WO2005036965A1 - 殺虫剤 - Google Patents

殺虫剤 Download PDF

Info

Publication number
WO2005036965A1
WO2005036965A1 PCT/JP2004/015224 JP2004015224W WO2005036965A1 WO 2005036965 A1 WO2005036965 A1 WO 2005036965A1 JP 2004015224 W JP2004015224 W JP 2004015224W WO 2005036965 A1 WO2005036965 A1 WO 2005036965A1
Authority
WO
WIPO (PCT)
Prior art keywords
insecticide
fatty acid
dilution
days
spraying
Prior art date
Application number
PCT/JP2004/015224
Other languages
English (en)
French (fr)
Inventor
Koichi Nishimuta
Ken Yoshihama
Tomoaki Hongo
Masaaki Ino
Original Assignee
Sankei Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankei Chemical Co., Ltd. filed Critical Sankei Chemical Co., Ltd.
Priority to JP2005514786A priority Critical patent/JP4728808B2/ja
Publication of WO2005036965A1 publication Critical patent/WO2005036965A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system

Definitions

  • the present invention relates to an insecticide, and more particularly, to an insecticide having an excellent control effect and sustainability against insects particularly difficult to control in the agricultural and horticultural fields.
  • Macrolide compounds produced by soil actinomycetes are widely used as insect control agents because they exhibit insecticidal activity at a low concentration on a wide range of insects.
  • Typical macrolides currently in use include spinosad (trade name: spinoace), emamectin benzoate (trade name: afarm), milbemectin (trade name: colomite), and nemadectin (trade name) Name: Mega Top).
  • spinosad trade name: spinoace
  • emamectin benzoate trade name: afarm
  • milbemectin trade name: colomite
  • nemadectin (trade name) Name: Mega Top).
  • insecticidal activity is wide, it has been reported that some compounds have some selectivity in insecticidal activity (for example, see Non-Patent Document 1).
  • Non-Patent Document 1 "Plant Protection", Vol. 54, No. 9 (2001), P377 Also, to date, the sustainability of the control effect of starch and spinosad or emammethatin benzoate has been investigated. Excellent insecticides' acaricides are known. (For example, see Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-302416 (Claim 1) Each of these insecticides' acaricides can improve the insecticidal activity and maintain its sustainability by mixing them at normal concentrations. The intended drug. However, in practice, there is a problem that insecticidal power is weak for insect pests flying after spraying and larvae hatched after spraying.
  • the present inventors have studied components constituting an insecticide.
  • a mixture of a fatty acid glyceride, which originally has a low insecticidal activity by itself, and a macrolide insecticide alone as a component surprisingly has a pesticidal activity and a resistance to Z or its persistence.
  • the inventors have found that the above problem can be solved, and have completed the present invention based on this finding.
  • means of the present invention for solving the above problems of the present invention include:
  • An insecticide characterized by containing a fatty acid glyceride obtained from a fatty acid having 8 to 22 carbon atoms and glycerin (hereinafter, may be simply referred to as a fatty acid glyceride) and a macrolide-based insecticide. It is.
  • An insecticide wherein the fatty acid forming the fatty acid glyceride is a plant-derived fatty acid.
  • a fatty acid having a low concentration of a fatty acid having 8 to 22 carbon atoms can be obtained with respect to a pest which does not originally show a pesticidal activity with a macrolide insecticide or a pest which is ineffective at a low concentration.
  • a specific insecticidal action was observed in each process of growing the target pest from egg to adult.
  • surviving adults and laid eggs have an oviposition effect, an oviposition suppression effect, a feeding cessation effect, and an improved insecticidal effect, resulting in a high pest control effect.
  • the contribution to pest control in the agricultural and horticultural fields is extremely large.
  • the present invention is an insecticide containing a fatty acid glyceride and a macrolide insecticide.
  • the fatty acid glyceride used in the present invention is a glycerin ester of a fatty acid having 8 to 22 carbon atoms and glycerin.
  • the fatty acid forming the fatty acid glyceride may be a natural fatty acid or a synthetic fatty acid, and is derived from a plant, for example, soybean, cottonseed or vegetable. It is preferably a fatty acid derived from a species.
  • fatty acids having 8 to 22 carbon atoms include capric prillic acid, pelargonic acid, capric acid, pendecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, nonadecanoic acid, and araquinine. Acids, heneicosanoic acids, behenic acids and the like can be mentioned, and among them, caprylic acid, capric acid and mixtures thereof are preferred.
  • the fatty acid glyceride can be produced from the fatty acid and glycerin by esterification or transesterification according to a conventional method.
  • Fatty acid glycerides to be produced include fatty acid monoglyceride, fatty acid diglyceride and fatty acid triglyceride, and any fatty acid glyceride can be used.
  • glyceride decanoyl otatanyl glycerol, trade name: sun crystal emulsion
  • glyceride decanoyl otatanyl glycerol, trade name: sun crystal emulsion
  • insecticides having the power of a macrolide compound produced by soil actinomycetes for example, spinosad (trade name: spinoace), emma mectin benzoate (trade name: Affirm), millbemectin (trade name: colomite) or nemadectin (trade name: Megatop), and the like.
  • the insecticide of the present invention can be prepared, for example, by mixing the fatty acid glyceride and the macrolide insecticide.
  • the preparation when the fatty acid glyceride is a solid at room temperature, it is heated and melted to form a liquid substance.
  • the solvent can dissolve the fatty acid glyceride and can be mixed with the macrolide-based insecticide.
  • a solution or suspension may be prepared by mixing with glyceride, and this solution may be mixed with a macrolide-based insecticide.
  • the solvent examples include known solvents capable of dissolving fatty acid glyceride, and specifically, a solvent such as methanol, ethanol, isopropanol, propylene glycol, glycerin, sorbitol, or a mixed solvent thereof. Can be mentioned.
  • a solvent such as methanol, ethanol, isopropanol, propylene glycol, glycerin, sorbitol, or a mixed solvent thereof.
  • a solvent such as methanol, ethanol, isopropanol, propylene glycol, glycerin, sorbitol, or a mixed solvent thereof.
  • a solvent such as methanol, ethanol, isopropanol, propylene glycol, glycerin, sorbitol, or a mixed solvent thereof.
  • an emulsifier, a dispersant, an auxiliary agent, and the like known in the technical field of the insecticide can be appropriately added to and mixed with the fatty acid
  • the particle size of the macrolide insecticide used in this case is preferably granular, and there is no particular limitation on the particle size of the macrolide insecticide when used in a granular shape.
  • the conditions for mixing the macrolide insecticide particles are also not limited.
  • the mixing ratio of the fatty acid glyceride and the macrolide insecticide is not particularly limited.
  • the insecticide of the present invention can be produced by adding an auxiliary agent such as an emulsifier, a dispersant and a fixing agent to a fatty acid glyceride and a macrolide insecticide.
  • an auxiliary agent such as an emulsifier, a dispersant and a fixing agent
  • the insecticide of the present invention thus produced is preferably diluted with 1S water or the like, which can be used as it is, and then used for spraying or the like.
  • a fatty acid glyceride diluted by adding water or the like and a macrolide insecticide diluted by adding water or the like may be mixed.
  • concentration of the fatty acid glyceride in the insecticide thus diluted is usually from 200 to 300 Oppm, and the concentration of the macrolide-based insecticide is usually from 0.2 to 100 ppm.
  • the target pests to be controlled by the insecticide of the present invention include: myxoids (citrus red mite, apple mite, Nami nada, kanzada nada, etc.), and other aphid pests and aphids (pita aphid, peach) Hemiptera pests such as aca aphids, etc., whiteflies (whiteflies, silverleaf whiteflies, tobacco whiteflies, etc.), and thrips (small blue thrips, orange thrips, yellow thrips, etc.) And other lepidopteran pests such as Pterodactyla and Pterodactyla.
  • the insecticide of the present invention has a specific insecticidal action against each of these pests in each process of growing into an egg-forming adult, and after spraying, surviving adults and spawning. Egg killing action, egg-laying inhibitory action, feeding cessation action, and improvement in adulticidal activity are observed for eggs that have been broken.
  • a macrolide insecticide which does not originally exhibit insecticidal activity exhibits a high insect pest control action by being mixed with a fatty acid glyceride.
  • the sun crystal containing 90% decanoyl otatanyl glycerol as an active ingredient is diluted by adding water to the dilution ratio shown in the following table.
  • a sun crystal diluent was prepared.
  • a spinoace diluent was prepared by adding water to Spinoace (commercial product; trade name; dosage form is water dispersible granule) containing 25% of spinosad as an active ingredient in the dilution ratio shown in the table below.
  • the sun crystal diluent and the spinoace diluent were mixed to produce an insecticide.
  • a dilute solution of sun crystal was prepared by adding and diluting water to the sun crystal so as to have a dilution factor shown in the following table, and water was added to an afarm formulation so as to have a dilution factor shown in the table below.
  • the resulting mixture was mixed with an afarm diluent prepared by dilution to prepare an insecticide.
  • the resultant was mixed with a colomite diluent prepared by adding and diluting to produce an insecticide.
  • the sun crystal diluent was prepared by diluting the sun crystal with water to obtain the dilution factor shown in the following table, and the megatop solution was diluted to the dilution factor shown in the following table.
  • An insecticide was produced by mixing with a megatop diluent prepared by adding and diluting water.
  • a sun crystal diluent obtained by diluting the sun crystal with water at a dilution multiple shown in the following table was used as an insecticide, and this insecticide was indicated as "Comparative Example 1" in the table.
  • a dilute solution of Santalistal prepared by adding water to the sun crystal to make the dilution shown in the following table, and water to the cascade emulsion by adding water to make the dilution shown in the following table.
  • the insecticide was manufactured by mixing with a cascade diluent prepared by dilution. This insecticide is indicated as “Comparative Example 1 + K” in the table.
  • the Sun Crystal Dilution was prepared by diluting the Sun Crystal with water to the dilution ratio shown in the following table.
  • the diluent was mixed with a Dantotsu diluent prepared by diluting water by adding water to a Dantotsu water solvent at a dilution factor shown in the following table to produce an insecticide.
  • This insecticide is indicated as “Comparative Example 1 + D” in the table.
  • the sun crystal diluent prepared by adding water to the sun crystal to obtain the dilution factor shown in the following table and diluting it, and adding the dilution ratio shown in the following table to the ointane water dispersible powder.
  • An insecticide was produced by mixing with an otran diluted solution prepared by diluting with water. This insecticide is indicated as “Comparative Example 1 + R” in the table.
  • a spinoace diluent obtained by diluting Spinoace with water at a dilution multiple shown in the following table was used as an insecticide, and this insecticide was indicated as "Comparative Example 2" in the table.
  • a mixture of the spinoace diluent and an adhesive diluent obtained by diluting the adhesive liquid with water so as to have a dilution factor shown in the table was used as an insecticide.
  • Example 2 + N A mixture of the above spinoace diluent and a dilute solution obtained by diluting a dilute solution with water so as to have a dilution factor shown in the table was used as an insecticide. "Was displayed.
  • the affirm preparation was diluted by adding water so as to have a dilution factor shown in the following table.
  • the prepared affirm diluent was used as the insecticide, and this was indicated as "F” in the table.
  • a colomite diluent prepared by diluting the colomite emulsion with water so as to have a dilution factor shown in the following table was used as an insecticide, and this was indicated as "C” in the table.
  • a cascade diluent prepared by adding water to the cascade emulsion and diluting to the dilution ratio shown in the following table was used as an insecticide, and this was indicated as "K" in the table.
  • Dantot diluent prepared by adding water to Dantot wettable powder and diluting to the dilution ratio shown in the following table was used as an insecticide, and this was indicated as "D” in the table.
  • Ortolan diluent prepared by diluting Ortolan wettable powder with water so as to have a dilution factor shown in the following table was used as an insecticide, and this was indicated as "R” in the table.
  • Mega top The megatop diluent prepared by diluting the solution with water so as to have a dilution factor shown in the following table was used as an insecticide, and this was indicated as "M" in the table.
  • An adhesive liquid diluted by diluting the adhesive liquid with water so as to have a dilution factor shown in the table was defined as an insecticide, and this insecticide was indicated as "N" in the table.
  • the oleate diluent obtained by diluting the oleate solution with water so as to have the dilution factor shown in the table was used as the insecticide, and this insecticide was indicated as "0" in the table.
  • Acacia touch diluent obtained by diluting the acacia touch emulsion with water so as to have the dilution factor shown in the table was used as an insecticide, and this insecticide was indicated as ⁇ A '' in the table.
  • the insecticides shown in Table 2 were sprayed at a dilution factor (dilution with water) shown in Table 2 on a kidney bean (cultivar: Sakimidori No. 2, first bileaf stage) in pot cultivation. After spraying, the plants were maintained in a glass vine and a mouse. One day and four days after spraying, the first double leaf of the kidney beans was released with 20 adult females of Nami-nada (Pinus aegypti). Three days after release, the number of surviving female adults and the total number of eggs laid were examined. Table 2 shows the results.
  • the number in parentheses is the number of eggs laid per living insect.
  • the number of spawned eggs was 418 including the low concentration plot.After spraying, whether the released adults came into contact with the insecticide-attached sites on the leaves or caused by poisoning by sucking. Although uncertain, the number of dead solids was high in 3 days, the number of live solids laid was also reduced, and the combined use clearly reduced the number of laid eggs. Control aspects The ability of the mites on the back of the leaf, which is hardly affected by the insecticide, and the mites flying by the wind after spraying, comes into contact with the insecticide-treated leaves. is important.
  • the number in parentheses is the growth inhibition rate.
  • Growth inhibition rate 1 (number of surviving insects in the sprayed area Z number of surviving insects in the unsprayed area) x 100
  • Growth inhibition rate 1 (number of surviving insects in the sprayed area Z number of surviving insects in the non-sprayed area) x 100
  • Planter cultivated eggplant (variety: Senryo 6-leaf stage) was inoculated with Namihada-parasitic leaf section. Three days after inoculation, the number of Namidanada-parasites before the application of the insecticide was investigated, and then the insecticide shown in Table 7 was sprayed at a dilution factor shown in Table 6 (dilution with water) using a small atomizer. The number of parasites after 7, 14, 20, and 29 days after spraying was examined for all leaves, and the control efficiency was calculated from the number of each parasite. Table 7 shows the results.
  • Control efficiency (l-Cb ⁇ Tai / Tb ⁇ Cai) X 100
  • Cb Number of insects before spraying insecticide in no-spray area
  • Tb Number of insects before spraying insecticide in the spray area
  • Cai The number of insects at the i-th time after spraying the insecticide in the non-spray area
  • N adhesive liquid (manufactured by Sumitomo Chemical Co., Ltd., 5% starch)
  • Olate solution (20% sodium oleate, manufactured by Otsuka Danigaku Co., Ltd.)
  • A Akari touch emulsion (Ishihara Sangyo Co., Ltd., 70% propylene glycol mono fatty acid ester)
  • the leaves (1 branch 1 leaf) of the field mandarin orange (Senju mandarin) were collected, washed with water, and then watered, and then 10 adult female Citrus uncles were released per leaf. After laying eggs in a room at 25 ° C for 4 days, female adults were removed and the number of eggs laid was examined. On the same day, the insecticides shown in Table 9 were sprayed at the dilution factor (dilution with water) and concentration shown in Table 9 using a small atomizer. After spraying, place in a room at 25 ° C, Eight days after spraying, the mortality of hatched larvae was calculated. Table 9 shows the results.
  • the insecticide shown in Table 10 was sprayed on the primary leaves of pot-cultivated kidney beans (variety: Sakimidori No. 2) at the dilution factor (dilution with water) and concentration shown in Table 10 and placed in the area where Mamehamamo Daribae was generated. did. Fourteen days after spraying, the number of insect pests infested by the beetle fly after spraying was investigated, and the damage inhibition rate was calculated. Table 10 shows the results.
  • Planter cultivated mini tomatoes (variety: Thai-It Tim 6.5-leaf stage, 10 plants planted) were sprayed with the insecticide shown in Table 11 at the dilution factor shown in Table 11 (dilution with water). Sprayed. Eight days after spraying, the top five leaves (50 leaves in one section) were examined for the degree of damage caused by the bean hammoebari. The damage degree, leaf damage, damage degree and control value were calculated. Table 11 shows the results.
  • F Afarm emulsion (1% ememamethine benzoate, manufactured by Syngenta Japan Co., Ltd.)
  • C Colomite emulsion (1% milbemectin, manufactured by Sankyo Co., Ltd.)
  • K Cascade emulsion (10% flufenoxuron, manufactured by BS Efagro Co., Ltd.)
  • D Dantotsu water solvent (16% clothia-zine, manufactured by Takeda Pharmaceutical Co., Ltd.)
  • Submergence scar is less than 10-25% of the total area.
  • Submersion scars are less than 25-50% of the total area.
  • Indentation marks are 0% or more of the total area.
  • n The number of leaves indicated by the degree of damage.
  • N Number of leaves examined.
  • Damage value Damage of untreated zone-Damage of treated zone Z Damage of untreated zone X 100
  • the insecticides shown in Table 12 were sprayed at a concentration shown in Table 12 on small nymphs of the Thrips palmi Karny thistle, which were infested in the first compound leaf stage of the kidney beans (cultivar: Sakimidori No. 2) of pot cultivation. Five days after spraying, the survival status of Thrips palmi Karny was examined, and the mortality was calculated. Table 12 shows the results.
  • the primary leaves of pot-grown kidney beans (variety: Toramaru quail) were placed in breeding cages (30 X 25 X 28 cm), and adults of whiteflies were released and allowed to lay eggs for 2 days.
  • the insecticides shown in Table 13 were sprayed at a dilution factor shown in Table 13 (dilution with water) using a small atomizer.
  • Growth inhibition rate (1-number of pre-treated insects in untreated group X number of treated insects in treated group Z number of treated insects in treated group X number of treated insects in untreated group) x 100
  • Growth inhibition rate C Colomite emulsion (1% milbemectin, manufactured by Sankyo Co., Ltd.)
  • the insecticides shown in Tables 16 and 17 were sprayed onto the first true leaves of the pot lilies (cultivar: Shinko A) at a dilution factor (dilution with water) shown in Tables 16 and 17 using a small sprayer. Two, four, six, and eight days after spraying, 15 female female adults were released on the surface of the cucumber leaves. Two days after each release, the number of surviving insects and the number of eggs that laid behind the leaves were determined. The numbers in parentheses are the number of eggs laid per animal. The results are shown in Tables 16 and 17.
  • C colomite emulsion (1% milbemectin, manufactured by Sankyo Co., Ltd.)
  • the insecticides shown in Table 20 were sprayed on the primary leaves of potato-cultivated kidney beans (variety: Sakimidori No. 2) at the dilution factor (dilution with water) and concentration shown in Table 20 using a small sprayer. After spraying, they were placed in a mini-tomato cultivated vine, which frequently occurs, and spawned and damaged. . Thirteen days after spraying, the number of larvae of the larva of Paramecium chinensis in the primary leaves was investigated, and the number of parasites was calculated to prevent damage. The results are shown in Table 20.
  • a pot aphid parasite was inoculated into a pot-grown cucumber (variety: Shinko A, 2 leaf stage). After examining the number of insects before spraying two days after inoculation, the insecticides shown in Table 21 were sprayed at a dilution factor shown in Table 21 (dilution with water) using a small sprayer. Three days after spraying, the number of parasites was examined, and a corrected density index was calculated. The results are shown in Table 21.
  • C Colomite emulsion (1% millbemectin, manufactured by Sankyo Co., Ltd.)
  • the pesticides shown in Table 22 were sprayed on the new leaves of Chinokokorida infested by eggplants grown in the field (variety: Senryo No. 2) at the dilution factor shown in Table 22 (dilution with water) using a small sprayer. . Three days after spraying, the sprayed new leaves were cut off, and the number of surviving insects was examined under a microscope. The results are shown in Table 22.
  • C colomite emulsion (1% millbemectin, manufactured by Sankyo Co., Ltd.)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

【課題】低い有効成分濃度で高い殺虫活性を示すと共に、その殺虫活性の持続性に優れた殺虫剤を提供すること。 【解決手段】炭素数8~22の脂肪酸グリセリドとマクロライド系殺虫剤とを含有することを特徴とする殺虫剤。

Description

明 細 書
殺虫剤
技術分野
[0001] この発明は、殺虫剤に関し、さらに詳しくは、農園芸分野において殊に防除が困難 な害虫に対して優れた防除効果とその持続性とを有する殺虫剤に関する。
背景技術
[0002] 土壌放線菌によって生産されるマクロライド系化合物は、広範囲の害虫に低濃度で 殺虫活性を示すため、害虫防除剤として広く使用されている。現在、使用されている 代表的なマクロライド系薬剤としては、スピノサド (商品名:スピノエース)、エマメクチ ン安息香酸塩 (商品名:ァファーム)、ミルべメクチン (商品名:コロマイト)、ネマデクチ ン(商品名:メガトップ)等を挙げることができる。しかし、殺虫活性が広いとはいえ、化 合物によっては、殺虫活性にある程度の選択性があることが報告されている(例えば 、非特許文献 1参照)。
[0003] 非特許文献 1:「植物防疫」、第 54卷、第 9号 (2001年)、 P377 また、これまでに、澱 粉とスピノサドまたはエマメタチン安息香酸塩と含有する防除効果の持続性に優れた 殺虫'殺ダニ剤が知られている。(例えば、特許文献 1参照)。
[0004] 特許文献 1 :特開 2001— 302416号公報 (請求項 1) この殺虫 '殺ダニ剤は、それぞ れ通常の使用濃度で混合することによって殺成虫力の向上とその持続性とを企図し た薬剤である。しかしながら、実際には、散布後飛来した害虫や散布後ふ化した幼虫 に対しては、殺虫力が微弱であるという問題があった。
発明の開示
発明が解決しょうとする課題
[0005] この発明は、このような従来の問題を解消し、低い有効成分濃度で高い殺虫活性を 示すと共に、その殺虫活性の持続性に優れた殺虫剤を提供することをその課題とす る。
課題を解決するための手段
[0006] 本発明者らは、前記課題を解決するために、殺虫剤を組成する成分について検討 を重ねた結果、この成分として、本来、単独では殺虫活性の低い脂肪酸グリセリドと、 マクロライド系殺虫剤とを混用することによって、意外にも、殺虫活性および Zまたは その持続性に耐性を有する害虫に対しても、前記課題が解決できるということを見出 し、この知見に基づいてこの発明を完成するに到った。
[0007] すなわち、この発明の前記課題を解決するためのこの発明の手段は、
炭素数が 8— 22である脂肪酸とグリセリンとから得られる脂肪酸グリセリド (以下にお いて、単に脂肪酸グリセリドと称することがある。)とマクロライド系殺虫剤とを含有する ことを特徴とする殺虫剤である。
[0008] この発明の前記課題を解決するための手段における好ましい態様としては、下記(
1)一 (3)の殺虫剤を挙げることができる。
(1)前記脂肪酸グリセリドを形成する脂肪酸が、植物体由来の脂肪酸である殺虫剤。
(2)前記脂肪酸グリセリドの濃度が 200— 3000ppmであり、前記マクロライド系殺虫 剤の濃度が 0. 2— lOOppmである殺虫剤。
(3)ハダ二目害虫、半翅目害虫、総翅目害虫または鱗翅目害虫の防除用である殺 虫剤。
発明の効果
[0009] この発明によれば、本来、マクロライド系殺虫剤では殺虫活性を示さない害虫や低 濃度では効果の劣る害虫に対して、低濃度の炭素数 8— 22の脂肪酸力 得られる脂 肪酸グリセライドとマクロライド系殺虫剤とを混用することによって、対象とする害虫の 卵から成虫へと成長する各過程において、特異的な殺虫作用が認められた。すなわ ち、散布後、生存した成虫や産下された卵に対して、殺卵作用、産卵抑制作用、摂 食停止作用および殺成虫力の向上が見られ、結果として高い害虫防除効果が奏さ れ、農園芸分野における害虫防除に寄与するところはきわめて多大である。
発明を実施するための最良の形態
[0010] この発明は、脂肪酸グリセリドとマクロライド系殺虫剤とを含有する殺虫剤である。
[0011] この発明に用いる脂肪酸グリセリドは、炭素数が 8— 22である脂肪酸とグリセリンと のグリセリンエステルである。前記脂肪酸グリセリドを形成する脂肪酸は、天然脂肪酸 であっても合成脂肪酸であってもよいが、植物体由来、例えば、大豆、綿実または菜 種由来の脂肪酸であることが好ましい。炭素数 8— 22の脂肪酸としては、力プリル酸 、ペラルゴン酸、力プリン酸、ゥンデカン酸、ラウリン酸、トリデカン酸、ミリスチン酸、ぺ ンタデカン酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデカン酸、ァラキン酸 、ヘンエイコサン酸、及びべヘン酸等を挙げることができ、中でも、力プリル酸、カプリ ン酸およびこれらの混合物が好まし 、。
[0012] 前記脂肪酸グリセリドは、前記前記脂肪酸とグリセリンとから、常法によりエステルイ匕 またはエステル交換することにより製造することができる。製造される脂肪酸グリセリド には、脂肪酸モノグリセリド、脂肪酸ジグリセリドまたは脂肪酸トリグリセリドがあり、い ずれの脂肪酸グリセリドをも用いることができる。中でも、力プリル酸と力プリン酸との 混合脂肪酸のグリセリド (デカノィルオタタノィルグリセロール、商品名:サンクリスタル 乳剤)が好ましい。
[0013] この発明に用いるマクロライド系殺虫剤としては、土壌放線菌によって生産されるマ クロライド系化合物力も成る殺虫剤、例えば、スピノサド (商品名:スピノエース)、エマ メクチン安息香酸塩 (商品名:ァファーム)、ミルべメクチン(商品名:コロマイト)または ネマデクチン (商品名:メガトップ)等を挙げることができる。
[0014] この発明の殺虫剤は、例えば前記脂肪酸グリセリドと前記マクロライド系殺虫剤とを 混合することにより調製することができる。調製にあたっては、前記脂肪酸グリセリドが 常温で固体であるときにはこれを加熱溶融して液状物として力 前記マクロライド系 殺虫剤と混合してもよぐ前記脂肪酸グリセライドを溶解することのできる溶媒と前記 脂肪酸グリセライドとを混合して溶液又は懸濁液を調製し、この溶液とマクロライド系 殺虫剤とを混合して調製しても良い。前記溶媒としては、脂肪酸グリセライドを溶解す ることのできる公知の溶媒を挙げることができ、具体的には、メタノール、エタノール、 イソプロパノール、プロピレングリコール、グリセリン、ソルビトール等の溶剤またはこれ らの混合溶剤を挙げることができる。前記脂肪酸グリセリドが常温で液状であるときに は、常温で、又は加熱しながらこの脂肪酸グリセリドと前記マクロライド系殺虫剤とを 混合調製するのが良い。また、混合調製にあたり、この殺虫剤の技術分野において 公知の乳化剤、分散剤、及び補助剤等を前記脂肪酸グリセリド及びマクロライド系殺 虫剤に適宜に添加混合することもできる。 [0015] このときに用いるマクロライド系殺虫剤粒子は粒状であるのが好ましぐ粒状で用い るときの前記マクロライド系殺虫剤の粒径に特に制限はない。また、マクロライド系殺 虫剤粒子を混合する条件にも制限はない。
[0016] 前記脂肪酸グリセリドと前記マクロライド系殺虫剤との混合割合にも特別な制限はな い。
[0017] この発明の殺虫剤は、脂肪酸グリセリドおよびマクロライド系殺虫剤に乳化剤、分散 剤及び固着剤等の補助剤を加えて製造することができる。
[0018] このようにして製造されたこの発明の殺虫剤は、そのまま使用に供することができる 1S 水などで希釈して散布等の使用に供することが好まし 、。
[0019] 前記希釈に当たっては、水等を加えて希釈した脂肪酸グリセリドと水等を加えて希 釈したマクロライド系殺虫剤とを混合してもよい。希釈の程度に制限はない。このよう にして希釈された殺虫剤における前記脂肪酸グリセリドの濃度は、通常、 200— 300 Oppmであり、前記マクロライド系殺虫剤の濃度は、通常、 0. 2— lOOppmである。
[0020] この発明の殺虫剤によって防除される対象害虫としては、ハダ-類 (ミカンハダ-、 リンゴノヽダニ、ナミハダ-、カンザヮハダ-等)等のハダ-目害虫、アブラムシ類 (ヮタ アブラムシ、モモァカアブラムシ等)等の半翅目害虫、コナジラミ類 (オンシッコナジラ ミ、シルバーリーフコナジラミ、タバココナジラミ等)、ァザミゥマ類 (ミナミキイロアザミゥ マ、ミカンキイロアザミゥマ、チヤノキイロアザミゥマ等)等の総翅目害虫、シンクイムシ 類、ョトウ類等の鱗翅目害虫を挙げることができる。
[0021] この発明の殺虫剤においては、このような害虫に対して、その卵力 成虫へと成長 する各過程において、特異的な殺虫作用を有し、散布後、生存した成虫や産下され た卵に対して、殺卵作用、産卵抑制作用、摂食停止作用および殺成虫力の向上が 認められる。特に前記 0. 2— lOOppmという低濃度では、本来、殺虫活性を示さない マクロライド系殺虫剤が、脂肪酸グリセリドと混用することによって、高い害虫防除作 用を発揮するのである。
[0022] 以下、実施例を挙げてこの発明をさらに詳しく説明するが、これら実施例によってこ の発明はなんら限定されるものではない。
実施例 [0023] 実施例 (殺虫剤の製造例)
デカノィルオタタノィルグリセロールを有効成分として 90%含有するサンクリスタル( 市販品。商品名。剤型は乳剤。 )に以下の表に示す希釈倍数となるように水を加えて 希釈することによりサンクリスタル希釈液を調製した。また、スピノサドを有効成分とし てこれを 25%含有するスピノエース (市販品。商品名。剤型は顆粒水和剤。)に以下 の表に示す希釈倍数となるように水を加えてスピノエース希釈液を調製した。次、で 、前記サンクリスタル希釈液と前記スピノエース希釈液とを混合して、殺虫剤を製造し た。
サンクリスタルに以下の表に示す希釈倍数と成るように水をカ卩えて希釈することによ り調製されたサンクリスタル希釈液と、ァファーム製剤に以下の表に示す希釈倍数と 成るように水を加えて希釈することにより調製されたァファーム希釈液とを混合して、 殺虫剤を製造した。
サンクリスタルに以下の表に示す希釈倍数と成るように水をカ卩えて希釈することによ り調製されたサンクリスタル希釈液と、コロマイト乳剤に以下の表に示す希釈倍数と成 るように水を加えて希釈することにより調製されたコロマイト希釈液とを混合して、殺虫 剤を製造した。
サンクリスタルに以下の表に示す希釈倍数と成るように水をカ卩えて希釈することによ り調製されたサンクリスタル希釈液と、メガトップ液剤に以下の表に示す希釈倍数と成 るように水を加えて希釈することにより調製されたメガトップ希釈液とを混合して、殺虫 剤を製造した。
[0024] 比較例 1 (殺虫剤の製造例)
前記サンクリスタルを以下の表に示す希釈倍数の水で希釈したサンクリスタル希釈 液を殺虫剤とし、この殺虫剤を表において「比較例 1」と表示した。サンクリスタルに以 下の表に示す希釈倍数と成るように水を加えて希釈することにより調製されたサンタリ スタル希釈液と、カスケード乳剤に以下の表に示す希釈倍数と成るように水を加えて 希釈することにより調製されたカスケード希釈液とを混合して、殺虫剤を製造した。こ の殺虫剤を、表においては「比較例 1 +K」と表示した。サンクリスタルに以下の表に 示す希釈倍数と成るように水を加えて希釈することにより調製されたサンクリスタル希 釈液と、ダントツ水溶剤に以下の表に示す希釈倍数と成るように水を加えて希釈する ことにより調製されたダントツ希釈液とを混合して、殺虫剤を製造した。この殺虫剤を 、表においては「比較例 1 + D」と表示した。サンクリスタルに以下の表に示す希釈倍 数と成るように水をカ卩えて希釈することにより調製されたサンクリスタル希釈液と、オル トラン水和剤に以下の表に示す希釈倍数と成るように水を加えて希釈することにより 調製されたオルトラン希釈液とを混合して、殺虫剤を製造した。この殺虫剤を、表に お!ヽては「比較例 1 +R」と表示した。
比較例 2
スピノエースを以下の表に示す希釈倍数の水で希釈したスピノエース希釈液を殺 虫剤とし、この殺虫剤を表において「比較例 2」と表示した。前記スピノエース希釈液 と、表に示される希釈倍数となるように水で粘着くん液剤を希釈してなる粘着くん液希 釈液との混合液を殺虫剤とし、この殺虫剤を表においては「比較例 2+N」と表示した 。前記スピノエース希釈液と、表に示される希釈倍数となるように水でォレート液剤を 希釈してなるォレート希釈液との混合液を殺虫剤とし、この殺虫剤を表においては「 比較例 2 + 0」と表示した。前記スピノエース希釈液と、表に示される希釈倍数となる ように水でァカリタッチ乳剤を希釈してなるァカリタッチ希釈液との混合液を殺虫剤と し、この殺虫剤を表においては「比較例 2+ A」と表示した。
比較例 3
ァファーム製剤に以下の表に示す希釈倍数と成るように水を加えて希釈すること〖こ より調製されたァファーム希釈液を殺虫剤とし、これを表においては「F」と表示した。 コロマイト乳剤に以下の表に示す希釈倍数と成るように水を加えて希釈することにより 調製されたコロマイト希釈液を殺虫剤とし、これを表においては「C」と表示した。カス ケード乳剤に以下の表に示す希釈倍数と成るように水を加えて希釈することにより調 製されたカスケード希釈液を殺虫剤とし、これを表においては「K」と表示した。ダント ッ水和剤に以下の表に示す希釈倍数と成るように水を加えて希釈することにより調製 されたダントツ希釈液を殺虫剤とし、これを表においては「D」と表示した。オルトラン 水和剤に以下の表に示す希釈倍数と成るように水を加えて希釈することにより調製さ れたオルトラン希釈液を殺虫剤とし、これを表においては「R」と表示した。メガトップ 液剤に以下の表に示す希釈倍数と成るように水を加えて希釈することにより調製され たメガトップ希釈液を殺虫剤とし、これを表においては「M」と表示した。表に示される 希釈倍数となるように水で粘着くん液剤を希釈してなる粘着くん液希釈液を殺虫剤と し、この殺虫剤を表においては「N」と表示した。表に示される希釈倍数となるように水 でォレート液剤を希釈してなるォレート希釈液を殺虫剤とし、この殺虫剤を表におい ては「0」と表示した。表に示される希釈倍数となるように水でァカリタッチ乳剤を希釈 してなるァカリタッチ希釈液を殺虫剤とし、この殺虫剤を表においては「A」と表示した
[0026] 評価試験 1一 6
ポット栽培のキユウリ(品種:オナー、 1. 5葉期)の葉上にナミハダ-雌成虫を放虫し て、雌成虫が定着した 2日後に寄生虫数を調査し、表 1に示す希釈倍数で希釈され た殺虫剤を小型噴霧器により散布した。散布 1日後の雌成虫の生死状況を調査した 。結果を表 1に示す。
[0027] [表 1]
Figure imgf000008_0001
[0028] 表 1に示すように比較例 1、 2の結果力 分力るように、スピノエースのナミハダ-雌 成虫に対する効果については、麻痺虫が多ぐ速効性の点に難点があり、殺成虫力 としては低いものであった。一方、サンクリスタル乳剤では、生虫が多ぐ殺成虫力と しては高いものではなかった。ところが、スピノエースとサンクリスタルとを混用すること により、速効性と殺成虫力との向上が認められた。この試験は、散布 1日後の成虫に 対する速効性を見たものである力 通常、 3— 4日で麻痺虫が生と死とに別れる。麻 痺の状態であっても、その程度によって産卵能を有するので、殺ダニ剤にとって成虫 に対する速効性はきわめて重要である。
[0029] 評価試験 7— 12
ポット栽培のインゲン(品種:さっきみどり 2号、第 1複葉期)に、表 2に示す殺虫剤を 、表 2に示す希釈倍数 (水による希釈)で小型噴霧器により散布した。散布後、ガラス ノ、ウス内で管理し、散布 1日後および 4日後にインゲンの第 1複葉にナミハダ-雌成 虫を 20頭づっ放虫した。放虫 3日後に雌成虫の生存虫数と総産卵数を調査した。結 果を表 2に示す。
[0030] [表 2]
Figure imgf000009_0001
[0031] ( )内は、生存虫 1頭当りの産卵数である。
[0032] 表 2の実施例及び比較例の結果力 分力るように、スピノエースとサンクリスタルとを 混用することにより、それぞれ単独で使用する場合に比較して、殺虫力の向上と産卵 数の減少が認められた。この傾向は、散布後 4日後の放虫に対しても維持され、残効 性の向上も期待できる。散布後、放虫した成虫が 3日間で産卵した卵数は、無散布 区で 1頭当り 22— 24個、スピノエースの単独使用で 19一 23個、サンクリスタルの単 独使用で 115— 116個となった。混用区では、低濃度区を含めて 4一 8個の産卵数 であり、散布後、放虫された成虫は、葉上の殺虫剤付着部位に接触するか、吸汁に よる食毒作用によるのか定かではないが、 3日間で死亡固体が多く見られ、生存固体 の産卵数も減少し、混用によって、産卵数の明らかな減少が認められた。防除の面 力もは、殺虫剤のかかりにくい葉裏のダニや、散布後、風によって飛来したダニが殺 虫剤処理葉に接触することにより、殺ダニ作用が見られることは、残効性の点からも 重要である。
[0033] 評価試験 13— 19
ポット栽培のインゲン(品種:さっきみどり 2号、第 1複葉期)に、ナミハダ-雌成虫を 20頭ずつ放虫し、ガラスハウス内で 2日間、産卵させた後、表 3に示す殺虫剤を、表 3に示す希釈倍数 (水による希釈)で小型噴霧器により散布した。散布 7日後、寄生 ナミハダ-数を成育段階ごとに調査した。結果を表 3に示す。
[0034] [表 3]
Figure imgf000010_0001
[0035] 表 3に示されるように、スピノエース顆粒水和剤、サンクリスタル乳剤各単用では、殺 成虫力は認められるが、ふ化幼虫から成育した若虫が多数見られた。スピノエースと サンクリスタルとを混用することにより、殺卵力の向上が認められ、さらに、ふ化幼虫の 成育停止が認められた。なお、ナミハダ-と同類のカンザヮハダ- 27°C条件下にお ける成育ステージは、表 4に示すとおりである。
[0036] [表 4]
Figure imgf000010_0002
つまり、産卵から成虫までの日数は 10日間である。この試験では、成虫と 2日間産 卵させた卵を対象として散布した。散布後、生存している成虫は産卵し続ける。卵か らふ化した幼虫(足が 6本)は、第 1静止期に入り、脱皮して若虫(足が 8本)に成育す る。各単用区からふ化した幼虫は正常に成育し、大部分が若虫となった。スピノエー スとサンクリスタルとの混用により、混合区では、ふ化幼虫は摂食阻害によって餓死 固体が見られた。混合区では、ふ化幼虫の生虫が見られるが、後記するように、 日数 が経つに従い餓死する。
[0038] 評価試験 20— 25
ポット栽培のインゲン(品種:さっきみどり 2号)初生葉に、ナミハダ-雌成虫を 20頭 ずつ放虫した。 2日間、産卵させた後、表 5に示す殺虫剤を、表 5に示す濃度で小型 噴霧器により散布した。散布 5、 7、 10日後にそれぞれのポットからインゲンの初生葉 を切り取り、ふ化幼虫の生存虫数を調査した。結果を表 5に示す。
[0039] [表 5]
Figure imgf000011_0001
[0040] ( )内は、増殖抑制率である。
増殖抑制率 = 1 (散布区の生存虫数 Z無散布区の生存虫数) X 100
[0041] スピノエース顆粒水和剤、サンクリスタル乳剤各単用では、散布後、 日数が経つに 従い、幼虫数の増加傾向が見られた。ところが、スピノエースとサンクリスタルとを混用 することによって、ふ化幼虫に対する摂食阻害作用のため、死亡固体が多く認められ 、 10日後ではナミハダ-の増殖を完全に抑制することができた。
[0042] 評価試験 26— 41
ポット栽培のインゲン(品種:さっきみどり 2号)初生葉に、ナミハダ-雌成虫を 1葉当 り 10頭ずつ放虫し、ガラスハウス内で 3日間、産卵させた。放虫 3日後、表 6に示す殺 虫剤を、表 6に示す希釈倍数 (水による希釈)および濃度で小型噴霧器により散布し た。散布 9日後の寄生虫数力も増殖抑制率を算出した。結果を表 6に示す。 [0043] [表 6]
Figure imgf000012_0001
[0044] 増殖抑制率 = 1 (散布区の生存虫数 Z無散布区の生存虫数) X 100
[0045] スピノエースとサンクリスタルとのそれぞれを単独で使用した場合には、生存虫が多 数見られたが、スピノエースとサンクリスタルとを混用することによって、生存虫が激減 し、高い相乗効果が認められた。この効果を奏する混合濃度 (ppm)比は、スピノエー ス:サンクリスタル = 1 : 8— 1 : 250であった。また、完全阻止混合濃度比は、 1 : 58で めつに。
[0046] 評価試験 42— 49
プランター栽培のナス(品種:千両号 6葉期)に、ナミハダ-寄生葉切片を接種した 。接種 3日後に殺虫剤散布前のナミハダ-寄生虫数を調査した後、表 7に示す殺虫 剤を、表 6に示す希釈倍数 (水による希釈)で小型噴霧器により散布した。散布 7、 14 、 20、 29日後の寄生虫数を全葉について調査し、それぞれの寄生虫数から防除効 率を算出した。結果を表 7に示す。
[0047] [表 7] 殺虫剤 希釈倍数 寄生虫数 防除効率 処理前 7日 後 14曰 後 20日後 29日 後 ( % )
4 2 比較例 2 スヒ。 2500 85 評価 796 11S4 1830 33. 6
試験
4 3 比較例 2 ス匕。 ノエース 5000 81 118 520 81S 1684 43. 9
4 4 実施例 スヒ ° ノ; £ース 5000斗 82 0 0 39 249 94. 9
サンクリスタル 300
4 5 実施例 スヒ。 ノエース 5000+ 82 0 0 6 258 95. 3
サンクリス夕ル 600
4 6 実施例 ス匕。 ノエース 5000+ 82 0 0 1 152 97. 3
サンクリスタル 1200
4 7 比較例 1 サンクリスタル 300 115 22 206 268 786 S3. 9
4 8 比較例 1 サンクリスタル 600 89 39 236 490 930 72. 4
4 9 無散布 75 91 890 1620 2581
[0048] 防除効率 = (l-Cb∑Tai/Tb∑ Cai) X 100
Cb:無散布区の殺虫剤散布前の虫数
Tai:散布区の殺虫剤散布後の i回目の虫数
Tb:散布区の殺虫剤散布前の虫数
Cai:無散布区の殺虫剤散布後の i回目の虫数
[0049] スピノエース及びサンクリスタル夫々を単独で使用した場合には、ナミハダ-に対す る効果は劣るものであった力 スピノエースとサンクリスタルとを混用することによって 、効果の向上が認められた。
[0050] 評価試験 50— 61
ポット栽培のインゲン(品種:さっきみどり 2号)第 1複葉に、ナミハダ-雌成虫を 20 頭 Z株ずつ放虫し、ガラスハウス内で 1日間、産卵させた。殺虫剤散布前のナミハダ 二寄生虫数を調査した後、表 8に示す殺虫剤を、表 8に示す希釈倍数 (水による希釈 )で小型噴霧器により散布し、散布 7日後の寄生虫数を調査した。結果を表 8に示す
[0051] [表 8] 評価 殺虫剤 希釈倍数 散布前 寄生虫数 生存 処 試験 虫数 成 Ά 若虫 ふ化 虫 虫数 理比
5 0 比 較例 2 スヒ ノエ一ス 2500 39 9 344 29 382 63. 2
5 1 比 較例 2 スヒ ノエ一ス 5000 36 16 536 28 580 96. 0
5 2 実施例 スヒ エース 5000 + 37 0 0 2 2 0. 3 サンクリスタル 600
5 3 実施例 スヒ ノエ一ス 5000 + 36 0 19 17 36 6. 0 サンクリスタル 1200
5 4 比 較例 1 サンクリスタル 300 38 12 272 8 292 48. 3
5 5 比 較例 2 スヒ ノエ一ス 5000 + 36 3 275 8 286 47. 4 十 N N 100
5 6 N N 100 38 0 213 3 216 48. 3
5 7 比 較例 2 スヒ ノエ一ス 5000 + 36 2 151 10 163 27. 0 十 O O 100
5 8 O O 100 37 0 191 0 191 31. 6
5 9 比 較例 2 スヒ エース 5000 + 38 1 428 5 434 71. 9 + A A 1000
6 0 A A 1000 39 10 491 7 508 84. 1
6 1 無散布 37 28 520 56 604 100
[0052] N:粘着くん液剤 (住友化学工業株式会社製、 5%でんぷん)
O:ォレート液剤(大塚ィ匕学株式会社製、 20%ォレイン酸ナトリウム)
A:ァカリタッチ乳剤 (石原産業株式会社製、 70%プロピレングリコールモノ 脂肪酸エステル)
[0053] なお、表 8にといて、殺虫剤につき「比較例 2+N」とあるのは、その殺虫剤が比較 例 2で調製された殺虫剤と粘着くん液剤との混合物であることを、示す。殺虫剤につ き「比較例 2 + 0」及び殺虫剤にっき「比較例 2 + A」とある表示も同様のことを示す。
[0054] 物理的防除剤である粘着くん液剤、ォレート液剤またはァカリタッチ乳剤とスピノエ ースとの混用効果は認められな力つた。スピノエースとサンクリスタルとをそれぞれ単 独で使用する場合は、殺ダニ効果は劣るものであつたが、スピノエースとサンクリスタ ルとを混用することによって、ふ化幼虫の死亡固体が多く見られ、他の類似の物理的 防除剤とは異なる作用効果が得られることが認められた。
[0055] 評価試験 62— 97
野外ミカン榭 (温州ミカン)力も葉(1枝 1葉)を採取し、水洗、水挿した後、ミカンハダ 二雌成虫を 1葉当り 10頭ずつ放虫した。 4日間、 25°C室内で産卵させた後、雌成虫 を除去し、産卵数を調査した。同日、表 9に示す殺虫剤を、表 9に示す希釈倍数 (水 による希釈)および濃度で小型噴霧器により散布した。散布後は 25°C室内に置き、 散布 8日後のふ化幼虫の死亡率を算出した。結果を表 9に示す。
[表 9]
Figure imgf000015_0001
スピノエースとサンクリスタルとをそれぞれ単独で使用する場合は、殺幼虫効果はほ とんど見られな力つた力 スピノエースとサンクリスタルとを混用することによって、餓 死固体が多く見られ、幼虫に対する効果に著しい向上が認められた。増殖抑制効果 、防除効果に比較して、一見、全体的に死亡率が低いように見受けられるが、日数が 経つに従い、餓死固体が増加する。また、試験した殺卵効果においては、混用によ る効果は認められな力つた力 混用によってふ化した幼虫が成育しない点が最も特 徴的な点である。この作用効果は、サンクリスタルの単独使用では見られず、連続散 布することによって幼虫にサンクリスタルが散布された場合にのみ、発現する点で異 なるものである。
[0058] 評価試験 98— 132
ポット栽培のインゲン(品種:さっきみどり 2号)初生葉に、表 10に示す殺虫剤を、表 10に示す希釈倍数 (水による希釈)および濃度で小型噴霧器により散布し、マメハモ ダリバエ発生地に配置した。散布 14日後に散布後に発生したマメハモダリバエ食入 加害虫数を調査した後、被害阻止率を算出した。結果を表 10に示す。
[0059] [表 10]
評価 殺虫剤 スピノエース サンク リスタル 被害阻止率 試験 希釈 濃度 希釈 濃度 (%)
倍数 ( p p m) 倍数 ( p p m)
9 8 実施例 2500 100 300 3000 100
9 9 600 1500 100
1 0 0 1200 750 99.5
1 0 1 2400 375 97.3
1 0 2 4800 188 56.9
1 0 3 5000 50 300 3000 100
1 0 4 600 1500 100
1 0 5 1200 750 98.9
1 0 6 2400 375 87.2
1 0 7 4800 188 42.0
1 0 8 10000 25 300 3000 98.9
1 0 9 600 1500 98.4
1 1 0 1200 750 95.2
1 1 1 2400 375 85. 1
1 1 2 4800 188 26.7
1 1 3 20000 13 300 3000 96.3
1 1 4 600 1500
1 1 5 1200 750 95.7
1 1 6 2400 375 72.9
1 1 7 4800 188 14.4
1 1 8 40000 6 300 3000
1 1 9 600 1500
1 2 0 1200 750 85. 1
1 2 1 2400 375
1 2 2 4800 188 8.0
1 2 3 比較例 1 300 3000 31.9
1 2 4 600 1500 26. 1
1 2 5 1200 750 24.5
1 2 6 2400 375 16.0
1 2 7 4800 188 2.7
1 2 8 比較例 2 2500 100 21.3
1 2 9 5000 50 被害阻止率 = (1 散布区の寄生虫数 Z無散布区の寄生虫数) X 100 スピノエースのマメハモダリバエ食入幼虫に対する直接殺虫力の高いことは知られ ているが、この試験のような散布後、寄生加害する幼虫、ふ化幼虫に対する効果は 見られていない。サンクリスタルを単独使用する場合においても。同様である。スピノ エースとサンクリスタルとを混用することによって、産卵はするものの、ふ化幼虫に対 する効果が増強され、高い被害防止効果が得られることが認められた。散布後、マメ ハモダリバエ多発地に配置したところ、スピノエースとサンクリスタルとを混用すること によって、成虫の死亡固体も見られるが、食痕、産卵数も多数見られる。ふ化が始ま る頃に、ふ化幼虫の小さい食痕が見られる力 ふ化 '食害後、幼虫は死亡する。残効 も長い。現在、マメハモダリバエ専用剤で被害防止効果を示す薬剤は少ない。
[0061] 評価試験 133— 146
プランター栽培のミニトマト(品種:タイ-一ティム 6. 5葉期、 10株植え)に、表 11に 示す殺虫剤を、表 11に示す希釈倍数 (水による希釈)でプランター当り 500ml杓型 噴霧器により散布した。散布 8日後に上位 5葉(1区 50葉)を対象に、マメハモグリバ ェによる被害程度を調査した。この被害程度力 被害葉率、被害度および防除価を 算出した。結果を表 11に示す。
[0062] [表 11]
Figure imgf000018_0001
[0063] F:ァファーム乳剤(シンジェンタジャパン株式会社製、 1 %エマメタチン安息香酸塩 ) C:コロマイト乳剤(三共株式会社製、 1%ミルべメクチン)
K:カスケード乳剤(ビーエーエスエファグロ株式会社製、 10%フルフエノクスロン) D:ダントツ水溶剤 (武田薬品工業株式会社製、 16%クロチア-ジン)
R:オルトラン水和剤 (武田薬品工業株式会社製、 50%ァセフェート)
調査葉数: 150
被害程度
0 :潜行痕なし。
1:潜行痕が総面積の 10%未満。
2:潜行痕が総面積の 10— 25%未満。
3:潜行痕が総面積の 25— 50%未満。
4:潜行痕が総面積の 0%以上。
被害度 =n+ 2n + 3n +4n /4 X N
2 3 4
n:被害程度が示す葉数。
N :調査葉数。
被害価 =無処理区の被害度 -処理区の被害度 Z無処理区の被害度 X 100
[0064] マクロライド系殺虫剤とサンクリスタル乳剤とを混用することによって、高い防除効果 が得られることが認められた。
[0065] 評価試験 147— 159
ポット栽培のインゲン(品種:さっきみどり 2号)第 1複葉期に寄生して 、るミナミキイ ロアザミゥマ幼虫を対象に、表 12に示す殺虫剤を、表 12に示す濃度で小型噴霧器 により散布した。散布 5日後に寄生しているミナミキイロアザミゥマの生死状況を調査 し、死虫率を算出した。結果を表 12に示す。
[0066] [表 12] 評価 殺虫剤 濃度 成虫 幼虫 死亡率 試験 ( P P m ) 生虫 死虫 生虫 死虫 ( % )
147 実施例 スヒ ノエ一ス 25. 0 + 0 3 0 38 100
サンクリスタル 1500
148 スヒ ノエ一ス 12. 5 + 0 1 0 27 100
サンクリスタル 750
149 スヒ エース 6. 3 + 0 1 3 25 89. 7
サンクリスタル 375
150 スヒ エース 3. 1 + 0 2 17 31 66. 7
サンクリスタル 188
151 スヒ ノエ一ス 1. 6 + 0 0 15 26 63. 4
サンタリスタル 94
152 比 較例 2 スヒ ノエース 25. 0 0 3 0 25 100
153 スヒ ノエ一ス 12. 5 0 2 11 12 56. 0
154 スヒ ノエース 6. 3 0 0 30 6 16. 7
155 エース 3. 1 3 0 48 4 7. 3
156 スヒ ノエ一ス 1. 6 1 3 40 2 10. 9
157 比 較例 1 サンクリスタル 1500 2 4 19 9 38. 2
158 サンクリスタル 750 3 1 31 1 5. 6
159 無散布 3 2 36 2 9. 3
[0067] スピノエースを単独で使用する場合には効果が劣る 12. 5ppm以下の濃度区にお いて、スピノエースとサンクリスタルとを混用することによって、高い防除効果が得られ ることが認められた。
[0068] 評価試験 160— 164
ポット栽培のインゲン(品種:虎丸うずら)初生葉を飼育ケージ(30X25 X 28cm)に 入れ、オンシッコナジラミ成虫を放虫して、 2日間、産卵させた。産卵後、表 13に示す 殺虫剤を、表 13に示す希釈倍数 (水による希釈)で小型噴霧器により散布した。散布 2日後に寄生葉を切り取り、実態顕微鏡を用いて、ふ化状況およびふ化幼虫の死虫 率を調査した。結果を表 13に示す。
[0069] [表 13]
評価 殺虫剤 希釈倍数 卵 に对 す る 効果 ふ化幼虫に対す る 効果 試験 ふ化 ふ 殺卵率 成虫 異常虫 死虫 死虫率 卵 化卵 ( % ) ( % )
160 スヒ。 ノエ一ス 2500 141 27 16.1 43 21 44 40.7
161 実施例 スヒ ÷ ノエース 25ϋΰ + 154 1 B 9 .4 2 9 109 90.6 サンク yスタル soci
162 実施例 スヒ ÷ ノエース 5ΰϋΰ + 140 20 12.5 0 5 131 96.3 サンク yスタル soci
163 比較例 1 サンク yスタル 300 116 19 14 + 1 53 28 25 23 , 6
184 無散布 201 20 10 , 0 109 0 0 0 [0070] スピノエースとサンクリスタルとを混用することによって、ふ化幼虫に対する効果が著 しく向上し、安定した効果が得られることが認められた。
[0071] 評価試験 165— 200
ポット栽培のキユウリ(品種:新光 A号)第 1本葉に、ヮタアブラムシ寄生葉を接種し、
1日後に寄生虫数を調査した。調査後、表 14に示す殺虫剤を、表 14に示す希釈倍 数 (水による希釈)および濃度で小型噴霧器により散布した。散布 5日後に寄生虫数 を調査し、増殖抑制率を算出した。結果を表 14に示す。
[0072] [表 14]
評価 殺虫剤 スピノエース サンク リスタル 增殖抑制率 試験 希釈 濃度 希釈 濃度 ( % )
倍数 ( p p m ) 倍数 ( p p m )
165 実施例 2500 100 300 3000 98
166 600 1500 99
167 1200 750 95
168 2400 375 92
169 4800 188 67
170 5000 50 300 3000 100
171 600 1500 95
172 1200 750 90
173 2400 375 81
174 4800 188 15
175 10000 25 300 3000 100
176 600 1500 100
177 1200 750 88
178 2400 375 53
179 4800 188 0
180 20000 13 300 3000 83
181 600 1500 60
182 1200 750 56
183 2400 375 0
184 4800 188 0
185 40000 6 300 3000 40
186 600 1500 84
187 1200 750 30
188 2400 375 3
189 4800 188 0
190 比較例 1 300 3000 70
191 600 1500 69
192 1200 750 34
193 2400 375 0
194 4800 188 0
195 比較例 2 2500 100 0
196 5000 50 0
[0073] 増殖抑制率 = (1 -無処理区の処理前虫数 X処理区の処理後虫数 Z処理区の 処理前虫数 X無処理区の処理後虫数) X 100
[0074] スピノエースの単独使用では効果が見られなかった力 スピノエースとサンクリスタル とを混用することによって、ヮタァブラムシに対する増殖抑制効果が高められた。 [0075] 評価試験 201— 230
ポット栽培のインゲン(品種:さっきみどり 2号)初生葉に、ナミハダ-雌成虫 20頭(2 ポット)ずつ放虫した。 2日間、産卵させた後、表 15に示す殺虫剤を、表 15に示す濃 度で小型噴霧器により散布した。散布 9日後に生存虫数を調査し、増殖抑制率を算 出した。結果を表 15に示す。
[0076] [表 15]
Figure imgf000023_0001
[0077] 増殖抑制率 C:コロマイト乳剤(三共株式会社製、 1%ミルべメクチン)
コロマイト乳剤単用では効果が劣る lppm以下の濃度において、コロマイト乳剤とサ ンクリスタル乳剤とを混用することによって、安定した効果が得られた。最適混合割合 は、コロマイト:サンクリスタノレ = 1000ppm: l. 13ppm (1 : 885)であった。
[0078] 評価試験 231— 238
ポット栽培のキユウリ(品種:新光 A号)第 1本葉に、表 16及び表 17に示す殺虫剤を 、表 16及び表 17に示す希釈倍数 (水による希釈)で小型噴霧器により散布した。散 布 2、 4、 6、 8日後にキユウリ葉表面にナミハダ-雌成虫を 15頭づっ放虫した。各放 虫の 2日後に葉裏に移動したナミハダ-の生存虫数と産卵数を調査した。 ( )内は 1 頭当りの産卵数である。結果を表 16及び表 17に示す。
[0079] [表 16]
Figure imgf000024_0001
[0080] [表 17]
評価試験 殺虫剤 希釈倍数 散布 6 日後放虫 散布 8 日後放虫
生存虫数 産卵数 生存虫数 産卵数
2 3 1 実施例 C 2000+ 9 17 (1.9) 8 22 (2.8) サンクリスタル 600
2 3 2 実施例 C 4000+ 10 28 (2.8) 6 38 (6.3) サンクリスタル 600
2 3 3 実施例 C 8000+ 10 51 (5. 1) 8 115 (14.4) サンクリスタル 600
2 3 4 C C 2000 8 48 (6.0) 7 86 (12.3)
2 3 5 C C 4000 9 75 (8.3) 10 147 (14.7)
2 3 6 C C 8000 12 174 (14. 5) 8 124 (15.5)
2 3 7 比較例 1 サンクリスタル 600 13 175 (13. 5) 12 186 (15.5)
2 3 8 無散布 15 227 (15. 1) 14 220 (15.7)
[0081] C:コロマイト乳剤(三共株式会社製、 1%ミルべメクチン)
散布されたキユウリの第 1本葉は、散布 8日後で 2.5倍伸長した。散布後、放虫した ナミハダ-成虫に対するコロマイト乳剤の効果は顕著なものではな力つた。葉表面か ら葉裏に移動した成虫の産卵数は、コロマイト乳剤単用では散布 4日後まで低下し、 産卵抑制効果が認められた。コロマイト乳剤とサンクリスタル乳剤とを混用することに よって、さらに産卵数は低下し、散布 8日後まで産卵抑制効果を持続することができ た。
[0082] 評価試験 239— 263
ポット栽培のインゲン(品種:さっきみどり 2号)初生葉に、ナミハダ-雌成虫 20頭(2 ポット)ずつ放虫した。放虫 1日後に、表 18に示す殺虫剤を、表 18に示す希釈倍数( 水による希釈)および濃度で小型噴霧器により散布した。散布7日後の成虫とふ化し た幼虫を調査し、増殖抑制率を算出した。結果を表 18に示す。
[0083] [表 18] 評価 殺虫剤 F サン タ リ ス タ ル 増殖抑制率 試験 希釈 濃度 希釈 濃度 ( %)
倍数 ( P m ) 倍数 ( P P m )
Ξ39 実施例 2000 5.0 500 1800 100
240 実施例 1000 900 100
241 実施例 2000 450 100
242 実施例 4000 225 100
243 実施例 4000 2.5 500 1800 100
244 実施例 1000 900 100
Ξ45 実施例 2000 450 100
246 実施例 4000 225 100
247 実施例 8000 1.25 500 1S0 100
248 実施例 1000 900 100
249 実施例 2000 450 100
250 実施例 4000 225 97.5
251 実施例 16000 0.625 500 1800 100
Ξ52 実施例 1000 900 98.6
253 実施例 2000 450 97.5
Ξ54 実施例 4000 225 92.3
255 比較例 1 500 1800 49. 1
256 比較例 1 1000 900 47.7
257 比較例 1 2000 450 32.0
Ξ58 比較例 1 4000 225 10.9
259 F 2000 5.0 100
260 F 4000 2.5 100
261 F 8000 1.25 97.0
262 F 16000 0.625 65.0
263 無散布 0
[0084] F:ァファーム乳剤(シンジェンタジャパン株式会社製、 1%エマメタチン安息香酸塩) 増殖抑制率 =(1 -無処理区の処理前虫数 X処理区の処理後虫数 Z処理区の 処理前虫数 X無処理区の処理後虫数) X 100
無処理区生存虫数:成虫 12、幼虫 28、合計 40
[0085] ァファーム乳剤単用でも増殖抑制効果は高力つた力 効果の劣るァファーム 1.62 ppm区において、ァファーム乳剤とサンクリスタル乳剤とを混用することによって、高 い効果が得られることが認められた。
[0086] 評価試験 264— 288
ポット栽培のインゲン(品種:さっきみどり 2号)初生葉に、ナミハダ-雌成虫 20頭(2 ポット)ずつ放虫した。放虫 1日後に、表 19に示す殺虫剤を、表 19に示す希釈倍数( 水による希釈)および濃度で小型噴霧器により散布した。散布7日後の成虫とふ化し た幼虫を調査し、増殖抑制率を算出した。結果を表 19に示す。
[0087] [表 19]
Figure imgf000027_0001
[0088] M:メガトップ液剤(ビーエーエスエファグロ株式会社製、 3. 6%ネマデクチン) 増殖抑制率 = (1 -無処理区の処理前虫数 X処理区の処理後虫数 Z処理区の 処理前虫数 X無処理区の処理後虫数) X 100
[0089] メガトップ液剤単用では、効果が不安定であった力 メガトップ液剤とサンクリスタル とを混用することによって、安定した効果が得られることが認められた。
[0090] 評価試験 289— 324
ポット栽培のインゲン(品種:さっきみどり 2号)初生葉に、表 20に示す殺虫剤を、表 20に示す希釈倍数 (水による希釈)および濃度で小型噴霧器により散布した。散布 後、マメハモダリバエガ多発しているミニトマト栽培ノヽウスに配置し、産卵、加害させた 。散布 13日後に初生葉に寄生しているマメハモダリバエガ幼虫数を調査し、寄生虫 数力 被害阻止率を算出した。結果を表 20に示す。
[0091] [表 20]
Figure imgf000028_0001
[0092] F:ァファーム乳剤(シンジェンタジャパン株式会社製、 1%エマメタチン安息香酸塩) 被害阻止率 = (1 散布区の寄生虫数 Z無散布区の寄生虫数) X 100
[0093] ァファーム乳剤単用では、 2000倍(5ppm)において高い効果が認められる力 こ れ以下の濃度では全く効果を示さなかった。効果の劣る 2. 5ppm以下の濃度区にお いて、ァファーム乳剤とサンクリスタルとを混用することによって、被害防止効果が著 しく向上した。
[0094] 評価試験 325— 334
ポット栽培のキユウリ(品種:新光 A号、 2葉期)に、ヮタアブラムシ寄生片を接種した 。接種 2日後の散布前の虫数調査した後、表 21に示す殺虫剤を、表 21に示す希釈 倍数 (水による希釈)で小型噴霧器により散布した。散布 3日後に寄生虫数を調査し 、補正密度指数を算出した。結果を表 21に示す。
[0095] [表 21]
Figure imgf000029_0001
[0096] C :コロマイト乳剤(三共株式会社製、 1%ミルべメクチン)
F:ァファーム乳剤(シンジェンタジャパン株式会社製、 1%エマメタチン安息香酸塩) 補正密度指数 =無処理区の処理前虫数 X処理区の処理後虫数 Z処理区の処理 前虫数 X無
処理区の処理後虫数
[0097] コロマイト乳剤及びァファーム乳剤夫々の単独使用では、効果が劣るものであった が、コロマイト乳剤またはァファーム乳剤とサンクリスタルの 900倍希釈液とを混用す ることによって、高い効果が得られることが認められた。
[0098] 評価試験 335— 343
野外栽培のナス(品種:千両 2号)に寄生しているチヤノホコリダ-被害新葉部に、 表 22に示す殺虫剤を、表 22に示す希釈倍数 (水による希釈)で小型噴霧器により散 布した。散布 3日後に散布した新葉部を切り取り、顕微鏡下で生存虫数を調査した。 結果を表 22に示す。
[0099] [表 22]
Figure imgf000030_0001
[0100] C:コロマイト乳剤(三共株式会社製、 1%ミルべメクチン)
[0101] コロマイト乳剤及びアーデント水和剤夫々の単独使用では、効果の劣る 16000倍、 32000倍において、コロマイト乳剤とサンクリスタルの 600倍希釈液とを混用すること によって、高い効果が得られることが認められた。

Claims

請求の範囲
[1] 炭素数が 8— 22である脂肪酸とグリセリンとから得られる脂肪酸グリセリドとマクロラ イド系殺虫剤とを含有することを特徴とする殺虫剤。
[2] 前記脂肪酸グリセリドを形成する脂肪酸が、植物体由来の脂肪酸である請求項 1に 記載の殺虫剤。
[3] 前記脂肪酸グリセリドの濃度が 200— 3000ppmであり、前記マクロライド系殺虫剤 の濃度が 0. 2— lOOppmである請求項 1または 2に記載の殺虫剤。
[4] ハダ二目害虫、半翅目害虫、総翅目害虫または鱗翅目害虫の防除用である請求 項 1一 3のいずれか一項に記載の殺虫剤。
PCT/JP2004/015224 2003-10-17 2004-10-15 殺虫剤 WO2005036965A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514786A JP4728808B2 (ja) 2003-10-17 2004-10-15 殺虫剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003357976 2003-10-17
JP2003-357976 2003-10-17

Publications (1)

Publication Number Publication Date
WO2005036965A1 true WO2005036965A1 (ja) 2005-04-28

Family

ID=34463267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015224 WO2005036965A1 (ja) 2003-10-17 2004-10-15 殺虫剤

Country Status (2)

Country Link
JP (1) JP4728808B2 (ja)
WO (1) WO2005036965A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206507A (ja) * 1982-05-10 1983-12-01 メルク エンド カムパニー インコーポレーテッド 協力作用をもつアベルメクチン混合剤
JPS59167511A (ja) * 1983-02-22 1984-09-21 マリンクロット ベタリナリィ,インコーポレイテッド 殺外部寄生虫製剤、その製造法および外部寄生虫の防除法
JPS6425706A (en) * 1987-04-29 1989-01-27 Sankyo Co Agricultural insecticide and acaricide having enhanced effect
JPH08509981A (ja) * 1993-05-10 1996-10-22 メルク エンド カンパニー インコーポレーテッド ポリマー材料とグリコールとグリセリドとを含む局所適用用組成物
JP2001302416A (ja) * 2000-04-25 2001-10-31 Agurosu:Kk 殺虫・殺ダニ剤及び殺虫・殺ダニ方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4226107B2 (ja) * 1998-06-17 2009-02-18 アース製薬株式会社 高喫食性を有する齧歯動物用毒餌剤及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206507A (ja) * 1982-05-10 1983-12-01 メルク エンド カムパニー インコーポレーテッド 協力作用をもつアベルメクチン混合剤
JPS59167511A (ja) * 1983-02-22 1984-09-21 マリンクロット ベタリナリィ,インコーポレイテッド 殺外部寄生虫製剤、その製造法および外部寄生虫の防除法
JPS6425706A (en) * 1987-04-29 1989-01-27 Sankyo Co Agricultural insecticide and acaricide having enhanced effect
JPH08509981A (ja) * 1993-05-10 1996-10-22 メルク エンド カンパニー インコーポレーテッド ポリマー材料とグリコールとグリセリドとを含む局所適用用組成物
JP2001302416A (ja) * 2000-04-25 2001-10-31 Agurosu:Kk 殺虫・殺ダニ剤及び殺虫・殺ダニ方法

Also Published As

Publication number Publication date
JPWO2005036965A1 (ja) 2006-12-28
JP4728808B2 (ja) 2011-07-20

Similar Documents

Publication Publication Date Title
EP3346835B1 (en) Insecticide/miticide composition based on fatty acid salts
CN107467021B (zh) 一种用于防治旋幽夜蛾的诱剂组合物
JPH04342506A (ja) 相乗的殺虫剤組成物
BR112020003643A2 (pt) miticida e aplicação concreta
JP5850375B2 (ja) 半翅目害虫の産卵阻害剤
CN101984828B (zh) 一种复配杀虫剂
KR101799420B1 (ko) 머귀나무 추출물을 포함하는 진딧물 방제용 조성물
CN107286021B (zh) 一种用于防治八字地老虎的卤代类信息素类似物
SU586820A3 (ru) Способ борьбы с насекомыми и клещами и пестицидна композици дл его осуществлени
Quaglia et al. Observations on an infestation by green peach aphids (Homoptera: Aphididae) on greenhouse tomatoes in Italy
WO2005036965A1 (ja) 殺虫剤
Wilson The conservation and augmentation of natural enemies
CN108782573B (zh) D-柠檬烯和鱼藤酮的杀螨组合物及其应用
JP2017001988A (ja) ネコブセンチュウ防除剤
CN112021310A (zh) 一种用于防治宽胫夜蛾的性信息素组合物
KR20150144776A (ko) 살충성을 가지는 활성 화합물의 배합물
US20180014537A1 (en) Novel compositions and methods for controlling soil borne pathogens of agricultural crops
RU2821581C1 (ru) Комплексное средство для биологической защиты сельскохозяйственных растений
CN112602721A (zh) 一种杀线虫农用组合物
Khushvaqt et al. Bioecology of orchard mites and the effectiveness of modern insecticides against them
Cloyd Explaining azadirachtin and neem
CN112450221A (zh) 一种用于防治植物寄生线虫的组合物及其应用
Ogayo et al. The Effect of Lion’s Ear (Leonotis nepetifolia) and African Basil (Ocimum gratissimum) Plant Extracts on Two-Spotted Spider Mites (Tetranychus urticae) for Improved Yield and Quality of French Beans
CN116897943A (zh) 一种防治豇豆蓟马的杀虫组合物
JP2023531003A (ja) 農業害虫、有害ダニを防除するためのトリフルエンフロネートの用途

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514786

Country of ref document: JP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase