WO2005047225A1 - Method for the detection of thiols in aqueous solution - Google Patents

Method for the detection of thiols in aqueous solution Download PDF

Info

Publication number
WO2005047225A1
WO2005047225A1 PCT/ES2004/000504 ES2004000504W WO2005047225A1 WO 2005047225 A1 WO2005047225 A1 WO 2005047225A1 ES 2004000504 W ES2004000504 W ES 2004000504W WO 2005047225 A1 WO2005047225 A1 WO 2005047225A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
solution
detection
nucleophile
reagents
Prior art date
Application number
PCT/ES2004/000504
Other languages
Spanish (es)
French (fr)
Inventor
Ramón MARTÍNEZ MÁÑEZ
Juan Soto Camino
José Vicente ROS LIS
Félix SANCENÓN GALARZA
María Dolores MARCOS MARTÍNEZ
Original Assignee
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politecnica De Valencia filed Critical Universidad Politecnica De Valencia
Publication of WO2005047225A1 publication Critical patent/WO2005047225A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/68Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C215/70Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with rings other than six-membered aromatic rings being part of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/04Systems containing only non-condensed rings with a four-membered ring

Definitions

  • the invention relates to the field of the analysis of organic compounds, specifically to new reagents derived from escuaridine, as well as to the procedure for their preparation, to their use for the detection of chemical species that include a thiol group ("SH" ) in aqueous medium and to the method of detection / quantification of said organic compounds containing thiol groups by means of said reagents.
  • the detection method is based on the reaction of these species with the reagents of the invention that have in common the availability of electronically deficient centers that are especially related to the organic thiol function.
  • nucleophilic character Some species or neutral groups with a surplus in electronic density have a nucleophilic character. The detection of certain nucleophilic species may be of interest.
  • An example of this type of chemical species are those that include a thiol group, "SH".
  • Thiols are a group of compounds that are characterized by their extremely unpleasant smell. In fact, butane thiol is used as a natural gas additive to indicate the presence of gas leaks before they reach dangerous concentrations.
  • this group of compounds, also called mercaptans includes molecules of great biochemical importance. Thus, thiols are involved in the secondary structure of proteins, contributing to the maintenance of their form by forming sulfur-sulfur bonds between different amino acids.
  • amino acids that contain the thiol group are important parameters in the clinical diagnosis.
  • the plasma level of glutanothione, cysteine and homocysteine is related to different human diseases such as AIDS, Alzheimer's and Parkinson's diseases, as well as cardiovascular diseases.
  • Cysteine in addition, is one of the main components of the keratin protein found in hair, feathers and skin. The smooth oxidation of cysteine to form the disulfide bond is directly related to the shape of these tissues.
  • these spectroscopic sensors respond by a variation of the fluorescence (fluoroionophores) or by a change in absorbance (chromoionó forums).
  • fluorescent type anion sensors are: DH Vanee et al. J. Am. Chem. Soc, 116 (1994) p. 9397-9398; GD Santis et al., Angew. Chem. Int. Ed. Engl., 35 (1996) p. 202; MT Albelda et al., J. Chem. Soc. Perkin Trans. 2 (1999) p. 2545-2549; R. Prohens et al, Chem. Commun., 2001 p.
  • page 121 presents a method for the detection of thiols based on the combination of the paper chromatography technique with a selective indicator, however this method has some interferences such as NaHSO and Na 2 S 2 ⁇ .
  • H. Takashashi et al. in Agricultural and Biol. Chem., 40, (1976) 2493 propose the use of a reagent for the detection of thiols and disulfyres by fluorescence.
  • A. Neal et al in Nature 406, (2000), p. 710 they propose a more novel approach, the use of a series of different sensors assembled together that are capable of detecting odors, including thiols.
  • Soc, 125, (2003) p. 7802-7803 propose a method for the detection of amino acids that contain the thiol group based on the rupture of a trinuclear heterobimetallic complex of ruthenium and platinum: the thiol group coordinates the platinum centers leaving the free ruthenium complex with what is produced an increase in fluorescence.
  • the drawback of this method is the need to implement the instruments necessary to produce and measure the fluorescence process on which it is based the detection.
  • the invention generally faces the problem of providing an alternative method for the detection of nucleophiles such as thiols, in aqueous medium, which is easily applicable without the need for the implementation of sophisticated instruments.
  • the solution provided by this invention is based on the observation by the inventors that, once the solubilization in water of the squaridines of the invention has been achieved (from now on reagents of the invention), they are capable of suffering a discoloration in the presence of molecules containing the thiol group because they contain a positively charged ring.
  • the authors have also observed that by modifying the pH of the medium it is possible to make these reagents selectively respond to these molecules containing the thiol group.
  • Escuaridines have been used in numerous applications but never as reagents for the detection and determination of neutral species due to their low water solubility. To avoid this great inconvenience in the present invention, the preparation of a family of reagents functionalized with polar groups is raised, thus obtaining molecules with a water solubility or mixtures of water with suitable organic solvents.
  • the present invention is intended to provide reagents
  • Another additional object of the present application is to provide a method for detecting thiols in an aqueous medium comprising contacting the solution of the species to be detected with a solution of any of the reagents of the invention that, when reacted, have the capacity to provide a macroscopically observable signal or event that can be measured in solution (color change). The occurrence of said event is indicative of the presence of thiols in said tested solution.
  • the method of the invention allows, by means of an optical system, to calculate the concentration of said species in said solution tested by interpolation in a calibration curve.
  • a method such as that provided by this invention makes it possible to detect and if it is desired to quantify, the presence of thiols in an aqueous medium, quickly, easily and reproducibly.
  • Figure 1 shows the reaction scheme of reagent 1.
  • Figure 3 shows the UV-Vis spectrum of reagent II in organic water-solvent mixtures at a concentration of 6.05 x 10 "5 M in the presence of 10 equivalents of various amino acids. It is observed that there is only appreciable discoloration in the presence of cysteine.
  • the invention relates to a set of compounds derived from escuaridine capable of selectively detecting the presence of certain nucleophiles in an aqueous medium.
  • these reagents for Selective detection of certain chemical species of nucleophilic character in water or mixtures of water / organic solvent respond to the general formula I:
  • Ri represents C2-C10 closed or open alkyl chains that may or may not contain heteroatoms such as O, N and S; and R 2 and R, the same or different, represent small organic groups such as hydrogen, carboxylic acids (-COOH) or sulfonic (-SO 3 H), nitro groups (-N0 3 ), bases such as primary, secondary or tertiary amines, or aromatic groups such as phenyls, characterized by undergoing a color change in the presence of the chemical species to be detected.
  • the main purpose of the Ri, R 2 and R 3 groups is to increase water solubility.
  • the compounds of general formula I have the particularity of having especially electrophilic groups (deficient in electronic charge) so that they give chemical reactions under certain conditions with certain nucleophiles such as thiols producing color changes.
  • one of the reagents of the invention has formula II:
  • Another aspect of the invention relates to the process for obtaining the reagents of general formula I which comprises: a) reacting an organic group mesylated derivative R ⁇ which is desired to be introduced into reagent I, with the N-phenyldiethanolamine, b) making react the aniline resulting from the previous stage with squaric acid.
  • a particular embodiment to obtain the reagents of general formula II comprises: a) reacting a mesylated derivative of 2- (2-methoxyethoxy) ethanol with N-phenyldiethanolamine, b) reacting N, N-diethyl 2- [2- (methoxyethoxy) ethoxy] aniline resulting from the previous step with squaric acid. Step b) is carried out by adding two equivalents of this aniline for each equivalent of the squaric acid, resulting in obtaining reagent II.
  • a third aspect of the invention refers to the use of the reagents of the invention for the detection of nucleophilic species preferably thiols in aqueous solutions or water / organic solvent mixtures.
  • nucleophilic species preferably thiols in aqueous solutions or water / organic solvent mixtures.
  • An example of thiol can be cysteine.
  • a particular embodiment of the invention involves the use of the reagents of the invention incorporated on solid supports that can be polymeric materials or inorganic supports and that in contact with aqueous solutions containing the nucleophile to be detected, give a macroscopically observable and measurable signal.
  • the invention in a final aspect relates to a method for the detection of nucleophiles in an aqueous medium or in organic solvent-water mixtures, hereinafter method of the invention, comprising the following steps: a) preparing a solution of one of the reagents of claim 1, b) working pH selection c) mixing the solution to be tested containing the nucleophile with the solution prepared in step a), d) measuring the macroscopic signal produced and, optionally, quantifying said signal by interpolation in a calibration curve,
  • the solution of step a) It is preferably obtained by solubilizing one of the reagents of the invention in a solvent preferably acetonitrile.
  • the choice of pH is a fundamental part of the method of the invention since, first, it is related to the stability of the reagent and, on the other, it can allow the selective detection of certain nucleophiles in aqueous solution in the presence of other chemical species.
  • the following table shows the pH necessary for the selective detection of thiols in aqueous solution:
  • the mixture resulting from contacting the aqueous solution containing the nucleophile with the solution containing the nucleophile selective reagent is homogenized, introduced into a measuring cell of an optical system and measured.
  • the solution of the selective reagent is distributed in aliquots and on them standard solutions of the nucleon " lo, normally prepared in water although other means could be used as organic solvents or mixtures thereof with water.
  • the standard solutions of the nucleophile are prepared by dissolving known amounts of the nucleophile in known volumes of the corresponding solvent.
  • the measurement of the macroscopic signal to be produced in the solutions resulting from adding the standard solutions of the nucleophile on said aliquots prepared from said solution of the selective reagent provides the different calibration points In a concrete embodiment of the method of the invention (see Example 3), this is based in fading which produces the nucleophilic attack of the amino acid cysteine on a functionalized escuaridine (reagent II).
  • the color of the squaridine The internationalization is due to a load transfer band from the anilinium donor groups to the acceptor group which is the typical four-membered ring of the squaridines.
  • the method of the invention can be implemented in a rapid measurement device comprising a mechanical device that allows the reaction between the selective reagent and the species to be determined present in the problem solution and the calculation of its concentration by comparison with a concentration pattern .
  • the method of the invention can be implemented in the form of strips or bands for supporting analytical tests. reagents in suitable solids such as polymers or siliceous matrices. The following examples illustrate the invention.
  • EXAMPLE 1 Obtaining reagent II Obtaining reagent II is carried out in two fundamental steps: first, N, N-di (ethyl 2- (2 (2-methoxyethoxy) ethoxy) aniline is prepared and subsequently reacted it is with the squaric acid to form the corresponding squaridine that we have named as I. Initially, the mesylated derivative of 2- (2-methoxyethoxy) ethanol is obtained by treating the latter with mesyl chloride, ll, 9mL (0.1 mol ) of 2- (2- methoxyethoxy) ethanol are dissolved in 150 mL of dichloromethane (Cr Cb) and the mixture is placed in an ice bath.
  • N N-di (ethyl 2- (2 (2-methoxyethoxy) ethoxy) aniline is prepared and subsequently reacted it is with the squaric acid to form the corresponding squaridine that we have named as I.
  • N-phenyldiethanolamine (3.63 g, 0.02 mol) is dissolved in 70 mL of acetonitrile and sodium hydride (1.2 g, 0.05 mol) is added for 30 minutes.
  • sodium hydride 1.2 g, 0.05 mol
  • mesylated derivative of 2- (2-methoxyethoxy) ethanol obtained previously dissolved in 20 mL of acetonitrile and is refluxed for 24 hours.
  • the mixture is filtered and concentrated, and the concentrate is purified by column chromatography, using alumina as the stationary phase and dichloromethane as the mobile phase.
  • Eight parts of each of the standard cysteine solutions are mixed with two parts of the selective reagent II solution, homogenized by stirring and the resulting solutions are introduced into the spectrophotometer and the absorbance of each at 641 nm is measured.
  • the response obtained for the different concentrations of cysteine is shown in Figure 2.
  • eight parts of the aqueous solution containing cysteine to be determined are mixed with two parts of the solution of the selective reagent II.
  • Figure 3 shows the UV-Vis spectrum of II in organic water-solvent mixtures (acetonitrile) in the presence of amino acids, the selective response to cysteine being observed.

Abstract

The invention relates to a method for the detection of nucleophilic species with excess electronic charge, particularly thiol groups. The invention also relates to a series of squaraine-derived compounds. The inventive method is advantageous in that the thiols can be detected in aqueous solution from a simple, easily-noticeable change in colour. In this way, said method can be used to quantify the thiol concentration in the analysed solution.

Description

MÉTODO PARALA DETECCIÓN DE TIPLES EN SOLUCIÓN ACUOSA PARALLY METHOD OF DETECTION OF TIPLES IN WATER SOLUTION
CAMPO DE LAINVENCIÓN La invención se refiere al campo del análisis de compuestos orgánicos, concretamente a nuevos reactivos derivados de la escuaridina, así como al procedimiento para su preparación, a su uso para la detección de especies químicas que incluyan un grupo tiol ("SH") en medio acuoso y al método de detección/cuantificación de dichos compuestos orgánicos que contienen grupos tiol mediante los citados reactivos. El método de detección se basa en la reacción de estas especies con los reactivos de la invención que tienen en común el disponer de centros deficientes en carga electrónica que son especialmente afines a la función orgánica tiol.FIELD OF INVENTION The invention relates to the field of the analysis of organic compounds, specifically to new reagents derived from escuaridine, as well as to the procedure for their preparation, to their use for the detection of chemical species that include a thiol group ("SH" ) in aqueous medium and to the method of detection / quantification of said organic compounds containing thiol groups by means of said reagents. The detection method is based on the reaction of these species with the reagents of the invention that have in common the availability of electronically deficient centers that are especially related to the organic thiol function.
ANTECEDENTES DE LA INVENCIÓN Algunas especies o grupos neutros con un excedente en densidad electrónica presentan carácter nucleofílico. La detección de determinadas especies nucleófilas puede ser de interés. Un ejemplo de este tipo de especies químicas son aquellas que incluyen un grupo tiol, "SH". Los tioles son un grupo de compuestos que se caracterizan por su olor extremadamente desagradable. De hecho, el butano tiol se utiliza como aditivo del gas natural para indicar la presencia de fugas de gas antes de que estas alcancen concentraciones peligrosas. Sin embargo, este grupo de compuestos, también llamados mercaptanos, incluye moléculas de gran importancia bioquímica. Así, los tioles están involucrados en la estructura secundaria de las proteínas, contribuyendo al mantenimiento de su forma mediante la formación de enlaces azufre-azufre entre diferentes aminoácidos. Algunos de los aminoácidos que contienen el grupo tiol son parámetros importantes en el diagnóstico clínico. Por ejemplo, el nivel en plasma de glutanotiona, cisteína y homocisteína está relacionado con diferentes enfermedades humanas como son las enfermedades del SIDA, Alzheimer y Parkinson, así como con enfermedades cardiovasculares. La cisteína, además, es uno de los principales componentes de la proteína keratina que se encuentra en el pelo, plumas y piel. La oxidación suave de la cisteína para formar el enlace disulfuro está directamente relacionada con la forma de estos tejidos. Durante los últimos años, se ha puesto de manifiesto un creciente interés en el estudio y desarrollo de nuevos sensores químicos para aniones o especies neutras, con capacidad de emitir una señal macroscópica de tipo óptico. En presencia de las especies químicas a detectar, estos sensores espectroscópicos responden mediante una variación de la fluorescencia (fluoroionóforos) o mediante un cambio en la absorbancia (cromoionó foros). Ejemplos de sensores de aniones de tipo fluorescente son: D. H. Vanee et al. J. Am. Chem. Soc, 116 (1994) pág. 9397-9398; G. D. Santis et al., Angew. Chem. Int. Ed. Engl., 35 (1996) pág. 202; M. T. Albelda et al., J. Chem. Soc. Perkin Trans. 2 (1999) pág. 2545-2549; R. Prohens et al, Chem. Commun., 2001 pág. 1456; M. E. Padilla-Tosta et al, Eur. J. Inorg. Chem., 2001 pág. 1221-1226; y de sensores colorimétricos de aniones: S. Watanabe et al., J. Am. Chem. Soc, 120 (1998) pág. 229- 230; K. ucura et al., J Am. Chem. Soc, 120 (1998) pág. 8533-8534; J. J. Lavigne, E. V. Anslyn, Angew. Chem. Int. Ed., 38 (1999) pág. 3666-3669; P. Anzenbacher, Jr. et al., Am. Chem. Soc, 122 (2000) pág. 10268-10272; F. Sancenón et al., Angew. Chem. Int. Ed., 40 (2001) pág. 2640-2643. Entre todos los sensores desarrollados, son de especial interés los basados en cambios de la absorbancia de radiación visible puesto que, de esta forma, la presencia de las especies químicas a detectar puede ser fácilmente reconocible a través de un simple cambio de color. La detección de tioles mediante métodos colorimétricos o por fluorescencia ha sido muy poco estudiada, tan solo se han descrito algunos ensayos que presentan escasa selectividad. Por ejemplo, D.R. Grasetti et al en j. of Cromatography, 41, (1969), pag 121 presenta un método para la detección de tioles basado en la combinación de la técnica de cromatografía de papel con un indicador selectivo, sin embargo este método presenta algunos interferentes como son el NaHSO y el Na2S2θ . En otra publicación algo más reciente, H. Takashashi et al. en Agricultural and Biol. Chem., 40, (1976) 2493, proponen la utilización de un reactivo para la detección de tioles y disulfiíros mediante fluorescencia. A. Neal et al en Nature 406, (2000), pag. 710, plantean una aproximación más novedosa, la utilización de una serie de diferentes sensores montados en conjunto que son capaces de detectar olores, entre ellos los tioles. Quizá mayor atención se le ha prestado a la detección de los tioles asociados con aminoácidos, sin embargo en este caso la mayoría de los métodos desarrollados están relacionados con procedimientos instrumentales que exigen una implementación técnica importante como son cromatografía de gases, cromatografía de líquidos de alta resolución, espectroscopia de masas o resonancia magnética nuclear. Un conjunto importante de métodos instrumentales desarrollados para la detección de aminoácidos que contienen el grupo tiol como la cisteína, están basados en la capacidad de este grupo de ser oxidado: Electrochemical detection of tiols with a coenzyme pyrroloquinoline quinone modified electrode", T. Imone et al, Anal. Chem., 72, (2000), pág. 5755; "Lead phatolocyanine as a selective carrier for preparation of cysteine-selective electrode", Ch.-F- Chow et al. Anal. Chem., 73, (2001), pág. 5972; "Voltametric sensing of tiols. The electrocatalytic oxidation of 4-acetamidophenol in the presence of cysteine: a mechanistic rotating disk electrode study." B.A. Brookes et al, J. Phys. Chem. B, 105, (2001), pág. 6361; "Preparation of multi carbón nabotubes film modified electrode and its application to simultaneous determination of oxidizable amino acids in ion cromatography" N.A. Rakow et al, Talanta 60, (2003), pag 1123; "Cobalt(II)-salophen-modified carbon-paste electrode for potentiometric and voltametric determination of cysteine", M.K. Amini et al, Anal. Biochem., 320, (2003), pag. 32; Renewable sol-gel carbón ceramic electrodes modified with a pre-complex for the amperometric electrón of L-cysteine and gluthatione", A. Salini et al., Talanta 60, (2003), pag. 205. El diseño de nuevos sensores químicos se ha abordado desde diferentes enfoques. En la mayoría de los casos, el proceso implica la unión de una molécula capaz de enlazar con el/los aniones a detectar, con otra molécula que genera la correspondiente señal macroscópica, bien sea por fluorescencia o por cambio de absorción, Sin embargo, en la mayoría de los casos, la señal óptica es solamente observable en disolventes no acuosos como por ejemplo cloroformo o acetonitrilo, y son menos los ejemplos de sensores químicos para especies neutras que sean capaces de trabajar en medio acuoso. Un enfoque alternativo es la utilización de reacciones específicas producidas por las especies que se desea detectar, convenientemente acopladas con un proceso simultáneo que dé lugar a una señal macroscópicamente medible. Por ejemplo, entre los avances más recientes Ch.-F. Chow et al en J. Am. Chem. Soc, 125, (2003) pág. 7802- 7803, proponen un método para la detección de aminoácidos que contienen el grupo tiol basado en la ruptura de un complejo trinuclear heterobimetálico de rutenio y platino: el grupo tiol coordina a los centros platino dejando el complejo de rutenio libre con lo que se produce un aumento de la fluorescencia. El inconveniente de este método es la necesidad de implementar el instrumental necesario para producir y medir el proceso de fluorescencia en el que se basa la detección. Así pues, la invención se enfrenta, en general, con el problema de proporcionar un método alternativo para la detección de nucleófilos como son los tioles, en medio acuoso, que sea fácilmente aplicable sin que sea necesaria la implementación de un instrumental sofisticado. La solución proporcionada por esta invención se basa en la observación por parte de los inventores de que, una vez se ha conseguido la solubilización en agua de las escuaridinas de la invención (a partir de ahora reactivos de la invención), estos son capaces de sufrir una decoloración en presencia de moléculas conteniendo el grupo tiol debido a que contienen un anillo cargado positivamente. Los autores también han observado que modificando el pH del medio se puede conseguir que estos reactivos respondan de forma selectiva a estas moléculas que contienen el grupo tiol. Las escuaridinas se han utilizado en numerosas aplicaciones pero nunca como reactivos para la detección y determinación de especies neutras debido a su baja solubilidad en agua. Para evitar este gran inconveniente en la presente invención se plantea la preparación de una familia de reactivos funcionalizados con grupos polares obteniéndose de esta forma moléculas con una solubilidad en agua o mezclas de agua con disolventes orgánicos adecuada.BACKGROUND OF THE INVENTION Some species or neutral groups with a surplus in electronic density have a nucleophilic character. The detection of certain nucleophilic species may be of interest. An example of this type of chemical species are those that include a thiol group, "SH". Thiols are a group of compounds that are characterized by their extremely unpleasant smell. In fact, butane thiol is used as a natural gas additive to indicate the presence of gas leaks before they reach dangerous concentrations. However, this group of compounds, also called mercaptans, includes molecules of great biochemical importance. Thus, thiols are involved in the secondary structure of proteins, contributing to the maintenance of their form by forming sulfur-sulfur bonds between different amino acids. Some of the amino acids that contain the thiol group are important parameters in the clinical diagnosis. For example, the plasma level of glutanothione, cysteine and homocysteine is related to different human diseases such as AIDS, Alzheimer's and Parkinson's diseases, as well as cardiovascular diseases. Cysteine, in addition, is one of the main components of the keratin protein found in hair, feathers and skin. The smooth oxidation of cysteine to form the disulfide bond is directly related to the shape of these tissues. In recent years, a growing interest in the study and development of new chemical sensors for anions or neutral species, with the ability to emit a macroscopic optical signal. In the presence of the chemical species to be detected, these spectroscopic sensors respond by a variation of the fluorescence (fluoroionophores) or by a change in absorbance (chromoionó forums). Examples of fluorescent type anion sensors are: DH Vanee et al. J. Am. Chem. Soc, 116 (1994) p. 9397-9398; GD Santis et al., Angew. Chem. Int. Ed. Engl., 35 (1996) p. 202; MT Albelda et al., J. Chem. Soc. Perkin Trans. 2 (1999) p. 2545-2549; R. Prohens et al, Chem. Commun., 2001 p. 1456; ME Padilla-Tosta et al, Eur. J. Inorg. Chem., 2001 p. 1221-1226; and colorimetric anion sensors: S. Watanabe et al., J. Am. Chem. Soc, 120 (1998) p. 229-230; K. ucura et al., J Am. Chem. Soc, 120 (1998) p. 8533-8534; JJ Lavigne, EV Anslyn, Angew. Chem. Int. Ed., 38 (1999) p. 3666-3669; P. Anzenbacher, Jr. et al., Am. Chem. Soc, 122 (2000) p. 10268-10272; F. Sancenón et al., Angew. Chem. Int. Ed., 40 (2001) p. 2640-2643. Among all the sensors developed, those based on changes in the absorbance of visible radiation are of special interest since, in this way, the presence of the chemical species to be detected can be easily recognized through a simple color change. The detection of thiols by colorimetric or fluorescence methods has been very poorly studied, only some trials that have poor selectivity have been described. For example, DR Grasetti et al in j. of Cromatography, 41, (1969), page 121 presents a method for the detection of thiols based on the combination of the paper chromatography technique with a selective indicator, however this method has some interferences such as NaHSO and Na 2 S 2 θ. In another somewhat more recent publication, H. Takashashi et al. in Agricultural and Biol. Chem., 40, (1976) 2493, propose the use of a reagent for the detection of thiols and disulfyres by fluorescence. A. Neal et al in Nature 406, (2000), p. 710, they propose a more novel approach, the use of a series of different sensors assembled together that are capable of detecting odors, including thiols. Perhaps more attention has been given to the detection of thiols associated with amino acids, however in this case most of the methods developed are related to instrumental procedures that require an important technical implementation such as gas chromatography, high liquid chromatography resolution, spectroscopy of masses or nuclear magnetic resonance. An important set of instrumental methods developed for the detection of amino acids that contain the thiol group such as cysteine are based on the ability of this group to be oxidized: Electrochemical detection of tiols with a coenzyme pyrroloquinoline quinone modified electrode ", T. Imone et al, Anal. Chem., 72, (2000), p. 5755; "Lead phatolocyanine as a selective carrier for preparation of cysteine-selective electrode", Ch.-F-Chow et al. Anal. Chem., 73, ( 2001), p. 5972; "Voltametric sensing of tiols. The electrocatalytic oxidation of 4-acetamidophenol in the presence of cysteine: a mechanistic rotating disk electrode study. "BA Brookes et al, J. Phys. Chem. B, 105, (2001), p. 6361;" Preparation of multi carbon nabotubes film modified electrode and its application to simultaneous determination of oxidizable amino acids in ion chromatography "NA Rakow et al, Talanta 60, (2003), page 1123;" Cobalt (II) -salophen-modified carbon-paste electrode for potentiometric and voltametric determination of cysteine ", MK Amini et al, Anal. Biochem., 320, (2003), page 32; Renewable sol-gel carbon ceramic electrodes modified with a pre-complex for the amperometric electron of L-cysteine and gluthatione", A Salini et al., Talanta 60, (2003), p. 205. The design of new chemical sensors has been approached from different approaches. In most cases, the process involves the union of a molecule capable of linking with the anions to be detected, with another molecule that generates the corresponding macroscopic signal, either by fluorescence or by change of absorption, However, in In most cases, the optical signal is only observable in non-aqueous solvents such as chloroform or acetonitrile, and there are fewer examples of chemical sensors for neutral species that are capable of working in an aqueous medium. An alternative approach is the use of specific reactions produced by the species to be detected, conveniently coupled with a simultaneous process that results in a macroscopically measurable signal. For example, among the most recent advances Ch.-F. Chow et al in J. Am. Chem. Soc, 125, (2003) p. 7802-7803, propose a method for the detection of amino acids that contain the thiol group based on the rupture of a trinuclear heterobimetallic complex of ruthenium and platinum: the thiol group coordinates the platinum centers leaving the free ruthenium complex with what is produced an increase in fluorescence. The drawback of this method is the need to implement the instruments necessary to produce and measure the fluorescence process on which it is based the detection. Thus, the invention generally faces the problem of providing an alternative method for the detection of nucleophiles such as thiols, in aqueous medium, which is easily applicable without the need for the implementation of sophisticated instruments. The solution provided by this invention is based on the observation by the inventors that, once the solubilization in water of the squaridines of the invention has been achieved (from now on reagents of the invention), they are capable of suffering a discoloration in the presence of molecules containing the thiol group because they contain a positively charged ring. The authors have also observed that by modifying the pH of the medium it is possible to make these reagents selectively respond to these molecules containing the thiol group. Escuaridines have been used in numerous applications but never as reagents for the detection and determination of neutral species due to their low water solubility. To avoid this great inconvenience in the present invention, the preparation of a family of reagents functionalized with polar groups is raised, thus obtaining molecules with a water solubility or mixtures of water with suitable organic solvents.
OBJETO DE LA INVENCIÓN En primer lugar, la presente invención tiene por objeto proporcionar unos reactivosOBJECT OF THE INVENTION First, the present invention is intended to provide reagents
(reactivos de la invención) derivados de sales de la escuaridina con formula general (I):(reagents of the invention) derived from escuaridine salts with general formula (I):
Figure imgf000005_0001
así como el procedimiento para su preparación. Dentro del objeto de la presente solicitud se encuentra también el uso de los mencionados compuestos de fórmula general I para la detección y/o cuantificación de tioles en medio acuoso. Otro objeto adicional, de la presente solicitud es proporcionar un método para detectar tioles en un medio acuoso que comprende poner en contacto la disolución de la especie a detectar con una disolución de alguno de los reactivos de la invención que, al reaccionar, tienen la capacidad de proporcionar una señal o evento macroscópicamente observable y medible en disolución (cambio de color). La aparición de dicho evento es indicativa de la presencia de tioles en dicha disolución ensayada. Opcionalmente, el método de la invención permite, por medio de un sistema -óptico, calcular la concentración de la citada especie en dicha disolución ensayada por interpolación en una curva de calibrado. Un método como el proporcionado por esta invención permite detectar y si se desea cuantificar, la presencia de tioles en un medio acuoso, de forma rápida, sencilla y reproducible.
Figure imgf000005_0001
as well as the procedure for its preparation. Within the object of the present application is also the use of said compounds of general formula I for the detection and / or quantification of thiols in aqueous medium. Another additional object of the present application is to provide a method for detecting thiols in an aqueous medium comprising contacting the solution of the species to be detected with a solution of any of the reagents of the invention that, when reacted, have the capacity to provide a macroscopically observable signal or event that can be measured in solution (color change). The occurrence of said event is indicative of the presence of thiols in said tested solution. Optionally, the method of the invention allows, by means of an optical system, to calculate the concentration of said species in said solution tested by interpolation in a calibration curve. A method such as that provided by this invention makes it possible to detect and if it is desired to quantify, the presence of thiols in an aqueous medium, quickly, easily and reproducibly.
BREVE DESCRIPCIÓN DE LAS FIGURAS La Figura 1 muestra el esquema de reacción del reactivo 1. La Figura 2 es una gráfica que muestra la respuesta obtenida mediante la utilización de una disolución 1.21 x 10"5 M del reactivo II en función de la concentración de cisteína, medida como el logaritmo de la absorbancia en el máximo de la banda (λ = 641 nm) que presenta la disolución final resultante. La Figura 3 muestra el espectro de UV-Vis del reactivo II en mezclas agua- disolvente orgánico a una concentración de 6.05 x 10"5 M en presencia de 10 equivalentes de diversos aminoácidos. Se observa que sólo hay decoloración apreciable en presencia de cisteína.BRIEF DESCRIPTION OF THE FIGURES Figure 1 shows the reaction scheme of reagent 1. Figure 2 is a graph showing the response obtained by using a 1.21 x 10 "5 M solution of reagent II as a function of cysteine concentration , measured as the logarithm of the absorbance at the maximum band (λ = 641 nm) presenting the resulting final solution Figure 3 shows the UV-Vis spectrum of reagent II in organic water-solvent mixtures at a concentration of 6.05 x 10 "5 M in the presence of 10 equivalents of various amino acids. It is observed that there is only appreciable discoloration in the presence of cysteine.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN En un primer aspecto, la invención se relaciona con un conjunto de compuestos derivados de la escuaridina capaces de detectar selectivamente la presencia de determinados nucleófilos en un medio acuoso. Concretamente, estos reactivos para la detección selectiva de determinadas especies químicas de carácter nucleofílico en agua o mezclas de agua/disolvente orgánico responden a la fórmula general I :DETAILED DESCRIPTION OF THE INVENTION In a first aspect, the invention relates to a set of compounds derived from escuaridine capable of selectively detecting the presence of certain nucleophiles in an aqueous medium. Specifically, these reagents for Selective detection of certain chemical species of nucleophilic character in water or mixtures of water / organic solvent respond to the general formula I:
Figure imgf000007_0001
Figure imgf000007_0001
en donde Ri representa cadenas alquílicas cerradas o abiertas C2-C10 que pueden contener o no heteroátomos como son O, N y S; y R2 y R , iguales o diferentes, representan grupos orgánicos pequeños tales como hidrógeno, ácidos carboxílicos (- COOH) o sulfónicos (-SO3H), grupos nitro (-N03), bases como aminas primarias, secundarias o terciarias, o grupos aromáticos como los fenilos, caracterizados por sufrir un cambio de color en presencia de la especie química a detectar, La finalidad principal de los grupos Ri, R2 y R3 es aumentar la solubilidad en agua. Los compuestos de fórmula general I tienen la particularidad de poseer grupos especialmente electrófilos (deficientes en carga electrónica) de forma que dan reacciones químicas en determinadas condiciones con ciertos nucleófilos como los tioles produciendo cambios de color. En una realización particular y preferida, uno de los reactivos de la invención posee la formula II:where Ri represents C2-C10 closed or open alkyl chains that may or may not contain heteroatoms such as O, N and S; and R 2 and R, the same or different, represent small organic groups such as hydrogen, carboxylic acids (-COOH) or sulfonic (-SO 3 H), nitro groups (-N0 3 ), bases such as primary, secondary or tertiary amines, or aromatic groups such as phenyls, characterized by undergoing a color change in the presence of the chemical species to be detected. The main purpose of the Ri, R 2 and R 3 groups is to increase water solubility. The compounds of general formula I have the particularity of having especially electrophilic groups (deficient in electronic charge) so that they give chemical reactions under certain conditions with certain nucleophiles such as thiols producing color changes. In a particular and preferred embodiment, one of the reagents of the invention has formula II:
Figure imgf000007_0002
(II) Otro aspecto de la invención se refiere al procedimiento de obtención de los reactivos de formula general I que comprende: a) hacer reaccionar un derivado mesilado grupo orgánico R\ que se desee introducir en el reactivo I, con la N-fenildietanolamina, b) hacer reaccionar la anilina resultante de la etapa anterior con el ácido escuárico.
Figure imgf000007_0002
(II) Another aspect of the invention relates to the process for obtaining the reagents of general formula I which comprises: a) reacting an organic group mesylated derivative R \ which is desired to be introduced into reagent I, with the N-phenyldiethanolamine, b) making react the aniline resulting from the previous stage with squaric acid.
Una realización particular para obtener los reactivos de fórmula general II comprende: a) hacer reaccionar un derivado mesilado del 2-(2-metoxietoxi)etanol con la N-fenildietanolamina, b) hacer reaccionar la N,N-dietil 2-[2-(metoxietoxi)etoxi] anilina resultante de la etapa anterior con ácido escuárico. La etapa b) se lleva a cabo añadiendo dos equivalentes de esta anilina por cada equivalente del ácido escuárico, dando lugar a la obtención del reactivo II.A particular embodiment to obtain the reagents of general formula II comprises: a) reacting a mesylated derivative of 2- (2-methoxyethoxy) ethanol with N-phenyldiethanolamine, b) reacting N, N-diethyl 2- [2- (methoxyethoxy) ethoxy] aniline resulting from the previous step with squaric acid. Step b) is carried out by adding two equivalents of this aniline for each equivalent of the squaric acid, resulting in obtaining reagent II.
Un tercer aspecto de la invención hace referencia al uso de los reactivos de la invención para la detección de especies nucleofílicas preferentemente tioles en disoluciones acuosas o mezclas agua /disolvente orgánico. Como ejemplo de tiol se puede señalar la cisteína. Una realización particular de la invención supone el uso de los reactivos de la invención incorporados sobre soportes sólidos que pueden ser materiales poliméricos o soportes inorgánicos y que en contacto con disoluciones acuosas que contienen el nucleófilo a detectar, dan una señal macroscópicamente observable y medible.A third aspect of the invention refers to the use of the reagents of the invention for the detection of nucleophilic species preferably thiols in aqueous solutions or water / organic solvent mixtures. An example of thiol can be cysteine. A particular embodiment of the invention involves the use of the reagents of the invention incorporated on solid supports that can be polymeric materials or inorganic supports and that in contact with aqueous solutions containing the nucleophile to be detected, give a macroscopically observable and measurable signal.
En un último aspecto la invención se relaciona con un método para la detección de nucleófilos en un medio acuoso o en mezclas disolvente orgánico-agua, en adelante método de la invención, que comprende las siguientes etapas: a) preparar una disolución de uno de los reactivos de la reivindicación 1 , b) selección del pH de trabajo c) mezclar la disolución a ensayar que contiene el nucleófilo con la disolución preparada en la etapa a), d) medir la señal macroscópica producida y, opcionalmente, cuantificar dicha señal por interpolación en una curva de calibrado, La disolución de la etapa a) se obtiene preferiblemente solubilizando uno de los reactivos de la invención en un disolvente preferiblemente acetonitrilo, La elección del pH es una parte fundamental del método de la invención ya que, en primer lugar, está relacionado con la estabilidad del reactivo y, por otra, puede permitir la detección selectiva de ciertos nucleófilos en disolución acuosa en presencia de otras especies químicas, En la siguiente tabla viene detallado el pH necesario para la detección selectiva de tioles en disolución acuosa:In a final aspect the invention relates to a method for the detection of nucleophiles in an aqueous medium or in organic solvent-water mixtures, hereinafter method of the invention, comprising the following steps: a) preparing a solution of one of the reagents of claim 1, b) working pH selection c) mixing the solution to be tested containing the nucleophile with the solution prepared in step a), d) measuring the macroscopic signal produced and, optionally, quantifying said signal by interpolation in a calibration curve, The solution of step a) It is preferably obtained by solubilizing one of the reagents of the invention in a solvent preferably acetonitrile. The choice of pH is a fundamental part of the method of the invention since, first, it is related to the stability of the reagent and, on the other, it can allow the selective detection of certain nucleophiles in aqueous solution in the presence of other chemical species. The following table shows the pH necessary for the selective detection of thiols in aqueous solution:
Figure imgf000009_0001
Figure imgf000009_0001
La mezcla resultante de poner en contacto la disolución acuosa que contiene el nucleófilo con la disolución que contiene el reactivo selectivo al nucleófilo se homogeniza, se introduce en una celda de medida de un sistema óptico y se mide. Para la elaboración de la curva de calibrado que relaciona la concentración de la especie química a detectar (nucleófilo) con el valor de la señal macroscópicamente observable y medible, la disolución del reactivo selectivo se distribuye en alícuotas y sobre ellas se añaden unas disoluciones patrón del nucleón" lo, normalmente preparadas en agua aunque podría utilizarse otros medios como disolventes orgánicos o mezclas de estos con agua. Las disoluciones patrón del nucleófilo se preparan disolviendo cantidades conocidas del nucleófilo en volúmenes conocidos del disolvente correspondiente. La medida de la señal macroscópica que se produce en las disoluciones resultantes de adicionar las disoluciones patrón del nucleófilo sobre dichas alícuotas preparadas a partir de dicha disolución del reactivo selectivo proporciona los distintos puntos de calibrado. En una realización concreta del método de la invención (véase el Ejemplo 3), este se basa en la decoloración que produce el ataque nucleofílico del aminoácido cisteína sobre una escuaridina funcionalizada (reactivo II). El color de la escuaridina ñmcionalizada se debe a una banda de transferencia de carga desde los grupos dadores anilinio hasta el grupo aceptor que es el anillo de cuatro miembros típico de las escuaridinas. Cuando la molécula que contiene el grupo tiol (cisteína) está présenle, esta ataca al anillo de escuaridina con lo que desaparece la deslocalización electrónica, dando lugar a la desaparición del color asociado a la transición antes mencionada. El método de la invención puede ser implementado en un equipo de medida rápida que comprende un dispositivo mecánico que permita la reacción entre el reactivo selectivo y la especie a determinar presente en la disolución problema y el cálculo de su concentración por comparación con un patrón de concentraciones. En una realización particular, el método de la invención se puede implementar en forma de tiras o bandas para ensayos analíticos soportando . los reactivos en sólidos adecuados como polímeros o matrices silíceas. Los siguientes ejemplos ilustran la invención. EJEMPLO 1 Obtención del reactivo II La obtención del reactivo II se lleva a cabo mediante dos etapas fundamentales: en primer lugar se prepara la N,N-di(etil 2-(2(2-metoxietoxi)etoxi) anilina y posteriormente se hace reaccionar esta con el ácido escuárico para formar la escuaridina correspondiente que hemos nombrado como II. Inicialmente, se obtiene el derivado mesilado del 2-(2-metoxietoxi)etanol mediante tratamiento de este último con cloruro de mesilo, l l,9mL (0,1 mol) de 2-(2- metoxietoxi)etanol se disuelven en 150 mL de diclorometano (Cr Cb) y se coloca la mezcla en un baño de hielo. Se añade a esta mezcla el cloruro de mesilo (9,29 mL, 0, 12 mol) disuelto en 30 mL de diclorometano, gota a gota durante 30 minutos, y se deja reposar en el baño de hielo durante 10 minutos y, a temperatura ambiente, 24 horas más. A continuación, la disolución se vierte sobre una mezcla que contiene 100 mL de agua, 80 mL de hielo y 40 mL de HC1 (37%). Se realiza la extracción, se recoge la fase orgánica y esta se lava con disolución saturada de NaCl en H2O y se seca con MgS04 anhidro. Por otra parte, se disuelve la N-fenildietanolamina (3,63 g, 0,02 mol) en 70 mL de acetonitrilo y se añade hidruro sódico (1,2 g, 0,05 mol) durante 30 minutos. Sobre la suspensión formada se añade el derivado mesilado del 2-(2-metoxietoxi)etanol obtenido previamente disuelto en 20 mL de acetonitrilo y se mantiene a reflujo durante 24 horas. La mezcla se filtra y se concentra, y el concentrado se purifica mediante cromatografía de columna, utilizando alúmina como fase estacionaria y diclorometano como fase móvil. Por último, se disuelve el derivado de la anilina obtenido en el apartado anterior (1,155 g, 3 mmol) y el ácido escuárico (157,3 mg, 1,37 mmol) en 20 mL de una mezcla 2:1 tolueno :butanol, se calienta a ebullición durante 7 horas, eliminando aceotrópicamente el agua formada en la reacción. Se deja enfriar la disolución y una vez fría se le añade hexano y el sólido que precipita se separa por filtración y se lava con hexano. EJEMPLO 2 Determinación de cisteína mediante colorimetría utilizando el reactivo selectivo II del Ejemplo 1 Se prepara una disolución de concentración 6,05 x 10*" M del reactivo II en acetonitrilo. Por otra parte, se preparan distintas disoluciones acuosas de cisteína, con cantidades conocidas de cisteína dentro del intervalo de concentración comprendido entre 0 y 35 (x 10"5) M todas ellas tamponadas a pH = 6 utilizando una disolución 0,01M ácido 2-[N-morfolino]etanosulfónico (MES). Se mezclan ocho partes de cada una de las disoluciones de cisteína patrón con dos partes de la disolución del reactivo selectivo II, se homogeneizan mediante agitación y las disoluciones resultantes se introducen en el espectrofotómetro y se mide la absorbancia de cada una a 641 nm. La respuesta obtenida para las diferentes concentraciones de cisteína se muestra en la Figura 2. De la misma forma, ocho partes de la disolución acuosa conteniendo cisteína que se desea determinar se mezclan con dos partes de la disolución del reactivo selectivo II. Se opera de la misma forma que para la preparación de los puntos de la curva de calibrado y se calcula la concentración en cisteína buscada por interpolación en la curva de calibrado obtenida anteriormente. La Figura 3 muestra el espectro de UV-Vis de II en mezclas agua-disolvente orgánico (acetonitrilo) en presencia de aminoácidos, observándose la respuesta selectiva a la cisteína. The mixture resulting from contacting the aqueous solution containing the nucleophile with the solution containing the nucleophile selective reagent is homogenized, introduced into a measuring cell of an optical system and measured. For the elaboration of the calibration curve that relates the concentration of the chemical species to be detected (nucleophile) with the value of the macroscopically observable and measurable signal, the solution of the selective reagent is distributed in aliquots and on them standard solutions of the nucleon " lo, normally prepared in water although other means could be used as organic solvents or mixtures thereof with water. The standard solutions of the nucleophile are prepared by dissolving known amounts of the nucleophile in known volumes of the corresponding solvent. The measurement of the macroscopic signal to be produced in the solutions resulting from adding the standard solutions of the nucleophile on said aliquots prepared from said solution of the selective reagent provides the different calibration points In a concrete embodiment of the method of the invention (see Example 3), this is based in fading which produces the nucleophilic attack of the amino acid cysteine on a functionalized escuaridine (reagent II). The color of the squaridine The internationalization is due to a load transfer band from the anilinium donor groups to the acceptor group which is the typical four-membered ring of the squaridines. When the molecule that contains the thiol (cysteine) group is present, it attacks the squaridine ring, which eliminates electronic delocalization, leading to the disappearance of the color associated with the aforementioned transition. The method of the invention can be implemented in a rapid measurement device comprising a mechanical device that allows the reaction between the selective reagent and the species to be determined present in the problem solution and the calculation of its concentration by comparison with a concentration pattern . In a particular embodiment, the method of the invention can be implemented in the form of strips or bands for supporting analytical tests. reagents in suitable solids such as polymers or siliceous matrices. The following examples illustrate the invention. EXAMPLE 1 Obtaining reagent II Obtaining reagent II is carried out in two fundamental steps: first, N, N-di (ethyl 2- (2 (2-methoxyethoxy) ethoxy) aniline is prepared and subsequently reacted it is with the squaric acid to form the corresponding squaridine that we have named as I. Initially, the mesylated derivative of 2- (2-methoxyethoxy) ethanol is obtained by treating the latter with mesyl chloride, ll, 9mL (0.1 mol ) of 2- (2- methoxyethoxy) ethanol are dissolved in 150 mL of dichloromethane (Cr Cb) and the mixture is placed in an ice bath. Mesyl chloride (9.29 mL, 0.12 is added to this mixture) mol) dissolved in 30 mL of dichloromethane, drop by drop for 30 minutes, and allowed to stand in the ice bath for 10 minutes and, at room temperature, 24 hours more, then the solution is poured onto a mixture containing 100 mL of water, 80 mL of ice and 40 mL of HC1 (37%) Extraction is carried out, the organic phase and this is washed with saturated NaCl solution in H 2 O and dried with anhydrous MgSO 4 . On the other hand, N-phenyldiethanolamine (3.63 g, 0.02 mol) is dissolved in 70 mL of acetonitrile and sodium hydride (1.2 g, 0.05 mol) is added for 30 minutes. On suspension formed is added the mesylated derivative of 2- (2-methoxyethoxy) ethanol obtained previously dissolved in 20 mL of acetonitrile and is refluxed for 24 hours. The mixture is filtered and concentrated, and the concentrate is purified by column chromatography, using alumina as the stationary phase and dichloromethane as the mobile phase. Finally, the aniline derivative obtained in the previous section (1.155 g, 3 mmol) and squaric acid (157.3 mg, 1.37 mmol) are dissolved in 20 mL of a 2: 1 toluene: butanol mixture. boil for 7 hours, aceotropically removing the water formed in the reaction. The solution is allowed to cool and once cold hexane is added and the solid that precipitates is filtered off and washed with hexane. EXAMPLE 2 Determination of cysteine by colorimetry using selective reagent II of Example 1 A solution of concentration 6.05 x 10 * " M of reagent II in acetonitrile is prepared. On the other hand, different aqueous solutions of cysteine are prepared, with known amounts of cysteine within the concentration range between 0 and 35 (x 10 "5 ) M all buffered at pH = 6 using a 0.01M solution 2- [N-morpholino] ethanesulfonic acid (MES). Eight parts of each of the standard cysteine solutions are mixed with two parts of the selective reagent II solution, homogenized by stirring and the resulting solutions are introduced into the spectrophotometer and the absorbance of each at 641 nm is measured. The response obtained for the different concentrations of cysteine is shown in Figure 2. In the same way, eight parts of the aqueous solution containing cysteine to be determined are mixed with two parts of the solution of the selective reagent II. It is operated in the same way as for the preparation of the points of the calibration curve and the concentration of cysteine sought by interpolation in the calibration curve obtained above is calculated. Figure 3 shows the UV-Vis spectrum of II in organic water-solvent mixtures (acetonitrile) in the presence of amino acids, the selective response to cysteine being observed.

Claims

REIVINDICACIONES
1. Reactivos para la detección selectiva de determinadas especies químicas de carácter nucleofílico en agua o mezclas de agua/disolvente orgánico que responde a la fórmula general I :1. Reagents for the selective detection of certain chemical species of nucleophilic character in water or mixtures of water / organic solvent that meet the general formula I:
Figure imgf000013_0001
Figure imgf000013_0001
(i) en donde Ri representa cadenas alquílicas cerradas o abiertas C2-C10 que pueden contener o no heteroátomos como son O, N y S; y R2 y R3, iguales o diferentes, representan grupos orgánicos pequeños tales como hidrógeno, ácidos carboxílicos (- COOH) o sulfónicos (-SO3H), grupos nitro (-NO3), bases como aminas primarias, secundarias o terciarias, o grupos aromáticos como los fenilos, caracterizados por sufrir un cambio de color en presencia de la especie química a detectar.(i) where Ri represents C2-C10 closed or open alkyl chains that may or may not contain heteroatoms such as O, N and S; and R 2 and R 3 , the same or different, represent small organic groups such as hydrogen, carboxylic acids (-COOH) or sulfonic (-SO 3 H), nitro groups (-NO 3 ), bases such as primary, secondary or tertiary amines , or aromatic groups such as phenyls, characterized by undergoing a color change in the presence of the chemical species to be detected.
2. Reactivo de acuerdo con la reivindicación 1 caracterizado porque R| , R y
Figure imgf000013_0002
cumplen la finalidad principal de aumentar la solubilidad en agua de los compuestos de formula I.
2. Reagent according to claim 1 characterized in that R | , R and
Figure imgf000013_0002
they fulfill the main purpose of increasing the water solubility of the compounds of formula I.
3. Un reactivo de acuerdo con cualquiera de las reivindicaciones 1 a 2 caracterizado porque es capaz de detectar la presencia de especies nucleofílicas en disoluciones acuosas, en particular, tioles.3. A reagent according to any of claims 1 to 2 characterized in that it is capable of detecting the presence of nucleophilic species in aqueous solutions, in particular thiols.
4. Un reactivo de acuerdo con la reivindicación 1 caracterizado por poseer la fórmula II: 4. A reagent according to claim 1 characterized by having the formula II:
Figure imgf000014_0001
Figure imgf000014_0001
(II)(II)
5. Procedimiento de obtención de un compuesto de fórmula I que comprende: a) hacer reaccionar un derivado mesilado grupo orgánico Rj que se desee introducir en el reactivo I, con la N-fenildietanolamina, b) hacer reaccionar la anilina resultante de la etapa anterior con el ácido escuárico.5. Process for obtaining a compound of formula I comprising: a) reacting a mesylated organic group derivative Rj that is desired to be introduced into reagent I, with the N-phenyldiethanolamine, b) reacting the aniline resulting from the previous step with squaric acid.
6. Procedimiento según la reivindicación 5 para la obtención del compuesto de fórmula II que comprende: a) hacer reaccionar un derivado mesilado del 2-(2-metoxietoxi)etanol con la N- fenildietanolamina, b) hacer reaccionar la N,N-dietil 2-[2-(metoxietoxi)etoxi] anilina resultante de la etapa anterior con ácido escuárico.6. A process according to claim 5 for obtaining the compound of formula II comprising: a) reacting a mesylated derivative of 2- (2-methoxyethoxy) ethanol with N-phenyldiethanolamine, b) reacting N, N-diethyl 2- [2- (methoxyethoxy) ethoxy] aniline resulting from the previous step with squaric acid.
7. Procedimiento de acuerdo con la reivindicación 6 caracterizado porque la N,N-dietil 2-[2-(metoxietoxi)etoxi] anilina se hace reaccionar en una proporción de dos equivalentes a uno con el ácido escuárico.7. Method according to claim 6 characterized in that the N, N-diethyl 2- [2- (methoxyethoxy) ethoxy] aniline is reacted in a proportion of two equivalents to one with squaric acid.
8. Uso del reactivo de la reivindicación 1 para la detección en disoluciones acuosas o mezclas agua /disolvente orgánico de moléculas que contengan el grupo tiol.8. Use of the reagent of claim 1 for the detection in aqueous solutions or water / organic solvent mixtures of molecules containing the thiol group.
9. Uso de acuerdo con la reivindicación 8 caracterizado porque dichos reactivos se hallan incorporados en soportes sólidos que en contacto con disoluciones acuosas que contienen el reactivo a detectar, dan una señal macroscópicamente observable y medible. 9. Use according to claim 8, characterized in that said reagents are incorporated in solid supports which, in contact with aqueous solutions containing the reagent to be detected, give a macroscopically observable and measurable signal.
10. Uso de acuerdo con la reivindicación 9 caracterizado porque dichos soportes sólidos son materiales poliméricos o materiales inorgánicos.10. Use according to claim 9 characterized in that said solid supports are polymeric materials or inorganic materials.
11. Método para la detección de un nucleófilo que contenga el grupo tiol en medio acuoso caracterizado porque comprende: a) preparar una disolución de uno de los reactivos de la reivindicación 1 , b) selección del pH de trabajo, c) mezclar la disolución a ensayar que contiene el tiol con la disolución preparada en la etapa a), d) medir la señal macroscópica producida y, opcionalmente, cuantifícar dicha señal por interpolación en una curva de calibrado.11. Method for the detection of a nucleophile containing the thiol group in aqueous medium characterized in that it comprises: a) preparing a solution of one of the reagents of claim 1, b) selection of the working pH, c) mixing the solution a test that it contains the thiol with the solution prepared in step a), d) measure the macroscopic signal produced and, optionally, quantify said signal by interpolation in a calibration curve.
12. Método de acuerdo la reivindicación 11 caracterizado porque el disolvente en el que se disuelve el reactivo es preferiblemente acetonitrilo.12. Method according to claim 11 characterized in that the solvent in which the reagent is dissolved is preferably acetonitrile.
13. Método de acuerdo con la reivindicación 11 caracterizado porque la señal macroscópica producida es un cambio de color13. Method according to claim 11 characterized in that the macroscopic signal produced is a color change
14. Método de acuerdo con la reivindicación 11 caracterizado porque la solución a ensayar tiene un valor de pH comprendido en el intervalo 3 y 8.6.14. Method according to claim 11 characterized in that the solution to be tested has a pH value in the range 3 and 8.6.
15. Método de acuerdo con la reivindicación 1 1 caracterizado porque la solución a ensayar contiene como nucleófilo cisteína.15. Method according to claim 1, characterized in that the solution to be tested contains cysteine as nucleophile.
16. Método de acuerdo con las reivindicaciones 11 a 15 caracterizado porque el reactivo está anclado o adsorbido en una matriz orgánica o inorgánica.16. Method according to claims 11 to 15 characterized in that the reagent is anchored or adsorbed in an organic or inorganic matrix.
17. Método de acuerdo con las reivindicaciones 11 a 16 caracterizado porque dicha señal macroscópicamente observable y medible en disolución, es una señal detectable mediante un sistema óptico.17. Method according to claims 11 to 16, characterized in that said macroscopically observable and measurable solution signal is a signal detectable by an optical system.
18. Método de acuerdo con cualquiera de las reivindicaciones 1 1 a 16 en el que, adicionalmente, la mezcla resultante de poner en contacto la disolución acuosa que contiene el nucleófilo con la disolución que contiene el reactivo selectivo al nucleófilo se homogeneiza, se introduce en una celda de medida de un sistema óptico y se mide la señal macroscópicamente observable producida.18. Method according to any one of claims 1 to 16 wherein, in addition, the mixture resulting from contacting the aqueous solution that It contains the nucleophile with the solution that contains the selective reagent to the nucleophile is homogenized, introduced into a measuring cell of an optical system and the macroscopically observable signal produced is measured.
19. Método de acuerdo con la reivindicación 1 1 caracterizado porque se ¡mplementa en un equipo de medida rápida, que comprende un dispositivo mecánico que permite la reacción entre el reactivo selectivo y el nucleófilo presente en la disolución a ensayar y el cálculo de su concentración por comparación con un patrón de concentraciones. 19. Method according to claim 1 characterized in that it is implemented in a rapid measuring device, comprising a mechanical device that allows the reaction between the selective reagent and the nucleophile present in the solution to be tested and the calculation of its concentration by comparison with a pattern of concentrations.
PCT/ES2004/000504 2003-11-17 2004-11-15 Method for the detection of thiols in aqueous solution WO2005047225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200302782A ES2233207B1 (en) 2003-11-17 2003-11-17 METHOD FOR THE DETECTION OF TIOLES IN AQUOUS SOLUTION.
ESP200302782 2003-11-17

Publications (1)

Publication Number Publication Date
WO2005047225A1 true WO2005047225A1 (en) 2005-05-26

Family

ID=34586134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000504 WO2005047225A1 (en) 2003-11-17 2004-11-15 Method for the detection of thiols in aqueous solution

Country Status (2)

Country Link
ES (1) ES2233207B1 (en)
WO (1) WO2005047225A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077566A1 (en) * 2005-12-30 2007-07-12 Council Of Scientific And Industrial Research Amphiphilic squaraine dyes, process for preparation thereof and use thereof
WO2012007500A2 (en) 2010-07-15 2012-01-19 Bayer Cropscience Ag New heterocyclic compounds as pesticides
CN102781934A (en) * 2009-12-30 2012-11-14 由俄勒冈州高等教育管理委员会代表的波特兰州立大学 Thiol detection
CN104155257A (en) * 2014-07-23 2014-11-19 北京理工大学 Method for detecting NTO explosive by utilizing squaramide derivative
CN104155272A (en) * 2014-07-23 2014-11-19 北京理工大学 Method for detecting TNT explosives by using squaric amide derivatives
JP2016536417A (en) * 2013-08-30 2016-11-24 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチCouncil Of Scientific & Industrial Research SQUALINE FLUORESCENT PROBE AND MANUFACTURING METHOD THEREOF

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2325237A1 (en) * 2005-05-27 2009-08-28 Universidad Politecnica De Valencia Method for the detection of mercury in aqueous solution

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHENTHAMARAKSHAN C.R. ET AL: "Enhanced sensitivity in lithium ion recognition property of an oligomeric squaraine dye based fluorescent sensor", TETRAHEDRON LETT., vol. 39, no. 13, 1998, pages 1795 - 1798, XP004108480, DOI: doi:10.1016/S0040-4039(98)00090-2 *
LI Y. ET AL: "Synthesis of multidentate squaraines", CHINESE CHEM. LETT., vol. 13, no. 6, 2002, pages 509 - 512 *
OTGUZ U. ET AL: "A squaraine-based sodium selective fluorescent chemosensor", TETRAHEDRON LETT., vol. 39, no. 32, 1998, pages 5857 - 5860, XP004161310, DOI: doi:10.1016/S0040-4039(98)01165-4 *
ROS-LIS J.V. ET AL: "A selective chromogenic reagent for cyanide determination", CHEM.COMM, vol. 19, 2002, pages 2248 - 2249 *
ROS-LIS J.V. ET AL: "Squaraines as fluoro-chromogenic probes for thiol-containing compounds and their application to the detection of biorrelevant thiols", JACS, vol. 126, no. 13, 2004, pages 4064 - 4065, XP002412163, DOI: doi:10.1021/ja031987i *
SPRENGER H.E. ET AL: "Condensation products of squaric acid and tertiary aromatic amines", ANGEW. CHEM. INT. ED., vol. 5, no. 10, 1966, pages 894 *
SPRENGER H.E. ET AL: "Cyclobutenediylium dyes", ANGEW. CHEM. INT. ED., vol. 7, no. 7, 1968, pages 530 - 535, XP008023314, DOI: doi:10.1002/anie.196805301 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077566A1 (en) * 2005-12-30 2007-07-12 Council Of Scientific And Industrial Research Amphiphilic squaraine dyes, process for preparation thereof and use thereof
CN101346438B (en) * 2005-12-30 2012-05-23 科学与工业研究委员会 Amphipathic squarylium cyanine dyes, its preparation method and use thereof
CN102781934A (en) * 2009-12-30 2012-11-14 由俄勒冈州高等教育管理委员会代表的波特兰州立大学 Thiol detection
WO2012007500A2 (en) 2010-07-15 2012-01-19 Bayer Cropscience Ag New heterocyclic compounds as pesticides
US9233951B2 (en) 2010-07-15 2016-01-12 Bayer Intellectual Property Gmbh Heterocyclic compounds as pesticides
JP2016536417A (en) * 2013-08-30 2016-11-24 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチCouncil Of Scientific & Industrial Research SQUALINE FLUORESCENT PROBE AND MANUFACTURING METHOD THEREOF
CN104155257A (en) * 2014-07-23 2014-11-19 北京理工大学 Method for detecting NTO explosive by utilizing squaramide derivative
CN104155272A (en) * 2014-07-23 2014-11-19 北京理工大学 Method for detecting TNT explosives by using squaric amide derivatives
CN104155272B (en) * 2014-07-23 2016-07-06 北京理工大学 A kind of method of squaric amide derivant detection TNT explosive
CN104155257B (en) * 2014-07-23 2016-07-06 北京理工大学 A kind of method of squaric amide derivant detection NTO explosive

Also Published As

Publication number Publication date
ES2233207A1 (en) 2005-06-01
ES2233207B1 (en) 2006-08-01

Similar Documents

Publication Publication Date Title
Wang et al. A series of BODIPY-based probes for the detection of cysteine and homocysteine in living cells
Zhou et al. A ratiometric fluorescent probe for formaldehyde in aqueous solution, serum and air using aza-cope reaction
Ibrahim et al. Emerging analytical tools for the detection of the third gasotransmitter H2S, a comprehensive review
Niu et al. Fluorescent sensors for selective detection of thiols: expanding the intramolecular displacement based mechanism to new chromophores
US5162525A (en) Fluorogenic and chromogenic three-dimensional ionophores as selective reagents for detecting ions in biological fluids
Li et al. A benzothiazole-based near-infrared fluorescent probe for sensing SO2 derivatives and viscosity in HeLa cells
Yin et al. A dual-emission and mitochondria-targeted fluorescent probe for rapid detection of SO2 derivatives and its imaging in living cells
Wang et al. A twist six-membered rhodamine-based fluorescent probe for hypochlorite detection in water and lysosomes of living cells
Yang et al. A novel mitochondria-targeted ratiometric fluorescent probe for endogenous sulfur dioxide derivatives as a cancer-detecting tool
Fan et al. A fast response squaraine-based colorimetric probe for detection of thiols in physiological conditions
Li et al. A novel endoplasmic reticulum-targeted ratiometric fluorescent probe based on FRET for the detection of SO2 derivatives
Wu et al. A highly selective visible light excitable boron dipyrromethene probe for cysteine over homocysteine and glutathione based on a Michael addition reaction
Zeng et al. A near-infrared fluorescent sensor with large Stokes shift for rapid and highly selective detection of thiophenols in water samples and living cells
Xu et al. A highly selective ratiometric fluorescent and chromogenic probe for sulfite and its applications in imaging of living cells and zebrafish in vivo
Wang et al. A mitochondria-targeted ratiometric probe for the fluorescent and colorimetric detection of SO2 derivatives in live cells
Wang et al. A turn-on fluorescent probe via substitution-rearrangement for highly sensitive and discriminative detection of cysteine and its imaging in living cells
Wang et al. A diazabenzoperylene derivative as ratiometric fluorescent probe for cysteine with super large Stokes shift
Peng et al. Double-site-based a smart fluorescent sensor for logical detecting of sulphides and its imaging evaluation of living organisms
ES2233207B1 (en) METHOD FOR THE DETECTION OF TIOLES IN AQUOUS SOLUTION.
Xue et al. Sensitive and selective detections of mustard gas and its analogues by 4-mercaptocoumarins as fluorescent chemosensors in both solutions and gas phase
CN101149374A (en) Fluorescent probe for detecting hydrogen ion in cell and its synthesis method and uses
WO2006125842A1 (en) Method for the detection of mercury in aqueous solution
Yang et al. A new selective fluorescence probe with a quinoxalinone structure (QP-1) for cysteine and its application in live-cell imaging
CN110452250A (en) A kind of detection hydrazine fluorescence probe of fluorescein precursor structure
CN105622540A (en) CO probe and preparation method and application thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase