WO2005039955A2 - Driving dynamics control system adapted to the loading status of a vehicle - Google Patents

Driving dynamics control system adapted to the loading status of a vehicle Download PDF

Info

Publication number
WO2005039955A2
WO2005039955A2 PCT/DE2004/002057 DE2004002057W WO2005039955A2 WO 2005039955 A2 WO2005039955 A2 WO 2005039955A2 DE 2004002057 W DE2004002057 W DE 2004002057W WO 2005039955 A2 WO2005039955 A2 WO 2005039955A2
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
gravity
center
information
tilt
Prior art date
Application number
PCT/DE2004/002057
Other languages
German (de)
French (fr)
Other versions
WO2005039955A3 (en
Inventor
Gero Nenninger
Matthew Nimmo
Gerald Graf
Laszlo Boros
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP04786777A priority Critical patent/EP1680315B1/en
Priority to JP2005518259A priority patent/JP2007523780A/en
Priority to US10/575,768 priority patent/US20070078581A1/en
Priority to DE502004009397T priority patent/DE502004009397D1/en
Priority to KR1020067007671A priority patent/KR101118429B1/en
Publication of WO2005039955A2 publication Critical patent/WO2005039955A2/en
Publication of WO2005039955A3 publication Critical patent/WO2005039955A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/04Control of vehicle driving stability related to roll-over prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D37/00Stabilising vehicle bodies without controlling suspension arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17554Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for enhancing stability around the vehicles longitudinal axle, i.e. roll-over prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D17/00Means on vehicles for adjusting camber, castor, or toe-in
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • B60G2400/63Location of the center of gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/187Digital Controller Details and Signal Treatment
    • B60G2600/1877Adaptive Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • B60G2800/0124Roll-over conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/24Steering, cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/912Attitude Control; levelling control
    • B60G2800/9124Roll-over protection systems, e.g. for warning or control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/94Electronic Stability Program (ESP, i.e. ABS+ASC+EMS)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/10Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle 
    • B60K28/14Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to accident or emergency, e.g. deceleration, tilt of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/02Vehicle mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1323Moment of inertia of the vehicle body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/20Tyre data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight

Definitions

  • Driving dynamics control system adapted to the load condition of a vehicle
  • the invention relates to a method for stabilizing a vehicle in tilt-critical situations according to the preamble of claim 1, and to a driving dynamics control system for tipping stabilization of a vehicle according to the preamble of claim 9.
  • Tilt stabilization systems such as ' ROM (Roll-Over-Mitigation) are therefore often used, with which tilt-critical situations can be recognized early and stabilization measures can be triggered.
  • Known vehicle dynamics control systems such as ESP, with tilt stabilization function (ROM) usually intervene in the driving operation by means of the braking system, the engine management or an active steering in order to stabilize the vehicle.
  • ESP tilt stabilization function
  • a driving dynamics control system with ROM function known from the prior art is shown by way of example in FIG. 1.
  • Fig. 1 shows a highly simplified schematic
  • Block diagram of a known ROM system which essentially comprises a control unit 1 with a ROM control algorithm 4, 5, a sensor system 2 for recognizing a tilt-critical driving state and an actuator 3 for carrying out a stabilization intervention u.
  • Control unit 1 recognizes one on the basis of the sensor signals of ESP sensor system 2 Critical situation, the driving dynamics control intervenes in driving operation, for example, by actuating the wheel brake on the front wheel on the outside of the curve. This reduces the lateral acceleration and the yaw rate of the vehicle and stabilizes the vehicle.
  • Other systems use an active spring / damper system (normal force distribution system), for example
  • a major cause of a vehicle tipping over the longitudinal axis is usually too high
  • Modern driving dynamics control systems therefore usually use a variable that describes the transverse dynamics of the vehicle (which is referred to below as indicator variable S) in order to recognize a tilt-critical driving situation.
  • the indicator size is compared to a characteristic threshold value and a stabilization intervention is triggered if the threshold is exceeded.
  • the indicator size usually also determines the strength of the stabilization intervention.
  • FIG. 2 shows the various input variables that are included in the calculation of the indicator variable S.
  • An essential component is the lateral acceleration ay of the vehicle. Since the lateral acceleration ay follows the steering input (steering wheel position) with a phase delay, the measured value becomes the
  • Lateral acceleration ay is usually increased as a function of the change in the steering angle and possibly other influencing variables P, such as, for example, the change in lateral acceleration d ay / dt over time.
  • the resulting so-called effective transverse acceleration which at the same time forms the indicator variable S, is thus a function F of the transverse acceleration a y , the change over time of the transverse acceleration d ay / dt of the vehicle and possibly other influencing variables P.
  • the input variables a y , d ay / dt, P are linked according to a function 4 and the indicator variable S is calculated therefrom.
  • the indicator variable S obtained in this way is finally fed to the control algorithm 5 and determines the duration and strength of the control intervention.
  • the tipping behavior of a vehicle depends not only on the design properties of the vehicle, but also on the load. As the load increases, the tendency of the vehicle to tip tends to increase, and vice versa. In addition, design features such as the suspension, age-related change and thus affect the tendency of the vehicle to tip over. Loading and mechanical condition are usually not explicitly taken into account in the known driving dynamics regulations with tilt stabilization function ROM.
  • Known tilt stabilization functions ROM are therefore usually very sensitive, i.e. matched to high load conditions and soft suspension, in order to be particularly suitable for vehicles with a high load variance, e.g. SUVs or vans to ensure safe driving behavior.
  • a stabilization intervention is triggered even at very low lateral acceleration values.
  • the anti-tipping interventions can take place too early and too violently.
  • This object is achieved according to the invention by the features specified in claim 1 and in claim 9. Further embodiments of the invention are the subject of dependent claims.
  • An essential aspect of the invention is to determine the current tendency of the vehicle to tip over by at least determining the mass of the vehicle (or the payload) and to match the controller behavior of the tilt stabilization algorithm to the current vehicle mass.
  • the tipping stabilization algorithm can be adapted to the respective load condition or the respective tipping tendency of the vehicle.
  • the vehicle mass can e.g. by means of sensors, such as a wheel force sensor system for determining the normal forces (wheel contact forces) or a sensor system for measuring the spring deflection.
  • the vehicle mass can also be determined by evaluating the driving behavior, e.g. the acceleration or braking behavior of the vehicle can be estimated by drawing up a balance of forces or moments.
  • Estimating the vehicle mass has the advantage that in addition to the existing ESP sensor system, no further sensor system is provided.
  • To estimate the vehicle mass e.g. the wheel speed sensors and the engine torque signal are evaluated, optionally a lateral acceleration and yaw rate sensor, a steering angle sensor and / or a longitudinal acceleration sensor.
  • the received (measured or estimated) information about the vehicle mass can finally be taken into account by the driving dynamics control.
  • the tendency of a vehicle to tip over is also influenced in particular by the position or distribution of the load. It will therefore proposed, preferably also information about the
  • Vehicle center of gravity (this also includes information from which the vehicle center of gravity can be derived) is additionally estimated by evaluating a characteristic speed v ch of the vehicle.
  • the characteristic speed is a parameter in the known
  • the center of gravity can be estimated from a consideration of the wheel contact forces on an inside and outside wheel when cornering. With a high center of gravity, the wheel contact force on the outside wheel is comparatively higher than with a low center of gravity (same mass of the load) with the same Lateral acceleration. Due to the increased tendency of the vehicle to tip over, the wheels on the inside of the bend are relieved of stress when the center of gravity is high.
  • the height of the center of gravity of the vehicle can thus be qualitatively estimated from the ratio of the wheel contact forces F Ni / F Nr of an inside wheel and an outside wheel.
  • the wheel contact forces F N can in turn either be measured using a suitable sensor system or estimated from the ratio of the wheel slips of the individual wheels.
  • the wheel slip can in turn by means of the already existing
  • ESP sensors in particular the wheel speed sensors, are calculated.
  • Estimation methods are combined in order to achieve a qualitative improvement and a higher availability of the estimated center of gravity.
  • the tendency of the vehicle to tip over i.e. the vehicle mass and possibly also the estimated position of the center of gravity
  • the tendency of the vehicle to tip over can be included in the calculation of the indicator size S and thus influence the triggering time or deactivation time of the control.
  • the information about the tendency to tip can also flow into the tilt stabilization algorithm itself and a characteristic property of the algorithm, such as a control threshold (a y , kr i t ), a control deviation, for example for a wheel slip, or a manipulated variable, such as the braking torque or affect the engine torque.
  • the characteristic property of the algorithm is therefore a function of the tendency of the vehicle to tip over, that is to say 'the vehicle mass and , if appropriate, additionally the position of the center of gravity of the vehicle.
  • Tilt tendency ie high vehicle mass or high center of gravity
  • a stabilization intervention can thus be initiated earlier or carried out to a greater extent than with a low tendency to tip over.
  • a driving dynamics control system according to the invention with a tilt stabilization function preferably comprises one
  • Figure 1 is a schematic block diagram of a known tilt stabilization system.
  • FIG. 3 shows a block diagram of a tilt stabilization system according to an embodiment of the invention
  • FIGS. 1 and 2 show a schematic block diagram of a tilt stabilization system.
  • the system essentially comprises a control unit 1 with a tilt stabilization algorithm ROM (roll-over mitigation), a sensor system 2 for detecting driving state variables and various actuators 9, 10 with which the necessary stabilization interventions are implemented.
  • Blocks 4, 7, 8 are implemented in software and are used for processing the sensor signals (block 7), estimating the tendency to tip (by estimating the vehicle mass and the position of the center of gravity) of the vehicle (block 8), and generating an indicator variable S. (Block 4).
  • the tilting stabilization system exclusively uses the already existing ESP sensor system 2 both for recognizing a tilt-critical driving situation and for estimating the vehicle mass m and the height of the center of gravity h sp .
  • an additional sensor system could also be provided, by means of which the quantities (m, h sp ) sought can be measured.
  • the ESP sensor system 2 includes, in particular, wheel speed sensors, a steering angle sensor, a lateral acceleration sensor, a yaw rate sensor, etc.
  • the sensor signals are processed in block 7 and, in particular, are suppressed and filtered. Plausibility monitoring of the sensor signals is preferably also carried out.
  • Selected signals namely the lateral acceleration a y , the gradient d ay / dt and possibly further variables P flow into block 4.
  • an indicator variable S is calculated, which is the release or deactivation controls stabilization interventions.
  • the indicator size S also determines the strength of the stabilization interventions.
  • a block 8 is additionally provided in order to be able to take into account different loading states of the vehicle in the tilt stabilization.
  • Block 8 comprises algorithms with which the vehicle mass (or information from which the vehicle mass can be derived) and the height of the center of gravity h sp can be estimated.
  • the estimated quantities m, h sp sought are determined in particular from the lateral acceleration a y , the wheel speeds n, the engine torque and the yaw rate.
  • Tilt stabilization algorithm supplied and used to change a characteristic property of the algorithm, such as a control threshold (a y crit ), a control deviation, for example for a wheel slip, or a manipulated variable, such as the braking torque or the engine torque.
  • a characteristic property of the algorithm is thus a function of the vehicle mass m and / or the position of the center of gravity h sp . With a high tendency to tip over, ie high vehicle mass m or high center of gravity h sp , a
  • Stabilization intervention initiated earlier or carried out to a greater extent than with a low tendency to tip over.
  • the vehicle mass m is e.g. determined during a braking or acceleration process by drawing up a balance of forces of the forces acting on the vehicle, taking into account the acceleration or deceleration of the vehicle.
  • the position of the center of gravity in the z direction (vertical direction) and in the vehicle longitudinal direction (front, rear) can be estimated, for example, using the characteristic speed v ch of the vehicle.
  • the characteristic velocity v ch is a parameter that describes the self-steering behavior of a vehicle.
  • the Ackermann equation which calculates the yaw rate d ⁇ / dt of a vehicle according to the so-called "single-track model”
  • v x is the vehicle speed in the longitudinal direction
  • ⁇ R is the steering angle
  • 1 is the wheelbase
  • v ch is the characteristic speed.
  • the characteristic speed v ch By estimating the characteristic speed v ch from the aforementioned relationship, at least qualitative information about the position of the vehicle's heavy weight or the distribution of the payload in the vehicle can be determined. Depending on whether the estimated characteristic speed is greater or less than a nominal value v C h, n omin al (eg without a payload), a statement can thus be made about the position of the center of gravity.
  • the following table provides an overview of the qualitative statements that can be made by estimating the characteristic speed v C h. The first table. This applies to small loads and the second table for large loads.
  • the center of gravity can also be estimated from the wheel contact forces on inside and outside bends when cornering.
  • the wheel contact force on the outside wheel is comparatively higher than with a low center of mass with the same lateral acceleration. Due to the increased tendency of the vehicle to tip over, the wheels on the inside of the bend are relieved of stress when the center of gravity is high.
  • the height of the center of gravity of the vehicle can thus be qualitatively estimated from the ratio of the wheel contact forces F N ⁇ / F Nr inside and outside wheels.
  • F B ⁇ F Br
  • the wheel slip ⁇ i drive or brake slip
  • the wheel contact force ratio F N ⁇ / F Nr decreases accordingly, as can be seen in the figure.
  • FIG. 5 shows the dependency of the lateral acceleration a yAR (at which the rear wheel on the inside of the curve lifts off the ground) on the center of gravity height h sp (the vehicle tips over at the critical lateral acceleration a y _ r i t ).
  • the lateral acceleration a yAR decreases with increasing center of gravity h sp .
  • additional braking see deceleration a x ) it further reduces. The lifting of a rear wheel can thus be recorded and the center of gravity can be estimated.
  • a combination of the two methods for determining the center of gravity enables a qualitative improvement and a higher availability of the estimated center of gravity to be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Vehicle Body Suspensions (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

The invention relates to a method for stabilizing the tilting of a vehicle during critical driving situations, wherein a tilting stabilization algorithm (4,5,8) engages in the drive operation by means of an actuator (3,9,10) during a critical situation in order to stabilize the vehicle. Different loading states of the vehicle can be taken into account in view of the fact that the mass of the vehicle (m), the characteristic speed (Vch) and the vertical force ratio of the wheels (FN1/FNr) are detected and the tilting stabilization algorithm (4,5,8) is executed depending upon the mass of the vehicle (m) or the estimated center of gravity (h,p) of the vehicle.

Description

Beschreibungdescription
An den Beladungszustand eines Fahrzeugs angepasstes FahrdynamikregelungssystemDriving dynamics control system adapted to the load condition of a vehicle
Die Erfindung betrifft ein Verfahren zum Stabilisieren eines Fahrzeugs in kippkritischen Situationen gemäß dem Oberbegriff des Patentanspruchs 1, sowie ein Fahrdynamikregelungssystem zur Kippstabilisierung eines Fahrzeugs gemäß dem Oberbegriff des Patentanspruchs 9.The invention relates to a method for stabilizing a vehicle in tilt-critical situations according to the preamble of claim 1, and to a driving dynamics control system for tipping stabilization of a vehicle according to the preamble of claim 9.
Fahrzeuge mit hohem Schwerpunkt, wie z.B. Minivans, SÜVs (Sport Utility Vehicles) oder Transporter, neigen insbesondere bei Kurvenfahrten mit zu hoher Querbeschleunigung zum Kippen um die Längsachse. Es werden daher häufig Kippstabilisierungssysteme, wie z.B.' ROM (Roll-Over- Mitigation) eingesetzt, mit denen kippkritische Situationenfrühzeitig erkannt und Stabilisierungsmaßnahmen ausgelöst werden können. Bekannte Fahrdynamikregelungssysteme, wie z.B. ESP, mit Kippstabilisierungsfunktion (ROM) greifen in der Regel mittels des Bremssystems, des Motormanagements oder einer aktiven Lenkung in den Fahrbetrieb ein, um das Fahrzeug zu stabilisieren. Ein aus dem Stand der Technik bekanntes Fahrdynamikregelungssystem mit ROM-Funktion ist beispielhaft in Fig. 1 dargestellt.Vehicles with a high center of gravity, such as minivans, SUEVs (sport utility vehicles) or transporters, tend to tip around the longitudinal axis when cornering with excessive lateral acceleration. Tilt stabilization systems such as ' ROM (Roll-Over-Mitigation) are therefore often used, with which tilt-critical situations can be recognized early and stabilization measures can be triggered. Known vehicle dynamics control systems, such as ESP, with tilt stabilization function (ROM) usually intervene in the driving operation by means of the braking system, the engine management or an active steering in order to stabilize the vehicle. A driving dynamics control system with ROM function known from the prior art is shown by way of example in FIG. 1.
Fig. 1 zeigt eine stark vereinfachte schematischeFig. 1 shows a highly simplified schematic
Blockdarstellung eines bekannten ROM-Systems, das im wesentlichen ein Steuergerät 1 mit einem ROM-Regelalgorithmus 4,5, eine Sensorik 2 zum Erkennen eines kippkritischen Fahrzustandes und einen Aktuator 3 zum Durchführen eines Stabilisierungseingriffs u fasst. Erkennt das Steuergerät 1 aufgrund der Sensorsignale der ESP-Sensorik 2 eine kippkritische Situation, greift die Fahrdynamikregelung z.B. durch Betätigung der Radbremse am kurvenäußeren Vorderrad in den Fahrbetrieb ein. Dadurch wird die Querbeschleunigung und die Giergeschwindigkeit des Fahrzeugs verringert und das Fahrzeug stabilisiert. Andere Systeme nutzen z.B. ein aktives Feder/Dämpfersystem (Normalkraftverteilungssystem) , dasBlock diagram of a known ROM system, which essentially comprises a control unit 1 with a ROM control algorithm 4, 5, a sensor system 2 for recognizing a tilt-critical driving state and an actuator 3 for carrying out a stabilization intervention u. Control unit 1 recognizes one on the basis of the sensor signals of ESP sensor system 2 Critical situation, the driving dynamics control intervenes in driving operation, for example, by actuating the wheel brake on the front wheel on the outside of the curve. This reduces the lateral acceleration and the yaw rate of the vehicle and stabilizes the vehicle. Other systems use an active spring / damper system (normal force distribution system), for example
Motormanagement oder ein aktives Lenksystem, um das Fahrzeug zu stabilisieren.Engine management or an active steering system to stabilize the vehicle.
Eine wesentliche Ursache für das Kippen eines Fahrzeugs um die Längsachse ist in der Regel eine zu hoheA major cause of a vehicle tipping over the longitudinal axis is usually too high
Querbeschleunigung. Moderne Fahrdynamikregelungssysteme nutzen daher üblicherweise eine die Querdynamik des Fahrzeugs beschreibende Größe (die im Folgenden als Indikatorgröße S bezeichnet wird) , um eine kippkritische Fahrsituation zu erkennen. Die Indikatorgröße wird mit einem charakteristischem Schwellenwert verglichen und bei Überschreiten der Schwelle ein Stabilisierungseingriff ausgelöst. Die Indikatorgröße bestimmt üblicherweise auch die Stärke des Stabilisierungseingriffs.Lateral acceleration. Modern driving dynamics control systems therefore usually use a variable that describes the transverse dynamics of the vehicle (which is referred to below as indicator variable S) in order to recognize a tilt-critical driving situation. The indicator size is compared to a characteristic threshold value and a stabilization intervention is triggered if the threshold is exceeded. The indicator size usually also determines the strength of the stabilization intervention.
Fig. 2 zeigt die verschiedenen Eingangsgrößen, die in die Berechnung der Indikatorgröße S einfließen. Eine wesentliche Komponente ist dabei die Querbeschleunigung ay des Fahrzeugs. Da die Querbeschleunigung ay der Lenkvorgabe (Lenkrad- Stellung) phasenverzögert folgt, wird der Messwert der2 shows the various input variables that are included in the calculation of the indicator variable S. An essential component is the lateral acceleration ay of the vehicle. Since the lateral acceleration ay follows the steering input (steering wheel position) with a phase delay, the measured value becomes the
Querbeschleunigung ay üblicherweise in Abhängigkeit von der Änderung des Lenkwinkels und gegebenenfalls weiterer Einflussgrößen P, wie z.B. der zeitlichen Änderung der Querbeschleunigung day/dt, erhöht. Die resultierende sogenannte effektive Querbeschleunigung, die gleichzeitig die Indikatorgröße S bildet, ist somit eine Funktion F der Querbeschleunigung ay, der zeitlichen Änderung der Querbeschleunigung day/dt des Fahrzeugs und gegebenenfalls weiterer Einflussgrößen P. Wie in Fig.2 zu erkennen ist, werden die Eingangsgrößen ay,day/dt,P gemäß einer Funktion 4 verknüpft und daraus die Indikatorgröße S berechnet. Die so gewonnene Indikatorgröße S wird schließlich dem Regelalgorithmus 5 zugeführt und bestimmt die Dauer und Stärke des Regeleingriffs.Lateral acceleration ay is usually increased as a function of the change in the steering angle and possibly other influencing variables P, such as, for example, the change in lateral acceleration d ay / dt over time. The resulting so-called effective transverse acceleration, which at the same time forms the indicator variable S, is thus a function F of the transverse acceleration a y , the change over time of the transverse acceleration d ay / dt of the vehicle and possibly other influencing variables P. As can be seen in FIG. 2, the input variables a y , d ay / dt, P are linked according to a function 4 and the indicator variable S is calculated therefrom. The indicator variable S obtained in this way is finally fed to the control algorithm 5 and determines the duration and strength of the control intervention.
Das Kippverhalten eines Fahrzeugs ist neben den konstruktiven Eigenschaften des Fahrzeugs im wesentlichen von der Beladung abhängig. Mit zunehmender Beladung wächst in der Regel die Kippneigung des Fahrzeugs und umgekehrt. Darüber hinaus können sich auch konstruktive Merkmale, wie z.B. die Federung, altersbedingt verändern und somit auf die Kippneigung des Fahrzeugs auswirken. Beladung und mechanischer Zustand werden bei den bekannten Fahrdynamikregelungen mit Kippstabilisierungsfunktion ROM üblicherweise nicht explizit berücksichtigt.The tipping behavior of a vehicle depends not only on the design properties of the vehicle, but also on the load. As the load increases, the tendency of the vehicle to tip tends to increase, and vice versa. In addition, design features such as the suspension, age-related change and thus affect the tendency of the vehicle to tip over. Loading and mechanical condition are usually not explicitly taken into account in the known driving dynamics regulations with tilt stabilization function ROM.
Bekannte Kippstabilisierungsfunktionen ROM sind daher üblicherweise sehr empfindlich, d.h. auf hohe Beladungszustände und weiche Federung abgestimmt, um insbesondere bei Fahrzeugen mit hoher Beladungsvarianz wie z.B. SUVs oder Kleintransportern, ein sicheres Fahrverhalten zu gewährleisten. Dies führt dazu, dass bei normaler Beladung ein Stabilisierungseingriff schon bei sehr niedrigen Querbeschleunigungswerten ausgelöst wird. D.h., bei normaler oder geringer Beladung können die Kippstabilisierungs- eingriffe zu früh und zu heftig stattfinden.Known tilt stabilization functions ROM are therefore usually very sensitive, i.e. matched to high load conditions and soft suspension, in order to be particularly suitable for vehicles with a high load variance, e.g. SUVs or vans to ensure safe driving behavior. This means that with normal loading, a stabilization intervention is triggered even at very low lateral acceleration values. In other words, with normal or low loads, the anti-tipping interventions can take place too early and too violently.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Kippstabilisierung von Fahrzeugen, sowie ein entsprechendes Fahrdynamikregelungssystem zu schaffen, mit dem der Beladungszustand eines Fahrzeug und somit dessen Kippneigung in einfacher Weise abgeschätzt und im Rahmen eines Kippstabilisierungsalgorithmus berücksichtigt werden kann. Gelöst wird diese Aufgabe gemäß der Erfindung durch die im Patentanspruch 1 sowie im Patentanspruch 9 angegebenen Merkmale. Weitere Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.It is therefore the object of the present invention to provide a method for stabilizing the tilt of vehicles, and a corresponding driving dynamics control system with which the loading state of a vehicle and thus its tendency to tip can be estimated in a simple manner and taken into account in the context of a tilt stabilization algorithm. This object is achieved according to the invention by the features specified in claim 1 and in claim 9. Further embodiments of the invention are the subject of dependent claims.
Ein wesentlicher Aspekt der Erfindung besteht darin, die aktuelle Kippneigung des Fahrzeugs zu bestimmen, indem wenigstens die Masse des Fahrzeugs (oder der Zuladung) ermittelt wird, und das Reglerverhalten des Kippstabilisierungsalgorithmus auf die aktuelle Fahrzeugmasse abzustimmen. Dadurch kann der Kippstabilisierungsalgorithmus an den jeweiligen Beladungszustand bzw. die jeweilige Kippneigung des Fahrzeugs angepasst werden.An essential aspect of the invention is to determine the current tendency of the vehicle to tip over by at least determining the mass of the vehicle (or the payload) and to match the controller behavior of the tilt stabilization algorithm to the current vehicle mass. As a result, the tipping stabilization algorithm can be adapted to the respective load condition or the respective tipping tendency of the vehicle.
Die Fahrzeugmasse kann z.B. mittels einer Sensorik, wie z.B. einer Radkraftsensorik zur Bestimmung der Normalkräfte (RadaufStandskräfte) oder einer Sensorik zur Messung des Einfederwegs bestimmt werden. Wahlweise kann die Fahrzeugmasse auch durch Auswertung des Fahrverhaltens, wie z.B. des Beschleunigungs- oder Bremsverhaltens des Fahrzeugs, unter Aufstellung einer Kräfte- oder Momentenbilanz geschätzt werden. Hierzu sind verschiedene Schätzverfahren bereits bekannt. Das Schätzen der Fahrzeugmasse hat den Vorteil, dass neben der ohnehin vorhandenen ESP-Sensorik keine weitere Sensorik vorgesehen werden uss. Zum Schätzen der Fahrzeugsmasse werden z.B. die Raddrehzahlsensoren und das Motormomentensignal ausgewertet, optional ein Querbeschleunigungs- und Gierratensensor, ein Lenkwinkelsensor und/oder ein Längsbeschleunigungssensor.The vehicle mass can e.g. by means of sensors, such as a wheel force sensor system for determining the normal forces (wheel contact forces) or a sensor system for measuring the spring deflection. Optionally, the vehicle mass can also be determined by evaluating the driving behavior, e.g. the acceleration or braking behavior of the vehicle can be estimated by drawing up a balance of forces or moments. Various estimation methods are already known for this. Estimating the vehicle mass has the advantage that in addition to the existing ESP sensor system, no further sensor system is provided. To estimate the vehicle mass, e.g. the wheel speed sensors and the engine torque signal are evaluated, optionally a lateral acceleration and yaw rate sensor, a steering angle sensor and / or a longitudinal acceleration sensor.
Die erhaltene (gemessene oder geschätzte) Information über die Fahrzeugmasse kann schließlich von der Fahrdynamikregelung berücksichtigt werden.The received (measured or estimated) information about the vehicle mass can finally be taken into account by the driving dynamics control.
Die Kippneigung eines Fahrzeugs wird neben der Höhe (Masse) der Zuladung insbesondere auch durch die Position bzw. Verteilung der Zuladung beeinflusst. Es wird daher vorgeschlagen, vorzugsweise auch eine Information über dieIn addition to the height (mass) of the load, the tendency of a vehicle to tip over is also influenced in particular by the position or distribution of the load. It will therefore proposed, preferably also information about the
Position der Zuladung, insbesondere die Schwerpunktshöhe (der Zuladung oder des Fahrzeugs) , zu ermitteln und bei der Kippstabilisierung zu berücksichtigen.Determine the position of the load, in particular the center of gravity (of the load or the vehicle) and take this into account when stabilizing the tipper.
Gemäß einer ersten Ausführungsform der Erfindung wird derAccording to a first embodiment of the invention, the
Fahrzeugschwerpunkt (dies umfasst auch eine Information, aus der sich der Fahrzeugschwerpunkt herleiten lässt) zusätzlich durch Auswertung einer charakteristischen Geschwindigkeit vch des Fahrzeugs geschätzt. Die charakteristische Geschwindigkeit ist ein Parameter in der bekanntenVehicle center of gravity (this also includes information from which the vehicle center of gravity can be derived) is additionally estimated by evaluating a characteristic speed v ch of the vehicle. The characteristic speed is a parameter in the known
"Ackermann-Gleichung" und beschreibt das Eigenlenkverhalten eines' Fahrzeugs. Bei üblicher Fahrwerksauslegung gilt, dass ein Fahrzeug bei einer Verschiebung des Schwerpunkts nach oben ein stärker untersteuerndes Fahrverhalten zeigt und somit eine kleinere charakteristische Geschwindigkeit hat und umgekehrt. Bei einer Verschiebung des Schwerpunkts (bei konstanter Masse und Schwerpunktshöhe) nach hinten, zeigt ein Fahrzeug dagegen ein weniger untersteuerndes Fahrverhalten und somit eine höhere charakteristische Geschwindigkeit Ch und umgekehrt. Die charakteristische Geschwindigkeit vch wird bei bekannten Fahrdynamikregelungen üblicherweise selbst wiederum geschätzt. Aus der Abweichung der geschätzten charakteristischen Geschwindigkeit vchEst von der nominalen charakteristischen Geschwindigkeit C Nom kann somit zumindest qualitativ eine Information über die Position der. Ladung ."Ackermann equation" and describes the self-steering behavior of a 'vehicle. In the case of the usual chassis design, if the center of gravity is shifted upwards, a vehicle shows a more understeering driving behavior and thus has a lower characteristic speed and vice versa. In contrast, when the center of gravity is shifted (with constant mass and center of gravity) to the rear, a vehicle shows less understeering driving behavior and thus a higher characteristic speed Ch and vice versa. The characteristic speed v ch is usually itself estimated in known driving dynamics controls. From the deviation of the estimated characteristic speed v chEst from the nominal characteristic speed CN o m , information about the position of the. Cargo.
(Höhe des Schwerpunkts und/oder Position in Längsrichtung des Fahrzeugs) gewonnen werden.(Height of the center of gravity and / or position in the longitudinal direction of the vehicle).
Gemäß einer zweiten Ausführungsform der Erfindung kann die Position, des Fahrzeugschwerpunkts und insbesondere dieAccording to a second embodiment of the invention, the position, the center of gravity and in particular the
Schwerpunktshöhe aus einer Betrachtung der RadaufStandskräfte an einem kurveninneren und einem kurvenäußeren Rad bei einer Kurvenfahrt geschätzt werden. Bei einem hohen Massenschwerpunkt 'ist die Radaufstandskraft am kurvenäußeren Rad vergleichsweise höher als bei einem niedrigen Massenschwerpunkt (gleiche Masse der Zuladung) bei gleicher Querbeschleunigung. Durch die erhöhte Kippneigung des Fahrzeugs werden die kurveninneren Räder bei hohem Massenschwerpunkt stärker entlastet. Aus dem Verhältnis der Radaufstandskräfte FNi/FNr eines kurveninneren und eines kurvenäußeren Rades lässt sich somit die Höhe des Fahrzeugschwerpunkts qualitativ abschätzen.The center of gravity can be estimated from a consideration of the wheel contact forces on an inside and outside wheel when cornering. With a high center of gravity, the wheel contact force on the outside wheel is comparatively higher than with a low center of gravity (same mass of the load) with the same Lateral acceleration. Due to the increased tendency of the vehicle to tip over, the wheels on the inside of the bend are relieved of stress when the center of gravity is high. The height of the center of gravity of the vehicle can thus be qualitatively estimated from the ratio of the wheel contact forces F Ni / F Nr of an inside wheel and an outside wheel.
Die Radaufstandskräfte FN können wiederum entweder mittels einer geeigneten Sensorik gemessen oder aus dem Verhältnis der Radschlüpfe der einzelnen Räder geschätzt werden. Die Radschlüpfe können wiederum mittels der ohnehin vorhandenenThe wheel contact forces F N can in turn either be measured using a suitable sensor system or estimated from the ratio of the wheel slips of the individual wheels. The wheel slip can in turn by means of the already existing
ESP-Sensorik, insbesondere der Raddrehzahlsensoren, berechnet werden.ESP sensors, in particular the wheel speed sensors, are calculated.
Gemäß einer dritten Ausführungsform der Erfindung können die in den Ausführungs ormen 1 und 2 beschriebenenAccording to a third embodiment of the invention, those described in the execution forms 1 and 2
Schätzverfahren kombiniert werden, um eine qualitative Verbesserung und eine höhere Verfügbarkeit der geschätzten Schwerpunktshöhe zu erreichen.Estimation methods are combined in order to achieve a qualitative improvement and a higher availability of the estimated center of gravity.
Die erfindungsgemäß ermittelte Information über dieThe information determined according to the invention about the
Kippneigung des Fahrzeugs (d.h. die Fahrzeugmasse und ggf. zusätzlich die geschätzte Position des Schwerpunkts) kann gemäß einer ersten Ausführungsform in die Berechnung der Indikatorgröße S einfließen und somit den Auslösezeitpunkt bzw. Deaktivierungszeitpunkt der Regelung beeinflussen.According to a first embodiment, the tendency of the vehicle to tip over (i.e. the vehicle mass and possibly also the estimated position of the center of gravity) can be included in the calculation of the indicator size S and thus influence the triggering time or deactivation time of the control.
Wahlweise kann die Information über die Kippneigung auch in den Kippstabilisierungsalgorithmus selbst einfließen und eine charakteristische Eigenschaft des Algorithmus, wie z.B. eine Anregelschwelle (ay, krit) , eine Regelabweichung, z.B. für einen Radschlupf, oder eine Stellgröße, wie z.B. das Bremsmoment oder das Motormoment, beeinflussen. Die charakteristische Eigenschaft des Algorithmus ist somit eine Funktion der Kippneigung des Fahrzeugs, d.h.' der Fahrzeugmasse und'ggf. zusätzlich der Position des Fahrzeugschwerpunkts. Bei hoherOptionally, the information about the tendency to tip can also flow into the tilt stabilization algorithm itself and a characteristic property of the algorithm, such as a control threshold (a y , kr i t ), a control deviation, for example for a wheel slip, or a manipulated variable, such as the braking torque or affect the engine torque. The characteristic property of the algorithm is therefore a function of the tendency of the vehicle to tip over, that is to say 'the vehicle mass and , if appropriate, additionally the position of the center of gravity of the vehicle. At high
Kippneigung, d.h. hoher Fahrzeugmasse oder hohem Schwerpunkt, kann somit ein Stabilisierungseingriff früher eingeleitet oder mit stärkerem Ausmaß durchgeführt werden als bei geringer Kippneigung.Tilt tendency, ie high vehicle mass or high center of gravity, a stabilization intervention can thus be initiated earlier or carried out to a greater extent than with a low tendency to tip over.
Ein erfindungsgemäßes Fahrdynamikregelungssystem mit Kippstabilisierungsfunktion umfasst vorzugsweise eineA driving dynamics control system according to the invention with a tilt stabilization function preferably comprises one
Einrichtung (Sensorik oder Schätzalgorithmus) , mittels der die Fahrzeugmasse und/oder die Position des Fahrzeugschwerpunkts berechnet oder geschätzt werden kann, ein Steuergerät, in dem der Kippstabilisierungsalgorithmus hinterlegt ist, wobei der Kippstabilisierungsalgorithmus derart realisiert ist, dass das Regelverhalten des Algorithmus von der Fahrzeugmasse und/oder der Position des Fahrzeugschwerpunkts abhängig ist.Device (sensor system or estimation algorithm), by means of which the vehicle mass and / or the position of the vehicle's center of gravity can be calculated or estimated, a control unit in which the tilt stabilization algorithm is stored, the tilt stabilization algorithm being implemented in such a way that the control behavior of the algorithm depends on the vehicle mass and / or the position of the vehicle's center of gravity.
Die Erfindung wird nachstehend anhand der beigefügten Zeichnungen beispielhaft näher erläutert. Es zeigen:The invention is explained in more detail below by way of example with reference to the accompanying drawings. Show it:
Fig. 1 eine schematische Blockdarstellung eines bekannten Kippstabilisierungssystems;Figure 1 is a schematic block diagram of a known tilt stabilization system.
Fig. 2 eine schematische Darstellung einer Funktion zur Bildung einer Indikatorgröße S;2 shows a schematic representation of a function for forming an indicator variable S;
Fig. 3 eine Blockdarstellung eines Kippstabilisierungssystems gemäß einer Ausführungsform der Erfindung;3 shows a block diagram of a tilt stabilization system according to an embodiment of the invention;
Fig. 4 die Schlupf- und AufStandskraftverhältnisse bei Geradeaus- und Kurvenfahrt; und4 shows the slip and standing force relationships when driving straight ahead and cornering; and
Fig. 5. die Abhängigkeit der kritischen Querbeschleunigung von der Schwerpunktshöhe.5 shows the dependence of the critical lateral acceleration on the center of gravity.
Bezüglich der Erläuterung der Fig. 1 und 2 wird auf die Beschreibungseinleitung verwiesen. Fig. 3 zeigt eine schematische Blockdarstellung eines Kippstabilisierungssystems. Das System umfasst im wesentlichen ein Steuergerät 1 mit einem Kippstabilisierungsalgorithmus ROM (Roll-Over-Mitigation) , eine Sensorik 2 zum Erfassen von Fahrzustandsgrößen und verschiedene Aktuatoren 9,10, mit denen die erforderlichen Stabilisierungseingriffe umgesetzt werden. Die Blocks 4,7,8 sind in Software realisiert und dienen der Verarbeitung der Sensorsignale (Block 7), der Schätzung der Kippneigung (durch Schätzung der Fahrzeugmasse und der Position des Schwerpunkts) des Fahrzeugs (Block 8), und der Erzeugung einer Indikatorgröße S (Block 4) .With regard to the explanation of FIGS. 1 and 2, reference is made to the introduction to the description. 3 shows a schematic block diagram of a tilt stabilization system. The system essentially comprises a control unit 1 with a tilt stabilization algorithm ROM (roll-over mitigation), a sensor system 2 for detecting driving state variables and various actuators 9, 10 with which the necessary stabilization interventions are implemented. Blocks 4, 7, 8 are implemented in software and are used for processing the sensor signals (block 7), estimating the tendency to tip (by estimating the vehicle mass and the position of the center of gravity) of the vehicle (block 8), and generating an indicator variable S. (Block 4).
Das Kippsta ilisierungssystem nutzt in diesem Beispiel ausschließlich die bereits vorhandene ESP-Sensorik 2 sowohl zum Erkennen einer kippkritischen Fahrsituation als auch zum Schätzen der Fahrzeugmasse m und der Höhe des Schwerpunkts hsp. (Wahlweise könnte auch eine zusätzliche Sensorik vorgesehen sein, mittels der die gesuchten Größen (m,hsp) gemessen werden können.)In this example, the tilting stabilization system exclusively uses the already existing ESP sensor system 2 both for recognizing a tilt-critical driving situation and for estimating the vehicle mass m and the height of the center of gravity h sp . (Optionally, an additional sensor system could also be provided, by means of which the quantities (m, h sp ) sought can be measured.)
Die ESP-Sensorik 2 umfasst insbesondere Raddrehzahlsensoren, einen Lenkwinkelsensor, einen Querbeschleunigungssensor, einen Gierratensensor, etc.. Die Sensorsignale werden in Block 7 verarbeitet und dabei insbesondere entstört und gefiltert. Vorzugsweise wird auch eine Plaüsibilitäts- überwachung der Sensorsignale durchgeführt .The ESP sensor system 2 includes, in particular, wheel speed sensors, a steering angle sensor, a lateral acceleration sensor, a yaw rate sensor, etc. The sensor signals are processed in block 7 and, in particular, are suppressed and filtered. Plausibility monitoring of the sensor signals is preferably also carried out.
Ausgewählte Signale, nämlich die Querbeschleunigung ay, der Gradient day/dt und gegebenenfalls weitere Größen P fließen in den Block 4. Darin wird, wie vorstehend bezüglich Fig. 2 beschrieben wurde, eine Indikatorgröße S berechnet, die die Freigabe bzw. -Deaktivierung von Stabilisierungseingriffen steuert. Die Indikatorgröße S bestimmt dabei auch die Stärke der Stabilisierungseingriffe. Um- unterschiedliche Beladungszustände des Fahrzeugs bei der Kippstabilisierung berücksichtigen zu können, ist zusätzlich ein Block 8 vorgesehen. Block 8 umfasst Algorithmen, mit denen sich die Fahrzeugmasse (bzw. eine Information, aus der sich die Fahrzeugmasse ableiten lässt) und die Höhe des Fahrzeugschwerpunkts hsp schätzen lassen. Die gesuchten Schätzgrößen m, hsp werden insbesondere aus der Querbeschleunigung ay, den Raddrehzahlen n, dem Motormoment und der Gierrate ermittelt.Selected signals, namely the lateral acceleration a y , the gradient d ay / dt and possibly further variables P flow into block 4. In this block, as was described above with reference to FIG. 2, an indicator variable S is calculated, which is the release or deactivation controls stabilization interventions. The indicator size S also determines the strength of the stabilization interventions. A block 8 is additionally provided in order to be able to take into account different loading states of the vehicle in the tilt stabilization. Block 8 comprises algorithms with which the vehicle mass (or information from which the vehicle mass can be derived) and the height of the center of gravity h sp can be estimated. The estimated quantities m, h sp sought are determined in particular from the lateral acceleration a y , the wheel speeds n, the engine torque and the yaw rate.
Die Schätzwerte , hsp werden schließlich demThe estimates, h sp, will eventually be the
Kippstabilisierungsalgorithmus zugeführt und dazu verwendet, eine charakteristische Eigenschaft des Algorithmus, wie z.B. eine Anregelschwelle (ay krit) , eine Regelabweichung, z.B. für einen Radschlupf, oder eine Stellgröße, wie z.B. das Bremsmoment oder das Motormoment, zu verändern. Wahlweise könnte auch die Indikatorgröße S modifiziert werden. Die charakteristische Eigenschaft des Algorithmus ist somit eine Funktion der Fahrzeugmasse m und/oder der Position des Fahrzeugschwerpunkts hsp. Bei hoher Kippneigung, d.h. hoher Fahrzeugmasse m oder hohem Schwerpunkt hsp, kann somit einTilt stabilization algorithm supplied and used to change a characteristic property of the algorithm, such as a control threshold (a y crit ), a control deviation, for example for a wheel slip, or a manipulated variable, such as the braking torque or the engine torque. Optionally, the indicator size S could also be modified. The characteristic property of the algorithm is thus a function of the vehicle mass m and / or the position of the center of gravity h sp . With a high tendency to tip over, ie high vehicle mass m or high center of gravity h sp , a
Stabilisierungseingriff früher eingeleitet oder mit stärkerem Ausmaß durchgeführt werden als bei geringer Kippneigung.Stabilization intervention initiated earlier or carried out to a greater extent than with a low tendency to tip over.
Die Fahrzeugmasse m wird z.B. bei einem Brems- oder Beschleunigungsvorgang durch Aufstellung einer Kräftebilanz der am Fahrzeug wirkenden Kräfte unter Berücksichtigung der Beschleunigung bzw. Verzögerung des Fahrzeugs ermittelt.The vehicle mass m is e.g. determined during a braking or acceleration process by drawing up a balance of forces of the forces acting on the vehicle, taking into account the acceleration or deceleration of the vehicle.
Die Position des Schwerpunkts in z-Richtung (vertikale Richtung) als auch in Fahrzeuglängsrichtung (vorne, hinten) kann beispielsweise über die charakteristische Geschwindigkeit vch des Fahrzeugs geschätzt werden. Die charakteristische Geschwindigkeit vch ist ein Parameter, der das Eigenlenkverhalten eines Fahrzeugs beschreibt. Nach der Ackermann-Gleichung, die die Gierrate dψ/dt eines Fahrzeugs gemäß dem sogenannten "Einspurmodell" berechnet, gilt: dψ/dt T, δR '(l + vx 2:vA a) wobei vx die Fahrzeuggeschwindigkeit in Längsrichtung, δR der Lenkwinkel, 1 der Radstand und vch die charakteristische Geschwindigkeit ist.The position of the center of gravity in the z direction (vertical direction) and in the vehicle longitudinal direction (front, rear) can be estimated, for example, using the characteristic speed v ch of the vehicle. The characteristic velocity v ch is a parameter that describes the self-steering behavior of a vehicle. According to the Ackermann equation, which calculates the yaw rate dψ / dt of a vehicle according to the so-called "single-track model", the following applies: dψ / dt T, δ R ' (l + v x 2 : v A a ) where v x is the vehicle speed in the longitudinal direction, δ R is the steering angle, 1 is the wheelbase and v ch is the characteristic speed.
Bei üblicher Fahrwerksauslegung gilt, dass ein Fahrzeug bei einer Verschiebung des Schwerpunkts nach oben ein stärker untersteuerndes Fahrverhalten zeigt und somit eine kleinere charakteristische Geschwindigkeit vch hat und umgekehrt. Bei einer Verschiebung des Schwerpunkts (bei konstanter Masse und Schwerpunktshöhe) nach hinten, zeigt ein Fahrzeug dagegen ein weniger untersteuerndes Fahrverhalten und somit eine höhere charakteristische Geschwindigkeit vch und umgekehrt.In the case of the usual chassis design, when the center of gravity is shifted upwards, a vehicle exhibits a more understeering driving behavior and thus has a lower characteristic speed v ch and vice versa. In contrast, when the center of gravity is shifted (with constant mass and center of gravity) to the rear, a vehicle shows less understeering driving behavior and thus a higher characteristic speed v ch and vice versa.
Durch Abschätzung der charakteristischen Geschwindigkeit vch aus der vorgenannten Beziehung lässt sich zumindest eine qualitative Information über die Position des Fahrzeug- schwerpuhkts bzw. die Verteilung der Zuladung im Fahrzeug ermitteln. Je nachdem, ob die geschätzte charakteristische Geschwindigkeit größer oder kleiner ist als ein Nominalwert vCh,nominal (z.B. ohne Zuladung) kann somit eine Aussage über die Position des Masseschwerpunkts getroffen werden. Die nachfolgende Tabelle gibt einen Überblick über die qualitativen Aussagen, die durch Abschätzung der charakteristischen Geschwindigkeit vCh getroffen werden können. Die erste Tabelle. gilt dabei beispielhaft für kleine Zuladung und die zweite Tabelle für große Zuladung.By estimating the characteristic speed v ch from the aforementioned relationship, at least qualitative information about the position of the vehicle's heavy weight or the distribution of the payload in the vehicle can be determined. Depending on whether the estimated characteristic speed is greater or less than a nominal value v C h, n omin al (eg without a payload), a statement can thus be made about the position of the center of gravity. The following table provides an overview of the qualitative statements that can be made by estimating the characteristic speed v C h. The first table. This applies to small loads and the second table for large loads.
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000012_0001
Figure imgf000013_0001
Wahlweise kann die Schwerpunktshöhe auch aus den RadaufStandskräften an kurveninneren und kurvenäußeren Rädern bei Kurvenfahrt geschätzt werden. Bei einem hohen Massenschwerpunkt (d.h. hohe Zuladung) ist die RadaufStandskraft am kurvenäußeren Rad vergleichsweise höher als bei einem niedrigen Massenschwerpunkt bei gleicher Querbeschleunigung. Durch die erhöhte Kippneigung des Fahrzeugs werden die kurveninneren Räder bei hohem Massenschwerpunkt stärker entlastet. Aus dem Verhältnis der RadaufStandskräfte FNι/FNr kurveninnerer und kurvenäußerer Räder lässt sich somit die Höhe des Fahrzeugschwerpunkts qualitativ schätzen.Optionally, the center of gravity can also be estimated from the wheel contact forces on inside and outside bends when cornering. With a high center of gravity (ie high payload), the wheel contact force on the outside wheel is comparatively higher than with a low center of mass with the same lateral acceleration. Due to the increased tendency of the vehicle to tip over, the wheels on the inside of the bend are relieved of stress when the center of gravity is high. The height of the center of gravity of the vehicle can thus be qualitatively estimated from the ratio of the wheel contact forces F N ι / F Nr inside and outside wheels.
Fig. 4 zeigt den Verlauf des Radaufstandskraftverhaltnis F/FNr und der Radschlüpfe λ an einem linken und einem rechten Rad (Indizes l,r; hier ist FBι = FBr) ■ Bis zum Zeitpunkt to fährt das Fahrzeug geradeaus und dann in eine Linkskurve. Der Radschlupf λi (Antriebs- oder Bremsschlupf) am kurveninneren linken Rad nimmt dabei zu, der am rechen Rad ab. Das Radaufstandskraftverhaltnis FNι/FNr sinkt entsprechend, wie in der Figur zu erkennen ist. Durch dieFig. 4 shows the course of the wheel contact force ratio F / F Nr and the wheel slip λ on a left and a right wheel (indices l, r; here is F B ι = F Br ) ■ Up to the point in time the vehicle drives straight and then into a left turn. The wheel slip λi (drive or brake slip) on the inside left wheel increases, that on the right wheel decreases. The wheel contact force ratio F N ι / F Nr decreases accordingly, as can be seen in the figure. Through the
Auswertung des RadaufStandskraftverhältnisses in Abhängigkeit von der Querbeschleunigung lässt sich wiederum die Schwerpunktshöhe schätzen. Fig. 5 zeigt die Abhängigkeit der Querbeschleunigung ayAR (bei der das kurveninnere Hinterrad vom Boden abhebt) von der Schwerpunktshöhe hsp (Bei der kritischen Querbeschleunigung ay_rit kippt das Fahrzeug um) . Wie zu erkennen ist, nimmt die Querbeschleunigung ayAR mit zunehmender Schwerpunktshöhe hsp ab. Durch zusätzliches Bremsen (siehe Verzögerung ax) reduziert sie sich weiter. Das Abheben eines Hinterrades kann somit erfasst und die Schwerpunkthöhe geschätzt werden.Evaluation of the wheel-to-wheel force ratio as a function of the lateral acceleration can in turn be used to estimate the center of gravity. FIG. 5 shows the dependency of the lateral acceleration a yAR (at which the rear wheel on the inside of the curve lifts off the ground) on the center of gravity height h sp (the vehicle tips over at the critical lateral acceleration a y _ r i t ). As can be seen, the lateral acceleration a yAR decreases with increasing center of gravity h sp . By additional braking (see deceleration a x ) it further reduces. The lifting of a rear wheel can thus be recorded and the center of gravity can be estimated.
Durch eine Kombination der beiden Verfahren zur Schwerpunktshöhen-Bestimmung lässt sich eine qualitative Verbesserung und eine höhere Verfügbarkeit der geschätzten Schwerpunktshöhe erreichen. A combination of the two methods for determining the center of gravity enables a qualitative improvement and a higher availability of the estimated center of gravity to be achieved.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Steuergerät1 control unit
2 ESP-Sensorik2 ESP sensors
3 Aktuator 4 Funktion zu Berechnung der Indikatorgröße3 Actuator 4 Function for calculating the indicator size
5 Kippstabilisierungsalgorithmus5 Tilt stabilization algorithm
6 zusätzliche Sensorik6 additional sensors
7 Signalaufbereitung7 Signal processing
8 Masse- und Schwerpunktsschätzung 9 Bremssystem8 Mass and center of gravity estimation 9 Brake system
10 Motormanagement10 Engine management
S IndikatorgrößeS indicator size
FN RadaufstandskraftF N wheel contact force
FB Radtangentialkraft m Fahrzeugmasse hsp Schwerpunktshöhe ay Querbeschleunigung ax LängsbeschleunigungF B wheel tangential force m vehicle mass h sp center of gravity ay lateral acceleration ax longitudinal acceleration
P Parameter n Raddrehzahlen λ Radschlupf P parameters n wheel speeds λ wheel slip

Claims

Patentansprüche claims
1. Verfahren zur Kippstabilisierung eines Fahrzeugs in kritischen Fahrsituationen, bei dem ein Kippstabilisierungsalgorithmus (4,5,8) in einer kritischen Situation mittels eines Aktuators (3,9,10) in den Fahrbetrieb eingreift, um das Fahrzeug zu stabilisieren, dadurch gekennzeichnet, dass die Fahrzeugmasse (m) ermittelt und der Kippstabilisierungsalgorithmus (4,5,8) in Abhängigkeit von der Fahrzeugmasse (m) ausgeführt wird.1. A method for stabilizing the tilt of a vehicle in critical driving situations, in which a tilt stabilization algorithm (4,5,8) intervenes in driving operation in an critical situation by means of an actuator (3,9,10) in order to stabilize the vehicle, characterized in that that the vehicle mass (m) is determined and the tilt stabilization algorithm (4,5,8) is executed as a function of the vehicle mass (m).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Fahrzeugmasse (m) mittels eines Algorithmus (8) geschätzt wird.2. The method according to claim 1, characterized in that the vehicle mass (m) is estimated by means of an algorithm (8).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Information über den Fahrzeugschwerpunkt (hsp) geschätzt und der Kippstabilisierungsalgorithmus (4,5,8) in Abhängigkeit von der Fahrzeugmasse (m) und der Information über den Fahrzeugschwerpunkt (hsp) ausgeführt wird.3. The method according to claim 1 or 2, characterized in that information about the vehicle's center of gravity (h sp ) is estimated and the tilt stabilization algorithm (4,5,8) as a function of the vehicle mass (m) and the information about the vehicle's center of gravity (h sp ) is performed.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Information über den Fahrzeugschwerpunkt (hsp) aus der geschätzten charakteristischen Geschwindigkeit (vch) abgeleitet wird.4. The method according to claim 3, characterized in that the information about the center of gravity (h sp ) is derived from the estimated characteristic speed (v ch ).
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Information über den Fahrzeugschwerpunkt (hsp) aus dem Verhältnis der RadaufStandskräfte (FNι/FNr) gegenüber liegender Räder bei einer Kurvenfahrt ermittelt wird.5. The method according to claim 3 or 4, characterized in that the information about the center of gravity (h sp ) is determined from the ratio of the wheel contact forces (F N ι / F Nr ) opposite wheels when cornering.
6. Verfahren nach Anspruch 3 und 4, dadurch gekennzeichnet, dass die Information über den Fahrzeugschwerpunkt (hsp) aus der geschätzten charakteristischen Geschwindigkeit (vc-_) und aus dem Verhältnis der Radaufstandskräfte (FN1/FNr) gegenüber liegender Räder bei einer Kurvenfahrt ermittelt wird.6. The method according to claim 3 and 4, characterized in that the information about the center of gravity (h sp ) from the estimated characteristic speed (v c -_) and the ratio of the wheel contact forces (F N1 / F Nr ) to opposite wheels when cornering.
7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass eine Indikatorgröße (S) mittels der ein Stabilisierungseingriff freigegeben oder deaktiviert wird, oder eine charakteristische Eigenschaft des Kippstabilisierungsalgorithmus (4,5,8) in Abhängigkeit von der Fahrzeugmasse (m) oder der Fahrzeugmasse (m) und der Information über den Fahrzeugschwerpunkt (hΞp) bestimmt wird.7. The method according to any one of claims 3 to 6, characterized in that an indicator variable (S) by means of which a stabilization intervention is released or deactivated, or a characteristic property of the tilt stabilization algorithm (4,5,8) as a function of the vehicle mass (m) or the vehicle mass (m) and the information about the vehicle's center of gravity (h Ξp ) is determined.
8. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass eine Anregelschwelle, eine Regelabweichung oder eine Stellgröße des Kippstabilisierungs- algorithmus (4,5,8) in Abhängigkeit von der Fahrzeugmasse ( ) oder der Fahrzeugmasse (m) und der Information über den Fahrzeugschwerpunkt (hsp) bestimmt wird.8. The method according to any one of claims 3 to 6, characterized in that a control threshold, a control deviation or a manipulated variable of the tilt stabilization algorithm (4,5,8) depending on the vehicle mass () or the vehicle mass (m) and the information is determined via the vehicle's center of gravity (h sp ).
9. Fahrdynamikregelungssystem zur Kippstabilisierung eines Fahrzeugs in kritischen Fahrsituationen, umfassend ein9. Driving dynamics control system for tilt stabilization of a vehicle in critical driving situations, comprising a
Steuergerät (1) , in dem ein Kippstabilisierungsalgorithmus (4,5,8) hinterlegt ist, eine Sensorik (2) zum Erfassen aktueller Ist-Werte von Fahrzustandsgrößen (ay, day/dt, P, n) und einen Aktuator (3) zum Durchführen eines Stabilisierungs- eingriffs bei Erkennen einer kippkritischen Situation, dadurch gekennzeichnet, dass mittels der Sensorik (2) eine Information über die Fahrzeugmasse (m) ermittelt wird und der Kippstabilisierungsalgorithmus (4,5) derart eingerichtet ist, dass das Reglerverhalten eine Funktion der Fahrzeugmasse (m) ist.Control unit (1) in which a tilt stabilization algorithm (4,5,8) is stored, a sensor system (2) for detecting current actual values of driving state variables (a y , day / dt, P, n) and an actuator (3) to carry out a stabilization intervention upon detection of a tilt-critical situation, characterized in that information about the vehicle mass (m) is determined by means of the sensor system (2) and the tilt stabilization algorithm (4, 5) is set up in such a way that the controller behavior is a function of the Vehicle mass (m) is.
10. Fahrdynamikregelungssystem nach Anspruch 9, dadurch gekennzeichnet, dass das Steuergerät (1) einen Algorithmus (8) zum Schätzen der Fahrzeugmasse ( ) umfasst. 10. Driving dynamics control system according to claim 9, characterized in that the control unit (1) comprises an algorithm (8) for estimating the vehicle mass ().
11. Fahrdynamikregelungssystem nach Anspruch 9, dadurch gekennzeichnet, dass das Steuergerät (1) einen Algorithmus (8) zum Schätzen einer Information über den Fahrzeugschwerpunkt (hsp) umfasst, wobei diese Information zusammen mit der Fahrzeugmasse ( ) bei einer Kippstabilisierung berücksichtigt wird.11. Driving dynamics control system according to claim 9, characterized in that the control unit (1) comprises an algorithm (8) for estimating information about the center of gravity (h sp ), this information being taken into account together with the vehicle mass () in the event of a tilt stabilization.
12. Fahrdynamikregelungssystem nach Anspruch 11, dadurch gekennzeichnet, dass die Information über den Fahrzeugschwerpunkt (hsp) aus der geschätzten charakteristischen Geschwindigkeit (vch) abgeleitet wird.12. Driving dynamics control system according to claim 11, characterized in that the information about the vehicle's center of gravity (h sp ) is derived from the estimated characteristic speed (v ch ).
13. Fahrdynamikregelungssystem nach Anspruch 9, dadurch gekennzeichnet, dass eine Sensorik (2,6) vorgesehen ist, mittels der ein Verhältnis der RadaufStandskräfte (FN1/FNr) gegenüber liegender Räder ermittelt werden kann. 13. Driving dynamics control system according to claim 9, characterized in that a sensor system (2,6) is provided, by means of which a ratio of the wheel contact forces (F N1 / F Nr ) to opposite wheels can be determined.
PCT/DE2004/002057 2003-10-24 2004-09-15 Driving dynamics control system adapted to the loading status of a vehicle WO2005039955A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04786777A EP1680315B1 (en) 2003-10-24 2004-09-15 Driving dynamics control system adapted to the loading status of a vehicle
JP2005518259A JP2007523780A (en) 2003-10-24 2004-09-15 Method and vehicle dynamics control system for rollover stabilization
US10/575,768 US20070078581A1 (en) 2003-10-24 2004-09-15 Vehicle dynamics control system adapted to the load condition of a vehicle
DE502004009397T DE502004009397D1 (en) 2003-10-24 2004-09-15 ADJUSTED TO THE LOADING CONDITION OF A VEHICLE FAHRDYNAMIK REGULATION SYSTEM
KR1020067007671A KR101118429B1 (en) 2003-10-24 2004-09-15 Method and driving dynamics control system for tilting stabilization of a vehicle in critical driving situations

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10349635 2003-10-24
DE10349635.1 2003-10-24
DE102004006696.5 2004-02-11
DE102004006696A DE102004006696A1 (en) 2003-10-24 2004-02-11 Method for roll-over stabilizing of vehicle in critical driving conditions entails determining mass of vehicle and putting into effect roll-over stabilizing algorithm in dependence upon this mass

Publications (2)

Publication Number Publication Date
WO2005039955A2 true WO2005039955A2 (en) 2005-05-06
WO2005039955A3 WO2005039955A3 (en) 2007-10-11

Family

ID=34524050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/002057 WO2005039955A2 (en) 2003-10-24 2004-09-15 Driving dynamics control system adapted to the loading status of a vehicle

Country Status (6)

Country Link
US (1) US20070078581A1 (en)
EP (1) EP1680315B1 (en)
JP (1) JP2007523780A (en)
KR (1) KR101118429B1 (en)
DE (2) DE102004006696A1 (en)
WO (1) WO2005039955A2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097498A1 (en) * 2005-03-17 2006-09-21 Continental Teves Ag & Co. Ohg Method and a adjusting system for stabilising a motor vehicle
KR100757643B1 (en) 2005-12-20 2007-09-10 현대모비스 주식회사 Active geometry control suspension and its method
US9045015B2 (en) 2013-03-07 2015-06-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9090281B2 (en) 2013-03-07 2015-07-28 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9145168B2 (en) 2013-03-07 2015-09-29 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
WO2015162121A1 (en) * 2014-04-23 2015-10-29 Continental Teves Ag & Co. Ohg Ascertaining an offset of an inertial sensor
WO2015188916A1 (en) * 2014-06-11 2015-12-17 Wabco Gmbh & Method for operating an electronic brake system
US9248857B2 (en) 2013-03-07 2016-02-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9283989B2 (en) 2013-03-07 2016-03-15 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
WO2017153797A1 (en) * 2016-03-07 2017-09-14 Volvo Truck Corporation A method of adjusting an estimated value of the height of the gravity center of a vehicle
US9821620B2 (en) 2014-09-01 2017-11-21 Ford Technologies Corporation Method for operating a tilting running gear and an active tilting running gear for a non-rail-borne vehicle
US9845129B2 (en) 2014-08-29 2017-12-19 Ford Global Technologies, Llc Stabilizing arrangement for a tilting running gear of a vehicle and tilting running gear
US9925843B2 (en) 2015-02-24 2018-03-27 Ford Global Technologies, Llc Rear suspension systems for laterally tiltable multitrack vehicles
US10023019B2 (en) 2015-02-24 2018-07-17 Ford Global Technologies, Llc Rear suspension systems with rotary devices for laterally tiltable multitrack vehicles
US10076939B2 (en) 2014-11-26 2018-09-18 Ford Global Technologies, Llc Suspension systems for laterally tiltable multitrack vehicles

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090152940A1 (en) * 2003-08-22 2009-06-18 Bombardier Recreational Products Inc. Three-wheel vehicle electronic stability system
US20060180372A1 (en) * 2003-08-22 2006-08-17 Bombardier Recreational Products Inc. Electronic stability system on a three-wheeled vehicle
US7826948B2 (en) * 2004-10-15 2010-11-02 Ford Global Technologies Vehicle loading based vehicle dynamic and safety related characteristic adjusting system
DE102007015356A1 (en) * 2007-03-30 2008-10-02 Zf Friedrichshafen Ag Determination of the mass of an aircraft
FR2932120A3 (en) * 2008-06-05 2009-12-11 Renault Sas Active anti-roll system controlling method for motor vehicle, involves formulating roll correction instruction in reference to reference model from force measurement, and sending correction instruction to roll correction units of vehicle
DE102010028109A1 (en) * 2010-04-22 2011-10-27 Robert Bosch Gmbh Method for improving the driving stability of a vehicle
DE102011111862A1 (en) 2011-08-31 2013-02-28 Wabco Gmbh A method of warning the driver of a vehicle of an impending tipping and control device therefor
US8990000B2 (en) 2013-04-23 2015-03-24 Ford Global Technologies, Llc Active suspension with load detection and adaptation
JP5914448B2 (en) 2013-11-01 2016-05-11 ヤマハ発動機株式会社 Saddle-type vehicle and wheel force acquisition device
DE102014018717A1 (en) 2014-12-16 2016-06-16 Wabco Gmbh Method for determining a center of gravity of a vehicle and vehicle control system
CN104590254B (en) * 2015-01-15 2017-05-17 盐城工学院 Method and system for preventing turning on one side during veering process of automobile
US11052906B2 (en) 2019-04-26 2021-07-06 Caterpillar Inc. Dynamic roll over control system for machines
DE102019208817A1 (en) * 2019-06-18 2020-12-24 Robert Bosch Gmbh Method, control unit and system for controlling a drive of a vehicle
CN114728558A (en) * 2019-11-22 2022-07-08 沃尔沃卡车集团 Method and system for monitoring vehicle load distribution
US20230004158A1 (en) * 2021-06-30 2023-01-05 Waymo Llc Mass distribution-informed optimization for autonomous driving systems

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152793A (en) * 1982-03-05 1983-09-10 ティー・シー・エム株式会社 Device for preventing turning-sideways of transport car
JP2745239B2 (en) * 1990-04-16 1998-04-28 稚晴 中村 Rollover prevention device
JP3116738B2 (en) * 1994-07-28 2000-12-11 トヨタ自動車株式会社 Vehicle behavior control device
US5774821A (en) * 1994-11-25 1998-06-30 Itt Automotive Europe Gmbh System for driving stability control
JPH09226559A (en) * 1996-02-23 1997-09-02 Toyota Motor Corp Reference wheelspeed calculation device for controlling brake force and drive force
JP3454011B2 (en) * 1996-04-02 2003-10-06 トヨタ自動車株式会社 Rear-wheel drive vehicle braking force control system
DE19650691C2 (en) * 1996-12-07 1998-10-29 Deutsch Zentr Luft & Raumfahrt Method for steering assistance for a driver of a road vehicle
US5825284A (en) * 1996-12-10 1998-10-20 Rollover Operations, Llc System and method for the detection of vehicle rollover conditions
DE19751935A1 (en) * 1997-11-22 1999-05-27 Bosch Gmbh Robert Method and device for determining a quantity describing the center of gravity of a vehicle
DE19751891A1 (en) * 1997-11-22 1999-05-27 Bosch Gmbh Robert Control method for vehicle with tendency to tip or tilt, e.g. lorries or wagons
EP1040033B1 (en) * 1997-12-16 2005-04-06 Continental Teves AG & Co. oHG Method for improving tilt stability in a motor vehicle
JP2002503185A (en) * 1998-04-07 2002-01-29 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Vehicle stabilizing method and device
DE19827882A1 (en) * 1998-06-23 1999-12-30 Bosch Gmbh Robert Procedure for stabilising vehicle, especially for avoiding its tipping over about longitudinal axis and/or its skidding in transverse direction
DE19827881A1 (en) * 1998-06-23 1999-12-30 Bosch Gmbh Robert Procedure for stabilizing vehicle, especially for avoiding its tipping over about longitudinal axis and/or skidding in transverse direction
WO2000003887A1 (en) * 1998-07-16 2000-01-27 Continental Teves Ag & Co. Ohg Method and device for detecting the overturning hazard of a motor vehicle
JP2002520605A (en) * 1998-07-17 2002-07-09 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Method and apparatus for determining and detecting danger of vehicle rollover
DE19918597C2 (en) * 1999-04-23 2001-03-08 Deutsch Zentr Luft & Raumfahrt Process for reducing the risk of tipping of road vehicles
DE10009921A1 (en) * 2000-03-01 2001-07-19 Bayerische Motoren Werke Ag Method for increasing drive stability of vehicle sets level of control dependent on regulator commando determined in dependence on difference of quotients of vehicle cross acceleration and vehicle speed and the current yaw rate
DE10019417A1 (en) * 2000-04-19 2001-10-25 Bosch Gmbh Robert Rollover detection system, compares angular rates with predicted critical value more accurate than angle criterion
DE10032079A1 (en) * 2000-07-01 2002-01-10 Volkswagen Ag Procedure for controlling damping of vehicle entails registering pre-set value based on speed of travel and steering angle and using this value to adjust shock absorbers if actual existing transverse acceleration is registered
DE10031849B4 (en) * 2000-07-04 2014-05-15 Robert Bosch Gmbh Device and method for stabilizing a vehicle
US7233236B2 (en) * 2000-09-25 2007-06-19 Ford Global Technologies, Llc Passive wheel lift identification for an automotive vehicle using operating input torque to wheel
US6498976B1 (en) * 2000-10-30 2002-12-24 Freightliner Llc Vehicle operator advisor system and method
US6954140B2 (en) * 2001-03-16 2005-10-11 Bendix Commercial Vehicle Systems Llc Method and apparatus for vehicle rollover prediction and prevention
DE10130407A1 (en) * 2001-06-23 2003-01-02 Daimler Chrysler Ag Method for avoiding rollover on semi-trailers
DE10161799A1 (en) * 2001-12-15 2003-06-26 Man Nutzfahrzeuge Ag Procedure for determining the effective overturning moment and / or the current center of gravity of a vehicle on board
US6662898B1 (en) * 2002-10-16 2003-12-16 Ford Global Technologies, Llc Tire side slip angle control for an automotive vehicle using steering actuators
DE10328979B4 (en) * 2003-06-27 2021-07-22 Robert Bosch Gmbh Method for coordinating a vehicle dynamics control system with an active normal force adjustment system
EP1725439B1 (en) * 2004-03-16 2015-12-30 Continental Teves AG & Co. oHG Method for increasing the driving stability of a motor vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097498A1 (en) * 2005-03-17 2006-09-21 Continental Teves Ag & Co. Ohg Method and a adjusting system for stabilising a motor vehicle
US8271159B2 (en) 2005-03-17 2012-09-18 Continental Teves Ag & Co. Ohg Method and control system for stabilizing a vehicle
KR100757643B1 (en) 2005-12-20 2007-09-10 현대모비스 주식회사 Active geometry control suspension and its method
US9045015B2 (en) 2013-03-07 2015-06-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9090281B2 (en) 2013-03-07 2015-07-28 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9145168B2 (en) 2013-03-07 2015-09-29 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9248857B2 (en) 2013-03-07 2016-02-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9283989B2 (en) 2013-03-07 2016-03-15 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
WO2015162121A1 (en) * 2014-04-23 2015-10-29 Continental Teves Ag & Co. Ohg Ascertaining an offset of an inertial sensor
US10766468B2 (en) 2014-04-23 2020-09-08 Continental Teves Ag & Co. Ohg Ascertaining an offset of an inertial sensor
CN106232439A (en) * 2014-06-11 2016-12-14 威伯科有限公司 For the method running electric brake system
US10391986B2 (en) 2014-06-11 2019-08-27 Wabco Gmbh Method for operating an electronic brake system
CN106232439B (en) * 2014-06-11 2020-07-17 威伯科有限公司 Method for operating an electronic brake system
WO2015188916A1 (en) * 2014-06-11 2015-12-17 Wabco Gmbh & Method for operating an electronic brake system
US9845129B2 (en) 2014-08-29 2017-12-19 Ford Global Technologies, Llc Stabilizing arrangement for a tilting running gear of a vehicle and tilting running gear
US9821620B2 (en) 2014-09-01 2017-11-21 Ford Technologies Corporation Method for operating a tilting running gear and an active tilting running gear for a non-rail-borne vehicle
US10076939B2 (en) 2014-11-26 2018-09-18 Ford Global Technologies, Llc Suspension systems for laterally tiltable multitrack vehicles
US9925843B2 (en) 2015-02-24 2018-03-27 Ford Global Technologies, Llc Rear suspension systems for laterally tiltable multitrack vehicles
US10023019B2 (en) 2015-02-24 2018-07-17 Ford Global Technologies, Llc Rear suspension systems with rotary devices for laterally tiltable multitrack vehicles
WO2017153797A1 (en) * 2016-03-07 2017-09-14 Volvo Truck Corporation A method of adjusting an estimated value of the height of the gravity center of a vehicle
US10752224B2 (en) 2016-03-07 2020-08-25 Volvo Truck Corporation Method of adjusting an estimated value of the height of the gravity center of a vehicle

Also Published As

Publication number Publication date
DE102004006696A1 (en) 2005-06-02
US20070078581A1 (en) 2007-04-05
WO2005039955A3 (en) 2007-10-11
EP1680315A2 (en) 2006-07-19
KR20060101471A (en) 2006-09-25
JP2007523780A (en) 2007-08-23
KR101118429B1 (en) 2012-03-06
EP1680315B1 (en) 2009-04-22
DE502004009397D1 (en) 2009-06-04

Similar Documents

Publication Publication Date Title
EP1680315B1 (en) Driving dynamics control system adapted to the loading status of a vehicle
EP1412237B1 (en) Method and device for identifying and eliminating the risk of rollover
EP2268515B1 (en) Method and device for controlling the stability of an utility vehicle
EP1047585B1 (en) Method and device for stabilising a motor vehicle in order to prevent it from rolling over
EP0918003B1 (en) Procedure and device for determining a parameter related to the height of the centre of gravity of a vehicle
EP1030798A1 (en) Method and device for stabilising motor vehicle tilt
EP1858736A1 (en) Method and an adjusting system for stabilising a motor vehicle
DE102005056329A1 (en) Method for controlling a motor vehicle system
WO1999026810A1 (en) Method and device for detecting motor vehicle tilt
EP2318224B1 (en) Method and device for preventing the lateral overturning of motor vehicles
EP1601561A2 (en) Method and system for controlling the driving stability of a vehicle and use of said system
EP1104732A2 (en) Procedure for preventing a vehicle overturning
DE10046036A1 (en) Method for estimating the risk of a vehicle tipping over
DE10356510A1 (en) Vehicle dynamics control with advanced pressure build-up on the wheel to be controlled
EP1131235B1 (en) Method and device for stabilising a vehicle equipped with a slip-controlled brake system
EP1646518B1 (en) Driving dynamics regulation system adapted to the rolling behaviour of a vehicle
EP1706300A1 (en) Device and method for reducing roll in a vehicle
DE102004035579A1 (en) Method and device for tilt stabilization of a vehicle
DE10039108B4 (en) Method and device for determining vehicle state variables
DE10359216A1 (en) Adapted to the roll behavior of a vehicle vehicle dynamics control system
DE102009008958A1 (en) Method and device for stabilizing a vehicle
DE102008003079B4 (en) Method and control device for controlling personal protective equipment for a vehicle
DE10356827A1 (en) Tipping stabilization system with consideration of the steering angle
DE102004035576A1 (en) Stabilization device and method for driving stabilization of a vehicle based on a roll value
DE10331726A1 (en) Motor vehicle rollover tendency recognition procedure records axle side forces and processes them to recognize critical region and apply control inputs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480031375.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004786777

Country of ref document: EP

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005518259

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007078581

Country of ref document: US

Ref document number: 10575768

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067007671

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004786777

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067007671

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10575768

Country of ref document: US