WO2005050766A1 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
WO2005050766A1
WO2005050766A1 PCT/JP2004/016953 JP2004016953W WO2005050766A1 WO 2005050766 A1 WO2005050766 A1 WO 2005050766A1 JP 2004016953 W JP2004016953 W JP 2004016953W WO 2005050766 A1 WO2005050766 A1 WO 2005050766A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
metal plate
polymer electrolyte
solid polymer
cell according
Prior art date
Application number
PCT/JP2004/016953
Other languages
English (en)
French (fr)
Inventor
Masaya Yano
Masakazu Sugimoto
Takuji Okeyui
Toshio Araki
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003389053A external-priority patent/JP2005150008A/ja
Priority claimed from JP2004163116A external-priority patent/JP4643178B2/ja
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US10/595,748 priority Critical patent/US7862954B2/en
Priority to EP04818885A priority patent/EP1691435A4/en
Priority to KR1020067006202A priority patent/KR101127028B1/ko
Publication of WO2005050766A1 publication Critical patent/WO2005050766A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell using a solid polymer electrolyte, and more particularly to a polymer fuel cell that can be reduced in thickness.
  • Polymer fuel cells that use solid polymer electrolytes such as polymer electrolytes have high energy conversion efficiencies, and are thin, small and lightweight, and are being actively developed for home-use cogeneration systems and automobiles. Is becoming As a conventional structure of such a fuel cell, one shown in FIG. 16 is known (for example, see Non-Patent Document 1).
  • an anode 101 and a cathode 102 are provided with a solid polymer electrolyte membrane 100 interposed therebetween.
  • a unit cell 105 is formed by being sandwiched between a pair of separators 104 via a gasket 103.
  • Each separator 104 has a gas passage groove formed therein.
  • a gas passage groove for reducing gas for example, hydrogen gas
  • a gas passage groove is formed by contact with the anode 101
  • a gas passage groove is formed by contact with the power source 102.
  • a flow path (for example, oxygen gas) is formed.
  • Each gas flows through each flow path in the unit cell 105, and is subjected to an electrode reaction (chemical reaction at the electrode) by the action of a catalyst supported inside the anode 101 or the power source 102. Generation and ionic conduction occur.
  • a large number of the unit cells 105 are stacked, and the unit cells 105 are electrically connected in series to constitute a fuel cell N.
  • the electrodes 106 can be taken out from the unit cells 105 at both ends of the stack.
  • Such a fuel cell N is attracting attention as a power source for electric vehicles and a distributed power source for home use, in particular, because of its clean and high efficiency.
  • the size and weight of the fuel cell are reduced while supplying the oxidation-reduction gas in the fuel cell so as not to be mixed with each other and satisfying these conditions that are difficult to seal. It was difficult.
  • the cell parts since the cell parts have conventionally been connected to each other with bolts and nuts, and a fixed pressure has been applied to the cell parts, it is necessary to increase the rigidity of each member in order to ensure the sealing performance. Therefore, it was difficult to reduce the thickness, size, weight, and shape freely.
  • Patent Literature 1 describes a flat liquid fuel cell comprising a unit cell and storing a liquid fuel in a cell.
  • the flat liquid fuel cell includes a stacked body of a fuel electrode, an electrolyte, and an oxidant electrode.
  • a fuel cell having a structure in which the periphery thereof is integrated with a sealing material and accommodated in a battery case is disclosed.
  • the pressure contact between the side wall of the stacked body including the electrodes and the sealing material cannot be sufficiently increased, so that, for example, the hydrogen gas fuel is pressurized to increase the fuel electrode side. If flowed, hydrogen gas leaked to the oxidant electrode side, causing problems such as a decrease in power generation efficiency and a risk of hydrogen combustion. That is, the electrode of the fuel cell generally has a porous structure. Therefore, in the above-described cell structure, the pressurized hydrogen gas passes through the inside of the fuel electrode, and is oxidized from between the side wall of the electrolyte and the sealing material. The structure is easy to leak to the drug electrode side.
  • Non-Patent Document 1 Nikkei Mechanical Separate Volume “Frontline for Fuel Cell Development” Published June 29, 2001, Published by Nikkei BP, Chapter 3, PEFC, 3.1 Principles and Features p46
  • Patent Document 1 JP-A-58-176881
  • an object of the present invention is to reliably perform sealing for each unit cell, thereby making it possible to reduce the thickness, to facilitate maintenance, and to have a small, lightweight, and flexible shape. It is to provide a fuel cell that can be designed.
  • the fuel cell of the present invention comprises a plate-like solid polymer electrolyte, a force-side electrode plate disposed on one side of the solid polymer electrolyte, and an anode-side electrode disposed on the other side.
  • An anode-side metal plate that enables the electrode plate force on both sides of the solid polymer electrolyte to extend, and the peripheral portion is opposed to the metal plate by the metal plate.
  • the metal plates on both sides are mechanically sealed while being electrically insulated while being sandwiched. In the present invention, for example, the peripheral edges of the metal plates on both sides are mechanically sealed by a bending press.
  • the periphery of the solid polymer electrolyte is extended from the electrode plates on both sides, and the periphery of the metal plate is bent by a press or the like while the periphery is sandwiched by the opposed metal plates. Because of the mechanical sealing, a sufficient pressure contact force can be obtained between the periphery of the solid polymer electrolyte and the metal plate, so that fuel gas can be prevented from leaking to the force source side. .
  • the periphery of the metal plate is sealed with a bending press in a state where it is electrically insulated, the short circuit between the two is prevented, and the sealing is reliably performed for each unit cell without increasing the thickness significantly. be able to.
  • the current generated by the electrode reaction due to the contact between the electrode plate and the metal plate can be extracted from the metal plate. Also, as compared with the conventional structure shown in FIG. 16, the rigidity of the cell member is not required, so that each unit cell can be made much thinner. Furthermore, since a solid polymer electrolyte or a metal plate is used, a free planar shape and a flexible shape can be obtained, and a compact, lightweight and free shape design can be realized.
  • the periphery of the solid polymer electrolyte is extended to be exposed from the periphery of the sealed metal plate.
  • the sealing area is increased and the sealing performance is further improved, and the peripheral portion is extended to expose the sealing portion force. Therefore, the oxidation-reduction gases are not mixed with each other at all.
  • FIG. 1 is an assembled perspective view showing an example of a unit cell of a fuel cell according to the present invention.
  • FIG. 3 is a diagram showing an example of a stacked state of unit cells of the fuel cell according to the present invention, wherein (a) is a perspective view before a tube is attached, and (b) is a front view of a main part after a tube is attached.
  • FIG. 4 is a view showing an example of use of a unit cell of the fuel cell according to the present invention, wherein (a) is a left side view, and (b) is a cross-sectional view taken along the line II.
  • FIG. 5 is a front sectional view showing another example of the unit cell of the fuel cell according to the present invention.
  • FIG. 6 is an assembled perspective view showing another example of the unit cell of the fuel cell according to the present invention.
  • FIG. 7 is a front sectional view showing another example of the unit cell of the fuel cell according to the present invention.
  • FIG. 8 is an assembled perspective view showing another example of the unit cell of the fuel cell according to the present invention.
  • FIG. 9 is a front sectional view showing another example of the unit cell of the fuel cell according to the present invention.
  • FIG. 10 is a view showing another example of the unit cell of the fuel cell according to the present invention, wherein (a) is a cross-sectional view in front view.
  • (B) is a plan view showing the sealing member.
  • FIG. 11 is an assembled perspective view showing another example of the unit cell of the fuel cell according to the present invention.
  • FIG. 12 is a front sectional view showing another example of the unit cell of the fuel cell according to the present invention.
  • ⁇ 13 A graph showing the relationship between the voltage and the output of the fuel cell obtained in Example 1-2 of the present invention.
  • ⁇ 14 A graph showing the relationship between the voltage and the output of the fuel cell obtained in Example 3 of the present invention.
  • [15] Graph showing the relationship between voltage and output of the fuel cell obtained in Example 4 of the present invention
  • FIG. 16 is an assembled perspective view showing an example of a conventional fuel cell.
  • FIG. 1 is an assembled perspective view showing an example of the unit cell of the fuel cell according to the present invention
  • FIG. 2 is a front sectional view showing an example of the unit cell of the fuel cell according to the present invention.
  • the fuel cell of the present invention comprises a plate-shaped solid polymer electrolyte 1 and a pair of electrode plates 2, 3 arranged on both sides of the solid polymer electrolyte 1. It is provided with.
  • the pair of electrode plates 2 and 3 are composed of a force electrode plate 2 and an anode electrode plate 3.
  • the solid polymer electrolyte 1 may be any of those used in conventional solid polymer membrane batteries, but from the viewpoints of chemical stability and conductivity, a sulfonic acid group that is a super strong acid is used.
  • a cation exchange membrane having a perfluorocarbon polymer having the following is preferably used. Nafion (registered trademark) is preferably used as such a cation exchange membrane.
  • a porous membrane made of a fluorine resin such as polytetrafluoroethylene impregnated with the above naphthion or other ion conductive material, or a polyolefin resin such as polyethylene or polypropylene is used.
  • a porous membrane made of a nonwoven fabric carrying the above naphion or other ion-conductive substance may be used.
  • the thickness of the solid polymer electrolyte 1 is more effective in reducing the overall thickness as the thickness is reduced. However, in consideration of the ion conduction function, strength, handleability, and the like, a thickness of 10 to 300 m can be used.
  • Electrodes 2 and 3 those that function as a gas diffusion layer to supply and discharge fuel gas, oxidizing gas and water vapor, and at the same time, function to collect electricity can be used. .
  • the same or different electrode plates 2 and 3 can be used, and it is preferable that a catalyst having an electrode catalytic action is supported on the base material.
  • the catalyst has an inner surface 2b in contact with the solid polymer electrolyte 1.
  • the electrode substrate for example, conductive carbon such as fibrous carbon such as carbon paper and carbon fiber non-woven fabric, and an aggregate of conductive polymer fibers can be used.
  • the electrode plates 2 and 3 are made by adding a water-repellent substance such as fluororesin to such a conductive porous material. And a water-repellent substance such as fluororesin and a solvent, and then mixed to form a paste or ink, which is then applied to one surface of the electrode substrate to be opposed to the solid polymer electrolyte membrane. It is formed as
  • the electrode plates 2 and 3 and the solid polymer electrolyte 1 are designed according to the reducing gas and the oxidizing gas supplied to the fuel cell.
  • oxygen gas or air is used as the oxidizing gas
  • hydrogen gas or the like is used as the reducing gas.
  • methanol-dimethyl ether or the like can be used instead of the reducing gas.
  • an electrode on the side that supplies air generates a reaction between oxygen and hydrogen ions to generate water.
  • an electrode on the side that supplies air generates a reaction between oxygen and hydrogen ions to generate water.
  • the porous electrode is liable to be clogged (flooded) by condensation of water vapor, particularly at the air electrode where water is generated. Therefore, in order to obtain stable characteristics of the fuel cell over a long period of time, it is effective to ensure the water repellency of the electrode so that the flooding phenomenon does not occur.
  • At least one kind of metal power selected from platinum, palladium, ruthenium, rhodium, silver, nickel, iron, copper, cobalt and molybdenum, or an oxidized product thereof can be used.
  • each of the electrode plates 2 and 3 is preferably 50 to 500 m in consideration of a force-electrode reaction, strength, handleability, and the like, which are more effective in reducing the thickness as a whole.
  • the electrode plates 2, 3 and the solid polymer electrolyte 1 may be laminated and integrated beforehand by adhesion, fusion, or the like, or may be simply laminated. Such a laminate can be obtained as a thin film electrode assembly (Membrane Electrode Assembly: MEA), or may be used.
  • MEA Membrane Electrode Assembly
  • a pair of metal plates 4 and 5 are arranged on both sides of the electrode plates 2 and 3, respectively.
  • the pair of metal plates 4 and 5 are arranged on the surface of the force-side electrode plate 2 and enable the flow of gas to the inner surface side.
  • the pair of metal plates 4 and 5 are arranged on the surface of the anode-side electrode plate 3 and the inner surface. Of fuel to the side And an anode-side metal plate 5 which enables the above.
  • the metal plates 4 and 5 are provided with the flow channel 9 and the inlets 4c and 5c and the outlets 4d and 5d communicating therewith.
  • any metal can be used as long as it does not adversely affect the electrode reaction.
  • any metal can be used as long as it does not adversely affect the electrode reaction.
  • stainless steel plate, nickel and the like are preferable.
  • the flow channel 9 provided in the metal plates 4, 5 may have any planar shape or cross-sectional shape as long as a flow of hydrogen gas or the like can be formed by contact with the electrode plates 2, 3.
  • a plurality of (three in the illustrated example) vertical grooves 9a are connected in series to the horizontal grooves 9b to balance the flow path density and the flow path length.
  • a part of the flow channel 9 (for example, the horizontal groove 9b) of the metal plates 4 and 5 may be formed on the outer surfaces of the electrode plates 2 and 3.
  • the channel grooves 2a, 3a may be formed on the outer surfaces of the electrode plates 2, 3 by a mechanical method such as heating press or cutting. Processing is preferred.
  • the base material of the electrode plates 2 and 3 is preferably an aggregate of fibrous carbon.
  • One or more of the inlets 4c, 5c and the outlets 4d, 5d communicating with the flow channel 9 of the metal plates 4, 5 can be formed respectively.
  • Examples of a method of forming the flow channel 9 in the metal plates 4 and 5 include a mechanical method such as press working and cutting and a chemical method such as etching.
  • a mechanical method such as press working and cutting
  • a chemical method such as etching.
  • the flow channel 9 is formed by deformation of a metal plate by press working.
  • the metal plates 4 and 5 can be manufactured in a cost-effective manner.
  • the metal plates 4 and 5 formed with grooves by press working can minimize the increase in thickness, and in addition to securely sealing each unit cell, it is possible to make the fuel cell thinner.
  • a ridge 9c of the flow channel 9 made of presca is shown on the upper surface of the metal plate 4 shown in FIG. 1, a ridge 9c of the flow channel 9 made of presca is shown.
  • the cross-sectional shape of the flow channel 9 is preferably substantially square, substantially trapezoidal, substantially semicircular, V-shaped, or the like.
  • the peripheral portion la of the solid polymer electrolyte 1 is extended from the electrode plates 4 and 5 on both sides, and while the peripheral portion la is sandwiched by the metal plates 4 and 5 opposed thereto,
  • the peripheral edges of the metal plates 4 and 5 on both sides are mechanically sealed while being electrically insulated.
  • the mechanical sealing can be performed by, for example, a bending press, that is, a so-called caulking.
  • the periphery la of the solid polymer electrolyte 1 is sandwiched by the metal plates 4 and 5 with the insulating material 6 interposed therebetween, and the periphery of the metal plates 4 and 5 is An example in which sealing is performed by force crimping is shown.
  • a structure sandwiching molecular electrolyte 1 is more preferable. According to such a structure, it is possible to effectively prevent gas or the like from flowing from one of the electrode plates 2 and 3 to the other.
  • the insulating material 6 is preferably a resin, a rubber, a thermoplastic elastomer, or the like, from the viewpoint of enhancing the sealing property in which sheet-like resin, rubber, thermoplastic elastomer, ceramics, and the like can be used.
  • the insulating material 6 can be adhered or applied to the peripheral edges of the metal plates 4 and 5 directly or via an adhesive, and can be integrated with the metal plates 4 and 5 in advance.
  • the caulking structure is preferably the one shown in Fig. 2 from the viewpoint of sealing properties, ease of production, thickness, and the like. That is, the outer edge 5a of one metal plate 5 is made larger than the other outer edge 4a, and the outer edge 5a of one metal plate 5 is connected to the outer edge of the other metal plate 4 with the insulating material 6 interposed therebetween. A caulking structure folded back so as to pinch the portion 4a is preferable. In this caulking structure, it is preferable that a step is provided in the outer edge portion 4a of the metal plate 4 by pressurizing or the like. Such a caulking structure itself is known as metal working, and can be formed by a known caulking device.
  • one or more unit cells UC as shown in FIG. 2 can be used.
  • the solid polymer electrolyte 1, the pair of electrode plates 2 and 3, and the pair of metal plates 4 and 5 It is preferable that a unit cell UC is formed by the above, and a plurality of the unit cells UC are stacked. According to the present invention, It is possible to provide a high-output fuel cell without applying a constant pressure to the cell parts by mutually connecting with bolt and nut fastening parts.
  • a spacer capable of forming a flow path for gas or the like can be provided between the unit cells UC, and the layers can be stacked. As shown in FIG. 3, a spacer is interposed. It is preferable to stack the layers without making them thinner and from the viewpoint of design freedom.
  • the ridges 9c of the channel grooves 9 of the metal plates 4 and 5 are formed in parallel at equal intervals so that the ridges 9c of each unit cell UC fit each other. Is preferred. As a result, the thickness of the unit cells UC when stacked can be further reduced.
  • an inlet 4c and an outlet 4d for hydrogen gas or the like are provided near one side of the unit cell UC (metal plates 4 and 5), and an inlet for air or the like is provided on the back side of the opposite side. 5c and a discharge outlet 5d are provided, and the unit cells UC are stacked while being shifted so that they are exposed.
  • hydrogen gas or the like can be injected by connecting the branch pipe 12 of the tube 10 in which the branch pipe 12 branches from the main pipe 11 to the injection port 4c as shown in FIG. 3 (b).
  • the unit cells UC are connected in series, and a current having a voltage corresponding to the number of layers can be taken out from the unit cells UC at both ends. Further, it is also possible to provide a spacer for each of the plurality of unit cells UC (not shown) to extract current for each unit cell UC.
  • the fuel cell of the present invention can be made thin, small, light, and freely shaped, and therefore can be suitably used particularly for mopile devices such as mobile phones and notebook PCs.
  • FIGS. 4A and 4B When extracting a current, an embodiment as shown in FIGS. 4A and 4B can be adopted. That is, the outer edge 5a of the one metal plate 5 is made larger than the outer edge 4a of the other metal plate, and the outer edge 4a of the other metal plate 4 is pressed by the outer edge 5a of the one metal plate 5.
  • the surface of the other metal plate 4 and the surface of the folded outer edge portion 5a may be used as a current extraction portion (for example, a positive electrode or a negative electrode).
  • the surface of the other metal plate 4 and the surface of the folded outer edge portion 5a (the upper surface in the figure) be flush or substantially flush. Thereby, the contact can be more preferably performed by the contact force between the current extracting portion and the contact terminal on the battery holder side.
  • the contact terminals 21 and 22 made of plate panels fixed to the main body of an electronic device or the like are connected to the current extracting portion of the battery cell. By contacting with, current can be extracted by the lead wires 23 and 24.
  • the width is preferably 0.1 to 10 mm and the depth is preferably 0.05 to 1 mm.
  • cross-sectional shape of the flow channel 9 is preferably substantially square, substantially trapezoidal, substantially semicircular, V-shaped, or the like.
  • the etching can be performed by using a dry film resist or the like to form an etching resist having a predetermined shape on the metal surface, and then using an etching solution corresponding to the type of the metal plates 4 and 5.
  • the cross-sectional shape of the flow channel 9 can be controlled with higher precision.
  • the inlets 4c, 5c and outlets 4d, 5d communicating with the flow channel 9 can be formed by etching.
  • the embodiment shown in FIG. 5 is an example in which the SUS of the swaged portions of the metal plates 4 and 5 is also reduced in thickness by etching. In this manner, by sealing the force crimped portion to an appropriate thickness, sealing by crimping can be performed more easily.
  • the thickness of the swaged portion is preferably 0.05 to 0.3 mm.
  • FIGS. In the above-described embodiment, an example is shown in which a channel groove for fuel or the like is formed in the metal plate disposed on the surface of the electrode plate.
  • FIGS. the flow grooves 2a, 3a for fuel or the like may be formed on the electrode plates 2, 3 side.
  • Channel grooves 2a and 3a are formed on the outer surface of the force side electrode plate 2 and / or the anode side electrode plate 3, and the metal plates 4 and 5 disposed on the surface have the flow grooves.
  • An inlet 4c, 5c and an outlet 4d, 5d communicating with the channel 2a, 3a are provided! /, Preferably! /.
  • the base material of the electrode plates 2 and 3 is preferably an aggregate of fibrous carbon.
  • the electrode force, strength and handling properties are taken into consideration. O / zm is preferred.
  • the depth of the flow grooves 2a and 3a is preferably 100-500 / zm in order to secure a sufficient flow path.
  • the electrode plates 2 and 3 each have a catalyst supported on at least one surface of the aggregate of fibrous carbon, and a channel groove on which the fibrous carbon has been removed by laser irradiation is formed on the other surface. It is preferred to have been.
  • fibrous carbon can be finely processed by a method such as laser irradiation, and a flow channel from which fibrous carbon has been removed is formed. Fine gas channels can be formed while maintaining diffusivity.
  • the flow of gas such as air is applied to the metal plate or the electrode plate on the force source side.
  • the path groove on the force sword side can be omitted. That is, the metal plates 4 and 5 can be provided with a flow channel, a fuel or gas inlet / outlet, an opening, and the like as necessary. For example, air can be naturally supplied from the opening, It is also possible to omit the gas outlet.
  • the metal plate 4 on the force sword side may be provided with an opening 4e for supplying oxygen in the air without providing a flow channel.
  • the number, shape, size, formation position, and the like of the openings 4e may be any as long as the force-side electrode plate 2 can be exposed.
  • the area of the opening 4e is 10 to 50% of the area of the force-side electrode plate 2. More preferably, it is preferably 20 to 40%.
  • the opening 4c of the force-sword side metal plate 4 may be provided with a plurality of circular holes and slits, for example, regularly or randomly, or may be provided with a metal mesh.
  • the caulking structure is the same as that in Fig. 2, and a description thereof will be omitted.
  • the channel configuration of the anode-side metal plate 5 is the same as that shown in FIGS.
  • FIG. 2 an example was shown in which the peripheral portion la of the solid polymer electrolyte 1 was sandwiched by the metal plates 4 and 5 with the insulating material 6 interposed therebetween.
  • a structure in which the peripheral portion la is directly sandwiched between the metal plates 4 and 5 may be employed.
  • a seal member may be interposed between the two.
  • the thickness of the solid polymer electrolyte is thinner, by sandwiching the solid polymer electrolyte between the metal plates on both sides via the sealing member in this manner, the fluid on both sides of the solid polymer electrolyte (for example, the fuel gas and Mixing and leakage of oxidizing gas can be effectively prevented.
  • the seal member S1 When a seal member is interposed, the seal member S1 may be interposed in a form as shown in FIGS. 10 (a) and 10 (b).
  • the peripheral portion la of the solid polymer electrolyte 1 is sandwiched between the metal plates 4 and 5 on both sides via an annular seal member S1.
  • the force of holding the metal plates 4 and 5 between the outer edges 4a and 5a is particularly preferable in view of increasing the holding pressure and improving the sealing performance.
  • the annular seal member S1 has an annular shape along the peripheral edge la of the solid polymer electrolyte 1; The corners are rounded Shape.
  • the seal member S1 may be simply sandwiched, but may be stuck to the metal plates 4, 5 or the periphery of the solid polymer electrolyte 1 directly or via an adhesive.
  • the thickness of the annular seal member S1 depends on the thickness of the solid polymer electrolyte 1, but is preferably 20 to 200 m. Further, as the material of the sealing member S1, a material having elasticity is preferable, and resins such as silicone resin and fluorine resin, rubber, and thermoplastic elastomer are preferable.
  • I1 ⁇ 2'I4 ⁇ 1-3 ⁇ 4SUS 50mm x 26mm x 0.08mm thick
  • 21 grooves width 0.8mm, depth 0.2mm, interval 1.6mm
  • an insulating sheet 50 mm X 26 mm X 2 mm width, thickness 80 ⁇ m
  • a thin film electrode assembly 49.3 mm ⁇ 25.3 mm
  • platinum catalyst a 20% platinum-supported carbon catalyst (EC-20-PTC) manufactured by Electrochem, USA was used.
  • This platinum catalyst was mixed with Lithium Black (Akso Ketjen Black EC) and polyvinylidene fluoride (Kyner) at 75%, 15% and 10% by weight, respectively, and dimethylformamide was added to the mixture. 2.
  • Carbon paper (Toray TGP-H-90, thickness 370 ⁇ m) is cut into 20 mm x 43 mm, and about 20 mg of the catalyst paste prepared as described above is applied with a spatula and In a hot air circulating dryer. In this way 4 A carbon paper carrying mg of the catalyst composition was prepared.
  • the amount of supported platinum is 0.6 mgzcm ⁇ .
  • the cell characteristics of this micro fuel cell were evaluated.
  • the fuel cell characteristics were evaluated using a fuel cell evaluation system manufactured by Toyo Tech-Riki at room temperature using pure hydrogen gas and pure oxygen gas.
  • the gas flow rate was 0.2 LZmin.
  • the obtained maximum power density was 400 mW Zcm 2 per electrode area (FIG. 13).
  • An advantage of the present invention is that a high output of 400 mWZcm 2 per unit electrode area can be obtained with a small thickness of 1.4 mm.
  • a thin micro fuel cell shown in FIG. 4 was obtained in the same manner as in Example 1 except that In FIG. 4, the thickness of the SUS at the swaged portion was also reduced by etching (thickness: 0.1 mm).
  • Example 2 The cell characteristics of this micro fuel cell were evaluated in the same manner as in Example 1. The maximum power density obtained was 450 mWZcm 2 per electrode area (Fig. 13). Then, by stacking six fuel cells, they were connected in series, and a 20 W output was obtained as a fuel cell.
  • the feature of the present invention is that it is thin with a thickness of 1.4 mm and a high output of 450 mWZcm 2 per unit electrode area.
  • a fuel cell was fabricated in the same manner as in Example 2 except that the thickness of the solid polymer electrolyte was 25 / zm (1Z2 in Example 2). Seal part The presence or absence of gas mixing in the cell and the presence or absence of gas leakage outside the cell were examined with and without the use of the material (material: fluorine resin, thickness 100 m).
  • a thin-film electrode assembly (49.3 mm X 25.3 mm) was manufactured as follows.
  • As the platinum catalyst a 20% platinum-supported carbon catalyst (EC-20-PTC) manufactured by Electrochem, USA was used. This platinum catalyst was mixed with carbon black (Ketjen Black EC, Axo Corporation) and polyvinylidene fluoride (Kyner) at 75%, 15% and 10% by weight, respectively, and dimethylformamide was added to the mixture.
  • a catalyst paste was prepared by adding the platinum catalyst, carbon black, and polyvinylidene fluoride in the above mixture at a ratio of 5% by weight of a polyvinylidene fluoride solution and dissolving and mixing in a mortar. did.
  • Carbon paper (Toray TGP-H-90, thickness 370 m) is cut into 20 mm x 43 mm, and about 20 mg of the catalyst paste prepared as described above is applied with a spatula, It dried in the hot air circulation type dryer. In this way, carbon paper carrying 4 mg of the catalyst composition was produced.
  • the amount of supported platinum is 0.6 mg / cm.
  • a groove (width: 2.3 mm, depth: 0.2 mm, interval: 2.3 mm) was formed on the side opposite to the catalyst layer of the platinum catalyst-supported carbon paper produced as described above using a semiconductor laser. did. Then, a Nafion film (Naphion 112, manufactured by DuPont) (25.3 mm x 49.3 mm, thickness 50 m) was used as a solid polymer electrolyte (cation exchange membrane), and a mold was used on both sides of the film. It was hot-pressed for 2 minutes under the conditions of ° C and 2 MPa. The thin-film electrode assembly thus obtained is sandwiched between the centers of the two SUS plates described above, and caulked as shown in Fig. 7 to obtain a thin, small-sized micro fuel cell with an outer dimension of 50mm x 26mm XI. Omm. I was able to do things.
  • Fuel cell characteristics are Toyo Tech-Riki Combustion Using a fuel cell evaluation system, evaluation was performed at room temperature using pure hydrogen gas and pure oxygen gas. The gas flow rate was 0.2 LZmin. The maximum power density obtained was 380 mW Zcm 2 per electrode area (Fig. 14). By stacking six fuel cells, they were connected in series, and a fuel cell output of 17.5 W was obtained.
  • the features of the present invention are that it is thin with a thickness of 1. Omm, has a high output of 380 mWZcm 2 per unit electrode area, and has a flat end plate, so that it can be easily laminated and connected in series.
  • I1 ⁇ 2'I4 ⁇ 1-3 ⁇ 4SUS 50mm X 26mm X 0.08mm thick
  • 21 grooves 0.8mm in width, 0.2mm in depth, 1.6mm in interval
  • a thin film electrode assembly (52.3 mm ⁇ 28.3 mm) was produced as follows.
  • As the platinum catalyst a 20% platinum-supported carbon catalyst (EC-20-PTC) manufactured by Electrochem, USA was used. This platinum catalyst was mixed with carbon black (Akso Ketjen Black EC) and polyvinylidene fluoride (Kyner) at 75%, 15% and 10% by weight, respectively, and mixed with dimethylformamide.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明は、単位セルごとに確実に封止を行うことができ、これによって薄型化が可能となり、メンテナンスも容易になり、しかも小型軽量かつ自由な形状設計が可能な燃料電池を提供するものである。即ち、に関する。板状の固体高分子電解質1と、その固体高分子電解質1の両側に配置された一対の電極板2,3とを備える燃料電池において、前記電極板2,3の両側に配置され、流路溝9とこれに連通する注入口4c,5c及び排出口が設けられた一対の金属板4,5を備え、その金属板4,5の周縁が絶縁材料6を介在させつつ機械的に封止されていることを特徴とする。

Description

明 細 書
燃料電池
技術分野
[0001] 本発明は、固体高分子電解質を用いた燃料電池に関し、特に厚みを薄くすること のできる高分子型燃料電池に関する。
背景技術
[0002] ポリマー電解質のような固体高分子電解質を使用した高分子型燃料電池は、高い エネルギー変換効率を持ち、薄型小型 '軽量であることから、家庭用コージエネレー シヨンシステムや自動車向けに開発が活発化している。かかる燃料電池の従来技術 の構造として、図 16に示すものが知られている(例えば、非特許文献 1参照)。
[0003] 即ち、図 16に示すように、固体高分子電解質膜 100を挟んでアノード 101とカソー ド 102とを配設する。さらに、ガスケット 103を介して一対のセパレータ 104により挟持 して単位セル 105を構成する。各々のセパレータ 104にはガス流路溝が形成されて おり、アノード 101との接触により、還元ガス (例えば、水素ガス)の流路が形成され、 力ソード 102との接触により、酸ィ匕ガス (例えば、酸素ガス)の流路が形成される。各 々のガスは、単位セル 105内の各流路を流通しながら、アノード 101又は力ソード 10 2の内部に担持された触媒の作用により電極反応 (電極における化学反応)に供され 、電流の発生とイオン伝導が生じる。
[0004] この単位セル 105を多数個積層し、単位セル 105どうしを電気的に直列に接続して 燃料電池 Nを構成し、電極 106は、積層した両端の単位セル 105から取り出すことが できる。このような燃料電池 Nは、クリーンかつ高効率という特徴から、種々の用途、 特に、電気自動車用電源や家庭用分散型電源として注目されて 、る。
[0005] 一方、近年の IT技術の活発化に伴 、、携帯電話、ノートパソコン、デジカメなどモ パイル機器が頻繁に使用される傾向があるが、これらの電源は、ほとんどリチウムィォ ン二次電池が用いられている。ところが、モノィル機器の高機能化に伴って消費電 力がどんどん増大し、その電源用としてクリーンで高効率な燃料電池が注目されてき ている。 [0006] し力しながら、図 16に示すような従来の構造では、構造に自由度が無いため、モバ ィル機器の電源として求められる薄型小型軽量ィ匕ゃ形状の高自由度化に難があり、 メンテナス性が悪いという問題もあった。また、燃料電池セル内で酸化還元ガスを相 互に混合させないように供給し、かつ、密閉化することが難しぐこれらの条件を満た しながら、燃料電池セルの大きさや重量を低減ィ匕することは困難であった。つまり、従 来、セル部品をボルト及びナットの締結部品で相互結合して、セル部品に一定の圧 力を加えていたため、シール性を確保する上で、各部材の剛性を高める必要性があ り、どうしても薄型化、小型化、軽量化、自由な形状設計が困難であった。
[0007] ところで、下記の特許文献 1には、単位セルカゝらなり、液体燃料をセル内に貯蔵す る偏平型液体燃料電池であって、燃料極、電解質、及び酸化剤極の積層体を、その 周囲をシール材で一体化し、電池ケース内に収納した構造の燃料電池が開示され ている。
[0008] し力しながら、上記のセル構造では、電極を含む積層体の側壁とシール材との圧接 力を十分高めることができな 、ため、例えば水素ガス燃料を加圧して燃料極側を流 通させた場合、水素ガスが酸化剤極側にリークし、発電効率の低下や水素燃焼の危 険を伴うといった問題があった。つまり、燃料電池の電極は一般に多孔構造になって おり、このため、上記のセル構造において、加圧された水素ガスが燃料極の内部を 通り、電解質の側壁とシール材との間から、酸化剤極側にリークし易い構造となって いる。
非特許文献 1:日経メカ-カル別冊「燃料電池開発最前線」発行日 2001年 6月 29日 、発行所:日経 BP社、第 3章 PEFC、 3. 1原理と特徴 p46
特許文献 1:特開昭 58— 176881号公報
発明の開示
発明が解決しょうとする課題
[0009] そこで、本発明の目的は、単位セルごとに確実に封止を行うことができ、これによつ て薄型化が可能となり、メンテナンスも容易になり、し力も小型軽量かつ自由な形状 設計が可能な燃料電池を提供することにある。
課題を解決するための手段 [0010] 上記目的は、下記の如き本発明により達成できる。
[0011] 即ち、本発明の燃料電池は、板状の固体高分子電解質と、その固体高分子電解 質の一方側に配置された力ソード側電極板と、他方側に配置されたアノード側電極 板と、前記力ソード側電極板の表面に配置され内面側へのガスの流通を可能とする 力ソード側金属板と、前記アノード側電極板の表面に配置され内面側への燃料の流 通を可能とするアノード側金属板と、を備える燃料電池であって、前記両側の電極板 力 前記固体高分子電解質の周縁部を延出させ、その周縁部をこれに対向する前 記金属板によって挟持しながら、前記両側の金属板の周縁を電気的に絶縁した状態 で機械的に封止してあることを特徴とする。本発明では、例えば前記両側の金属板 の周縁が、曲げプレスにより機械的に封止される。
[0012] 本発明の燃料電池によると、両側の電極板から固体高分子電解質の周縁部を延 出させ、その周縁部を対向する金属板によって挟持しながら、金属板の周縁を曲げ プレス等により機械的に封止してあるため、固体高分子電解質の周縁部と金属板と の間に十分な圧接力が得られるので、燃料ガスが力ソード側にリークするのを防止す ることができる。また、金属板の周縁を電気的に絶縁した状態で曲げプレスにより封 止しているため、両者の短絡を防止しながら、厚みをさほど増加させずに単位セルご とに確実に封止を行うことができる。電極板と金属板との接触により、電極反応で生じ た電流を金属板力 取り出すことができる。し力も図 16に示す従来構造と比較してセ ル部材に剛性が要求されな 、ため、各単位セルを大幅に薄型化することができる。 更に、固体高分子電解質や金属板を使用するため、自由な平面形状や屈曲が可能 となり、小型軽量かつ自由な形状設計が可能となる。
[0013] 本発明では、特に、前記固体高分子電解質の周縁部を延長して、封止した金属板 の周縁から露出させていることが好ましい。この構造によると、曲げプレスによる封止 部にも固体高分子電解質が介在するため、シール面積が増加してよりシール性が高 まると共に、周縁部を延長して封止部力 露出させているため、酸化還元ガスを相互 に混合することが全くない。
図面の簡単な説明
[0014] [図 1]本発明の燃料電池の単位セルの一例を示す組み立て斜視図 圆 2]本発明の燃料電池の単位セルの一例を示す正面視断面図
圆 3]本発明の燃料電池の単位セルの積層状態の一例を示す図であり、 (a)はチュ 一ブ取付前の斜視図、(b)はチューブ取付後の要部正面図
[図 4]本発明の燃料電池の単位セルの使用例を示す図であり、(a)は左側面図、(b) はその I I矢視断面
[図 5]本発明の燃料電池の単位セルの他の例を示す正面視断面図
[図 6]本発明の燃料電池の単位セルの他の例を示す組み立て斜視図
[図 7]本発明の燃料電池の単位セルの他の例を示す正面視断面図
[図 8]本発明の燃料電池の単位セルの他の例を示す組み立て斜視図
[図 9]本発明の燃料電池の単位セルの他の例を示す正面視断面図
[図 10]本発明の燃料電池の単位セルの他の例を示す図であり、 (a)は正面視断面図
、 (b)はそのシール部材を示す平面図
[図 11]本発明の燃料電池の単位セルの他の例を示す組み立て斜視図
[図 12]本発明の燃料電池の単位セルの他の例を示す正面視断面図
圆 13]本発明の実施例 1一 2で得られた燃料電池の電圧と出力の関係を示すグラフ 圆 14]本発明の実施例 3で得られた燃料電池の電圧と出力の関係を示すグラフ 圆 15]本発明の実施例 4で得られた燃料電池の電圧と出力の関係を示すグラフ
[図 16]従来の燃料電池の一例を示す組み立て斜視図
符号の説明
1 固体高分子電解質
la 周縁部
2, 3 電極板
2a, aa 流路溝
4, 5 金属板
4c, 5c 注入口
4d, 5d 排出口
6 絶縁材料
9 流路溝 9a 縦溝
9b 横溝
SI シール部材
発明を実施するための最良の形態
[0016] 以下、本発明の実施の形態について、図面を参照しながら説明する。図 1は、本発 明の燃料電池の単位セルの一例を示す組み立て斜視図であり、図 2は、本発明の燃 料電池の単位セルの一例を示す正面視断面図である。
[0017] 本発明の燃料電池は、図 1一図 2に示すように、板状の固体高分子電解質 1と、そ の固体高分子電解質 1の両側に配置された一対の電極板 2, 3とを備えるものである 。一対の電極板 2, 3は、力ソード側電極板 2とアノード側電極板 3とからなる。
[0018] 固体高分子電解質 1としては、従来の固体高分子膜型電池に用いられるものであ れば何れでもよいが、化学的安定性及び導電性の点から、超強酸であるスルホン酸 基を有するパーフルォロカーボン重合体力 なる陽イオン交換膜が好適に用いられ る。このような陽イオン交換膜としては、ナフイオン (登録商標)が好適に用いられる。
[0019] その他、例えば、ポリテトラフルォロエチレン等のフッ素榭脂からなる多孔質膜に上 記ナフイオンや他のイオン伝導性物質を含浸させたものや、ポリエチレンやポリプロピ レン等のポリオレフイン榭脂からなる多孔質膜ゃ不織布に上記ナフイオンや他のィォ ン伝導性物質を担持させたものでもよ 、。
[0020] 固体高分子電解質 1の厚みは、薄くするほど全体の薄型化に有効であるが、イオン 伝導機能、強度、ハンドリング性などを考慮すると、 10— 300 mが使用可能である
1S 25— 50 mが好ましい。
[0021] 電極板 2, 3は、ガス拡散層としての機能を発揮して、燃料ガスや、酸化ガス及び水 蒸気の供給'排出を行なうと同時に、集電の機能を発揮するものが使用できる。電極 板 2, 3としては、同一又は異なるものが使用でき、その基材には電極触媒作用を有 する触媒を担持させることが好ましい。触媒は、固体高分子電解質 1と接する内面 2b
, 3bに少なくとも担持させるのが好ましい。
[0022] 電極基材としては、例えば、カーボンペーパー、カーボン繊維不織布などの繊維質 カーボン、導電性高分子繊維の集合体などの電導性多孔質材が使用できる。一般 に、電極板 2, 3は、このような電導性多孔質材にフッ素榭脂等の撥水性物質を添カロ して作製されるものであって、触媒を担持させる場合、白金微粒子などの触媒とフッ 素榭脂等の撥水性物質とを混合し、これに溶媒を混合して、ペースト状或いはインク 状とした後、これを固体高分子電解質膜と対向すべき電極基材の片面に塗布して形 成される。
[0023] 一般に、電極板 2, 3や固体高分子電解質 1は、燃料電池に供給される還元ガスと 酸ィ匕ガスに応じた設計がなされる。本発明では、酸化ガスとして酸素ガスや空気が用 いられると共に、還元ガスとして水素ガスや用いられる。また、還元ガスの代わりに、メ タノールゃジメチルエーテル等を用いることもできる。
[0024] 例えば、水素ガスと空気を使用する場合、空気を供給する側の電極 (空気極)では 、酸素と水素イオンの反応が生じて水が生成するため、かかる電極反応に応じた設 計をするのが好ましい。特に、低作動温度、高電流密度及び高ガス利用率の運転条 件では、特に水が生成する空気極において水蒸気の凝縮による電極多孔体の閉塞 (フラッデイング)現象が起こりやすい。したがって、長期にわたって燃料電池の安定 な特性を得るためには、フラッデイング現象が起こらな ヽように電極の撥水性を確保 することが有効である。
[0025] 触媒としては、白金、パラジウム、ルテニウム、ロジウム、銀、ニッケル、鉄、銅、コバ ルト及びモリブデン力 選ばれる少なくとも 1種の金属力 又はその酸ィ匕物が使用で き、これらの触媒をカーボンブラック等に予め担持させたものも使用できる。
[0026] 電極板 2, 3の厚みは、薄くするほど全体の薄型化に有効である力 電極反応、強 度、ハンドリング性などを考慮すると、 50— 500 mが好ましい。
[0027] 電極板 2, 3と固体高分子電解質 1とは、予め接着、融着等を行って積層一体化し ておいてもよいが、単に積層配置されているだけでもよい。このような積層体は、薄膜 電極組立体(Membrane Electrode Assembly: MEA)として入手することもでき 、これを使用してもよ 、。
[0028] 前記電極板 2, 3の両側には、一対の金属板 4, 5が配置されている。一対の金属板 4, 5は、力ソード側電極板 2の表面に配置され内面側へのガスの流通を可能とする 力ソード側金属板 4と、アノード側電極板 3の表面に配置され内面側への燃料の流通 を可能とするアノード側金属板 5とからなる。本実施形態では、金属板 4, 5には流路 溝 9と、これに連通する注入口 4c, 5c及び排出口 4d, 5dが設けられている。
[0029] 金属板 4, 5としては、電極反応に悪影響がないものであれば何れの金属も使用で きる。但し、伸び、重量、弾性率、強度、耐腐食性、プレスカ卩ェ性、エッチング力卩ェ性 などの観点から、ステンレス板、ニッケルなどが好ましい。
[0030] 金属板 4, 5に設けられる流路溝 9は、電極板 2, 3との接触により水素ガス等の流露 が形成できるものであれば何れの平面形状や断面形状でもよい。但し、流路密度、 積層時の積層密度、屈曲性などを考慮すると、金属板 4, 5の一辺に平行な縦溝 9aと 垂直な横溝 9bを主に形成するのが好ましい。本実施形態では、複数本(図示した例 では 3本)の縦溝 9aが横溝 9bに直列接続されるようにして、流路密度と流路長のバラ ンスを取っている。
[0031] なお、このような金属板 4, 5の流路溝 9の一部(例えば横溝 9b)を電極板 2, 3の外 面に形成してもよい。電極板 2, 3の外面に流路溝 2a, 3aを形成する方法としては、 加熱プレスや切削などの機械的な方法でもよいが、微細加工を好適に行う上で、レ 一ザ照射によって溝加工を行うことが好ましい。レーザ照射を行う観点からも、電極板 2, 3の基材としては、繊維質カーボンの集合体が好ましい。
[0032] 金属板 4, 5の流路溝 9に連通する注入口 4c, 5c及び排出口 4d, 5dは、それぞれ 1個又は複数を形成することができる。なお、金属板 4, 5の厚みは、薄くするほど全 体の薄型化に有効であるが、強度、伸び、重量、弾性率、ハンドリング性などを考慮 すると、 50— 500 m力好まし!/ヽ。
[0033] 金属板 4, 5に流路溝 9を形成する方法としては、プレス加工、切削などの機械的な 方法やエッチングなどの化学的な方法が挙げられる。本実施形態では、プレス加工 による金属板の変形により流路溝 9が形成されている例を示す。金属板 4, 5への溝 形成をプレス加工で行うことで、コスト的に有利に金属板 4, 5を製造できるようになる 。また、プレス加工で溝形成した金属板 4, 5は厚みの増加を最小限にすることができ 、単位セルごとに確実に封止を行うことと併せて、燃料電池のより薄型化が可能となる 図 1の金属板 4の上面には、プレスカ卩ェによる流路溝 9の凸条 9cが示されている。 [0034] 特に、プレス加工による流路溝 9では、幅 0. 1— 10mm、深さ 0. 1— 10mmが好ま しい。また、流路溝 9の断面形状は、略四角形、略台形、略半円形、 V字形などが好 ましい。
[0035] 本発明では、前記両側の電極板 4, 5から固体高分子電解質 1の周縁部 laを延出 させ、その周縁部 laをこれに対向する前記金属板 4, 5によって挟持しながら、前記 両側の金属板 4, 5の周縁を電気的に絶縁した状態で機械的に封止してある。機械 的な封止は、例えば曲げプレス、即ち所謂カシメにより行うことができる。本実施形態 では、固体高分子電解質 1の周縁部 laが絶縁材料 6を介在させつつ金属板 4, 5に よって挟持されると共に、金属板 4, 5の周縁が、絶縁材料 6を介在させつつ力シメに より封止されている例を示す。
[0036] 本発明では、力シメを行う際、図 2に示すように、金属板 4, 5の周縁によって固体高 分子電解質 1を挟持する構造が好ましぐ絶縁材料 6を介在させつつ固体高分子電 解質 1を挟持する構造がより好ましい。このような構造〖こよると、電極板 2, 3の一方か ら他方へのガス等の流入を効果的に防止することができる。
[0037] 絶縁材料 6としては、シート状の榭脂、ゴム、熱可塑性エラストマ一、セラミックスなど が使用できる力 シール性を高める上で、榭脂、ゴム、熱可塑性エラストマ一などが 好ましい。絶縁材料 6は、金属板 4, 5の周縁に直接あるいは粘着剤を介して貼着し たり、塗布したりして、予め金属板 4, 5に一体ィ匕しておくことも可能である。
[0038] カシメ構造としては、シール性や製造の容易性、厚み等の観点から図 2に示すもの が好ましい。つまり、一方の金属板 5の外縁部 5aを他方の外縁部 4aより大きくしてお き、絶縁材料 6を介在させつつ、一方の金属板 5の外縁部 5aを他方の金属板 4の外 縁部 4aを挟圧するように折り返したカシメ構造が好ましい。このカシメ構造では、プレ スカロェ等によって、金属板 4の外縁部 4aに段差を設けておくのが好ましい。このよう なカシメ構造自体は金属加工として公知であり、公知のカシメ装置によって、それを 形成することができる。
[0039] 本発明では、図 2に示すような単位セル UCを 1個又は複数個使用することができる 力 固体高分子電解質 1、一対の電極板 2, 3、及び一対の金属板 4, 5で単位セル UCを構成し、この単位セル UCを複数積層してあることが好ましい。本発明によると、 ボルト及びナットの締結部品で相互結合して、セル部品に一定の圧力を加えなくても 、高出力の燃料電池を提供することができる。
[0040] 複数積層する場合、単位セル UCどうしの間に、ガス等の流路を形成できるスぺー サを設けて積層することも可能である力 図 3に示すように、スぺーサを介在させずに 積層することが薄型化や設計の自由度の点から好ましい。
[0041] また、金属板 4, 5の流路溝 9の凸条 9cを等間隔で平行に形成しておき、各々の単 位セル UCの凸条 9cが相互に嵌まり合うようにすることが好ましい。これによつて、単 位セル UCの積層時の厚みをより低減することができる。
[0042] 図 3に示す実施形態では、単位セル UC (金属板 4, 5)の一辺付近に水素ガス等の 注入口 4c及び排出口 4dを設け、対向する一辺の裏側に空気等の注入口 5c及び排 出口 5dを設けておき、これらが露出するように各々の単位セル UCをずらして積層し ている。この状態で図 3 (b)に示すように、主管 11から分岐管 12が分岐したチューブ 10の分岐管 12を注入口 4cに接続することで、水素ガス等の注入を行うことができる 。このようなチューブ 10を注入口 5c、排出口 4d、排出口 5dに接続することで、酸ィ匕 ガスと還元ガスの注入 '排出が可能となる。
[0043] 一方、金属板同士が接触することで、単位セル UCが直列に接続されることになり、 両端の単位セル UCから、積層数に応じた電圧の電流を取り出すことができる。また、 複数の単位セル UCごとスぺーサを設けて(図示省略)、単位セル UCごとに電流を 取り出すことも可能である。
[0044] また、単位セルを使用する際、金属板の燃料の注入口及び排出口には、直接、燃 料供給用のチューブを接合することも可能であるが、燃料電池の薄型化を行う上で、 厚みが小さぐ金属板の表面に平行なパイプを有するチューブジョイントを設けるの が好ましい。
[0045] 本発明の燃料電池は、薄型化が可能で小型軽量かつ自由な形状設計が可能なた め、特に、携帯電話、ノート PC等のモパイル機器に好適に使用することができる。
[0046] また、電流を取り出す際に、図 4 (a)— (b)に示すような実施形態とすることができる 。つまり、一方の金属板 5の外縁部 5aを他方の金属板の外縁部 4aより大きくして、前 記一方の金属板 5の外縁部 5aにより前記他方の金属板 4の外縁部 4aを挟圧するよう に折り返したカシメ構造を有すると共に、前記他方の金属板 4の表面と前記折り返し た外縁部 5aの表面とを、電流の取り出し部(例えば正極又は負極)としてもよい。その 場合、図示したように、他方の金属板 4の表面と折り返した外縁部 5aの表面(図では 上面)とを面一または略面一とするのが好ましい。これによつて、電流の取り出し部と 、電池ホルダー側の接点端子等との接触力 より好適に行えるようになる。
[0047] また、図 4 (a)一 (b)に示す実施形態では、電子機器類などの装置本体側に固定さ れた板パネ製の接点端子 21, 22が、電池セルの電流取り出し部と接触することで、リ ード線 23, 24により電流を取り出すことができる。
[0048] 但し、電流の取り出し形態は何れでもよぐ電池セルに直線、リード線を半田で接合 したり、電池セルにコネクタを設けたりすることも可能である。
[0049] [他の実施形態]
以下、本発明の他の実施形態について説明する。
[0050] (1)前述の実施形態では、金属板には、プレス加工により形成された流路溝と、そ の流路溝に連通する注入口及び排出口が設けられている例を示したが、本発明で は、図 5に示すように、金属板 4, 5に対し、エッチングにより形成された流路溝 9と、そ の流路溝 9に連通する注入口 4c, 5c及び排出口 4d, 5dを設けるのが好ましい。金 属板 4, 5への溝形成をエッチングにより行うことで、剛性の高い金属板にも容易に溝 形成が可能となり、その剛性のため薄膜電極組立体に対して圧力をかけやすくなり、 ガス漏れを少なくすることができ、高い出力(図 13参照)を得ることができる。
[0051] エッチングによる流路溝 9では、幅 0. 1— 10mm、深さ 0. 05— lmmが好ましい。
また、流路溝 9の断面形状は、略四角形、略台形、略半円形、 V字形などが好ましい
[0052] エッチングは、例えばドライフィルムレジストなどを用いて、金属表面に所定形状の エッチングレジストを形成した後、金属板 4, 5の種類に応じたエッチング液を用いて 行うことが可能である。また、 2種以上の金属の積層板を用いて、金属ごとに選択的 にエッチングを行うことで、流路溝 9の断面形状をより高精度に制御することができる 。なお、流路溝 9に連通する注入口 4c, 5c及び排出口 4d, 5dなどを、エッチングで 形成することも可能である。 [0053] 図 5に示す実施形態は、金属板 4, 5のカシメ部の SUSもエッチングにより厚みを薄 くした例である。このように、力シメ部をエッチングして適切な厚さにすることで、カシメ による封止をより容易に行うことができる。この観点から、カシメ部の厚みとしては、 0. 05—0. 3mmが好ましい。
[0054] (2)前述の実施形態では、電極板の表面に配置される金属板に、燃料等の流路溝 を形成する例を示したが、本発明では、図 6—図 7に示すように、電極板 2, 3の側に 燃料等の流路溝 2a, 3aを形成してもよい。そして、力ソード側電極板 2及び/又はァ ノード側電極板 3の外面には、流路溝 2a, 3aが形成されると共に、その表面に配置さ れる金属板 4, 5には、前記流路溝 2a, 3aに連通する注入口 4c, 5c及び排出口 4d, 5dが設けられて!/、るのが好まし!/、。
[0055] 電極板 2, 3の外面に流路溝 2a, 3aを形成する方法としては、加熱プレスや切削な どの機械的な方法でもよいが、微細加工を好適に行う上で、レーザ照射によって溝 加工を行うことが好ましい。レーザ照射を行う観点からも、電極板 2, 3の基材としては 、繊維質カーボンの集合体が好ましい。
[0056] 電極板 2, 3の厚みは、薄くするほど全体の薄型化に有効である力 電極反応、強 度、ハンドリング性などを考慮すると、 50— 500 mが使用可能である力 200— 35 O /z mが好ましい。また、流路溝 2a, 3aの深さは、十分な流路を確保する上で 100— 500 /z mが好ましい。
[0057] この実施形態では、電極板 2, 3は、繊維質カーボンの集合体の少なくとも片面に 触媒が担持され、その他面に、レーザ照射によって前記繊維質カーボンが除去され た流路溝が形成されて ヽることが好ま 、。
[0058] このように、繊維質カーボンの集合体を電極材として使用することにより、ガスの拡 散性や集電効率が良好になり、担持された触媒によって電極反応を促進することが できる。また、繊維質カーボンはレーザ照射などの方法によって微細加工することが でき、繊維質カーボンが除去された流路溝が形成されるため、プレス加工により得ら れる電極板と比較して、ガスの拡散性を維持しながら、微細なガス流路を形成するこ とがでさる。
[0059] (3)前述の実施形態では、力ソード側の金属板又は電極板に、空気等のガスの流 路溝を形成する例を示したが、本発明では、力ソード側の流路溝を省略することも可 能である。つまり、金属板 4, 5には、必要に応じて流路溝、燃料やガスの注入ロゃ排 出口、開口部などを設けることができ、例えば空気を開口部から自然供給したり、燃 料ガスの排出口を省略することも可能である。
[0060] 例えば、図 8—図 9に示すように、力ソード側の金属板 4には、流路溝を設けることな ぐ空気中の酸素を供給するための開口部 4eを設けてもよい。開口部 4eは、力ソード 側電極板 2が露出可能であれば、その個数、形状、大きさ、形成位置などは何れでも よい。但し、空気中の酸素の供給効率と、力ソード側電極板 2からの集電効果などを 考慮すると、開口部 4eの面積は力ソード側電極板 2の面積の 10— 50%であるのが 好ましぐ特に 20— 40%であるのが好ましい。力ソード側金属板 4の開口部 4cは、例 えば規則的又はランダムに複数の円孔ゃスリット等を設けたり、または金属メッシュに よって開口部を設けてもよい。
[0061] カシメ構造については、図 2と同じであるので説明を省略する。アノード側金属板 5 の流路構成は図 1一 2に示すのと同じである。
[0062] (4)前述の実施形態では、図 2に示すように、固体高分子電解質 1の周縁部 laが 絶縁材料 6を介在させつつ金属板 4, 5によって挟持されている例を示した力 本発 明では、金属板 4, 5によって直接周縁部 laを挟持する構造であってもよい。また、両 者の間にシール部材を介在させてもよい。特に、固体高分子電解質の厚みがより薄 い場合に、このようにシール部材を介して、これを両側の金属板同士で挟持すること により、固体高分子電解質の両側の流体 (例えば燃料ガスと酸化ガス)の混合やリー クが効果的に防止できる。
[0063] シール部材を介在させる場合、図 10 (a)— (b)に示すような形態で、シール部材 S 1を介在させてもよい。この実施形態では、固体高分子電解質 1の周縁部 laを、環状 のシール部材 S1を介して、両側の金属板 4, 5同士で挟持している。このとき、特に 金属板 4, 5の外縁部 4a, 5aで挟持するの力 挟持圧を高めてシール性を向上させ る観点力も好ましい。
[0064] 環状のシール部材 S 1は、図 10 (b)に示すように、固体高分子電解質 1の周縁部 la に沿った環状形状をなしており、カシメ構造との関係から、外周の 4隅が丸みを帯び た形状となっている。シール部材 S1は、単に挟持するだけでもよいが、金属板 4, 5 や固体高分子電解質 1の周縁に直接あるいは粘着剤を介して貼着してもよい。
[0065] 環状のシール部材 S1の厚みは、固体高分子電解質 1の厚みにもよるが、 20— 200 mが好ましい。また、シール部材 S1の材質としては、弾性を有する材料が好ましく 、シリコーン系榭脂、フッ素系榭脂などの榭脂、ゴム、熱可塑性エラストマ一などが好 ましい。
[0066] (5)前述の実施形態では、固体高分子電解質の周縁部を封止した金属板の周縁 力も露出させない例を示した力 本発明では、図 11一図 12に示すように、固体高分 子電解質 1の周縁部 laを延長して、封止した金属板 4, 5の周縁から露出させてもよ い。この場合、前述の実施形態のように別途絶縁材料を設けてもよいが、絶縁材料を 設けなくても、固体高分子電解質 1のみによって、金属板 4, 5間の短絡を防止するこ とがでさる。
[0067] [実施例]
以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例になんら限定 されるものではない。
[0068] 〔実施例 1〕
I½'I4^1-¾SUS (50mm X 26mm X 0. 08mm厚)に溝(幅 0. 8mm、深さ 0. 2mm、間隔 1. 6mm)をプレス加工により 21個設けた。そして絶縁シート(50mm X 2 6mm X 2mm幅、厚み 80 μ m)を SUSに張り合わせた。また、薄膜電極組立体(49 . 3mm X 25. 3mm)は、下記のようにして作製した。白金触媒は、米国エレクトロケ ム社製 20%白金担持カーボン触媒 (EC— 20— PTC)を用いた。この白金触媒と、力 一ボンブラック(ァクゾ社ケッチェンブラック EC)、ポリフッ化ビ-リデン (カイナー)を、 それぞれ 75重量%、 15重量%、 10重量%の割合で混合し、ジメチルホルムアミドを 、 2. 5重量%のポリフッ化ビ-リデン溶液となるような割合で、上記白金触媒、カーボ ンブラック、ポリフッ化ビ-リデンの混合物中に加え、乳鉢中で溶解'混合して、触媒 ペーストを作製した。カーボンペーパー(東レ製 TGP— H— 90、厚み 370 μ m)を 20 mm X 43mmに切断し、この上に、上記のようにして作製した触媒ペースト約 20mg をスパチュラにて塗布し、 80°Cの熱風循環式乾燥機中で乾燥した。このようにして 4 mgの触媒組成物が担持されたカーボンペーパーを作製した。白金担持量は、 0. 6 mgz cm ό、ある。
[0069] 上記のようにして作製した白金触媒担持カーボンペーパーと、固体高分子電解質( 陽イオン交換膜)としてナフイオンフィルム(デュポン社製ナフイオン 112) (25. 3mm X 49. 3mm、厚み 50 m)を用い、その両面に、金型を用いて、 135°C、 2MPaの 条件にて 2分間ホットプレスした。こうして得られた薄膜電極組立体を上記の SUS板 2枚の中央で挟み込み、図 2に示すようにカシメ合わせることで、外寸 50mm X 26m m X l. 4mm厚という薄型小型のマイクロ燃料電池を得る事ができた。
[0070] このマイクロ燃料電池の電池特性を評価した。燃料電池特性は、東陽テク-力製燃 料電池評価システムを用い、室温下、純水素ガス、純酸素ガスを用いて評価した。ガ ス流量は、 0. 2LZminとした。得られた最大出力密度は、電極面積当たり 400mW Zcm2であった(図 13)。そして 6個の燃料電池セルを積層することで直列接続となり 、燃料電池として 18Wの出力が得られた。本発明の特長は、厚さ 1. 4mmで薄くか つ単位電極面積当たり 400mWZcm2と高出力が得られるところにある。
[0071] 〔実施例 2〕
異なる厚みの SUS (50mm X 26mm X O. 3mm厚)を用い、その加工法を塩化第 二鉄水溶液によるエッチングに変えて、溝(幅 0. 8mm、深さ 0. 2mm、間隔 1. 6mm )を形成すること以外は、実施例 1と同様にして、図 4に示す薄型小型のマイクロ燃料 電池を得た。なお、図 4において、カシメ部の SUSもエッチングにより厚みを薄くした( 厚み 0. 1mm)。
[0072] このマイクロ燃料電池の電池特性を実施例 1と同様に評価した。得られた最大出力 密度は、電極面積当たり 450mWZcm2であった(図 13)。そして 6個の燃料電池セ ルを積層することで直列接続となり、燃料電池として 20Wの出力が得られた。本発明 の特長は、厚さ 1. 4mmで薄くかつ単位電極面積当たり 450mWZcm2 と高出力が 得られるところにある。
[0073] 〔参考例 1〕
実施例 2において、固体高分子電解質の厚みを 25 /z m (実施例 2の 1Z2)とするこ と以外は、同様にして燃料電池を作製し、その際、図 10 (b)に示す形状のシール部 材 (材質:フッ素榭脂、厚み 100 m)を用いた場合と用いない場合とで、セル内のガ ス混合の有無とセル外へのガス漏れの有無とを調べた。
[0074] その結果、シール部材を用いると 10Z10の割合でガス混合及びガス漏れが発生 せず、これに対して、シール部材を用いないと 4Z10の割合でガス混合が発生し、 3 Z10の割合でガス漏れが発生した。
[0075] 〔実施例 3〕
耐食性を有する3113 (501!1111 26111111 0. 08mm厚)を用い、そして絶縁シート( 50mm X 26mm X 2mm幅、厚み 70 μ m)を SUSに張り合わせた。また、薄膜電極 組立体 (49. 3mm X 25. 3mm)は、下記のようにして作製した。白金触媒は、米国 エレクトロケム社製 20%白金担持カーボン触媒 (EC— 20— PTC)を用いた。この白金 触媒と、カーボンブラック(ァクゾ社ケッチェンブラック EC)、ポリフッ化ビ-リデン (カイ ナー)を、それぞれ 75重量%、 15重量%、 10重量%の割合で混合し、ジメチルホル ムアミドを、 2. 5重量%のポリフッ化ビ-リデン溶液となるような割合で、上記白金触 媒、カーボンブラック、ポリフッ化ビ-リデンの混合物中に加え、乳鉢中で溶解'混合 して、触媒ペーストを作製した。カーボンペーパー(東レ製 TGP— H— 90、厚み 370 m)を 20mm X 43mmに切断し、この上に、上記のようにして作製した触媒ペース ト約 20mgをスパチュラにて塗布し、 80°Cの熱風循環式乾燥機中で乾燥した。このよ うにして 4mgの触媒組成物が担持されたカーボンペーパーを作製した。白金担持量 は、 0. 6mg/ cm (?める。
[0076] 上記のようにして作製した白金触媒担持カーボンペーパーの触媒層と反対側に半 導体レーザを用い溝加工(幅: 2. 3mm、深さ O . 2mm、間隔: 2. 3mm)を施した。 そして、固体高分子電解質 (陽イオン交換膜)としてナフイオンフィルム (デュポン社製 ナフイオン 112) (25. 3mm X 49. 3mm、厚み 50 m)を用い、その両面に、金型を 用いて、 135°C、 2MPaの条件にて 2分間ホットプレスした。こうして得られた薄膜電 極組立体を上記の SUS板 2枚の中央で挟み込み、図 7に示すようにカシメ合わせる ことで、外寸 50mm X 26mm X I . Omm厚という薄型小型のマイクロ燃料電池を得る 事ができた。
[0077] このマイクロ燃料電池の電池特性を評価した。燃料電池特性は、東陽テク-力製燃 料電池評価システムを用い、室温下、純水素ガス、純酸素ガスを用いて評価した。ガ ス流量は、 0. 2LZminとした。得られた最大出力密度は、電極面積当たり 380mW Zcm2であった(図 14)。そして 6個の燃料電池セルを積層することで直列接続となり 、燃料電池として 17. 5Wの出力が得られた。本発明の特長は、厚さ 1. Ommで薄く かつ単位電極面積当たり 380mWZcm2と高出力が得られ、エンドプレートが平面で あるために、容易に積層でき直列接続できると ヽぅところにある。
[0078] 〔実施例 4〕
I½'I4^1-¾SUS (50mm X 26mm X 0. 08mm厚)に溝(幅 0. 8mm、深さ 0. 2mm,間隔 1. 6mm)をプレスカ卩ェにより 21個設けた。また、薄膜電極組立体(52. 3mm X 28. 3mm)は、下記のようにして作製した。白金触媒は、米国エレクトロケム 社製 20%白金担持カーボン触媒 (EC— 20— PTC)を用いた。この白金触媒と、カー ボンブラック(ァクゾ社ケッチェンブラック EC)、ポリフッ化ビ-リデン (カイナー)を、そ れぞれ 75重量%、 15重量%、 10重量%の割合で混合し、ジメチルホルムアミドを、 2 . 5重量%のポリフッ化ビ-リデン溶液となるような割合で、上記白金触媒、カーボン ブラック、ポリフッ化ビ-リデンの混合物中に加え、乳鉢中で溶解'混合して、触媒べ 一ストを作製した。カーボンペーパー(東レ製 TGP— H— 90、厚み 370 μ m)を 20m m X 43mmに切断し、この上に、上記のようにして作製した触媒ペースト約 20mgを スパチュラにて塗布し、 80°Cの熱風循環式乾燥機中で乾燥した。このようにして 4mg の触媒組成物が担持されたカーボンペーパーを作製した。白金担持量は、 0. 6mg / cm C、め。。
[0079] 上記のようにして作製した白金触媒担持カーボンペーパーと、固体高分子電解質( 陽イオン交換膜)としてナフイオンフィルム(デュポン社製ナフイオン 112) (52. 3mm X 28. 3mm、厚み 25 m)を用い、その両面に、金型を用いて、 135°C、 2MPaの 条件にて 2分間ホットプレスした。こうして得られた薄膜電極組立体を上記の SUS板 2枚の中央で挟み込み、図 12に示すようにカシメ合わせることで、外寸 50mm X 26 mm X l . 4mm厚という薄型小型のマイクロ燃料電池を得る事ができた。
[0080] このマイクロ燃料電池の電池特性を評価した。燃料電池特性は、東陽テク-力製燃 料電池評価システムを用い、室温下、純水素ガス、空気を用いて評価した。水素ガス 流量は、 0. lLZminとした。空気流量は 0. 2LZminとした。そして単位セルあたり の出力特性は図 15に示される。本発明によるカシメ構造を利用することで、十分に実 用化できるだけの特性が得られた。

Claims

請求の範囲
[1] 板状の固体高分子電解質と、その固体高分子電解質の一方側に配置されたカソ ード側電極板と、他方側に配置されたアノード側電極板と、前記力ソード側電極板の 表面に配置され内面側へのガスの流通を可能とする力ソード側金属板と、前記ァノ ード側電極板の表面に配置され内面側への燃料の流通を可能とするアノード側金属 板と、を備える燃料電池であって、
前記両側の電極板カゝら前記固体高分子電解質の周縁部を延出させ、その周縁部 をこれに対向する前記金属板によって挟持しながら、前記両側の金属板の周縁を電 気的に絶縁した状態で機械的に封止してある燃料電池。
[2] 前記両側の金属板の周縁が、曲げプレスにより機械的に封止されている請求項 1 記載の燃料電池。
[3] 前記アノード側金属板には、プレス加工により形成された流路溝と、その流路溝に 連通する注入口及び排出口が設けられている請求項 1記載の燃料電池。
[4] 前記アノード側金属板には、エッチングにより形成された流路溝と、その流路溝に 連通する注入口及び排出口が設けられている請求項 1記載の燃料電池。
[5] 前記力ソード側電極板及び Z又は前記アノード側電極板の外面には、流路溝が形 成されると共に、その表面に配置される金属板には、前記流路溝に連通する注入口 及び排出口が設けられて 、る請求項 1記載の燃料電池。
[6] 前記力ソード側電極板及び Z又は前記アノード側電極板は、繊維質カーボンの集 合体の少なくとも片面に触媒が担持され、その他面に、レーザ照射によって前記繊 維質カーボンが除去された流路溝が形成されている請求項 5記載の燃料電池。
[7] 前記固体高分子電解質の周縁部を延長して、封止した金属板の周縁から露出させ て ヽる請求項 1記載の燃料電池。
[8] 前記金属板の周縁と前記固体高分子電解質の周縁部との間に、更に絶縁材料を 介在させて!/、る請求項 7に記載の燃料電池。
[9] 前記アノード側金属板又は力ソード側金属板の少なくとも一方の周縁部は、エッチ ングにより他の部分よりも厚みを薄くしている請求項 1記載の燃料電池。
[10] 前記力ソード側金属板には、空気中の酸素を供給するための開口部が設けられて V、る請求項 1記載の燃料電池。
[11] 前記固体高分子電解質の周縁部を、環状のシール部材を介して、両側の金属板 同士で挟持して 、る請求項 1記載の燃料電池。
[12] 一方の金属板の外縁部を他方の金属板の外縁部より大きくして、前記一方の金属 板の外縁部により前記他方の金属板の外縁部を挟圧するように折り返した構造を有 すると共に、前記他方の金属板の表面と前記折り返した外縁部の表面とを、電流の 取り出し部とした請求項 1記載の燃料電池。
PCT/JP2004/016953 2003-11-19 2004-11-15 燃料電池 WO2005050766A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/595,748 US7862954B2 (en) 2003-11-19 2004-11-15 Fuel cell
EP04818885A EP1691435A4 (en) 2003-11-19 2004-11-15 FUEL CELL
KR1020067006202A KR101127028B1 (ko) 2003-11-19 2004-11-15 연료 전지

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2003-389059 2003-11-19
JP2003-389053 2003-11-19
JP2003389053A JP2005150008A (ja) 2003-11-19 2003-11-19 燃料電池
JP2003389059 2003-11-19
JP2004-035304 2004-02-12
JP2004035304 2004-02-12
JP2004118083 2004-04-13
JP2004-118083 2004-04-13
JP2004163116A JP4643178B2 (ja) 2003-11-19 2004-06-01 燃料電池
JP2004-163116 2004-06-01

Publications (1)

Publication Number Publication Date
WO2005050766A1 true WO2005050766A1 (ja) 2005-06-02

Family

ID=34624017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016953 WO2005050766A1 (ja) 2003-11-19 2004-11-15 燃料電池

Country Status (4)

Country Link
US (1) US7862954B2 (ja)
EP (1) EP1691435A4 (ja)
KR (1) KR101127028B1 (ja)
WO (1) WO2005050766A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075792A2 (en) * 2005-01-14 2006-07-20 Honda Motor Co., Ltd. Fuel cell
WO2007085863A1 (en) * 2006-01-30 2007-08-02 Ceres Intellectual Property Company Limited Fuel cell
RU2534021C2 (ru) * 2009-05-22 2014-11-27 Топсеэ Фюэль Селл А/С Сборный модуль из батарей твердооксидных топливных элементов и способ его эксплуатации

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5031302B2 (ja) * 2006-09-07 2012-09-19 株式会社ノリタケカンパニーリミテド ガス拡散電極の形成方法
KR101027098B1 (ko) * 2008-05-26 2011-04-05 아쿠아훼아리 가부시키가이샤 연료 전지 및 그 제조 방법
US20100147232A1 (en) * 2008-12-12 2010-06-17 Solutions With Water, Llc System and method for improving fuel economy in combustion engines
USD844562S1 (en) * 2016-10-05 2019-04-02 General Electric Company Fuel cell
JP7264802B2 (ja) * 2019-12-23 2023-04-25 Nok株式会社 セパレータの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162145A (ja) * 1994-12-07 1996-06-21 Kansai Electric Power Co Inc:The 固体高分子電解質型燃料電池
JPH1055813A (ja) * 1996-08-08 1998-02-24 Aisin Seiki Co Ltd 燃料電池の組立て構造
JPH10289722A (ja) * 1997-04-11 1998-10-27 Sanyo Electric Co Ltd 固体高分子型燃料電池およびその製造方法
JP2002175818A (ja) * 2000-12-05 2002-06-21 Honda Motor Co Ltd 燃料電池用セパレータおよび燃料電池
JP2003178776A (ja) * 2001-10-01 2003-06-27 Toyota Motor Corp 燃料電池用セパレータ
JP2004079193A (ja) * 2002-08-09 2004-03-11 Toyota Motor Corp 燃料電池のセパレータ
JP2004127711A (ja) * 2002-10-02 2004-04-22 Daido Steel Co Ltd 燃料電池

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176881A (ja) 1982-04-09 1983-10-17 Shin Kobe Electric Mach Co Ltd 扁平形液体燃料電池
JPH05326037A (ja) 1992-05-14 1993-12-10 Nitto Denko Corp 電 池
JPH06168728A (ja) 1992-07-15 1994-06-14 Honda Motor Co Ltd 燃料電池
US5432021A (en) * 1992-10-09 1995-07-11 Ballard Power Systems Inc. Method and apparatus for oxidizing carbon monoxide in the reactant stream of an electrochemical fuel cell
DE4442285C1 (de) * 1994-11-28 1996-02-08 Siemens Ag Brennstoffzellen und daraus bestehende Brennstoffzellenbatterien
JP3171057B2 (ja) 1995-06-09 2001-05-28 松下電器産業株式会社 密閉電池
US6132895A (en) * 1998-03-09 2000-10-17 Motorola, Inc. Fuel cell
WO2000033411A1 (en) 1998-11-30 2000-06-08 Electric Fuel Limited Pressurized metal-air battery cells
DE19903352C2 (de) * 1999-01-28 2000-11-23 Siemens Ag PEM-Brennstoffzelle und Verfahren zu ihrer Herstellung
US6777126B1 (en) * 1999-11-16 2004-08-17 Gencell Corporation Fuel cell bipolar separator plate and current collector assembly and method of manufacture
JP2002373682A (ja) 2001-06-15 2002-12-26 Honda Motor Co Ltd 燃料電池システム
JP4015827B2 (ja) 2001-06-29 2007-11-28 株式会社東芝 非水電解質電池
JP4432291B2 (ja) 2001-07-19 2010-03-17 トヨタ自動車株式会社 燃料電池
US6939639B2 (en) 2001-10-01 2005-09-06 Toyota Jidosha Kabushiki Kaisha Fuel cell separator
JP4105421B2 (ja) 2001-10-31 2008-06-25 株式会社日立製作所 固体高分子型燃料電池用電極及びそれを用いた固体高分子型燃料電池並びに発電システム
JP4209611B2 (ja) 2001-12-05 2009-01-14 日産自動車株式会社 燃料電池システムの制御装置
DE10304657B4 (de) 2002-02-08 2015-07-02 General Motors Llc ( N. D. Ges. D. Staates Delaware ) Brennstoffzellenstapel sowie -system und Verfahren zum Betrieb eines Brennstoffzellensystems mit einem solchen Brennstoffzellenstapel
JP3972675B2 (ja) 2002-02-15 2007-09-05 日産自動車株式会社 燃料電池システム
JP3952154B2 (ja) 2002-03-01 2007-08-01 Nok株式会社 燃料電池用構成部品
JP4109019B2 (ja) 2002-03-27 2008-06-25 株式会社日本自動車部品総合研究所 燃料電池の排出水素処理
JP2003317756A (ja) 2002-04-23 2003-11-07 Seiko Epson Corp 燃料電池システムおよびその駆動方法
JP4221981B2 (ja) 2002-09-19 2009-02-12 日産自動車株式会社 燃料電池システム
JP4128425B2 (ja) 2002-11-01 2008-07-30 ウチヤ・サーモスタット株式会社 水素発生装置
JP4441168B2 (ja) 2002-11-18 2010-03-31 本田技研工業株式会社 燃料電池システム
JP2004172026A (ja) 2002-11-22 2004-06-17 Toyota Motor Corp 燃料電池システムの運転制御
JP4082996B2 (ja) 2002-11-29 2008-04-30 株式会社ケーヒン 燃料電池用電磁弁
US6716550B1 (en) * 2002-12-20 2004-04-06 Ballard Power Systems Inc. Sealing membrane electrode assemblies for electrochemical fuel cells
JP4627997B2 (ja) 2003-02-24 2011-02-09 セイコーインスツル株式会社 燃料電池システム
WO2004079845A2 (en) 2003-03-07 2004-09-16 Ballard Power Systems Inc. Methods of operating fuel cells having closed reactant supply systems
WO2006038519A1 (ja) 2004-10-05 2006-04-13 Nitto Denko Corporation 燃料電池及び発電方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162145A (ja) * 1994-12-07 1996-06-21 Kansai Electric Power Co Inc:The 固体高分子電解質型燃料電池
JPH1055813A (ja) * 1996-08-08 1998-02-24 Aisin Seiki Co Ltd 燃料電池の組立て構造
JPH10289722A (ja) * 1997-04-11 1998-10-27 Sanyo Electric Co Ltd 固体高分子型燃料電池およびその製造方法
JP2002175818A (ja) * 2000-12-05 2002-06-21 Honda Motor Co Ltd 燃料電池用セパレータおよび燃料電池
JP2003178776A (ja) * 2001-10-01 2003-06-27 Toyota Motor Corp 燃料電池用セパレータ
JP2004079193A (ja) * 2002-08-09 2004-03-11 Toyota Motor Corp 燃料電池のセパレータ
JP2004127711A (ja) * 2002-10-02 2004-04-22 Daido Steel Co Ltd 燃料電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075792A2 (en) * 2005-01-14 2006-07-20 Honda Motor Co., Ltd. Fuel cell
WO2006075792A3 (en) * 2005-01-14 2006-10-26 Honda Motor Co Ltd Fuel cell
US8192894B2 (en) 2005-01-14 2012-06-05 Honda Motor Co., Ltd. Plate-laminating type fuel cell
WO2007085863A1 (en) * 2006-01-30 2007-08-02 Ceres Intellectual Property Company Limited Fuel cell
CN101411021B (zh) * 2006-01-30 2011-08-10 塞瑞斯知识产权有限公司 燃料电池
KR101078524B1 (ko) 2006-01-30 2011-10-31 케레스 인텔렉츄얼 프로퍼티 컴퍼니 리미티드 연료 전지
US8383284B2 (en) 2006-01-30 2013-02-26 Ceres Intellectual Property Company Limited Fuel cell
EA018167B1 (ru) * 2006-01-30 2013-06-28 Серес Интеллекчуал Проперти Компани Лимитед Топливный элемент
RU2534021C2 (ru) * 2009-05-22 2014-11-27 Топсеэ Фюэль Селл А/С Сборный модуль из батарей твердооксидных топливных элементов и способ его эксплуатации

Also Published As

Publication number Publication date
US7862954B2 (en) 2011-01-04
EP1691435A1 (en) 2006-08-16
EP1691435A4 (en) 2009-06-17
KR101127028B1 (ko) 2012-03-26
US20090017354A1 (en) 2009-01-15
KR20060119991A (ko) 2006-11-24

Similar Documents

Publication Publication Date Title
JP2004146092A (ja) シート状化学電池とその製造方法及び燃料電池とその製造方法並びに電解質シート及び配線シート
JP2002280016A (ja) ダイレクトメタノール燃料電池用単電極型セルパック
KR20080099021A (ko) 연료전지용 엔드 플레이트 및 이를 이용한 공기호흡형연료전지 스택
JP3696230B1 (ja) 燃料電池
WO2005050766A1 (ja) 燃料電池
JP2005150008A (ja) 燃料電池
JP2007273433A (ja) セルユニット、セル接続方法、及び、燃料電池
JP4477910B2 (ja) 燃料電池
KR101147238B1 (ko) 연료 전지 시스템 및 그 스택
JP2006066323A (ja) 燃料電池セル
JP2006236740A (ja) 燃料電池
JP4643178B2 (ja) 燃料電池
JP2006066339A (ja) 燃料電池セル
JP2004119189A (ja) 燃料電池
JP4660151B2 (ja) 燃料電池
JP4381857B2 (ja) 燃料電池
JP4440088B2 (ja) 燃料電池
JP3115434U (ja) 燃料電池セル
JP2006310220A (ja) 燃料電池
JP3946228B2 (ja) 燃料電池
JP2006004754A (ja) 燃料電池
KR101093706B1 (ko) 연료 전지 및 이에 사용되는 스택
JP2006107819A (ja) 電源装置
JP4397324B2 (ja) 燃料電池
JP2006092783A (ja) 燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480031124.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067006202

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10595748

Country of ref document: US

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004818885

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004818885

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067006202

Country of ref document: KR