WO2005038289A1 - 車両用油圧式緩衝装置 - Google Patents

車両用油圧式緩衝装置 Download PDF

Info

Publication number
WO2005038289A1
WO2005038289A1 PCT/JP2004/015357 JP2004015357W WO2005038289A1 WO 2005038289 A1 WO2005038289 A1 WO 2005038289A1 JP 2004015357 W JP2004015357 W JP 2004015357W WO 2005038289 A1 WO2005038289 A1 WO 2005038289A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil chamber
small
hydraulic shock
shock absorber
diameter
Prior art date
Application number
PCT/JP2004/015357
Other languages
English (en)
French (fr)
Inventor
Akira Tanaka
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to EP04792526A priority Critical patent/EP1677026A1/en
Priority to JP2005514814A priority patent/JPWO2005038289A1/ja
Publication of WO2005038289A1 publication Critical patent/WO2005038289A1/ja
Priority to US11/406,082 priority patent/US20060185951A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/06Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/0416Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics regulated by varying the resiliency of hydropneumatic suspensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/15Fluid spring
    • B60G2202/154Fluid spring with an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/80Interactive suspensions; arrangement affecting more than one suspension unit
    • B60G2204/81Interactive suspensions; arrangement affecting more than one suspension unit front and rear unit
    • B60G2204/8102Interactive suspensions; arrangement affecting more than one suspension unit front and rear unit diagonally arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/80Interactive suspensions; arrangement affecting more than one suspension unit
    • B60G2204/83Type of interconnection
    • B60G2204/8304Type of interconnection using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • B60G2206/422Accumulators for hydropneumatic springs

Definitions

  • the present invention uses hydraulic shock absorbers for vehicle suspension provided to form a pair with a vehicle such as an automobile, for example. When the operations of these hydraulic shock absorbers are different from each other, the damping force is relatively reduced.
  • the present invention relates to a hydraulic shock absorber for a vehicle.
  • a conventional hydraulic shock absorber of this type is disclosed in, for example, Japanese Patent Application Laid-Open No. 8-132846.
  • the hydraulic shock absorber disclosed in this publication includes a first hydraulic shock absorber and a second hydraulic shock absorber provided as a pair on a vehicle body, and connected to these hydraulic shock absorbers. Intermediate unit.
  • the intermediate unit is connected to a first pressure regulating cylinder having a first oil chamber connected to an oil chamber of a first hydraulic shock absorber, and to an oil chamber of a second hydraulic shock absorber.
  • a second pressure regulating cylinder having a second oil chamber, a free piston fitted into both pressure regulating cylinders, and a free piston formed on a side opposite to the first and second oil chambers with the free piston interposed therebetween.
  • a fixed throttle and a variable throttle provided in a communication passage communicating the first oil chamber and the second oil chamber.
  • the first pressure regulating cylinder and the second pressure regulating cylinder are formed such that one has a larger inner diameter than the other, and are disposed on the same axis.
  • the free piston is formed such that the change in the volume of the first and second oil chambers caused by the movement of the free piston always has a constant ratio.
  • the operating directions of the first hydraulic shock absorber and the second hydraulic shock absorber are reversed, and the first oil chamber and the second oil shock absorber are connected to each other.
  • the hydraulic oil passes through at least one of the fixed throttle and the variable throttle to generate a damping force in the intermediate unit.
  • the operation direction and the operation amount of the first hydraulic shock absorber and the second hydraulic shock absorber have a fixed ratio, the hydraulic oil does not pass through both throttles and is attenuated by the intermediate unit. No force is generated.
  • the conventional hydraulic shock absorber described above uses the first and second hydraulic shock absorbers. For example, by providing them on the left and right sides of the vehicle body, a damping force is generated between the first and second hydraulic shock absorbers and the intermediate unit during rolling. Also, in this hydraulic shock absorber, a damping force is generated only in the first and second hydraulic shock absorbers other than during rolling, for example, during bouncing. That is, in this hydraulic shock absorber, a relatively large damping force is generated at the time of cornering, and the damping force is relatively small at the time of bouncing or the like.
  • the fixed throttle is a check valve force provided with a valve body having a disc-shaped leaf spring force, and a first oil chamber force that allows hydraulic oil to flow to the second oil chamber.
  • Second oil chamber power Two types are provided: one that allows hydraulic oil to flow to the first oil chamber.
  • variable throttle is constituted by a spool valve interposed between the first oil chamber and the second oil chamber so as to be in parallel with the fixed throttle.
  • the spool is pressed by the force of the solenoid by the combined force of the pressing force of the solenoid and the resilient force of the first compression coil spring, while the other is pressed by the resilient force of the second compression coil spring. It is formed so that a force is also pressed.
  • the spool valve is configured such that by switching the solenoid between the excited state and the non-excited state, the spool moves in the axial direction, and the hydraulic oil passage is opened and closed.
  • the spool valve by changing the amount of current supplied to the solenoid, the spool is driven by the combined force of the force of the solenoid and the spring force of the first compression coil spring, and the spring force of the second compression coil spring. It can be moved to a position where the generated force is balanced, and the cross-sectional area of the passage through which the hydraulic oil flows can be adjusted. That is, at the time of energization, the spool moves to a position where the thrust of the solenoid and the reaction force of the balancing spring balance.
  • the present invention has been made to solve such a problem, and it is intended to further reduce the size and cost of the intermediate unit while adopting a configuration capable of adjusting the magnitude of the damping force.
  • the purpose is to:
  • the small-diameter cylinder main body and the large-diameter cylinder main body are connected so that the cylinder holes are coaxial, and the small-diameter piston and the large-diameter piston are positioned in each cylinder hole.
  • These two parts are integrally formed so as to interlock with each other to form a free piston, a first oil chamber is provided on one side of the small-diameter piston in the small-diameter cylinder hole, and a second oil chamber is provided between the small-diameter piston and the large-diameter piston.
  • the high-pressure gas chamber is defined on the other side of the large-diameter piston, and the change in volume of the first oil chamber and the second oil chamber accompanying the movement of the free piston is always constant. And the first oil chamber and the second oil chamber are communicated with each other by a throttle provided in a small-diameter piston, and the first oil chamber is provided so as to form a pair with the vehicle body. It is connected to the oil chamber of one of the hydraulic shock absorbers, In the hydraulic shock absorber for a vehicle in which the second oil chamber communicates with the oil chamber of the other shock absorber, a bypass passage communicating between the first oil chamber and the second oil chamber is provided in the small-diameter cylinder body.
  • An on-off valve opened and closed by a solenoid and a throttle are provided in series in this bypass passage, and the small-diameter cylinder body is formed by a mold that is released in the radial direction.
  • a vehicle hydraulic shock absorber according to the invention described in claim 2 is the vehicle hydraulic shock absorber according to the invention described in claim 1, wherein a plurality of throttles are provided in series in the bypass passage. is there.
  • the vehicle hydraulic shock absorber according to the third aspect of the present invention is the vehicle hydraulic shock absorber according to the first aspect of the present invention, wherein the valve element of the on-off valve opens and closes. This is a configuration of
  • the hydraulic shock absorber for a vehicle according to the invention as set forth in claim 4 is the hydraulic shock absorber for a vehicle according to the invention as set forth in claim 1, wherein the mounting portion for the solenoid has a low bottomed cylindrical shape.
  • the small-diameter cylinder body has a valve seat and a throttle provided on the bottom wall, and one end of the solenoid is attached to the solenoid mounting portion.
  • the solenoid is provided with respect to the axis of the small-diameter cylinder body, in contrast to the vehicle hydraulic shock absorber according to the invention set forth in claim 1. It is inclined.
  • the on-off valve when the on-off valve is closed, the first oil chamber and the second oil chamber are communicated via one throttle, and the on-off valve is opened.
  • both oil chambers communicate with each other through the plurality of throttles, and the damping force is relatively reduced.
  • the magnitude of the damping force generated by switching the open / close state of the on-off valve can be increased or decreased, and the damping force is adjusted using the spool valve.
  • the damping force can be changed with a simpler structure than that of the one, and the manufacturing cost can be reduced.
  • the mounting portion for the solenoid, the hydraulic pipe mounting portion, and the projecting portions such as the boss for mounting the vehicle body frame can be provided on the small-diameter cylinder body by manufacturing, the manufacture of the small-diameter cylinder body is facilitated (low Costly dung is planned).
  • the protruding portions can be disposed on one side and the other in the radial direction of the small-diameter cylinder body, when a plurality of protruding portions are disposed, for example, radially in the circumferential direction of the small-diameter cylinder body, In comparison, the small-diameter cylinder body can be formed more compactly in the mold release direction of the manufacturing die.
  • the hydraulic oil when the hydraulic oil flows through the bypass passage, the hydraulic oil repeats expansion and contraction, and the pressure loss increases as compared with the case where only one throttle is provided.
  • the aperture should be small The higher the manufacturing cost, the higher the cost.
  • a highly reliable hydraulic shock absorber for a vehicle can be provided because a required amount of damping force can be generated by using a throttle having a hole diameter that does not block minute foreign substances contained in hydraulic oil. be able to.
  • the throttle can be provided integrally with the on-off valve, the number of parts can be reduced as compared with a configuration in which the throttle is formed separately from the on-off valve. Thus, further cost reduction can be realized.
  • the solenoid can be provided so as to be exposed outside the small-diameter cylinder main body, so that the small-diameter cylinder main body is smaller in size than a configuration in which the solenoid is housed inside the small-diameter cylinder main body. Therefore, the cost of the hydraulic shock absorber can be reduced.
  • the hydraulic shock absorber for a vehicle according to the invention according to claim 5 has a state in which the solenoid is mounted on the small-diameter cylinder main body as compared with the case where the solenoid protrudes along the axial direction at one end of the small-diameter cylinder main body. And can be formed compactly.
  • FIG. 1 is a view showing a vehicle hydraulic shock absorber according to the present invention.
  • FIG. 2 is a front view of an intermediate unit.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 4.
  • FIG. 4 is a longitudinal sectional view of an intermediate unit.
  • FIG. 5 is an enlarged sectional view showing a valve seat portion of the on-off valve.
  • FIG. 6 is a cross-sectional view showing a part of a throttle on a free piston side in an enlarged manner.
  • FIG. 7 is an enlarged plan view showing a part of a plate-shaped valve element.
  • FIG. 8 is a graph showing damping force characteristics of an intermediate unit.
  • FIG. 9 is a perspective view showing an example of mounting on an automobile.
  • FIG. 1 is a view showing a vehicle hydraulic shock absorber according to the present invention.
  • Fig. 2 is a front view of the intermediate unit
  • Fig. 3 is a sectional view taken along the line III-III in Fig. 4
  • Fig. 4 is a longitudinal sectional view of the intermediate unit
  • Fig. 5 is an enlarged sectional view showing a valve seat portion of the on-off valve
  • FIG. 7 is a plan view showing an enlarged part of the plate-shaped valve element
  • FIG. 8 is a graph showing the attenuation characteristics of the intermediate unit
  • FIG. 9 is a perspective view showing an example of mounting on an automobile.
  • the reference numeral 1 indicates a hydraulic shock absorber for front wheels of a vehicle according to the present embodiment.
  • the hydraulic shock absorber 1 includes a first hydraulic shock absorber 2, a second hydraulic shock absorber 3, and an intermediate unit 4 connected to the hydraulic shock absorbers 2, 3.
  • the first and second hydraulic shock absorbers 2 and 3 have a cylinder body 5 defined by a piston 6 into an upper oil chamber 7 and a lower oil chamber 8, and the inside is filled with hydraulic oil. Further, the piston 6 has a communication passage 9 for communicating the upper oil chamber 7 and the lower oil chamber 8, and is provided with a throttle 10.
  • the upper ends of the piston rods 11 of the first and second hydraulic shock absorbers 2, 3 according to the present embodiment are mounted on a vehicle body (not shown) of an automobile.
  • the lower ends of the cylinder bodies 5 of the first and second hydraulic shock absorbers 2 and 3 are pivotally supported by a portion that moves up and down with respect to the vehicle body, such as a front wheel suspension link (not shown). That is, the first and second hydraulic shock absorbers 2, 3 are interposed between the vehicle body side and the front wheel side.
  • a first hydraulic shock absorber 2 is disposed on the right side of the vehicle body
  • a second hydraulic shock absorber 3 is disposed on the left side of the vehicle body.
  • the lower oil chamber 8 of the hydraulic shock absorber 2 located on the right side of the vehicle body (the right side in FIG. Connected to the hydraulic pipe mounting portion 13.
  • the lower oil chamber 8 of the other hydraulic shock absorber 3 is connected to a second hydraulic pipe mounting portion 15 of the intermediate unit 4 via a hydraulic pipe 14.
  • the intermediate unit 4 has a small-diameter cylinder body 21 to which the first and second hydraulic shock absorbers 2 and 3 are connected, and is attached to one end of the small-diameter cylinder body 21.
  • the cylinder body 22 includes a large-diameter cylinder body 22 and a free piston 23 fitted inside the cylinder bodies 21 and 22.
  • the small-diameter cylinder body 21 is formed into a predetermined shape by fabrication. After machining, machining such as grinding and drilling is performed, and the cylinder hole 21a and other components described later are formed so as to have design precision.
  • the manufacturing die for forming the small-diameter cylinder body 21 is provided with first and second dies that are divided in the radial direction of the small-diameter cylinder body 21 and a cylinder die 21a. It is made up of children.
  • the first mold and the second mold are formed such that the mold splitting surface is located at a position indicated by a chain line C in FIG.
  • the small-diameter cylinder body 21 includes first and second hydraulic pipe mounting portions 13 and 15 and a solenoid A mounting portion 24 and mounting bosses 25 and 26 are provided.
  • the cylinder hole 21a is open at one end (the right end in FIG. 4) of the small-diameter cylinder main body 21 and communicates with the inside of a large-diameter cylinder main body 22 described later.
  • the first hydraulic pipe mounting portion 13 is formed so as to have a cylindrical shape, and is located on the same axis as the cylinder hole 21a at an end of the small-diameter cylinder main body 21 opposite to the large-diameter cylinder main body 22. It is protruded so as to make.
  • the inside of the first hydraulic pipe mounting portion 13 is communicated with the inside of the cylinder hole 21a.
  • the second hydraulic pipe mounting portion 15 is formed to have a cylindrical shape, and is obliquely protruded from an outer portion of an end of the small-diameter cylinder main body 21 on the large-diameter cylinder main body 22 side.
  • the direction in which the second hydraulic pipe mounting portion 15 inclines is such that it gradually becomes closer to the large-diameter cylinder body 22 as it goes radially outward of the small-diameter cylinder body 21.
  • the inside of the second hydraulic pipe mounting portion 15 is communicated with a second hydraulic oil passage 28 to be described later via a first hydraulic oil passage 27.
  • the second hydraulic oil passage 28 opens at one end surface of the small-diameter cylinder main body 21 on the side of the large-diameter cylinder main body 22, and the opening force passes through the small-diameter cylinder main body 21 along the axial direction of the cylinder hole 21 a.
  • a first throttle 29 is provided in the middle of the second hydraulic oil passage 28 and on the other end side of the connection portion with the first hydraulic oil passage 27. The first throttle 29 is screwed into the second hydraulic oil passage 28 from an opening.
  • the other end of the second hydraulic oil passage 28 communicates with the inside of the cylinder hole 21a via an on-off valve 30 and a second throttle 31 described later.
  • the on-off valve 30 is a solenoid valve formed on the small-diameter cylinder body 21.
  • the mounting part 24 for the guide is configured to function as a valve body, and is driven by a solenoid 32 mounted on the mounting part 24.
  • the mounting portion 24 is formed so as to have a cylindrical shape with a bottom, and is projected obliquely at an end of the small-diameter cylinder main body 21 opposite to the large-diameter cylinder main body 22.
  • the direction in which the mounting portion 24 inclines is a direction in which the mounting portion 24 gradually moves away from the large-diameter cylinder body 22 in accordance with the outward force in the radial direction of the small-diameter cylinder body 21.
  • a valve seat 34 on which the valve body 33 is seated is formed, and one end of the second hydraulic oil passage 28 is opened.
  • the valve body is formed so as to have a rod shape with a conical tip, and is supported by the solenoid 32 while being positioned on the same axis as the mounting portion 24.
  • the solenoid 32 is connected to a damping force switching switch (not shown).
  • the valve body 33 is seated on the valve seat 34 as shown in FIG.
  • the valve body 33 is switched to the open state in which the valve body 33 is separated from the valve seat 34, or to one of the states.
  • the solenoid 32 has a built-in return spring (not shown) that urges the valve element 33 in the opening direction, and when energized, sets the spring force of the return spring to To move the valve body 33 to the closing side.
  • the valve seat 34 is formed by providing a circular recess 35 at the bottom of the shaft center of the mounting portion 24.
  • One end of the second diaphragm 31 is open at the axis of the circular concave portion 35.
  • the second throttle 31 according to this embodiment is formed by forming a small-diameter hole in the bottom wall of the mounting portion 24.
  • the mounting bosses 25 and 26 provided on the small-diameter cylinder main body 21 are provided at three locations in the radial direction on the mold splitting surface of the small-diameter cylinder main body 21 (one upper location in FIG. 3). And two lower locations), and holes 25a and 26a are provided for fixing bolts.
  • the large-diameter cylinder main body 22 is formed to have a bottomed cylindrical shape, is fitted to one end of the small-diameter cylinder main body 21 in a state of being located on the same axis as the cylinder hole 21a, and has a circlip of 2 lb. Fixed. An O-ring 41 is interposed in this fitting part so as to be liquid-tight.
  • the large-diameter cylinder body 22 according to this embodiment has a gas injection hole 22a at the bottom. At the same time, a rubber sheet 42 for preventing gas leakage is adhered, and after gas injection, the sheet 42 is pressed by the gas pressure into the gas injection hole 22a.
  • the steel ball 22b is press-fitted into the gas injection hole 22a after gas injection.
  • the free piston 23 has a large-diameter piston 43 formed so as to have a bottomed cylindrical shape, and is attached to the bottom (the left end in FIG. 4) of the large-diameter piston 43 so as to pass through the inside of the small-diameter cylinder main body 21. And a small-diameter piston 46 defined by an oil chamber 44 and a second oil chamber 45.
  • the large-diameter piston 43 is formed integrally with a piston main body 47 located at the end on the opening side and a bottomed cylindrical portion 48 located at the other end.
  • the piston body 47 is formed so as to have an outer diameter larger than the bottomed cylindrical portion 48, and an O-ring 49 and a seal ring 50 are mounted on the outer peripheral portion, so that the piston body 47 is movably fitted into the large-diameter cylinder body 22.
  • the large-diameter cylinder body 22 is internally defined by a large-diameter piston 43 into a high-pressure gas chamber 51 and a second oil chamber 45.
  • the high-pressure gas chamber 51 is located on the bottom side of the large-diameter cylinder main body 22, and is filled with high-pressure N gas.
  • the second oil chamber 45 is filled with hydraulic oil, and is connected to a second hydraulic oil passage 28 that opens at one end of the small-diameter cylinder main body 21, and the middle of the second hydraulic oil passage 28.
  • the first hydraulic oil passage 27 communicates with the second hydraulic pipe mounting portion 15.
  • the other end of the second hydraulic oil passage 28 is provided with the first and second throttles 29 and 31 and the on-off valve 30 as described above, and is communicated with the first oil chamber 44.
  • a bypass passage 52 referred to in the present invention is constituted by a passage including the second hydraulic oil passage 28, the first and second throttles 29 and 31, and the on-off valve 30. .
  • a first throttle 29 and a second throttle 31 are provided in a state of being arranged in series.
  • the bottomed cylindrical portion 48 of the large-diameter piston 43 is formed so that the outer diameter is smaller than the inner diameter of the small-diameter cylinder main body 21, and the end opposite to the piston main body 47 is formed in the small-diameter cylinder main body 21. Has been inserted. For this reason, the second oil chamber 45 is communicated with the inside of the small-diameter cylinder body 21.
  • the small-diameter piston 46 is fixed to the column 53 by a fixing bolt 54, and the small-diameter cylinder body is 21 is movably fitted.
  • the first oil chamber 44 which is defined by the small-diameter piston 46 and the second oil chamber 45, is filled with hydraulic oil and communicates with the first hydraulic pipe mounting portion 13.
  • the small-diameter piston 46 is formed in a disk shape, and has a seal ring 55 attached to the outer peripheral portion.
  • the small-diameter piston 46 and the large-diameter biston 43 are formed so that the effective cross-sectional area of the first oil chamber 44 and the effective cross-sectional area of the second oil chamber 45 match.
  • the intermediate unit 4 is configured such that the amount of change in the volume in the small-diameter cylinder main body 21 and that in the large-diameter cylinder main body 22 always have a constant ratio.
  • the small-diameter piston 46 is provided with a third throttle 56 so as to communicate the first oil chamber 44 and the second oil chamber 45.
  • the third throttle 56 has a first communication passage 57 and a second communication passage 58 formed so as to penetrate the small-diameter piston 46, and these communication passages. It comprises a first check valve 59 and a second check valve 60 interposed in 57 and 58.
  • the first communication path 57 and the second communication path 58 are provided two each in the circumferential direction of the small-diameter piston 46. As shown in FIG. One end is opened, and the other end is opened in annular concave portions 61, 62 formed on both end surfaces of the small diameter piston 46.
  • the first communication path 57 and the second communication path 58 are drawn so as to be located on the same plane, and in FIG. 6, the first communication path 57 and the second communication path 58 are drawn close to each other.
  • the first communication passage 57 and the second communication passage 58 are actually formed at positions shifted by 90 ° in the circumferential direction of the small-diameter piston 46!
  • One end of the first communication passage 57 opens at a radially outer end of the small-diameter piston 46 on the side of the first oil chamber 44, and the other end has an annular shape on the side of the second oil chamber 45.
  • the opening 61 is formed in the recess 61.
  • One end of the second communication passage 58 opens to the radially outer end of the small-diameter piston 46 on the second oil chamber 45 side, and the other end has an annular recess 62 on the first oil chamber 44 side. Open inside.
  • each of the first and second check valves 59 and 60 has a valve body 63 composed of three leaf springs, and annular recesses 61 and 62 are formed by these valve bodies 63. It opens and closes.
  • the three valve bodies 63 of each check valve are each formed in a disk shape so as to be able to close the annular concave portions 61 and 62, and are stacked so as to be positioned on the same axis to form the washer 54a.
  • the first and second check valves 59 and 60 are fastened to the large-diameter piston 43 by fixing bolts 54 while being sandwiched between the small-diameter piston 46 and the washer 54a.
  • the first check valve 59 is mounted so as to close the annular recess 61 (first communication path 57) located on the second oil chamber 45 side with an initial set load.
  • the second check valve 60 is mounted so as to close an annular concave portion 62 (second communication path 58) located on the first oil chamber 44 side with an initial set load.
  • the valve body 63 that comes into contact with the opening portions of the annular concave portions 61 and 62 has an annular concave portion 61 as shown in FIGS. , 62 and the first and second oil chambers 44, 45 are formed with at least one notch 64 at the outer peripheral portion.
  • the notch 64 is formed as a part of the third diaphragm 56.
  • the intermediate unit 4 configured as described above is mounted on a support stay 66 of the vehicle body frame 65 as shown in FIG.
  • the support stay 66 is formed to have a U-shape when viewed from the front as shown in FIG. 3, and has mounting seats 66a and 66b formed at the upper end and the lower end.
  • the upper mounting seat 66a has one mounting boss 25 of the intermediate unit 4 fixed thereto.
  • the other mounting bosses 26, 26 of the intermediate unit 4 are fixed to the lower mounting seat 66b.
  • the intermediate unit 4 is configured such that the axes of the small-diameter cylinder main body 21 and the large-diameter cylinder main body 22 are substantially horizontal, and the mounting bosses 25 and 26 extend upward and downward from the small-diameter cylinder main body 21. Attached to support stay 66.
  • the two hydraulic shock absorbers 2, 3 Hydraulic oil flows between the upper and lower oil chambers when the hydraulic oil passes through the throttle 10. At this time, an amount of hydraulic oil corresponding to the increase or decrease in the volume of the piston rod 11 in the cylinder body 5 flows into and out of the intermediate unit 4, and the free piston 23 moves. For example, when hydraulic oil flows out of the left and right hydraulic shock absorbers 2 and 3, the first and second hydraulic buffers The free piston 23 moves to the right in FIG. The operation of the free piston 23 at this time is the same regardless of whether the on-off valve 30 is in the open state or the closed state.
  • the first check valve 59 that opens and closes the first communication passage 57 of the small-diameter piston 46 passes through the first communication passage 57, and the hydraulic pressure is pushed from the first oil chamber 44 side to open it. Acts. At this time, when a small amount of hydraulic oil passes through the notch 64 provided in the first check valve 59, the degree of pressure rise is adjusted, and the hydraulic pressure exceeds the initial set load of the first check valve 59. The first check valve 59 opens. The opening of the first check valve 59 allows the hydraulic oil to pass through the third throttle 56 of the small-diameter piston 46.
  • the on-off valve 30 When the on-off valve 30 is open, the first oil chamber 44 and the second oil chamber 45 are connected to the bypass passage 52 (the second hydraulic oil passage 28, the first and second throttles 29, 31). And on-off valve 30). In this state, for example, when the oil pressure in the first oil chamber 44 becomes higher than the oil pressure in the second oil chamber 45, the hydraulic oil passes through the first, the third throttles 29, 31, 56, and Oil chamber 44 power of the second oil chamber 45 flows.
  • FIG. 8 shows the changes in damping force and differential pressure generated in the intermediate unit 4.
  • the vertical axis represents the damping force
  • the horizontal axis represents the piston speed.
  • the piston speed refers to the speed of one piston 6 of the left and right hydraulic shock absorbers 2 and 3 relative to the speed of the other piston 6, and both pistons 6 and 6 move in the same direction at the same speed. It is a value that sometimes becomes 0.
  • a change in damping force when the on-off valve 30 is closed is indicated by a solid line
  • a change in damping force when the on-off valve 30 is opened is indicated by a two-dot chain line.
  • the vehicle hydraulic shock absorber 1 includes the first and second bypass passages 52 communicating the first oil chamber 44 and the second oil chamber 45 of the intermediate unit 4. Since the throttles 29 and 31 and the on-off valve 30 are provided, the magnitude of the damping force generated in the intermediate unit 4 can be increased or decreased by switching the on-off state of the on-off valve 30. In other words, the vehicle hydraulic shock absorber 1 can change the damping force with a simple structure as compared with a device that adjusts the damping force by using a spool valve, so that the manufacturing cost can be reduced.
  • the projecting portions such as the solenoid mounting portion 24, the hydraulic pipe mounting portions 13, 15, and the vehicle body frame mounting bosses 25, 26 are structured to have a small-diameter cylinder body. 21. Therefore, the small-diameter cylinder main body 21 can be easily formed as compared with the case where these are formed as separate members, such as when they are welded to the small-diameter cylinder main body 21.
  • the protruding portions are provided on the ⁇ -shaped mold surface of the small-diameter cylinder main body 21, a plurality of protruding portions are disposed, for example, radially dispersed in the circumferential direction of the small-diameter cylinder main body 21.
  • the productivity is better.
  • the small diameter cylinder body 21 can be formed compactly in the mold split direction (the left-right direction in FIG. 3) of the manufacturing die.
  • the intermediate unit 4 is mounted on the body frame 65 with the mounting bosses 25 and 26 extending upward and downward and the axes of the small-diameter cylinder body 21 and the large-diameter cylinder body 22 pointing in the front-rear direction of the vehicle body. As a result, the space occupied by the intermediate cut 4 is reduced in the vehicle width direction.
  • the vehicle hydraulic shock absorber 1 can further reduce the size and cost of the small-diameter cylinder main body 21 while providing a mechanism for adjusting the magnitude of the damping force.
  • the first throttle 29 and the second throttle 31 are provided in series in the bypass passage 52. Hydraulic oil flows through this bypass passage 52. When this occurs, the hydraulic oil repeats expansion and contraction, and the pressure loss increases as compared with the case where only one throttle is used. For this reason, in the vehicle hydraulic shock absorber 1 according to this embodiment, while using the first and second throttles 29 and 31 having a relatively large hole diameter, one throttle having a relatively small hole diameter is used. A damping force equivalent to the case when it was made could be generated. In general, the production cost of the aperture becomes smaller as the hole diameter becomes smaller. Therefore, by adopting the configuration of this embodiment, the cost can be further reduced.
  • the intermediate unit 4 of the vehicle hydraulic shock absorber 1 has a large-diameter cylinder main body 22 attached to one end of a small-diameter cylinder main body 21 and an on-off valve driving solenoid 32 provided at the other end. Therefore, the center of gravity can be positioned near the mounting bosses 25 and 26 of the small-diameter cylinder body 21. For this reason, when mounting the intermediate unit 4 to the vehicle body frame 65 so as to extend in the horizontal direction, it is easy to balance the weight, so that the mounting bosses 25 and 26 can be formed small.
  • the solenoid 32 since the solenoid 32 according to this embodiment is inclined with respect to the axis of the small-diameter cylinder body 21, the solenoid 32 protrudes from one end of the small-diameter cylinder body 21 along the axial direction.
  • the intermediate unit 4 provided with the solenoid 32 can be made compact.
  • a plurality of throttles can be provided in the second hydraulic oil passage 28 in series, and the on-off valve 30 and the first valve can be provided.
  • a plurality of throttles may be provided between the oil chamber 44 and the throttle in series.
  • a plurality of throttles are provided in the second hydraulic oil passage 28, they are provided on the first oil chamber 44 side (opening / closing valve 30 side) from a connection portion with the first hydraulic oil passage 27.
  • a second throttle 31 may be provided between the on-off valve 30 and the first oil chamber 44.
  • an expansion chamber having a relatively large inner diameter is provided between the small diameter holes of the respective throttles.
  • the first oil chamber 44 and the second oil chamber 45 of the intermediate unit 4 are connected to the lower oil chamber 8 of the hydraulic shock absorbers 2 and 3.
  • the first and second oil chambers 44, 45 can be connected to the upper oil chamber 7 of the hydraulic shock absorbers 2, 3.
  • the hydraulic shock absorber 1 having the configuration in which the volume changes of the first and second oil chambers 44 and 45 always match is shown. According to the characteristics of the hydraulic shock absorber, the ratio can be set to be always constant.
  • the first and second oil chambers 45 are connected to the left and right hydraulic shock absorbers 2 and 3 as shown in the above-described embodiment, and are also located on one side in the left-right direction of the vehicle body. It can be connected to the front-wheel hydraulic shock absorber and the rear-wheel hydraulic shock absorber.As shown in Fig. 9, one of the front-wheel hydraulic shock absorbers 2a in the left-right direction and the other in the left-right direction. It can also be connected to the rear wheel hydraulic shock absorber 3a. In the example shown in FIG. 9, two sets of hydraulic shock absorbers 1 and 1 are used.
  • the intermediate units 4, 4 of these hydraulic shock absorbers 1, 1 are located at the center in the front-rear direction of the vehicle body and on both sides in the vehicle width direction, the axis is directed in the front-rear direction, and the solenoid 32 is inclined forward. It is mounted as shown in Fig. 4 pointing upward.
  • the switching between the energized state and the non-excited state of the on-off valve driving solenoid 32 is performed not only by a switch operated by the occupant, but also by automatic control in accordance with running conditions and the occupant's riding state. You can make it switch.
  • the present invention can be used for passenger vehicles such as automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

 車体に対をなすように設けられた油圧式緩衝器の油室に連通する第1の油室44と第2の油室45とを有する小径シリンダ本体21と大径シリンダ本体22とを備える。これらの第1の油室44と第2の油室45の容積の変化分が常に一定の比となるように前記両シリンダ本体にフリーピストン23を嵌挿させる。前記第1の油室44と第2の油室45とを第3の絞り56によって連通させる。前記両油室どうしを接続するバイパス通路52に、ソレノイド32によって開閉される開閉弁30と第1および第2の絞り29,31とを直列に設ける。前記小径シリンダ21を径方向に型割りする金型により鋳造によって成形する。ソレノイド用取付部24と、油圧管取付部13,15と、取付用ボス25,26とを前記金型の型割り面上に配設した。                                                                                 

Description

明 細 書
車両用油圧式緩衝装置
技術分野
[0001] 本発明は、例えば自動車などの車両に対をなすように設けられた車両懸架用の油 圧式緩衝器を用い、これらの油圧式緩衝器の動作が互いに異なる場合に減衰力を 相対的に増大させる車両用油圧式緩衝装置に関するものである。
背景技術
[0002] 従来のこの種の油圧式緩衝装置としては、例えば特開平 8— 132846号公報に開 示されたものがある。この公報に示された油圧式緩衝装置は、自動車の車体に対を なすように設けられた第 1の油圧式緩衝器および第 2の油圧式緩衝器と、これらの油 圧式緩衝器に接続された中間ユニットを備えている。
[0003] この中間ユニットは、第 1の油圧式緩衝器の油室に連通された第 1の油室を有する 第 1の調圧シリンダと、第 2の油圧式緩衝器の油室に連通された第 2の油室を有する 第 2の調圧シリンダと、両調圧シリンダに嵌挿されたフリーピストンと、このフリーピスト ンを挟んで第 1および第 2の油室とは反対側に形成された高圧ガス室と、第 1の油室 と第 2の油室とを連通する連通路に設けられた固定絞りおよび可変絞りなどによって 構成されている。第 1の調圧シリンダと第 2の調圧シリンダは、一方が他方より内径が 大きくなるように形成され、同一軸線上に配設されている。フリーピストンは、これが移 動することにより生じる第 1、第 2の油室の容積の変化分が常に一定の比となるように 形成されている。
[0004] このように構成された従来の油圧式緩衝装置においては、例えば第 1の油圧式緩 衝器と第 2の油圧式緩衝器の動作する方向が逆となり、第 1の油室と第 2の油室とで 圧力差が生じるときに、固定絞りと可変絞りの少なくとも一方を作動油が通過すること によって中間ユニットで減衰力が生じる。一方、第 1の油圧式緩衝器と第 2の油圧式 緩衝器の動作方向 ·動作量が一定の比となる場合は、両絞りを作動油が通過するこ と力 Sなく、中間ユニットで減衰力が発生することはない。
[0005] このため、上述した従来の油圧式緩衝装置は、第 1および第 2の油圧式緩衝器を 例えば車体左側と車体右側に設けることによって、ローリング時には第 1 ·第 2の油圧 式緩衝器と中間ユニットとで減衰力が生じる。また、この油圧式緩衝装置は、ローリン グ時以外の例えばバウンシング時などでは第 1 ·第 2の油圧式緩衝器でのみ減衰力 が生じる。すなわち、この油圧式緩衝装置においては、コーナリング時に相対的に大 きな減衰力が発生し、バウンシング時などでは減衰力が相対的に小さくなる。
[0006] 固定絞りは、円板状を呈する板ばね力 なる弁体を備えた逆止弁力 なり、第 1の 油室力 第 2の油室へ作動油が流れることを許容するものと、第 2の油室力 第 1の 油室へ作動油が流れることを許容するものとの 2種類設けられている。
可変絞りは、固定絞りと並列になるように第 1の油室と第 2の油室との間に介装され たスプール弁によって構成されて 、る。
[0007] このスプール弁は、スプールがソレノイドによる押圧力と第 1の圧縮コイルばねの弹 発力との合力により一方力も押されるとともに、第 2の圧縮コイルばねの弹発力によつ て他方力も押されるように形成されている。また、このスプール弁は、ソレノイドの励磁 状態 '非励磁状態を切換えることによって、スプールが軸線方向に移動し、作動油通 路が開閉されるように構成されて 、る。
[0008] このスプール弁によれば、ソレノイドへの通電量を変えることにより、スプールはソレ ノイドの力と第 1の圧縮コイルばねの弹発力との合力と、第 2の圧縮コイルばねの弹 発力とが釣り合うような位置に移動し、作動油が流れる通路の断面積を調整すること ができる。すなわち、通電時には、ソレノイドの推力と釣合いばねの反力とがバランス する位置までスプールが移動する。
[0009] このため、上述した従来の油圧式緩衝装置においては、ソレノイドの通電量を変え 、可変絞りの通路断面積をスプール弁により変えることによって、作動油が流れるとき の抵抗が増減するから、第 1の油圧式緩衝器と第 2の油圧式緩衝器のピストンスピー ド差に対して発生する減衰力の大きさを外部から調整することができる。
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、上述したように構成された従来の車両用油圧式緩衝装置は、中間ュ ニットにスプール弁とソレノイドとからなる減衰力調整機構が設けられているために、 中間ユニットの構造が複雑になるとともに大型になり、製造コストが高くなるという問題 があった。
[0011] 本発明はこのような問題を解消するためになされたもので、減衰力の大きさを調整 することができる構成を採りながら、中間ユニットのより一層の小型化とコストダウンと を図ることを目的とする。
課題を解決するための手段
[0012] 本発明に係る車両用油圧式緩衝装置は、小径シリンダ本体と大径シリンダ本体とを シリンダ孔が同軸となるよう連結し、各シリンダ孔内に小径ピストンと大径ピストンを位 置させ、これら両者を互いに連動するよう一体的に構成してフリーピストンとなし、小 径シリンダ孔内の小径ピストンの一側に第 1の油室を、小径ピストンと大径ピストンとの 間に第 2の油室を、大径ピストンの他側に高圧ガス室をそれぞれ画成し、前記フリー ピストンの移動に伴なうこれら第 1の油室と第 2の油室の容積の変化分が常に一定の 比となるようにするとともに、前記第 1の油室と第 2の油室を小径ピストンに設けた絞り によって連通させ、前記第 1の油室を、車体に対をなすように設けられた油圧式緩衝 器のうちの一方の緩衝器の油室に連通させ、前記第 2の油室を他方の緩衝器の油 室に連通させた車両用油圧式緩衝装置において、前記小径シリンダ本体内に、第 1 の油室と第 2の油室とを連通するバイパス通路を設け、このバイパス通路に、ソレノィ ドによって開閉される開閉弁と絞りとを直列に設けてなり、前記小径シリンダ本体を径 方向に離型する铸型によって成形し、この小径シリンダ本体に、前記ソレノイドを取付 けるソレノイド用取付部と、前記第 1の油室と第 2の油室を前記油圧式緩衝器に接続 する油圧管を取付けるための油圧管取付部と、小径シリンダ本体を車体フレーム側 に取付けるボスとを前記铸型の型割り面上に配設したものである。
[0013] 請求項 2に記載した発明に係る車両用油圧式緩衝装置は、請求項 1に記載した発 明に係る車両用油圧式緩衝装置において、バイパス通路に絞りを直列に複数設け たものである。
としたものである。
請求項 3に記載した発明に係る車両用油圧式緩衝装置は、請求項 1に記載した発 明に係る車両用油圧式緩衝装置において、開閉弁の弁体が開閉する孔によって絞 りを構成したものである。
[0014] 請求項 4に記載した発明に係る車両用油圧式緩衝装置は、請求項 1に記載した発 明に係る車両用油圧式緩衝装置において、ソレノイド用取付部は、低い有底円筒状 を呈するように小径シリンダ本体に突設されるとともに、底壁に弁座と絞りとが設けら れ、ソレノイドの一端部がこのソレノイド用取付部に取付けられているものである。
[0015] 請求項 5に記載した発明に係る車両用油圧式緩衝装置は、請求項 1に記載した発 明に係る車両用油圧式緩衝装置にぉ 、て、ソレノイドが小径シリンダ本体の軸線に 対して傾斜して 、るものである。
発明の効果
[0016] 以上説明したように、本発明によれば、開閉弁が閉じている状態では、第 1の油室 と第 2の油室とがーつの絞りを介して連通され、開閉弁を開くことによって、両油室が 複数の絞りを介して連通されるようになり、減衰力が相対的に小さくなる。このため、こ の車両用油圧式緩衝装置は、開閉弁の開閉状態を切換えることによって発生する減 衰力の大きさを増減させることができるから、スプール弁を使用して減衰力を調整す るものに較べて簡単な構造で減衰力を変えることができ、製造コストを低減することが できる。
[0017] また、ソレノイド用取付部と、油圧管取付部と、車体フレーム取付用ボスなどの突出 部分を铸造によって小径シリンダ本体に設けることができるから、小径シリンダ本体の 製造が容易になる (低コストィ匕が図られる)。そのうえ、突出部分を小径シリンダ本体 の径方向の一方と他方とに配設することができるから、複数の突出部分が小径シリン ダ本体の周方向に例えば放射状に分散して配設される場合に較べて、小径シリンダ 本体を铸造用金型の離型方向にコンパクトに形成することができる。
したがって、減衰力の大きさを調整する機構を装備しているにもかかわらず、小径 シリンダ本体のより一層の小型化とコストダウンとを図ることができる。
[0018] 請求項 2記載の発明によれば、バイパス通路を作動油が流れるときは、作動油が膨 張と収縮とを繰り返し、絞りが一つである場合に較べて圧力損失が大きくなるから、相 対的に孔径が大きい絞りを使用しながら、孔径が相対的に小さい絞りを一つ使用し たときと同等の減衰力を発生させることができる。一般に、絞りは、孔径カ 、さくなれ ばなるほど製造コストが高くなるから、この発明の構成を採ることにより、より一層のコ ストダウンを図ることができる。
また、作動油に含まれる微小な異物が詰まることがない孔径の絞りを使用して必要 な大きさの減衰力を発生させることができるから、信頼性が高い車両用油圧式緩衝 装置を提供することができる。
[0019] 請求項 3記載の発明によれば、絞りを開閉弁に一体的に設けることができるから、 絞りを開閉弁とは別体に形成する構成に較べて部品数を低減することができ、さらな るコストダウンを実現することができる。
[0020] 請求項 4記載の発明によれば、ソレノイドを小径シリンダ本体の外に露出するように 設けることができるから、小径シリンダ本体の内部にソレノイドを収容する構成に較べ て小径シリンダ本体の小型化を図ることができ、油圧式緩衝装置のコストダウンを図る ことができる。
[0021] 請求項 5記載の発明に係る車両用油圧式緩衝装置は、ソレノイドが小径シリンダ本 体の一端部力 軸線方向に沿って突出する場合に較べて、ソレノイドを小径シリンダ 本体に装備した状態でコンパクトに形成することができる。
図面の簡単な説明
[0022] [図 1]図 1は、本発明に係る車両用油圧式緩衝装置を示す図である。
[図 2]図 2は、中間ユニットの正面図である。
[図 3]図 3は、図 4における III III線断面図である。
[図 4]図 4は、中間ユニットの縦断面図である。
[図 5]図 5は、開閉弁の弁座部分を拡大して示す断面図である。
[図 6]図 6は、フリーピストン側の絞りの一部を拡大して示す断面図である。
[図 7]図 7は、板状弁体の一部を拡大して示す平面図である。
[図 8]図 8は、中間ユニットの減衰力特性を示すグラフである。
[図 9]図 9は、自動車への搭載例を示す斜視図である。
発明を実施するための最良の形態
[0023] 以下、本発明に係る車両用油圧式緩衝装置の一実施の形態を図 1ないし図 9によ つて詳細に説明する。 図 1は本発明に係る車両用油圧式緩衝装置を示す図で、同図においては、一対の 油圧式緩衝器の一部を破断した状態で描いてある。図 2は中間ユニットの正面図、 図 3は図 4における III III線断面図、図 4は中間ユニットの縦断面図、図 5は開閉弁の 弁座部分を拡大して示す断面図、図 6はフリーピストン側の絞りの一部を拡大して示 す断面図、図 7は板状弁体の一部を拡大して示す平面図、図 8は中間ユニットの減 衰カ特性を示すグラフ、図 9は自動車への搭載例を示す斜視図である。
[0024] これらの図において、符号 1で示すものは、この実施の形態による車両の前輪用油 圧式緩衝装置である。この油圧式緩衝装置 1は、第 1の油圧式緩衝器 2と第 2の油圧 式緩衝器 3と、これらの油圧式緩衝器 2, 3に接続された中間ユニット 4とから構成され ている。
第 1および第 2の油圧式緩衝器 2, 3は、シリンダ本体 5内がピストン 6によって上部 油室 7と下部油室 8とに画成され、内部が作動油で満たされている。また、ピストン 6は 、上部油室 7と下部油室 8とを連通する連通路 9が形成され、絞り 10が設けられてい る。
[0025] この実施の形態による第 1および第 2の油圧式緩衝器 2, 3のピストンロッド 11の上 端部は、自動車の車体(図示せず)に装着されている。また、第 1および第 2の油圧式 緩衝器 2, 3のシリンダ本体 5の下端部は、前輪懸架用リンク(図示せず)などの車体 に対して上下動する部位に枢支されている。すなわち、第 1および第 2の油圧式緩衝 器 2, 3は、車体側と前輪側との間に介装されている。この実施の形態においては、 第 1の油圧式緩衝器 2が車体右側に配設され、第 2の油圧緩衝器 3が車体左側に配 設されている。これらの油圧式緩衝器 2, 3のうち、車体右側(図 1においても右側)に 位置する油圧式緩衝器 2の下部油室 8は、油圧管 12を介して後述する中間ユニット 4の第 1の油圧管取付部 13に接続されている。他方の油圧式緩衝器 3の下部油室 8 は、油圧管 14を介して中間ユニット 4の第 2の油圧管取付部 15に接続されて!、る。
[0026] 中間ユニット 4は、図 4に示すように、第 1および第 2の油圧式緩衝器 2, 3が接続さ れる小径シリンダ本体 21と、この小径シリンダ本体 21の一端部に取付けられた大径 シリンダ本体 22と、これら両シリンダ本体 21, 22の内部に嵌挿されたフリーピストン 2 3とから構成されている。小径シリンダ本体 21は、铸造によって所定の形状に成形さ れた後に研削加工ゃ孔開け加工などの機械加工が施され、シリンダ孔 21aや後述す る他の各部が設計上の精度となるように形成されている。この小径シリンダ本体 21を 成形する铸造用金型は、図示してはいないが、小径シリンダ本体 21の径方向に型割 りする第 1および第 2の金型と、シリンダ孔 21aを成形する中子とから構成されている。 第 1の金型と第 2の金型は、図 3中に一点鎖線 Cで示す位置に型割り面が位置するよ うに形成されている。
[0027] 小径シリンダ本体 21は、図 2—図 4に示すように、金型の型割り面上となる部位に、 第 1、第 2の油圧管取付部 13, 15と、後述するソレノイド用取付部 24および取付用ボ ス 25, 26などが設けられている。シリンダ孔 21aは、小径シリンダ本体 21の一端部( 図 4においては右側端部)に開口し、後述する大径シリンダ本体 22の内部に連通さ れている。
[0028] 第 1の油圧管取付部 13は、円筒状を呈するように形成され、小径シリンダ本体 21 における大径シリンダ本体 22とは反対側の端部にシリンダ孔 21aと同一軸線上に位 置するように突設されている。この第 1の油圧管取付部 13の内部はシリンダ孔 21a内 に連通されている。第 2の油圧管取付部 15は、円筒状を呈するように形成され、小径 シリンダ本体 21における大径シリンダ本体 22側の端部の外側部分に斜めに突設さ れている。この第 2の油圧管取付部 15が傾斜する方向は、小径シリンダ本体 21の径 方向の外側に向かうにしたがって次第に大径シリンダ本体 22側に位置するような方 向である。この第 2の油圧管取付部 15の内部は、図 4に示すように、第 1の作動油通 路 27を介して後述する第 2の作動油通路 28に連通されている。
[0029] 第 2の作動油通路 28は、小径シリンダ本体 21における大径シリンダ本体 22側とな る一端面に開口し、この開口力 小径シリンダ本体 21内をシリンダ孔 21aの軸線方 向に沿って他端側へ延設されている。この第 2の作動油通路 28の途中であって、第 1の作動油通路 27との接続部分より他端側には、第 1の絞り 29が設けられている。こ の第 1の絞り 29は、第 2の作動油通路 28内に開口からねじ込まれて取付けられてい る。また、第 2の作動油通路 28の他端側の端部は、後述する開閉弁 30と第 2の絞り 3 1とを介してシリンダ孔 21a内に連通されている。
[0030] 開閉弁 30は、図 4および図 5に示すように、小径シリンダ本体 21に形成されたソレノ イド用取付部 24がバルブボディとして機能するように構成され、この取付部 24に取 付けられたソレノイド 32によって駆動される。取付部 24は、有底円筒状を呈するよう に形成され、小径シリンダ本体 21における大径シリンダ本体 22とは反対側の端部に 斜めに突設されている。この取付部 24が傾斜する方向は、小径シリンダ本体 21の径 方向の外側に向力 にしたがって次第に大径シリンダ本体 22から離れる方向である また、この取付部 24の底部には、この開閉弁 30の弁体 33が着座する弁座 34が形 成されるとともに、第 2の作動油通路 28の一端が開口されている。
[0031] 弁体は、図 5に示すように、先端部が円錐となる棒状を呈するように形成され、取付 部 24と同一軸線上に位置付けられる状態でソレノイド 32に支持されている。このソレ ノイド 32は、図示していない減衰力切換スィッチに接続されており、この減衰力切換 スィッチが操作されることによって、図 5に示すように弁体 33が弁座 34に着座する閉 状態と、同図中に二点鎖線で示すように弁体 33が弁座 34から離間する開状態との V、ずれか一方の状態に切換えられる。
[0032] この実施の形態によるソレノイド 32は、弁体 33を開く方向に付勢する復帰用ばね( 図示せず)を内蔵しており、励磁されることによって復帰用ばねの弹発力に杭して弁 体 33を閉側へ移動させる。
弁座 34は、取付部 24の軸心部の底に円形の凹部 35を設けることによって形成さ れている。円形の凹部 35の軸心部には、第 2の絞り 31の一端が開口している。この 実施の形態による第 2の絞り 31は、取付部 24の底壁に小径孔を穿設することによつ て形成されている。
[0033] 小径シリンダ本体 21に設けられた取付用ボス 25, 26は、図 3に示すように、小径シ リンダ本体 21の型割り面上となる径方向の 3箇所(図 3では上部 1箇所と下部 2箇所) にそれぞれ設けられており、固定ボルト揷通用の穴 25a, 26aが穿設されている。
[0034] 大径シリンダ本体 22は、有底円筒状を呈するように形成され、小径シリンダ本体 21 の一端部にシリンダ孔 21aと同一軸線上に位置する状態で嵌合されてサークリップ 2 lbによって固定されている。この嵌合部には、液密となるように Oリング 41が介装され ている。この実施の形態による大径シリンダ本体 22は、底部にガス注入孔 22aが穿 設されるととも〖こ、ガスの漏洩を阻止するゴム製のシート 42が接着されていて、ガス注 入後はガス圧でシート 42はガス注入孔 22aに押圧される。ガス注入孔 22aは、ガス注 入後に鋼球 22bが圧入されて 、る。
フリーピストン 23は、有底円筒状を呈するように形成された大径ピストン 43と、この 大径ピストン 43の底部(図 4においては左側端部)に取付けられて小径シリンダ本体 21内を第 1の油室 44と第 2の油室 45とに画成する小径ピストン 46と力 構成されて いる。
[0035] 大径ピストン 43は、開口側の端部に位置するピストン本体 47と、他端側に位置する 有底筒状部 48とが一体に形成されている。ピストン本体 47は、有底筒状部 48より外 径が大きくなるように形成されて外周部に Oリング 49とシールリング 50とが装着されて おり、大径シリンダ本体 22内に移動自在に嵌合されている。この実施の形態による大 径シリンダ本体 22は、大径ピストン 43によって内部が高圧ガス室 51と第 2の油室 45 とに画成されている。高圧ガス室 51は、大径シリンダ本体 22の底部側に位置付けら れ、高圧の N ガスが封入されている。
2
[0036] 第 2の油室 45は、作動油が満たされており、小径シリンダ本体 21の一端部に開口 する第 2の作動油通路 28と、この第 2の作動油通路 28の途中に接続した第 1の作動 油通路 27とを介して第 2の油圧管取付部 15に連通されている。第 2の作動油通路 2 8の他端側は、上述したように第 1および第 2の絞り 29, 31と開閉弁 30とが設けられ ており、第 1の油室 44に連通されている。この実施の形態においては、第 2の作動油 通路 28と、第 1および第 2の絞り 29, 31と、開閉弁 30とからなる通路によって、本発 明でいうバイパス通路 52が構成されている。このバイノ ス通路 52には、第 1の絞り 29 と第 2の絞り 31とが直列に並ぶ状態で設けられている。
[0037] 大径ピストン 43の有底筒状部 48は、小径シリンダ本体 21の内径より外径が小さく なるように形成され、ピストン本体 47とは反対側の端部が小径シリンダ本体 21内に挿 入されている。このため、第 2の油室 45は、小径シリンダ本体 21内に連通されている 。また、この有底筒状部 48におけるピストン本体 47とは反対側の端部には、後述す る小径ピストン 46を取付けるための支柱 53が突設されている。
[0038] 小径ピストン 46は、支柱 53に固定用ボルト 54によって固定され、小径シリンダ本体 21に移動自在に嵌合されている。この小径ピストン 46によって第 2の油室 45とは画 成される第 1の油室 44は、作動油が満たされ、第 1の油圧管取付部 13に連通されて いる。
[0039] この実施の形態による小径ピストン 46は、円板状に形成され外周部にシールリング 55が装着されている。また、この実施の形態においては、小径ピストン 46と大径ビス トン 43とは、第 1の油室 44の有効断面積と第 2の油室 45の有効断面積とがー致する ように形成されている。すなわち、この中間ユニット 4は、小径シリンダ本体 21内と大 径シリンダ本体 22内の容積の変化分が常に一定の比となるように構成されている。
[0040] さらに、小径ピストン 46は、第 1の油室 44と第 2の油室 45とを連通するように第 3の 絞り 56が設けられている。この第 3の絞り 56は、図 4および図 6に示すように、小径ピ ストン 46を貫通するように形成された第 1の連通路 57および第 2の連通路 58と、これ らの連通路 57, 58に介装された第 1の逆止弁 59および第 2の逆止弁 60とから構成 されている。
[0041] 第 1の連通路 57と第 2の連通路 58は、小径ピストン 46の周方向に二つずつ設けら れ、図 6に示すように、小径ピストン 46の径方向外側の端部に一端が開口し、小径ピ ストン 46の両端面に形成された環状の凹部 61, 62内に他端が開口している。なお、 図 4においては、第 1の連通路 57と第 2の連通路 58とが同一平面上に位置するよう に描かれ、図 6においては、第 1の連通路 57と第 2の連通路 58とが互いに近接する ような位置に描かれている。しかし、これら第 1の連通路 57と第 2の連通路 58は、実 際には小径ピストン 46の周方向に 90° ずれる位置に形成されて!ヽる。
[0042] 第 1の連通路 57の一端は、第 1の油室 44側となる小径ピストン 46の径方向外側の 端部に開口し、他端は、第 2の油室 45側となる環状の凹部 61内に開口している。第 2の連通路 58の一端は、第 2の油室 45側となる小径ピストン 46の径方向外側の端部 に開口し、他端は、第 1の油室 44側となる環状の凹部 62内に開口している。
[0043] 第 1および第 2の逆止弁 59, 60は、図 6に示すように、それぞれ 3枚の板ばねから なる弁体 63を備え、これらの弁体 63によって環状の凹部 61, 62を開閉するものであ る。各逆止弁の 3枚の弁体 63は、環状の凹部 61, 62を塞ぐことができるようにそれぞ れ円板状に形成され、同一軸線上に位置する状態で重ねられてヮッシャ 54aを介し て小径ピストン 46とともに大径ピストン 43の支柱 53に取付けられている。この実施の 形態においては、第 1および第 2の逆止弁 59, 60は、それぞれ小径ピストン 46とヮッ シャ 54aとによって挟まれる状態で固定用ボルト 54によって大径ピストン 43に締付け られている。
[0044] 第 1の逆止弁 59は、第 2の油室 45側に位置する環状の凹部 61 (第 1の連通路 57) を初期設定荷重をもって閉塞するように装着されている。第 2の逆止弁 60は、第 1の 油室 44側に位置する環状の凹部 62 (第 2の連通路 58)を初期設定荷重をもって閉 塞するように装着されている。また、各逆止弁の 3枚ずつの弁体 63のうち、環状の凹 部 61 , 62の開口部分に接触する弁体 63には、図 6および図 7に示すように、環状の 凹部 61 , 62内と第 1、第 2の油室 44, 45内とを連通する切欠き 64が外周部の少なく とも一箇所に形成されている。この切欠き 64は、第 3の絞り 56の一部として構成され て 、る。この切欠き 64の開口幅(弁体 63の周方向に対する幅)を変えることによって 、第 1、第 2の逆止弁 59, 60が開く以前の減衰力特性を変えることができる。
[0045] 上述したように構成された中間ユニット 4は、図 3に示すように車体フレーム 65の支 持用ステー 66に取付けられる。この支持用ステー 66は、図 3に示す正面視において 、く字状を呈するように形成され、上端部と下端部とに取付座 66a, 66bが形成されて いる。これらの取付座 66a, 66bのうち、上側の取付座 66aは、中間ユニット 4の一方 の取付用ボス 25が固定されている。下側の取付座 66bは、中間ユニット 4の他方の 取付用ボス 26, 26が固定されている。すなわち、この実施の形態では、中間ユニット 4は、小径シリンダ本体 21と大径シリンダ本体 22の軸線が略水平となり、取付用ボス 25, 26が小径シリンダ本体 21から上方と下方とに延びる状態で支持用ステー 66に 取付けられる。
[0046] この中間ユニット 4を備えた車両用油圧式緩衝装置 1においては、例えば左右の油 圧式緩衝器 2, 3が同一方向に同一作動量だけ作動したときには、両油圧式緩衝器 2, 3の絞り 10を作動油が通過することによって上下油室間を作動油が流れる。また、 このときには、シリンダ本体 5内のピストンロッド 11の体積増減分に相当する量の作動 油が中間ユニット 4に対して出入りし、フリーピストン 23が移動する。例えば、左右の 油圧式緩衝器 2, 3から作動油が流出する場合は、中間ユニット 4内に第 1および第 2 の油圧管取付部 13, 15から作動油が流入することによって、フリーピストン 23が図 4 において右側に移動する。このときのフリーピストン 23の動作は、開閉弁 30が開状態 、閉状態のいずれの場合でも同様になる。
[0047] このように第 1の油室 44の容積の変化と第 2の油室 45の容積の変化が等しくなる場 合、言い換えれば、第 1の油室 44に対して出入りする作動油の量と、第 2の油室 45 に対して出入りする作動油の量とが釣り合うときは、第 1一第 3の絞り 29, 31, 56を作 動油が通過することはない。
すなわち、このように左右の油圧式緩衝器 2, 3の動作が同相となる場合には、減衰 力は、これらの油圧式緩衝器 2, 3内の絞り 10を作動油が通過することによってのみ 発生する。
[0048] 一方、左右の油圧式緩衝器 2, 3が互いに逆方向に作動するときには、中間ュニッ ト 4の第 1の油室 44に対して出入する作動油の量と、第 2の油室 45に対して出入りす る作動油の量とが釣り合わなくなる。このときには、第 1の油室 44の油圧と第 2の油室 45の油圧とに差が生じる。例えば、車体右側の油圧式緩衝器 2が圧縮されて車体左 側の油圧式緩衝器 3が伸張する場合には、第 1の油室 44の油圧が第 2の油室 45の 油圧より高くなる。ここでは先ず、開閉弁 30が閉じているときの動作を説明する。
[0049] 開閉弁 30が閉じている状態では、第 2の作動油通路 28を有するバイパス通路 52 に作動油が出入りすることができなくなるために、第 1の絞り 29と第 2の絞り 31は機能 することがなくなる。
開閉弁 30が閉じている状態で左右の油圧式緩衝器 2, 3が逆方向に作動し、第 1 の油室 44の油圧と第 2の油室 45の油圧とに差が生じると、これら両油室 44, 45の圧 力差に相当する油圧が小径ピストン 46の第 3の絞り 56に作用する。
[0050] この場合は、小径ピストン 46の第 1の連通路 57を開閉する第 1の逆止弁 59に第 1 の連通路 57を通して第 1の油室 44側からこれを押し開くように油圧が作用する。この とき、第 1の逆止弁 59に設けられた切欠き 64を作動油が少量通過することによって、 圧力上昇の度合いが調整され、油圧が第 1の逆止弁 59の初期設定荷重を上回った ときに第 1の逆止弁 59が開く。第 1の逆止弁 59が開くことによって、小径ピストン 46の 第 3の絞り 56を作動油が通過するようになる。 [0051] このように第 3の絞り 56を作動油が流れることによって、両油圧式緩衝器 2, 3の絞り 10, 10の他に中間ユニット 44でも減衰力が発生する。車体の傾斜する方向が上記と は逆方向である場合には、第 2の連通路 58を開閉する第 2の逆止弁 60が開き、作動 油が第 2の連通路 58を通って第 2の油室 45から第 1の油室 44へ流入することにより 減衰力が発生する。
[0052] 開閉弁 30が開いている状態では、第 1の油室 44と第 2の油室 45とがバイパス通路 52 (第 2の作動油通路 28、第 1、第 2の絞り 29, 31および開閉弁 30からなる)によつ て互いに連通される。この状態で例えば第 1の油室 44の油圧が第 2の油室 45の油 圧より高くなつた場合は、作動油は第 1一第 3の絞り 29, 31, 56を通過して第 1の油 室 44力 第 2の油室 45に流入する。
[0053] すなわち、開閉弁 30が開いている状態では、三箇所の絞りを作動油が通過するか ら、開閉弁 30が閉じている場合に較べると両油室の差圧の大きさが同じであれば、 発生する減衰力は小さくなる。中間ユニット 4で発生する減衰力と差圧の変化を図 8 に示す。図 8においては、縦軸に減衰力をとり、横軸にピストン速度をとつている。こ のピストン速度とは、左右の油圧式緩衝器 2, 3の一方のピストン 6の速度に対する他 方のピストン 6の速度のことをいい、両ピストン 6, 6が同方向に同速度で移動するとき には 0になるような値である。また、図 8においては、開閉弁 30を閉じたときの減衰力 の変化を実線で示し、開閉弁 30を開いたときの減衰力の変化を二点鎖線で示す。
[0054] 図 8中に実線で示すように、開閉弁 30が閉じている状態において Aで示す領域で は、ピストン速度の増大に伴って第 3の絞り 56の切欠き 64を通過する作動油の量が 増大し、減衰力が急激に増大することが判る。そして、さらにピストン速度が増大し、 油圧が逆止弁の初期設定荷重を越えると第 1の逆止弁 59または第 2の逆止弁 60が 開 、て緩やかな減衰特性の Bで示す領域に移り、板ばね (弁体 63)の弹発力の増加 と略比例するように減衰力が増大することが判る。
[0055] 一方、同図中に二点鎖線で示すように、開閉弁 30が開いている状態において aで 示す領域では、切欠き 64と、第 1および第 2の絞り 29, 31とを通過する作動油の量 がピストン速度の増大に伴って増大し、開閉弁 30が閉じている場合に較べて減衰力 の上昇率が小さくなることが判る。そして、さらにピストン速度が増大し、前述と同様第 1の逆止弁 59または第 2の逆止弁 60が開いて bで示す領域に移ると、開閉弁 30が閉 じている場合と同様に、板ばね (弁体 63)の弹発力の増加と略比例するように減衰力 が増大することが判る。
[0056] したがって、この実施の形態による車両用油圧式緩衝装置 1は、中間ユニット 4の第 1の油室 44と第 2の油室 45とを連通するバイパス通路 52に第 1および第 2の絞り 29, 31と開閉弁 30とが設けられて 、るから、開閉弁 30の開閉状態を切換えることによつ て、中間ユニット 4で発生する減衰力の大きさを増減させることができる。すなわち、こ の車両用油圧式緩衝装置 1は、スプール弁を使用して減衰力を調整するものに較べ て簡単な構造で減衰力を変えることができるから、製造コストを低減することができる
[0057] また、この車両用油圧式緩衝装置 1においては、ソレノイド用取付部 24と、油圧管 取付部 13, 15と、車体フレーム取付用ボス 25, 26などの突出部分が铸造によって 小径シリンダ本体 21に設けられている。このため、これらを小径シリンダ本体 21に溶 接する場合など、別部材として形成する場合に較べて、小径シリンダ本体 21を容易 に形成することができる。
[0058] そのうえ、突出部分が小径シリンダ本体 21の铸型の型割り面上に配設されている から、複数の突出部分が小径シリンダ本体 21の周方向に例えば放射状に分散して 配設される場合に較べて、小径シリンダ本体 21の铸造性がよい。しカゝも、この構成に より、小径シリンダ本体 21を铸造用金型の型割り方向(図 3においては左右方向)に コンパクトに形成することができる。このため、中間ユニット 4を、取付用ボス 25, 26が 上方と下方とに延びるとともに小径シリンダ本体 21と大径シリンダ本体 22の軸線が車 体の前後方向を指向する状態で車体フレーム 65に搭載することによって、中間ュ- ット 4の占有スペースが車幅方向に狭くなる。
したがって、この実施の形態による車両用油圧式緩衝装置 1は、減衰力の大きさを 調整する機構を装備しながら、小径シリンダ本体 21のより一層の小型化とコストダウ ンとを図ることができる。
[0059] また、この実施の形態による車両用油圧式緩衝装置 1は、バイパス通路 52に第 1の 絞り 29と第 2の絞り 31とが直列に設けられて 、る。このバイパス通路 52を作動油が流 れるときは、作動油が膨張と収縮とを繰り返し、絞りが一つである場合に較べて圧力 損失が大きくなる。このため、この実施の形態による車両用油圧式緩衝装置 1におい ては、相対的に孔径が大きい第 1、第 2の絞り 29, 31を用いながら、孔径が相対的に 小さい絞りを一つ使用したときと同等の減衰力を発生させることができた。一般に、絞 りは、孔径が小さくなればなるほど製造コストが高くなるから、この実施の形態の構成 を採ることにより、より一層のコストダウンを図ることができる。
また、作動油に含まれる微小な異物が詰まることがない孔径の絞りを用いて必要な 大きさの減衰力を発生させることができるから、信頼性が高い車両用油圧式緩衝装 置を製造することができる。
[0060] 力!]えて、この実施の形態による車両用油圧緩衝装置 1の中間ユニット 4は、小径シリ ンダ本体 21の一端部に大径シリンダ本体 22が取付けられるとともに他端部に開閉弁 駆動用ソレノイド 32が設けられているから、小径シリンダ本体 21の取付用ボス 25, 2 6の近傍に重心を位置付けることができる。このため、中間ユニット 4を水平方向に延 びるように車体フレーム 65に取付けるに当たって重量のバランスをとり易いから、取 付用ボス 25, 26を小さく形成することができた。また、この実施の形態によるソレノィ ド 32は、小径シリンダ本体 21の軸線に対して傾斜しているから、ソレノイド 32が小径 シリンダ本体 21の一端部から軸線方向に沿って突出する場合に較べて、ソレノイド 3 2を装備した状態での中間ユニット 4をコンパクトに形成することができる。
[0061] なお、バイノス通路 52に絞りを設けるに当たっては、上述した形態の他に、第 2の 作動油通路 28に複数の絞りを直列に並べて設けることができるし、開閉弁 30と第 1 の油室 44との間に複数の絞りを直列に並べて設けることもできる。第 2の作動油通路 28に複数の絞りを設ける場合は、第 1の作動油通路 27との接続部分より第 1の油室 44側(開閉弁 30側)に設ける。この場合、開閉弁 30と第 1の油室 44との間に第 2の 絞り 31を設けてもよい。また、絞りを直列に並べて設けるに当たっては、各絞りの小 径孔どうしの間に相対的に内径が大きい膨張室を設ける。
[0062] 上述した実施の形態では、中間ユニット 4の第 1の油室 44と第 2の油室 45とを油圧 式緩衝器 2, 3の下部油室 8に接続する例を示した力 第 1、第 2の油室 44, 45は、 油圧式緩衝器 2, 3の上部油室 7に接続することができる。 上述した実施の形態では、第 1および第 2の油室 44, 45の容積変化分が常に一致 する構成の油圧式緩衝装置 1を示したが、これらの油室の容積変化分は、車輪側の 油圧式緩衝器の特性に応じて常に一定の比となるように設定することができる。
[0063] また、第 1および第 2の油室 45は、上述した実施の形態で示したように左右の油圧 式緩衝器 2, 3に接続する他に、車体の左右方向の一方に位置する前輪用油圧式緩 衝器と後輪用油圧式緩衝器とに接続することができるし、図 9に示すように、左右方 向の一方の前輪用油圧式緩衝器 2aと左右方向の他方の後輪用油圧式緩衝器 3aと に接続することもできる。図 9に示す例では、 2組の油圧式緩衝装置 1, 1が用いられ ている。これらの油圧式緩衝装置 1, 1の中間ユニット 4, 4は、車体の前後方向の中 央部であって車幅方向の両側部に、軸線が前後方向を指向し、ソレノイド 32が前斜 め上方を指向する図 4に示すような状態で搭載されている。
[0064] さらに、開閉弁駆動用ソレノイド 32の励磁状態と非励磁状態の切換えは、乗員によ つて操作されるスィッチによって実施する他に、走行条件や乗員の乗車状態などに 応じて自動制御で切り換わるようにしてもょ 、。
産業上の利用可能性
[0065] 本発明は、自動車などの乗用車両に用いることができる。

Claims

請求の範囲
[1] 小径シリンダ本体と大径シリンダ本体とをシリンダ孔が同軸となるよう連結し、各シリ ンダ孔内に小径ピストンと大径ピストンを位置させ、これら両者を互いに連動するよう 一体的に構成してフリーピストンとなし、小径シリンダ孔内の小径ピストンの一側に第
1の油室を、小径ピストンと大径ピストンとの間に第 2の油室を、大径ピストンの他側に 高圧ガス室をそれぞれ画成し、前記フリーピストンの移動に伴なうこれら第 1の油室と 第 2の油室の容積の変化分が常に一定の比となるようにするとともに、前記第 1の油 室と第 2の油室を小径ピストンに設けた絞りによって連通させ、前記第 1の油室を、車 体に対をなすように設けられた油圧式緩衝器のうちの一方の緩衝器の油室に連通さ せ、前記第 2の油室を他方の緩衝器の油室に連通させた車両用油圧式緩衝装置に おいて、前記小径シリンダ本体内に、第 1の油室と第 2の油室とを連通するバイパス 通路を設け、このバイパス通路に、ソレノイドによって開閉される開閉弁と絞りとを直 列に設けてなり、前記小径シリンダ本体を径方向に離型する铸型によって成形し、こ の小径シリンダ本体に、前記ソレノイドを取付けるソレノイド用取付部と、前記第 1の油 室と第 2の油室を前記油圧式緩衝器に接続する油圧管を取付けるための油圧管取 付部と、小径シリンダ本体を車体フレーム側に取付けるボスとを前記铸型の型割り面 上に配設したことを特徴とする車両用油圧式緩衝装置。
[2] 請求項 1記載の車両用油圧式緩衝装置において、バイパス通路に絞りを直列に複 数設けてなる車両用油圧式緩衝装置。
[3] 請求項 1記載の車両用油圧式緩衝装置において、開閉弁の弁体が開閉する孔に よって絞りを構成した車両用油圧式緩衝装置。
[4] 請求項 1記載の車両用油圧式緩衝装置にぉ 、て、ソレノイド用取付部は、低 、有 底円筒状を呈するように小径シリンダ本体に突設されるとともに、底壁に弁座と絞りと が設けられ、ソレノイドの一端部がこのソレノイド用取付部に取付けられている車両用 油圧式緩衝装置。
[5] 請求項 1記載の車両用油圧式緩衝装置において、ソレノイドが小径シリンダ本体の 軸線に対して傾斜して ヽる車両用油圧式緩衝装置。
PCT/JP2004/015357 2003-10-20 2004-10-18 車両用油圧式緩衝装置 WO2005038289A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04792526A EP1677026A1 (en) 2003-10-20 2004-10-18 Hydraulic shock-absorbing device for vehicle
JP2005514814A JPWO2005038289A1 (ja) 2003-10-20 2004-10-18 車両用油圧式緩衝装置
US11/406,082 US20060185951A1 (en) 2003-10-20 2006-04-18 Hydraulic shock absorber system for a vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003359804 2003-10-20
JP2003-359804 2003-10-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/406,082 Continuation US20060185951A1 (en) 2003-10-20 2006-04-18 Hydraulic shock absorber system for a vehicle

Publications (1)

Publication Number Publication Date
WO2005038289A1 true WO2005038289A1 (ja) 2005-04-28

Family

ID=34463357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015357 WO2005038289A1 (ja) 2003-10-20 2004-10-18 車両用油圧式緩衝装置

Country Status (4)

Country Link
US (1) US20060185951A1 (ja)
EP (1) EP1677026A1 (ja)
JP (1) JPWO2005038289A1 (ja)
WO (1) WO2005038289A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243651A (ja) * 2008-03-31 2009-10-22 Toyota Motor Corp ショックアブソーバ
US8801015B2 (en) 2012-08-31 2014-08-12 Yamaha Hatsudoki Kabushiki Kaisha Vehicle

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9033122B2 (en) 2009-01-07 2015-05-19 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10060499B2 (en) 2009-01-07 2018-08-28 Fox Factory, Inc. Method and apparatus for an adjustable damper
US9452654B2 (en) 2009-01-07 2016-09-27 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10047817B2 (en) 2009-01-07 2018-08-14 Fox Factory, Inc. Method and apparatus for an adjustable damper
US8627932B2 (en) 2009-01-07 2014-01-14 Fox Factory, Inc. Bypass for a suspension damper
US20120305350A1 (en) 2011-05-31 2012-12-06 Ericksen Everet O Methods and apparatus for position sensitive suspension damping
US11306798B2 (en) 2008-05-09 2022-04-19 Fox Factory, Inc. Position sensitive suspension damping with an active valve
US20100170760A1 (en) 2009-01-07 2010-07-08 John Marking Remotely Operated Bypass for a Suspension Damper
US8393446B2 (en) 2008-08-25 2013-03-12 David M Haugen Methods and apparatus for suspension lock out and signal generation
US9140325B2 (en) 2009-03-19 2015-09-22 Fox Factory, Inc. Methods and apparatus for selective spring pre-load adjustment
US9422018B2 (en) 2008-11-25 2016-08-23 Fox Factory, Inc. Seat post
US9108098B2 (en) 2008-11-25 2015-08-18 Fox Factory, Inc. Methods and apparatus for virtual competition
US10036443B2 (en) 2009-03-19 2018-07-31 Fox Factory, Inc. Methods and apparatus for suspension adjustment
US10821795B2 (en) 2009-01-07 2020-11-03 Fox Factory, Inc. Method and apparatus for an adjustable damper
US9038791B2 (en) 2009-01-07 2015-05-26 Fox Factory, Inc. Compression isolator for a suspension damper
US11299233B2 (en) 2009-01-07 2022-04-12 Fox Factory, Inc. Method and apparatus for an adjustable damper
US8936139B2 (en) * 2009-03-19 2015-01-20 Fox Factory, Inc. Methods and apparatus for suspension adjustment
US8672106B2 (en) 2009-10-13 2014-03-18 Fox Factory, Inc. Self-regulating suspension
EP2312180B1 (en) 2009-10-13 2019-09-18 Fox Factory, Inc. Apparatus for controlling a fluid damper
US10697514B2 (en) 2010-01-20 2020-06-30 Fox Factory, Inc. Remotely operated bypass for a suspension damper
EP3778358B1 (en) 2010-07-02 2023-04-12 Fox Factory, Inc. Positive lock adjustable seat post
EP3567272B1 (en) 2011-09-12 2021-05-26 Fox Factory, Inc. Methods and apparatus for suspension set up
US11279199B2 (en) 2012-01-25 2022-03-22 Fox Factory, Inc. Suspension damper with by-pass valves
US10330171B2 (en) 2012-05-10 2019-06-25 Fox Factory, Inc. Method and apparatus for an adjustable damper
US10737546B2 (en) 2016-04-08 2020-08-11 Fox Factory, Inc. Electronic compression and rebound control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667117U (ja) * 1993-03-05 1994-09-20 日産ディーゼル工業株式会社 エアサスペンション用の空気回路の開閉弁装置
JPH1047410A (ja) * 1996-08-07 1998-02-20 Yamaha Motor Co Ltd 車両用懸架装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL244801A (ja) * 1958-11-08
JPS6267342A (ja) * 1985-09-19 1987-03-27 Aisin Seiki Co Ltd 回転角度制御用ロ−タリ−アクチユエ−タ
US5586627A (en) * 1993-05-20 1996-12-24 Tokico, Ltd. Hydraulic shock absorber of damping force adjustable type
US5486018A (en) * 1994-08-05 1996-01-23 Yamaha Hatsudoki Kabushiki Kaisha Suspension system for four-wheeled vehicles
DE19515295A1 (de) * 1995-04-26 1996-10-31 Hemscheidt Fahrwerktech Gmbh Hydropneumatisches Federungssystem
JP4062645B2 (ja) * 1998-08-20 2008-03-19 ヤマハ発動機株式会社 車両用懸架装置
JP2001180245A (ja) * 1999-12-24 2001-07-03 Yamaha Motor Co Ltd 車両用懸架装置
JP2001191778A (ja) * 2000-01-11 2001-07-17 Yamaha Motor Co Ltd 四輪車用懸架装置
JP2001295876A (ja) * 2000-04-10 2001-10-26 Yamaha Motor Co Ltd 車両用油圧式緩衝器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667117U (ja) * 1993-03-05 1994-09-20 日産ディーゼル工業株式会社 エアサスペンション用の空気回路の開閉弁装置
JPH1047410A (ja) * 1996-08-07 1998-02-20 Yamaha Motor Co Ltd 車両用懸架装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243651A (ja) * 2008-03-31 2009-10-22 Toyota Motor Corp ショックアブソーバ
US8801015B2 (en) 2012-08-31 2014-08-12 Yamaha Hatsudoki Kabushiki Kaisha Vehicle

Also Published As

Publication number Publication date
US20060185951A1 (en) 2006-08-24
EP1677026A1 (en) 2006-07-05
JPWO2005038289A1 (ja) 2007-11-22

Similar Documents

Publication Publication Date Title
WO2005038289A1 (ja) 車両用油圧式緩衝装置
KR101454050B1 (ko) 베이스 라인 밸브형의 계속적으로 변화가능한 밸브를 갖는 충격 완충기
US6817454B2 (en) Damping force control type hydraulic shock absorber
US11156261B2 (en) Damper with multiple external control valves
JP4840557B2 (ja) 減衰力調整式油圧緩衝器
JP5582318B2 (ja) サスペンション装置
US7441638B2 (en) Front fork
KR100333435B1 (ko) 감쇠력 제어형식의 유압식 완충기
US6321888B1 (en) Damper with externally mounted semi-active system
US11118649B2 (en) Damper with side collector and external control valves
US7448479B2 (en) Hydraulic damping force control unit, hydraulic shock absorber, front fork for vehicle, and hydraulic rotary damper
EP3115637B1 (en) Damping force variable shock absorber
US20080129000A1 (en) Hydraulic System for a Vehicle Suspension
US9550545B2 (en) Shock absorber
EP3067584B1 (en) Vehicle suspension system
JP3391487B2 (ja) 4輪車用懸架装置
EP0477326B1 (en) Adjustable shock absorber assembly
US9694871B2 (en) Shock absorber
WO2021011516A1 (en) Pre-assembled piston accumulator device
WO2020179682A1 (ja) 緩衝器
JP2007309409A (ja) 油圧緩衝器
US20060151270A1 (en) Hydraulic damping system for vehicle
JP3895425B2 (ja) 油圧緩衝器
GB2378231A (en) A damper for a vehicle suspension with externally mounted semi-active system
JPH07149134A (ja) 4輪車用懸架装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514814

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11406082

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004792526

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004792526

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11406082

Country of ref document: US