WO2005047879A1 - 液体電気化学ガスセンサ - Google Patents

液体電気化学ガスセンサ Download PDF

Info

Publication number
WO2005047879A1
WO2005047879A1 PCT/JP2004/012258 JP2004012258W WO2005047879A1 WO 2005047879 A1 WO2005047879 A1 WO 2005047879A1 JP 2004012258 W JP2004012258 W JP 2004012258W WO 2005047879 A1 WO2005047879 A1 WO 2005047879A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
water
gas sensor
gas
electrolyte
Prior art date
Application number
PCT/JP2004/012258
Other languages
English (en)
French (fr)
Inventor
Tomohiro Inoue
Hiroki Fujimori
Original Assignee
Figaro Engineering Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc. filed Critical Figaro Engineering Inc.
Priority to JP2005515396A priority Critical patent/JP4179515B2/ja
Priority to US11/026,053 priority patent/US7378008B2/en
Publication of WO2005047879A1 publication Critical patent/WO2005047879A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen

Definitions

  • the present invention relates to a liquid electrochemical gas sensor.
  • Patent Documents 1 and 7 Gas sensors using a solid proton conductor membrane are known (Patent Documents 1 and 7).
  • a proton conductor membrane is sandwiched between a pair of electrodes, and water vapor is supplied from a water reservoir.
  • the electrolyte In a gas sensor using a liquid electrolyte, the electrolyte is held by a separator, and the electrolyte is supplied from a liquid reservoir of the electrolyte via a wick. Since sulfuric acid is used for the electrolyte, a metal housing cannot be used, and sulfuric acid may absorb moisture in a high-humidity atmosphere and overflow from the liquid reservoir.
  • Patent Document 2 proposes a liquid electrochemical gas sensor that does not use a wick.
  • sulfuric acid is stored in a water reservoir, absorbs moisture at high humidity, and releases moisture at low humidity, making the humidity in the gas sensor almost constant.
  • Patent Document 3 proposes setting a deliquescent salt such as LiCl in a water reservoir to make the humidity in the gas sensor substantially constant.
  • the electrolyte may overflow from the water reservoir in a high-temperature and high-humidity atmosphere.
  • Patent Document 4 discloses a separator in which colloidal silica and PTFE (polytetrafluoroethylene) are supported on a paper-like glass filter.
  • colloidal silica provides a hydrophilic channel force for holding the electrolytic solution
  • PTFE provides a hydrophobic channel for gas diffusion.
  • Patent Document 5 discloses a ⁇ sensor using KOH or H 2 SO electrolyte
  • Patent Document 6 discloses a CO sensor using an MgSO aqueous solution.
  • Patent Document 1 W ⁇ 02 / 097420A1
  • Patent Document 2 W ⁇ 01 / 14864A1
  • Patent Document 3 USP5958200
  • Patent Document 4 USP4587003
  • Patent Document 5 USP5240893
  • Patent Document 6 USP5302274
  • Patent Document 7 USP6200443
  • An object of the present invention is to provide a novel liquid electrochemical gas sensor that does not use sulfuric acid.
  • a liquid electrochemical gas sensor is a gas sensor in which an electrolytic solution is held by a porous separator, at least a detection electrode and a counter electrode are connected to the separator, and water vapor is supplied from a water reservoir to the separator.
  • the separator is a hydrophilic organic polymer that supports an aqueous solution of water or an alkali metal hydroxide or an aqueous solution of a deliquescent, water-soluble salt.
  • the separator supports an aqueous solution of alkali metal hydroxide or pure water, and the detection target gas is a reducing gas.
  • a solid electrolyte membrane is disposed between the separator and the detection electrode.
  • the counter electrode is an oxide or hydroxide of Mn, Ni, Pb, Zn.
  • a constricted portion is provided between the opening and the bottom of the metal can having an opening and a bottom, and the metal washer having the opening is supported by the constricted portion, and Then, at least the counter electrode, the separator, and the detection electrode are arranged, and water is accommodated between the metal cache and the bottom of the metal can.
  • CO in hydrogen and a reducing gas in an inert gas can also be detected.
  • the separator is particularly preferably an alkali metal salt of a sulfonic acid group or an organic polymer containing an alcoholic hydroxyl group.
  • An organic polymer hydrophilized by an alkali metal salt or alkaline earth salt of a phonic acid group, a phenol group, an amino group / imide group, or a derivative thereof may be used. It is preferable that the hydrogen ion of the hydrophilic group in the polymer is replaced with another cation. This is called saponification.Alkali metal ions are preferred for saponification, but alkaline earth ions, Ammonia ions or derivatives thereof may also be used.
  • an organic polymer separator made hydrophilic by an alkali metal salt of a sulfonic acid group, an alcoholic hydroxyl group, or the like uses an alkali metal hydroxide such as K ⁇ H, Na ⁇ H, etc. It has been found that reducing gas such as CO and H can be detected either as an aqueous solution of water or as a simple water such as pure water or deionized water as an electrolyte.
  • alkali metal hydroxide such as K ⁇ H, Na ⁇ H, etc.
  • the shape of the separator is a nonwoven fabric, a film having micropores, or a woven fabric
  • the base material is a synthetic resin such as PP (polypropylene), a polyamide resin, or a PTFE resin.
  • a polyamide resin a modified polyamide resin in which the NH group is changed to ⁇ _ ⁇ ( ⁇ is a phenyl group) is preferable in order to increase heat resistance.
  • sensitivity to CO and ⁇ can be obtained without sulfuric acid.
  • an alkaline electrolyte such as an alkali metal hydroxide such as KOH can be used as the electrolyte, and stable sensitivity such as CO was obtained.
  • simple water such as ion-exchanged water or an aqueous solution of a salt soluble in non-deliquescent water such as MgSO can be used.
  • H is, for example, 4 or more, preferably 6 or more, and particularly preferably 7 or more.
  • the product at the detection electrode is a proton.
  • a reducing gas such as CO
  • the product at the detection electrode is a proton.
  • an alkali metal hydroxide such as potassium hydroxide
  • hydroxyl ions move to the interface between the sensing electrode and the electrolyte so as to neutralize the proton injected from the sensing electrode into the electrolyte. It can be considered that a reaction occurs.
  • Both the detection electrode and the counter electrode may be catalyst electrodes such as Pt, Pt-RuO, Pd, Au, and metal oxides.
  • the counter electrode is an oxide or hydroxide of Mn, Ni, Pb, or Zn, it is cost-effective.
  • a reducing gas can be detected even in an atmosphere without oxygen.
  • the sensitivity of C ⁇ can be made higher than that of hydrogen, so that CO in hydrogen can be detected for a fuel cell.
  • sensitivity can be obtained only by humidifying the separator with water vapor without replenishing the separator with wick. Therefore, in the structure of the gas sensor, for example, a constriction is provided between the opening and the bottom of a metal can having an opening and a bottom, and the metal washer having the opening is supported by the constriction, and at least the metal washer is provided on the metal washer.
  • the counter electrode, the separator and the detection electrode are arranged, and water is stored between the metal washer and the bottom of the metal can.
  • the water can be liquid water or gelled water.
  • the gas to be detected is, for example, a reducing gas such as CO, hydrogen, alcohol, anoaldehyde, hydrogen sulfide, and ammonia, and can also detect CO in hydrogen and a reducing gas in an inert gas.
  • a reducing gas such as CO, hydrogen, alcohol, anoaldehyde, hydrogen sulfide, and ammonia
  • sulfuric acid is not used for the electrolyte, a metal can be used for the package, and sulfuric acid does not overflow in a high humidity atmosphere.
  • An alkaline electrolyte such as an aqueous KOH solution or a neutral electrolyte such as pure water can be used.
  • FIG. 1 is a sectional view of a liquid electrochemical gas sensor of an embodiment.
  • FIG. 2 is a cross-sectional view showing the sensor main body of the liquid electrochemical gas sensor of the embodiment and its surroundings.
  • FIG. 3 is a cross-sectional view showing the sensor main body of the liquid electrochemical gas sensor of the embodiment and its surroundings.
  • FIG. 4 is a cross-sectional view showing a sensor body of a liquid electrochemical gas sensor of a modified example and its surroundings.
  • FIG. 5 is a characteristic diagram showing a response at room temperature to CO 30 lOOppm in an example using a sulfonated separator.
  • Figure 6 shows the characteristics of room temperature response to H30OOOOppm under the same conditions as in Figure 5.
  • FIG. 1 A first figure.
  • FIG. 7 is a characteristic diagram showing a response at room temperature to CO30-100 ppm in a conventional example using a separator having low hydrophilicity.
  • Fig. 8 shows the conversion of H30-IOOppm to the conventional example using a low hydrophilic separator.
  • FIG. 4 is a characteristic diagram showing a response at room temperature.
  • FIG. 9 is a characteristic diagram showing response currents to various gases in a conventional example using a solid proton conductive electrolyte and an example in which a KOH aqueous solution membrane is supported on a sulfonated separator.
  • FIG. 10 is a characteristic diagram showing a response to CO in an example using a 0.1 M KOH aqueous solution.
  • FIG. 11 is a characteristic diagram showing a response to CO in an example using a 0.01 M KOH aqueous solution.
  • FIG. 12 is a characteristic diagram showing characteristics of the gas sensor of Example for 22 weeks.
  • FIG. 13 is a characteristic diagram showing the durability performance of the gas sensor of the example in a high-temperature, high-humidity atmosphere (60 ° C. X 95./.RH).
  • FIG. 14 is a characteristic diagram showing a response of the gas sensor of the embodiment to CO at _10 ° C.
  • FIG. 15 shows a comparison between the conventional example using the solid proton conductive electrolyte and the embodiment.
  • FIG. 4 is a characteristic diagram showing the ambient temperature dependence of the gas sensor.
  • FIG. 16 is a characteristic diagram of a KOH / Pt-MnO system at 20 ° C.
  • FIG. 17 is a characteristic diagram showing responses to various CO concentrations in the MgSO / Pt-MnO system.
  • FIG. 18 is a characteristic diagram showing responses to various CO concentrations in the MgSO ZPt_Pt system.
  • FIG. 19 is a characteristic diagram at 20 ° C. in a MgSO ZPt_Pt system.
  • FIG. 20 is a characteristic diagram at 60 ° C. in a MgSO ZPt_Pt system.
  • FIG. 21 shows -10 for the MgSO ZPt_Pt system. It is a characteristic view in C.
  • Figure 22 shows the results when the MgSO / Pt_Pt-based gas sensor was stored at 60 ° C and 95% relative humidity.
  • FIG. 1 A first figure.
  • Figure 23 shows the response characteristics to C in H with a MgSO / Pt-MnO-based gas sensor.
  • FIG. 1 A first figure.
  • FIG. 24 is a diagram showing a layout of an apparatus for measuring CO in hydrogen.
  • FIG. 1 to FIG. 24 show an embodiment and a modification thereof.
  • a force indicating that the separator is sulfonated Carboxylation is good, or a separator containing an alcoholic hydroxyl group is good.
  • the sulfonic acid group exists as an alkali metal salt of sulfonic acid.
  • 2 is a liquid electrochemical gas sensor
  • 4 is a sensor main body
  • a detection electrode 8 and a counter electrode 10 are provided on the front and back of a separator 6.
  • the separator 6 is porous and holds an electrolytic solution.
  • the separator 6 has a thickness of about 0.1 mm and a diameter of about 5 to 20 mm.
  • the separator 6 is made of, for example, a woven or non-woven fabric of synthetic fibers, and is made hydrophilic by sulfonation or introduction of an alcoholic hydroxyl group.
  • Sulfonidani the embodiment will be described with reference to Sulfonidani.
  • the organic polymer of the separator is an organic polymer of (A-SO X)-(B) and an organic polymer of R
  • A, B, and R represent a monomer
  • n represents an integer of 1 or more
  • m and p represent an integer of 0 or more
  • X is, for example, an alkali metal ion.
  • an organic polymer - When (A-SO X) _ and -B- copolymers, p is at 0, n / (n + m ) , for example, 5 X 10_ 4 - 4
  • the organic polymer of the separator is (A— SO X)-(B) and another organic polymer
  • n / (n + m + p) is 5 X 10- 4 - 4 X 10- 2 is preferred.
  • n / (n + m) (if R component is not), or n / (n + m + p ) ( if R component is present) is, 5 X 10- 3 1.5 ⁇ 10 2 are particularly preferred Rere.
  • the degree of sulfonation is, for example, about 0.01 in the above-mentioned nZ (n + m + p) in a nonwoven fabric bound with SBR (styrene butadiene rubber) in which polyamide fibers are sulfonated.
  • (n + m) is about 0.05.
  • Porous membrane if such a PP (polypropylene), p is 0 for example, n / (n + m + p) becomes 5 X 10- 4 4 X 10- 2, for example, about.
  • n / (n + m + p) is, for example, 5 X 10- 4 - 4 X 10- 2 mm, preferably between 5 X 10- 3 1.5 X 10- 2 mm.
  • a non-sulfonated nonwoven fabric of a polyamide resin using an SBR binder was treated with a surfactant (material unknown) (trade name: WO-DO manufactured by Mitsubishi Paper Mills). ) was used.
  • a nonwoven fabric of the above polyamide resin, in which the binder was changed to SBR in which sulfonation was used (polyamide separator, n / (n + m + p): 0.01, manufactured by Mitsubishi Paper Mills) was used.
  • a porous film of PP obtained by sulfonating n / (n + m) to 0.01 (PP separator, trade name SFLD50S manufactured by Nippon Kodoshi Paper Industries) was used.
  • PP separator trade name SFLD50S manufactured by Nippon Kodoshi Paper Industries
  • the value of n / (n + m) is low, so it cannot be called a proton conductor.
  • the value of n / (n + m) is the value of DuPont's Nafion membrane. (6 01 1 R) 0.12, X membrane Dow (X film is a registered trademark) is 0.14- 0.09 in.
  • the conductivity of the separator itself is low and is about 1/1000 of that of a normal proton conductor membrane.
  • the electrolyte solution was held on a PP separator and a polyamide separator (diameter: 10mm), and the PH was measured with PH test paper, and the resistance of the front and back was measured. Table 1 shows the results. Even when sulfonated, the separator has conductivity even in neutral water, which is neutral.
  • the sulfonic acid group of the separator is saponified with alkali metal ions such as Na + ions or ammonium ions, particularly alkali metal ions, so that Na + ions are eluted in pure water.
  • the concentration is less than 1 / 100M in terms of alkali.
  • KOH, etc. Even in such cases, some of them may have changed to KHCO or CO. So the electrolyte is 3
  • An alkaline aqueous solution containing pure alkali metal ions of M or less is preferably pure water.
  • the detection electrode 8 is made of, for example, a mixture of Pt-supported carbon black and PTFE (polytetrafluoroethylene) binder. Instead of Pt, Pt—RuO, Pd, or another appropriate electrode catalyst is used.
  • the counter electrode 10 is an electrode having the same composition as the detection electrode 8.
  • 12 is a hydrophobic conductive film
  • 14 is a metal washer such as SUS
  • 16 is a water vapor introduction hole having a diameter of, for example, about 13 mm
  • 18 is a diffusion control plate of a thin metal sheet such as SUS having a thickness of about 100 ⁇ ⁇
  • a diffusion control hole 20 having a diameter of about 0.1 mm is provided.
  • 22 is a metal sealing body
  • 23 is its bottom plate
  • 24 and 26 are gas introduction openings
  • 25 is a filter using activated carbon, silica gel, zeolite or the like.
  • Reference numeral 28 denotes a metal can made of SUS or the like, which may store liquid water 30, such as pure water, under the metal can, and may store water that has been subjected to genoriding.
  • Reference numeral 32 denotes a constricted portion, on which the washer 14 is supported.
  • Reference numeral 34 denotes an adhesive ring made of an adhesive urethane elastomer or the like, which seals the periphery of the sensor body 4 to prevent water from entering into the side surface of the sensor body 4.
  • Reference numeral 36 denotes an insulating sealing material, which insulates and seals between the metal can 28 and the sealing body 22 which can be sealed with sealing tape or the like, and prevents gas from entering therethrough.
  • the upper part of the metal can 28 is caulked to the sealing body 22.
  • the detection electrode 8 and the sealing body 22 are electrically connected, and the counter electrode 10 and the metal can 28 are electrically connected to each other, thereby preventing water leakage and gas escaping from other than the diffusion control hole 20.
  • the hydrophobic conductive film 12 Blocked by.
  • FIG. 2 shows the supply of water vapor and CO to be detected.
  • a solid proton conductor with a polymer proton conductor or a basic group such as pyridine introduced into the side chain between the electron conductive electrode 38 such as Pt_C_PTFE and the separator 6 is preferred.
  • a solid electrolyte membrane 40 made of, for example, is disposed.
  • the structure shown in FIG. 3 was employed, and a polymer proton conductor membrane was used.
  • a mixed conductive electrode 42 may be obtained by mixing a polymer proton conductor or a solid hydroxide ion conductor with Pt_C_PTFE or the like.
  • the electrode reaction of CO or the like becomes easy, and the reaction to CO or the like can be performed without using sulfuric acid and even at a low temperature such as -10 ° C. Sensitivity can be obtained.
  • the sensor is a two-pole sensor of a detection electrode and a counter electrode.
  • a reference electrode may be additionally provided.
  • the counter electrode 10 may be made of an oxidizing agent (active material) composed of a metal oxide or a metal hydroxide.
  • the reaction generates hydroxyl ions at the counter electrode 10 or consumes the protons generated at the detection electrode 8.
  • the electrolyte retained in the separator 6 is an alkali metal hydroxide, particularly preferably NaOH, KOH, an aqueous solution of a non-deliquescent and water-soluble salt, or pure water.
  • concentration of the electrolytic solution was, for example, 0.01 lM (mol / dm 3 ) for an alkaline electrolyte such as an aqueous solution of K ⁇ H, more preferably 0.001 to 3 M, and 0.1 M unless otherwise specified.
  • water-soluble such as MgS ⁇
  • Non-deliquescent salts include hydrogen carbonate of alkali metal, carbonate of alkali metal, double salt such as magnesium ammonium sulfate and magnesium potassium sulfate, zinc chloride and ammonium chloride, or a mixture thereof. And sodium acetate.
  • silica fine particles are dry-processed silica obtained by decomposing a silicon compound in a gas phase. When water is removed, a three-dimensional network of the silica is formed to gel.
  • Each figure shows the output of the four or five gas sensors, or the average value. The sensor output was obtained by amplifying the current between the two electrodes of the gas sensor and adding a bias so that the output became IV in normal air. In Figures 9, 12, 13, and 15, the current between the poles was used as the output.
  • a separator using a non-sulfonated polyamide resin separator (FIGS. 7 and 8), a single proton conductor membrane was used instead of the separator and the two proton conductor membranes above and below the separator.
  • PRIMEA manufactured by Goa Japan Co., Ltd .
  • PRIMEA is a registered trademark
  • FIG. 9 shows the sensitivities of a gas sensor using a solid electrolyte membrane and a gas sensor using a liquid electrolyte.
  • the electrolytic solution provided higher sensitivity than the solid electrolyte. Note that Et ⁇ H ( The lack of sensitivity to ethanol) and propane is due to adsorption by the filter. Methane has no sensitivity without a filter.
  • FIG. 10 shows the CO sensitivity at 0.1 M KOH
  • FIG. 11 shows the CO sensitivity at 0.01 M KOH. Sensitivity is slightly higher than 0.01M at 0.1M and the variation of sensitivity is small. The preferred concentration of K ⁇ H is 0.01M 3M, and KOH partially reacts with C ⁇
  • FIG. 12 shows the aging characteristics at room temperature. Output is stable for 22 weeks.
  • FIG. 13 shows a temperature of 60 ° C.95. The results of aging the gas sensor in an atmosphere of / o RH for 8 weeks, removing the gas sensor from the aging tank every week, and measuring the CO sensitivity at room temperature are shown. 60
  • Fig. 14 shows the C sensitivity at _10 ° C, and CO was detected even at this temperature.
  • FIG. 15 shows the temperature dependence of a comparative example using a proton conductor membrane and an example using an electrolytic solution.
  • Reference I is the output current at 20 ° C.
  • Example has less temperature dependency
  • the separator using the electrolytic solution has a higher resistance than the proton conductor membrane, but the temperature dependence of the mobility of the ionic species is small.
  • FIGS. 16 and 23 show examples using gelled water.
  • low hydrophobic carbon paper was used on the counter electrode side instead of the water-phobic conductive film.
  • the metal can and gasket were insulated with a gasket without using an adhesive ring and sealing material.
  • the separator was a sulfonated PP separator.
  • Fig. 16 In the process of obtaining the data shown in Fig. 23, there were a separator with various organic polymers as separators with gas sensitivity and no separators and separators (Figs. 7 and 8). Although the cause was initially unknown, it was later found that the cause was the presence or absence of an ion exchange group such as a sulfonic acid group.
  • a separator containing an alcoholic hydroxyl group such as polybutyl alcohol instead of the sulfonic acid group can obtain the same characteristics, and the degree of gas sensitivity is determined by the degree of hydrophilicity of the separator. found. It was also found that the degree of hydrophilicity of the surface treated with a surfactant was insufficient, and the polymer itself needed to contain a hydrophilic group.
  • silica fine particles silica fine particles obtained by hydrolyzing SiCl or the like in the gas phase are used.
  • These fine particles have a spherical shape with a particle size of about 5 to 50 nm, a bulk density of about 50 to 100 g / dm 3 when dried, and a specific surface area of about 200 m 2 / g.
  • the mixture was stirred while reducing the shearing force with an ultra mixer manufactured by Mizuho Industry Co., Ltd.
  • the network of silica fine particles collapses due to shearing force, and the apparent particle size decreases from 10 to 100 zm to include, for example, 1 zm or less. did.
  • the apparent average particle size of the gelling agent particles again increased to over 10 ⁇ m. This indicates that the chain of silica particles was broken by agitation, and the chain grew again upon standing, forming a three-dimensional network. It is thought that liquid water was retained inside the newly formed network, that is, between the silica chains.
  • the obtained gel is stable, does not turn into a sol even when left, and the obtained gel is cut as it is or in a desired shape such as a columnar shape or a dice shape to form a metal can 28. Accommodating.
  • the composition of the gel is, for example, 20 wt% of dry silica fine particles and 80 wt% of water.
  • the composition of the gel is preferably such that the gelling agent is 10 to 30 wt%, more preferably 18 to 25 wt%, and the balance is water.
  • a 1M concentration of K ⁇ H aqueous solution is used as an electrolyte
  • the detection electrode is made of carbon black and a Pt catalyst is supported
  • a Nafion solution Nafion is a registered polymer of DuPont as a solid polymer proton conductor) Trademark
  • MnO supported on carbon paper at the counter electrode
  • the number n of sensors is 4, and the measurement temperature is 20 ° C.
  • FIG. 17 to FIG. 23 show characteristics when a 5 wt% MgSO aqueous solution is used as an electrolyte.
  • the detection electrode and counter electrode are those with Pt supported on carbon black and impregnated with Nafion solution.
  • Fig. 17, Fig. 23 shows the counter electrode with carbon paper supporting MnO.
  • the ratio of the total weight of carbon black and Pt to the dry weight of Nafion at the detection electrode was about 4: 1 to 5: 1.
  • the number n of sensors is shown, and the measurement temperature is 20 ° C except in Fig. 20-Fig. 22.
  • the current between the sensing electrode and the counter electrode is amplified to output voltage, and the output is biased to IV in clean air. Was added.
  • the bias and the amplification factor of the amplifier circuit are common to all figures.
  • the gas to be measured is C ⁇ .
  • the electrolyte may be ZnCl or ZnCl + NH C1.
  • the counter electrode in Fig. 17 is Mn ⁇ , and Pt in Fig. 18.
  • the sensitivity of the MnO counter electrode is higher than that of the Pt counter electrode.
  • FIG. 19 and FIG. 21 show the dependence on the ambient temperature.
  • the number n of sensors is 4, and the measurement temperatures are 20 ° C, 60 ° C, and -10 ° C.
  • the temperature dependence was within the range that could be easily compensated with a small thermistor, and the same was true when Mn ⁇ was used as the counter electrode.
  • Fig. 22 shows that the electrolyte was MgS ⁇ at a concentration of 5 wt% and carbon black was used for both the detection electrode and the counter electrode.
  • FIG. 23 shows a carbon nanotube having a detection electrode carrying Pt as an electrolyte using a 5 wt% MgSO aqueous solution as an electrolyte.
  • the detection electrode catalyst should be a catalyst containing ruthenium oxide such as Pt-Ru ⁇ to prevent poisoning of the detection electrode.
  • FIG. 24 shows a configuration for detecting CO in hydrogen.
  • Reference numeral 50 denotes a hydrogen pipe, which is a pipe for supplying hydrogen to a fuel cell or the like.
  • a valve 51 allows the atmosphere to be freely switched between ambient air and hydrogen, and a gas sensor 2 is disposed in a test chamber 52. Suction of the gas to be detected. Then, hydrogen is intermittently sucked to measure the CO concentration in the hydrogen. When the measurement is completed, air or oxygen is introduced from the valve 51 to remove the CO accumulated at the detection electrode.
  • Figures 23 and 24 show the measurement of CO in hydrogen, but the detection of CO and other flammable gases in nitrogen can be performed in the same way.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

 金属缶に水を収容し、ワッシャの開口からセパレータに水蒸気を供給する。セパレータは合成樹脂膜をスルホン化したもののアルカリ金属塩で、電解液にはKOH水溶液を用い、検知極や対極はPt−Cで、電極とセパレータの間に固体のプロトン導電体膜を配置する。

Description

明 細 書
液体電気化学ガスセンサ
技術分野
[0001] この発明は液体電気化学ガスセンサに関する。
背景技術
[0002] 固体のプロトン導電体膜を用いたガスセンサが知られている (特許文献 1 , 7)。そし てこのガスセンサでは、プロトン導電体膜を一対の電極に挟み込み、水溜から水蒸 気を供給する。発明者はその後、固体のプロトン導電体膜を用いたガスセンサの構 造を、液体電解質を用いたガスセンサに転用することを検討した。
[0003] 液体電解質を用いたガスセンサでは、電解質をセパレータに保持し、電解質の液 溜からウィックを介して電解質を補給する。電解質には硫酸が用いられるため、金属 ハウジングを用いることができず、また高湿雰囲気などで硫酸が吸湿して液溜からあ ふれ出すことがある。
[0004] 特許文献 2は、ウィックを用いない液体電気化学ガスセンサを提案している。ここで は硫酸を水溜に蓄え、高湿時に吸湿し、低湿時に放湿するようにして、ガスセンサ内 の湿度をほぼ一定にする。この結果、セパレータの電解液が乾燥するのを防止でき る。また特許文献 3は、 LiClなどの潮解性塩を水溜にセットし、ガスセンサ内の湿度を ほぼ一定にすることを提案している。しかし硫酸や潮解性塩を用いると、高温多湿の 雰囲気などで、水溜から電解液があふれ出すおそれがある。
[0005] さらに特許文献 4は、ペーパー状のガラスフィルターにコロイダルシリカと PTFE (ポ リテトラフルォロエチレン)とを担持させたセパレータを開示している。ここでは、コロイ ダルシリカによって電解液を保持するための親水性のチャネル力 PTFEによってガ スが拡散するための疎水性のチャネルが得られるとされている。
[0006] 特許文献 5は、 KOHもしくは H SO電解液を用いた〇センサを開示し、 KOHで
2 4 2
は特性がドリフトするとしている。
[0007] 特許文献 6は、 MgSO水溶液を用いた COセンサを開示している。
4
特許文献 1 :W〇 02/097420A1 特許文献 2 :W〇 01/14864A1
特許文献 3: USP5958200
特許文献 4: USP4587003
特許文献 5: USP5240893
特許文献 6: USP5302274
特許文献 7: USP6200443
発明の開示
発明が解決しょうとする課題
[0008] この発明の課題は、硫酸を用いない新規な液体電気化学ガスセンサを提供するこ とにある。
課題を解決するための手段
[0009] この発明の液体電気化学ガスセンサは、電解液を多孔質のセパレータに保持し、 該セパレータに少なくとも検知極と対極とを接続し、水溜から水蒸気を前記セパレー タに補給するようにしたガスセンサにおいて、前記セパレータが、水もしくはアルカリ 金属水酸化物の水溶液あるいは潮解性のなレ、水に可溶な塩の水溶液を支持してレ、 る、親水性の有機ポリマーであることを特徴とする。
好ましくは、前記セパレータがアルカリ金属水酸化物の水溶液もしくは純水を支持 し、かつ検出対象ガスが還元性ガスである。
[0010] また好ましくは、セパレータと検知極との間に固体電解質膜を配置する。
好ましくは、前記対極が、 Mn, Ni, Pb, Znの酸化物もしくは水酸化物である。
[0011] ガスセンサの構造では好ましくは、開口と底部とを有する金属缶の開口と底部との 間にくびれ部を設けて、開口を有する金属ヮッシャを前記くびれ部で支持し、かつ該 金属ヮッシャ上に、少なくとも前記対極とセパレータと検知極とを配置し、金属ヮッシ ャと金属缶の底部との間に水を収容する。
[0012] 検出対象としては、例えば水素中の COや不活性ガス中の還元性ガスも検出できる
[0013] セパレータは特に好ましくは、スルホン酸基のアルカリ金属塩やアルコール性水酸 基を含有する有機ポリマーとし、これ以外に、カルボキシノレ基のアルカリ金属塩、ホス ホン酸基のアルカリ金属塩やアルカリ土類塩、フエノール基、アミノ基ゃイミド基、およ びこれらの誘導体で親水化した有機ポリマーなどでも良い。ポリマー中の親水性基の 水素イオンは他の陽イオンで置換することが好ましぐこのことをケン化と呼び、ケン 化にはアルカリ金属イオンが好ましレ、が、アルカリ土類イオンや、アンモニゥムイオン あるいはその誘導体なども用い得る。
[0014] 発明者は、スルホン酸基のアルカリ金属塩やアルコール性水酸基などにより親水化 した有機ポリマー力 なるセパレータを用いると、電解液を K〇H, Na〇Hなどのアル カリ金属水酸化物の水溶液としても、あるいは電解液を純水、脱イオン水などの単な る水としても、 CO, Hなどの還元性ガスを検出できることを見出した。なお親水性の
2
高いセパレータに水を満たすと、セパレータには僅かな導電性が生じる。この導電性 は検知極や対極と電解液との間のイオンの移動と関係するものと考えられる。さらに 純水と脱イオン水とは異なる用語であるが、この発明で電解質の含有量が重要なの で、純水は脱イオン水を含むものとする。
[0015] セパレータの形状は不織布や微孔を備えた膜、あるいは織布などとし、基礎となる 材質は PP (ポリプロピレン)やポリアミド樹脂、 PTFE樹脂などの合成樹脂とする。ポリ アミド榭脂の場合、耐熱性を増すため、 NH基を Ν_ φ ( φはフエニル基)に変えた変 成ポリアミド樹脂が好ましい。
[0016] この発明では硫酸無しで COや Ηへの感度が得られ、このため金属パッケージを
2
用いることができ、また高湿雰囲気でも硫酸があふれ出さなレ、。さらに電解液には K OHなどのアルカリ金属水酸化物などのアルカリ性電解液を用いることができ、 COな どに安定した感度が得られた。また電解液には、イオン交換水などの単なる水や、 M gSOなどの潮解性のない水に可溶な塩の水溶液も用いることができる。電解液の P
4
Hは例えば 4以上とし、好ましくは 6以上で、特に好ましくは 7以上とする。
[0017] 電解液に硫酸を用いると、検知極での C〇や水素などの酸化反応が簡単に進行す る力 中性やアルカリ性の電解液では、検知極で COや水素などを酸化して電解液 中にプロトンとして移動させるのが難しい。このため低温でのガス感度が小さい。これ に対して、検知極とセパレータとの間に、あるいはセパレータの両面と検知極や対極 との間に、固体のプロトン導電体膜や水酸イオン導電体膜を配置すると、低温でのガ ス感度が増す。
[0018] COなどの還元性ガスを検出する場合、検知極での生成物はプロトンである。水酸 化カリウムなどのアルカリ金属水酸化物の場合、検知極から電解質に注入されたプロ トンと中和するように、検知極と電解質の界面へ水酸イオンが移動し、対極で (1)の反 応が生じてレ、ると考えることができる。
2H O + O +4e—→40H— (1)
2 2
[0019] 検知極、対極ともに Pt, Pt-RuO , Pd, Au,金属酸化物などの触媒電極でも良い
2
が、対極を Mn, Ni, Pb, Znの酸化物もしくは水酸化物とするとコスト的に有利である 。また酸化物や水酸化物の対極では、酸素のない雰囲気でも還元性ガスを検出でき る。さらにこの発明のガスセンサでは、水素に比べて C〇の感度を高くできるので、燃 料電池用に水素中の COの検出を行うことができる。
[0020] この発明では、ウィックで電解液をセパレータに補給しないでも、水蒸気でセパレー タを加湿するだけで、感度が得られる。そこでガスセンサの構造では例えば、開口と 底部とを有する金属缶の開口と底部との間にくびれ部を設けて、開口を有する金属 ヮッシャを前記くびれ部で支持し、かつ該金属ヮッシャ上に、少なくとも前記対極とセ パレータと検知極とを配置し、金属ヮッシャと金属缶の底部との間に水を収容する。 水は液体の水でもゲル化した水でも良レ、。
[0021] 検出対象ガスは例えば COや水素、アルコール、ァノレデヒド、硫化水素、アンモニ ァなどの還元性ガスとし、水素中の COや不活性ガス中の還元性ガスなども検出でき る。
発明の効果
[0022] この発明では以下の効果が得られる。
(1) 硫酸を電解液に用いないので、金属缶をパッケージに用いることができ、また高 湿雰囲気で硫酸があふれ出すことがなレ、。
(2) KOH水溶液などのアルカリ性ないしは純水などの中性の電解液を用いることが できる。
図面の簡単な説明
[0023] [図 1]図 1は、実施例の液体電気化学ガスセンサの断面図である。 園 2]図 2は、実施例の液体電気化学ガスセンサのセンサ本体とその周囲を示す断 面図である。
園 3]図 3は、実施例の液体電気化学ガスセンサのセンサ本体とその周囲を示す断 面図である。
[図 4]図 4は、変形例の液体電気化学ガスセンサのセンサ本体とその周囲を示す断 面図である。
[図 5]図 5は、スルホン化したセパレータを用いた実施例での、 CO30 lOOOppmへ の室温での応答を示す特性図である。
[図 6]図 6は、図 5と同じ条件での、 H 30 lOOOppmへの室温での応答を示す特性
2
図である。
[図 7]図 7は、親水性の低いセパレータを用いた従来例での、 CO30— lOOOppmへ の室温での応答を示す特性図である。
[図 8]図 8は、親水性の低いセパレータを用いた従来例での、 H 30— lOOOppmへの
2
室温での応答を示す特性図である。
園 9]図 9は、固体プロトン導電性電解質を用いた従来例と、スルホン化したセパレー タに KOH水溶液膜を支持させた実施例との、各種ガスへの応答電流を示す特性図 である。
[図 10]図 10は、 0.1MKOH水溶液を用いた実施例での、 COへの応答を示す特性 図である。
[図 11]図 11は、 0.01MKOH水溶液を用いた実施例での、 COへの応答を示す特性 図である。
[図 12]図 12は、実施例のガスセンサの 22週間の特性を示す特性図である。
[図 13]図 13は、高温高湿雰囲気 (60°C X 95。/。RH)での、実施例ガスセンサの耐久 性能を示す特性図である。
[図 14]図 14は、_10°Cでの実施例のガスセンサの COへの応答を示す特性図である 園 15]図 15は、固体プロトン導電性電解質を用いた従来例と実施例との、ガスセンサ の周囲温度依存性を示す特性図である。 [図 16]図 16は、 KOH/Pt-MnO系での 20°Cでの特性図である。
2
[図 17]図 17は、 MgSO /Pt-MnO系での種々の CO濃度への応答を示す特性図
4 2
である。
[図 18]図 18は、 MgSO ZPt_Pt系での種々の CO濃度への応答を示す特性図であ
4
る。
[図 19]図 19は、 MgSO ZPt_Pt系での 20°Cでの特性図である。
4
[図 20]図 20は、 MgSO ZPt_Pt系での 60°Cでの特性図である。
4
[図 21]図 21は、 MgSO ZPt_Pt系での— 10。Cでの特性図である。
4
[図 22]図 22は、 MgSO /Pt_Pt系ガスセンサを 60°C相対湿度 95%で保存した際
4
の特 14図である。
[図 23]図 23は、 MgSO /Pt-MnO系ガスセンサでの、 H中の C〇への応答特性
4 2 2
を示す特性図である。
[図 24]図 24は、水素中の COを測定する装置のレイアウトを示す図である。
符号の説明
2 液体電気化学ガスセンサ
4 センサ本体
6 セパレータ
8 検知極
10 対極
12 疎水性導電膜
14 ヮッシャ
16 水蒸気導入孔
18 拡散制御板
20 拡散制御孔
22 封孔体
23 底板
24, 26 開口
25 フィルタ 30 水
32 くびれ部
34 粘着性リング
36 シーリング材
38 電子導電性電極
40 固体電解質膜
42 混合導電性電極
50 水素管
51 バルブ
52 試験室
53 吸引ポンプ
発明を実施するための最良の形態
[0025] 以下に、本発明を実施するための最適実施例を示す。
実施例
[0026] 図 1一図 24に、実施例とその変形を示す。実施例ではセパレータをスルホン化する ものを示す力 カルボキシル化などでも良ぐあるいはアルコール性水酸基を含むセ パレータなどでも良レ、。なおスルホン酸基はスルホン酸のアルカリ金属塩で存在して いる。図 1において、 2は液体電気化学ガスセンサで、 4はセンサ本体であり、セパレ ータ 6の表裏に検知極 8と対極 10とを設けてある。セパレータ 6は多孔質で電解液を 保持し、例えば厚さ 0.1mm程度、直径は 5— 20mm程度である。セパレータ 6は、例え ば合成繊維の織布ゃ不織布などからなり、スルホン化やアルコール性水酸基の導入 などで親水化してある。以下、スルホンィ匕を例に実施例を説明する。
[0027] セパレータの有機ポリマーが (A-SO X) -(B) の有機ポリマーと Rの有機ポリマー
3 n m p
と力らなるものとする。ここに A, B, Rはモノマーを表し、 nは 1以上の整数を, m, pは 0以上の整数を表し、 Xは例えばアルカリ金属イオンである。例えば有機ポリマーが- ( A-SO X)_と—B—のコポリマーとすると、 pは 0で、 n/(n+m)を例えば 5 X 10_4— 4
3
X 10_2が好ましレ、。なお (A_SO X) -(B) の表示は、 (A-SO X)が nブロック続き、 B
3 n m 3 が mブロック続くことを意味するのではなぐブロック (A— SO X)とブロック Bの比が n :
3
mであることを意味する。セパレータの有機ポリマーが (A— SO X) -(B) と別の有機
3 n m
ポリマー Rとの混合物の場合は、 n/(n+m+p)が 5 X 10— 4— 4 X 10— 2が好ましい。
P
n/(n + m)(R成分が無い場合)、あるいは n/(n+m + p)(R成分が有る場合)は、 5 X 10—3 1.5 Χ 10 2が特に好ましレヽ。
[0028] スルホン化の程度は、ポリアミド繊維をスルホン化した SBR (スチレンブタジエンゴム )で結着した不織布では、例えば前記の nZ(n+ m + p)で約 0.01であり、 SBRのみ に着目すると nZ(n+ m)は約 0.05である。 PP (ポリプロピレン)の多孔質膜などの場 合、 pは例えば 0で、 n/(n+m+p)は例えば 5 X 10— 4 4 X 10— 2程度となる。ポリアミ ド系でも PP系でも、 n/(n+m + p)は例えば 5 X 10— 4— 4 X 10— 2程度、好ましくは 5 X 10— 3 1.5 X 10— 2程度とする。
[0029] セパレータ 6の比較例として、スルホン化していなレ、 SBR結着剤を用いたポリアミド 樹脂の不織布を、界面活性剤 (材質不明)で処理したもの (三菱製紙製の商品名 WO -DO)を用いた。実施例として、上記のポリアミド樹脂の不織布で、結着剤をスルホン 化した SBRに変えたもの (ポリアミドセパレータ、 n/(n+m + p)は 0.01、三菱製紙製) を用いた。また他の実施例として、 PP (ポリプロピレン)の多孔質膜を n/(n+m)が 0.0 1にスルホンィ匕したもの (PPセパレータ、 日本高度紙工業製の商品名 SFLD50S)を 用いた。この程度のスルホン化では n/(n+ m)の値が低いため、プロトン導電体とい うことはできず、通常のプロトン導電体では n/(n +m)の値は、デュポン社の Nafion膜 ( 6011は登録商標)で0.12、ダウ社の X膜 (X膜は登録商標)で 0.14— 0.09である 。また表 1に示すようにセパレータ自体の導電性は低ぐ通常のプロトン導電体膜の 1 /1000程度である。
[0030] PPセパレータとポリアミドセパレータ(直径 10mm)に電解液を保持させて、 PH試験 紙で PHを測定すると共に、表裏の抵抗を測定した。結果を表 1に示す。スルホンィ匕 してもセパレータは中性である力 純水でも導電性が生じている。セパレータのスル ホン酸基は Na+イオン等のアルカリ金属イオンやアンモニゥムイオン、特にアルカリ金 属イオンでケン化されてレ、るから、純水中に Na+イオン等が溶出してレ、ることが考えら れる力 その濃度はアルカリ換算で 1/100M以下である。また KOHなどを用いる場 合でも、その一部が KHCOや COに変化していることがある。そこで電解質は、 3
3 2 3
M以下のアルカリ金属イオンを含むアルカリ性水溶液一純水が好ましい。
[0031] l セパレータの物性
PH 抵抗
ポリアミドセパレータ PPセパレータ ポリアミドセパレータ
乾燥状態 一 一 ∞
純水 7 7 6Κ Ω
0. 1M KOH 13 13 500 Ω
1M KOH 14 14 50 Ω
[0032] 検知極 8は、例えば Pt担持のカーボンブラックと PTFE (ポリテトラフルォロエチレン) バインダの混合物からなり、 Ptに代えて Pt— RuOや Pdその他の適宜の電極触媒を
2
用いることができる。対極 10は検知極 8と同様の組成の電極である。 12は疎水性導 電膜、 14は SUSなどの金属ヮッシャ、 16は例えば直径 1一 3mm程度の水蒸気導入 孔、 18は厚さ 100 μ ΐη程度の SUSなどの金属の薄板の拡散制御板で、直径 0.1mm 程度の拡散制御孔 20を備えている。薄い拡散制御板 18に拡散制御孔 20を設けるこ とにより、拡散制御孔 20の孔径を一定にし、ガス感度のばらつきを小さくできる。 22 は金属の封孔体で、 23はその底板、 24, 26はガス導入用の開口で、 25は活性炭や シリカゲル、ゼォライトなどを用いたフィルタである。
[0033] 28は SUSなどを用いた金属缶で、その下部に純水などの液体の水 30を蓄え、ゲ ノレイ匕した水を蓄えても良い。 32はくびれ部で、この上部に前記のヮッシャ 14を支持 する。 34は粘着性のウレタンエラストマ一などから成る粘着性のリングで、センサ本体 4の周囲をシールして、センサ本体 4の側面力も水が入り込むのを防止する。 36は絶 縁性のシーリング材で、シーリングテープなどでも良ぐ金属缶 28と封孔体 22との間 を絶縁しながらシールし、ここからガスが入り込むのを防止する。金属缶 28の上部は 封孔体 22にかしめられている。この結果、検知極 8と封孔体 22が導通し、対極 10と 金属缶 28が導通し、水漏れや拡散制御孔 20以外からのガスの回り込みを防止する 。液体の水が水蒸気導入孔 16から疎水性導電膜 12へ達すると、疎水性導電膜 12 でブロックされる。
[0034] 図 2に水蒸気と検出対象の COの供給を示す。
[0035] 室温で COや H への感度を得るには、電極 8, 10に固体電解質を接触させること
2
が好ましぐ図 3では Pt_C_PTFEなどの電子導電性電極 38とセパレータ 6との間に 、高分子プロトン導電体や側鎖にピリジンなどの塩基性の基を導入した固体水酸ィォ ン導電体などからなる固体電解質膜 40を配置する。実施例では、図 3の構造を採用 して、高分子プロトン導電体膜を用いた。また図 4に示すように、 Pt_C_PTFEなどに 高分子プロトン導電体や固体水酸イオン導電体を混合して、混合導電性電極 42とし ても良い。電極 8, 10中に固体電解質を添加し、あるいは固体電解質膜 40を設けると 、 CO等の電極反応が容易になり、硫酸を用いずにかつ— 10°Cなどの低温でも、 CO 等への感度を得ることができる。実施例では検知極と対極の 2極のセンサとしたが、 他に参照極を設けても良い。
[0036] 対極 10は金属酸化物や金属水酸化物からなる酸化剤 (活物質)で構成しても良い。
対極 10には、 Mn〇や Ni〇(〇H)あるいは Pb〇
2 2, ZnOなどを、多孔質のカーボンぺ 一パーに PTFEバインダーなどで支持させたものを用い、
MnO + 2H 0 + 2e→Mn(OH) + 20H (2)
2 2 2
MnO + 2H+ + 2e"→Mn(OH) (3)
2 2
NiO(OH) + H+ + e"→Ni(OH) (4)
2
PbO + 2H+ + 2e—→PbO + H O (5)
などの反応により、対極 10で水酸イオンを生成し、あるいは検知極 8で生成したプロト ンを消費する。
[0037] セパレータ 6に保持させる電解質は、アルカリ金属水酸化物、特に好ましくは NaO H, KOHや、潮解性が無く水に可溶の塩の水溶液、あるいは純水とする。電解液の 濃度は、 K〇H水溶液等のアルカリ電解質では、例えば 0.01 lM(mol/dm3)、より 広くは 0.001— 3Mとし、特に断らない場合は 0.1Mとした。また MgS〇などの水溶
4
液の場合は、電解液の濃度は例えば 5wt%とした。潮解性のない塩としては、アル力 リ金属の炭酸水素塩、アルカリ金属の炭酸塩、硫酸マグネシウムアンモニゥムゃ硫酸 マグネシウムカリウムなどの複塩、塩化亜鉛や塩化アンモニゥム、あるいはこれらの混 合物、酢酸ナトリウムなどがある。
最適実施例
[0038] 図 5—図 15に最適実施例を示す。測定温度は特に断らない場合は室温で、セパレ ータはポリアミドセパレータ (n/(n+m + p) = l X 10— 2)であり、電解液は 0.1Mの K〇 Ηで、センサ本体の構造は図 3のものである。ポリアミドセパレータに代えて、 ΡΡ樹脂 のセパレータ (n/(n+m)= l X 10— 2)を用いると、室温並びに— 10°Cでの特性は同 等であつたが、 60°C X 95%RHでの耐久性はポリアミドセパレータに僅かに劣った。 水溜の水は純水を用いたが、ゲル化剤にシリカ微粒子 (1次粒径 5— 50nm)を用いた ゲルィ匕水 (含水量 80wt%)でも同等の特性が得られた。このシリカ微粒子は珪素化合 物を気相で分解した乾式法のシリカで、水をカ卩えるとシリカの 3次元ネットワークを形 成して、ゲル化する。各図には 4個一 5個のガスセンサの出力、またはその平均値を 示す。ガスセンサの両極間の電流を増幅し、正常空気中で IVの出力となるようにバ ィァスを加えたものを、センサ出力とした。なお図 9, 12, 13, 15では、両極間の電流 を出力とした。
[0039] 比較例として、スルホン化していないポリアミド樹脂のセパレータを用いたもの (図 7, 図 8)、セパレータとその上下の 2枚のプロトン導電体膜に代えて、 1枚のプロトン導電 体膜 (ゴァジャパン株式会社会社製の商品名 PRIMEA: PRIMEAは登録商標)を用い たものを用いた。
[0040] スルホン化していない親水性の低いセパレータを用いると、 COにも Hにも感度が
2
得られず (図 7,図 8)、スルホン化したセパレータを用いると COや Hへの感度が得ら
2
れた (図 5,図 6)。この現象は KOH電解液に限らず、 MgS〇電解液でも、電解質を
4
加えない純水をセパレータに保持させたときでも、同様であった。またセパレータは、 PTFEとビニノレアノレコ一ノレのコポリマーなどの、ポリビニノレアノレコ一ノレ系でァノレコ一ノレ 性水酸基を多量に含むセパレータでも、同様の特性が得られた。セパレータの親水 性を増すことにより、ガス感度が発現するのは、親水性が増して電解液の連続したチ ャネルが形成されることなどのためと考えられる。
[0041] 図 9に、固体電解質膜を用いたガスセンサと、液体電解質を用いたガスセンサとの 感度を示す。電解液により固体電解質よりも高い感度が得られた。なお図で Et〇H ( エタノール)やプロパンへの感度がないのは、フィルタで吸着されるためである。また メタンにはフィルタ無しでも感度がない。
[0042] 図 10は 0.1Mの KOHでの CO感度を、図 11は 0.01Mの KOHでの CO感度を示 す。 0.1Mで 0.01Mよりも感度が僅かに高ぐまた感度のばらつきが小さレ、。 K〇Hの 好ましい濃度は 0.01M 3Mで、 KOHは一部が空気中の C〇と反応して、炭酸水
2
素カリウムなどに変化していることが考えられる力 特性への影響は見られなかった。
[0043] 図 12は室温での経時特性を示す。 22週間の間、出力は安定である。
[0044] 図 13は、 60°C95。/oRHの雰囲気でガスセンサを 8週間エージングし、 1週間毎に ガスセンサをエージング槽から取り出し、室温で CO感度を測定した結果を示す。 60
°C95。/。RHでのエージングで、劣化は見られなかった。
[0045] 図 14は _10°Cでの C〇感度を示し、この温度でも COを検出できた。
[0046] 図 15は、プロトン導電体膜を用いた比較例と電解液を用いた実施例での、温度依 存性を示す。基準の Iは 20°Cでの出力電流である。実施例の方が温度依存性は小
0
さぐ電解液を用いたセパレータは、プロトン導電体膜に比べ高抵抗であるが、イオン 種の移動度の温度依存性が小さいものと考えられる。
ゲルィヒ水を用いた実施例
[0047] ゲル化水を用いた実施例を図 16 図 23に示す。これらの例では、対極側には疎 水性導電膜に変えて、疎水性の低いカーボンペーパーを用いた。また粘着性リング とシーリング材を用いず、ガスケットで金属缶とガスケットとを絶縁した。さらにセパレ ータはスルホン化した PPセパレータであった。図 16 図 23のデータを得る過程で、 種々の有機ポリマーをセパレータとした力 ガス感度の有るセパレータと無レ、セパレ ータ (図 7,図 8)とがあった。当初原因が不明であつたが、後にスルホン酸基などのィ オン交換基の有無が原因であることが判明した。さらにその後、スルホン酸基に代え て、ポリビュルアルコール系などのアルコール性水酸基を含むセパレータでも同等の 特性が得られることが判明し、セパレータの親水性の程度によりガス感度の有無が定 まることが判明した。そして界面活性剤で表面処理した程度の親水性では不十分で 、ポリマー自体が親水性基を含む必要があることが判明した。
[0048] シリカの微粒子として、 SiClなどを気相で加水分解して得た、シリカの微粒子を用 いた。この微粒子の粒径は 5— 50nm程度で球状で、乾燥時の嵩密度は 50— 100g /dm3程度で、比表面積は 200m2/g程度である。このシリカの微粒子に水を加えな がら、みずほ工業 (株)製のウルトラミキサーなどで、せん断力をカ卩えながら撹拌した。 この間に、せん断力によりシリカ微粒子のネットワークが崩れて、見掛けの粒径は 10 一 100 z mから例えば 1 z m以下のものを含むように減少し、撹拌を終えて静置する と、チクソトロピーによりゲルィ匕した。静置によりゲル化剤粒子の見掛けの平均粒径は 再度 10 μ m以上へと増加した。これはシリカ微粒子のチェーンが撹拌により崩れて、 静置により再度チェーンが成長して 3次元のネットワークが形成されたことを示してい る。そして新たに形成されたネットワークの内部に、つまりシリカのチェーンとチェーン との間を満たすように、液体の水が保持されたものと考えられる。
[0049] 得られたゲルは安定で、放置してもゾル化せず、得られたゲルをそのままの形状で 、あるいは円柱状やサイコロ状などの所望の形状にカットして、金属缶 28に収容する 。ゲルの組成は、例えば乾式シリカ微粒子が 20wt%、水が 80wt%とする。なおゲルの 組成は好ましくはゲル化剤が 10— 30wt%とし、より好ましくは 18— 25wt%とし、残 部は水である。
[0050] 各種のゲル化水を評価した。合成高分子のゲルィヒ剤としてポリアクリル酸を用い、 また天然高分子のゲルィ匕剤としてカラギーナン (澱粉系の多糖類)を用レ、、これらの重 量の 5倍の水をカ卩えてゲル化させた。また実施例では乾式法のシリカ微粒子を用レ、、 ゲル化剤の 4倍重量の水を加えてゲル化させた。これらのゲル化剤を用いたゲルを 水溜 33にセットし、ガスセンサ 2を 70°Cで 1週間保管した。ポリアクリル酸やカラギー ナンを用いたゲルでは、 1週間経過するとゲルの形状が崩れて水蒸気導入孔 30の 付近にゲルが付着し、 C〇に対する感度が低下した。これに対して実施例ではゲル 3 4は形崩れせず、ヮッシャ 28へのゲルの付着も見られず、 C〇に対するガス濃度特性 の変化も見られなかった。
[0051] カラギーナンなどの天然高分子ゲルィ匕剤では、ゲルに指で触って 1週間室温に放 置すると、雑菌がゲルの全面に拡がっていることが認められた。これに対して微粒子 のシリカをゲル化剤とするゲルでは、指で触ってもその位置にのみ雑菌が繁殖し、他 の位置まで雑菌が拡がることはなかった。これは無機物の微粒子をゲル化剤とすると 、雑菌のエネルギー源がゲルに含まれていないので、増殖できないことを意味する。 このように無機物の微粒子を用いたゲルィ匕剤では、防腐剤を添加する必要がない。
KOH電解質で Mn〇2対極での特性
[0052] 図 16に、 1M濃度の K〇H水溶液を電解液とし、検知極をカーボンブラックに Pt触 媒を担持させ、 Nafion溶液 (Nafionは固体高分子プロトン導電体へのデュポン社の登 録商標)を含浸させたものとし、対極をカーボンペーパーに MnOを支持させたものと
2
した際の、センサの特性を示す。センサの数 nは 4で、測定温度は 20°Cである。
MgS04電解質での特性
[0053] 図 17—図 23に、 5wt%の MgSO水溶液を電解質として用いた際の特性を示す。
4
検知極や対極はカーボンブラックに Ptを担持させて Nafion溶液を含浸させたものとし た力 図 17,図 23では対極にカーボンペーパーに MnOを支持させたものを用いた
。検知極でのカーボンブラックと Ptの合計重量と、 Nafionの乾燥重量との比は 4 : 1一 5 : 1程度であった。センサの数 nを図示し、測定温度は図 20—図 22以外は 20°Cで、 検知極と対極間の電流を増幅して出力電圧とし、清浄空気中で出力が IVとなるよう にバイアスを加えた。増幅回路のバイアスや増幅率などはどの図でも共通である。測 定対象ガスは C〇等である。電解質は ZnClや ZnCl + NH C1などでも良い。
2 2 4
[0054] 図 17での対極は Mn〇,図 18では Ptで、 MnO対極では Pt対極よりも高い感度
2 2
が得られた。対極に Pb〇や NiO(〇H)を用いた場合でも、 Pt触媒を用いた対極よりも 一般に感度が高かった。
[0055] 図 19一図 21に、周囲温度への依存性を示す。センサの数 nは 4で、測定温度は 20 °C, 60°C, -10°Cの 3種類である。温度依存性は小さぐサーミスタなどで容易に補 償できる範囲で、このことは対極に Mn〇を用いた場合も同様であった。
2
高温耐久特性
[0056] 図 22に、電解質を 5wt%濃度の MgS〇とし、検知極,対極共にカーボンブラック
4
に Ptを担持させた触媒を用レ、、 Nafion溶液を含浸させた際の高温高湿耐久特性を 示す。 5個のセンサを 60°C,相対湿度 95%の雰囲気で保管し、測定時に 20°C常湿 の雰囲気に戻し、各ガス濃度に対する出力を測定した。 60°C, 95%の雰囲気で 4週 間エージングしても、センサ出力の変動は僅かである。図 22には Pt対極の例を示し た力 Mn〇対極の場合も同様であった。
2
[0057] 図 23に、 5wt%の MgSO水溶液を電解質とし、検知極に Ptを担持したカーボンブ
4
ラックに Nafion溶液を含浸させたものを用い、対極に MnOを用いた場合の、水素と
2
COへの相対感度を示す。なお水素と CO以外のガス成分は Nである。水素に対す
2
る C〇の相対感度は極めて高ぐまた対極に Mn〇を用いるので、酸素のない雰囲気
2
でも水素中の C〇を検出できる。なお水素中の C〇を検出する場合、検知極の被毒を 防止するため、検知極触媒を Pt— Ru〇などの酸化ルテニウムを含有する触媒とする
2
ことが好ましい。
水素中の COの検出
[0058] 図 24に、水素中の COを検出するための構成を示す。 50は水素管で燃料電池など に水素を供給するためのパイプとし、バルブ 51で雰囲気を周囲の空気と水素の間で 切り換え自在にし、試験室 52にガスセンサ 2を配置して、吸引ポンプ 53で検知対象 ガスを吸引する。そして間欠的に水素を吸引して水素中の CO濃度を測定し、測定が 終わるとバルブ 51から空気あるいは酸素などを導入して、検知極に蓄積した COを除 去する。図 23,図 24では水素中の COの測定を示したが、窒素中の COやその他の 可燃 '性ガスなどの検出も同様に行える。

Claims

請求の範囲
[1] 電解液を多孔質のセパレータに保持し、該セパレータに少なくとも検知極と対極とを 接続し、水溜から水蒸気を前記セパレータに補給するようにしたガスセンサにおいて 前記セパレータが、水もしくはアルカリ金属水酸化物の水溶液あるいは潮解性のな い水に可溶な塩の水溶液を支持している、親水性の有機ポリマーであることを特徴と する、液体電気化学ガスセンサ。
[2] 前記セパレータがアルカリ金属水酸化物の水溶液もしくは純水を支持し、かつ検出 対象ガスが還元性ガスであることを特徴とする、請求項 1の液体電気化学ガスセンサ
[3] 前記セパレータがアルカリ金属水酸化物の水溶液を支持してレ、ることを特徴とする、 請求項 2の液体電気化学ガスセンサ。
[4] セパレータと検知極との間に固体電解質膜を配置したことを特徴とする、請求項 1の 液体電気化学ガスセンサ。
[5] 前記対極が、 Mn, Ni, Pb, Znの酸化物もしくは水酸化物であることを特徴とする、 請求項 1の液体電気化学センサ。
[6] 開口と底部とを有する金属缶の開口と底部との間にくびれ部を設けて、開口を有する 金属ヮッシャを前記くびれ部で支持し、かつ該金属ヮッシャ上に、少なくとも前記対極 とセパレータと検知極とを配置し、金属ヮッシャと金属缶の底部との間に水を収容した ことを特徴とする、請求項 1の液体電気化学センサ。
[7] 検出対象ガスが、水素中の C〇もしくは不活性ガス中の還元性ガスであることを特徴 とする、請求項 1の液体電気化学ガスセンサ。
PCT/JP2004/012258 2003-11-14 2004-08-26 液体電気化学ガスセンサ WO2005047879A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005515396A JP4179515B2 (ja) 2003-11-14 2004-08-26 液体電気化学ガスセンサ
US11/026,053 US7378008B2 (en) 2003-11-14 2005-01-03 Liquid electrochemical gas sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003384590 2003-11-14
JP2003-384590 2003-11-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/026,053 Continuation US7378008B2 (en) 2003-11-14 2005-01-03 Liquid electrochemical gas sensor

Publications (1)

Publication Number Publication Date
WO2005047879A1 true WO2005047879A1 (ja) 2005-05-26

Family

ID=34587326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012258 WO2005047879A1 (ja) 2003-11-14 2004-08-26 液体電気化学ガスセンサ

Country Status (3)

Country Link
US (1) US7378008B2 (ja)
JP (1) JP4179515B2 (ja)
WO (1) WO2005047879A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141168A (ja) * 2010-01-06 2011-07-21 Osaka Gas Co Ltd 電気化学式センサ及びその製造方法
JP2013015463A (ja) * 2011-07-05 2013-01-24 Osaka Gas Co Ltd 電気化学式センサの使用方法及び電気化学式センサを用いた警報装置
GB2517902A (en) * 2013-07-26 2015-03-11 Cambridge Entpr Ltd Method and apparatus for sensing molecular gases
JP2015519539A (ja) * 2012-03-16 2015-07-09 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー アニオン交換膜を含む電気化学式ガスセンサー
EP2109784B2 (en) 2007-01-31 2016-10-05 Novartis AG Antimicrobial medical devices including silver nanoparticles
JP2017111110A (ja) * 2015-12-11 2017-06-22 富士電機株式会社 ガス分析装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678251B2 (en) * 2007-02-06 2010-03-16 Proton Energy Systems, Inc. System and method for detecting gas
US8641878B2 (en) * 2009-08-04 2014-02-04 Gentex Corporation Cathodic materials for use in electrochemical sensors and associated devices and methods of manufacturing the same
KR101305464B1 (ko) * 2010-08-23 2013-09-06 충남대학교산학협력단 이온성 금속촉매가 도입된 탄소재를 이용한 고감도 가스센서 및 이의 제조방법
US9151729B2 (en) 2011-09-08 2015-10-06 Brk Brands, Inc. Carbon monoxide sensor system
US10775339B2 (en) 2014-11-26 2020-09-15 Gentex Corporation Membranes for use in electrochemical sensors and associated devices
EP3325956A1 (en) 2015-07-22 2018-05-30 Honeywell International Inc. Breather slots and venting reservoir
WO2017123205A1 (en) 2016-01-12 2017-07-20 Honeywell International Inc. Electrochemical sensor
EP3622279B1 (en) * 2017-05-12 2023-07-26 Carrier Corporation Method for gas testing
DE102019204311A1 (de) * 2019-03-28 2020-10-01 Siemens Aktiengesellschaft Sensoranordnung sowie Verfahren
US11536680B2 (en) 2019-11-14 2022-12-27 Analog Devices International Unlimited Company Electrochemical sensor and method of forming thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820386A (en) * 1988-02-03 1989-04-11 Giner, Inc. Diffusion-type sensor cell containing sensing and counter electrodes in intimate contact with the same side of a proton-conducting membrane and method of use
EP0762117A2 (en) * 1995-09-01 1997-03-12 Atwood Industries Inc. Carbon monoxide and toxic gas sensor with humidity compensation based on protonic conductive membranes and method of fabrication
JP2000146908A (ja) * 1998-09-29 2000-05-26 Atwood Ind Inc 導電疎水性膜を有するガス・センサ
WO2001014864A2 (en) * 1999-08-24 2001-03-01 Central Research Laboratories Ltd. A gas sensor and its method of manufacture
JP2002350393A (ja) * 2001-05-25 2002-12-04 Figaro Eng Inc プロトン導電体ガスセンサ
WO2002097420A1 (en) * 2001-05-25 2002-12-05 Figaro Engineering Inc. Protonic conductive membrane gas sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036724A (en) * 1973-04-02 1977-07-19 Dragerwerk Aktiengesellschaft Device for the continuous determination of carbon monoxide content of air
GB2094005B (en) * 1981-02-03 1985-05-30 Coal Industry Patents Ltd Electrochemical gas sensor
GB8313846D0 (en) 1983-05-19 1983-06-22 City Tech Gas sensor
US5302274A (en) 1990-04-16 1994-04-12 Minitech Co. Electrochemical gas sensor cells using three dimensional sensing electrodes
US5240893A (en) 1992-06-05 1993-08-31 General Motors Corporation Method of preparing metal-heterocarbon-nitrogen catalyst for electrochemical cells
US5338429A (en) * 1993-03-05 1994-08-16 Mine Safety Appliances Company Electrochemical toxic gas sensor
DE19717056C1 (de) 1997-04-23 1998-05-14 Draegerwerk Ag Elektrochemischer Gassensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820386A (en) * 1988-02-03 1989-04-11 Giner, Inc. Diffusion-type sensor cell containing sensing and counter electrodes in intimate contact with the same side of a proton-conducting membrane and method of use
EP0762117A2 (en) * 1995-09-01 1997-03-12 Atwood Industries Inc. Carbon monoxide and toxic gas sensor with humidity compensation based on protonic conductive membranes and method of fabrication
JP2000146908A (ja) * 1998-09-29 2000-05-26 Atwood Ind Inc 導電疎水性膜を有するガス・センサ
WO2001014864A2 (en) * 1999-08-24 2001-03-01 Central Research Laboratories Ltd. A gas sensor and its method of manufacture
JP2002350393A (ja) * 2001-05-25 2002-12-04 Figaro Eng Inc プロトン導電体ガスセンサ
WO2002097420A1 (en) * 2001-05-25 2002-12-05 Figaro Engineering Inc. Protonic conductive membrane gas sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2109784B2 (en) 2007-01-31 2016-10-05 Novartis AG Antimicrobial medical devices including silver nanoparticles
JP2011141168A (ja) * 2010-01-06 2011-07-21 Osaka Gas Co Ltd 電気化学式センサ及びその製造方法
JP2013015463A (ja) * 2011-07-05 2013-01-24 Osaka Gas Co Ltd 電気化学式センサの使用方法及び電気化学式センサを用いた警報装置
JP2015519539A (ja) * 2012-03-16 2015-07-09 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー アニオン交換膜を含む電気化学式ガスセンサー
GB2517902A (en) * 2013-07-26 2015-03-11 Cambridge Entpr Ltd Method and apparatus for sensing molecular gases
JP2017111110A (ja) * 2015-12-11 2017-06-22 富士電機株式会社 ガス分析装置

Also Published As

Publication number Publication date
JPWO2005047879A1 (ja) 2007-05-31
US20050145494A1 (en) 2005-07-07
JP4179515B2 (ja) 2008-11-12
US7378008B2 (en) 2008-05-27

Similar Documents

Publication Publication Date Title
JP4140911B2 (ja) 液体電気化学ガスセンサ
WO2005047879A1 (ja) 液体電気化学ガスセンサ
EP0762117B1 (en) Carbon monoxide and toxic gas sensor with humidity compensation based on protonic conductive membranes and method of fabrication
US5573648A (en) Gas sensor based on protonic conductive membranes
Xing et al. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI)
US4171253A (en) Self-humidifying potentiostated, three-electrode hydrated solid polymer electrolyte (SPE) gas sensor
CN108027342B (zh) 电化学气体传感器
WO1996024052A9 (en) Electrochemical gas sensor
US20150014167A1 (en) Electrochemical gas sensor comprising an anion-exchange membrane
JP2004506181A (ja) ガスセンサ
JP4953324B2 (ja) 電気化学センサ
Bharath et al. Effect of humidity on the interaction of CO2 with alkaline anion exchange membranes probed using the quartz crystal microbalance
JP2005087586A (ja) 電気化学式空気清浄デバイス
CN102200525B (zh) 二氧化氯测量组件,含该组件的气体传感器和测量方法
JP6475862B2 (ja) アニオン交換膜及びその製造方法
JP2002298869A (ja) 固体高分子型燃料電池
JP4353821B2 (ja) 水素ガス用電気化学式ガスセンサ素子の製造方法
JP4463253B2 (ja) 液体電気化学ガスセンサ
CN110749637A (zh) 一种基于半固态电解质的co电化学气体传感器及其制备方法
CN109952677A (zh) 无膜直接型燃料电池
JP2021184370A (ja) 燃料電池セル
GB1597414A (en) Electrochemical gas-sensing device
JP2002298856A (ja) 固体高分子型燃料電池
Elamathi et al. EFFECT OF Pd AND Pt CATALYSTS ON THE PERFORMANCE OF ELECTROLYTE MEMBRANE IN HYDROGEN SENSOR

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11026053

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515396

Country of ref document: JP

122 Ep: pct application non-entry in european phase