WO2005040716A1 - System for measuring an object by means of co-ordinate measuring devices - Google Patents

System for measuring an object by means of co-ordinate measuring devices Download PDF

Info

Publication number
WO2005040716A1
WO2005040716A1 PCT/EP2004/011959 EP2004011959W WO2005040716A1 WO 2005040716 A1 WO2005040716 A1 WO 2005040716A1 EP 2004011959 W EP2004011959 W EP 2004011959W WO 2005040716 A1 WO2005040716 A1 WO 2005040716A1
Authority
WO
WIPO (PCT)
Prior art keywords
mark
leg
lever
arrangement according
probe
Prior art date
Application number
PCT/EP2004/011959
Other languages
German (de)
French (fr)
Inventor
Wolfgang Buss
Ralf Christoph
Original Assignee
Werth Messtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Werth Messtechnik Gmbh filed Critical Werth Messtechnik Gmbh
Publication of WO2005040716A1 publication Critical patent/WO2005040716A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines

Definitions

  • the invention relates to an arrangement for measuring the surface properties of an object such as a workpiece by means of a coordinate measuring machine comprising a probe element which is supported on the surface and which can be moved relative to it, to which a mark is assigned, and the position of the mark directly determining the distance sensor.
  • the determination of the surface quality is used to assess the boundary surface of an object such as a workpiece.
  • stylus cutters can be used, with z. B. a sapphire, diamond or simple steel tip as a stylus the surface is scanned.
  • the deflection of the stylus can, for. B. inductively or laser interferometrically.
  • a probe tip is guided on a sample surface to determine the surface accuracy.
  • the probe tip is based on a cantilever.
  • a laser beam is directed onto the outer surface of the cantilever, the reflection of which is detected by a PSD sensor.
  • the laser and PSD sensor consequently form an optical sensor.
  • DE-A-198 24 107 describes a method for determining the measurement size of a surface of a test specimen with a probe element supported on the surface, the position of the probe element being detected directly or a position of at least one target mark directly associated with the probe element using an image processing sensor and under Taking into account the relative movement between the test object and the probe element, the surface measurement is determined.
  • a method for determining the surface properties of a workpiece can also be found in WO-A-98/30866.
  • the surface properties are measured with completely separate optical and mechanical measuring systems.
  • a coordinate measuring device is proposed according to WO-A-99/63301, which has a fiber probe that can be moved along the workpiece surface and whose position is measured by a camera.
  • the camera and button form a jointly adjustable unit, the button being connected to an adjustment device of an interchangeable holder via an opto-mechanical interface.
  • WO-A-03/008905 An arrangement of the type mentioned in the introduction can be found in WO-A-03/008905.
  • the surface properties of a workpiece can be measured directly using an optoelectronic distance sensor.
  • the position sensor of a probing element can also be determined with the distance sensor and is supported directly on a workpiece to be measured.
  • a measuring device in which the position of a probe element is determined according to the interference principle.
  • a diffraction grating which is subjected to interference-capable light, emanates from a lever receiving the probe shaped element, in order to generate maxima which are read out by means of sensors.
  • a mark and a probing element start from sections of a lever which extend in mutually offset planes.
  • the mark is arranged in the beam path of a radiation emitted by a diode in order to draw conclusions about the position of the mark depending on the measured radiation intensity.
  • DE-A-20 19 895 shows a probe for dynamic measurement of spatial contours, with capacitive or inductive measurement.
  • the present invention is based on the problem of developing an arrangement of the type mentioned at the outset in such a way that a reliable and precise determination of the probe shape element is possible regardless of the orientation of the probe shape element on the object to be measured or its surface contour.
  • the aim is also to create the possibility of carrying out measurements in closed cavities such as pipes.
  • the problem is essentially solved in that the mark and the contact-form element start from a lever which can be pivoted about a rigid axis, the lever has a first leg and a second leg which run on opposite sides to the axis, and that the probing element start from a section of the first leg and the mark from a section of the second leg, which run in mutually different planes.
  • the deflection is not measured directly behind the shaped probe element, that is to say the stylus needle, but by means of an optical sensor such as an optoelectronic distance sensor, but rather on a structure, such as a lever structure, which is rigidly connected to this by a joint and has the mark.
  • the working distance of the system can be expanded - measuring plane other than a direct measuring beam or laser beam - and also measured in closed cavities such as in horizontal bores or pipes. It is possible to reverse the measuring direction, ie measuring downward-facing surfaces is possible.
  • the mark and the probe element with its report measuring the object are arranged on the same side of the rigid lever, ie on the sensor side.
  • the measuring element with its measuring area is arranged on the side of the lever that is to be referred to as the connecting element and faces away from the sensor.
  • the area of the mark detected by the distance sensor can span a plane which includes a right angle to the plane spanned by the contact area of the probe element, i.e. the optical axis of the sensor and the normal of the probe element can run at right angles or approximately at right angles to one another.
  • the mark and the probe element start from one leg or section of the respective leg, which can enclose a desired angle.
  • the leg on the sensing element side can have a plurality of sensing element elements that have or enable the sensing directions that differ from one another with respect to the object to be measured.
  • each leg consists of sections enclosing an angle, in particular an obtuse angle.
  • the brand or the probe element should be Ren section of the legs go out, wherein the outer portions of the legs may optionally run parallel to each other.
  • the arrangement can furthermore have a changing system for changing levers and / or their bearings.
  • the optical sensor is preferably an optoelectronic distance sensor.
  • the probing direction of the probing element can describe a desired angle on the basis of the teaching according to the invention. B. of or approximately 90 °.
  • the or another optical sensor can be connected to an image processing system in order to determine and offset a rotation of the probe shape element or elements via the image processing by means of position detection of a plurality of marks arranged on the connecting element. Tilting of the shaped probe element can also be determined and offset via the image processing as position detection of a plurality of preferably satellite-shaped marks arranged on the connecting element.
  • 1 is a schematic diagram of a coordinate measuring machine
  • FIG. 2 shows a basic illustration of a first embodiment of a measuring device
  • FIG. 3 shows a basic illustration of a second embodiment of a measuring device.
  • 1 is in principle a coordinate measuring machine 10 with z. B. from granite existing base frame 12 with measuring table 14 on which a workpiece 15 can be arranged to measure its surface properties such as roughness.
  • a portal 16 can be adjusted in the Y direction along the base frame.
  • columns or stands 18, 20 are slidably supported on the base frame 12.
  • a crossmember 22 extends from the columns 18, along which a carriage 24 can be adjusted, that is to say in the X direction according to the figure, which in turn receives a quill or column 26 which is adjustable in the Z direction.
  • a probe 32 having a probe element 30 emanates, which slides along the workpiece 15 to determine the surface properties in order to be able to measure the surface properties from the position of the probe element 30 or its probe tip.
  • a mark 34 is assigned to it, which is detected by a distance sensor which is present in the sleeve or column 26.
  • the term brand is synonymous with an agent on the button 32, which is detected by the sensor.
  • the distance sensor 32 it should be noted that this is in particular one which operates according to the video autofocus method, the laser autofocus method and the Foucoult cutting principle.
  • FIG. 2 shows a fleece 40 which has a central section 42 and outer sections 44, 46.
  • the lever 40 is received in its central portion 42 by a bearing 47 which forms a rigid axis 49 about which the lever 40 is pivotable.
  • the bearing 47 or the axis 49 consequently divides the lever 42 into a first leg 48 and a second leg 50.
  • the first leg 48 has a probe element 52 with two probe tips 54 and 56.
  • a mark 58 is arranged in the end region of the outer section 44 of the second leg 50, the position of which is measured by a distance sensor 61.
  • optical image processing 63 can be provided in order to determine and offset a rotation of the probe element 52, ie its probe tips 54, 56, by means of position detection of a plurality of marks (not shown) attached to section 44. Tilting of the shaped probe element 52 can also be determined and offset via the image processing 63 by means of position detection of a plurality of satellite-shaped marks attached to the lever 40, ie for determining the exact position of the shaped probe element 52.
  • the shaped probe element 52 i. H. the probe tips 54, 56 and the mark 58 determined in their position by the distance sensor 61 from the outer sections 44, 46 of the lever 40 which run parallel to one another in the exemplary embodiment, but in offset planes.
  • the sensor tip 54 can be used to measure a surface facing away from the sensor, that is to say the underside of an object. A surface facing the sensor is measured in the usual way with the probe tip 56.
  • a probing element 60 with probe tips 62, 64 starts from a first leg 66 of a lever 68 which is pivotable about a bearing 70.
  • a mark 74 extends from a second leg 72, preferably perpendicular to the first leg 66, which is detected by the beam path 76 of a distance sensor 78 such as a laser distance sensor, in order to determine the position of the mark 74 in the Z direction of a coordinate measuring machine.
  • the arrangement of the probing element 60 and the mark 74 on the mutually perpendicular legs 66, 72 of the lever 68 makes it possible to deflect the measuring direction by 90 °.
  • perpendicular surfaces that extend parallel or along the beam path 76 of the sensor 78 can be measured.
  • the position of the markings 58, 74 for the optical sensor 60, 78 can be evaluated directly by evaluating the position the displacement in the X and Y direction of the coordinate measuring machine as a result of twisting or tilting are determined and offset.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

The invention relates to a system for measuring surface characteristics of a part by means of a co-ordinate measuring device, comprising a shape-gauge element (52) contacting with a surface and moving with respect thereto, a mark being associated to said shape-gage element, wherein the mark position is immediately determined by a distance sensor (61). In order to ensure the accuracy of measurement carried out by the shape-gauge element in any orientation thereof with respect to a measurable object, said mark and element start from a lever (40) which rotates around an axis (49) and whose first (48) and second (50) legs are oriented towards the axis on the opposite sides and the shape-gauge element starts from the segment (46) of the first leg and the mark starts from the segment (44) of the second leg, said segments extending in divergent planes from each other.

Description

Beschreibungdescription
Anordnung zur Messung eines Objekts mittels eines KoordinatenmessgerätesArrangement for measuring an object using a coordinate measuring machine
Die Erfindung bezieht sich auf eine Anordnung zur Messung von Oberflächeneigen- schaften eines Objekts wie Werkstücks mittels eines Koordinatenmessgerätes umfassend ein auf der Oberfläche sich abstützendes und relativ zu dieser bewegbares Antastformelement, dem eine Marke zugeordnet ist, sowie Position der Marke unmittelbar bestimmender Abstandssensor.The invention relates to an arrangement for measuring the surface properties of an object such as a workpiece by means of a coordinate measuring machine comprising a probe element which is supported on the surface and which can be moved relative to it, to which a mark is assigned, and the position of the mark directly determining the distance sensor.
Die Bestimmung der Oberflächenqualität dient zur Beurteilung der Begrenzungsfläche eines Objekts wie Werkstücks. Dabei können Tastschnittgeräte zur Anwendung gelangen, wobei mittels z. B. einer Saphir-, Diamant- oder einfachen Stahlspitze als Tastnadel die Oberfläche abgetastet wird. Die Auslenkung der Tastnadel kann z. B. induktiv oder aber laserinterferometrisch aufgenommen werden.The determination of the surface quality is used to assess the boundary surface of an object such as a workpiece. Here, stylus cutters can be used, with z. B. a sapphire, diamond or simple steel tip as a stylus the surface is scanned. The deflection of the stylus can, for. B. inductively or laser interferometrically.
So wird nach der DE.Z: Techniker 5/96, Seiten 13 bis 20, zur Bestimmung der Oberflächengenauigkeit eine Tastspitze auf einer Probenfläche geführt. Die Tastspitze geht von einem Cantilever aus. Auf die Außenfläche des Cantilevers wird ein Laserstrahl gerichtet, dessen Reflexion mittels eines PSD-Sensors erfasst wird. Laser und PSD-Sensor bilden folglich einen optischen Sensor. In der DE-A-198 24 107 wird ein Verfahren zur Messgrößenbestimmung einer Oberfläche eines Prüflings mit einem auf der Oberfläche sich abstützenden Tastelement beschrieben, wobei die Position des Tastelementes unmittelbar oder eine Position zumindest einer dem Tastelement unmittelbar zugeordneten Zielmarke mit einem Bildverarbeitungssensor erfasst und unter Berücksichtigung der Relativbewebung zwischen dem Prüfling und dem Tastelement die Oberflächenmessgröße ermittelt wird.According to DE.Z: Techniker 5/96, pages 13 to 20, a probe tip is guided on a sample surface to determine the surface accuracy. The probe tip is based on a cantilever. A laser beam is directed onto the outer surface of the cantilever, the reflection of which is detected by a PSD sensor. The laser and PSD sensor consequently form an optical sensor. DE-A-198 24 107 describes a method for determining the measurement size of a surface of a test specimen with a probe element supported on the surface, the position of the probe element being detected directly or a position of at least one target mark directly associated with the probe element using an image processing sensor and under Taking into account the relative movement between the test object and the probe element, the surface measurement is determined.
Verfahren und Geräte zur Ermittlung der Oberflächenqualität von Werkstücken sind beschrieben in der DE.Z: T. Pfeifer, Fertigungsmesstechnik, Verlag Oldenbourg, 2. Auflage, Seite 289 bis 298.Methods and devices for determining the surface quality of workpieces are described in DE.Z: T. Pfeifer, Manufacturing Metrology, Verlag Oldenbourg, 2nd edition, pages 289 to 298.
Ein Verfahren zur Bestimmung von Oberflächeneigenschaften eines Werkstückes ist auch der WO-A-98/30866 zu entnehmen. Dabei werden mit völlig getrennten optischen und mechanischen Messsystemen die Oberflächeneigenschaften gemessen.A method for determining the surface properties of a workpiece can also be found in WO-A-98/30866. The surface properties are measured with completely separate optical and mechanical measuring systems.
Um opto-taktil Oberflächeneigenschaften zu messen, wird nach der WO-A-99/63301 ein Koordinatenmessgerät vorgeschlagen, dass einen entlang zu messender Werkstückoberfläche verfahrbaren Fasertaster aufweist, dessen Position mittels einer Kamera gemessen wird. Kamera und Taster bilden eine gemeinsam verstellbare Einheit, wobei der Taster über eine opto-meschanische Schnittstelle mit einer Justiereinrichtung einer Wechselhalterung verbunden ist.To measure opto-tactile surface properties, a coordinate measuring device is proposed according to WO-A-99/63301, which has a fiber probe that can be moved along the workpiece surface and whose position is measured by a camera. The camera and button form a jointly adjustable unit, the button being connected to an adjustment device of an interchangeable holder via an opto-mechanical interface.
Eine Anordnung der eingangs genannten Art ist der WO-A-03/008905 zu entnehmen. Mittels eines opto-elektronischen Abstandssensors können unmittelbar die Oberflächeneigenschaften eines Werkstücks gemessen werden. Auch ist mit dem Λbstandssensor die Position eines Antastformelementes bestimmbar, das sich unmittelbar auf ein zu messendes Werkstück abstützt.An arrangement of the type mentioned in the introduction can be found in WO-A-03/008905. The surface properties of a workpiece can be measured directly using an optoelectronic distance sensor. The position sensor of a probing element can also be determined with the distance sensor and is supported directly on a workpiece to be measured.
Mit den bekannten Verfahren bzw. den entsprechenden Anordnungen ist es grundsätzlich nur möglich, Oberflächenkonturen auf Werkstücken zu messen, wenn Oberflächen- normale der Werkstückoberfläche im Messpunkt in Richtung des optischen Messkopfes weist. Ferner ist zwingende Voraussetzung, dass Rückseite des als Tastschnittnadel zu bezeichnenden Antastformelements für eine Optik frei zugänglich ist.With the known methods or the corresponding arrangements, it is fundamentally only possible to measure surface contours on workpieces if surface normals of the workpiece surface at the measuring point in the direction of the optical measuring head has. Furthermore, it is an imperative requirement that the rear side of the shaped probe element to be designated as a stylus is freely accessible for an optical system.
Aus der DE-A-100 25 461 ist eine Messeinrichtung bekannt, bei der die Position eines Antastformelementes nach dem Interferenzprinzip bestimmt wird. Hierzu ist es erforderlich, dass von einem das Antastformelement aufnehmenden Hebel ein Beugungsgitter ausgeht, das mit interferenzfähigem Licht beaufschlagt wird, um Maxima zu erzeugen, die mittels Sensoren ausgelesen werden.From DE-A-100 25 461 a measuring device is known in which the position of a probe element is determined according to the interference principle. For this purpose, it is necessary that a diffraction grating, which is subjected to interference-capable light, emanates from a lever receiving the probe shaped element, in order to generate maxima which are read out by means of sensors.
Bei einem Koordinatenmessgerät nach der US-A-5,825,666 gehen eine Marke und ein Antastformelement von Abschnitten eines Hebels aus, die sich in versetzt zueinander verlaufenden Ebenen erstrecken. Die Marke ist im Strahlengang einer von einer Diode emittierten Strahlung angeordnet, um in Abhängigkeit der gemessenen Strahlungsintensität Rückschlüsse auf die Position der Marke zu ziehen.In the case of a coordinate measuring machine according to US Pat. No. 5,825,666, a mark and a probing element start from sections of a lever which extend in mutually offset planes. The mark is arranged in the beam path of a radiation emitted by a diode in order to draw conclusions about the position of the mark depending on the measured radiation intensity.
Der DE-A-20 19 895 ist ein Tastkopf zur dynamischen Messung räumlicher Konturen zu entnehmen, wobei kapazitiv oder induktiv gemessen wird.DE-A-20 19 895 shows a probe for dynamic measurement of spatial contours, with capacitive or inductive measurement.
Der vorliegenden Erfindung liegt das Problem zu Grunde, eine Anordnung der eingangs genannten Art so weiterzubilden, dass unabhängig von der Ausrichtung des Antastformelementes auf das zu messende Objekt bzw. dessen Oberflächenkontur eine sichere und genaue Bestimmung des Antastformelementes möglich ist. Auch soll die Möglichkeit geschaffen werden, Messungen in geschlossenen Hohlräumen wie Rohren durchzuführen.The present invention is based on the problem of developing an arrangement of the type mentioned at the outset in such a way that a reliable and precise determination of the probe shape element is possible regardless of the orientation of the probe shape element on the object to be measured or its surface contour. The aim is also to create the possibility of carrying out measurements in closed cavities such as pipes.
Erfindungsgemäß wird das Problem im Wesentlichen dadurch gelöst, dass die Marke und das Antastformelement von einem Hebel ausgehen, der um eine starre Achse schwenkbar ist, dass der Hebel einen ersten Schenkel und einen zweiten Schenkel aufweist, die auf gegenüberliegenden Seiten zu der Achse verlaufen, und dass das Antastformelement von einem Abschnitt des ersten Schenkels und die Marke von einem Abschnitt des zweiten Schenkels ausgehen, die in voneinander abweichenden Ebenen verlaufen. Erfindungsgemäß wird mittels des optischen Sensors wie opto-elektronischen Abstandssensors die Auslenkung nicht direkt hinter dem Antastformelement, also der Tastschnittnadel, sondern an einem über ein Gelenk mit dieser starr verbundenen Konstruktion wie Hebelkonstruktion gemessen, die die Marke aufweist. Hierdurch kann sowohl der Arbeitsabstand des Systems erweitert werden - andere Messebene als direkt messender Strahl bzw. Laserstrahl -, als auch in geschlossenen Hohlräumen wie in horizontal liegenden Bohrungen oder Rohren gemessen werden. Es besteht die Möglichkeit, die Messrichtυng umzukehren, d. h., ein Messen von nach unten weisenden Flächen ist möglich.According to the invention, the problem is essentially solved in that the mark and the contact-form element start from a lever which can be pivoted about a rigid axis, the lever has a first leg and a second leg which run on opposite sides to the axis, and that the probing element start from a section of the first leg and the mark from a section of the second leg, which run in mutually different planes. According to the invention, the deflection is not measured directly behind the shaped probe element, that is to say the stylus needle, but by means of an optical sensor such as an optoelectronic distance sensor, but rather on a structure, such as a lever structure, which is rigidly connected to this by a joint and has the mark. As a result, the working distance of the system can be expanded - measuring plane other than a direct measuring beam or laser beam - and also measured in closed cavities such as in horizontal bores or pipes. It is possible to reverse the measuring direction, ie measuring downward-facing surfaces is possible.
In Weiterbildung der Erfindung ist vorgesehen, dass die Marke und das Antastformelement mit seinem das Objekt messenden Bericht auf gleicher Seite des starren Hebels angeordnet sind, also sensorseitig. Alternativ besteht die Möglichkeit, dass das Antastformelement mit seinem messenden Bereich auf sensorabgewandter Seite des als Verbindungselement zu bezeichnenden Hebels angeordnet ist.In a further development of the invention it is provided that the mark and the probe element with its report measuring the object are arranged on the same side of the rigid lever, ie on the sensor side. Alternatively, there is the possibility that the measuring element with its measuring area is arranged on the side of the lever that is to be referred to as the connecting element and faces away from the sensor.
Der von dem Abstandssensor erfasste Bereich der Marke kann in Weiterbildung der Erfindung eine Ebene aufspannen, die einen rechten Winkel zur vom Berührungsbereich des Antastformelements aufgespannten Ebene einschließt, also optische Achse des Sensors und Normale des Antastformelementes können rechtwinklig oder in etwa rechtwinklig zueinander verlaufen.In a further development of the invention, the area of the mark detected by the distance sensor can span a plane which includes a right angle to the plane spanned by the contact area of the probe element, i.e. the optical axis of the sensor and the normal of the probe element can run at right angles or approximately at right angles to one another.
Insbesondere gehen die Marke und das Antastformelement von jeweils einem Schenkel bzw. Abschnitt des jeweiligen Schenkels aus, die einen gewünschten Winkel einschließen können. Des Weiteren kann der antastformelementseitige Schenkel mehrere in Bezug auf das zu messende Objekt voneinander abweichende Antastrichtungen aufweisende bzw. ermöglichende Antastformelemente aufweisen.In particular, the mark and the probe element start from one leg or section of the respective leg, which can enclose a desired angle. Furthermore, the leg on the sensing element side can have a plurality of sensing element elements that have or enable the sensing directions that differ from one another with respect to the object to be measured.
Des Weiteren sieht die Erfindung vor, dass zumindest einer, vorzugsweise jeder Schenkel aus einen Winkel, insbesondere einen stumpfen Winkel einschließenden Abschnitten besteht. Dabei sollte die Marke bzw. das Antastformelement vom jeweiligen äuße- ren Abschnitt der Schenkel ausgehen, wobei die äußeren Abschnitte der Schenkel ggf. parallel zueinander verlaufen können.Furthermore, the invention provides that at least one, preferably each leg consists of sections enclosing an angle, in particular an obtuse angle. The brand or the probe element should be Ren section of the legs go out, wherein the outer portions of the legs may optionally run parallel to each other.
Femer kann die Anordnung ein Wechselsystem zum Auswechseln von Hebeln und/oder deren Lagern aufweisen.The arrangement can furthermore have a changing system for changing levers and / or their bearings.
Bei dem optischen Sensor handelt es sich vorzugsweise um einen opto-elektronischen Abstandssensor. Zur optischen Achse des Abstandssensors kann Antastrichtung des Antastformelementes aufgrund der erfϊndungsgemäßen Lehre einen gewünschten Winkel beschreiben, so z. B. von oder in etwa von 90°.The optical sensor is preferably an optoelectronic distance sensor. To the optical axis of the distance sensor, the probing direction of the probing element can describe a desired angle on the basis of the teaching according to the invention. B. of or approximately 90 °.
Des Weiteren kann der oder ein weiterer optischer Sensor mit einer Bildverarbeitung verbunden sein, um eine Verdrehung des bzw. der Antastformelemente über die Bildverarbeitung mittels Lageerfassung von mehreren an dem Verbindungselement angeordneten Marken zu bestimmen und zu verrechnen. Auch kann ein Kippen des Antastformelementes über die Bildverarbeitung als Lageerfassung von mehreren an dem Verbindungselement angeordneten vorzugsweise satellitenförmig ausgebildeten Marken bestimmt und verrechnet werden.Furthermore, the or another optical sensor can be connected to an image processing system in order to determine and offset a rotation of the probe shape element or elements via the image processing by means of position detection of a plurality of marks arranged on the connecting element. Tilting of the shaped probe element can also be determined and offset via the image processing as position detection of a plurality of preferably satellite-shaped marks arranged on the connecting element.
Weitere Einzelheiten, Vorteile und Merkmale der Erfindung ergeben sich nicht nur aus den Ansprüchen, den diesen zu entnehmenden Merkmalen - für sich und/oder in Kombination - , sondern auch aus den nachfolgenden Beschreibungen von der Zeichnung zu entnehmenden bevorzugten Ausführungsbeispielen.Further details, advantages and features of the invention result not only from the claims, the features to be extracted from them - individually and / or in combination - but also from the following descriptions of the preferred embodiments to be taken from the drawing.
Es zeigen:Show it:
Fig. 1 eine Prinzipdarstellung eines Koordinatenmessgerätes,1 is a schematic diagram of a coordinate measuring machine,
Fig. 2 eine Prinzipdarstellung einer ersten Ausführungsform einer Messeinrichtung und2 shows a basic illustration of a first embodiment of a measuring device and
Fig. 3 eine Prinzipdarstellung einer zweiten Ausführungsform einer Messeinrichtung. Der Fig. 1 ist rein prinzipiell ein Koordinatenmessgerät 10 mit z. B. aus Granit bestehendem Grundrahmen 12 mit Messtisch 14 zu entnehmen, auf dem ein Werkstück 15 anordbar ist, um dessen Oberflächeneigenschaften wie Rauigkeit zu messen.3 shows a basic illustration of a second embodiment of a measuring device. 1 is in principle a coordinate measuring machine 10 with z. B. from granite existing base frame 12 with measuring table 14 on which a workpiece 15 can be arranged to measure its surface properties such as roughness.
Entlang dem Grundrahmen ist ein Portal 16 in Y-Richtung verstellbar. Hierzu sind Säulen oder Ständer 18, 20 gleitend auf dem Grundrahmen 12 abgestützt. Von den Säulen 18, 20 geht eine Traverse 22 aus, entlang der, also gemäß der Figur in X-Richtung ein Schlitten 24 verstellbar ist, der seinerseits eine Pinole oder Säule 26 aufnimmt, die in Z- Richtung verstellbar ist. Von der Pinole oder Säule 26 bzw. einer Wechselschnittstelle 28 geht ein ein Antastformelement 30 aufweisender Taster 32 aus, das zur Bestimmung der Oberflächeneigenschaften entlang des Werkstückes 15 gleitet, um aus der Position des Antastformelementes 30 bzw. dessen Tastspitze die Oberflächeneigenschaften messen zu können. Um die Bewegung des Antastformelementes 30 zu messen, ist diesem eine Marke 34 zugeordnet, die über einen Abstandssensor, der in der Pinole oder Säule 26 vorhanden ist, erfasst wird. Die Bezeichnung Marke ist dabei Synonym für ein Mittel auf dem Taster 32, das mit dem Sensor erfasst wird.A portal 16 can be adjusted in the Y direction along the base frame. For this purpose, columns or stands 18, 20 are slidably supported on the base frame 12. A crossmember 22 extends from the columns 18, along which a carriage 24 can be adjusted, that is to say in the X direction according to the figure, which in turn receives a quill or column 26 which is adjustable in the Z direction. From the quill or column 26 or an interchangeable interface 28 a probe 32 having a probe element 30 emanates, which slides along the workpiece 15 to determine the surface properties in order to be able to measure the surface properties from the position of the probe element 30 or its probe tip. In order to measure the movement of the shaped probe element 30, a mark 34 is assigned to it, which is detected by a distance sensor which is present in the sleeve or column 26. The term brand is synonymous with an agent on the button 32, which is detected by the sensor.
Hinsichtlich des Abstandssensors 32 ist anzumerken, dass es sich hierbei insbesondere um einen solchen handelt, der nach dem Video-Autofocus-Verfahren, dem Laser- Autofocus-V erfahren und dem Foucoult' sehen Schneidenprinzip arbeitet.With regard to the distance sensor 32, it should be noted that this is in particular one which operates according to the video autofocus method, the laser autofocus method and the Foucoult cutting principle.
Erfindungsgemäß gehen das Antastformelement 30 und die diesem zugeordneten Marke 34 von einem Hebel 36 aus, der um ein Lager 38 schwenkbar ist. Dies ergibt sich insbesondere aus den Fig. 2 und 3.According to the probe shape element 30 and the mark 34 associated therewith proceed from a lever 36 which is pivotable about a bearing 38. This results in particular from FIGS. 2 and 3.
In Fig. 2 ist ein Flebel 40 dargestellt, der einen Mittelabschnitt 42 und äußere Abschnitte 44, 46 aufweist. Der Hebel 40 ist in seinem Mittelabschnitt 42 von einem Lager 47 aufgenommen, das eine starre Achse 49 bildet, um die der Hebel 40 schwenkbar ist. Das Lager 47 bzw. die Achse 49 unterteilt folglich den Hebel 42 in einen ersten Schenkel 48 und einen zweiten Schenkel 50. Der erste Schenkel 48 weist im Endbereich seines äußeren Abschnitts 46 ein Antastformelement 52 mit zwei Tastspitzen 54 und 56 auf. Im Endbereich des äußeren Abschnitts 44 des zweiten Schenkels 50 ist eine Marke 58 angeordnet, deren Position über einen Abstandssensor 61 gemessen wird. Des Weiteren kann eine optische Bildverarbeitung 63 vorgesehen sein, um mittels Lageerfassung von mehreren an dem Abschnitt 44 angebrachten nicht näher dargestellten Marken eine Verdrehung des Antastformelementes 52, d. h. dessen Tastspitzen 54, 56 zu bestimmen und zu verrechnen. Auch kann ein Verkippen des Antastformelementes 52 über die Bildverarbeitung 63 mittels Lageerfassung von mehreren an dem Hebel 40 angebrachten satellitenförmig ausgebildeten Marken bestimmt und verrechnet werden, d. h. zur Ermittlung der genauen Position des Antastformelementes 52.FIG. 2 shows a fleece 40 which has a central section 42 and outer sections 44, 46. The lever 40 is received in its central portion 42 by a bearing 47 which forms a rigid axis 49 about which the lever 40 is pivotable. The bearing 47 or the axis 49 consequently divides the lever 42 into a first leg 48 and a second leg 50. In the end region of its outer section 46, the first leg 48 has a probe element 52 with two probe tips 54 and 56. A mark 58 is arranged in the end region of the outer section 44 of the second leg 50, the position of which is measured by a distance sensor 61. Furthermore, optical image processing 63 can be provided in order to determine and offset a rotation of the probe element 52, ie its probe tips 54, 56, by means of position detection of a plurality of marks (not shown) attached to section 44. Tilting of the shaped probe element 52 can also be determined and offset via the image processing 63 by means of position detection of a plurality of satellite-shaped marks attached to the lever 40, ie for determining the exact position of the shaped probe element 52.
Wie der Fig. 2 zu entnehmen ist, gehen das Antastformelement 52, d. h. die Tastspitzen 54, 56 und die von dem Abstandssensor 61 in ihrer Position bestimmte Marke 58 von den im Ausführungsbeispiel parallel zueinander, jedoch in versetzten Ebenen verlaufenden äußeren Abschnitte 44, 46 des Hebels 40 aus. Dies ist jedoch keine zwingende Bedingung. Unabhängig hiervon kann jedoch mittels der Tastspitze 54 eine sensorabge- wandte Fläche, also Unterseite eines Objekts gemessen werden. Mit der Tastspitze 56 wird in üblicher Weise eine sensorzugewandte Fläche gemessen.As can be seen from FIG. 2, the shaped probe element 52, i. H. the probe tips 54, 56 and the mark 58 determined in their position by the distance sensor 61 from the outer sections 44, 46 of the lever 40 which run parallel to one another in the exemplary embodiment, but in offset planes. However, this is not a mandatory requirement. Irrespective of this, however, the sensor tip 54 can be used to measure a surface facing away from the sensor, that is to say the underside of an object. A surface facing the sensor is measured in the usual way with the probe tip 56.
In Fig. 3 geht ein Antastformelement 60 mit Tastspitzen 62, 64 von einem ersten Schenkel 66 eines Hebels 68 aus, der um ein Lager 70 schwenkbar ist. Von einem zweiten vorzugsweise senkrecht zu dem ersten Schenkel 66 verlaufenden Schenkel 72 geht eine Marke 74 aus, die vom Strahlengang 76 eines Abstandssensors 78 wie Laserab- standssensor erfasst ist, um also die Position der Marke 74 in Z-Richtung eines Koordinatenmessgerätes zu bestimmen. Durch die Anordnung des Antastformelementes 60 und der Marke 74 an den senkrecht zueinander verlaufenden Schenkeln 66, 72 des Hebels 68 besteht die Möglichkeit, eine Umlenkung der Messrichtung um 90° vorzunehmen. Somit können senkrecht verlaufende Flächen, die sich parallel bzw. entlang dem Strahlengang 76 des Sensors 78 erstrecken, gemessen werden.In Fig. 3, a probing element 60 with probe tips 62, 64 starts from a first leg 66 of a lever 68 which is pivotable about a bearing 70. A mark 74 extends from a second leg 72, preferably perpendicular to the first leg 66, which is detected by the beam path 76 of a distance sensor 78 such as a laser distance sensor, in order to determine the position of the mark 74 in the Z direction of a coordinate measuring machine. The arrangement of the probing element 60 and the mark 74 on the mutually perpendicular legs 66, 72 of the lever 68 makes it possible to deflect the measuring direction by 90 °. Thus, perpendicular surfaces that extend parallel or along the beam path 76 of the sensor 78 can be measured.
Es wird somit die Möglichkeit eines eine vertikal verlaufende optische Achse aufweisenden Laserabstandssensors des Koordinatenmessgerätes auf die Messung von extrem geneigten oder sogar in entgegengesetzte Richtung zeigenden Flächen ausgedehnt, wie die Erläuterung zu den Fig. 2 und 3 verdeutlichen.Thus, the possibility of a laser distance sensor of the coordinate measuring machine, which has a vertically running optical axis, for measuring extremely inclined or even facing in opposite directions, as explained in the explanation of FIGS. 2 and 3.
Ist zusätzlich ein Bildverarbeitungssensor 80 - wie der in Fig. 2 mit dem Bezugszeichen 62 gekennzeichnete - vorhanden, bei dem es sich um eine CCD-Kamera handeln kann, kann durch Auswertung der Lage der Markierung 58, 74 für den optischen Sensor 60, 78 direkt die Verschiebung in X- und Y-Richtυng des Koordinatenmessgerätes in Folge von Verdrehung oder Verkippung ermittelt und verrechnet werden. If there is additionally an image processing sensor 80 - such as that identified by reference numeral 62 in FIG. 2 - which can be a CCD camera, the position of the markings 58, 74 for the optical sensor 60, 78 can be evaluated directly by evaluating the position the displacement in the X and Y direction of the coordinate measuring machine as a result of twisting or tilting are determined and offset.

Claims

PatentansprücheAnordnung zur Messung eines Objekts mittels eines Koordinatenmessgerätes Arrangement for measuring an object using a coordinate measuring machine
1. Anordnung zur Messung von Oberflächeneigenschaften eines Objekts (15) wie Werkstücks mittels eines Koordinatenmessgerätes (10) umfassend ein auf der Oberfläche sich abstützendes und relativ zu dieser bewegbares Antastformelement (30, 52, 60), dem eine Marke (34, 58, 74) zugeordnet ist, sowie Position der Marke unmittelbar bestimmender Abstandssensor (61, 78), dadurch gekennzeichnet, dass die Marke (34, 58, 74) und das Antastformelement (30, 52, 60) von einem Hebel (36, 40) ausgehen, der um eine Achse (49) schwenkbar ist, dass der Hebel einen ersten Schenkel (48, 66) und einen zweiten Schenkel (50, 72) aufweist, die auf gegenüberliegenden Seiten zu der Achse verlaufen, und dass das Antastformelement von einem Abschnitt (46) des ersten Schenkels und die Marke von einem Abschnitt (44) des zweiten Schenkels ausgehen, die in voneinander abweichenden Ebenen verlaufen.1. Arrangement for measuring surface properties of an object (15) such as a workpiece by means of a coordinate measuring machine (10) comprising a probe shaped element (30, 52, 60) that is supported on the surface and movable relative to it, which is assigned a mark (34, 58, 74 ) and the position of the mark directly determining the distance sensor (61, 78), characterized in that the mark (34, 58, 74) and the probe element (30, 52, 60) originate from a lever (36, 40), which is pivotable about an axis (49), that the lever has a first leg (48, 66) and a second leg (50, 72), which extend on opposite sides to the axis, and that the probe element is separated from a section (46 ) of the first leg and the mark start from a section (44) of the second leg which run in mutually different planes.
2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Marke (34, 58, 74) und das Λntastformelement (30, 52, 60) mit seinem das Objekt (15) messenden Bereich auf gleicher Seite des Hebels (36, 40, 68) angeordnet sind. 2. Arrangement according to claim 1, characterized in that the mark (34, 58, 74) and the Λntastformelement (30, 52, 60) with its object (15) measuring area on the same side of the lever (36, 40, 68 ) are arranged.
3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Marke (34, 58, 74) und das Antastformelement (30, 52, 60) mit seinem das Objekt (15) messenden Bereich auf voneinander abweichenden Seiten des Hebels (36, 40, 68) angeordnet sind.3. Arrangement according to claim 1 or 2, characterized in that the mark (34, 58, 74) and the probing element (30, 52, 60) with its area measuring the object (15) on mutually different sides of the lever (36, 40, 68) are arranged.
4. Anordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der antastformelementseitige erste Schenkel (48, 66) in Bezug auf das Objekt (15) mehrere voneinander abweichende Antastrichtungen ermöglichende Antastformelemente (30, 52, 60) oder entsprechende Abschnitte eines Antastformelementes aufweist.4. Arrangement according to at least one of the preceding claims, characterized in that the probe leg side first leg (48, 66) with respect to the object (15) has several mutually different probing probing elements (30, 52, 60) or corresponding sections of a probe element ,
5. Anordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste und/oder der zweite Schenkel (48, 50) des Hebels (40) aus Abschnitten (42, 44; 4246) besteht, die einen Winkel, insbesondere einen stumpfen Winkel einschließen.5. Arrangement according to at least one of the preceding claims, characterized in that the first and / or the second leg (48, 50) of the lever (40) consists of sections (42, 44; 4246) which form an angle, in particular an obtuse angle Include angles.
6. Anordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Marke (34, 58, 74) bzw. das Antastformelement (30, 52, 60) aufweisende äußere Abschnitte (44, 46) der Schenkel (48, 50) parallel zueinander verlaufen.6. Arrangement according to at least one of the preceding claims, characterized in that the mark (34, 58, 74) or the probing element (30, 52, 60) having outer portions (44, 46) of the legs (48, 50) in parallel to each other.
7. Anordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung ein Wechselsystem zum Auswechseln von Hebeln und/oder deren Lagern aufweist. 7. Arrangement according to at least one of the preceding claims, characterized in that the arrangement has a changing system for changing levers and / or their bearings.
8. Anordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Messrichtung des Antastformelementes (60) in Bezug auf optische Achse (76) des Abstandssensors (78) einen Winkel von oder in etwa von 90° beschreibt.8. Arrangement according to at least one of the preceding claims, characterized in that the measuring direction of the probing element (60) with respect to the optical axis (76) of the distance sensor (78) describes an angle of or approximately 90 °.
9. Anordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Koordinatenmessgerät (10) neben dem Abstandssensor (61, 78) ein Bildverarbeitungssensor (63, 80) wie CCD-Kamera aufweist, über den Position der Marke (34, 58, 74) oder Position von mehreren Marken auf dem Hebel (40, 68) in X- und Y-Richtυng des Koordinatenmessgerätes (10) ermittelbar ist.9. Arrangement according to at least one of the preceding claims, characterized in that the coordinate measuring machine (10) in addition to the distance sensor (61, 78) has an image processing sensor (63, 80) such as a CCD camera, via the position of the mark (34, 58, 74) or position of several marks on the lever (40, 68) in the X and Y direction of the coordinate measuring machine (10) can be determined.
10. Anordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Bestimmung von Verdrehung bzw. Verkippung des Antastformelementes (32, 52, 60) mittels des Bildverarbeitungssensors (63, 80) mehrere vorzugsweise satellitenförmig ausgebildete Marken an dem Hebel (36, 40, 68) angeordnet sind.10. The arrangement according to at least one of the preceding claims, characterized in that for determining the twisting or tilting of the shaped probe element (32, 52, 60) by means of the image processing sensor (63, 80) a plurality of preferably satellite-shaped marks on the lever (36, 40 , 68) are arranged.
11. Anordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Antastformelement (30, 52, 60) zumindest zwei in entgegengesetzte Richtungen weisende Tastspitzen (54, 56, 62, 64) umfasst. 11. Arrangement according to at least one of the preceding claims, characterized in that the probe element (30, 52, 60) comprises at least two probe tips (54, 56, 62, 64) pointing in opposite directions.
PCT/EP2004/011959 2003-10-24 2004-10-22 System for measuring an object by means of co-ordinate measuring devices WO2005040716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003149946 DE10349946B4 (en) 2003-10-24 2003-10-24 Arrangement for measuring surface properties
DE10349946.6 2003-10-24

Publications (1)

Publication Number Publication Date
WO2005040716A1 true WO2005040716A1 (en) 2005-05-06

Family

ID=34485075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/011959 WO2005040716A1 (en) 2003-10-24 2004-10-22 System for measuring an object by means of co-ordinate measuring devices

Country Status (2)

Country Link
DE (1) DE10349946B4 (en)
WO (1) WO2005040716A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007013916B4 (en) 2007-03-20 2011-06-22 Feinmess Suhl GmbH, 98527 Contour measuring device
DE102009030929B4 (en) * 2009-06-25 2016-07-28 Carl Zeiss Ag Probe for a coordinate measuring machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB571775A (en) * 1943-12-08 1945-09-07 Morris Motors Ltd Improvements relating to apparatus for measuring or comparing the dimensions or forms of objects
GB1449259A (en) * 1973-12-18 1976-09-15 Portage Machine Co Statically balanced probe assembly
US4389786A (en) * 1980-04-18 1983-06-28 Mitutoyo Mfg. Co., Ltd. Contour measuring instrument
DE3933268A1 (en) * 1988-10-05 1990-04-12 Basf Ag Measurement head for detecting shape of machine part - has transducer containing light source, receiver, reflector, and pick=up affecting light intensity
US5309755A (en) * 1992-10-02 1994-05-10 Tencor Instruments Profilometer stylus assembly insensitive to vibration
US20040174537A1 (en) * 2001-07-16 2004-09-09 Detlef Ferger Method for measuring surface properties and co-ordinate measuring device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2019895A1 (en) * 1970-04-24 1971-11-04 Frohne Heinrich Prof Dr Ing Probe head for dynamic measurement of spatial contours
JPH0789045B2 (en) * 1988-12-15 1995-09-27 富山県 Three-dimensional displacement measuring instrument
US5825666A (en) * 1995-06-07 1998-10-20 Freifeld; Daniel Optical coordinate measuring machines and optical touch probes
US5955661A (en) * 1997-01-06 1999-09-21 Kla-Tencor Corporation Optical profilometer combined with stylus probe measurement device
DE19824107A1 (en) * 1998-05-29 1999-12-23 Werth Messtechnik Gmbh Tactile cut method and arrangement for determining the measurement size of a surface of a test object according to the tactile cut method
WO1999063301A1 (en) * 1998-05-29 1999-12-09 Werth Messtechnik Gmbh System for measuring structures of an object
DE10025461A1 (en) * 2000-05-23 2001-12-06 Mahr Gmbh Measurement device, especially for measuring workpiece surface roughness and/or contour has probe with diffraction grating for +1, 0 and -1 orders

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB571775A (en) * 1943-12-08 1945-09-07 Morris Motors Ltd Improvements relating to apparatus for measuring or comparing the dimensions or forms of objects
GB1449259A (en) * 1973-12-18 1976-09-15 Portage Machine Co Statically balanced probe assembly
US4389786A (en) * 1980-04-18 1983-06-28 Mitutoyo Mfg. Co., Ltd. Contour measuring instrument
DE3933268A1 (en) * 1988-10-05 1990-04-12 Basf Ag Measurement head for detecting shape of machine part - has transducer containing light source, receiver, reflector, and pick=up affecting light intensity
US5309755A (en) * 1992-10-02 1994-05-10 Tencor Instruments Profilometer stylus assembly insensitive to vibration
US20040174537A1 (en) * 2001-07-16 2004-09-09 Detlef Ferger Method for measuring surface properties and co-ordinate measuring device

Also Published As

Publication number Publication date
DE10349946A1 (en) 2005-06-02
DE10349946B4 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
EP1407224B1 (en) Method for measuring surface properties and co-ordinate measuring device
EP2504658B1 (en) Method and arrangement for tactile-optical determination of the geometry of a measurement object
DE112006001423B4 (en) Coordinate measuring machine and method for measuring an object with a coordinate measuring machine
EP1996898B1 (en) Calibrating gauge and method for calibrating a coordinate measuring machine
EP2762832B1 (en) Optical single-point measurement
DE102009030929B4 (en) Probe for a coordinate measuring machine
EP3435032B1 (en) Optical roughness sensor for a coordinate measuring machine
EP1570234A2 (en) Method for measuring a contour of a workpiece by scanning
DE112005000934B4 (en) Coordinate measuring device and method for measuring structures by means of a coordinate measuring machine
EP2847543B1 (en) Measuring device and method for measuring a measuring object
EP1528354B1 (en) Method and apparatus for measuring of an object by using a coordinate measuring machine
WO2005040716A1 (en) System for measuring an object by means of co-ordinate measuring devices
DE102005021645B4 (en) Method for the opto-tactile measurement of an object
DE10319711B4 (en) Method for high-precision dimensional measurement of measurement objects
EP1459033A2 (en) Method for the three-dimensional measurement of a surface
DE102007017664A1 (en) Measuring device, particularly for measuring shape and roughness of object surfaces, has movable supported base, and controlling device that is connected with interferometric space measuring device and driving device
DE102020103500A1 (en) Method and device for measuring the roughness and waviness of a surface of a workpiece
DE102016013550B3 (en) Profile measuring system for roughness and contour measurement on a surface of a workpiece
DE102006001329B4 (en) Method and device for high-precision measurement of the surface of a test object
DE102010037738A1 (en) Method for determining structures and/or geometry of measuring object, involves determining position of marker, and mathematically combining photos of measuring objects in focused and non-focused condition
EP1407222A1 (en) Method for the scanning measurement of a surface contour
DE10233369A1 (en) Test instrument calibration method employs a measurement length standard in the form of a silicon strip with grooves in its surface, with calibration carried out with the strip in two different inclinations
DE102008037441A1 (en) Method for measuring geometry of workpiece e.g. bore hole, by sensor of coordinate measuring device, involves automatically selecting measuring point from previously determined quantity of measuring points
CH672548A5 (en)
DE19755608A1 (en) System to calibrate measuring rule or scale

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase