114を用いて微少流量発生部 106の電極(陽極、陰極)に印加す ることが可能で、この電圧はリード線 114部に介在させた抵抗 116により調整でき、ま たスィッチ 115によって電源から切り離すことができる。  [0074] The micro flow generator 106 has a feature that the solution can be transported by a low-voltage power supply such as a battery, so that it can be driven by a dry battery and does not require a separate large power supply. Les ,. For this reason, it is possible to adopt a configuration in which the stand 201 has a W battery 117, a resistor 116, and a switch 115 which are all built-in and which are easy to carry. The voltage generated from the battery 117 can be applied to the electrodes (anode and cathode) of the micro flow generator 106 using the lead wires 112, 113, and 114, and this voltage is interposed between the lead wires 114. It can be adjusted by the resistor 116 and the power can be disconnected from the power supply by the switch 115.
[0075] 図 26は、本発明のポンプシステムの、他の実施例の構成図である。この例は、駆動 液としての溶液 20と吐出液 23との接触結合の一方法を示したものである。ポンプ 10 0の出口パイプ 105の出口部にタンク 202が設けてあり、この内部に仕切壁 220が設 けてある。仕切壁 202を境にして左側の空間に出口パイプ 105の出口端が接続され ていて、仕切壁 220の右側の空間にパイプ 213、 ノくルブ 211、パイプ 212を介して、 ベロー 214を具備したタンク 203が接続してある。このタンク 203内に吐出液 23が入 つてレヽて、ベロー 214を甲すことにより、この吐出夜 23はノヽ。ィプ 212、 ノくノレブ 211、パ ィプ 213を介してタンク 202内に供給され、その後バルブ 211を閉じることによって、 その供給を停止できる。また、このタンク 202の左側にはパイプ 207が接続されてい て、バノレブ 208、パイプ 206を介して、タンク 202内の吐出液 23は、別置のタンク 20 5内に吐出される構成となっている。  FIG. 26 is a configuration diagram of another embodiment of the pump system of the present invention. This example shows a method of contact-coupling the solution 20 as the driving liquid and the discharge liquid 23. A tank 202 is provided at the outlet of the outlet pipe 105 of the pump 100, and a partition wall 220 is provided inside the tank 202. The outlet end of the outlet pipe 105 is connected to the space on the left side of the partition wall 202, and the bellows 214 are provided in the space on the right side of the partition wall 220 via the pipe 213, the knob 211, and the pipe 212. Tank 203 is connected. The discharged liquid 23 enters the tank 203 and is laid. The gas is supplied to the tank 202 through the pipe 212, the knob 211, and the pipe 213, and then the supply can be stopped by closing the valve 211. Further, a pipe 207 is connected to the left side of the tank 202, and the discharged liquid 23 in the tank 202 is discharged into a separate tank 205 via the vanoleb 208 and the pipe 206. I have.
[0076] ポンプ 100部のケーシング 103内に設けられた微少流量発生部 106の一対の電極 に電圧が印加されると、タンク 204内の駆動液 20はパイプ 217を介して吸い上げら れ上枠 101内の通路 110を通って、さらにパイプ 105を通ってタンク 202内の左側の 小室に入る。この溶液は、仕切壁 220部の***を通って右側の小室に入り、その上 部に設けてある吐出液 23を押し上げる。これによつて吐出液 23はパイプ 206を通つ てタンク 205内に吐出される。吐出液の比重力 S、溶液の比重より小さい場合は、図示 のようにタンク 202の右側の小室にそれらを接触させればよレ、。溶液 20の比重が吐 出液 23のそれより小さレ、場合はタンク 202の左側の小室にて、それらを接触させるの がよい。溶液 20と吐出液 23とが混ざり合う溶液の場合には、それらの界面に別の中 間媒体 (たとえばシリコン油) 21を介在させればょレ、。 When a voltage is applied to the pair of electrodes of the minute flow rate generating section 106 provided in the casing 103 of the pump 100, the driving liquid 20 in the tank 204 is sucked up via the pipe 217 and the upper frame 101 Through the passage 110 in the inside and further through the pipe 105 into the left compartment in the tank 202. This solution enters the small chamber on the right through the small hole in the partition wall 220, and pushes up the discharge liquid 23 provided on the upper part. As a result, the discharged liquid 23 is discharged into the tank 205 through the pipe 206. If the specific gravity S of the discharged liquid is smaller than the specific gravity of the solution, they may be brought into contact with the small chamber on the right side of the tank 202 as shown in the figure. In the case where the specific gravity of the solution 20 is smaller than that of the discharged solution 23, in the case where they are brought into contact with each other in the small chamber on the left side of the tank 202. In the case of a solution in which solution 20 and discharge liquid 23 are mixed, another Intermediate (for example, silicone oil) 21 is interposed.
[0077] 図 27は、本発明のポンプ 100の、他の実施例の構成図である。これは図 25の実施 例の通路 110に中間媒体 21を入れ、それを境とし、微少流量発生部 106側に駆動 液 20、その反対側に溶液 23を入れるものである力 この溶液 23を入れる方法として 、上枠 101の上方部にバルブ 120の付いた太いパイプ 119を設け、このパイプ 119 内に溶液 23を導入後、試験時にはバルブ 120を閉じるようにするものである。  FIG. 27 is a configuration diagram of another embodiment of the pump 100 of the present invention. This means that the intermediate medium 21 is put in the passage 110 in the embodiment of FIG. 25, and the boundary between the intermediate medium 21 and the drive fluid 20 is supplied to the minute flow rate generating section 106 and the solution 23 is supplied to the opposite side. As a method, a thick pipe 119 with a valve 120 is provided above the upper frame 101, and after introducing the solution 23 into the pipe 119, the valve 120 is closed during the test.
[0078] 図 28は、本発明のポンプ 100の、他の実施例の構成図である。これはケーシング 1 03に連なる入力パイプ 104の上方部にタンク 204を設け、このタンク 204内に駆動液 20を充填し、重力によって駆動液をパイプ 104、微少流量発生部 106を介して通路 110へ導入する。その後、中間媒体 21を介して出口パイプ 105から目的とする場所 へ吐出液 23を排出する。この流量は微少流量発生部 106の上方部に設けたタンク 2 04の高さによって変る力 この時の流量を調節する方法として、微少流量発生部 10 6の電極に印加する電圧のかけ方を調節する。流量をさらに増加する時には正方向 の電圧をかけて、その量を大きくすればよい。一方、流量を少なくしたい時には、逆 方向の電圧をかけて流量を止める方向に作用させればよい。逆電圧の大きさを大き くすれば、安全に流れを止めることも可能である。  FIG. 28 is a configuration diagram of another embodiment of the pump 100 of the present invention. This is provided with a tank 204 above the input pipe 104 connected to the casing 103, filling the tank 204 with the driving liquid 20, and supplying the driving liquid by gravity to the pipe 110 via the pipe 104 and the minute flow rate generating section 106 to the passage 110. Introduce. Thereafter, the discharge liquid 23 is discharged from the outlet pipe 105 to a target place via the intermediate medium 21. This flow rate is a force that varies depending on the height of the tank 204 provided above the minute flow rate generation unit 106. As a method of adjusting the flow rate at this time, the way of applying the voltage applied to the electrode of the minute flow rate generation unit 106 is adjusted. I do. To further increase the flow rate, a positive voltage may be applied to increase the flow rate. On the other hand, when it is desired to reduce the flow rate, it is only necessary to apply a voltage in the opposite direction to cause the flow rate to stop. By increasing the magnitude of the reverse voltage, it is possible to safely stop the flow.
[0079] 図 29は、本発明のポンプの、他の実施例の構成図である。これは通路 110の途中 に閉塞部 101-aを設け、これを境としてパイプ 122と 123を下枠 102に設け、それら の間に長尺パイプ 121を設け閉ループを構成したものである。この閉ループとなる長 尺パイプ 121の一部にパイプ 124を分岐接続し、バルブ 125を介して吐出液 23を内 部に充填する。また、パイプ 122の途中には、中間媒体 21を入れておく。このように すると長時間に渡って流れを止めることなく所望の流量を得ることができる。この実施 例において、長尺パイプ 121に代えて、図 26の仕切壁 220を有するタンク 202を設 けても同様の効果を得ることができる。  FIG. 29 is a configuration diagram of another embodiment of the pump of the present invention. In this, a closed portion 101-a is provided in the middle of a passage 110, pipes 122 and 123 are provided in a lower frame 102 at a boundary, and a long pipe 121 is provided therebetween to form a closed loop. A pipe 124 is branched and connected to a part of the long pipe 121 serving as a closed loop, and the discharge liquid 23 is filled inside through a valve 125. The intermediate medium 21 is placed in the middle of the pipe 122. In this way, a desired flow rate can be obtained without stopping the flow for a long time. In this embodiment, the same effect can be obtained by providing a tank 202 having a partition wall 220 shown in FIG. 26 instead of the long pipe 121.
[0080] 図 30は、本発明のポンプの他の実施例の構成図である。図 29と同様に通路 110 の途中に閉塞部 110を設け、それを境としてパイプ 122と 123を下枠 102に設けて U 字状に連結し、その内部に中間媒体 21を充填したものである。ノ イブ 122の一部に はバルブ 126を設けて、それを介して溶液(駆動液 20)を入れ、一方パイプ 123の一 部にはバルブ 127を設けて、それを介して吐出液 23を入れる。この図では、パイプ 1 22、 123の上端が上枠 101の上部に付いていて、それらの上端部にバルブ 126、 1 27が付いている構成となっている力 下枠 102に付いている U字状のパイプ 122、 1 23の一部に分岐パイプを設けてバルブ 126、 127を付けてもょレ、ものである。 FIG. 30 is a configuration diagram of another embodiment of the pump of the present invention. Similar to FIG. 29, a closed portion 110 is provided in the middle of the passage 110, and pipes 122 and 123 are provided in the lower frame 102 at the boundary and connected in a U-shape, and the inside is filled with the intermediate medium 21. . A part of the nozzle 122 is provided with a valve 126 through which the solution (the driving liquid 20) is charged, while the pipe 123 is connected The part is provided with a valve 127 through which the discharge liquid 23 is introduced. In this figure, the upper ends of the pipes 122 and 123 are attached to the upper part of the upper frame 101, and the upper ends of the pipes 122 and 123 are equipped with valves 126 and 127. Branch pipes may be provided in part of the V-shaped pipes 122 and 123 and valves 126 and 127 may be attached.
[0081] 以上述べた本発明のポンプやポンプシステムは、生体物質や薬品、食品などの分 析に用いるのに好適である。  [0081] The pump and the pump system of the present invention described above are suitable for use in analyzing biological substances, drugs, foods, and the like.
[0082] 図 31に、本発明のポンプシステムを血液などの分析システムに組み込んだ例を示 す。図 31に示す分析システムは、本発明のポンプシステムの外に、コンピュータを有 する分析装置 300とその表示装置 302及び顕微鏡 304を備えてレ、る。微少流量ボン プ 100の吐出側に設けたマイクロチャネルと可視化機能部 310とを組み合わせ、マイ クロチャネル内に分析の対象物としての血液や DNA、細胞等を含む溶液を流し、対 象物を蛍光等の操作によって可視化する。そして、顕微鏡 304によって拡大して観 察する。この場合、ポンプ流量に変動や脈動があると拡大された対象物の像がブレ てしまい精確な観察ができなレ、。本発明のポンプを用いると、ポンプ流量に変動や脈 動がないため拡大された対象物の像がブレず、高精確な観察ができる。また、従来 のポンプでは流れの正逆を簡単に変えられることは出来なかったが、本ポンプでは 電極の正負を変えることにより簡単に流れの逆転が可能である。  FIG. 31 shows an example in which the pump system of the present invention is incorporated into an analysis system for blood or the like. The analysis system shown in FIG. 31 includes an analysis device 300 having a computer, a display device 302 thereof, and a microscope 304 in addition to the pump system of the present invention. Combining the micro channel provided on the discharge side of the micro flow pump 100 with the visualization function section 310, a solution containing blood, DNA, cells, etc. as the analysis target flows into the micro channel, and the target is fluorescent. Visualize by such operations. Then, it is magnified by the microscope 304 and observed. In this case, if the pump flow rate fluctuates or pulsates, the magnified image of the object will be blurred, making accurate observation impossible. When the pump of the present invention is used, since there is no fluctuation or pulsation in the pump flow rate, the enlarged image of the object is not blurred, and high-precision observation can be performed. In addition, conventional pumps could not easily change the flow direction, but this pump can reverse the flow easily by changing the polarity of the electrodes.
[0083] 以上述べたような変動や脈動がないことや流れの逆転が可能なことに加えて、さら に本ポンプは以下のような特徴を有している。  [0083] In addition to being free from fluctuations and pulsations as described above and being capable of reversing the flow, the present pump further has the following features.
(1)電圧を変化させることにより流量制御が容易に自由に行える。  (1) The flow rate can be easily and freely controlled by changing the voltage.
(2)低電圧で作動するため安全性が高い。  (2) High safety because it operates at low voltage.
(3)安価である。  (3) It is cheap.
(4)小型である。  (4) It is small.
(5)目詰りがなく安定した流量が確保できる。  (5) A stable flow rate without clogging can be secured.
[0084] 以上のことから、本発明のポンプは、バイオ関係の実験、研究の範囲を格段に拡げ ること力 Sできる。さらに、各種医療機器に組み込んで用いることができる。  [0084] From the above, the pump of the present invention can greatly expand the scope of bio-related experiments and research. Furthermore, it can be used by incorporating it into various medical devices.
図面の簡単な説明  Brief Description of Drawings
[0085] [図 1A]本発明の微少流量発生装置の原理を示す概略図である。 [図 IB]本発明の微少流量発生装置の要部を示す斜視図である。 FIG. 1A is a schematic diagram showing the principle of the micro flow rate generating device of the present invention. FIG. IB is a perspective view showing a main part of the minute flow rate generating device of the present invention.
園 2]本発明の微少流量発生装置の、一実施例の構成図である。 Garden 2] is a configuration diagram of an embodiment of the minute flow rate generating device of the present invention.
園 3]本発明の一実施例において使用される、溶液、多孔質薄膜などの組み合わせ の例を示す図である。 Garden 3] is a diagram showing an example of a combination of a solution, a porous thin film and the like used in an embodiment of the present invention.
園 4]本発明の一実施例において使用される、溶液、多孔質薄膜などの他の組み合 わせの例を示す図である。 Garden 4] is a diagram showing an example of another combination such as a solution and a porous thin film used in an embodiment of the present invention.
園 5]本発明の流量特性の一例を示す図である。 FIG. 5 is a diagram showing an example of a flow rate characteristic of the present invention.
[図 6]本発明の流量特性の他の例を示す図である。  FIG. 6 is a view showing another example of the flow characteristics of the present invention.
園 7]本発明の流量特性の他の例を示す図である。 Garden 7] is a diagram showing another example of the flow rate characteristics of the present invention.
[図 8]本発明の流量特性の他の例を示す図である。  FIG. 8 is a view showing another example of the flow characteristics of the present invention.
[図 9]本発明のポンプを用いて得られたポンプ出力 PQを、圧力 Pに対して示す図で ある。  FIG. 9 is a view showing a pump output PQ obtained by using the pump of the present invention with respect to a pressure P.
園 10]式(2)と実験値との比較を示す図である。 Garden 10] is a diagram showing a comparison between equation (2) and experimental values.
園 11]本発明のポンプ用いて、印加電圧に対して吐出量を測定した結果の一例を示 したものである。 Garden 11] An example of the result of measuring the discharge amount with respect to the applied voltage using the pump of the present invention.
[図 12]本発明のポンプで、電解質水溶液 (塩化ナトリウム、塩化カリウム)を用いた場 合の電気浸透流の概略図である。  FIG. 12 is a schematic diagram of an electroosmotic flow when an aqueous electrolyte solution (sodium chloride, potassium chloride) is used in the pump of the present invention.
園 13]プラスイオンを吸着したコロイド粒子を示したものである。 Garden 13] This shows the colloid particles that adsorb positive ions.
[図 14]本発明のポンプで、コロイド溶液を用いた場合の流れの状態を示したものであ る。  FIG. 14 shows a flow state when a colloidal solution is used in the pump of the present invention.
[図 15]本発明のポンプで 0. 1 μ ΐηの直径のコロイド粒子を用い、多孔質薄膜の微細 孔の径を変え、他の条件は同じとした場合の、流量特性を示したものである。  FIG. 15 shows flow rate characteristics when the pump of the present invention uses colloidal particles having a diameter of 0.1 μΐη, and changes the diameter of the fine pores of the porous thin film, while keeping the other conditions the same. is there.
園 16]コロイド粒子の直径 Rと、微細孔の径 E及び膜厚 Dの関係を説明する図である 園 17A]多孔質薄膜に開いた微細孔をコロイド粒子が通過する状況の説明図である 園 17B]多孔質薄膜に開いた微細孔をコロイド粒子が通過する状況の説明図である 園 17C]多孔質薄膜に開いた微細孔をコロイド粒子が通過する状況の説明図である Garden 16] is a diagram illustrating the relationship between the diameter R of the colloid particles, the diameter E of the micropores, and the film thickness D. Garden 17A] is a diagram illustrating the situation where the colloid particles pass through the micropores opened in the porous thin film. 17B] is an illustration of the situation where colloid particles pass through micropores opened in a porous thin film 17C] is an illustration of the situation where colloid particles pass through micropores opened in a porous thin film
[図 18]本発明のポンプの流量特性の他の例を示す図である。 FIG. 18 is a view showing another example of the flow characteristics of the pump of the present invention.
[図 19]本発明のポンプの流量特性の他の例を示す図である。  FIG. 19 is a view showing another example of the flow characteristics of the pump of the present invention.
[図 20]本発明のポンプの流量特性の他の例を示す図である。  FIG. 20 is a view showing another example of the flow characteristics of the pump of the present invention.
[図 21]本発明のポンプの変形例を示す図である。  FIG. 21 is a view showing a modification of the pump of the present invention.
[図 22]本発明のポンプの他の実施例の構成図を示す図である。  FIG. 22 is a view showing a configuration diagram of another embodiment of the pump of the present invention.
[図 23]図 22に示したポンプの一動作を示した図である。  FIG. 23 is a view showing one operation of the pump shown in FIG. 22.
[図 24]本発明のポンプシステムの一実施例の平面図を示す図である。  FIG. 24 is a plan view showing one embodiment of the pump system of the present invention.
[図 25]図 24の A— A断面図を示す図である。  FIG. 25 is a diagram showing a cross-sectional view along AA in FIG. 24.
[図 26]本発明のポンプシステムの他の実施例の構成図を示す図である。  FIG. 26 is a view showing a configuration diagram of another embodiment of the pump system of the present invention.
[図 27]本発明のポンプシステム内の、ポンプ部の他の実施例の構成図を示す図であ る。  FIG. 27 is a diagram showing a configuration diagram of another embodiment of the pump section in the pump system of the present invention.
[図 28]本発明のポンプシステム内の、ポンプ部の他の実施例の構成図を示す図であ る。  FIG. 28 is a diagram showing a configuration diagram of another embodiment of the pump section in the pump system of the present invention.
[図 29]本発明のポンプシステム内の、ポンプ部の他の実施例の構成図を示す図であ る。  FIG. 29 is a diagram showing a configuration diagram of another embodiment of the pump section in the pump system of the present invention.
[図 30]本発明のポンプシステム内の、ポンプ部の他の実施例の構成図を示す図であ る。  FIG. 30 is a diagram showing a configuration diagram of another embodiment of the pump section in the pump system of the present invention.
[図 31]本発明のポンプシステムの応用例を示す図である。  FIG. 31 is a diagram showing an application example of the pump system of the present invention.
符号の説明 Explanation of symbols
1 第一のチャネル 1 Primary channel
2 多孔質膜 2 Porous membrane
3 支持体 3 Support
4 電極 4 electrodes
5 電極 5 electrodes
6 直流電源 6 DC power supply
7 スィッチ 第二のチャネルの流入側チャネル部 第二のチャネルの流出側チャネル部 第二のチャネル 7 Switch Inflow channel portion of second channel Outflow channel portion of second channel Second channel
溶液 (駆動液)  Solution (drive fluid)
中間媒体  Intermediate medium
細パイプ  Thin pipe
吐出液  Discharge liquid
第一のチャネルの流出側パイプ 第一のチャネルの流入側パイプ ポンプ Outlet pipe of the first channel Inlet pipe of the first channel Pump
- -a 閉塞部 --a Closed part
下枠  Lower frame
ケーシング  casing
入口パイプ  Inlet pipe
出口パイプ  Outlet pipe
微少流量発生部  Micro flow generator
拡大路  Expansion road
拡大路  Expansion road
連絡口  Contact
リード線  Lead
スィッチ  Switch
抵抗  Resistance
電池  Battery
ポンプシステム。  Pump system.

Claims

請求の範囲 The scope of the claims
[1] 流路中に配置された多孔質薄膜と、該多孔質薄膜の両側に設置された一対の電 極と、前記流路に溶液を供給する手段と、前記一対の電極間に直流電圧を印加する 直流電源とを備えており、  [1] A porous thin film arranged in a flow channel, a pair of electrodes provided on both sides of the porous thin film, means for supplying a solution to the flow channel, and a DC voltage between the pair of electrodes. And a DC power supply for applying
前記溶液が電気分解の発生しないように処理された溶液であり、  The solution is a solution that has been treated so that electrolysis does not occur,
前記一対の電極間に直流電圧を印加することにより前記多孔質薄膜を経由した前 記溶液の流れを発生させることを特徴とする微少流量発生装置。  A minute flow rate generator, wherein a flow of the solution through the porous thin film is generated by applying a DC voltage between the pair of electrodes.
[2] 前記溶液中に酸化剤を添加したことを特徴とする請求項 1に記載の微少流量発生 装置。  [2] The minute flow rate generating device according to claim 1, wherein an oxidizing agent is added to the solution.
[3] 前記電極が可逆電極であることを特徴とする請求項 2に記載の微少流量発生装置  3. The device according to claim 2, wherein the electrode is a reversible electrode.
[4] 前記溶液が、媒体に粒径 0· 01 μ m— 0· 5 μ mの微粒子を浮遊させた液体である ことを特徴とする請求項 1に記載の微少流量発生装置。 [4] The micro flow generator according to claim 1, wherein the solution is a liquid in which fine particles having a particle size of 0.01 μm to 0.5 μm are suspended in a medium.
[5] 前記溶液が、液体中に微粒子分離させたコロイド状溶液であることを特徴とする請 求項 4に記載の微少流量発生装置。 [5] The micro flow generator according to claim 4, wherein the solution is a colloidal solution obtained by separating fine particles into a liquid.
[6] 流路中に配置された多孔質薄膜と、該多孔質薄膜の両側に設置された一対の電 極と、前記流路に溶液を供給する手段と、前記一対の電極間に直流電圧を印加する 直流電源とを備えており、 [6] A porous thin film disposed in a flow channel, a pair of electrodes provided on both sides of the porous thin film, means for supplying a solution to the flow channel, and a DC voltage between the pair of electrodes. And a DC power supply for applying
前記多孔質薄膜の厚さが 5 μ m 200 μ mであり、  The thickness of the porous thin film is 5 μm 200 μm,
前記多孔質薄膜と前記各電極との間隙を、 1mm 10mmとしたことを特徴とする 微少流量発生装置。  A minute flow rate generator, wherein a gap between the porous thin film and each of the electrodes is 1 mm and 10 mm.
[7] 前記溶液がコロイド状溶液であって、前記多孔質薄膜の微細孔の径を E、コロイド 粒子の直径を Rとしたとき、前記 E= ( 10 200) Rであり、膜厚を Dとしたとき、 D= (l /5— 2) Eの範囲であることを特徴とする請求項 6に記載の微少流量発生装置。  [7] When the solution is a colloidal solution and the diameter of the micropores of the porous thin film is E and the diameter of the colloidal particles is R, the above E = (10 200) R and the film thickness is D 7. The minute flow rate generating device according to claim 6, wherein D = (l / 5−2) E.
[8] 流路中に配置された多孔質薄膜と、該多孔質薄膜の両側に設置された一対の電 極と、前記流路に溶液を供給する手段と、前記一対の電極間に直流電圧を印加する 直流電源と、前記直流電源の電圧を調整する電圧調整手段とを備えており、 前記溶液が電気分解の発生しないように処理された溶液であり、 前記電圧調整手段により前記一対の電極間に直流電圧を印加することにより、前 記多孔質薄膜を経由した前記溶液の流量を調整し得るようにしたことを特徴とする微 少流量発生装置。 [8] A porous thin film disposed in a flow channel, a pair of electrodes provided on both sides of the porous thin film, means for supplying a solution to the flow channel, and a DC voltage between the pair of electrodes. DC power supply, and voltage adjusting means for adjusting the voltage of the DC power supply, wherein the solution is a solution that has been processed so that electrolysis does not occur, A minute flow rate generator, wherein the flow rate of the solution passing through the porous thin film can be adjusted by applying a DC voltage between the pair of electrodes by the voltage adjusting means.
請求項 1ないし 8のいずれかに記載の微少流量発生部の後流側に、中間媒体を介 在させ、その後流側に目的とする吐出液を充填し吐出液を送れるように構成したボン プ。  A pump configured to allow an intermediate medium to be interposed on the downstream side of the minute flow rate generating section according to any one of claims 1 to 8, and then to be filled with the target discharge liquid on the downstream side to feed the discharge liquid. .
前記電圧の印加と停止、あるいは陽極と陰極との極性を逆転させることで、 目的と する吐出液を出口パイプに連なる供給タンクから出ロバイブを介して、吐出するよう にした請求項 9に記載のポンプ。  The method according to claim 9, wherein by applying and stopping the voltage or by reversing the polarity of the anode and the cathode, the intended discharge liquid is discharged from the supply tank connected to the outlet pipe through the outlet pipe. pump.
前記ポンプの構造が、平板状の枠内に通路を設けた部材を有するものであって、 その入力側にケーシングを設けて、その内部に多孔質薄膜の水平面と平板状の枠 の水平面とを同一方向に配設し、このケーシングに溶液の入力パイプ、通路のケー シングに対して逆側に吐出液用の出口パイプを設けてなる請求項 9に記載のポンプ 前記、通路の一部に中間媒体を介在させたことを特徴とする請求項 11に記載のポ ンプ。  The structure of the pump has a member provided with a passage in a flat frame, and a casing is provided on the input side, and a horizontal plane of the porous thin film and a horizontal plane of the flat frame are provided therein. The pump according to claim 9, wherein the casing is provided with a solution input pipe and a discharge liquid outlet pipe on the opposite side to the casing of the passage. 12. The pump according to claim 11, wherein a medium is interposed.
前記、通路の一部であって、中間媒体より後流側の通路の一部に吐出液の充填口 を設けたことを特徴とする請求項 11に記載のポンプ。  12. The pump according to claim 11, wherein a discharge liquid filling port is provided in a part of the passage that is a part of the passage downstream of the intermediate medium.
前記多孔質膜の両側に設けた電極に、リード線を介して電圧を発生させる直流電 源を結合した請求項 11に記載のポンプシステム。  12. The pump system according to claim 11, wherein a DC power supply for generating a voltage via a lead wire is coupled to electrodes provided on both sides of the porous membrane.
前記電極と前記直流電源との間に電圧を調節できる制御機構を具備してなる請求 項 11に記載のポンプシステム。  The pump system according to claim 11, further comprising a control mechanism that can adjust a voltage between the electrode and the DC power supply.
微少流量発生部の入力側にヘッドタンクを設けてポンプの通路を介して重力を利 用して吐出液を出口パイプを介して排出できるようにしたものにおいて、微少流量発 生部の電極に逆電圧を印加し、その電圧を制御して流量を制御できるようにした請 求項 9に記載のポンプを備えたポンプシステム。  A head tank is provided on the input side of the micro flow generator so that the discharged liquid can be discharged through the outlet pipe using gravity through the pump passage. 10. A pump system comprising the pump according to claim 9, wherein a voltage is applied, and the voltage is controlled to control a flow rate.
前記ポンプを台の上に搭載し、該台上または該台の中に前記直流電源及び該電 源の電圧を制御できる制御機構を設けた請求項 9に記載のポンプシステム。 前記請求項 9に記載のポンプと、顕微鏡とを備えた分析装置であって、前記微少流 量を発生させるポンプの吐出側に設けられたマイクロチャネルと可視化機能部とを組 み合わせ、前記マイクロチャネル内に分析対象の溶液を流し、該対象物を可視化し 、前記顕微鏡で観察するようにしたことを特徴とする分析装置。 10. The pump system according to claim 9, wherein the pump is mounted on a table, and a control mechanism capable of controlling the DC power supply and the voltage of the power supply is provided on or in the table. 10. An analysis device comprising the pump according to claim 9 and a microscope, wherein the microchannel provided on the discharge side of the pump for generating the minute flow rate and a visualization function unit are combined, and An analysis apparatus characterized by flowing a solution to be analyzed in a channel, visualizing the object, and observing the object with the microscope.
PCT/JP2004/011559 2003-11-27 2004-08-11 Micro flow rate generator, pump and pump system WO2005052379A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/572,451 US20070201987A1 (en) 2003-11-27 2004-08-11 Micro Flow Rate Generator, Pump and Pump System
JP2005515732A JP4065916B2 (en) 2003-11-27 2004-08-11 Micro flow rate generator, pump and pump system
TW093136330A TW200523706A (en) 2003-11-27 2004-11-25 Micro flow rate generator, pump and pump system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003397086 2003-11-27
JP2003-397086 2003-11-27

Publications (1)

Publication Number Publication Date
WO2005052379A1 true WO2005052379A1 (en) 2005-06-09

Family

ID=34631531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011559 WO2005052379A1 (en) 2003-11-27 2004-08-11 Micro flow rate generator, pump and pump system

Country Status (4)

Country Link
US (1) US20070201987A1 (en)
JP (1) JP4065916B2 (en)
TW (1) TW200523706A (en)
WO (1) WO2005052379A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052377A1 (en) * 2005-11-02 2007-05-10 Niigata Tlo Corporation Micropump and micro fluid chip
JP2010273526A (en) * 2009-05-25 2010-12-02 Canon Inc Liquid drive system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7540717B2 (en) * 2005-06-03 2009-06-02 The Hong Kong University Of Science And Technology Membrane nanopumps based on porous alumina thin films, membranes therefor and a method of fabricating such membranes
KR101229481B1 (en) * 2012-05-18 2013-02-04 한국기계연구원 Apparatus for measuring impedance of cell having filter type electrode and fabrication method of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281077A (en) * 1996-04-16 1997-10-31 Hitachi Ltd Capillary electrophoretic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265945A (en) * 1998-11-10 2000-09-26 Uct Kk Chemical supplying pump, chemical supplying device, chemical supplying system, substrate cleaning device, chemical supplying method, and substrate cleaning method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09281077A (en) * 1996-04-16 1997-10-31 Hitachi Ltd Capillary electrophoretic apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUGITANI T. ET AL: "Den'atsu Fukaji no Tako Shitsumaku o Toru Ryutai no Ryudo Tokusei", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, HOKUSHIN SHIN'ETSU SHIBU DAI 39 KI SOKAI KOENKAI KOEN RONBUNSHU, 8 March 2002 (2002-03-08), pages 93 - 94, XP002995686 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052377A1 (en) * 2005-11-02 2007-05-10 Niigata Tlo Corporation Micropump and micro fluid chip
JPWO2007052377A1 (en) * 2005-11-02 2009-04-30 株式会社新潟Tlo Micropump and microfluidic chip
JP4528330B2 (en) * 2005-11-02 2010-08-18 株式会社新潟Tlo Micropump and microfluidic chip
JP2010273526A (en) * 2009-05-25 2010-12-02 Canon Inc Liquid drive system

Also Published As

Publication number Publication date
JPWO2005052379A1 (en) 2007-10-04
US20070201987A1 (en) 2007-08-30
JP4065916B2 (en) 2008-03-26
TW200523706A (en) 2005-07-16

Similar Documents

Publication Publication Date Title
US6287440B1 (en) Method for eliminating gas blocking in electrokinetic pumping systems
US9546350B2 (en) Methods and devices related to a regulated flow electroporation chamber
EP1833751B1 (en) Electrokinetic device employing a non-newtonian liquid
US20090126813A1 (en) Liquid-Transport Device and System
CN109482248B (en) Low-pressure electroosmosis pump based on nano porous film
US8057191B2 (en) Electrokinetic micropump having ion-exchange membranes
EP1432500B1 (en) Sieve electroosmotic flow pump
CN100592084C (en) Micro chemical chip
Janasek et al. Electrostatic induction of the electric field into free-flow electrophoresis devices
JP4065916B2 (en) Micro flow rate generator, pump and pump system
EP1432499A1 (en) Corbino disc electroosmotic flow pump
CN1249899C (en) Mini type electroosmosis pump
EP2401809B1 (en) Charged particle motion inducing apparatus
JP2009264786A (en) Interfacial electrokinetic device
JP2004276224A (en) Electro-osmotic pump filled with fiber
RU2546736C1 (en) CONTROL METHOD OF pH VALUE AND Eh OXIDATION-REDUCTION POTENTIAL OF PROCESS LIQUIDS OF OIL FIELDS AND DEVICE FOR ITS IMPLEMENTATION

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515732

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 10572451

Country of ref document: US

Ref document number: 2007201987

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10572451

Country of ref document: US