WO2005043558A1 - Method for producing sintered rare earth element magnet - Google Patents

Method for producing sintered rare earth element magnet Download PDF

Info

Publication number
WO2005043558A1
WO2005043558A1 PCT/JP2004/016010 JP2004016010W WO2005043558A1 WO 2005043558 A1 WO2005043558 A1 WO 2005043558A1 JP 2004016010 W JP2004016010 W JP 2004016010W WO 2005043558 A1 WO2005043558 A1 WO 2005043558A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
added
rare earth
sample
strength
Prior art date
Application number
PCT/JP2004/016010
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Iwasaki
Chikara Ishizaka
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to JP2005515145A priority Critical patent/JP4033884B2/en
Priority to US10/541,724 priority patent/US20060207689A1/en
Priority to EP04793118A priority patent/EP1679724A4/en
Publication of WO2005043558A1 publication Critical patent/WO2005043558A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a method for producing a rare earth sintered magnet containing a rare earth element, a transition metal element and B (boron) as main components, and particularly to a method for producing a rare earth sintered magnet by powder metallurgy. And a technique for improving the strength of a compact before sintering.
  • Rare earth sintered magnets for example, NdFeB-based sintered magnets have advantages such as excellent magnetic properties! Nd, the main component, is abundant in resources and relatively inexpensive. Therefore, the demand has been increasing in recent years. Under these circumstances, research and development for improving the magnetic properties of NdFe-B based sintered magnets and improvement of the manufacturing method for manufacturing high quality rare earth sintered magnets (for example, Patent Document 1 and See Patent Document 2 etc.) etc. in various fields.
  • Patent Literature 1 a lubricant diluted with a specific organic solvent is mixed with an alloy powder so as to eliminate a decrease in the strength of a molded body due to the addition of a lubricant.
  • Patent Document 2 by changing the timing at which the lubricant is added, the wear of the crushing equipment is reduced while enjoying the effects such as improvement of the degree of orientation by the lubricant-added mash.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 9 3504
  • Patent Document 2 JP-A-2003-68551
  • a powder metallurgy method As a method for producing a rare earth sintered magnet, a powder metallurgy method is known, as described in the above-mentioned patent documents, and is widely used because it can be produced at low cost. ing.
  • a powder metallurgy method first, a raw material alloy ingot is roughly pulverized and finely pulverized to obtain a raw material alloy fine powder having a particle diameter of about several meters.
  • the raw material alloy fine powder thus obtained is subjected to magnetic field orientation in a static magnetic field, and press molding is performed in a state where a magnetic field is applied. After forming in a magnetic field, the formed body is sintered in the air or in an inert gas atmosphere, and further subjected to aging treatment.
  • the present invention has been proposed in view of such conventional circumstances, and has as its object to develop a technology capable of improving the strength of a compact without deteriorating the magnetic characteristics. It is an object of the present invention to provide a method for manufacturing a rare earth sintered magnet capable of manufacturing a rare earth sintered magnet excellent in gas characteristics with a high yield.
  • the present inventors have conducted various studies over a long period of time in order to achieve the above object. As a result, they came to the conclusion that the addition of metal powder (eg, A1 powder, Ni powder, Zr powder, Mn powder) to the raw material alloy fine powder was effective.
  • the present invention has been completed based on such findings, and R (R is one or more rare earth elements, where the rare earth element is a concept including Y), T (T is Fe Or one or two or more transition metal elements which essentially include Fe and Co) and a raw material alloy fine powder containing B, and in which a metal powder is added when producing a rare earth sintered magnet. It is characterized in that raw material alloy fine powder is formed and sintered.
  • the caroten metal powder is, for example, one or more of A1 powder, Ni powder, Zr powder, and Mn powder.
  • the strength of the compact is improved by adding the additional metal powder during the compaction of the raw material alloy powder.
  • the effect is high when the additive metal powder is a plate-like metal powder. The reason for this is unknown, but it has been confirmed experimentally.
  • the magnetic property deterioration caused by the added metal powder is small!
  • the addition time of the added metal powder is arbitrary as long as it is after pulverizing the melt-formed raw material alloy and before forming, and may be, for example, either after coarse pulverization or after fine pulverization.
  • A1, Zr, Ni, Mn, etc. are also known as elements contained in rare earth sintered magnets, but in order to achieve the object of the present invention, they are added at the stage of melting and forming the raw material alloy. However, it is necessary to pulverize the melted and forged raw material alloy and then add it to the raw material alloy powder as A1 powder, Zr powder, Ni powder, Mn powder or the like.
  • the strength of the compact before sintering can be improved, and the compact can be easily formed. Can be suppressed. Therefore, it is possible to reduce a decrease in yield due to cracks or chipping of the compact, and it is possible to efficiently manufacture a rare earth sintered magnet. Further, according to the present invention, it is possible to manufacture a rare earth sintered magnet having excellent magnetic properties such as coercive force and residual magnetic flux density without deteriorating the magnetic properties of the sintered rare earth magnet. is there.
  • FIG. 1 is a flowchart showing an example of a process for producing a rare earth sintered magnet.
  • FIG. 2 is a flowchart showing another example of the manufacturing process of the rare earth sintered magnet.
  • FIG. 3 is a schematic perspective view illustrating a method of measuring bending strength.
  • FIG. 4 is a micrograph of spherical A1 powder.
  • FIG. 5 is a micrograph of plate-like A1 powder.
  • the rare earth sintered magnet to be manufactured mainly includes a rare earth element, a transition metal element, and boron.
  • the magnet composition may be arbitrarily selected according to the purpose.
  • RTB (R is a concept of one or more rare earth elements, where the rare earth element includes Y. T is one or two or more of Fe or a transition metal element essential for Fe and Co. (Where B is boron.)
  • B is boron.
  • the composition be such that 40% by mass, 0.5-4.5% by mass of boron B, and the balance be transition metal element T.
  • R is a rare earth element, that is, one or more selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb and Lu.
  • Nd is preferable as the main component because Nd is abundant in resources and relatively inexpensive.
  • Dy increases the anisotropic magnetic field, and is effective in improving the coercive force Hcj.
  • an additional element M to obtain an R—TB—M based rare earth sintered magnet.
  • the additional element M include Al, Cr, Mn, Mg, Si, Cu, C, Nb, Sn, W, V, Zr, Ti, Mo, Bi, and Ga.
  • One or more species can be selected and added.
  • the addition amount of these additional elements M is preferably 3% by mass or less in consideration of magnetic properties such as residual magnetic flux density. If the amount of the additive element M is too large, the magnetic properties may be deteriorated.
  • the present invention is not limited to these compositions, and it is needless to say that the present invention can be applied to all conventionally known compositions of rare earth sintered magnets!
  • FIG. 1 shows an example of a process for producing a rare earth sintered magnet by powder metallurgy.
  • This manufacturing process basically consists of an alloying step 1, a coarse pulverizing step 2, a fine pulverizing step 3, a forming step in a magnetic field 4, a sintering and aging step 5, a processing step 6, and a surface treatment step 7. Is done.
  • a coarse pulverizing step 2 a fine pulverizing step 3
  • a forming step in a magnetic field 4 a sintering and aging step 5
  • a processing step 6 and a surface treatment step 7.
  • Is done In order to prevent oxidization, most of the steps up to sintering were performed in vacuum. It is preferable to perform the reaction in a medium or in an inert gas atmosphere (such as a nitrogen atmosphere or an Ar atmosphere).
  • a metal or an alloy as a raw material is blended according to the magnet composition, melted in a vacuum or an inert gas, for example, an Ar atmosphere, and alloyed by forming.
  • a strip casting method continuous production method in which molten high-temperature liquid metal is supplied onto a rotating roll to continuously produce an alloy thin plate is preferable in terms of productivity and the like. It is not limited to that.
  • a raw material metal alloy
  • pure rare earth elements, rare earth alloys, pure iron, ferroboron, and alloys thereof can be used.
  • Solution treatment may be performed as necessary for the purpose of eliminating solidification segregation.
  • the temperature is maintained at 700 to 1500 ° C. for 1 hour or more in a vacuum or Ar atmosphere.
  • the alloy may be a single alloy having almost the final magnet composition, or a plurality of alloys having different compositions may be mixed so as to have the final magnet composition. Mixing may be performed in any process of alloying, raw material coarse powder, and raw material fine powder.
  • a thin plate or ingot of the raw material alloy prepared above is pulverized until the particle size becomes about several hundreds / zm.
  • a stamp mill, a jaw crusher, a brown mill or the like can be used as a pulverizing means.
  • the coarse pulverizing step 2 may be constituted by a plurality of steps combining a plurality of pulverizing means.
  • FIG. 2 shows an example in which the coarse pulverizing step 2 includes two steps, a hydrogen pulverizing step 2a and a mechanical coarse pulverizing step 2b.
  • the hydrogen pulverizing step 2a is a step in which hydrogen is occluded in the manufactured raw material alloy, and pulverization is performed in a self-disintegrating manner by utilizing the fact that the amount of hydrogen occlusion varies depending on the phase. Thereby, it can be crushed to a particle size of about several mm.
  • the mechanical coarse pulverizing step 2b is a step of pulverizing using a mechanical method such as a brown mill as described above, and the raw material alloy pulverized to a size of about several mm by the hydrogen pulverizing step 2a.
  • the powder is ground to a particle size of several hundreds; In order to improve the coarse pulverizability, it is effective to perform the coarse pulverization in combination with the hydrogen pulverization step.
  • the mechanical coarse crushing step 2b can be omitted.
  • a pulverizing assistant is usually added to the coarsely pulverized raw alloy powder.
  • the grinding aid for example, a fatty acid compound or the like can be used.
  • a rare earth sintered magnet having good magnetic properties can be obtained.
  • the addition amount of the grinding aid is preferably 0.03 to 0.4% by mass. When the grinding aid is added within this range, the amount of residual carbon after sintering can be reduced, which is effective in improving the magnetic properties of the rare earth sintered magnet.
  • a fine pulverizing step 3 is performed.
  • the fine pulverizing step 3 is performed using, for example, a jet mill.
  • the conditions for the fine pulverization can be appropriately set according to the air-flow type pulverizer to be used.
  • the raw material alloy powder is finely pulverized until the average particle diameter becomes about 110 m, for example, 3-6 m.
  • Jet mills release high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, which accelerates the powder particles and causes the particles to collide with each other.
  • the target ⁇ ⁇ is a method of crushing by generating collision with the container wall. Jet mills are generally classified into jet mills using a fluidized bed, jet mills using a vortex, jet mills using an impinging plate, and the like.
  • the raw material alloy fine powder is formed in a magnetic field.
  • the raw material alloy fine powder obtained in the fine pulverization step 3 is filled in a mold in which an electromagnet is arranged, and is formed in a magnetic field with a crystal axis oriented by applying a magnetic field.
  • the molding in a magnetic field may be either vertical magnetic field molding or horizontal magnetic field molding. This molding in a magnetic field may be performed, for example, in a magnetic field of 800 to 1500 kAZm at a pressure of about 130 to 160 MPa.
  • sintering and aging treatment are performed. That is, after the raw alloy fine powder is compacted in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere.
  • the sintering temperature needs to be adjusted according to various conditions such as composition, pulverization method, difference in particle size and particle size distribution, etc. This is preferred.
  • the obtained sintered body is preferably subjected to an aging treatment.
  • This aging treatment is an important step in controlling the coercive force Hcj of the obtained rare earth sintered magnet.
  • the aging treatment is performed in an inert gas atmosphere or in a vacuum.
  • two-stage aging treatment is preferred.
  • the temperature is kept at about 800 ° C for 11 to 13 hours.
  • the temperature is kept at about 550 ° C for 11 to 13 hours.
  • a second quenching step for quenching to room temperature is provided. Since the coercive force Hcj is greatly increased by the heat treatment at around 600 ° C, when performing the aging treatment in one stage, the aging treatment at around 600 ° C may be performed.
  • Processing step 6 is a step of mechanically forming a desired shape.
  • the surface treatment step 7 is a step performed to suppress oxidation of the obtained rare earth sintered magnet, and for example, a plating film and a resin film are formed on the surface of the rare earth sintered magnet.
  • a metal powder added as a forming aid is added to the raw material alloy fine powder, and the raw alloy powder is formed in a magnetic field forming step 4.
  • any metal powder such as Al, Mn, Fe, Co, Ni, Cu, Zn, Zr, Ag, Sn, Bi and the like can be used, and one or more of these can be used. Select and use. Above all, it is preferable to add one or more of these powers, which are preferably selected from A1 powder, Ni powder, Zr powder, and Mn powder, as molding aids.
  • the timing of adding the added metal powder may be between the time when the raw material alloy is melt-formed and pulverized in the alloying step 1 and the pulverization is performed, and the time when it is formed in the magnetic field in the magnetic field forming step 4.
  • the timing of adding the added metal powder may be between the time when the raw material alloy is melt-formed and pulverized in the alloying step 1 and the pulverization is performed, and the time when it is formed in the magnetic field in the magnetic field forming step 4.
  • the fine pulverization step 3 addition time A in the figure
  • the coarse pulverization step 2 addition time B in the figure
  • the hydrogen grinding step 2a additional time C in the figure.
  • the timing of adding the added metal powder may be basically any of these, but it is more effective to add the force as the raw material alloy is crushed. The effect is most effective when it is added to the raw material alloy fine powder immediately before compaction. Therefore, for example, in the manufacturing process of FIG. 1, it is more effective to add after the fine grinding step 3 (addition time A) than after the coarse grinding step 2 (addition time B). high. Similarly, in the manufacturing process shown in FIG. 2, it is more effective to add after the mechanical coarse grinding step 2a (addition time B) than to add after the hydrogen grinding step 2a (addition time C). Furthermore, it is more effective to add it after the fine grinding step 3 (addition time A) than after the mechanical coarse grinding step 2a (addition time B). Yes.
  • the additive metal powder may be mixed by a known mixing method, and any method may be employed as long as it is uniformly mixed, such as a V mixer or a ribbon mixer.
  • the addition amount of the added metal powder is preferably 0.01% by mass or more with respect to the raw material alloy fine powder, and more preferably 0.02% by mass or more. If the amount of the added metal powder is less than 0.01% by mass, it is difficult to obtain a sufficient effect. However, in consideration of the deterioration of the magnetic characteristics, the content is preferably 0.5% by mass or less. If the amount of the added metal powder exceeds 0.5% by mass, the magnetic properties may be deteriorated.
  • the optimum addition amount of the added metal powder varies depending on the type of the added metal powder.
  • the optimum addition amount of the A1 powder is 0.15% by mass or more and 0.3% by mass or less.
  • the optimal addition amount of Ni powder is 0.02% by mass to 0.08% by mass.
  • the optimal amount of Zur powder added is 0.15% by mass to 0.3% by mass.
  • the optimum addition amount of the Mn powder is 0.02% by mass to 0.25% by mass.
  • the average particle size and the like of the added metal powder to be added are arbitrary.
  • the average particle size of the added metal powder to be used may be appropriately selected according to the particle size of the raw material alloy fine powder.
  • the average particle size of the added carometal powder is 50 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the effect is high when the additive metal powder to be used is in the shape of a plate having an arbitrary shape. Therefore, for example, it is preferable to use a flat metal powder having a predetermined thickness such as a scale. Such a plate-like powder can be easily identified by observing the powder with a microscope or the like, for example.
  • the thickness is arbitrary, and preferably the plate ratio is 2-15.
  • the plate surface diameter is preferably 50 / zm or less, more preferably 10m or less.
  • the thickness of the plate-like powder is more preferably 10 m or less, and more preferably 10 m or less.
  • the added metal powder added after the sintering is alloyed with the raw material alloy and taken in. If the added metal powder is not more than a predetermined amount, it does not affect the properties of the obtained rare earth sintered magnet.
  • composition of the raw material alloy ND24. 5 mass 0/0, Pr6. 0 mass 0/0, Dyl. 8 mass 0/0, CoO
  • a metal or alloy as a raw material was blended so as to have the above-mentioned composition, and a raw material alloy thin plate was melted and manufactured by a strip casting method.
  • the obtained raw material alloy thin plate is pulverized with hydrogen, it is mechanically coarsely pulverized by a brown mill to obtain a raw material alloy coarse powder.
  • the grinding aid material alloy coarse powder were added Orein acid amide 0.1 wt 0/0.
  • the added metal powder was added to the raw material alloy fine powder and mixed in a mortar.
  • Each of the obtained powders was molded in a magnetic field to obtain a molded body having a predetermined shape.
  • the powder was molded at a molding pressure of 147 MPa in a magnetic field of 1200 kA Zm.
  • the direction of the magnetic field is perpendicular to the pressing direction.
  • the compact formed in a magnetic field was sintered and subjected to an aging treatment to prepare Sample 119.
  • the sintering was performed at a sintering temperature of 1030 ° C for 4 hours in a vacuum.
  • the aging was a two-stage aging treatment, with the first stage at 900 ° C for 1 hour and the second stage at 530 ° C for 1 hour.
  • the bending strength of the molded body formed by molding in a magnetic field was measured.
  • the bending strength was measured according to Japanese Industrial Standard JIS R 1601. That is, as shown in FIG. 3, the molded body 11 is placed on two round bar-shaped supports 12, 13, and the round bar-shaped support 14 is also arranged at the center position on the molded body 11. A load was applied.
  • the chip size of the molded body 11 was 20 mm X I 8 mm X 6 mm.
  • the direction to apply the bending force was the pressing direction.
  • the coercive force Hcj and the residual magnetic flux density Br were measured for each of the manufactured rare earth sintered magnets. The measurement was performed using a B—H tracer.
  • spherical A1 powder was used as the added metal powder, and the amount of the spherical A1 powder added was changed as shown in Table 1, to prepare Sample 11 to Sample 1-11.
  • Use Fig. 4 shows a micrograph of the spherical Al powder used.
  • the particle size of A1 powder used in Sample 11 and Sample 19 was 20 ⁇ m, and the particle size of Al powder used in Samples 10 and 11 was 40 ⁇ m.
  • Table 1 shows the amount of spherical A1 powder added, the magnet A1 composition, the bending strength of the compact (compact strength), and the magnetic properties (coercive force Hcj and residual magnetic flux density Br) of each sample.
  • a rare-earth sintered magnet was prepared by changing the addition time of the spherical A1 powder.
  • the amount of spherical A1 powder added was 0.20% by mass.
  • the spherical A1 powder was added after hydrogen pulverization (sample 1 12), after coarse pulverization by a brown mill (sample 1 13), and after fine pulverization by a jet mill (sample 1-14).
  • a sample (Sample 115) was also prepared in which A1 was added to the alloy composition in an amount equivalent to the amount of spherical A1 powder added.
  • the strength and magnetic properties (coercive force Hcj and residual magnetic flux density Br) were measured in the same manner. Table 2 shows the results.
  • the difference in magnetic properties between the case where A1 powder was added as an additive metal powder and the case where it was added as an alloy composition was investigated.
  • the prepared samples were sample 1 16 with the raw material alloy A1 composition being 0.2% by mass and the amount of spherical A1 powder added being 0% by mass.
  • Sample 1-17 with an amount of 0.2% by mass
  • Sample 1-18 with a raw alloy A1 composition of 0% by mass and an addition amount of spherical A1 powder of 0.2% by mass, and a 0% mass of the material alloy A1 % Of the spherical A1 powder and 0% by mass.
  • Sample 116 is the same as Sample 11
  • Sample 1-17 is the same as Sample 1-6.
  • Table 3 shows the composition of the raw material alloy A1, the amount of A1 powder added, the strength of the compact, the coercive force Hcj, and the residual magnetic flux density Br of each sample.
  • Sample A20 was prepared by adding plate-like A1 powder as an additive metal powder in the amount shown in Table 4.
  • FIG. 5 shows a micrograph of the plate-like A1 powder used.
  • the plate surface diameter of the plate-like A1 powder used was 40 ⁇ m and the thickness was 3 ⁇ m.
  • Table 4 shows the calorie content of the plate-like Al powder, the bending strength of the compact, and the magnetic properties (coercive force Hcj and residual magnetic flux density Br) of each sample.
  • the addition of the plate-like A1 powder has the effect of improving the transverse rupture strength of the molded article.
  • the effect is higher than when the granular A1 powder is added.
  • spherical Ni powder particle diameter 2 m
  • the amount of spherical Ni powder added was changed as shown in Table 1. 2-9 were prepared.
  • Table 6 shows the addition amount of spherical Ni powder, flexural strength (compact strength), and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of the compact in each sample.
  • the addition of the spherical Ni powder improves the bending strength of the molded body.
  • the improvement in the bending strength of the molded product peaks at around 0.05% by mass of the added amount of spherical Ni powder, and tends to decrease slightly with the added amount of more than that.
  • the magnetic properties the larger the amount of spherical Ni powder added, the better the magnetic properties, especially the coercive force Hcj. From these facts, it is understood that the addition amount of the spherical Ni powder is preferably set to 0.02% by mass or more, more preferably 0.02% by mass to 0.08% by mass.
  • a rare-earth sintered magnet was manufactured by changing the addition time of the spherical Ni powder.
  • the addition amount of the spherical Ni powder is 0.05% by mass.
  • the addition time of the spherical Ni powder was after pulverization with hydrogen (sample 2-10), after coarse pulverization with a brown mill (sample 2-11), and after fine pulverization with a jet mill (sample 2-12).
  • a sample (Sample 2-13) was also prepared in which Ni was added to the alloy composition in an amount equivalent to the amount of Ni powder added.
  • the flexural strength and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of these samples were measured in the same manner. Table 7 shows the results.
  • the addition of Ni powder can improve the strength of the compact in any case.
  • the effect increases as the powder is added later in the pulverization process. I have. That is, the improvement in the strength of the compact is larger in Sample 2-11 than in Sample 2-10.
  • the improvement in the strength of the compact is larger in Sample 2-12 than in Sample 2-11.
  • Sample 2-13 in which Ni was added to the alloy composition, had the same strength as that of Sample 2-1 to which no Ni powder was added, and no effect was observed on the strength of the compact.
  • Plate-like Ni powder was added as the added metal powder in the amount shown in Table 8 to prepare Sample 2-14 and Sample 2-2-2.
  • the plate-like Ni powder used had a plate surface diameter of 10 m and a thickness of 2 m.
  • Table 8 shows the addition amount of plate-like Ni powder, the bending strength of the compact, and the magnetic properties (coercive force Hcj and residual magnetic flux density Br) of each sample.
  • the addition of the plate-like Ni powder has the effect of improving the transverse rupture strength of the compact, and the effect is higher than that of the case where the granular Ni powder is added.
  • Rare earth sintered magnets were manufactured according to the above manufacturing method while changing the addition time of Zr powder.
  • plate-like Zr powder was used.
  • the plate surface diameter of the plate-like Zr powder is 15 m and the thickness is 3 ⁇ m.
  • the amount of Zr powder added was 0.20% by mass.
  • the addition time of plate-like Zr powder was after hydrogen grinding (Sample 3-10), after coarse grinding by Brown mill (Sample 3-11), and after fine grinding by jet mill (Sample 3-12).
  • a sample (Sample 3-13) was also prepared in which Zr was added to the alloy composition in an amount corresponding to the amount of Zr powder added.
  • the bending strength and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of these samples were measured in the same manner. Table 11 shows the results.
  • the addition of Zr powder can improve the strength of the compact in any case, but the effect increases as the powder is added later in the pulverization process. ing. That is, the improvement in the strength of the compact is larger in Sample 3-11 than in Sample 3-10. The improvement in the strength of the compact is larger in Sample 3-12 than in Sample 3-11. In Sample 3-13 in which Zr was added to the alloy composition, the strength of the compact was not different from that of Sample 3-1 in which Zr powder was not added, and no effect was observed in the strength of the compact.
  • Sample 3-14 and Sample 3-22 were prepared by adding plate-like Zr powder as the added metal powder in the amounts shown in Table 12.
  • the plate surface diameter of the used plate-like Zr powder was 15 m and the thickness was 3 ⁇ m.
  • Table 12 shows the addition amount of plate-like Zr powder, bending strength and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of each sample.
  • sample-like Zr powder 0.20% by mass of plate-like Zr powder was added as an additive metal powder.
  • the transverse rupture strength of the molded body was improved. Has improved.
  • the improvement in the bending strength of the molded product peaks at about 0.10% by mass of the added amount of Mn powder, and tends to slightly decrease with the added amount of Mn powder. Therefore, it is understood that the addition amount of the Mn powder is preferably set to 0.02% by mass or more, more preferably 0.02% by mass and 0.25% by mass.
  • Rare earth sintered magnets were manufactured according to the above manufacturing method by changing the addition time of the square Mn powder.
  • the addition amount of the square Mn powder is 0.10% by mass.
  • the time for adding the square Mn powder was after hydrogen grinding (sample 410), after coarse grinding with a brown mill (sample 411), and after fine grinding with a jet mill (sample 412).
  • a sample (Sample 413) was also prepared in which Mn was added to the alloy composition in an amount corresponding to the amount of added syrup of Mn powder.
  • the bending strength and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of these samples were also measured. Table 15 shows the results.
  • Sample 414 and sample 422 were prepared by adding plate-shaped Mn powder as the added metal powder in the amount shown in Table 16.
  • the thickness of the used plate-like Mn powder is as follows. The amount of plate-like Mn powder added to each sample, the flexural strength of the compact, and the magnetic properties (coercive force Hcj and residual magnetic flux density) Table 16 shows the degree (Br).
  • the addition of the plate-shaped Mn powder has the effect of improving the transverse rupture strength of the compact. The effect is higher than when the granular Mn powder is added. You can see.
  • sample 423 Sample 427 with different thicknesses of the plate-like Mn powder were prepared. Table 17 shows the thickness of plate-like Mn powder, flexural strength of the compact, and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of each sample.
  • the metal powder shown in Table 18 was used as the added metal powder.
  • Sample 5-1 and Sample 5-8 were prepared.
  • Table 18 shows the type, amount of metal powder, bending strength (compact strength), and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of the compact in each sample.

Abstract

[PROBLEMS] To improve the strength of a formed article without the deterioration of magnetic characteristics. [MEANS FOR SOLVING PROBLEMS] A method for producing a sintered rare earth magnet wherein a raw fine alloy powder containing a rare earth element, a transition element and boron is sintered, wherein the raw fine alloy powder is added with an additive metal powder and then formed and sintered, the additive meal powder being one or more selected from among, for example, an Al powder, an Ni powder, a Zr powder, an Mn powder, an Fe powder, a Co powder, a Cu powder, a Zn powder, an Ag powder, an Sn powder and a Bi powder, wherein when the method has a rough pulverization step of roughly pulverizing a raw material alloy and a fine pulverization step of pulverizing finely, the additive metal powder is added after the fine pulverization step or after the rough pulverization step, in an amount of 0.01 mass % or more. The additive metal powder preferably has the shape of a plate having a thickness of 10 μm or less.

Description

明 細 書  Specification
希土類焼結磁石の製造方法  Manufacturing method of rare earth sintered magnet
技術分野  Technical field
[0001] 本発明は、希土類元素、遷移金属元素及び B (ホウ素)を主成分とする希土類焼結 磁石の製造方法に関するものであり、特に、粉末冶金法により希土類焼結磁石を製 造するに際し、焼結前の成形体強度を改良するための技術に関する。  The present invention relates to a method for producing a rare earth sintered magnet containing a rare earth element, a transition metal element and B (boron) as main components, and particularly to a method for producing a rare earth sintered magnet by powder metallurgy. And a technique for improving the strength of a compact before sintering.
背景技術  Background art
[0002] 希土類焼結磁石、例えば Nd Fe B系焼結磁石は、磁気特性に優れて!/ヽること、 主成分である Ndが資源的に豊富で比較的安価であること等の利点を有することから 、近年、その需要は益々拡大する傾向にある。このような状況から、 Nd Fe— B系焼 結磁石の磁気特性を向上するための研究開発や、品質の高い希土類焼結磁石を製 造するための製造方法の改良 (例えば、特許文献 1や特許文献 2等を参照。)等が各 方面にお ヽて進められて ヽる。  [0002] Rare earth sintered magnets, for example, NdFeB-based sintered magnets have advantages such as excellent magnetic properties! Nd, the main component, is abundant in resources and relatively inexpensive. Therefore, the demand has been increasing in recent years. Under these circumstances, research and development for improving the magnetic properties of NdFe-B based sintered magnets and improvement of the manufacturing method for manufacturing high quality rare earth sintered magnets (for example, Patent Document 1 and See Patent Document 2 etc.) etc. in various fields.
[0003] 例えば、特許文献 1記載の発明では、特定の有機溶剤で希釈した潤滑剤を合金粉 末に混合することで、潤滑剤の添カ卩による成形体強度の低下を解消するようにして 、 る。特許文献 2記載の発明では、潤滑剤を添加するタイミングを変更することで、潤滑 剤添カ卩による配向度の向上等の効果を享受しつつ、粉砕機器の損耗を低減するよう にしている。  [0003] For example, in the invention described in Patent Literature 1, a lubricant diluted with a specific organic solvent is mixed with an alloy powder so as to eliminate a decrease in the strength of a molded body due to the addition of a lubricant. , In the invention described in Patent Document 2, by changing the timing at which the lubricant is added, the wear of the crushing equipment is reduced while enjoying the effects such as improvement of the degree of orientation by the lubricant-added mash.
特許文献 1:特開平 9 3504号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 9 3504
特許文献 2 :特開 2003-68551号公報  Patent Document 2: JP-A-2003-68551
[0004] 希土類焼結磁石の製造方法としては、前述の各特許文献にも記載されるように、粉 末冶金法が知られており、低コストでの製造が可能なことから、広く用いられている。 粉末冶金法では、先ず、原料合金インゴットを粗粉砕及び微粉砕し、粒径が数 m 程度の原料合金微粉を得る。このようにして得られた原料合金微粉を静磁場中で磁 場配向させ、磁場を印加した状態でプレス成形を行う。磁場中成形後、成形体を真 空中、または不活性ガス雰囲気中で焼結し、さらに時効処理を行う。 [0004] As a method for producing a rare earth sintered magnet, a powder metallurgy method is known, as described in the above-mentioned patent documents, and is widely used because it can be produced at low cost. ing. In the powder metallurgy method, first, a raw material alloy ingot is roughly pulverized and finely pulverized to obtain a raw material alloy fine powder having a particle diameter of about several meters. The raw material alloy fine powder thus obtained is subjected to magnetic field orientation in a static magnetic field, and press molding is performed in a state where a magnetic field is applied. After forming in a magnetic field, the formed body is sintered in the air or in an inert gas atmosphere, and further subjected to aging treatment.
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems the invention is trying to solve
[0005] ところで、前述のような粉末冶金法により希土類焼結磁石を作製する場合、焼結前 の成形体が圧粉体であるために強度が弱ぐそのため成形が困難であると!/、う問題 がある。また成形体強度が不足すると、成形体をハンドリングする際に割れや欠けが 生じ易くなり、これを原因とした歩留まり低下が問題となる。  [0005] By the way, when a rare earth sintered magnet is manufactured by the powder metallurgy method as described above, it is difficult to form the compact because the compact before sintering is a compact and has a low strength. Problem. Further, if the strength of the molded body is insufficient, cracks and chips are likely to occur when handling the molded body, which causes a problem of a decrease in yield.
[0006] したがって、希土類焼結磁石を粉末冶金法により製造する場合には、成形体強度 を改善するための技術の開発が望まれるところである。成形体強度に関する記述は、 先の特許文献 1にも見られる力 この特許文献 1記載の技術は、潤滑剤の添加による 強度低下を解消するというのが主旨であり、成形性に主眼が置かれており、積極的に 成形体強度を高めると 、う思想はな 、。  [0006] Therefore, when manufacturing rare earth sintered magnets by the powder metallurgy method, it is desired to develop a technique for improving the strength of a compact. The description on the strength of the compact is described in Patent Document 1 above. The technology described in Patent Document 1 is intended to eliminate the reduction in strength due to the addition of a lubricant, and the focus is on moldability. The idea is that the strength of the molded body should be increased positively.
[0007] 本発明は、このような従来の実情に鑑みて提案されたものであり、磁気特性を劣化 することなく成形体強度を向上し得る技術を開発することを目的とし、これにより、磁 気特性に優れた希土類焼結磁石を歩留まり良く製造し得る希土類焼結磁石の製造 方法を提供することを目的とする。  [0007] The present invention has been proposed in view of such conventional circumstances, and has as its object to develop a technology capable of improving the strength of a compact without deteriorating the magnetic characteristics. It is an object of the present invention to provide a method for manufacturing a rare earth sintered magnet capable of manufacturing a rare earth sintered magnet excellent in gas characteristics with a high yield.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らは、上述の目的を達成するために、長期に亘り種々の検討を重ねてき た。その結果、原料合金微粉への金属粉 (例えば A1粉、 Ni粉、 Zr粉、 Mn粉)の添加 が有効であるとの結論を得るに至った。本発明は、このような知見に基づいて完成さ れたものであり、 R(Rは希土類元素の 1種又は 2種以上、但し希土類元素は Yを含む 概念である)、 T(Tは Fe又は Fe、 Coを必須とする 1種又は 2種以上の遷移金属元素 )及び Bを含む原料合金微粉を焼結し、希土類焼結磁石を製造するに際し、添加金 属粉を添加してある前記原料合金微粉を成形し、焼結を行うことを特徴とする。添カロ 金属粉としては、例えば A1粉、 Ni粉、 Zr粉、 Mn粉力も選ばれる 1種または 2種以上 である。 [0008] The present inventors have conducted various studies over a long period of time in order to achieve the above object. As a result, they came to the conclusion that the addition of metal powder (eg, A1 powder, Ni powder, Zr powder, Mn powder) to the raw material alloy fine powder was effective. The present invention has been completed based on such findings, and R (R is one or more rare earth elements, where the rare earth element is a concept including Y), T (T is Fe Or one or two or more transition metal elements which essentially include Fe and Co) and a raw material alloy fine powder containing B, and in which a metal powder is added when producing a rare earth sintered magnet. It is characterized in that raw material alloy fine powder is formed and sintered. The caroten metal powder is, for example, one or more of A1 powder, Ni powder, Zr powder, and Mn powder.
[0009] 原料合金微粉の成形に際して添加金属粉を添加することにより、成形体強度が向 上する。特に、添加金属粉を板状の金属粉としたときに、効果が高い。その理由につ いて、詳細は不明であるが、実験的に確かめられた事実である。このとき、添加金属 粉が原因の磁気特性劣化は小さ!/、。 [0010] 添加金属粉の添加時期は、溶解铸造した原料合金を粉砕した後、成形する前であ れば任意であり、例えば粗粉砕後、あるいは微粉砕後のいずれでもよいが、なるべく 粉砕が進んだ状態で添加することにより成形体強度の向上度合いが大きくなる。なお[0009] The strength of the compact is improved by adding the additional metal powder during the compaction of the raw material alloy powder. In particular, the effect is high when the additive metal powder is a plate-like metal powder. The reason for this is unknown, but it has been confirmed experimentally. At this time, the magnetic property deterioration caused by the added metal powder is small! [0010] The addition time of the added metal powder is arbitrary as long as it is after pulverizing the melt-formed raw material alloy and before forming, and may be, for example, either after coarse pulverization or after fine pulverization. By adding in an advanced state, the degree of improvement in the strength of the molded body increases. In addition
、例えば A1や Zr、 Ni、 Mn等は、希土類焼結磁石に含まれる元素としても知られてい るが、本発明の目的を達成するためには、原料合金を溶解、铸造する段階で添加し ても効果はなぐ溶解、铸造した原料合金を粉砕した後、原料合金粉に A1粉、 Zr粉、 Ni粉、 Mn粉等として添加することが必要である。 For example, A1, Zr, Ni, Mn, etc. are also known as elements contained in rare earth sintered magnets, but in order to achieve the object of the present invention, they are added at the stage of melting and forming the raw material alloy. However, it is necessary to pulverize the melted and forged raw material alloy and then add it to the raw material alloy powder as A1 powder, Zr powder, Ni powder, Mn powder or the like.
発明の効果  The invention's effect
[0011] 本発明の製造方法によれば、焼結前の成形体の強度を向上することができ、成形 を容易なものとすることができ、成形体をノ、ンドリングする際に割れや欠けが発生する のを抑制することができる。したがって、成形体の割れや欠け等による歩留まりの低 下を減少することができ、希土類焼結磁石を効率的に製造することが可能である。ま た、本発明によれば、焼結後の希土類焼結磁石の磁気特性を劣化することもなぐ保 磁力や残留磁束密度等の磁気特性に優れた希土類焼結磁石を製造することが可能 である。  [0011] According to the production method of the present invention, the strength of the compact before sintering can be improved, and the compact can be easily formed. Can be suppressed. Therefore, it is possible to reduce a decrease in yield due to cracks or chipping of the compact, and it is possible to efficiently manufacture a rare earth sintered magnet. Further, according to the present invention, it is possible to manufacture a rare earth sintered magnet having excellent magnetic properties such as coercive force and residual magnetic flux density without deteriorating the magnetic properties of the sintered rare earth magnet. is there.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]希土類焼結磁石の製造プロセスの一例を示すフローチャートである。 FIG. 1 is a flowchart showing an example of a process for producing a rare earth sintered magnet.
[図 2]希土類焼結磁石の製造プロセスの他の例を示すフローチャートである。  FIG. 2 is a flowchart showing another example of the manufacturing process of the rare earth sintered magnet.
[図 3]抗折強度の測定法を説明する概略斜視図である。  FIG. 3 is a schematic perspective view illustrating a method of measuring bending strength.
[図 4]球状 A1粉の顕微鏡写真である。  FIG. 4 is a micrograph of spherical A1 powder.
[図 5]板状 A1粉の顕微鏡写真である。  FIG. 5 is a micrograph of plate-like A1 powder.
符号の説明  Explanation of symbols
[0013] 1 合金化工程、 2 粗粉砕工程、 2a 水素粉砕工程、 2b 機械的粗粉砕工程、 3 微粉砕工程、 4 磁場中成形工程、 5 焼結,時効工程、 6 加工工程、 7 表面処理 工程、 11 成形体、 12, 13, 14 支持具  [0013] 1 alloying process, 2 coarse grinding process, 2a hydrogen grinding process, 2b mechanical coarse grinding process, 3 fine grinding process, 4 magnetic field forming process, 5 sintering, aging process, 6 processing process, 7 surface treatment Process, 11 molded body, 12, 13, 14 support
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明を適用した希土類焼結磁石の製造方法について、図面を参照して詳 細に説明する。 Hereinafter, a method for manufacturing a rare earth sintered magnet to which the present invention is applied will be described in detail with reference to the drawings. Explain in detail.
[0015] 本発明の製造方法において、製造対象となる希土類焼結磁石は、希土類元素、遷 移金属元素及びホウ素を主成分とするものである。磁石組成は、目的に応じて任意 に選択すればよい。  [0015] In the manufacturing method of the present invention, the rare earth sintered magnet to be manufactured mainly includes a rare earth element, a transition metal element, and boron. The magnet composition may be arbitrarily selected according to the purpose.
[0016] 例えば、 R-T-B (Rは希土類元素の 1種又は 2種以上、但し希土類元素は Yを含む 概念である。 Tは Feまたは Fe及び Coを必須とする遷移金属元素の 1種または 2種以 上であり、 Bはホウ素である。)系希土類焼結磁石とする場合、磁気特性に優れた希 土類焼結磁石を得るためには、焼結後の磁石組成において、希土類元素 Rが 20— 40質量%、ホウ素 Bが 0. 5-4. 5質量%、残部が遷移金属元素 Tとなるような配合 組成とすることが好ましい。ここで、 Rは、希土類元素、すなわち Y、 La、 Ce、 Pr、 Nd 、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Yb及び Luから選ばれる 1種、または 2種以上で ある。中でも、 Ndは、資源的に豊富で比較的安価であることから、主成分を Ndとする ことが好ましい。また、 Dyの含有は異方性磁界を増加させるため、保磁力 Hcjを向上 させる上で有効である。  [0016] For example, RTB (R is a concept of one or more rare earth elements, where the rare earth element includes Y. T is one or two or more of Fe or a transition metal element essential for Fe and Co. (Where B is boron.) When using a sintered rare earth magnet, it is necessary to use a rare earth element R of 20 in the magnet composition after sintering in order to obtain a rare earth sintered magnet with excellent magnetic properties. It is preferable that the composition be such that 40% by mass, 0.5-4.5% by mass of boron B, and the balance be transition metal element T. Here, R is a rare earth element, that is, one or more selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb and Lu. Above all, Nd is preferable as the main component because Nd is abundant in resources and relatively inexpensive. Also, the inclusion of Dy increases the anisotropic magnetic field, and is effective in improving the coercive force Hcj.
[0017] あるいは、添加元素 Mを加えて、 R— T B— M系希土類焼結磁石とすることも可能 である。この場合、添加元素 Mとしては、 Al、 Cr、 Mn、 Mg、 Si、 Cu、 C、 Nb、 Sn、 W 、 V、 Zr、 Ti、 Mo、 Bi、 Ga等を挙げることができ、これらの 1種または 2種以上を選択 して添加することができる。これら添加元素 Mの添加量は、残留磁束密度等の磁気 特性を考慮して、 3質量%以下とすることが好ましい。添加元素 Mの添加量が多すぎ ると、磁気特性が劣化するおそれがある。  [0017] Alternatively, it is also possible to add an additional element M to obtain an R—TB—M based rare earth sintered magnet. In this case, examples of the additional element M include Al, Cr, Mn, Mg, Si, Cu, C, Nb, Sn, W, V, Zr, Ti, Mo, Bi, and Ga. One or more species can be selected and added. The addition amount of these additional elements M is preferably 3% by mass or less in consideration of magnetic properties such as residual magnetic flux density. If the amount of the additive element M is too large, the magnetic properties may be deteriorated.
[0018] 勿論、これら組成に限らず、希土類焼結磁石として従来公知の組成全般に適用可 能であることは言うまでもな!/、。  [0018] Of course, the present invention is not limited to these compositions, and it is needless to say that the present invention can be applied to all conventionally known compositions of rare earth sintered magnets!
[0019] 上述の希土類焼結磁石を製造するには、粉末冶金法が採用される。以下、希土類 焼結磁石の粉末冶金法による製造方法について説明する。  In order to manufacture the above-described rare earth sintered magnet, a powder metallurgy method is employed. Hereinafter, a method for manufacturing a rare earth sintered magnet by powder metallurgy will be described.
[0020] 図 1は、粉末冶金法による希土類焼結磁石の製造プロセスの一例を示すものであ る。この製造プロセスは、基本的には、合金化工程 1、粗粉砕工程 2、微粉砕工程 3、 磁場中成形工程 4、焼結,時効工程 5、加工工程 6、及び表面処理工程 7とにより構 成される。なお、酸ィ匕防止のために、焼結後までの各工程は、ほとんどの工程を真空 中、あるいは不活性ガス雰囲気中(窒素雰囲気中、 Ar雰囲気中等)で行うことが好ま しい。 FIG. 1 shows an example of a process for producing a rare earth sintered magnet by powder metallurgy. This manufacturing process basically consists of an alloying step 1, a coarse pulverizing step 2, a fine pulverizing step 3, a forming step in a magnetic field 4, a sintering and aging step 5, a processing step 6, and a surface treatment step 7. Is done. In order to prevent oxidization, most of the steps up to sintering were performed in vacuum. It is preferable to perform the reaction in a medium or in an inert gas atmosphere (such as a nitrogen atmosphere or an Ar atmosphere).
[0021] 合金化工程 1では、原料となる金属、あるいは合金を磁石組成に応じて配合し、真 空あるいは不活性ガス、例えば Ar雰囲気中で溶解し、铸造することにより合金化する 。铸造法としては、溶融した高温の液体金属を回転ロール上に供給し、合金薄板を 連続的に铸造するストリップキャスト法 (連続铸造法)が生産性等の観点力 好適であ る力 本発明はそれに限ったものではない。原料金属 (合金)としては、純希土類元 素、希土類合金、純鉄、フエロボロン、さらにはこれらの合金等を使用することができ る。凝固偏析を解消すること等を目的に、必要に応じて溶体化処理を行ってもよい。 溶体ィ匕処理の条件としては、例えば真空または Ar雰囲気下、 700— 1500°C領域で 1時間以上保持する。  In the alloying step 1, a metal or an alloy as a raw material is blended according to the magnet composition, melted in a vacuum or an inert gas, for example, an Ar atmosphere, and alloyed by forming. As a production method, a strip casting method (continuous production method) in which molten high-temperature liquid metal is supplied onto a rotating roll to continuously produce an alloy thin plate is preferable in terms of productivity and the like. It is not limited to that. As a raw material metal (alloy), pure rare earth elements, rare earth alloys, pure iron, ferroboron, and alloys thereof can be used. Solution treatment may be performed as necessary for the purpose of eliminating solidification segregation. As a condition of the solution shading treatment, for example, the temperature is maintained at 700 to 1500 ° C. for 1 hour or more in a vacuum or Ar atmosphere.
[0022] 合金はほぼ最終磁石組成である単一の合金を用いても、最終磁石組成になるよう に、組成の異なる複数種類の合金を混合してもよいも良い。混合は合金.原料粗粉. 原料微粉のどの工程でもよ 、が、混合性力も合金での混合が望まし 、。  [0022] The alloy may be a single alloy having almost the final magnet composition, or a plurality of alloys having different compositions may be mixed so as to have the final magnet composition. Mixing may be performed in any process of alloying, raw material coarse powder, and raw material fine powder.
[0023] 粗粉砕工程 2では、先に铸造した原料合金の薄板、あるいはインゴット等を、粒径 数百/ z m程度になるまで粉砕する。粉砕手段としては、スタンプミル、ジョークラッシャ 一、ブラウンミル等を用いることができる。  In the coarse pulverization step 2, a thin plate or ingot of the raw material alloy prepared above is pulverized until the particle size becomes about several hundreds / zm. As a pulverizing means, a stamp mill, a jaw crusher, a brown mill or the like can be used.
[0024] 前記粗粉砕工程 2は、複数の粉砕手段を組み合わせた複数工程により構成するこ とも可能である。図 2は、粗粉砕工程 2を、水素粉砕工程 2aと、機械的粗粉砕工程 2b の 2工程とした例である。水素粉砕工程 2aは、铸造した原料合金に水素を吸蔵させ、 相によって水素吸蔵量が異なることを利用して、自己崩壊的に粉砕する工程である。 これにより、粒径数 mm程度の大きさに粉砕することができる。機械的粗粉砕工程 2b は、先にも述べたようなブラウンミル等の機械的手法を利用して粉砕する工程であり、 前記水素粉砕工程 2aにより数 mm程度の大きさに粉砕された原料合金粉を、粒径数 百; z m程度になるまで粉砕する。粗粉砕性を向上させるために、水素粉砕工程を組 み合わせた粗粉砕を行うことが効果的である。水素粉砕工程 2aを行う場合、機械的 粗粉砕工程 2bは省略することも可能である。  [0024] The coarse pulverizing step 2 may be constituted by a plurality of steps combining a plurality of pulverizing means. FIG. 2 shows an example in which the coarse pulverizing step 2 includes two steps, a hydrogen pulverizing step 2a and a mechanical coarse pulverizing step 2b. The hydrogen pulverizing step 2a is a step in which hydrogen is occluded in the manufactured raw material alloy, and pulverization is performed in a self-disintegrating manner by utilizing the fact that the amount of hydrogen occlusion varies depending on the phase. Thereby, it can be crushed to a particle size of about several mm. The mechanical coarse pulverizing step 2b is a step of pulverizing using a mechanical method such as a brown mill as described above, and the raw material alloy pulverized to a size of about several mm by the hydrogen pulverizing step 2a. The powder is ground to a particle size of several hundreds; In order to improve the coarse pulverizability, it is effective to perform the coarse pulverization in combination with the hydrogen pulverization step. When performing the hydrogen crushing step 2a, the mechanical coarse crushing step 2b can be omitted.
[0025] 前述の粗粉砕工程 2が終了した後、通常、粗粉砕した原料合金粉に粉砕助剤を添 加する。粉砕助剤としては、例えば脂肪酸系化合物等を使用することができるが、特 に、脂肪酸アミドを粉砕助剤として用いることで、良好な磁気特性を有する希土類焼 結磁石を得ることができる。粉砕助剤の添加量としては、 0. 03-0. 4質量%とするこ とが好ましい。この範囲内で粉砕助剤を添加した場合、焼結後の残留炭素の量を低 減することができ、希土類焼結磁石の磁気特性を向上させる上で有効である。 After the above-mentioned coarse pulverizing step 2 is completed, a pulverizing assistant is usually added to the coarsely pulverized raw alloy powder. Add. As the grinding aid, for example, a fatty acid compound or the like can be used. In particular, by using a fatty acid amide as the grinding aid, a rare earth sintered magnet having good magnetic properties can be obtained. The addition amount of the grinding aid is preferably 0.03 to 0.4% by mass. When the grinding aid is added within this range, the amount of residual carbon after sintering can be reduced, which is effective in improving the magnetic properties of the rare earth sintered magnet.
[0026] 粗粉砕工程 2の後、微粉砕工程 3を行うが、この微粉砕工程 3は、例えばジェットミ ルを使用して行われる。微粉砕の際の条件は、用いる気流式粉砕機に応じて適宜設 定すればよぐ原料合金粉を平均粒径が 1一 10 m程度、例えば 3— 6 mとなるま で微粉砕する。ジェットミルは、高圧の不活性ガス (例えば窒素ガス)を狭いノズルより 開放して高速のガス流を発生させ、この高速のガス流により粉体の粒子を加速し、粉 体の粒子同士の衝突や、ターゲットある ヽは容器壁との衝突を発生させて粉砕する 方法である。ジェットミルは、一般的に、流動層を利用するジェットミル、渦流を利用す るジェットミル、衝突板を用いるジェットミル等に分類される。  [0026] After the coarse pulverizing step 2, a fine pulverizing step 3 is performed. The fine pulverizing step 3 is performed using, for example, a jet mill. The conditions for the fine pulverization can be appropriately set according to the air-flow type pulverizer to be used. The raw material alloy powder is finely pulverized until the average particle diameter becomes about 110 m, for example, 3-6 m. Jet mills release high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, which accelerates the powder particles and causes the particles to collide with each other. Also, the target あ る is a method of crushing by generating collision with the container wall. Jet mills are generally classified into jet mills using a fluidized bed, jet mills using a vortex, jet mills using an impinging plate, and the like.
[0027] 微粉砕工程 3の後、磁場中成形工程 4において、原料合金微粉を磁場中にて成形 する。具体的には、微粉砕工程 3にて得られた原料合金微粉を電磁石を配置した金 型内に充填し、磁場印加によって結晶軸を配向させた状態で磁場中成形する。磁場 中成形は、縦磁場成形、横磁場成形のいずれであってもよい。この磁場中成形は、 例えば 800— 1500kAZmの磁場中で、 130— 160MPa前後の圧力で行えばよい  [0027] After the pulverizing step 3, in a magnetic field forming step 4, the raw material alloy fine powder is formed in a magnetic field. Specifically, the raw material alloy fine powder obtained in the fine pulverization step 3 is filled in a mold in which an electromagnet is arranged, and is formed in a magnetic field with a crystal axis oriented by applying a magnetic field. The molding in a magnetic field may be either vertical magnetic field molding or horizontal magnetic field molding. This molding in a magnetic field may be performed, for example, in a magnetic field of 800 to 1500 kAZm at a pressure of about 130 to 160 MPa.
[0028] 次に焼結 ·時効工程 5において、焼結及び時効処理を実施する。すなわち、原料合 金微粉を磁場中成形後、成形体を真空または不活性ガス雰囲気中で焼結する。焼 結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要 があるが、例えば 1000— 1150°Cで 5時間程度焼結すればよぐ焼結後、急冷するこ とが好ましい。焼結後、得られた焼結体に時効処理を施すことが好ましい。この時効 処理は、得られる希土類焼結磁石の保磁力 Hcjを制御する上で重要な工程であり、 例えば不活性ガス雰囲気中あるいは真空中で時効処理を施す。時効処理としては、 2段時効処理が好ましぐ 1段目の時効処理工程では、 800°C前後の温度で 1一 3時 間保持する。次いで、室温一 200°Cの範囲内にまで急冷する第 1急冷工程を設ける 。 2段目の時効処理工程では、 550°C前後の温度で 1一 3時間保持する。次いで、室 温まで急冷する第 2急冷工程を設ける。 600°C近傍の熱処理で保磁力 Hcjが大きく 増加するため、時効処理を一段で行う場合には、 600°C近傍の時効処理を施すとよ い。 Next, in a sintering and aging step 5, sintering and aging treatment are performed. That is, after the raw alloy fine powder is compacted in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere. The sintering temperature needs to be adjusted according to various conditions such as composition, pulverization method, difference in particle size and particle size distribution, etc. This is preferred. After sintering, the obtained sintered body is preferably subjected to an aging treatment. This aging treatment is an important step in controlling the coercive force Hcj of the obtained rare earth sintered magnet. For example, the aging treatment is performed in an inert gas atmosphere or in a vacuum. As the aging treatment, two-stage aging treatment is preferred. In the first aging treatment step, the temperature is kept at about 800 ° C for 11 to 13 hours. Next, there is a first quenching step to quench the room temperature to within 200 ° C. . In the second-stage aging treatment step, the temperature is kept at about 550 ° C for 11 to 13 hours. Next, a second quenching step for quenching to room temperature is provided. Since the coercive force Hcj is greatly increased by the heat treatment at around 600 ° C, when performing the aging treatment in one stage, the aging treatment at around 600 ° C may be performed.
[0029] 前記焼結 ·時効工程 5の後、加工工程 6及び表面処理工程 7を行う。加工工程 6は 、所望の形状に機械的に成形する工程である。表面処理工程 7は、得られた希土類 焼結磁石の酸ィ匕を抑えるために行う工程であり、例えばメツキ被膜ゃ榭脂被膜を希 土類焼結磁石の表面に形成する。  [0029] After the sintering / aging step 5, a processing step 6 and a surface treatment step 7 are performed. Processing step 6 is a step of mechanically forming a desired shape. The surface treatment step 7 is a step performed to suppress oxidation of the obtained rare earth sintered magnet, and for example, a plating film and a resin film are formed on the surface of the rare earth sintered magnet.
[0030] 以上の製造プロセスにお 、て、本発明では、原料合金微粉に成形助剤として添カロ 金属粉を添加し、磁場中成形工程 4において成形するようにする。添加金属粉として は、 Al、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Zr、 Ag、 Sn、 Bi等、任意の金属粉を用いること ができ、これらの中から 1種、または 2種以上を選択して使用すればよい。中でも、 A1 粉、 Ni粉、 Zr粉、 Mn粉が好ましぐこれら力も選択される 1種、あるいは 2種以上を成 形助剤として添加することが好適である。  In the manufacturing process described above, according to the present invention, a metal powder added as a forming aid is added to the raw material alloy fine powder, and the raw alloy powder is formed in a magnetic field forming step 4. As the added metal powder, any metal powder such as Al, Mn, Fe, Co, Ni, Cu, Zn, Zr, Ag, Sn, Bi and the like can be used, and one or more of these can be used. Select and use. Above all, it is preferable to add one or more of these powers, which are preferably selected from A1 powder, Ni powder, Zr powder, and Mn powder, as molding aids.
[0031] 添加金属粉の添加時期は、合金化工程 1により原料合金を溶解铸造し、粉砕した 後、磁場中成形工程 4において磁場中成形するまでの間であればよい。例えば、図 1に示す製造プロセスの場合、微粉砕工程 3の後(図中、添加時期 A)、あるいは粗粉 砕工程 2の後(図中、添加時期 B)、である。図 2に示す製造プロセスの場合、微粉砕 工程 3の後(図中、添加時期 A)、機械的粗粉砕工程 2bの後(図中、添加時期 B)、あ るいは水素粉砕工程 2aの後(図中、添加時期 C)である。  [0031] The timing of adding the added metal powder may be between the time when the raw material alloy is melt-formed and pulverized in the alloying step 1 and the pulverization is performed, and the time when it is formed in the magnetic field in the magnetic field forming step 4. For example, in the case of the manufacturing process shown in FIG. 1, after the fine pulverization step 3 (addition time A in the figure) or after the coarse pulverization step 2 (addition time B in the figure). In the case of the manufacturing process shown in Fig. 2, after the fine grinding step 3 (addition time A in the figure), after the mechanical coarse grinding step 2b (addition time B in the figure), or after the hydrogen grinding step 2a. (Addition time C in the figure).
[0032] 添加金属粉の添カ卩時期は、基本的にはこれらのいずれであってもよいが、原料合 金の粉砕が進んで力も添加する方が効果が高い。最も効果が高いのは、成形直前 の原料合金微粉に添加する場合である。したがって、例えば、図 1の製造プロセスに おいては、粗粉砕工程 2の後(添加時期 B)に添加するよりも、微粉砕工程 3の後(添 加時期 A)に添加する方が効果が高い。同様に、図 2に示す製造プロセスにおいて は、水素粉砕工程 2aの後(添加時期 C)に添加するよりも、機械的粗粉砕工程 2aの 後(添加時期 B)に添加する方が効果が高ぐさらに、機械的粗粉砕工程 2aの後(添 加時期 B)に添加するより微粉砕工程 3の後(添加時期 A)に添加する方が効果が高 い。 [0032] The timing of adding the added metal powder may be basically any of these, but it is more effective to add the force as the raw material alloy is crushed. The effect is most effective when it is added to the raw material alloy fine powder immediately before compaction. Therefore, for example, in the manufacturing process of FIG. 1, it is more effective to add after the fine grinding step 3 (addition time A) than after the coarse grinding step 2 (addition time B). high. Similarly, in the manufacturing process shown in FIG. 2, it is more effective to add after the mechanical coarse grinding step 2a (addition time B) than to add after the hydrogen grinding step 2a (addition time C). Furthermore, it is more effective to add it after the fine grinding step 3 (addition time A) than after the mechanical coarse grinding step 2a (addition time B). Yes.
[0033] 添加金属粉は公知の混合方法で混合すればよく、例えば、 Vミキサー、リボンミキサ 一等、均一に混合されればどのような方法を採用しても良い。  [0033] The additive metal powder may be mixed by a known mixing method, and any method may be employed as long as it is uniformly mixed, such as a V mixer or a ribbon mixer.
[0034] 添加金属粉の添加量としては、原料合金微粉に対して 0. 01質量%以上とすること が好ましぐ 0. 02質量%以上とすることがより好ましい。添加金属粉の添加量が 0. 0 1質量%未満であると、十分な効果を得ることが難しくなる。ただし、磁気特性の劣化 を考慮すると、 0. 5質量%以下とすることが好ましい。添加金属粉の添加量が 0. 5質 量%を越えると、磁気特性の劣化が問題となるおそれがある。  [0034] The addition amount of the added metal powder is preferably 0.01% by mass or more with respect to the raw material alloy fine powder, and more preferably 0.02% by mass or more. If the amount of the added metal powder is less than 0.01% by mass, it is difficult to obtain a sufficient effect. However, in consideration of the deterioration of the magnetic characteristics, the content is preferably 0.5% by mass or less. If the amount of the added metal powder exceeds 0.5% by mass, the magnetic properties may be deteriorated.
[0035] 添加金属粉の最適添加量は、添加金属粉の種類によって異なり、例えば A1粉の最 適添加量は、 0. 15質量%以上、 0. 3質量%以下である。 Ni粉の最適添加量は、 0 . 02質量%— 0. 08質量%である。 Zr粉の最適添カ卩量は、 0. 15質量%—0. 3質量 %である。 Mn粉の最適添加量は、 0. 02質量%— 0. 25質量%である。  [0035] The optimum addition amount of the added metal powder varies depending on the type of the added metal powder. For example, the optimum addition amount of the A1 powder is 0.15% by mass or more and 0.3% by mass or less. The optimal addition amount of Ni powder is 0.02% by mass to 0.08% by mass. The optimal amount of Zur powder added is 0.15% by mass to 0.3% by mass. The optimum addition amount of the Mn powder is 0.02% by mass to 0.25% by mass.
[0036] 添加する添加金属粉の平均粒径等は任意であり、例えば、使用する添加金属粉の 平均粒径は、原料合金微粉の粒径に応じて適宜選定すればよい。好ましくは、添カロ 金属粉の平均粒径が 50 μ m以下であり、 10 μ m以下であることがより好ましい。  [0036] The average particle size and the like of the added metal powder to be added are arbitrary. For example, the average particle size of the added metal powder to be used may be appropriately selected according to the particle size of the raw material alloy fine powder. Preferably, the average particle size of the added carometal powder is 50 μm or less, and more preferably 10 μm or less.
[0037] 使用する添加金属粉の形状も任意である力 板状である場合に効果が高 、。した がって、例えば鱗片状等、所定の厚みを持った平板状の金属粉を用いることが好ま しい。このような板状の粉体は、例えば粉体を顕微鏡等で観察することにより、容易に 判別することができる。前記板状の金属粉において、板状比 (板面径 Z板厚)や粒径 [0037] The effect is high when the additive metal powder to be used is in the shape of a plate having an arbitrary shape. Therefore, for example, it is preferable to use a flat metal powder having a predetermined thickness such as a scale. Such a plate-like powder can be easily identified by observing the powder with a microscope or the like, for example. In the sheet metal powder, the sheet ratio (sheet surface diameter Z sheet thickness) and particle size
、厚さは任意である力 好ましくは板状比 2— 15である。板面径は、 50 /z m以下であ ることが好ましぐ 10 m以下であることがより好ましい。中でも重要なのは、板状粉 の厚さであり、板状の金属粉の厚さは 10 m以下であることが好ましぐ 以下で あることがより好ましい。厚さの薄い板状の粉体を用いることで、より一層の効果が発 揮される。 The thickness is arbitrary, and preferably the plate ratio is 2-15. The plate surface diameter is preferably 50 / zm or less, more preferably 10m or less. Of particular importance is the thickness of the plate-like powder, and the thickness of the plate-like metal powder is more preferably 10 m or less, and more preferably 10 m or less. By using a plate-like powder having a small thickness, a further effect is exhibited.
[0038] 添加した添加金属粉は、焼結後には原料合金と合金化して取り込まれ、所定の添 加量以下であれば得られる希土類焼結磁石の特性に影響を及ぼすことはない。 実施例  [0038] The added metal powder added after the sintering is alloyed with the raw material alloy and taken in. If the added metal powder is not more than a predetermined amount, it does not affect the properties of the obtained rare earth sintered magnet. Example
[0039] 次に、本発明の具体的な実施例について、実験結果を基に説明する。 [0040] 希十街焼結磁石の作製 Next, specific examples of the present invention will be described based on experimental results. [0040] Manufacture of rare Jumachi sintered magnet
原料合金の組成としては、 Nd24. 5質量0 /0、 Pr6. 0質量0 /0、 Dyl. 8質量0 /0、 CoOAs the composition of the raw material alloy, ND24. 5 mass 0/0, Pr6. 0 mass 0/0, Dyl. 8 mass 0/0, CoO
. 5質量%、 A10. 2質量%、 CuO. 07質量%、 B1. 0質量%、残部 Feとした。原料と なる金属あるいは合金を前記組成となるように配合し、ストリップキャスト法により原料 合金薄板を溶解、铸造した。 5% by mass, A10.2% by mass, CuO. 07% by mass, B1.0% by mass, and the balance Fe. A metal or alloy as a raw material was blended so as to have the above-mentioned composition, and a raw material alloy thin plate was melted and manufactured by a strip casting method.
[0041] 得られた原料合金薄板を水素粉砕した後、ブラウンミルにて機械的粗粉砕を行 、、 原料合金粗粉を得る。原料合金粗粉に粉砕助剤として、ォレイン酸アミド 0. 1質量0 /0 を添加した。次いで、気流式粉砕機 (ジェットミル)を使用して高圧窒素ガス雰囲気中 で微粉砕を行い、平均粒径 D50=4. 1 mの原料合金微粉を得た。 [0041] After the obtained raw material alloy thin plate is pulverized with hydrogen, it is mechanically coarsely pulverized by a brown mill to obtain a raw material alloy coarse powder. As the grinding aid material alloy coarse powder, were added Orein acid amide 0.1 wt 0/0. Next, the powder was finely pulverized in a high-pressure nitrogen gas atmosphere using an air-flow type pulverizer (jet mill) to obtain a raw material alloy fine powder having an average particle diameter D50 = 4.1 m.
[0042] この原料合金微粉に添加金属粉を添加し、乳鉢で混合した。得られた各粉体を磁 場中成形し、所定の形状の成形体を得た。磁場中成形では、前記粉体を 1200kA Zmの磁場中において、成形圧 147MPaで成形した。磁場方向はプレス方向と垂直 な方向である。 [0042] The added metal powder was added to the raw material alloy fine powder and mixed in a mortar. Each of the obtained powders was molded in a magnetic field to obtain a molded body having a predetermined shape. In the molding in a magnetic field, the powder was molded at a molding pressure of 147 MPa in a magnetic field of 1200 kA Zm. The direction of the magnetic field is perpendicular to the pressing direction.
[0043] 磁場中成形した成形体を、焼結し、時効処理を行って試料 1一 9を作製した。焼結 は、焼結温度 1030°Cとし、真空中において 4時間焼結した。時効は、 2段時効処理 とし、 1段目は 900°C、 1時間、 2段目は 530°C、 1時間とした。  The compact formed in a magnetic field was sintered and subjected to an aging treatment to prepare Sample 119. The sintering was performed at a sintering temperature of 1030 ° C for 4 hours in a vacuum. The aging was a two-stage aging treatment, with the first stage at 900 ° C for 1 hour and the second stage at 530 ° C for 1 hour.
[0044] 籠  [0044] basket
前記希土類焼結磁石の作製において、先ず、磁場中成形により成形された成形体 の抗折強度を測定した。抗折強度は、 日本工業規格 JIS R 1601に準じて行った。 すなわち、図 3に示すように、成形体 11を丸棒状の 2本の支持具 12, 13の上に載置 し、成形体 11上の中央位置にやはり丸棒状の支持具 14を配置して荷重を加えた。 成形体 11のチップサイズは、 20mm X I 8mm X 6mmとした。また、抗折圧を加える 方向は、プレス方向とした。  In the preparation of the rare earth sintered magnet, first, the bending strength of the molded body formed by molding in a magnetic field was measured. The bending strength was measured according to Japanese Industrial Standard JIS R 1601. That is, as shown in FIG. 3, the molded body 11 is placed on two round bar-shaped supports 12, 13, and the round bar-shaped support 14 is also arranged at the center position on the molded body 11. A load was applied. The chip size of the molded body 11 was 20 mm X I 8 mm X 6 mm. The direction to apply the bending force was the pressing direction.
[0045] また、作製した各希土類焼結磁石につ!ヽて、保磁力 Hcj及び残留磁束密度 Brを測 定した。測定は、 B— Hトレーサーを用いて行った。  The coercive force Hcj and the residual magnetic flux density Br were measured for each of the manufactured rare earth sintered magnets. The measurement was performed using a B—H tracer.
[0046] A1粉 (球状粉)添加による成形体強度及び磁気特件への影響  Effect of A1 Powder (Spherical Powder) Addition on Molded Body Strength and Magnetic Properties
先の希土類焼結磁石の作製に従 ヽ、添加金属粉として球状 A1粉を用いるとともに 、球状 A1粉の添加量を表 1に示すように変え、試料 1 1一試料 1—11を作製した。使 用した球状 Al粉の顕微鏡写真を図 4に示す。なお、試料 1 1一試料 1 9で使用した A1粉の粒径は 20 μ m、試料 10, 11で使用した Al粉の粒径は 40 μ mである。各試 料における球状 A1粉の添加量、磁石 A1組成、成形体の抗折強度 (成形体強度)、磁 気特性 (保磁力 Hcj及び残留磁束密度 Br)を表 1に示す。 In accordance with the preparation of the rare earth sintered magnet, spherical A1 powder was used as the added metal powder, and the amount of the spherical A1 powder added was changed as shown in Table 1, to prepare Sample 11 to Sample 1-11. Use Fig. 4 shows a micrograph of the spherical Al powder used. The particle size of A1 powder used in Sample 11 and Sample 19 was 20 μm, and the particle size of Al powder used in Samples 10 and 11 was 40 μm. Table 1 shows the amount of spherical A1 powder added, the magnet A1 composition, the bending strength of the compact (compact strength), and the magnetic properties (coercive force Hcj and residual magnetic flux density Br) of each sample.
[0047] [表 1] [Table 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0048] この表 1から明らかなように、球状 A1粉を添加することによって、成形体の抗折強度 が向上している。成形体の抗折強度の向上は、球状 A1粉の添加量が多いほど大きく なっている。したがって、磁場中成形に際しては、球状 A1粉の添カ卩が有効であること がわかる。一方、磁気特性については、球状 A1粉の添加量が 0. 5質量%以下の範 囲では、特に問題となるようなレベルの低下は見られない。ただし、球状 A1粉の添加 が 0. 5質量%を越えると、次第に残留磁束密度 Brの劣化が大きくなつている。 [0048] As is apparent from Table 1, by adding the spherical A1 powder, the bending strength of the molded body is improved. The improvement in the bending strength of the molded body increases as the amount of the spherical A1 powder added increases. Therefore, it can be seen that when molding in a magnetic field, the spherical kneaded A1 powder is effective. On the other hand, regarding the magnetic properties, when the amount of the spherical A1 powder added is 0.5 mass% or less, there is no particular problematic decrease in the level. However, when the addition of spherical A1 powder exceeds 0.5% by mass, the residual magnetic flux density Br gradually deteriorates.
[0049] A1粉の添加時期につ 、ての枪討  [0049] The timing of addition of A1 powder was discussed.
先の作製方法に従!ヽ、球状 A1粉の添加時期を変えて希土類焼結磁石を作製した 。球状 A1粉の添加量は 0. 20質量%である。球状 A1粉の添加時期は、水素粉砕後( 試料 1 12)、ブラウンミルによる粗粉砕後(試料 1 13)、ジェットミルによる微粉砕後 (試料 1—14)とした。また、比較のため、球状 A1粉の添加量に相当する量の A1を合 金組成に加えた試料 (試料 1 15)も作製した。そして、これら試料についても、同様 に成形体強度、磁気特性 (保磁力 Hcj及び残留磁束密度 Br)を測定した。結果を表 2に示す。  According to the preparation method described above, a rare-earth sintered magnet was prepared by changing the addition time of the spherical A1 powder. The amount of spherical A1 powder added was 0.20% by mass. The spherical A1 powder was added after hydrogen pulverization (sample 1 12), after coarse pulverization by a brown mill (sample 1 13), and after fine pulverization by a jet mill (sample 1-14). For comparison, a sample (Sample 115) was also prepared in which A1 was added to the alloy composition in an amount equivalent to the amount of spherical A1 powder added. For these samples as well, the strength and magnetic properties (coercive force Hcj and residual magnetic flux density Br) were measured in the same manner. Table 2 shows the results.
[0050] [表 2] 試料 Al粉添加;!磁石 AI組成成形体強度 保磁力 H cj 残留磁束密度 B r [0050] [Table 2] Sample Al powder added; Magnet AI composition molded body strength Coercive force H cj Residual magnetic flux density B r
(質量%) (質置%) ( M Pa ) ( kA/m ) (T)  (Mass%) (mass%) (MPa) (kA / m) (T)
1 -1 2 0.20 0.40 0.54 1425 1.33 1 -1 2 0.20 0.40 0.54 1425 1.33
1 -1 3 0.20 0.40 0.55 1420 1.331 -1 3 0.20 0.40 0.55 1420 1.33
1 -14 0.20 0.40 0.57 1416 1.331 -14 0.20 0.40 0.57 1416 1.33
1 -1 5 0.00 0.40 0.50 1430 1.33 1 -1 5 0.00 0.40 0.50 1430 1.33
[0051] この表 2から明らかなように、球状 A1粉を添加することで、いずれの場合にも成形体 強度の向上が見られるが、粉砕工程の後段で添加する程、その効果が大きくなつて いる。すなわち、試料 1 12よりも試料 1 13の方が成形体強度の向上が大きぐ試 料 1-13よりも試料 1-14の方が成形体強度の向上が大きい。 A1を合金組成に加え た試料 1-15は、球状 A1粉を添加していない試料 1-1と成形体強度は変わらず、成 形体強度に関しては効果が認められない。また、 A1の添カ卩工程が異なっていても同 一 A1組成であれば磁気特性に変化はない。 [0051] As is clear from Table 2, the addition of spherical A1 powder can improve the strength of the molded body in any case. However, the effect increases as the powder is added later in the pulverization step. ing. That is, Sample 1-13 has a greater improvement in the strength of the molded body than Sample 1-13, in which Sample 1-13 has a greater improvement in the strength of the compact. Sample 1-15, in which A1 was added to the alloy composition, had the same strength as that of Sample 1-1, in which no spherical A1 powder was added, and no effect was observed regarding the strength of the green body. Further, even if the addition process of A1 is different, there is no change in the magnetic properties as long as the A1 composition is the same.
[0052] 料合余 Hfeへの A1添力 开 き A1粉 力 Πの  [0052] A1 addition to Hfe A1 powder power Π
A1粉を添加金属粉として添加した場合と、合金組成として添加した場合の磁気特 性の相違について調べた。作製した試料は、原料合金 A1組成を 0. 2質量%とし球 状 A1粉の添加量を 0質量%とした試料 1 16、原料合金 A1組成を 0. 2質量%とし球 状 A1粉の添加量を 0. 2質量%とした試料 1 17、原料合金 A1組成を 0質量%とし球 状 A1粉の添加量を 0. 2質量%とした試料 1—18、及び原料合金 A1組成を 0質量%と し球状 A1粉の添力卩量を 0質量%とした試料 1—19の 4種類である。なお、試料 1 16 は試料 1 1と同一であり、試料 1—17は試料 1—6と同一である力 他の試料との比較 のため、ここでは異なる試料番号を付してある。各試料における原料合金 A1組成、 A 1粉の添加量、成形体強度、保磁力 Hcj及び残留磁束密度 Brを表 3に示す。  The difference in magnetic properties between the case where A1 powder was added as an additive metal powder and the case where it was added as an alloy composition was investigated. The prepared samples were sample 1 16 with the raw material alloy A1 composition being 0.2% by mass and the amount of spherical A1 powder added being 0% by mass. Sample 1-17 with an amount of 0.2% by mass, Sample 1-18 with a raw alloy A1 composition of 0% by mass and an addition amount of spherical A1 powder of 0.2% by mass, and a 0% mass of the material alloy A1 % Of the spherical A1 powder and 0% by mass. Note that Sample 116 is the same as Sample 11, and Sample 1-17 is the same as Sample 1-6. For comparison with other samples, different sample numbers are given here. Table 3 shows the composition of the raw material alloy A1, the amount of A1 powder added, the strength of the compact, the coercive force Hcj, and the residual magnetic flux density Br of each sample.
[0053] [表 3]  [0053] [Table 3]
Figure imgf000013_0001
Figure imgf000013_0001
[0054] 例えば、試料 1—16と試料 1—18の結果を比べて見ると明らかなように、磁石 A1組成 が同じとなるこれら試料では、保磁力 Hcjや残留磁束密度 Brはほぼ同じ値となって いる。成形体強度は、球状 A1粉として添加した場合の方が大きい。このように、合金と 同じ量となるような成形時添加であれば (すなわち原料合金 A1組成がゼロで必要量 成形時添加であれば)、成形体強度以外の特性は変化しない。したがって、球状 A1 粉の成形時添カ卩が有利であることがわかる。 [0054] For example, when comparing the results of Sample 1-16 and Sample 1-18, it is clear that the composition of the magnet A1 The coercive force Hcj and the residual magnetic flux density Br are almost the same in these samples with the same values. The strength of the compact is higher when it is added as spherical A1 powder. Thus, if it is added at the time of forming so as to have the same amount as the alloy (that is, if the necessary amount of the raw material alloy A1 is zero and the necessary amount is added at the time of forming), properties other than the strength of the formed body do not change. Therefore, it can be seen that the casket added at the time of molding the spherical A1 powder is advantageous.
[0055] A1粉 (板状粉)添加による成形体強度及び磁気特件への影響  [0055] Effect of addition of A1 powder (plate-like powder) on strength and magnetic properties of compacts
添加金属粉として板状 A1粉を表 4に示す添加量で添加し、試料 1 20 試料 1 2 8を作製した。図 5に、使用した板状 A1粉の顕微鏡写真を示す。なお、使用した板状 A1粉の板面径は 40 μ m、厚さは 3 μ mである。各試料における板状 Al粉の添カロ量、 成形体の抗折強度、磁気特性 (保磁力 Hcj及び残留磁束密度 Br)を表 4に示す。  Sample A20 was prepared by adding plate-like A1 powder as an additive metal powder in the amount shown in Table 4. FIG. 5 shows a micrograph of the plate-like A1 powder used. The plate surface diameter of the plate-like A1 powder used was 40 μm and the thickness was 3 μm. Table 4 shows the calorie content of the plate-like Al powder, the bending strength of the compact, and the magnetic properties (coercive force Hcj and residual magnetic flux density Br) of each sample.
[0056] [表 4]  [Table 4]
Figure imgf000014_0001
Figure imgf000014_0001
[0057] この表 4から明らかなように、板状 A1粉を添加することによって、成形体の抗折強度 が向上している力 その効果は粒状 A1粉を添加した場合に比べて高いことがわかる [0057] As is clear from Table 4, the addition of the plate-like A1 powder has the effect of improving the transverse rupture strength of the molded article. The effect is higher than when the granular A1 powder is added. Understand
[0058] 板状 A1粉における厚さの檢討 [0058] Examination of thickness of plate-like A1 powder
添加金属粉として板状 A1粉を 0. 20質量%添加した。板状 A1粉の厚さを変えた試 料 1 29 試料 1 33を作製した。各試料における板状 A1粉の厚さ、成形体の抗折 強度、磁気特性 (保磁力 Hcj及び残留磁束密度 Br)を表 5に示す。  0.20% by mass of plate-like A1 powder was added as an added metal powder. Sample 1 29 Sample 133 with the thickness of plate-like A1 powder changed was prepared. Table 5 shows the thickness of plate-like A1 powder, flexural strength of the compact, and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of each sample.
[0059] [表 5]
Figure imgf000015_0001
[Table 5]
Figure imgf000015_0001
[0060] この表 5から明らかなように、板状 A1粉の厚さを 10 m以下とすることで、より一層 の抗折強度の向上が認められる。したがって、板状 A1粉の厚さを 10 /z m以下とする ことが有効であることがゎカゝる。 [0060] As is apparent from Table 5, when the thickness of the plate-like A1 powder is set to 10 m or less, further improvement in the transverse rupture strength is recognized. Therefore, it is effective to make the thickness of the plate-like A1 powder 10 / zm or less.
[0061] Ni粉 (球状粉)添加による成形体強度及び磁気特件への影響  [0061] Effect of Addition of Ni Powder (Spherical Powder) on Strength and Magnetic Properties
先の希土類焼結磁石の作製に従 、、添加金属粉として球状 Ni粉 (粒径 2 m)を 用いるとともに、球状 Ni粉の添加量を表 1に示すように変え、試料 2— 1一試料 2— 9を 作製した。各試料における球状 Ni粉の添加量、成形体の抗折強度 (成形体強度)、 磁気特性 (保磁力 Hcj及び残留磁束密度 Br)を表 6に示す。  According to the preparation of the rare earth sintered magnet, spherical Ni powder (particle diameter 2 m) was used as the added metal powder, and the amount of spherical Ni powder added was changed as shown in Table 1. 2-9 were prepared. Table 6 shows the addition amount of spherical Ni powder, flexural strength (compact strength), and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of the compact in each sample.
[0062] [表 6]  [Table 6]
Figure imgf000015_0002
Figure imgf000015_0002
[0063] この表 6から明らかなように、球状 Ni粉を添加することによって、成形体の抗折強度 が向上している。成形体の抗折強度の向上は、球状 Ni粉の添加量 0. 05質量%付 近でピークとなっており、それ以上の添加量では、若干低下する傾向にある。一方、 磁気特性については、球状 Ni粉の添加量が多いほど磁気特性、特に保磁力 Hcjが 向上している。これらのことから、球状 Ni粉の添加量は、 0. 02質量%以上とすること が好ましぐ 0. 02質量%— 0. 08質量%とすることがより好ましいことがわかる。 [0064] Ni粉の添加時期につ 、ての検討 [0063] As is clear from Table 6, the addition of the spherical Ni powder improves the bending strength of the molded body. The improvement in the bending strength of the molded product peaks at around 0.05% by mass of the added amount of spherical Ni powder, and tends to decrease slightly with the added amount of more than that. On the other hand, as for the magnetic properties, the larger the amount of spherical Ni powder added, the better the magnetic properties, especially the coercive force Hcj. From these facts, it is understood that the addition amount of the spherical Ni powder is preferably set to 0.02% by mass or more, more preferably 0.02% by mass to 0.08% by mass. [0064] Examination of timing of addition of Ni powder
先の作製方法に従!ヽ、球状 Ni粉の添加時期を変えて希土類焼結磁石を作製した 。球状 Ni粉の添加量は 0. 05質量%である。球状 Ni粉の添カ卩時期は、水素粉砕後( 試料 2-10)、ブラウンミルによる粗粉砕後(試料 2-11)、ジェットミルによる微粉砕後 (試料 2— 12)とした。また、比較のため、 Ni粉の添加量に相当する量の Niを合金組 成に加えた試料 (試料 2— 13)も作製した。そして、これら試料についても、同様に抗 折強度、磁気特性 (保磁力 Hcj及び残留磁束密度 Br)を測定した。結果を表 7に示 す。  According to the above-mentioned manufacturing method, a rare-earth sintered magnet was manufactured by changing the addition time of the spherical Ni powder. The addition amount of the spherical Ni powder is 0.05% by mass. The addition time of the spherical Ni powder was after pulverization with hydrogen (sample 2-10), after coarse pulverization with a brown mill (sample 2-11), and after fine pulverization with a jet mill (sample 2-12). For comparison, a sample (Sample 2-13) was also prepared in which Ni was added to the alloy composition in an amount equivalent to the amount of Ni powder added. The flexural strength and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of these samples were measured in the same manner. Table 7 shows the results.
[0065] [表 7]  [Table 7]
Figure imgf000016_0001
Figure imgf000016_0001
*合金組成として添加  * Added as alloy composition
[0066] この表 7から明らかなように、 Ni粉を添加することで、いずれの場合にも成形体強度 の向上が見られるが、粉砕工程の後段で添加する程、その効果が大きくなつている。 すなわち、試料 2— 10よりも試料 2— 11の方が成形体強度の向上が大きぐ試料 2— 1 1よりも試料 2— 12の方が成形体強度の向上が大きい。 Niを合金組成に加えた試料 2 —13は、 Ni粉を添加していない試料 2-1と成形体強度が変わらず、成形体強度に関 しては効果が認められない。 [0066] As is clear from Table 7, the addition of Ni powder can improve the strength of the compact in any case. However, the effect increases as the powder is added later in the pulverization process. I have. That is, the improvement in the strength of the compact is larger in Sample 2-11 than in Sample 2-10. The improvement in the strength of the compact is larger in Sample 2-12 than in Sample 2-11. Sample 2-13, in which Ni was added to the alloy composition, had the same strength as that of Sample 2-1 to which no Ni powder was added, and no effect was observed on the strength of the compact.
[0067] Ni粉 (板状粉)添加による成形体4龟度及び磁気特件への影響  [0067] Effect of Ni Powder (Plate-like Powder) on 4 ° C and Magnetic Properties
添加金属粉として板状 Ni粉を表 8に示す添カ卩量で添カ卩し、試料 2 - 14一試料 2 - 2 2を作製した。なお、使用した板状 Ni粉の板面径は 10 m、厚さは 2 mである。各 試料における板状 Ni粉の添加量、成形体の抗折強度、磁気特性 (保磁力 Hcj及び 残留磁束密度 Br)を表 8に示す。  Plate-like Ni powder was added as the added metal powder in the amount shown in Table 8 to prepare Sample 2-14 and Sample 2-2-2. The plate-like Ni powder used had a plate surface diameter of 10 m and a thickness of 2 m. Table 8 shows the addition amount of plate-like Ni powder, the bending strength of the compact, and the magnetic properties (coercive force Hcj and residual magnetic flux density Br) of each sample.
[0068] [表 8] 試料 Νί粉添加量 成形体強度 保磁力 Hcj 残留磁束密度 Br[0068] [Table 8] Sample Νί Addition amount of powder Compact strength Coercive force Hcj Residual magnetic flux density Br
(質量%) (MPa) (kA/m) (T) (% By mass) (MPa) (kA / m) (T)
2-14 0.00 0.50 1281 1.35 2-14 0.00 0.50 1281 1.35
2-15 0.01 0.51 1282 1.35 2-15 0.01 0.51 1282 1.35
0.02 0.60 1286 1.35  0.02 0.60 1286 1.35
2-17 0.05 0.65 1289 1.35 2-17 0.05 0.65 1289 1.35
2-18 0.08 0.61 1294 1.352-18 0.08 0.61 1294 1.35
2-19 0.10 0.58 1300 1.352-19 0.10 0.58 1300 1.35
2-20 0.20 0.57 1342 1.352-20 0.20 0.57 1342 1.35
2-21 0.50 0.57 1320 1.342-21 0.50 0.57 1320 1.34
2-22 0.60 0.55 1261 1.34 2-22 0.60 0.55 1261 1.34
[0069] この表 8から明らかなように、板状 Ni粉を添加することによって、成形体の抗折強度 が向上している力、その効果は粒状 Ni粉を添加した場合に比べて高いことがわかる [0069] As is clear from Table 8, the addition of the plate-like Ni powder has the effect of improving the transverse rupture strength of the compact, and the effect is higher than that of the case where the granular Ni powder is added. Understand
[0070] 板 Ni粉における H:さの檢討 [0070] Examination of H: sa in plate Ni powder
添加金属粉として板状 Ni粉を 0.05質量%添加した。板状 Ni粉の厚さを変えた試 料 2— 23 試料 2— 27を作製した。各試料における板状 Ni粉の厚さ、成形体の抗折 強度、磁気特性 (保磁力 Hcj及び残留磁束密度 Br)を表 9に示す。  0.05 mass% of plate-like Ni powder was added as the added metal powder. Samples 2–23 Samples 2–27 with different thicknesses of the plate-like Ni powder were prepared. Table 9 shows the thickness of the plate-like Ni powder, bending strength of the compact, and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of each sample.
[0071] [表 9]  [Table 9]
Figure imgf000017_0001
Figure imgf000017_0001
[0072] この表 9から明らかなように、板状 Ni粉の厚さを 10 m以下とすることで、より一層 の抗折強度の向上が認められる。したがって、板状 Ni粉の厚さを 10 /zm以下とする ことが有効であることがゎカゝる。 [0072] As is apparent from Table 9, when the thickness of the plate-like Ni powder is set to 10 m or less, further improvement in the bending strength is recognized. Therefore, it is effective to make the thickness of the plate-like Ni powder 10 / zm or less.
[0073] zm (球状粉)添加による成形体強度及び磁気特件への影響  [0073] Effect of zm (spherical powder) on strength and magnetic properties of compacts
先の希土類焼結磁石の作製に従 、、添加金属粉として球状 Zr粉 (粒径 15 m)を 用いるとともに、球状 Zr粉の添加量を表 10に示すように変え、試料 3-1 試料 3-9 を作製した。各試料における球状 Zr粉の添加量、成形体の抗折強度 (成形体強度) 、磁気特性 (保磁力 Hcj及び残留磁束密度 Br)を表 10に示す。 Following the preparation of the rare earth sintered magnet, spherical Zr powder (particle diameter 15 m) was used as the added metal powder, and the amount of spherical Zr powder added was changed as shown in Table 10, and Sample 3-1 Sample 3 -9 was prepared. Addition amount of spherical Zr powder in each sample, flexural strength of compact (compact strength) Table 10 shows the magnetic characteristics (coercive force Hcj and residual magnetic flux density Br).
[0074] [表 10] [Table 10]
Figure imgf000018_0001
Figure imgf000018_0001
[0075] この表 10から明らかなように、 Zr粉を添加することによって、成形体の抗折強度が 向上している。成形体の抗折強度の向上は、 Zr粉の添加量が多いほど大きくなつて いる。したがって、磁場中成形に際しては、 Zr粉の添カ卩が有効であることがわかる。 一方、磁気特性については、 Zr粉の添加量が 0. 5質量%以下の範囲では、特に問 題となるようなレベルの低下は見られない。ただし、 Zr粉の添カ卩が 0. 5質量%を越え ると、次第に磁気特性の劣化が大きくなつている。 [0075] As is apparent from Table 10, the addition of Zr powder improves the bending strength of the molded body. The improvement in the bending strength of the compact increases as the amount of Zr powder added increases. Therefore, it can be seen that when molding in a magnetic field, zirconium with Zr powder is effective. On the other hand, regarding the magnetic properties, when the amount of the Zr powder added is 0.5 mass% or less, no particularly problematic decrease in the level is observed. However, when the added amount of Zr powder exceeds 0.5% by mass, the deterioration of magnetic properties gradually increases.
[0076] Zr粉の添加時期につ 、ての検討  [0076] Examination of Addition Time of Zr Powder
先の作製方法に従い、 Zr粉の添加時期を変えて希土類焼結磁石を作製した。なお 、ここでは板状 Zr粉を使用した。板状 Zr粉の板面径は 15 m、厚さは 3 μ mである。 また、板状 Zr粉の添加量は 0. 20質量%である。板状 Zr粉の添加時期は、水素粉砕 後(試料 3— 10)、ブラウンミルによる粗粉砕後(試料 3— 11)、ジェットミルによる微粉 砕後(試料 3— 12)とした。また、比較のため、 Zr粉の添加量に相当する量の Zrを合 金組成に加えた試料 (試料 3— 13)も作製した。そして、これら試料についても、同様 に抗折強度、磁気特性 (保磁力 Hcj及び残留磁束密度 Br)を測定した。結果を表 11 に示す。  Rare earth sintered magnets were manufactured according to the above manufacturing method while changing the addition time of Zr powder. Here, plate-like Zr powder was used. The plate surface diameter of the plate-like Zr powder is 15 m and the thickness is 3 μm. The amount of Zr powder added was 0.20% by mass. The addition time of plate-like Zr powder was after hydrogen grinding (Sample 3-10), after coarse grinding by Brown mill (Sample 3-11), and after fine grinding by jet mill (Sample 3-12). For comparison, a sample (Sample 3-13) was also prepared in which Zr was added to the alloy composition in an amount corresponding to the amount of Zr powder added. The bending strength and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of these samples were measured in the same manner. Table 11 shows the results.
[0077] [表 11]
Figure imgf000019_0001
[0077] [Table 11]
Figure imgf000019_0001
[0078] この表 11から明らかなように、 Zr粉を添加することで、いずれの場合にも成形体強 度の向上が見られるが、粉砕工程の後段で添加する程、その効果が大きくなつてい る。すなわち、試料 3— 10よりも試料 3— 11の方が成形体強度の向上が大き 試料 3 —11よりも試料 3— 12の方が成形体強度の向上が大きい。 Zrを合金組成に加えた試 料 3— 13は、 Zr粉を添加していない試料 3—1と成形体強度が変わらず、成形体強度 に関しては効果が認められな 、。 [0078] As is clear from Table 11, the addition of Zr powder can improve the strength of the compact in any case, but the effect increases as the powder is added later in the pulverization process. ing. That is, the improvement in the strength of the compact is larger in Sample 3-11 than in Sample 3-10. The improvement in the strength of the compact is larger in Sample 3-12 than in Sample 3-11. In Sample 3-13 in which Zr was added to the alloy composition, the strength of the compact was not different from that of Sample 3-1 in which Zr powder was not added, and no effect was observed in the strength of the compact.
[0079] Zt~ (板状紛 添加による成形体強度及び磁気特件への影響  [0079] Zt ~ (Effects of addition of platy powder on strength and magnetic special properties
添加金属粉として板状 Zr粉を表 12に示す添加量で添加し、試料 3— 14一試料 3— 22を作製した。なお、使用した板状 Zr粉の板面径は 15 m、厚さは 3 μ mである。各 試料における板状 Zr粉の添加量、成形体の抗折強度、磁気特性 (保磁力 Hcj及び 残留磁束密度 Br)を表 12に示す。  Sample 3-14 and Sample 3-22 were prepared by adding plate-like Zr powder as the added metal powder in the amounts shown in Table 12. The plate surface diameter of the used plate-like Zr powder was 15 m and the thickness was 3 μm. Table 12 shows the addition amount of plate-like Zr powder, bending strength and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of each sample.
[0080] [表 12]  [0080] [Table 12]
Figure imgf000019_0002
Figure imgf000019_0002
この表 12から明らかなように、板状 Zr粉を添加することによって、成形体の抗折強 度が向上している力 その効果は粒状 Zr粉を添加した場合に比べて高いことがわか る。 [0082] 板状 Zr粉における厚さの枪討 As is evident from Table 12, the addition of plate-like Zr powder has the effect of improving the transverse rupture strength of the compact.The effect is higher than that of adding granular Zr powder. . [0082] Consideration of thickness of plate-like Zr powder
添加金属粉として板状 Zr粉を 0. 20質量%添加した。板状 Zr粉の厚さを変えた試 料 3— 23—試料 3— 27を作製した。各試料における板状 Zr粉の厚さ、成形体の抗折 強度、磁気特性 (保磁力 Hcj及び残留磁束密度 Br)を表 13に示す。  0.20% by mass of plate-like Zr powder was added as an additive metal powder. Samples 3–23—Samples 3–27 were prepared by changing the thickness of the plate-like Zr powder. Table 13 shows the thickness of plate-like Zr powder, flexural strength of the compact, and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of each sample.
[0083] [表 13]  [Table 13]
Figure imgf000020_0001
Figure imgf000020_0001
[0084] この表 13から明らかなように、板状 Zr粉の厚さを 10 m以下とすることで、より一層 の抗折強度の向上が認められる。したがって、板状 Zr粉の厚さを 10 m以下とする ことが有効であることがゎカゝる。 [0084] As is clear from Table 13, when the thickness of the plate-like Zr powder is 10 m or less, further improvement in the transverse rupture strength is recognized. Therefore, it is effective to reduce the thickness of the plate-like Zr powder to 10 m or less.
[0085] Mn粉 (角形粉)添加による成形体強度及び磁気特件への影響  [0085] Effect of Mn powder (square powder) on compact strength and magnetic properties
先の希土類焼結磁石の作製に従い、添加金属粉として角形 Mn粉を用いるとともに 、角形 Mn粉の添加量を表 14に示すように変え、試料 4 1一試料 4 9を作製した。 各試料における角形 Mn粉の添加量、成形体の抗折強度 (成形体強度)、磁気特性 (保磁力 Hcj及び残留磁束密度 Br)を表 14に示す。  In accordance with the preparation of the rare earth sintered magnet described above, square Mn powder was used as the added metal powder, and the addition amount of the square Mn powder was changed as shown in Table 14, to thereby prepare Sample 41-Sample 49. Table 14 shows the addition amount of square Mn powder, flexural strength (compact strength), and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of the compact in each sample.
[0086] [表 14]  [0086] [Table 14]
Figure imgf000020_0002
Figure imgf000020_0002
[0087] この表 14から明らかなように、 Mn粉を添加することによって、成形体の抗折強度が 向上している。成形体の抗折強度の向上は、 Mn粉の添加量 0. 10質量%付近でピ ークとなっており、それ以上の添加量では、若干低下する傾向にある。したがって、 Mn粉の添加量は、 0. 02質量%以上とすることが好ましぐ 0. 02質量% 0. 25質 量%とすることがより好ましいことがわかる。 [0087] As is clear from Table 14, by adding the Mn powder, the transverse rupture strength of the molded body was improved. Has improved. The improvement in the bending strength of the molded product peaks at about 0.10% by mass of the added amount of Mn powder, and tends to slightly decrease with the added amount of Mn powder. Therefore, it is understood that the addition amount of the Mn powder is preferably set to 0.02% by mass or more, more preferably 0.02% by mass and 0.25% by mass.
[0088] Mn粉の添加時期につ 、ての検討  [0088] Examination of timing of addition of Mn powder
先の作製方法に従い、角形 Mn粉の添加時期を変えて希土類焼結磁石を作製した 。角形 Mn粉の添加量は 0. 10質量%である。角形 Mn粉の添カ卩時期は、水素粉砕 後(試料 4 10)、ブラウンミルによる粗粉砕後(試料 4 11)、ジェットミルによる微粉 砕後(試料 4 12)とした。また、比較のため、 Mn粉の添カ卩量に相当する量の Mnを 合金組成に加えた試料 (試料 4 13)も作製した。そして、これら試料についても、同 様に抗折強度、磁気特性 (保磁力 Hcj及び残留磁束密度 Br)を測定した。結果を表 15に示す。  Rare earth sintered magnets were manufactured according to the above manufacturing method by changing the addition time of the square Mn powder. The addition amount of the square Mn powder is 0.10% by mass. The time for adding the square Mn powder was after hydrogen grinding (sample 410), after coarse grinding with a brown mill (sample 411), and after fine grinding with a jet mill (sample 412). For comparison, a sample (Sample 413) was also prepared in which Mn was added to the alloy composition in an amount corresponding to the amount of added syrup of Mn powder. The bending strength and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of these samples were also measured. Table 15 shows the results.
[0089] [表 15]  [0089] [Table 15]
Figure imgf000021_0001
Figure imgf000021_0001
*合金組成として添加  * Added as alloy composition
[0090] この表 15から明らかなように、 Mn粉を添加することで、いずれの場合にも成形体強 度の向上が見られるが、粉砕工程の後段で添加する程、その効果が大きくなつてい る。すなわち、試料 4-10よりも試料 4-11の方が成形体強度の向上が大きぐ試料 4 —11よりも試料 4 12の方が成形体強度の向上が大きい。 Mnを合金組成に加えた 試料 4 13は、 Mn粉を添加していない試料 4 1と成形体強度が変わらず、成形体 強度に関しては効果が認められな 、。 [0090] As is clear from Table 15, the addition of Mn powder improves the strength of the molded body in any case, but the effect increases as the addition of the Mn powder is performed later in the pulverization step. ing. That is, the improvement in the strength of the compact is larger in sample 4-11 than in sample 4-10. Sample 413 in which Mn was added to the alloy composition had the same strength as that of Sample 41 in which no Mn powder was added, and no effect was observed in terms of the strength of the green body.
[0091] Mn粉 (板状粉)添加による成形体4龟度及び磁気特件への影響  [0091] Effect of addition of Mn powder (plate-like powder) on 4 ° C and magnetic properties
添加金属粉として板状 Mn粉を表 16に示す添カ卩量で添カ卩し、試料 4 14 試料 4 22を作製した。なお、使用した板状 Mn粉の厚さは、 である。各試料における 板状 Mn粉の添加量、成形体の抗折強度、磁気特性 (保磁力 Hcj及び残留磁束密 度 Br)を表 16に示す。 Sample 414 and sample 422 were prepared by adding plate-shaped Mn powder as the added metal powder in the amount shown in Table 16. The thickness of the used plate-like Mn powder is as follows. The amount of plate-like Mn powder added to each sample, the flexural strength of the compact, and the magnetic properties (coercive force Hcj and residual magnetic flux density) Table 16 shows the degree (Br).
[0092] [表 16] [0092] [Table 16]
Figure imgf000022_0001
Figure imgf000022_0001
[0093] この表 16から明らかなように、板状 Mn粉を添加することによって、成形体の抗折強 度が向上している力 その効果は粒状 Mn粉を添加した場合に比べて高いことがわ かる。 [0093] As is clear from Table 16, the addition of the plate-shaped Mn powder has the effect of improving the transverse rupture strength of the compact. The effect is higher than when the granular Mn powder is added. You can see.
[0094] 板状 Mn粉における厚さの検討  [0094] Examination of thickness of plate-like Mn powder
添加金属粉として板状 Mn粉を 0. 10質量%添加した。板状 Mn粉の厚さを変えた 試料 4 23—試料 4 27を作製した。各試料における板状 Mn粉の厚さ、成形体の抗 折強度、磁気特性 (保磁力 Hcj及び残留磁束密度 Br)を表 17に示す。  0.10% by mass of plate-like Mn powder was added as the added metal powder. Sample 423—Sample 427 with different thicknesses of the plate-like Mn powder were prepared. Table 17 shows the thickness of plate-like Mn powder, flexural strength of the compact, and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of each sample.
[0095] [表 17]  [0095] [Table 17]
Figure imgf000022_0002
Figure imgf000022_0002
[0096] この表 17から明らかなように、板状 Mn粉の厚さを 10 /z m以下とすることで、より一 層の抗折強度の向上が認められる。したがって、板状 Mn粉の厚さを 10 m以下と することが有効であることがゎ力ゝる。 [0096] As is apparent from Table 17, when the thickness of the plate-like Mn powder is set to 10 / zm or less, a further improvement in the transverse rupture strength is recognized. Therefore, it is effective to reduce the thickness of the plate-like Mn powder to 10 m or less.
[0097] 各糠余属粉の添加による成形体強度及び磁気特件への影響  [0097] Effect of addition of each bran powder on strength and magnetic properties
先の希土類焼結磁石の作製に従い、添加金属粉として表 18に示す金属粉を用い て試料 5—1—試料 5— 8を作製した。添加金属粉の添加量は 0. 1質量0 /0、粒径は 10 一 20 m (球状粉)とした。各試料における金属粉の種類、添加量、成形体の抗折 強度 (成形体強度)、磁気特性 (保磁力 Hcj及び残留磁束密度 Br)を表 18に示す。 Following the preparation of the rare earth sintered magnet, the metal powder shown in Table 18 was used as the added metal powder. Thus, Sample 5-1 and Sample 5-8 were prepared. The addition amount of the additive metal powder 0.1 mass 0/0, the particle size was 10 one 20 m (spherical powder). Table 18 shows the type, amount of metal powder, bending strength (compact strength), and magnetic properties (coercive force Hcj and residual magnetic flux density Br) of the compact in each sample.
[表 18][Table 18]
Figure imgf000023_0001
Figure imgf000023_0001
この表 18から明らかなように、各種金属粉を添加することによって、成形体の抗折 強度が向上している。したがって、磁場中成形に際しては、金属粉の添加が有効で あることがわ力る。  As is evident from Table 18, the addition of various metal powders improves the transverse rupture strength of the compact. Therefore, it is clear that the addition of metal powder is effective in molding in a magnetic field.

Claims

請求の範囲 The scope of the claims
[1] R(Rは希土類元素の 1種又は 2種以上、但し希土類元素は Yを含む概念である)、 [1] R (R is one or more rare earth elements, where the rare earth element is a concept including Y),
T (Tは Fe又は Fe、 Coを必須とする 1種又は 2種以上の遷移金属元素)及び Bを含む 原料合金微粉を焼結し、希土類焼結磁石を製造するに際し、 When sintering raw material alloy powder containing T (T is one or two or more transition metal elements that require Fe or Fe or Co) and B to produce rare earth sintered magnets,
添加金属粉を添加してある前記原料合金微粉を成形し、焼結を行うことを特徴とす る希土類焼結磁石の製造方法。  A method for producing a rare-earth sintered magnet, comprising molding and sintering the raw material alloy fine powder to which an additional metal powder has been added.
[2] 原料合金を粗粉砕する粗粉砕工程及び微粉砕する微粉砕工程を有し、前記微粉 砕工程後に添加金属粉を添加することを特徴とする請求項 1記載の希土類焼結磁 石の製造方法。 2. The rare earth sintered magnet according to claim 1, further comprising a coarse pulverizing step of coarsely pulverizing the raw material alloy and a fine pulverizing step of finely pulverizing, and adding an additional metal powder after the fine pulverizing step. Production method.
[3] 原料合金を粗粉砕する粗粉砕工程及び微粉砕する微粉砕工程を有し、前記粗粉 砕工程後に添加金属粉を添加することを特徴とする請求項 1記載の希土類焼結磁 石の製造方法。  3. The rare earth sintered magnet according to claim 1, further comprising a coarse pulverizing step of coarsely pulverizing the raw material alloy and a fine pulverizing step of finely pulverizing, and adding an additional metal powder after the coarse pulverizing step. Manufacturing method.
[4] 原料合金を粗粉砕する粗粉砕工程及び微粉砕する微粉砕工程を有するとともに、 前記粗粉砕工程は水素粉砕工程と機械的粗粉砕工程とを有し、前記水素粉砕工程 後に添加金属粉を添加することを特徴とする請求項 1記載の希土類焼結磁石の製造 方法。  [4] A coarse pulverizing step for coarsely pulverizing the raw material alloy and a fine pulverizing step for fine pulverizing, the coarse pulverizing step includes a hydrogen pulverizing step and a mechanical coarse pulverizing step, and the added metal powder after the hydrogen pulverizing step 2. The method for producing a rare-earth sintered magnet according to claim 1, further comprising:
[5] 前記添加金属粉は、 A1粉、 Ni粉、 Zr粉、 Mn粉、 Fe粉、 Co粉、 Cu粉、 Zn粉、 Ag 粉、 Sn粉、 Bi粉力 選ばれる 1種または 2種以上であることを特徴とする請求項 1記 載の希土類焼結磁石の製造方法。  [5] The additive metal powder is selected from one or more of A1 powder, Ni powder, Zr powder, Mn powder, Fe powder, Co powder, Cu powder, Zn powder, Ag powder, Sn powder, and Bi powder. The method for producing a rare-earth sintered magnet according to claim 1, wherein:
[6] 前記添加金属粉は、板状の金属粉であることを特徴とする請求項 1記載の希土類 焼結磁石の製造方法。  6. The method for producing a rare earth sintered magnet according to claim 1, wherein the additive metal powder is a plate-like metal powder.
[7] 前記板状の金属粉の厚さが 10 μ m以下であることを特徴とする請求項 5記載の希 土類焼結磁石の製造方法。  7. The method for producing a rare earth sintered magnet according to claim 5, wherein the thickness of the plate-shaped metal powder is 10 μm or less.
[8] 前記板状の金属粉の厚さが 3 μ m以下であることを特徴とする請求項 5記載の希土 類焼結磁石の製造方法。 8. The method for producing a rare earth sintered magnet according to claim 5, wherein the thickness of the plate-like metal powder is 3 μm or less.
PCT/JP2004/016010 2003-10-31 2004-10-28 Method for producing sintered rare earth element magnet WO2005043558A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005515145A JP4033884B2 (en) 2003-10-31 2004-10-28 Manufacturing method of rare earth sintered magnet
US10/541,724 US20060207689A1 (en) 2003-10-31 2004-10-28 Method for producing sintered rare earth element magnet
EP04793118A EP1679724A4 (en) 2003-10-31 2004-10-28 Method for producing sintered rare earth element magnet

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2003373676 2003-10-31
JP2003-373674 2003-10-31
JP2003373681 2003-10-31
JP2003373675 2003-10-31
JP2003373674 2003-10-31
JP2003-373681 2003-10-31
JP2003-373682 2003-10-31
JP2003373673 2003-10-31
JP2003-373673 2003-10-31
JP2003-373675 2003-10-31
JP2003373682 2003-10-31
JP2003-373676 2003-10-31

Publications (1)

Publication Number Publication Date
WO2005043558A1 true WO2005043558A1 (en) 2005-05-12

Family

ID=34557848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016010 WO2005043558A1 (en) 2003-10-31 2004-10-28 Method for producing sintered rare earth element magnet

Country Status (3)

Country Link
EP (1) EP1679724A4 (en)
JP (1) JP4033884B2 (en)
WO (1) WO2005043558A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027428A (en) * 2005-07-15 2007-02-01 Neomax Co Ltd Rare earth sintered magnet and its manufacturing method
WO2010113371A1 (en) * 2009-03-31 2010-10-07 昭和電工株式会社 Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
WO2012029527A1 (en) * 2010-09-03 2012-03-08 昭和電工株式会社 Alloy material for r-t-b-based rare earth permanent magnet, production method for r-t-b-based rare earth permanent magnet, and motor
WO2012043139A1 (en) * 2010-09-30 2012-04-05 昭和電工株式会社 Alloy material for r-t-b system rare earth permanent magnet, method for producing r-t-b system rare earth permanent magnet, and motor
JP2020120112A (en) * 2019-01-28 2020-08-06 包頭天和磁気材料科技股▲ふん▼有限公司 Samarium cobalt magnet and method for manufacturing the same
CN112951534A (en) * 2021-02-02 2021-06-11 包头市金蒙汇磁材料有限责任公司 Sintered neodymium-iron-boron magnet and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5274781B2 (en) * 2007-03-22 2013-08-28 昭和電工株式会社 R-T-B type alloy and method for producing R-T-B type alloy, fine powder for R-T-B type rare earth permanent magnet, R-T-B type rare earth permanent magnet
CN104308146B (en) * 2014-10-24 2017-05-03 合肥斯科尔智能科技有限公司 Material recycling system for use in metal powder printing process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256412A (en) * 1986-04-30 1987-11-09 Tohoku Metal Ind Ltd Permanent magnet with prominent resistance to oxidation
JPS62284028A (en) * 1986-04-30 1987-12-09 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JPS63114939A (en) * 1986-04-11 1988-05-19 Tokin Corp R2t14b-type composite-type magnet material and its production
JPH06251922A (en) * 1993-02-26 1994-09-09 Isuzu Motors Ltd Permanent magnet and manufacture thereof
JPH06251921A (en) * 1993-02-26 1994-09-09 Isuzu Motors Ltd Permanent magnet and manufacture thereof
JPH0774042A (en) * 1993-06-14 1995-03-17 Hitachi Metals Ltd Manufacture of rare-earth magnet and molding apparatus used for it
JPH0822909A (en) * 1994-07-07 1996-01-23 Isuzu Motors Ltd Permanent magnet having sufficient mechanical strength
JPH09275004A (en) * 1995-07-07 1997-10-21 Daido Steel Co Ltd Permanent magnet and its manufacture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954186A (en) * 1986-05-30 1990-09-04 Union Oil Company Of California Rear earth-iron-boron permanent magnets containing aluminum
EP0249973B1 (en) * 1986-06-16 1991-11-06 Tokin Corporation Permanent magnetic material and method for producing the same
US5004499A (en) * 1987-11-02 1991-04-02 Union Oil Company Of California Rare earth-iron-boron compositions for polymer-bonded magnets

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114939A (en) * 1986-04-11 1988-05-19 Tokin Corp R2t14b-type composite-type magnet material and its production
JPS62256412A (en) * 1986-04-30 1987-11-09 Tohoku Metal Ind Ltd Permanent magnet with prominent resistance to oxidation
JPS62284028A (en) * 1986-04-30 1987-12-09 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JPH06251922A (en) * 1993-02-26 1994-09-09 Isuzu Motors Ltd Permanent magnet and manufacture thereof
JPH06251921A (en) * 1993-02-26 1994-09-09 Isuzu Motors Ltd Permanent magnet and manufacture thereof
JPH0774042A (en) * 1993-06-14 1995-03-17 Hitachi Metals Ltd Manufacture of rare-earth magnet and molding apparatus used for it
JPH0822909A (en) * 1994-07-07 1996-01-23 Isuzu Motors Ltd Permanent magnet having sufficient mechanical strength
JPH09275004A (en) * 1995-07-07 1997-10-21 Daido Steel Co Ltd Permanent magnet and its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1679724A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027428A (en) * 2005-07-15 2007-02-01 Neomax Co Ltd Rare earth sintered magnet and its manufacturing method
JP4645336B2 (en) * 2005-07-15 2011-03-09 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
WO2010113371A1 (en) * 2009-03-31 2010-10-07 昭和電工株式会社 Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
JP2011021269A (en) * 2009-03-31 2011-02-03 Showa Denko Kk Alloy material for r-t-b-based rare-earth permanent magnet, method for manufacturing r-t-b-based rare-earth permanent magnet, and motor
WO2012029527A1 (en) * 2010-09-03 2012-03-08 昭和電工株式会社 Alloy material for r-t-b-based rare earth permanent magnet, production method for r-t-b-based rare earth permanent magnet, and motor
JP2012057182A (en) * 2010-09-03 2012-03-22 Showa Denko Kk Alloy material for r-t-b-based rare-earth permanent magnet, method for producing r-t-b-based rare-earth permanent magnet, and motor
WO2012043139A1 (en) * 2010-09-30 2012-04-05 昭和電工株式会社 Alloy material for r-t-b system rare earth permanent magnet, method for producing r-t-b system rare earth permanent magnet, and motor
JP2012079796A (en) * 2010-09-30 2012-04-19 Showa Denko Kk Alloy material for r-t-b based rare-earth permanent magnet, production method of r-t-b based rare-earth permanent magnet, and motor
CN103153504A (en) * 2010-09-30 2013-06-12 昭和电工株式会社 Alloy material for R-T-B system rare earth permanent magnet, method for producing R-T-B system rare earth permanent magnet, and motor
CN103153504B (en) * 2010-09-30 2015-04-29 昭和电工株式会社 Alloy material for R-T-B system rare earth permanent magnet, method for producing R-T-B system rare earth permanent magnet, and motor
US9601979B2 (en) 2010-09-30 2017-03-21 Showa Denko K.K. Alloy material for R-T-B system rare earth permanent magnet, method for producing R-T-B system rare earth permanent magnet, and motor
JP2020120112A (en) * 2019-01-28 2020-08-06 包頭天和磁気材料科技股▲ふん▼有限公司 Samarium cobalt magnet and method for manufacturing the same
CN112951534A (en) * 2021-02-02 2021-06-11 包头市金蒙汇磁材料有限责任公司 Sintered neodymium-iron-boron magnet and preparation method thereof
CN112951534B (en) * 2021-02-02 2023-03-24 包头市金蒙汇磁材料有限责任公司 Sintered neodymium-iron-boron magnet and preparation method thereof

Also Published As

Publication number Publication date
EP1679724A1 (en) 2006-07-12
JPWO2005043558A1 (en) 2007-05-10
JP4033884B2 (en) 2008-01-16
EP1679724A4 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
CN107130183B (en) R-T-B system permanent magnet
US8361242B2 (en) Powders for rare earth magnets, rare earth magnets and methods for manufacturing the same
CN101521068A (en) Rare earth permanent magnet and method of manufacturing the same
CN107134335A (en) R T B systems permanent magnet
EP1961506A1 (en) Rare earth sintered magnet and method for producing same
WO2005043558A1 (en) Method for producing sintered rare earth element magnet
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JP3841722B2 (en) Method for producing sintered body for rare earth magnet
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP4955217B2 (en) Raw material alloy for RTB-based sintered magnet and method for manufacturing RTB-based sintered magnet
JP5103428B2 (en) Rare earth sintered magnet manufacturing method
JP2008214661A (en) Manufacturing method of sintered rare-earth magnet
JP4415374B2 (en) Manufacturing method of rare earth sintered magnet
US20060207689A1 (en) Method for producing sintered rare earth element magnet
JP3474684B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP4282002B2 (en) Alloy powder for RTB-based sintered magnet, manufacturing method thereof, and manufacturing method of RTB-based sintered magnet
JP5188674B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet
JP4076080B2 (en) Rare earth permanent magnet manufacturing method
JP4131725B2 (en) Rough powder for sintering rare earth magnets and method for producing rare earth magnets using the same
JP2005136356A (en) Method of manufacturing sintered rare-earth magnet
JP2006097092A (en) Method for sintering rare-earth magnet
JPH0745412A (en) R-fe-b permanent magnet material
JP3053344B2 (en) Rare earth magnet manufacturing method
JP4671024B2 (en) Manufacturing method of rare earth sintered magnet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005515145

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004801487X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004793118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10541724

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004793118

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10541724

Country of ref document: US