WO2005048291A1 - Microfluidic device comprising an electrospray nose - Google Patents

Microfluidic device comprising an electrospray nose Download PDF

Info

Publication number
WO2005048291A1
WO2005048291A1 PCT/FR2004/050575 FR2004050575W WO2005048291A1 WO 2005048291 A1 WO2005048291 A1 WO 2005048291A1 FR 2004050575 W FR2004050575 W FR 2004050575W WO 2005048291 A1 WO2005048291 A1 WO 2005048291A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrospray
microfluidic
chip
microfluidic chip
tip
Prior art date
Application number
PCT/FR2004/050575
Other languages
French (fr)
Inventor
Nicolas Sarrut
Original Assignee
Commissariat A L'energie Atomique
Universite Des Sciences Et Technologies De Lille
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique, Universite Des Sciences Et Technologies De Lille filed Critical Commissariat A L'energie Atomique
Priority to US10/578,175 priority Critical patent/US7411184B2/en
Priority to DE200460023880 priority patent/DE602004023880D1/en
Priority to JP2006538909A priority patent/JP4527727B2/en
Priority to EP04805818A priority patent/EP1714300B1/en
Priority to AT04805818T priority patent/ATE447237T1/en
Publication of WO2005048291A1 publication Critical patent/WO2005048291A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/165Electrospray ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means
    • Y10T137/8225Position or extent of motion indicator
    • Y10T137/8242Electrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means
    • Y10T137/8326Fluid pressure responsive indicator, recorder or alarm

Definitions

  • the present invention relates to a microfluidic device provided with an electrospray nose.
  • This type of device is intended in particular for obtaining laboratories on a chip (in English "lab-on-chip”). It is notably used in the field of mass spectrometry.
  • microfluidic / mass spectrometry coupling is most often based on a technique ionization of the sample by electrospray or ESI (from the English expression "Electrospray Ionization”).
  • ESI electrospray Ionization
  • the sample present in liquid form during the pretreatments is nebulized in an ion gas or in a multitude of charged droplets entering the mass spectrometer for analysis.
  • Different coupling approaches have already been proposed. As early as 1997, RS RA SEY et al., In the article “Generating ElectroSpray from Microchip Devices Using Electroosmotic Pumping" (Anal.
  • PDMS poly (dimethylsiloxane) chip also having through channels intended to be compared to a mass spectrometer for nebulization of the sample.
  • the authors take advantage of the hydrophobicity of PDMS to obtain a small Taylor cone (limitation of dead volume), but PDMS technology remains a limited technology which does not yet allow the design of complex and large microfluidic networks. characteristic of the order of the micrometer. This imposes a strong limitation as regards the design of the microfluidic entities necessary for the preprocessing of samples (concentration, separation, etc.). In this same technological sector as the use of polymer materials, M.
  • the invention proposes a device making it possible to couple microfluidics to mass spectrometry.
  • the problem is to assemble an electrospray nose of original design, so-called “feather” electrospray nose, to a microfluidic chip (network of channels, reservoirs, micro-reactors, micro -mixers .7) of plane geometry.
  • This assembly must: comply with the operating conditions of the electrospray nose (feather type) alone, ensure a good fluid connection between the two entities, that is to say with a minimum dead volume, integrate an electrode allowing to impose an electrical potential on the liquid at the level of the nose.
  • the invention therefore makes it possible to produce a microfluidic device equipped with an electrospray nose by assembling two entities: - an electrospray nose produced by microtechnology techniques (in particular a “feather” type nose), a microfluidic device with plane geometry.
  • the assembly provides the final device with an electrode forming an integral part of the entity obtained and located near the junction of the chip outlet channel / electrospray nose.
  • the inlet of the electrospray nose and the outlet of the microfluidic chip will be adapted to facilitate assembly and allow electrical contact between the electrode and the liquid on the one hand, and minimize dead volumes on the other hand.
  • various simple methods for imposing an electrical potential on this electrode from "the outside world" will also be described.
  • the subject of the invention is therefore a microfluidic device comprising a microfluidic chip assembled with an electrospray structure, the microfluidic chip comprising at least one channel microfluidic opening through an outlet orifice on a surface area of the microfluidic chip, the electrospray structure comprising at least one flat and thin tip, the tip being provided with a capillary slot which terminates at the end of the tip for forming an orifice for ejecting a liquid to be nebulized, the electrospray structure being arranged on the surface area of the microfluidic chip so that said tip is in cantilever with respect to the microfluidic chip and so that the outlet of the microfluidic channel opens onto the capillary slot of the tip, the microfluidic device also having means for applying an electrospray voltage to the liquid to be nebulized.
  • the microfluidic chip is assembled to the electrospray structure by glue.
  • the means for applying an electrospray voltage may comprise a layer of said adhesive which extends to the capillary slot, at the outlet of the microfluidic channel to constitute an electrospray electrode.
  • the means for applying an electrospray voltage may include a contact resumption located on the microfluidic chip, electrically connected to the adhesive layer and allowing an electrical connection to the outside.
  • the electrospray structure may be integral with an electrically conductive element, a part of which is arranged opposite the capillary slot, at the outlet orifice of the microfluidic channel, to constitute an electrospray electrode.
  • the electrospray structure comprises a foot adapted to be received in a housing of the microfluidic chip.
  • the foot may have a groove, the foot and the housing being provided so that the groove serves as fluid communication between the outlet orifice of the microfluidic channel, located at the bottom of the housing, and the capillary slot.
  • FIG. 1 is a perspective view of an electrospray structure used by the microfluidic device according to the present invention
  • Figures 2A and 2B are views, respectively from the side and from above, of a microfluidic device according to the present invention using the electrospray structure of FIG. 1
  • FIG. 3 is a perspective view of another electrospray structure used by the microfluidic device according to the present invention
  • FIGS. 10A to 10E illustrate an embodiment of an electrospray nose usable in the microfluidic device according to 1 ' invention.
  • FIG. 1 is a perspective view of a structure (or nose) of electrospray 1 constituted by a plate 2 extended, in the plane of one of its main faces, by a tip 3 provided with a capillary slot 4 practiced throughout the thickness of the tip.
  • the capillary slot 4 ends at the end 5 of the tip 3, intended to form an ejection orifice for a liquid to be nebulized.
  • FIGS. 2A and 2B are views, respectively from the side and from above, of a microfluidic device using the electrospraying nose represented in FIG. 1.
  • FIGS. 2A and 2B show an assembly comprising a microfluidic chip 10 and the nose d electrospray 1.
  • the microfluidic chip 10 comprises a microfluidic channel 11 opening out through the outlet orifice 12 onto a surface area of the microfluidic chip.
  • the electrospray nose 1 is arranged on this surface area so that the tip 3 is cantilevered relative to the chip microfluidic 10 and so that the outlet orifice 12 opens onto the capillary slot 4.
  • the outlet orifice 12 can have a diameter between 10 and 100 ⁇ m.
  • the electrospray nose 1 is glued to the microfluidic chip 10 using an electrically conductive glue 15.
  • the glue is spread on the upper face of the microfluidic chip by screen printing . In order not to block the outlet orifice 12, it is essential to deposit the adhesive in a thin layer.
  • Glue serigraphy is a technique adapted to this constraint since it allows the spreading of very thin (1 to 10 ⁇ m) and homogeneous glue layers (see international application OA-00/77509).
  • the robot locates the exit hole of the microfluidic chip (Typical diameter: from 10 to 100 ⁇ m), then locates the entry of the electrospray nose (typically from 1 to 10 ⁇ m), then positions the two entities against each other, with micrometric precision.
  • the electrospray nose is held and moved using an arm with a suction head, while the microfluidic chip is held by a suitable support.
  • the assembly is completely finished after the polymerization of the conductive adhesive.
  • the electrically conductive glue can be the TOFAY DA6524 silicone glue manufactured by DOWCORNING to make it possible to impose on the liquid leaving the system an electrical nebulization potential. As illustrated in FIGS.
  • the adhesive 15 plays the role of electrode and a contact resumption 16 is offset from the outlet zone in order to allow electrical access to the outside world.
  • This contact resumption 16 is itself in electrical contact with the electrode 15 (formed by the conductive adhesive) by means of an electrical track 17.
  • This canvas, initially coated with glue, is then brought into contact with the surface to be glued, then released, leaving a homogeneous film of glue on the surface of interest.
  • these polymer fabric fabrics (polyesters) or these metal grids can be supplied covered with photosensitive resin.
  • photosensitive resin By exposure and revelation, it is easy to make on this "stencil", the complement of the whole "contact recovery / electrical track / electrode” so that only the desired area is coated with adhesive.
  • the electrospray nose and the microfluidic chip are at least partially formed electrically insulating materials so that no electric current can flow through their material.
  • only the conductive adhesive can conduct the current to the liquid occurring at the outlet of the microfluidic channel of the chip and at the inlet of the electrospray nose.
  • the electrospray nose is glued to the microfluidic chip using a conventional adhesive such as DELO-KATIOBOND 45952 supplied by SUPRATEC.
  • a conventional adhesive such as DELO-KATIOBOND 45952 supplied by SUPRATEC.
  • This assembly takes place in the same way as in the previous description, but here the electrospray nose is necessarily left integral with its manufacturing substrate, which substrate is chosen to be electrically conductive (metal, doped silicon of type n or of type p ...) and which ensures electrical contact between the outside world and the liquid appearing at the entrance of the electrospray nose.
  • care was taken to provide it with access to a portion of conductive substrate (electrode) for the liquid leaving the outlet channel of the chip.
  • Figure 3 is a perspective view of an electrospray nose 21 formed by a plate 22 extended, in the plane of one of its main faces, by a tip 23 provided with a capillary slot 24 practiced throughout the tip thickness.
  • the capillary slot 24 ends at the end 25 of the tip 23, intended to form an ejection orifice for a liquid to be nebulized.
  • the nose Figure 3 is shown without its manufacturing substrate. Access to the portion of conductive substrate is allowed by making a contact groove 26 made in the thickness of the electrospray nose.
  • This groove of semi-circular section here, can be chosen differently depending on the case, in particular of rectangular section. In all cases, minimize the length of this groove which represents a dead volume for the liquid.
  • FIGS. 4A and 4B are views, respectively from the side and from above, of a microfluidic device using the electrospraying nose represented in FIG. 3.
  • FIGS. 4A and 4B show an assembly comprising a microfluidic chip 30 and the nose d electrospray 21 integral with its conductive manufacturing substrate 20.
  • the microfluidic chip 30 comprises a microfluidic channel 31 opening out through the outlet orifice 32 onto a surface area of the microfluidic chip 21.
  • the electrospraying nose 21 is disposed on the microfluidic chip 30 as in FIGS. 2A and 2B.
  • Reference 35 represents the conventional adhesive layer used.
  • the electrospray nose is provided with a foot allowing it to be inserted into the microfluidic chip.
  • FIG. 5 is a perspective view of an electrospray nose 41 constituted by a plate 42 extended, in the plane of one of its main faces, by a point 43 provided with a capillary slot 44 practiced throughout the tip thickness.
  • the capillary slot 44 ends at the end 45 of the tip 43, intended to form an ejection orifice for the liquid to be nebulized.
  • FIG. 6 illustrates the installation of the electrospray structure of FIG. 5 on a suitable microfluidic chip.
  • the electrospray nose 41 is shown with its conductive manufacturing substrate 40.
  • the microfluidic chip 50 comprises a microfluidic channel 51 opening out through an outlet orifice 52 at the bottom of a housing 53 which itself opens onto the surface area of the chip intended to receive the electrospray nose.
  • the housing 53 is provided to receive the foot 46 of the electrospray nose.
  • FIG. 7 shows the electrospray structure 41 positioned on the microfluidic chip 50 and made integral with this chip by the drop of glue 54.
  • the seal must be increased by injecting glue between the base 46 and the housing 53. For this, the simple deposit of a drop of calibrated glue is sufficient. It penetrates inside the component by capillary action and stops on the sharp angles of the entities (areas of strong wetting).
  • FIG. 8 illustrates a possibility for electrically connecting the microfluidic device shown in FIGS. 2A and 2B to the outside environment.
  • "Bond bonding" is a classic possibility for testing components manufactured in micro-technology and microelectronics. A gold wire 60 of a hundred micrometers is soldered between the contact resumption 16 of the device and the electrical circuit which constitutes the support of the chip. It is itself plugged into a larger circuit into which the coaxial cables which equip commercial power supplies can be inserted.
  • a simple contact between a gold test tip 61 and the contact resumption 16 (or, where appropriate, the conductive substrate) is a second solution for ensuring the connection with the external environment.
  • This solution is illustrated in Figure 9.
  • the connection between commercial power supplies and such needles is easy by simply soldering an electric cable.
  • These spring-loaded test tips, the heads of which are on the order of a few hundred micrometers, are marketed for example by the company FM Contact Technologies under the name of Feinmetall test tips.
  • the microfluidic chip can be produced from two silicon or pyrex substrates with a thickness of 500 ⁇ m.
  • the fluidic network including the chip exit channel, can be produced in a first substrate by deep etching (DRIE for “Deep Reactive Ion Etching”), then oxidized (electrical insulation of the chip).
  • the second substrate intended to close the fluidic network of the first can also be etched by DRIE (hole opening out of the outlet channel) and thermally oxidized.
  • the two substrates are assembled by anodic sealing (thin silicon oxide layer) or by direct sealing (thick silicon oxide layer, typically 3 ⁇ m).
  • the electrospray nose can be produced using a thick resin such as SU8 according to a technological sector described by FIGS. 10A to 10E.
  • FIG. 10A shows a silicon substrate 70 partially covered with a sacrificial layer of nickel 71 a few hundred nanometers thick. This sacrificial layer 71 is necessary for the production of an overhang, itself necessary for the final cutting aiming to release the tip of the nose of electrospray.
  • a deposit 72 of resin SU 8, a few tens of micrometers thick, is formed on the structure shown in FIG. 10A as shown in FIG. 10B.
  • the resin deposit is then transformed, by UV exposure (some tens of mW / cm 2 ) and revelation (engraving of SU 8), into a plate 73 extended by a point 74 resting on the sacrificial layer 71. This is what as shown in Figure 10C.
  • FIG. 10D shows the structure obtained after removal of the sacrificial layer. The point 74 is then overhanging with respect to the substrate 70. The substrate 70 is then cleaved so as to release the nose of electrospray. This is shown in Figure 10E. Part of the tip 74, part of the capillary slot 75 and the end 76 of the tip protrude from the substrate 70.
  • the invention can be used in all applications using, as a detection method, mass spectrometry by ionization by electrospray (ESI for "ElectroSpray
  • Ionization It can be used for the analysis of samples in the biomedical sector and the pharmaceutical industry: genetic analyzes, proteomics (identification of proteins, etc.), drug development.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

The invention relates to a microfluidic device comprising a microfluidic chip (10) which is assembled to an electrospray structure (1), said microfluidic chip being equipped with a microfluidic channel (11) which opens onto an area of the surface of the chip by means of an outlet (12). The electrospray structure consists of at least one flat, thin point (3) comprising a capillary gap (4) which extends to the end (5) of the point such as to form a port for the discharge of the liquid to be sprayed. Moreover, the electrospray is disposed on the surface of the microfluidic chip such that the point (3) is cantilevered in relation to the chip (10) and such that the outlet (12) of the microfluidic channel opens into the capillary gap (4) of the point. The microfluidic device also comprises means for applying an electrospray voltage to the liquid to be sprayed.

Description

DISPOSITIF MICROFLUIDIQUE MUNI D'UN NEZ D 'ELECTRONEBULISATION MICROFLUIDIC DEVICE PROVIDED WITH AN ELECTRONEBULIZATION NOSE
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUE La présente invention concerne un dispositif microfluidique muni d'un nez d'électronébulisation. Ce type de dispositif est destiné en particulier à l'obtention de laboratoires sur puce (en anglais "lab-on-chip" ) . Il est notamment utilisé dans le domaine de la spectrométrie de masse.TECHNICAL FIELD The present invention relates to a microfluidic device provided with an electrospray nose. This type of device is intended in particular for obtaining laboratories on a chip (in English "lab-on-chip"). It is notably used in the field of mass spectrometry.
ETAT DE LA TECHNIQUE ANTERIEURESTATE OF THE PRIOR ART
Depuis bientôt dix ans, différents travaux portant sur le couplage de puces microfluidiques (ou laboratoires sur puces) à la spectrométrie de masse ont été présentés. D'une part, cette méthode de détection à haute sensibilité permet d'obtenir des informations sur la nature des échantillons analysés (rapport masse/charge), d'autres part elle permet d'analyser des mélanges complexes de molécules, pour peu qu'elles aient été séparées et concentrées en amont de l'analyse. Ainsi, une idée exploitée est de mettre à profit les progrès récents réalisés en microfluidique pour intégrer les traitements d'échantillons (séparation, concentration...) nécessaires à l'analyse par spectrométrie de masse. Le couplage microfluidique / spectrométrie de masse repose le plus souvent sur une technique d'ionisation de l'échantillon par electronébulisation ou ESI (d'après l'expression anglaise "Electrospray Ionization" ) . Sous l'action d'un champ électrique intense, l'échantillon présent sous forme liquide au cours des prétraitements est nébulisé en un gaz d'ions ou en une multitudes de gouttelettes chargées entrant dans le spectromètre de masse pour analyse. Différentes approches de couplage ont déjà été proposées . Dès 1997, R.S. RA SEY et al., dans l'article "Generating ElectroSpray from Microchip Devices Using Electroosmotic Pumping" (Anal. Chem. , 1997, 69, pages 1174-1178) ont proposé une puce microfluidique en verre dont les flux de liquide sont gérés par électroosmose et dont le canal de sortie débouche dans la tranche du composant à géométrie plane. Sous l'assistance d'une surpression, il se forme en sortie de puce une goutte d'échantillon de 12 ni, qui, sous l'action d'un champ électrique intense, forme un cône de Taylor en se nébulisant. Cette approche, certes simple, pose le problème d'un volume mort de liquide important (12 ni) , ce qui impose une limite de sensibilité à la détection. Plus récemment, K. HUIKKO et al., dans l'article "Poly (diméthylsiloxane) electrospray devices fabricated with diamond-like carbon-poly (diméthylsiloxane) coated SU- 8 masters" (Lab Chip,For almost ten years, various works relating to the coupling of microfluidic chips (or laboratories on chips) to mass spectrometry have been presented. On the one hand, this high sensitivity detection method makes it possible to obtain information on the nature of the samples analyzed (mass / charge ratio), on the other hand it makes it possible to analyze complex mixtures of molecules, provided that they were separated and concentrated before the analysis. Thus, one idea exploited is to take advantage of recent progress made in microfluidics to integrate the sample treatments (separation, concentration, etc.) necessary for analysis by mass spectrometry. The microfluidic / mass spectrometry coupling is most often based on a technique ionization of the sample by electrospray or ESI (from the English expression "Electrospray Ionization"). Under the action of an intense electric field, the sample present in liquid form during the pretreatments is nebulized in an ion gas or in a multitude of charged droplets entering the mass spectrometer for analysis. Different coupling approaches have already been proposed. As early as 1997, RS RA SEY et al., In the article "Generating ElectroSpray from Microchip Devices Using Electroosmotic Pumping" (Anal. Chem., 1997, 69, pages 1174-1178) proposed a microfluidic glass chip whose fluxes liquid are managed by electroosmosis and the outlet channel of which opens into the edge of the component with planar geometry. Under the assistance of an overpressure, a drop of sample of 12 ni is formed at the exit of the chip, which, under the action of an intense electric field, forms a Taylor cone by nebulizing. This approach, admittedly simple, poses the problem of a large dead volume of liquid (12 ni), which imposes a limit of sensitivity to detection. More recently, K. HUIKKO et al., In the article "Poly (dimethylsiloxane) electrospray devices fabricated with diamond-like carbon-poly (dimethylsiloxane) coated SU- 8 masters" (Lab Chip,
2003; 3, pages 67-72 ont proposé une puce en poly (diméthylsiloxane) (PDMS) présentant elle aussi des canaux débouchants destinés à être mis en regard d'un spectromètre de masse pour nébulisation de l'échantillon. Les auteurs tirent profit de 1' hydrophobie du PDMS pour l'obtention d'un petit cône de Taylor (limitation du volume mort) , mais la technologie PDMS reste une technologie limitée qui ne permet pas encore la conception de réseaux microfluidiques complexes et de taille caractéristique de l'ordre du micromètre. Ceci impose une forte limitation quant au dessin des entités microfluidiques nécessaires aux prétraitements d'échantillons- (concentration, séparation...) . Dans cette même filière technologique qu'est l'utilisation de matériaux polymères, M. SVEDERBERG et al., dans l'article "Sheathless Electrospray from Polymer Microchips" (Anal. Chem. , 2003, 75, pages 3934-3940), ainsi que V. GOBRY et al., dans l'article "Microfabricated polymer injector for direct mass spectrometry coupling" (Proteomics 2002, 2, pages 405-412) ont proposé l'intégration sur puce de nez d'électronébulisation à géométrie bidimensionnelle ou tridimensionnelle adaptés à la stabilité du cône de Taylor, limitant les volumes morts et intégrant une électrode de sortie nécessaire à la formation de la nébulisation. Les problèmes précédents demeurent. Une autre approche consiste en l'adaptation de la sortie du canal de séparation pour permettre d'accueillir une interface du commerce dit "PicoTip". On peut se référer à ce sujet à l'article de Y. TACHIBANA et al., intitulé "Robust and simple interface for microchip electrophoresis-mass spectrometry (J. of Chromatography, 1011 (2003), pages 181-192). Cela passe par l'utilisation d'une pièce métallique et/ou plastique jouant un rôle de liaison dans l'assemblage des deux entités. Ce genre d'assemblage présente des volumes morts importants et ne résout pas le problème de l'utilisation des "PicoTips" du commerce présentant une mauvaise reproductibilité en dimensions et une grande fragilité à l'utilisation. Enfin, le brevet américain N° 6 464 866 divulgue un système d'analyse chimique fabriqué par microtechnologie, à partir de deux substrats de préférence en silicium, et comprenant un système de chromatographie liquide et un dispositif d'électronébulisation. Le mode de réalisation est très complexe et l'intégration d'une électrode de sortie semble encore un point incomplètement résolu.2003; 3, pages 67-72 proposed a poly (dimethylsiloxane) (PDMS) chip also having through channels intended to be compared to a mass spectrometer for nebulization of the sample. The authors take advantage of the hydrophobicity of PDMS to obtain a small Taylor cone (limitation of dead volume), but PDMS technology remains a limited technology which does not yet allow the design of complex and large microfluidic networks. characteristic of the order of the micrometer. This imposes a strong limitation as regards the design of the microfluidic entities necessary for the preprocessing of samples (concentration, separation, etc.). In this same technological sector as the use of polymer materials, M. SVEDERBERG et al., In the article "Sheathless Electrospray from Polymer Microchips" (Anal. Chem., 2003, 75, pages 3934-3940), as well that V. GOBRY et al., in the article "Microfabricated polymer injector for direct mass spectrometry coupling" (Proteomics 2002, 2, pages 405-412) proposed integration on a nose chip of electrospray with two-dimensional or three-dimensional geometry adapted to the stability of the Taylor cone, limiting dead volumes and incorporating an output electrode necessary for the formation of nebulization. The previous problems remain. Another approach consists in adapting the outlet of the separation channel to accommodate a commercial interface called "PicoTip". We can refer to this subject in the article by Y. TACHIBANA et al., Entitled "Robust and simple interface for microchip electrophoresis-mass spectrometry (J. of Chromatography, 1011 (2003), pages 181-192). by the use of a metal piece and / or plastic playing a connecting role in the assembly of the two entities. This kind of assembly has large dead volumes and does not solve the problem of using commercial "PicoTips" having poor reproducibility in dimensions and great fragility in use. Finally, US Patent No. 6,464,866 discloses a chemical analysis system manufactured by microtechnology, from two substrates preferably made of silicon, and comprising a liquid chromatography system and an electrospray device. The embodiment is very complex and the integration of an output electrode still seems to be an incomplete issue.
EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION
Comme les systèmes de l'art antérieur, l'invention propose un dispositif permettant de coupler la microfluidique à la spectrométrie de masse. D'un point de vue technique, la problématique est d'assembler un nez d'électronébulisation de conception originale, nez d'électronébulisation dit de type « plume », à une puce microfluidique (réseau de canaux, réservoirs, micro-réacteurs, micro-mélangeurs....) de géométrie plane. Cet assemblage doit : respecter les conditions de fonctionnement du nez d'électronébulisation (de type plume) seul, assurer un bon raccordement fluidique entre les deux entités, c'est-à-dire avec un minimum de volume mort, intégrer une électrode permettant d'imposer un potentiel électrique au liquide au niveau du nez . L'invention permet donc de réaliser un dispositif microfluidique équipé d'un nez d'électronébulisation en assemblant deux entités : - un nez electronébulisation réalisé par les techniques de la microtechnologie (en particulier un nez de type « plume ») , un dispositif microfluidique à géométrie plane . En outre, l'assemblage munit le dispositif final d'une électrode faisant partie intégrale de l'entité obtenu et localisée à proximité de la jonction canal de sortie de puce / nez d'électronébulisation. Suivant la mise en œuvre choisie pour l'assemblage, l'entrée du nez d'électronébulisation et la sortie de la puce microfluidique seront adaptées pour faciliter l'assemblage et permettre le contact électrique entre l'électrode et le liquide d'une part, et minimiser les volumes morts d'autre part. Par ailleurs, différentes méthodes simples pour imposer un potentiel électrique à cette électrode depuis « le monde extérieur » seront aussi décrites. L'invention a donc pour objet un dispositif microfluidique comprenant une puce microfluidique assemblée à une structure d'électronébulisation, la puce microfluidique comprenant au moins un canal microfluidique débouchant par un orifice de sortie sur une zone de surface de la puce microfluidique, la structure d'électronébulisation comprenant au moins une pointe plate et mince, la pointe étant pourvue d'une fente capillaire qui aboutit à l'extrémité de la pointe pour former un orifice d'éjection d'un liquide à nébuliser, la structure d'électronébulisation étant disposée sur la zone de surface de la puce microfluidique de façon que ladite pointe soit en porte-à-faux par rapport à la puce microfluidique et de façon que l'orifice de sortie du canal microfluidique débouche sur la fente capillaire de la pointe, le dispositif microfluidique possédant également des moyens d'application d'une tension d'électronébulisation au liquide à nébuliser. De préférence, la puce microfluidique est assemblée à la structure d'électronébulisation par de la colle. Si la colle est électriquement conductrice, les moyens d'application d'une tension d'électronébulisation peuvent comprendre une couche de ladite colle qui s'étend jusqu'à la fente capillaire, au niveau de l'orifice de sortie du canal microfluidique pour constituer une électrode d'électronébulisation. Dans ce cas, les moyens d'application d'une tension d'électronébulisation peuvent comprendre une reprise de contact située sur la puce microfluidique, reliée électriquement à la couche de colle et permettant une liaison électrique vers l'extérieur. La structure d'électronébulisation peut être solidaire d'un élément électriquement conducteur dont une partie est disposée en regard de la fente capillaire, au niveau de l'orifice de sortie du canal microfluidique, pour constituer une électrode d'électronébulisation. Elle peut posséder une rainure de contact formée transversalement dans ladite structure pour déboucher au niveau de l'orifice de sortie du canal microfluidique et exposer l'élément électriquement conducteur. Cet élément électriquement conducteur peut être un élément constitutif d'un substrat de fabrication de la structure d' electronébulisation. Selon un autre mode de réalisation, la structure d'électronébulisation comprend un pied adapté pour être reçu dans un logement de la puce microfluidique. Le pied peut posséder une rainure, le pied et le logement étant prévus pour que la rainure serve de communication de fluide entre l'orifice de sortie du canal microfluidique, situé au fond du logement, et la fente capillaire.Like the systems of the prior art, the invention proposes a device making it possible to couple microfluidics to mass spectrometry. From a technical point of view, the problem is to assemble an electrospray nose of original design, so-called “feather” electrospray nose, to a microfluidic chip (network of channels, reservoirs, micro-reactors, micro -mixers ....) of plane geometry. This assembly must: comply with the operating conditions of the electrospray nose (feather type) alone, ensure a good fluid connection between the two entities, that is to say with a minimum dead volume, integrate an electrode allowing to impose an electrical potential on the liquid at the level of the nose. The invention therefore makes it possible to produce a microfluidic device equipped with an electrospray nose by assembling two entities: - an electrospray nose produced by microtechnology techniques (in particular a “feather” type nose), a microfluidic device with plane geometry. In addition, the assembly provides the final device with an electrode forming an integral part of the entity obtained and located near the junction of the chip outlet channel / electrospray nose. Depending on the implementation chosen for the assembly, the inlet of the electrospray nose and the outlet of the microfluidic chip will be adapted to facilitate assembly and allow electrical contact between the electrode and the liquid on the one hand, and minimize dead volumes on the other hand. In addition, various simple methods for imposing an electrical potential on this electrode from "the outside world" will also be described. The subject of the invention is therefore a microfluidic device comprising a microfluidic chip assembled with an electrospray structure, the microfluidic chip comprising at least one channel microfluidic opening through an outlet orifice on a surface area of the microfluidic chip, the electrospray structure comprising at least one flat and thin tip, the tip being provided with a capillary slot which terminates at the end of the tip for forming an orifice for ejecting a liquid to be nebulized, the electrospray structure being arranged on the surface area of the microfluidic chip so that said tip is in cantilever with respect to the microfluidic chip and so that the outlet of the microfluidic channel opens onto the capillary slot of the tip, the microfluidic device also having means for applying an electrospray voltage to the liquid to be nebulized. Preferably, the microfluidic chip is assembled to the electrospray structure by glue. If the adhesive is electrically conductive, the means for applying an electrospray voltage may comprise a layer of said adhesive which extends to the capillary slot, at the outlet of the microfluidic channel to constitute an electrospray electrode. In this case, the means for applying an electrospray voltage may include a contact resumption located on the microfluidic chip, electrically connected to the adhesive layer and allowing an electrical connection to the outside. The electrospray structure may be integral with an electrically conductive element, a part of which is arranged opposite the capillary slot, at the outlet orifice of the microfluidic channel, to constitute an electrospray electrode. It may have a contact groove formed transversely in said structure to open out at the outlet orifice of the microfluidic channel and expose the electrically conductive element. This electrically conductive element can be a constituent element of a substrate for manufacturing the electrospray structure. According to another embodiment, the electrospray structure comprises a foot adapted to be received in a housing of the microfluidic chip. The foot may have a groove, the foot and the housing being provided so that the groove serves as fluid communication between the outlet orifice of the microfluidic channel, located at the bottom of the housing, and the capillary slot.
BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels: - la figure 1 est une vue en perspective d'une structure d'électronébulisation utilisée par le dispositif microfluidique selon la présente invention, les figures 2A et 2B sont des vues, respectivement de côté et de dessus, d'un dispositif microfluidique selon la présente invention utilisant la structure d'électronébulisation de la figure 1, la figure 3 est une vue en perspective d'une autre structure d'électronébulisation utilisée par le dispositif microfluidique selon la présente invention, les figures 4A et 4B sont des vues respectivement de côté et de dessus, d'un dispositif microfluidique selon la présente invention utilisant la structure d'électronébulisation de la figure 3, - la figure 5 est une vue en perspective d'encore une autre structure d'électronébulisation utilisée par le dispositif microfluidique selon la présente invention, - la figure 6 est une vue de côté représentant la mise en place de la structure d'électronébulisation de la figure 5 sur une puce microfluidique adaptée pour obtenir un dispositif microfluidique selon l'invention, - la figure 7 est une vue correspondant à la figure 6 où la structure d'électronébulisation est positionnée sur sa puce microfluidique, - la figure 8 illustre une possibilité de connexion électrique d'un dispositif microfluidique selon l'invention avec le milieu extérieur, la figure 9 illustre une autre possibilité de connexion électrique d'un dispositif microfluidique selon l'invention avec le milieu extérieur, - les figures 10A à 10E illustrent un mode de réalisation d'un nez d'électronébulisation utilisable dans le dispositif microfluidique selon 1' invention.The invention will be better understood and other advantages and features will appear on reading the description which follows, given by way of nonlimiting example, accompanied by the appended drawings among which: - Figure 1 is a perspective view of an electrospray structure used by the microfluidic device according to the present invention, Figures 2A and 2B are views, respectively from the side and from above, of a microfluidic device according to the present invention using the electrospray structure of FIG. 1, FIG. 3 is a perspective view of another electrospray structure used by the microfluidic device according to the present invention, FIGS. 4A and 4B are views from the side and from above, of a microfluidic device according to the present invention using the electrospray structure of Figure 3, - Figure 5 is a perspective view of yet another electrospray structure used by the microfluidic device according to the present invention , - Figure 6 is a side view showing the establishment of the electrospray structure of Figure 5 on a microfluidic chip adapted to obtain a microfluidic device according to the invention, - Figure 7 is a view corresponding to Figure 6 where the electrospray structure is positioned on its microfluidic chip, - Figure 8 illustrates a possibility of electrical connection d '' a microfluidic device according to the invention with the external environment, FIG. 9 illustrates another possibility of electrical connection of a microfluidic device according to the invention with the external medium, - FIGS. 10A to 10E illustrate an embodiment of an electrospray nose usable in the microfluidic device according to 1 ' invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
La figure 1 est une vue en perspective d'une structure (ou nez) d'électronébulisation 1 constituée par une plaque 2 prolongée, dans le plan de l'une de ses faces principales, par une pointe 3 pourvue d'une fente capillaire 4 pratiquée dans toute l'épaisseur de la pointe. La fente capillaire 4 aboutit à l'extrémité 5 de la pointe 3, destinée à former un orifice d'éjection pour un liquide à nébuliser. Les figures 2A et 2B sont des vues, respectivement de côté et de dessus, d'un dispositif microfluidique utilisant le nez d'électronébulisation représenté à la figure 1. Les figures 2A et 2B montrent un assemblage comprenant une puce microfluidique 10 et le nez d'électronébulisation 1. La puce microfluidique 10 comprend un canal microfluidique 11 débouchant par l'orifice de sortie 12 sur une zone de surface de la puce microfluidique. Le nez d'électronébulisation 1 est disposé sur cette zone de surface de façon que la pointe 3 soit en porte-à-faux par rapport à la puce microfluidique 10 et de façon que l'orifice de sortie 12 débouche sur la fente capillaire 4. L'orifice de sortie 12 peut avoir un diamètre compris entre 10 et 100 μm. Selon un premier mode d'assemblage, le nez d'électronébulisation 1 est collé à la puce microfluidique 10 à l'aide d'une colle électriquement conductrice 15. Pour cela, la colle est étalée sur la face supérieure de la puce microfluidique par sérigraphie. Pour ne pas boucher l'orifice de sortie 12, il est indispensable de déposer la colle en couche mince. La sérigraphie de colle est une technique adaptée à cette contrainte puisqu'elle permet l'étalement de couches de colle très fines (de 1 à 10 μm) et homogène (voir la demande internationale O-A-00/77509) . Une fois la sérigraphie réalisée, le positionnement et l'alignement du nez d'électronébulisation 1 en regard de la puce microfluidique 10 sont assurés par un robot « pick and place » appelé PLAte-forme Technologique d'Intégration Micro-Optique (ou PLATIMO) développé par la société OPUS Optics and Micro Systems. Par des moyens optiques, le robot repère le trou de sortie de la puce microfluidique (Diamètre typique : de 10 à 100 μm) , puis repère l'entrée du nez d'électronébulisation (typiquement de 1 à 10 μm) , puis vient positionner les deux entités l'une contre l'autre, avec une précision micrométrique. Lors de cette opération, le nez d'électronébulisation est maintenu et déplacé à l'aide d'un bras à tête aspirante, tandis que la puce microfluidique est maintenu par un support adapté. L'assemblage est complètement terminé après la polymérisation de la colle conductrice. Dans cet exemple de réalisation, la colle électriquement conductrice peut être la colle silicone TOFAY DA6524 fabriquée par DOWCORNING pour permettre d' imposer au liquide sortant du système un potentiel électrique de nébulisation. Comme illustré sur les figures 2A et 2B, une fois polymérisée, la colle 15 joue le rôle d'électrode et une reprise de contact 16 est déportée de la zone de sortie afin de permettre un accès électrique au monde extérieur. Cette reprise de contact 16 est elle-même en contact électrique avec l'électrode 15 (formée par la colle conductrice) par l'intermédiaire d'une piste électrique 17. L'ensemble « reprise de contact 16 / piste électrique 17 / électrode 15 » est réalisé en une seule opération de sérigraphie de colle conductrice à l'aide d'une « toile d'étalement ». Cette toile, dans un premier temps enduite de colle, est ensuite mise en contact avec la surface à encoller, puis dégagée, laissant une pellicule homogène de colle sur la surface d'intérêt. Commercialisées par des société comme DUBUIS ou KOENER, ces toiles de tissu polymères (polyesters) ou ces grilles de métal peuvent être livrées recouvertes de résine photosensible. Ainsi, par insolation et révélation, il est aisé de réaliser sur ce « pochoir », le complémentaire de l'ensemble « reprise de contact / piste électrique / électrode » pour que seule la zone souhaitée soit enduite de colle. Le nez d'électronébulisation et la puce microfluidique sont au moins partiellement constitués de matériaux électriquement isolants de sorte qu'aucun courant électrique ne puisse circuler au sein de leur matière. Ainsi, seule la colle conductrice peut conduire le courant jusqu'au liquide se présentant à la sortie du canal microfluidique de la puce et à l'entrée du nez d'électronébulisation. Selon un second mode d'assemblage, le nez d'électronébulisation est collé à la puce microfluidique à l'aide d'une colle classique comme la DELO-KATIOBOND 45952 fournie par SUPRATEC. Cet assemblage s'opère de la même façon que dans la description précédente, mais ici le nez d'électronébulisation est obligatoirement laissé solidaire de son substrat de fabrication, substrat qui est choisi électriquement conducteur (métal, silicium dopé de type n ou de type p...) et qui permet d'assurer un contact électrique entre le monde extérieur et le liquide se présentant à l'entrée du nez d'électronébulisation. Pour cela, au cours de la réalisation du nez d'électronébulisation, on a pris soin de le munir d'un accès à une portion de substrat conducteur (électrode) pour le liquide sortant du canal de sortie de la puce. La figure 3 est une vue en perspective d'un nez d'électronébulisation 21 constitué par une plaque 22 prolongée, dans le plan de l'une de ses faces principales, par une pointe 23 pourvue d'une fente capillaire 24 pratiquée dans toute l'épaisseur de la pointe. La fente capillaire 24 aboutit à l'extrémité 25 de la pointe 23, destinée à former un orifice d'éjection pour un liquide à nébuliser. Le nez d'électronébulisation de la figure 3 est représenté sans son substrat de fabrication. L'accès à la portion de substrat conducteur est permis par la réalisation d'une rainure de contact 26 réalisée dans l'épaisseur du nez d'électronébulisation. Cette rainure, de section demi-circulaire ici, peut être choisie différemment suivant les cas, notamment de section rectangulaire. Dans tous les cas, on minimisera la longueur de cette rainure qui représente un volume mort pour le liquide. En se référant à la technologie décrite plus loin, cela revient à minimiser l'épaisseur de la couche sacrificielle (typiquement 200 nm) , ce qui permet de limiter les volumes morts à des quantités négligeables. Les figure 4A et 4B sont des vues, respectivement de côté et de dessus, d'un dispositif microfluidique utilisant le nez d'électronébulisation représenté à la figure 3. Les figures 4A et 4B montrent un assemblage comprenant une puce microfluidique 30 et le nez d'électronébulisation 21 solidaire de son substrat de fabrication conducteur 20. La puce microfluidique 30 comprend un canal microfluidique 31 débouchant par l'orifice de sortie 32 sur une zone de surface de la puce microfluidique 21. Le nez d'électronébulisation 21 est disposé sur la puce microfluidique 30 comme pour les figure 2A et 2B. La référence 35 représente la couche de colle classique utilisée. Selon un troisième mode d'assemblage, le nez d'électronébulisation est muni d'un pied lui permettant d'être inséré dans la puce microfluidique.Figure 1 is a perspective view of a structure (or nose) of electrospray 1 constituted by a plate 2 extended, in the plane of one of its main faces, by a tip 3 provided with a capillary slot 4 practiced throughout the thickness of the tip. The capillary slot 4 ends at the end 5 of the tip 3, intended to form an ejection orifice for a liquid to be nebulized. FIGS. 2A and 2B are views, respectively from the side and from above, of a microfluidic device using the electrospraying nose represented in FIG. 1. FIGS. 2A and 2B show an assembly comprising a microfluidic chip 10 and the nose d electrospray 1. The microfluidic chip 10 comprises a microfluidic channel 11 opening out through the outlet orifice 12 onto a surface area of the microfluidic chip. The electrospray nose 1 is arranged on this surface area so that the tip 3 is cantilevered relative to the chip microfluidic 10 and so that the outlet orifice 12 opens onto the capillary slot 4. The outlet orifice 12 can have a diameter between 10 and 100 μm. According to a first assembly method, the electrospray nose 1 is glued to the microfluidic chip 10 using an electrically conductive glue 15. For this, the glue is spread on the upper face of the microfluidic chip by screen printing . In order not to block the outlet orifice 12, it is essential to deposit the adhesive in a thin layer. Glue serigraphy is a technique adapted to this constraint since it allows the spreading of very thin (1 to 10 μm) and homogeneous glue layers (see international application OA-00/77509). Once the screen printing has been carried out, the positioning and alignment of the electrospray nose 1 opposite the microfluidic chip 10 is ensured by a “pick and place” robot called PLAte-forme Technologique d'Intégration Micro-Optique (or PLATIMO) developed by OPUS Optics and Micro Systems. By optical means, the robot locates the exit hole of the microfluidic chip (Typical diameter: from 10 to 100 μm), then locates the entry of the electrospray nose (typically from 1 to 10 μm), then positions the two entities against each other, with micrometric precision. During this operation, the electrospray nose is held and moved using an arm with a suction head, while the microfluidic chip is held by a suitable support. The assembly is completely finished after the polymerization of the conductive adhesive. In this exemplary embodiment, the electrically conductive glue can be the TOFAY DA6524 silicone glue manufactured by DOWCORNING to make it possible to impose on the liquid leaving the system an electrical nebulization potential. As illustrated in FIGS. 2A and 2B, once polymerized, the adhesive 15 plays the role of electrode and a contact resumption 16 is offset from the outlet zone in order to allow electrical access to the outside world. This contact resumption 16 is itself in electrical contact with the electrode 15 (formed by the conductive adhesive) by means of an electrical track 17. The whole "resumption of contact 16 / electrical track 17 / electrode 15 »Is produced in a single screen printing operation using conductive glue using a« spreading fabric ». This canvas, initially coated with glue, is then brought into contact with the surface to be glued, then released, leaving a homogeneous film of glue on the surface of interest. Marketed by companies like DUBUIS or KOENER, these polymer fabric fabrics (polyesters) or these metal grids can be supplied covered with photosensitive resin. Thus, by exposure and revelation, it is easy to make on this "stencil", the complement of the whole "contact recovery / electrical track / electrode" so that only the desired area is coated with adhesive. The electrospray nose and the microfluidic chip are at least partially formed electrically insulating materials so that no electric current can flow through their material. Thus, only the conductive adhesive can conduct the current to the liquid occurring at the outlet of the microfluidic channel of the chip and at the inlet of the electrospray nose. According to a second assembly method, the electrospray nose is glued to the microfluidic chip using a conventional adhesive such as DELO-KATIOBOND 45952 supplied by SUPRATEC. This assembly takes place in the same way as in the previous description, but here the electrospray nose is necessarily left integral with its manufacturing substrate, which substrate is chosen to be electrically conductive (metal, doped silicon of type n or of type p ...) and which ensures electrical contact between the outside world and the liquid appearing at the entrance of the electrospray nose. For this, during the production of the electrospray nose, care was taken to provide it with access to a portion of conductive substrate (electrode) for the liquid leaving the outlet channel of the chip. Figure 3 is a perspective view of an electrospray nose 21 formed by a plate 22 extended, in the plane of one of its main faces, by a tip 23 provided with a capillary slot 24 practiced throughout the tip thickness. The capillary slot 24 ends at the end 25 of the tip 23, intended to form an ejection orifice for a liquid to be nebulized. The nose Figure 3 is shown without its manufacturing substrate. Access to the portion of conductive substrate is allowed by making a contact groove 26 made in the thickness of the electrospray nose. This groove, of semi-circular section here, can be chosen differently depending on the case, in particular of rectangular section. In all cases, minimize the length of this groove which represents a dead volume for the liquid. Referring to the technology described below, this amounts to minimizing the thickness of the sacrificial layer (typically 200 nm), which makes it possible to limit the dead volumes to negligible quantities. FIGS. 4A and 4B are views, respectively from the side and from above, of a microfluidic device using the electrospraying nose represented in FIG. 3. FIGS. 4A and 4B show an assembly comprising a microfluidic chip 30 and the nose d electrospray 21 integral with its conductive manufacturing substrate 20. The microfluidic chip 30 comprises a microfluidic channel 31 opening out through the outlet orifice 32 onto a surface area of the microfluidic chip 21. The electrospraying nose 21 is disposed on the microfluidic chip 30 as in FIGS. 2A and 2B. Reference 35 represents the conventional adhesive layer used. According to a third assembly method, the electrospray nose is provided with a foot allowing it to be inserted into the microfluidic chip.
La sortie de la puce est elle-même adaptée à l'insertion de ce pied, pour d'une part le guider, d'autre part minimiser les volumes morts. Le pied est lui-même traversé d'une rainure de contact et, comme précédemment, l'électrode est constituée par une portion de substrat conducteur solidaire du nez d'électronébulisation. L'ensemble est maintenu par une goutte de colle classique afin de conserver un bon positionnement . La figure 5 est une vue en perspective d'un nez d'électronébulisation 41 constitué par une plaque 42 prolongée, dans le plan de l'une de ses faces principales, par une pointe 43 pourvue d'une fente capillaire 44 pratiquée dans toute l'épaisseur de la pointe. La fente capillaire 44 aboutit à l'extrémité 45 de la pointe 43, destinée à former un orifice d'éjection pour le liquide à nébuliser. Le nez d'électronébulisation de la figure 5 est représenté sans son substrat de fabrication conducteur. La référence 46 désigne le pied de la structure d'électronébulisation et la référence 47 représente la rainure de contact qui permettra le passage du liquide à nébuliser. La figure 6 illustre la mise en place de la structure d'électronébulisation de la figure 5 sur une puce microfluidique adaptée. Sur cette figure, le nez d'électronébulisation 41 est représenté avec son substrat de fabrication conducteur 40. La puce microfluidique 50 comprend un canal microfluidique 51 débouchant par un orifice de sortie 52 au fond d'un logement 53 qui lui-même débouche sur la zone de surface de la puce destinée à recevoir le nez d'électronébulisation. Le logement 53 est prévu pour recevoir le pied 46 du nez d'électronébulisation. La rainure 47 est prévue pour assurer une communication de fluide entre l'orifice 52 et la fente capilaire 44. Avant la mise en place du nez d'électronébulisation, une goutte de colle 54 est disposée sur la zone de surface de la puce microfluidique 50. La figure 7 montre la structure d'électronébulisation 41 positionnée sur la puce microfluidique 50 et rendue solidaire de cette puce par la goutte de colle 54. Selon les cas, notamment lorsque la pression attendue à l'intérieur du composant est forte (écoulement hydrodynamique), l'étanchéité doit être accrue par injection de colle entre le pied 46 et le logement 53. Pour cela, le simple dépôt d'une goutte de colle calibrée suffit. Elle pénètre à l'intérieur du composant par capillarité et s'arrête sur les angles vifs des entités (zones de fort mouillage) . Cette étape n'est pas nécessaire lorsque la pression du liquide présent à l'intérieur du composant est faible, ce qui est le cas d'un écoulement électro-osmotique, toujours précédé d'un pré-remplissage. Le dispositif microfluidique selon l'invention doit être connecté électriquement au milieu extérieur. la figure 8 illustre une possibilité pour connecter électriquement le dispositif microfluidique représenté aux figures 2A et 2B au milieu extérieur. Le « ire bonding » est une possibilité classique pour le test des composants fabriqués en micro-technologie et en microélectronique. Un fil d'or 60 d'une centaine de micromètres, est soudé entre la reprise de contact 16 du dispositif et le circuit électrique qui constitue le support de la puce. Celui- ci, est lui même enfiché sur un circuit plus gros dans lequel peuvent s'insérer les câbles coaxiaux qui équipent les alimentations du commerce. Un simple contact entre une pointe de test en or 61 et la reprise de contact 16 (ou, le cas échéant, le substrat conducteur) est une seconde solution pour assurer la connexion avec le milieu extérieur. Cette solution est illustrée par la figure 9. La connexion entre les alimentations du commerce et de telles aiguilles est aisée par simple soudure d'un câble électrique. Ces pointes de test, montées sur ressort et dont les têtes sont de l'ordre de quelques centaines de micromètres, sont commercialisées par exemple par la société FM Contact Technologies sous le nom de pointes de test Feinmetall . La puce microfluidique peut être réalisée à partir de deux substrats de silicium ou de pyrex d'épaisseur 500 μm. Le réseau fluidique, dont le canal de sortie de la puce, peut être réalisé dans un premier substrat par gravure profonde (DRIE pour « Deep Reactive Ion Etching ») , puis oxydé (isolation électrique de la puce) . Le second substrat destiné à venir fermer le réseau fluidique du premier, peut lui aussi être gravé par DRIE (trou débouchant du canal de sortie) et oxydé thermiquement . Suivant l'épaisseur de la couche d'oxyde de silicium obtenue, l'assemblage des deux substrats est réalisé par scellement anodique (couche d'oxyde de silicium mince) ou par scellement direct (couche d'oxyde de silicium épaisse, typiquement 3 μm) . Le nez d'électronébulisation peut être réalisé à l'aide d'une résine épaisse comme la SU8 selon une filière technologique décrite par les figures 10A à 10E. La figure 10A montre un substrat en silicium 70 recouvert partiellement d'une couche sacrificielle de nickel 71 de quelques centaines de nanomètres d'épaisseur. Cette couche sacrificielle 71 est nécessaire à la réalisation d'un surplomb, lui-même nécessaire à la découpe finale visant à libérer la pointe du nez d'électronébulisation. Un dépôt 72 de résine SU 8 , de quelques dizaines de micromètres d'épaisseur, est formé sur la structure représentée à la figure 10A comme le montre la figure 10B. Le dépôt de résine est ensuite transformé, par insolation UV (quelque dizaines de mW/cm2) et révélation (gravure du SU 8) , en une plaque 73 prolongée d'une pointe 74 reposant sur la couche sacrificielle 71. C'est ce que montre la figure 10C. La gravure permet également de réaliser une fente capilaire 75 dans la pointe 74, cette fente capilaire 75 aboutissant à l'extrémité 76 de la pointe. La figure 10D montre la structure obtenue après le retrait de la couche sacrificielle. La pointe 74 se trouve alors en surplomb par rapport au substrat 70. Le substrat 70 est ensuite clivé de manière à libérer le nez d'électronébulisation. C'est ce que montre la figure 10E. Une partie de la pointe 74, une partie de la fente capillaire 75 et l'extrémité 76 de la pointe débordent du substrat 70. L'invention est utilisable dans toutes les applications utilisant, comme méthode de détection, la spectrométrie de masse par ionisation par electronébulisation (ESI pour « ElectroSprayThe output of the chip is itself adapted to the insertion of this foot, on the one hand to guide it, on the other hand to minimize the dead volumes. The base is itself crossed by a contact groove and, as before, the electrode consists of a portion of conductive substrate secured to the electrospray nose. The whole is maintained by a drop of classic glue to maintain a good positioning. FIG. 5 is a perspective view of an electrospray nose 41 constituted by a plate 42 extended, in the plane of one of its main faces, by a point 43 provided with a capillary slot 44 practiced throughout the tip thickness. The capillary slot 44 ends at the end 45 of the tip 43, intended to form an ejection orifice for the liquid to be nebulized. The electrospray nose of Figure 5 is shown without its conductive manufacturing substrate. The reference 46 designates the foot of the electrospray structure and the reference 47 represents the contact groove which will allow the passage of the liquid to be nebulized. FIG. 6 illustrates the installation of the electrospray structure of FIG. 5 on a suitable microfluidic chip. In this figure, the electrospray nose 41 is shown with its conductive manufacturing substrate 40. The microfluidic chip 50 comprises a microfluidic channel 51 opening out through an outlet orifice 52 at the bottom of a housing 53 which itself opens onto the surface area of the chip intended to receive the electrospray nose. The housing 53 is provided to receive the foot 46 of the electrospray nose. The groove 47 is provided to ensure fluid communication between the orifice 52 and the capillary slot 44. Before the installation of the electrospray nose, a drop of glue 54 is placed on the surface area of the microfluidic chip 50 FIG. 7 shows the electrospray structure 41 positioned on the microfluidic chip 50 and made integral with this chip by the drop of glue 54. Depending on the case, especially when the pressure expected inside the component is high (hydrodynamic flow ), the seal must be increased by injecting glue between the base 46 and the housing 53. For this, the simple deposit of a drop of calibrated glue is sufficient. It penetrates inside the component by capillary action and stops on the sharp angles of the entities (areas of strong wetting). This step is not necessary when the pressure of the liquid present inside the component is low, which is the case of an electro-osmotic flow, always preceded by a pre-filling. The microfluidic device according to the invention must be electrically connected to the outside environment. FIG. 8 illustrates a possibility for electrically connecting the microfluidic device shown in FIGS. 2A and 2B to the outside environment. "Bond bonding" is a classic possibility for testing components manufactured in micro-technology and microelectronics. A gold wire 60 of a hundred micrometers is soldered between the contact resumption 16 of the device and the electrical circuit which constitutes the support of the chip. It is itself plugged into a larger circuit into which the coaxial cables which equip commercial power supplies can be inserted. A simple contact between a gold test tip 61 and the contact resumption 16 (or, where appropriate, the conductive substrate) is a second solution for ensuring the connection with the external environment. This solution is illustrated in Figure 9. The connection between commercial power supplies and such needles is easy by simply soldering an electric cable. These spring-loaded test tips, the heads of which are on the order of a few hundred micrometers, are marketed for example by the company FM Contact Technologies under the name of Feinmetall test tips. The microfluidic chip can be produced from two silicon or pyrex substrates with a thickness of 500 μm. The fluidic network, including the chip exit channel, can be produced in a first substrate by deep etching (DRIE for “Deep Reactive Ion Etching”), then oxidized (electrical insulation of the chip). The second substrate intended to close the fluidic network of the first, can also be etched by DRIE (hole opening out of the outlet channel) and thermally oxidized. Depending on the thickness of the silicon oxide layer obtained, the two substrates are assembled by anodic sealing (thin silicon oxide layer) or by direct sealing (thick silicon oxide layer, typically 3 μm). The electrospray nose can be produced using a thick resin such as SU8 according to a technological sector described by FIGS. 10A to 10E. FIG. 10A shows a silicon substrate 70 partially covered with a sacrificial layer of nickel 71 a few hundred nanometers thick. This sacrificial layer 71 is necessary for the production of an overhang, itself necessary for the final cutting aiming to release the tip of the nose of electrospray. A deposit 72 of resin SU 8, a few tens of micrometers thick, is formed on the structure shown in FIG. 10A as shown in FIG. 10B. The resin deposit is then transformed, by UV exposure (some tens of mW / cm 2 ) and revelation (engraving of SU 8), into a plate 73 extended by a point 74 resting on the sacrificial layer 71. This is what as shown in Figure 10C. The etching also makes it possible to produce a capillary slot 75 in the tip 74, this capillary slot 75 ending at the end 76 of the tip. Figure 10D shows the structure obtained after removal of the sacrificial layer. The point 74 is then overhanging with respect to the substrate 70. The substrate 70 is then cleaved so as to release the nose of electrospray. This is shown in Figure 10E. Part of the tip 74, part of the capillary slot 75 and the end 76 of the tip protrude from the substrate 70. The invention can be used in all applications using, as a detection method, mass spectrometry by ionization by electrospray (ESI for "ElectroSpray
Ionisation ») . Elle est utilisable pour l'analyse d'échantillons dans le secteur biomédical et l'industrie pharmaceutique : analyses génétiques, protéomique (identification de protéines...) , développement de médicaments . Ionization ”). It can be used for the analysis of samples in the biomedical sector and the pharmaceutical industry: genetic analyzes, proteomics (identification of proteins, etc.), drug development.

Claims

REVENDICATIONS
1. Dispositif microfluidique comprenant une puce microfluidique (10, 30, 50) assemblée à une structure d'électronébulisation (1, 21, 41), la puce microfluidique comprenant au moins un canal microfluidique (11, 31, 51) débouchant par un orifice de sortie (12, 32, 52) sur une zone de surface de la puce microfluidique, la structure d'électronébulisation comprenant au moins une pointe plate et mince (3, 23, 43), la pointe étant pourvue d'une fente capillaire (4, 24, 44) qui aboutit à l'extrémité (5, 25, 45) de la pointe pour former un orifice d'éjection d'un liquide à nébuliser, la structure d'électronébulisation étant disposée sur la zone de surface de la puce microfluidique de façon que ladite pointe soit en porte-à-faux par rapport à la puce microfluidique et de façon que l'orifice de sortie du canal microfluidique débouche sur la fente capillaire de la pointe, le dispositif microfluidique possédant également des moyens d'application d'une tension d'électronébulisation au liquide à nébuliser. 1. Microfluidic device comprising a microfluidic chip (10, 30, 50) assembled to an electrospray structure (1, 21, 41), the microfluidic chip comprising at least one microfluidic channel (11, 31, 51) opening out through an orifice outlet (12, 32, 52) on a surface area of the microfluidic chip, the electrospray structure comprising at least one flat and thin tip (3, 23, 43), the tip being provided with a capillary slot ( 4, 24, 44) which terminates at the end (5, 25, 45) of the tip to form an orifice for ejecting a liquid to be nebulized, the electrospray structure being arranged on the surface area of the microfluidic chip so that said tip is cantilevered with respect to the microfluidic chip and so that the outlet orifice of the microfluidic channel opens onto the capillary slot of the tip, the microfluidic device also having means of application of an electronéb voltage use of the liquid to be nebulized.
2. Dispositif microfluidique selon la revendication 1, caractérisé en ce que la puce microfluidique (10, 30, 50) est assemblée à la structure d'électronébulisation (1, 21, 41) par de la colle (15, 35, 54) . 2. Microfluidic device according to claim 1, characterized in that the microfluidic chip (10, 30, 50) is assembled to the electrospray structure (1, 21, 41) by glue (15, 35, 54).
3. Dispositif microfluidique selon la revendication 2, caractérisé en ce que la colle étant électriquement conductrice, les moyens d'application d'une tension d'électronébulisation comprennent une couche de ladite colle (15) qui s'étend jusqu'à la fente capillaire (4), au niveau de l'orifice de sortie (12) du canal microfluidique (11) pour constituer une électrode d'électronébulisation. 3. Microfluidic device according to claim 2, characterized in that the adhesive being electrically conductive, the means for applying an electrospray voltage comprise a layer of said adhesive (15) which extends to the capillary slot (4), at the outlet orifice (12) of the microfluidic channel (11) to form an electrospray electrode.
4. Dispositif d'électronébulisation selon la revendication 3, caractérisé en ce que les moyens d'application d'une tension d'électronébulisation comprennent une reprise de contact (16) située sur la puce microfluidique (10) , reliée électriquement à la couche de colle (15) et permettant une liaison électrique vers l'extérieur. 4. electrospray device according to claim 3, characterized in that the means for applying an electrospray voltage comprise a contact resumption (16) located on the microfluidic chip (10), electrically connected to the layer of glue (15) and allowing an electrical connection to the outside.
5. Dispositif d'électronébulisation selon l'une des revendications 1 ou 2 , caractérisé en ce que la structure d'électronébulisation (21, 41) est solidaire d'un élément électriquement conducteur (20, 40) dont une partie est disposée en regard de la fente capillaire (24, 44), au niveau de l'orifice de sortie du canal microfluidique, pour constituer une électrode d' electronébulisation . 5. electrospray device according to one of claims 1 or 2, characterized in that the electrospray structure (21, 41) is integral with an electrically conductive element (20, 40), part of which is arranged opposite capillary slot (24, 44), at the outlet of the microfluidic channel, to form an electrospray electrode.
6. Dispositif d'électronébulisation selon la revendication 5, caractérisé en ce que la structure d'électronébulisation (21) possède une rainure de contact (26) formée transversalement dans ladite structure pour déboucher au niveau de l'orifice de sortie (32) du canal microfluidique (31) et exposer l'élément électriquement conducteur. 6. An electrospray device according to claim 5, characterized in that the electrospray structure (21) has a contact groove (26) formed transversely in said structure to open out at the outlet orifice (32) of the microfluidic channel (31) and exposing the electrically conductive member.
7. Dispositif d'électronébulisation selon l'une des revendications 5 ou 6, caractérisé en ce que l'élément électriquement conducteur (20, 40) est un élément constitutif d'un substrat de fabrication de la structure d'électronébulisation (21, 41). 7. electrospray device according to one of claims 5 or 6, characterized in that the electrically conductive element (20, 40) is a component of a substrate for manufacturing the electrospray structure (21, 41 ).
8. Dispositif d'électronébulisation selon l'une des revendication 1 ou 2 , caractérisé en ce que la structure d'électronébulisation (41) comprend un pied (46) adapté pour être reçu dans un logement (53) de la puce microfluidique (50) . 8. electrospray device according to one of claims 1 or 2, characterized in that the electrospray structure (41) comprises a foot (46) adapted to be received in a housing (53) of the microfluidic chip (50 ).
9. Dispositif d'électronébulisation selon la revendication 8, caractérisé en ce que le pied (46) possède une rainure (47) , le pied (46) et le logement9. electrospray device according to claim 8, characterized in that the foot (46) has a groove (47), the foot (46) and the housing
(53) étant prévus pour que la rainure (47) serve de communication de fluide entre l'orifice de sortie (52) du canal microfluidique (51) , situé au fond du logement, et la fente capillaire. (53) being provided so that the groove (47) serves as fluid communication between the outlet orifice (52) of the microfluidic channel (51), located at the bottom of the housing, and the capillary slot.
PCT/FR2004/050575 2003-11-12 2004-11-09 Microfluidic device comprising an electrospray nose WO2005048291A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/578,175 US7411184B2 (en) 2003-11-12 2004-11-09 Microfluidic device comprising an electrospray nose
DE200460023880 DE602004023880D1 (en) 2003-11-12 2004-11-09 MICROFLUIDIC EQUIPMENT WITH AN ELECTROSPRAY NOSE
JP2006538909A JP4527727B2 (en) 2003-11-12 2004-11-09 Microfluidic device with electrospray nozzle
EP04805818A EP1714300B1 (en) 2003-11-12 2004-11-09 Microfluidic device comprising an electrospray nose
AT04805818T ATE447237T1 (en) 2003-11-12 2004-11-09 MICROFLUIDIC DEVICE HAVING AN ELECTROSPRAY NOSE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350821A FR2862007B1 (en) 2003-11-12 2003-11-12 MICROFLUIDIC DEVICE WITH AN ELECTRONEBULATING NOSE.
FR0350821 2003-11-12

Publications (1)

Publication Number Publication Date
WO2005048291A1 true WO2005048291A1 (en) 2005-05-26

Family

ID=34508751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/050575 WO2005048291A1 (en) 2003-11-12 2004-11-09 Microfluidic device comprising an electrospray nose

Country Status (7)

Country Link
US (1) US7411184B2 (en)
EP (1) EP1714300B1 (en)
JP (1) JP4527727B2 (en)
AT (1) ATE447237T1 (en)
DE (1) DE602004023880D1 (en)
FR (1) FR2862007B1 (en)
WO (1) WO2005048291A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100634545B1 (en) * 2005-06-17 2006-10-13 삼성전자주식회사 Microchip assembly
FR2934179B1 (en) * 2008-07-24 2010-09-17 Commissariat Energie Atomique LABORATORY ON CHIP COMPRISING A MICRO-FLUIDIC NETWORK AND A COPLANAR ELECTRONEBULATING NOSE.
CA2743211A1 (en) 2008-11-12 2010-05-20 Caris Life Sciences Luxembourg Holdings, S.A.R.L. Methods and systems of using exosomes for determining phenotypes
JP4818399B2 (en) * 2009-06-15 2011-11-16 三菱電機株式会社 Electrostatic atomizer and air conditioner
AU2011223789A1 (en) 2010-03-01 2012-09-20 Caris Life Sciences Switzerland Holdings Gmbh Biomarkers for theranostics
KR20130043104A (en) 2010-04-06 2013-04-29 카리스 라이프 사이언스 룩셈부르크 홀딩스 Circulating biomarkers for disease
JP5549361B2 (en) * 2010-05-07 2014-07-16 住友ベークライト株式会社 Microchannel device
GB201011019D0 (en) 2010-07-01 2010-08-18 Weston Richard Ionisation mass spectrometry
EP4170031A1 (en) 2012-10-23 2023-04-26 Caris Science, Inc. Aptamers and uses thereof
US10942184B2 (en) 2012-10-23 2021-03-09 Caris Science, Inc. Aptamers and uses thereof
EP2935628B1 (en) 2012-12-19 2018-03-21 Caris Life Sciences Switzerland Holdings GmbH Compositions and methods for aptamer screening
US9064680B2 (en) * 2013-05-01 2015-06-23 Ut-Battelle, Llc AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe
WO2015031694A2 (en) 2013-08-28 2015-03-05 Caris Science, Inc. Oligonucleotide probes and uses thereof
AU2016229076B2 (en) 2015-03-09 2022-01-20 Caris Science, Inc. Oligonucleotide probes and uses thereof
AU2016287499B2 (en) 2015-06-29 2022-08-04 Caris Science, Inc. Therapeutic oligonucleotides
CA2993652A1 (en) 2015-07-28 2017-02-02 Caris Science, Inc. Targeted oligonucleotides
CN105470097B (en) * 2015-12-09 2018-02-09 清华大学 A kind of interlayer electrospray ionization source device and ioning method
EP3430137A4 (en) 2016-03-18 2019-11-06 Caris Science, Inc. Oligonucleotide probes and uses thereof
IL306052A (en) 2016-05-25 2023-11-01 Caris Science Inc Oligonucleotide probes and uses thereof
MX2021006234A (en) 2018-11-30 2021-09-10 Caris Mpi Inc Next-generation molecular profiling.
WO2020246963A1 (en) * 2019-06-04 2020-12-10 Hewlett-Packard Development Company, L.P. Integrated microfluidic ejector chips
KR20220130108A (en) 2019-12-02 2022-09-26 캐리스 엠피아이, 아이엔씨. Pan-Arm Platinum Response Predictor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788166A (en) * 1996-08-27 1998-08-04 Cornell Research Foundation, Inc. Electrospray ionization source and method of using the same
WO1998035376A1 (en) * 1997-01-27 1998-08-13 California Institute Of Technology Mems electrospray nozzle for mass spectroscopy
DE10000691A1 (en) * 2000-01-10 2001-07-26 Fraunhofer Ges Forschung Micro nozzle system
US6481648B1 (en) * 1999-10-01 2002-11-19 Agilent Technologies, Inc. Spray tip for a microfluidic laboratory microchip
US20030082080A1 (en) * 1999-10-01 2003-05-01 Agilent Technologies, Inc. Coupling to microstructures for a laboratory microchip

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865806B1 (en) * 2004-01-30 2007-02-02 Commissariat Energie Atomique ON-CHIP LABORATORY COMPRISING A MICRO-FLUIDIC NETWORK AND A COPLANAR ELECTRONEBULATING NOSE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788166A (en) * 1996-08-27 1998-08-04 Cornell Research Foundation, Inc. Electrospray ionization source and method of using the same
WO1998035376A1 (en) * 1997-01-27 1998-08-13 California Institute Of Technology Mems electrospray nozzle for mass spectroscopy
US6481648B1 (en) * 1999-10-01 2002-11-19 Agilent Technologies, Inc. Spray tip for a microfluidic laboratory microchip
US20030082080A1 (en) * 1999-10-01 2003-05-01 Agilent Technologies, Inc. Coupling to microstructures for a laboratory microchip
DE10000691A1 (en) * 2000-01-10 2001-07-26 Fraunhofer Ges Forschung Micro nozzle system

Also Published As

Publication number Publication date
US7411184B2 (en) 2008-08-12
FR2862007B1 (en) 2005-12-23
EP1714300A1 (en) 2006-10-25
ATE447237T1 (en) 2009-11-15
JP4527727B2 (en) 2010-08-18
EP1714300B1 (en) 2009-10-28
JP2007510920A (en) 2007-04-26
FR2862007A1 (en) 2005-05-13
DE602004023880D1 (en) 2009-12-10
US20070114385A1 (en) 2007-05-24

Similar Documents

Publication Publication Date Title
EP1714300B1 (en) Microfluidic device comprising an electrospray nose
US7391020B2 (en) Electrospray apparatus with an integrated electrode
EP1891329B1 (en) Electrowetting pumping device and use for measuring electrical activity
US20060192107A1 (en) Methods and apparatus for porous membrane electrospray and multiplexed coupling of microfluidic systems with mass spectrometry
Kim et al. Microfabricated monolithic multinozzle emitters for nanoelectrospray mass spectrometry
US6621076B1 (en) Flexible assembly for transporting sample fluids into a mass spectrometer
US20040206399A1 (en) Microfluidic devices and methods
US20050186629A1 (en) Nanopore device and methods of fabricating and using the same
WO2005076311A1 (en) Lab-on-a-chip comprising a coplanar microfluidic system and electrospray nozzle
EP1703987B1 (en) Planar electronebulization sources modeled on a calligraphy pen and the production thereof.
Lotter et al. HPLC-MS with glass chips featuring monolithically integrated electrospray emitters of different geometries
Jeng et al. Electrospray ionization from a droplet deposited on a surface‐modified glass rod
FR2994271A1 (en) GAS ANALYSIS SYSTEM
US20040084311A1 (en) Biochip and a manufacturing method of biochip
EP2153899A1 (en) Lab-on-a-chip comprising a coplanar microfluidic network and electrospray nozzle
EP3488929B1 (en) Injection device for a fluid sample
Le Gac et al. Two‐dimensional microfabricated sources for nanoelectrospray
Tsao et al. A piezo-ring-on-chip microfluidic device for simple and low-cost mass spectrometry interfacing
FR2960798A1 (en) Microfluidic device for nebulization of liquid of interest i.e. aerosol, inhaled by patient in medical field, has liquid transporting unit conveying liquid of interest to liquid supplying orifice via lateral channel
WO2011073206A1 (en) Device and method for producing a sample from a liquid
FR2906890A1 (en) High frequency or hyper frequency ball grid array type electronic box testing interface for monolithic microwave integrated circuit, has pin intercalated between box and board and including conductor elements and holes to assure connections
TWI275791B (en) Integrated electrospray microchip and manufacturing method therefor
Ek et al. Electrospray ionization from an adjustable gap between two silicon chips
Svedberg et al. Fabrication of open PDMS electrospray tips integrated with microchannels using replication from a nickel master
ROLANDO SEVERINE LE GAC, a, w STEVE ARSCOTTb AND

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004805818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006538909

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007114385

Country of ref document: US

Ref document number: 10578175

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004805818

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10578175

Country of ref document: US