WO2005027376A1 - アレーアンテナのビーム形成方法及びアレーアンテナ無線通信装置 - Google Patents

アレーアンテナのビーム形成方法及びアレーアンテナ無線通信装置 Download PDF

Info

Publication number
WO2005027376A1
WO2005027376A1 PCT/JP2003/011528 JP0311528W WO2005027376A1 WO 2005027376 A1 WO2005027376 A1 WO 2005027376A1 JP 0311528 W JP0311528 W JP 0311528W WO 2005027376 A1 WO2005027376 A1 WO 2005027376A1
Authority
WO
WIPO (PCT)
Prior art keywords
array antenna
receiver
receivers
beam forming
channel
Prior art date
Application number
PCT/JP2003/011528
Other languages
English (en)
French (fr)
Inventor
Masafumi Tsutsui
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/011528 priority Critical patent/WO2005027376A1/ja
Publication of WO2005027376A1 publication Critical patent/WO2005027376A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Definitions

  • the present invention relates to an array antenna beam forming method and an array antenna wireless communication apparatus.
  • the present invention relates to an array antenna beam forming method and an array antenna wireless communication device, and more particularly to an array antenna beam forming method and an array antenna wireless communication device of a wireless communication system that performs multiple access.
  • a wireless communication system that performs multiple access such as a mobile phone, by performing beamforming using an array antenna, it is possible to improve signal quality, suppress interference signals, reduce transmission power, and the like.
  • FIG. 1 shows a block diagram of a conventional array antenna wireless communication device.
  • This array antenna wireless communication apparatus is applied to a base station of a mobile communication system such as CDMA (Code Division Multi-Tip 1e Access).
  • CDMA Code Division Multi-Tip 1e Access
  • a signal received by an array antenna 11 composed of a plurality of antenna elements 10 i to 10 Om is amplified by a radio reception circuit unit 12 i to 12 m provided for each antenna, frequency conversion, After being band-limited and converted to a baseband signal, it is converted to a digital signal by AZD converters 13 t to 13 m.
  • the baseband signal processing unit 14 is a multi-channel (n-channel in the figure) receivers 1 to! Provided for simultaneously processing multiple access. It consists of 5n.
  • the channel allocation control unit 16 grasps the usage status of the receivers 15i to 15n and allocates the receivers.
  • the output signal of the channel to which the receiver is assigned is sent to the wireless network control device via the wired transmission line interface unit 17.
  • the receivers 15 to 15 n provided in the baseband signal processing unit 14 perform beam forming using array antennas 12 to 12 m for each channel. Do.
  • the weight used for beamforming is estimated based on the algorithm in the receiver of each channel.
  • Specific algorithms include beam steering based on the estimation of the arrival direction of the desired wave, null steering that directs the null point in the direction of the interference wave based on the MMSE (minimum mean square error) criterion, and beam steering and null.
  • MMSE minimum mean square error
  • the receivers 15 to 15 n are the same as ordinary receivers that do not use an array antenna, such as a synchronization circuit, a demodulation circuit corresponding to the modulation method, and a decoding circuit that returns a signal that has been converted into a radio frame to the original data. Etc.
  • the traffic monitoring unit monitors the radio channel usage rate of each sector from the transmission / reception unit, and switches the directivity to the directivity switching unit based on a change in the radio channel usage rate of each sector.
  • a zone control method is described in which the sector and the number of radio channels allocated to the transmission / reception section are changed, and when the radio channel usage rate is low, the sector is made smaller to narrow the directivity of radio waves and reduce the influence of interference waves. .
  • an antenna that generates a plurality of beams, a control unit controls a pattern of each beam based on communication amount information communicated by each beam, and sets an excitation weight for each beam by a weight setting unit.
  • An adaptive antenna that adaptively controls the beam width and beam direction of each sector beam so as to equalize the communication volume accommodated in each sector is described.
  • Patent Document 3 a signal from a wireless terminal is received by an antenna array, and either an omni beam or a narrow beam is selected based on the other party information based on the received signal, and a multi-beam forming unit forms an antenna pattern.
  • a wireless communication method for reducing co-frequency interference power is described.
  • Patent Document 1 Unexamined Japanese Patent Publication No. Hei 5—336072
  • Patent Document 2
  • beamforming is performed by performing weight estimation for array antenna signal processing for each channel in each receiver. Therefore, when a signal is continuously transmitted like voice, the channel is continuously allocated until the call ends.
  • the present invention is capable of receiving signals with unpredictable directions of arrival by obtaining the gain of an array antenna, suppressing the increase in the number of receivers by flexibly and effectively utilizing the receivers in the apparatus according to the communication environment. It is a general object to provide an array antenna wireless communication device capable of performing the above.
  • the present invention relates to an array antenna beam forming method for a multiple access wireless communication system, which is connected to each of a plurality of antennas constituting an array antenna and transmitted from one sector.
  • the received signals are received by a plurality of receiving circuit units, and the received signals are supplied from the plurality of receiving circuit units to a plurality of receivers to form a beam, and the multiple connected channels are simultaneously demodulated and decoded, and used.
  • the receiver in the middle is grasped, and a new receiving channel is allocated to an unused receiver, and according to the channel allocation, any one of the beams of the plurality of patterns that divide the one sector is used as the plurality of beams.
  • the configuration is such that allocation control is performed to determine whether the signal is formed by the receiver.
  • FIG. 1 is a block diagram of a conventional array antenna wireless communication device.
  • FIG. 2 is a block diagram of the array antenna radio communication device according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram of a receiver according to a first embodiment of the present invention.
  • FIG. 4 is a block diagram of an embodiment of the beamformer.
  • FIG. 5 is a diagram showing an image in which four beams are formed in a sector.
  • FIG. 6 is a diagram showing one embodiment of a beam pattern for forming four beams in a sector.
  • FIG. 7 is a diagram illustrating an embodiment of a channel management table provided in the channel assignment control unit.
  • FIG. 8 is a flowchart of a channel assignment process executed by the channel assignment control unit.
  • FIG. 9 is a diagram illustrating an example of the user distribution of the beams A, B, C, and D and the time variation of the number of assigned receivers.
  • FIG. 10 is a block diagram of a second embodiment of the array antenna wireless communication apparatus of the present invention.
  • FIG. 11 is a block diagram of a second embodiment of the receiver used in the present invention.
  • FIG. 12 is a time chart of received signal processing in an arbitrary receiver.
  • FIG. 13 is a block diagram of a third embodiment of the receiver used in the present invention.
  • FIG. 2 shows a block diagram of a first embodiment of the array antenna wireless communication apparatus of the present invention.
  • This array antenna wireless communication device is applied to a base station of a mobile communication system such as CDMA.
  • the signals received by a plurality of antenna elements 2 ( ⁇ 2 to 2 Om) are received by radio receiving circuit units 22 to 22 m provided for each antenna.
  • radio receiving circuit units 22 to 22 m provided for each antenna.
  • the channel assignment control unit 26 grasps the usage status of the receivers 25 to 25n and allocates receivers. Do.
  • the output signal of the channel to which the receiver is assigned is sent to the wireless network control device via the wired transmission line interface unit 28.
  • the channel assignment control unit 26 assigns a new receiving channel to unused receivers, grasps which receiver is in use ⁇ output data from the receiver being used, and ends communication. When this happens, the current status of the receiver, such as a receiver that can be assigned, is monitored.
  • the wired transmission path interface unit 28 determines from which receiver data is output based on the information from the channel assignment control unit 26.
  • a beam control unit 27 that integrally controls the beam is provided for each of the receivers 25 to 25 n provided in the baseband signal processing unit 24.
  • the beam control unit 27 operates in cooperation with the channel assignment control unit 26.
  • the beam controller 27 has a plurality of gates for forming beams in different directions for each of the receivers 25i to 25n, and each of the receivers 25i to 25n has Using one of the beams Do the faith.
  • the channel assignment of the receiver 25 25 n is performed only for signals from the set beam direction.
  • the weight of the receiver is fixed, only signals in a specific direction can be received, and the receiver assignment is limited to that direction.
  • the receiver assignment is limited to that direction.
  • FIG. 3 shows a receiver used in the present invention.
  • FIG. 1 shows a block diagram of a first embodiment of FIG.
  • the base station of the mobile communication system to which the array antenna wireless communication device is applied uses a sector antenna configuration, and an array antenna is used in each sector.
  • the number of array antennas in each sector is, for example, four, and four beams can be set in one sector.
  • a beam number may be designated by the beam control unit 27, and the beam may be formed using a weight table provided in each receiver.
  • beam former 3 1 performs beamforming by performing the synthesis after multiplied by the different complex weights to the digital • baseband signals from the antenna 2 0 2 0 4.
  • FIG. 4 shows a block diagram of an embodiment of the beam former 31. Antenna 2 () digital 'baseband signals from 2 0 4 is supplied to the multiplier 3 2 i 3 2 4 are multiplied by a complex way Wi W, thereafter, the output signal of the multiplier 3 2 3 2 4 adds The signals are added and synthesized by the device 3 3.
  • the beam controller 27 four complex weights for forming the four beams are prepared as a table, and one of the weights is selected and set for each of the multipliers 3 2 i 3 2 4. Four beams can be formed.
  • the received signal output from the beam former 31 is supplied to a demodulation circuit 35 and a synchronization circuit 36.
  • the synchronization circuit 36 detects a predetermined synchronization pattern from the received signal and supplies a synchronization detection signal to the demodulation circuit 35.
  • the demodulation circuit 35 demodulates the received signal in synchronization with the synchronization detection signal and supplies the demodulated signal to the decoding circuit 37.
  • the decoding circuit 37 is a demodulated signal Is decrypted and the original data is output.
  • the status register 38 holds the channel use state (used / unused) of the own receiver, and this use state is notified to the channel assignment control unit 26.
  • FIG. 5 shows an image in which four beams A, B, C, and D are formed in a sector ST with an opening angle of 120 degrees.
  • FIG. 6 shows that four elements formed at an antenna interval of 0.57 ⁇ ( ⁇ : wavelength of carrier frequency) using a four-element equally-spaced linear array antenna in a sector ST having a spread of 120 degrees. A specific example of a beam will be described.
  • a mobile station existing in a sector transmits a signal to access a base station, and the base station receives a signal of the sector.
  • the base station For reception at the base station, it is necessary to perform a series of reception processing such as synchronization acquisition and demodulation processing even if the time and direction of the transmitted signal are unknown, such as random access.
  • devices using an array antenna are superior in terms of the ability to perform beamforming in the direction in which a signal arrives and perform reception, in terms of the transmission power of mobile stations, and the reduction of interference with other users performing multiple access. This is one reason for using array antennas.
  • reception from a beam from each beam direction is obtained with the effect of an array antenna. If the drop in gain between adjacent beams poses a problem, prepare a number of beams that have a peak in that direction. However, since the sector is divided by multiple beams, the number of necessary receivers is required to be the number of beams to be formed.
  • the plurality of receivers 25 i to 25 ⁇ provided in the baseband signal processing unit 24 have a configuration capable of forming a plurality of beams that divide a sector, and the channel allocation control unit 26 And all (or most) In this case, the receiver can be configured to form any beam, so that it is possible to form a beam in the direction of the user who performs communication.
  • the number of channels is assumed to be 100 per sector
  • the number of antennas is assumed to be a 4-element array
  • the number of formed beams is assumed to be 4 (fixed beam).
  • FIG. 7 shows an embodiment of the channel management table 29 provided in the channel assignment control unit 26.
  • FIG. 8 shows a flowchart of the channel assignment process executed by the channel assignment control unit 26.
  • 25 channels are assigned to each beam A, B, C, D.
  • beam A is assigned to channels 1 to 25
  • beam B is assigned to channels 26 to 50
  • beam C is assigned to channels 51 to 5
  • beam D is assigned to channels 76 to 100. .
  • step S12 it is determined whether the force has passed for a certain time or not. If the certain time has not passed, each of the receivers. . The channel use state is fetched from the state register, and time averaging is performed, and the channel management table 29 is updated. On the other hand, if the predetermined time has elapsed in step S12, the process proceeds to step S16.
  • step S16 the channels of the beams A, B, C, and D are reassigned.
  • the number of used channels na, nb, nc.nd of each beam is counted from the channel management table 29, and the number of allocated channels Na, Nb, Nc, N of each beam A, B, C, D is calculated from the following equation. Determine d.
  • Nb 100 Xn b / (na + nb + nc + nd)
  • Nc 100Xn c / (na + nb + n c + nd)
  • Nd 100Xnd / (na + nb + nc + nd)
  • the above formula represents the case where 100 channels are allocated in proportion to the usage based on the observation results of channel usage, and corrections are made to prevent the number of allocated channels from actually becoming 0 is necessary.
  • step S18 the allocated beam of the unused channel in the channel management table 29 is rewritten so that the number of allocated channels becomes Na, Nb, Nc, and Nd, and the process proceeds to step S12.
  • FIG. 7 shows an example in which the beams A, B, C, and D are assigned so that the channel numbers are consecutive, the channel numbers assigned to the beams need not necessarily be consecutive. Further, the present invention is not limited to the above equation, and various algorithms suitable for the system can be applied.
  • Figure 9 shows an example of the user distribution of each beam A, B, C, and D and the time variation of the number of assigned receivers.
  • the number of communication users of beams A, B, C, and D at each time is shown by a bar graph.
  • the number of receivers of the beam A according to the present invention is indicated by a circle line graph
  • the number of receivers of the beam B is indicated by a triangle line graph
  • the number of receivers of the beam C is indicated by a square line graph
  • the number of receivers of the beam D is indicated by a square line graph.
  • the number of receivers is indicated by a line graph marked with X.
  • Beam A The number of communication users reaches the maximum at time t4, at which time it exceeds 25 channels.
  • Beam B The number of communication users is small overall and does not exceed 25 channels.
  • Beam C The number of communication users reaches 53 channels, the maximum for all beams at time t7, and 25 during the time t5 to t9. Channel is exceeded.
  • Beam D The number of communication users reaches a maximum at time t4, and exceeds 25 channels at this time.
  • the number of communication users in the initial state is unknown, 100 channel receivers are equally allocated to four beams, and there are 25 channels all the way.
  • the number of receivers forming each beam changes as shown by the polygonal line in Fig. 9, and the number of users that cannot be accommodated can be reduced.
  • X I. 2 1 2 0 (channel). That is, in the present invention, if the number of receivers per sector is 120 channels, all communications shown in FIG. 9 can be accommodated.
  • the number of prepared receivers can be reduced to half or less as compared with the conventional case.
  • FIG. 10 shows a block diagram of a second embodiment of the array antenna wireless communication apparatus of the present invention.
  • a signal received by an array antenna 21 composed of a plurality of antenna elements 2 ( ⁇ to? O m is provided for each antenna through a duplexer (DUP) 5 ( ⁇ to
  • DUP duplexer
  • the signal is supplied to the radio receiving circuit section 22i to 22m, where it is amplified, frequency-converted, band-limited and converted to a baseband signal, and then converted to a digital signal with an AZD variable ⁇ 23 to 23m.
  • the baseband signal processor 24 performs simultaneous multiple access. It is configured with receivers 25i to 25n for a plurality of channels provided for processing.
  • the channel allocation control unit 26 grasps the usage status of the receivers 25i to 25n and allocates receivers. I do.
  • the output signal of the channel to which the receiver is assigned is sent to the wireless network control device via the wired transmission line interface unit 28.
  • the channel allocation control unit 26 allocates a new receiving channel to an unused receiver, grasps which receiver is in use, and determines whether there is output data from the receiver in use, and terminates communication. When this happens, the current status of the receiver, such as a receiver that can be assigned, is monitored.
  • the wired transmission path interface unit 28 determines from which receiver data is output based on the information from the channel assignment control unit 26.
  • a beam control unit 27 that integrally controls the beam is provided for each of the receivers 25 to 25 n provided in the baseband signal processing unit 24.
  • the beam control unit 27 can operate in cooperation with the channel assignment control unit 26.
  • the beam control unit 27 has a plurality of weights for forming beams in different directions for each of the receivers 25 i to 25 n, and each of the receivers 25 1 to 25 n has one of the weights. Reception is performed using the beam.
  • the channel assignment control unit 26 monitors frequently used beams (directions) together with the channel assignment frequency, reduces the number of receivers that set infrequently used beams, and forms many frequently used beams. By doing so, allocation is made according to the usage status.
  • the data of each channel sent from the wireless network controller is transmitted to the transmitters 54 i to 54 of the multiple channels constituting the baseband signal processor 53 via the wired transmission path interface 52.
  • n each of which is coded for each channel, further modulated, and then forms a beam with a beamformer.
  • the beamformer distributes the modulated signal to m multipliers and supplies them, and multiplies the m complex weights.
  • the complex weights are supplied from the beam controller 27, and the complex weights for the beamformers of the receivers 25i to 25n and the transmission
  • the complex weights for the beamformers of the machines 54i to 54n are the same. That is, the beam of each channel is the same for transmission and reception.
  • Transmitters 54 to 54n output data of m systems output by n are multiplexed by the synthesizing units 55 to 55m, converted to analog signals by the DZA transformers 56 1 to 56m, and transmitted by radio. After being amplified, frequency-converted, and band-limited by the circuit unit 5 iS 7 m, the signal is transmitted from the antenna elements 20 i to 2 Om through the duplexer (DUP) 50 to 5 Om.
  • DUP duplexer
  • the received signal processing is performed using the fixed beam set by the beam control unit 27. Therefore, when communication is performed continuously while moving, the moving beam deviates from the beam. If the beam is stationary between adjacent beams, the gain will slightly decrease. Therefore, an embodiment for avoiding such a state will be described.
  • FIG. 11 shows the receiver used in the present invention.
  • 2 to 25 ⁇ show block diagrams of the second embodiment.
  • the same parts as those in FIG. 3 are denoted by the same reference numerals.
  • bi Mufoma 3 1 intends row beamforming by performing synthesis after multiplied by the different complex weights to the digital 'baseband signals from the antenna 2 0 i ⁇ 2 0 4.
  • a weight estimating unit 40 for forming an adaptive beam in each channel is provided.
  • the received signal output from the beamformer 31 is supplied to a demodulation circuit 35 and a synchronization circuit 36.
  • the synchronization circuit 36 detects a predetermined synchronization pattern from the received signal and supplies a synchronization detection signal to the demodulation circuit 35.
  • the demodulation circuit 35 demodulates the received signal in synchronization with the synchronization detection signal, and supplies the demodulated signal to the decoding circuit 37.
  • the decoding circuit 37 decodes the demodulated signal and outputs the original data.
  • the status register 38 holds the channel usage status (used / unused) of the own receiver, and this usage status is notified to the channel assignment control unit 26.
  • FIG. 12 shows a time chart of the received signal processing in an arbitrary receiver.
  • the received signal processing is started using the set fixed beam.
  • the weight estimating unit 40 provided in each receiver performs weight estimation processing by, for example, feedback control or feedforward control in order to adaptively form a beam according to the situation of the user performing communication. Start.
  • such an adaptive weight estimation process requires a certain amount of time for highly accurate weight estimation.
  • the communication time of all possible communication is less than the time required for this convergence, it is meaningless to provide a weight estimator, and the configuration of the first embodiment using only the fixed beam is sufficient. It is. However, in a system that can communicate continuously for a long time, it is necessary to follow the movement of the communication user between beams, and the gain due to the existence of communication between adjacent beams for a long time is necessary. It is desirable to cope with the decrease in
  • reception is performed using the fixed beam set by the beam control unit 27 until the weight estimation accuracy is obtained, and communication is performed even after the weight estimation accuracy is obtained by the weight estimation unit 40. If continuation is performed, tracking is performed for the communication user by switching to the adaptive beam estimated by the weight estimation unit 40 of each receiver. As a result, stable beamforming and communication can be performed.
  • FIG. 13 shows a block diagram of a third embodiment of receivers 25 to 25 n used in the present invention.
  • Type The beamforming (fixed beam) is performed, and the received signals of m types of beams are supplied to the selectors 61 of the receivers 25 to 25n.
  • beamform Each block 60 has the configuration shown in FIG.
  • the beam control unit 62 supplies selection information for instructing selection of one beam from m types of beams to the selectors 61 of the receivers 25 to 25 n.
  • the selector 61 selects a reception signal of one type of beam according to the selection information.
  • the received signal output from the selector 61 is supplied to the demodulation circuit 35 and the synchronization circuit 36.
  • the synchronization circuit 36 detects a predetermined synchronization pattern from the received signal and supplies a synchronization detection signal to the demodulation circuit 35.
  • the demodulation circuit 35 demodulates the received signal in synchronization with the synchronization detection signal and supplies the demodulated signal to the decoding circuit 37.
  • the decoding circuit 37 decodes the demodulated signal, returns it to the original data, and outputs it.
  • the status register 38 holds the channel usage status (used / unused) of the own receiver, and this usage status is notified to the channel assignment control unit 26.
  • the beamformer 60 is received.
  • the signal of the array antenna can be received and obtained even for a signal whose arrival direction cannot be predicted, such as a random access signal. can do.
  • a large number of receivers for multiple access and the beams formed by them are managed in a unified manner, and the beams are allocated to the receivers according to the beam usage conditions, the increase in the number of receivers due to the use of array antennas has been reduced. In addition, more communication users can be accommodated.
  • switching is performed after adaptive beam convergence by a weight estimator provided in each receiver, so that stable communication can be performed continuously.
  • a wireless communication device that uses an array antenna can perform packet communication and random access smoothly, can increase the communication capacity while suppressing the number of channels of the device, and maintain a stable Beam capture can be performed. Therefore, it is possible to stably operate the array antenna wireless communication device whose communication quality depends on the accuracy of the formed beam.
  • the wireless receiving circuit units 21 to 2 lm correspond to the receiving circuit unit described in the claims.
  • the channel assignment control unit 26 corresponds to the channel assignment control unit
  • the beamformers 31 and 60 correspond to the beam forming unit
  • the beam control unit 27 corresponds to the beam control unit
  • the weight estimation unit 40 corresponds to the weight.
  • the selector 61 corresponds to the selecting means, corresponding to the estimating means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本発明は、多元接続を行う無線通信システムのアレーアンテナのビーム形成方法であって、アレーアンテナを構成する複数のアンテナそれぞれに接続され1つのセクタから送信された信号を複数の受信回路部で受信し、複数の受信機で前記複数の受信回路部から受信信号を供給されてビーム形成を行い、多元接続されたチャネルを同時に復調かつ復号し、使用中の受信機を把握して未使用の受信機に新たに受信するチャネルを割当て、前記チャネルの割当てに応じて前記1つのセクタを分割する複数パターンのビームのうちどのビームを前記複数の受信機で形成させるかを割当て制御するよう構成することにより、到来方向が予測できない信号に対してもアレーアンテナの利得を得て受信でき、通信環境に応じて柔軟に装置内の受信機を有効に活用して受信機数の増加を抑えることができる。

Description

明細書 ァレーアンテナのビーム形成方法及びァレーアンテナ無線通信装置 技術分野
本発明は、 ァレーアンテナのビーム形成方法及ぴァレーアンテナ無線通信装置 に関し、 多元接続を行う無線通信システムのァレーアンテナのビーム形成方法及 びァレーアンテナ無線通信装置に関する。 背景技術
携帯電話に代表される多元接続を行う無線通信システムにおいて、 アレーアン テナを用いてビーム形成を行うことにより、 信号品質の改善、 干渉信号の抑圧、 送信電力の低減等が可能である。
図 1は、 従来のアレーアンテナ無線通信装置のブロック構成図を示す。 このァ レーアンテナ無線通信装置は CDMA (Co d e D i v i s i on Mu l t i p 1 e Ac c e s s :符号分割多元接続) 等の移動通信システムの基地局に 適用される。
同図中、 複数のアンテナ素子 10 i〜l Omで構成されるアレーアンテナ 1 1 で受信された信号は、 アンテナ毎に設けられた無線受信回路部 12 i〜 12 mに て増幅、 周波数変換、 帯域制限されてベースバンド信号に変換された後、 AZD 変換器 13 t〜 13 mでディジタル信号に変換される。 ベースバンド信号処理部 14は、 多元接続を同時に処理するために設けられた多チャネル (図では nチヤ ネル) の受信機 1 〜:! 5nで構成される。
複数の受信機 1 Si l 5 nを、 通信を行うユーザに効率よく割当てるため、 チヤネル割当制御部 16は受信機 15 i〜 15 nの使用状況を把握し受信機の割 当てを行う。 受信機を割当てられたチャネルの出力信号は、 有線伝送路インター フェース部 17を介して、 無線ネットワーク制御装置に送られる。
ベースバンド信号処理部 14に設けられた受信機 15 〜 15 nでは、 それぞ れのチャネ^/毎にアレーアンテナ 12}〜12mを用いてビームフォーミングを 行う。 ビームフォーミングに用いるウェイトは、 各チャネルの受信機内でアルゴ リズムに基づいて推定している。
具体的なアルゴリズムとしては、 所望波の到来方向推定に基づくビームステア リングや、 MM S E (最小平均 2乗誤差) 規範に基づいて干渉波の方向にヌル点 を向けるヌルステアリング、 さらにビームステアリングとヌルステアリングを組 み合わせた方法などが用いられる。
また、 受信機 1 5 〜1 5 nは、 アレーアンテナを用いていない通常の受信機 同様、 同期回路、 変調方式に応じた復調回路、 および無線フレーム化された信号 を元のデータに戻す復号回路などで構成される。
この従来技術では、 各チャネルの受信機内でビームフォーミングのためのゥェ ィト推定を行っている。 従って、 音声のような受信信号が連続して受信機に入力 されてくるような通信においては、 徐々に形成するビームの精度を向上させるこ とができ、 形成するビームが安定するまでの時間を除き、 安定したビーム形成が できる。
なお、 特許文献 1には、 トラヒック監視部で送受信部からの各セクタの無線チ ャネル使用率を監視し、 各セクタの無線チャネル使用率の変化に基づいて指向性 切換部に指向性を切換えさせ送受信部に割当てるセクタ及び無線チャネル数を変 化させて、 無線チャネル使用率が低いときはセクタを小さくして電波の指向性を 狭くし干渉波の影響を少なくするゾーン制御方式が記載されている。
また、 特許文献 2には、 複数ビームを生成するアンテナで、 制御部において各 ビームで通信する通信量情報を基に各ビームのパターンを制御し、 ウェイト設定 部によりビーム毎に励振ウェイトを設定し、 各セクタの収容する通信量を均一化 ように各セクタビームのビーム幅とビーム方向を適応制御するァダプティブアン テナが記載されている。
また、 特許文献 3には、 無線端末からの信号をアンテナアレイで受信し、 受信 信号に基づく相手側情報に基づいてォムニビームと狭ビームの何れかを選択しマ ルチビーム形成部でアンテナパターンを形成し、 同一周波数干渉電力を低減させ る無線通信方法が記載されている。
特許文献 1 特開平 5— 3 3 6 0 2 7号公報
特許文献 2
特開平 1 0— 1 2 6 1 3 9号公報
特許文献 3
特開平 9— 2 8 4 2 0 0号公報
図 1の従来技術では、 各受信機内でチャネル毎にァレーアンテナ信号処理のた めのウェイト推定を行ってビームフォーミングを行っている。 従って、 音声のよ うに信号が連続して送信されてくる場合には、 通話が終了するまでの間そのチヤ ネルを割当てつづける。
これにより、 徐々に形成するビームの精度を向上させることで、 形成するビー ムが収束するまでの通信初期のわずかな時間を除き、 安定したビームを形成しァ レーアンテナの利得を得ることができる。
しかしながら、 今後増加が予想される無線パケット通信では、 信号の送信はパ ケット毎に完結することを前提にシステム設計されるため、 バケツト単位で処理 を行えるように無線通信装置を設計する必要がある。 また、 アクセス方式として ランダムアクセスを用いたシステムでは、 到来方向が予測できない不特定のユー ザから送信されてきた信号を、 直ちに処理できるように装置設計しておく必要が ある。
このため、 従来の音声通信を主として取り扱うアレーアンテナ無線通信装置と 異なり、 到来する信号に対し即座にビーム形成を行う方法が必要となる。 逆にい えば、 従来のビーム形成方法を用いることで精度の低いビーム形成を行ってしま うと、 アレーアンテナの利得を十分に得ることができないばかり力 \ アレーアン テナ化によりかえって特性劣化を招きかねなレ、という問題があった。 発明の開示
本発明は、 到来方向が予測できない信号に対してもアレーアンテナの利得を得 て受信でき、 通信環境に応じて柔軟に装置内の受信機を有効に活用して受信機数 の増加を抑えることができるアレーアンテナ無線通信装置を提供することを総括 的な目的とする。 この目的を達成するため、 本発明は、 多元接続を行う無線通信システムのァレ 一アンテナのビーム形成方法であって、 アレーアンテナを構成する複数のアンテ ナそれぞれに接続され 1つのセクタから送信された信号を複数の受信回路部で受 信し、 複数の受信機で前記複数の受信回路部から受信信号を供給されてビーム形 成を行い、 多元接続されたチャネルを同時に復調かつ復号し、 使用中の受信機を 把握して未使用の受信機に新たに受信するチャネルを割当て、 前記チャネルの割 当てに応じて前記 1つのセクタを分割する複数パターンのビームのうちどのビー ムを前記複数の受信機で形成させるかを割当て制御するよう構成する。
このようなァレーアンテナ無線通信装置によれば、 到来方向が予測できない信 号に対してもアレーアンテナの利得を得て受信でき、 通信環境に応じて柔軟に装 置内の受信機を有効に活用して受信機数の増加を抑えることができる。 図面の簡単な説明
図 1は、 従来のアレーアンテナ無線通信装置のブロック構成図である。
図 2は、 本発明のァレーアンテナ無線通信装置の第 1実施形態のプロック構成 図である。
図 3は、 本発明で用いる受信機の第 1実施形態のプロック構成図である。 図 4は、 ビームフォーマの一実施形態のプロック構成図である。
図 5は、 セクタ内に 4つのビームを形成したィメージを示す図である。
図 6は、 セクタ内に 4つのビームを形成するビームパターンの一実施形態を示 す図である。
図 7は、 チャネル割当制御部に設けられたチャネル管理テーブルの一実施形態 を示す図である。
図 8は、 チヤネル割当制御部が実行するチヤネル割当処理のフローチャートで ある。
図 9は、 各ビーム A, B , C, Dのユーザ分布と割当受信機数の時間変動の一 例を示す図である。
図 1 0は、 本発明のアレーアンテナ無線通信装置の第 2実施形態のブロック構 成図である。 図 1 1は、 本発明で用いる受信機の第 2実施形態のブロック構成図である。 図 1 2は、 任意の受信機における受信信号処理のタイムチャートである。 図 1 3は、 本発明で用いる受信機の第 3実施形態のブロック構成図である。 発明を実施するための最良の形態
以下、 本発明の実施形態を図面に基づいて説明する。
図 2は、 本発明のァレーアンテナ無線通信装置の第 1実施形態のプロック構成 図を示す。 このアレーァンテナ無線通信装置は C DM A等の移動通信システムの 基地局に適用される。 同図中、 複数のアンテナ素子 2 (^〜 2 O mで構成される 了レーアンテナ 2 1で受信された信号は、 アンテナ毎に設けられた無線受信回路 部 2 2ェ〜2 2 mにて増幅、 周波数変換、 帯域制限されてベースバンド信号に変 換された後、 AZD変^ ^ 2 3 i〜 2 3 mでディジタノレ信号に変換される。 ベー スパンド信号処理部 2 4は、 多元接続を同時に処理するために設けられた複数チ ャネル分の受信機 2 5丄〜 5 nで構成されている。
複数の受信機 2 5 i〜2 5 nを、 通信を行うユーザに効率よく割当てるため、 チャネル割当制御部 2 6は受信機 2 5 〜 2 5 nの使用状況を把握し受信機の割 当てを行う。 受信機を割当てられたチャネルの出力信号は、 有線伝送路インター フェース部 2 8を介して、 無線ネットワーク制御装置に送られる。
チャネル割当制御部 2 6では、 未使用の受信機に新しく受信を行うチャネルを 割当て、 どの受信機が使用中である力 \ 使用中の受信機からの出力データの有無 を把握し、 通信が終了した際には割当て可能な受信機であるといった受信機の現 在の状況を監視している。 有線伝送路インターフェース部 2 8では、 チャネル割 当制御部 2 6からの情報で、 どの受信機からデータが出力されているかを判断す る。
また、 ベースバンド信号処理部 2 4に設けられた受信機 2 5 〜 2 5 nそれぞ れに対しビームの制御を一元的に行うビーム制御部 2 7を設ける。 ビーム制御部 2 7は、 チャネル割当制御部 2 6と連携して動作する。 ビーム制御部 2 7では各 受信機 2 5 i〜2 5 nに対し、 異なる方向のビームを形成するための複数のゥェ ィトを備えておき、 各受信機 2 5 i〜 2 5 nはそのいずれかのビームを用いて受 信を行う。
すなわち受信機 2 5 2 5 nのチャネル割当は、 設定されたビームの方向か らの信号のみについて行われる。 しかしながら受信機のウェイトを固定してしま うと、 特定の方向の信号しか受信することができず、 受信機割当もその方向に限 られてしまい、 結果としてさらに多くの受信機を準備する必要が出てくる。 そこで、 本発明では、 使用頻度の高いビーム (方向) をチャネル割当頻度と共 に監視しておき、 使用頻度の低いビームを設定する受信機を少なくし、 使用頻度 の高いビームを多く形成するようにすることで、 全受信機に均等に形成するビー ムを割当てるのではなく、 使用状況に応じた割当てを行う。
図 3は、 本発明で用いる受信機? 〜? !!の第 1実施形態のプロック構成 図を示す。 ここでは、 アレーアンテナ無線通信装置が適用される移動通信システ ムの基地局はセクタァンテナ構成を用いており、 各セクタ内でァレーアンテナを 用いるものとする。 各セクタにおけるアレーアンテナのアンテナ数は例えば 4と し、 1つのセクタ内で 4つのビームを設定可能であるとする。 または、 ビーム制 御部 2 7でビーム番号を指定し、 各受信機に設けられたウェイトテーブルを用い てビーム形成しても良い。
図 3において、 ビームフォーマ 3 1は、 アンテナ 2 0 2 0 4からのデジタル •ベースバンド信号に別々の複素ウェイトを乗算したのち合成を行うことでビー ムフォーミングを行う。 図 4は、 ビームフォーマ 3 1の一実施形態のブロック構 成図を示す。 アンテナ 2 () 2 0 4からのデジタル 'ベースバンド信号は乗算器 3 2 i 3 2 4に供給されて複素ウェイ Wi W を乗算され、 この後、乗算器 3 2 3 2 4の出力信号は加算器 3 3で加算合成される。
ビーム制御部 2 7には、 4つのビームを形成するための 4つの複素ウェイトを テーブルとして準備しておき、 いずれかのウェイトを選択して乗算器 3 2 i 3 2 4それぞれに設定することで 4つのビームを形成することができる。
図 3において、 ビームフォーマ 3 1の出力する受信信号は復調回路 3 5及ぴ同 期回路 3 6に供給される。 同期回路 3 6は受信信号から所定の同期パターンを検 出して同期検出信号を復調回路 3 5に供給する。 復調回路 3 5は同期検出信号に 同期して受信信号を復調し、 復号回路 3 7に供給する。 復号回路 3 7は復調信号 を復号して元のデータに戻し出力する。 また、 状態レジスタ 3 8には自受信機の チャネル使用状態 (使用/未使用) が保持され、 この使用状態はチャネル割当制 御部 2 6に通知される。
図 5に、 開き角度 1 2 0度のセクタ S T内に 4つのビーム A, B, C, Dを形 成したイメージを示す。 また、 図 6に、 1 2 0度の広がりを持つセクタ S T内で 、 4素子等間隔直線アレーアンテナを用い、 アンテナ間隔 0 . 5 7 λ ( λ :キヤ リァ周波数の波長) で形成する 4つのビームの具体的な例を示す。
セクタ内に存在する移動局は、 信号を送信し基地局にアクセスを行い、 基地局 では、 当該セクタの信号を受信する。 基地局での受信は、 ランダムアクセスのよ うな送信されてくる信号の時刻及びその方向が未知の信号であっても、 同期獲得 、 復調処理といった一連の受信処理を行う必要がある。
更に、 アレーアンテナを用いた装置においては、 信号の到来する方向にビーム フォーミングを行って受信を行うこと力 移動局の送信電力、 多元接続を行う他 ユーザへの干渉の低減といった点で優位であり、 これがァレーアンテナを用いる ひとつの理由でもある。
しかしながらランダムアクセス、 パケット通信といった信号は、 一般に短時間 で通信が終了するため、 各アンテナで受信された信号から到来方向を推定し推定 結果に基づいてビーム形成を行う方法では、 方向の推定に十分な時間が得られな いままビームフォーミングを行ってしまい、 結果として +分なビームフォーミン グの効果を得ることができなくなってしまう。
そこで、 本発明では、 初期ビーム形成時の特性劣化を抑えるために固定ビーム を用いてマルチビーム受信を行うことで、 各ビーム方向からの信号についてァレ 一アンテナの効果を得た受信を行う。 また、 隣り合うビーム間の利得の落込みが 問題となる際には、 その方向にピークを持つような多数のビームを準備しておく 。 しかしながら、 セクタ内を複数のビームで分割したことにより、 必要な受信機 の数は形成するビーム数倍必要となる。
ベースバンド信号処理部 2 4に備えられた複数の受信機 2 5 i〜 2 5 ηでは、 セクタ内を分割するような複数のビームを形成できる構成をとつておき、 チヤネ ル割当制御部 2 6とビーム制御部 2 7からの指示により、 全ての (あるいは大半 の) 受信機はいずれのビームも形成可能な構成をとつてお.くことで、 通信を行う ユーザ方向にビームを形成することが可能となる。
特に、 ランダムアクセスを行うような通信においては、 予め設定したビームの 方向から送信される信号のみをビーム形成による利得を得て受信することが可能 となる。
ここで、 チャネル数を 1つのセクタ当たり 100チャネルと仮定し、 アンテナ 数を 4素子アレー Zセクタとし、 形成ビーム数を 4 (固定ビーム) として説明す る。
図 7に、 チャネル割当制御部 26内に設けられるチャネル管理テーブル 29の 一実施形態を示す。 チャネル管理テーブル 29は受信機?ら 〜? !! (n= 1 00) に対応するチャネル 1〜100について、 当該チャネルの使用状態 (1は 使用中、 0は未使用つまり使用可能) と、 当該チャネルの割当ビーム (A, B, C, D) が格納されている。
図 8は、 チャネル割当制御部 26が実行するチャネル割当処理のフローチヤ一 トを示す。 ステップ S 10の初期設定で各ビーム A, B, C, Dに 25チヤネノレ を割当てる。 これにより、 例えばチャネル 1〜25にビーム Aが割当てられ、 チ ャネル 26〜50にビーム Bが割当てられ、 チャネル 51〜マ 5にビーム Cが割 当てられ、 チャネル 76〜100にビーム Dが割当てられる。
次に、 ステップ S 12において、 一定時間経過した力、否かを判別し、 一定時間 を経過していない場合にはステップ S 14で各受信機.25 〜25 。。の状態レ ジスタからチャネル使用状態を取り込んで時間平均化を行い、 チャネル管理テー ブル 29を更新する。 一方、 ステップ S 12で一定時間を経過した場合にはステ ップ S 16に進む。
この後、 ステップ S 16では各ビーム A, B, C, Dのチャネル再割当てを行 う。 ここでは、 チャネル管理テーブル 29から各ビームの使用チャネル数 n a, nb, n c. n dをカウントし、 次式から各ビーム A, B, C, Dの割当てチヤ ネル数 Na, Nb, Nc, N dを決定する。
Na = 1 00 Xn a/ (n a + nb + n c + n d)
Nb = 100 Xn b/ (n a + nb + n c + nd) Nc = 100Xn c/ (n a + nb + n c+n d)
Nd=100Xnd/ (n a + nb + n c+n d)
上記の式はチャネル使用状況の観測結果を基に、 使用状況に比例して全チヤネ ル数 100を割当てる場合を表しており、 実際には割当てチャネル数が 0になら ないようにする等の補正が必要である。
この後、 ステップ S 18で割当てチャネル数 Na, Nb, Nc, Ndになるよ うにチャネル管理テーブル 29の未使用チャネルの割当ビームを書き換えてステ ップ S 12に進む。 なお、 図 7では、 チャネル番号が連続するよう各ビーム A, B, C, Dが割当てられた例を示しているが、 各ビームに割当てられたチャネル の番号が必ずしも連続する必要はない。 また、 上記の式に限定されるものではな く、 システムに適した各種アルゴリズムの適用が可能である。
図 9に、 各ビーム A, B, C, Dのユーザ分布と割当受信機数の時間変動の一 例を示す。 同図中、 各時刻にビーム A, B, C, Dの通信ユーザ数を棒グラフで 示している。 また、 本発明によるビーム Aの受信機数を丸の折れ線グラフで示し 、 ビーム Bの受信機数を三角の折れ線グラフで示し、 ビーム Cの受信機数を四角 の折れ線グラフで示し、 ビーム Dの受信機数を X印の折れ線グラフで示す。 時刻 t oで電源を投入して運用 (サービス) を開始し、 各ビームは次のような特徴を 有している。
ビーム A:時刻 t 4で通信ユーザ数が最大となり、 このとき、 25チヤネノレを 超えている。
ビーム B :全体的に通信ユーザ数は少なく、 25チャネルを超えることはない ビーム C:時刻 t 7で通信ユーザ数は全ビームで最大の 53チャネルに達し、 時刻 t 5〜t 9の間に 25チャネルを超えている。
ビーム D:時刻 t 4で通信ユーザ数が最大となり、 このとき 25チャネルを超 えている。
この図 9の例では、 100チャネル分の受信機を 4つのビームに均等に割振る と、 ビーム A〜Dは全て 25チャネルずっとなることから、 通信ユーザの少ない ビーム Bでは問題ないが、 ビーム A, C, Dでは通信ユーザ数が受信機チャネル 数を上回ってしまい全ての通信を収容できなくなっていることがわかる。 特に、 通信ユーザ数の多レ、ビーム Cの時刻 t 7では半数以下の通信しか収容できなくな る。
本発明では初期状態における通信ユーザ数が不明であるため、 1 0 0チヤネノレ の受信機を 4つのビームに均等に割当て 2 5チャネルずっとなつているが、 その 後、 通信ユーザ数の多いビームに多数の受信機を割当てることで、 各ビームを形 成する受信機数は図 9の折れ線のように変化し、 収容できないユーザ数を削減す ることができる。
図 9で、 通信ユーザ数が最大となる時刻 t 7におけるセクタ内の全ての通信ュ 一ザ数 1 0 0にマージンを含めてとして 2 0 %のチャネルを割当てると、 1 0 0
X I . 2 = 1 2 0 (チャネル) となる。 即ち本発明ではセクタ当たりの受信機数 力 1 2 0チャネルあれば図 9に示す全ての通信を収容することができる。
これに対して、 従来技術で、 ビーム毎の通信ユーザ数が最大となる時刻 t 7の ビーム Cの通信ユーザ数 5 3にマージンとして 1 0 %のチャネルを割当てると、 5 3 X 1 . 1 = 6 3 (チャネル)。 さらにビーム数の 4倍すると、 6 3 X 4 = 2
5 2 (チャネル) となる。 つまり、 本発明を適用することで用意する受信機数を 従来に比して半分以下にすることができる。
このように、 受信機の割当状況とそのビームの割当状況を監視することで、 使 用頻度の高いビームに多数の受信機を割当てる。 すなわち、 アクセスを行うチヤ ネルの到来方向の状況、 使用する環境に応じた効率的なビーム割当、 受信機割当 を行うことで、 特性を劣化させずに効率的に受信機を利用するアレーアンテナ受 信装置を構成できる。
図 1 0は、 本発明のァレーアンテナ無線通信装置の第 2実施形態のプロック構 成図を示す。 同図中、 図 2と同一部分には同一符号を付す。 図 1 0において、 複 数のアンテナ素子 2 (^〜? O mで構成されるアレーアンテナ 2 1で受信された 信号は、 デュプレクサ (D U P ) 5 (^〜ら O mを通してアンテナ毎に設けられ た無線受信回路部 2 2 i〜 2 2 mに供給され、 ここで、 増幅、 周波数変換、 帯域 制限されてベースバンド信号に変換された後、 AZD変^^ 2 3 〜2 3 mでデ イジタル信号に変換される。 ベースバンド信号処理部 2 4は、 多元接続を同時に 処理するために設けられた複数チャネル分の受信機 2 5 i〜2 5 nで構成されて いる。
複数の受信機 2 5 i〜2 5 nを、 通信を行うユーザに効率よく割当てるため、 チャネル割当制御部 2 6は受信機 2 5 i〜 2 5 nの使用状況を把握し受信機の割 当てを行う。 受信機を割当てられたチャネルの出力信号は、 有線伝送路インター フェース部 2 8を介して、 無線ネットワーク制御装置に送られる。
チャネル割当制御部 2 6では、 未使用の受信機に新しく受信を行うチャネルを 割当て、 どの受信機が使用中であるか、 使用中の受信機からの出力データの有無 を把握し、 通信が終了した際には割当て可能な受信機であるといった受信機の現 在の状況を監視している。 有線伝送路インターフェース部 2 8では、 チャネル割 当制御部 2 6からの情報で、 どの受信機からデータが出力されているかを判断す る。
また、 ベースバンド信号処理部 2 4に設けられた受信機 2 5 〜 2 5 nそれぞ れに対しビームの制御を一元的に行うビーム制御部 2 7を設ける。 ビーム制御部 2 7は、 チャネル割当制御部 2 6と連携して動作することができる。 ビーム制御 部 2 7では各受信機 2 5 i〜2 5 nに対し、 異なる方向のビームを形成するため の複数のウェイトを備えておき、 各受信機 2 5 1〜2 5 nはそのいずれかのビー ムを用いて受信を行う。
チャネル割当制御部 2 6は、 使用頻度の高いビーム (方向) をチャネル割当頻 度と共に監視しておき、 使用頻度の低いビームを設定する受信機を少なくし、 使 用頻度の高いビームを多く形成するようにすることで、 使用状況に応じた割当て を行う。
一方、 無線ネットワーク制御装置から送られた各チャネルのデータは、 有線伝 送路インターフェース部 5 2を介してベースバンド信号処理部 5 3を構成する複 数チャネル分の送信機 5 4 i〜5 4 nそれぞれに供給され、 ここで、 チャネル毎 に符号化され、 更に変調されたのちビームフォ一マでビームを形成する。
¾f言機のビームフォーマは、 被変調信号を m個の乗算器に分配して供給し、 m 個の複素ウェイトを乗算する。 この複素ウェイトはビーム制御部 2 7から供給さ れており、 受信機 2 5 i〜2 5 nのビームフォーマに対する複素ウェイ卜と送信 機 5 4 i〜5 4 nのビームフォ一マに対する複素ウェイトは同一とされる。 つま り、 各チャネルのビームは送信と受信で同一となる。
送信機 5 4 〜 5 4 nそれぞれの出力する m系統の出力データは合成部 5 5 , 〜5 5 mで多重化され、 DZA変 5 6 1〜5 6 mでアナログ信号に変換され 、 無線送信回路部 5 i S 7 mにて増幅、 周波数変換、 帯域制限されたのち、 デュプレクサ (D U P ) 5 0 〜5 O mを通してアンテナ素子 2 0 i〜2 O mから 送信される。
上記の第 1, 第 2実施形態では、 ビーム制御部 2 7で設定された固定ビームを 用いて受信信号処理を行うため、 移動しながら連続して通信を行う場合には移動 によりビームから外れてしまい、 また隣り合うビーム間に静止している場合には わずかながら利得の低下が起こってしまう。 そこで、 このような状態を回避する ための実施形態について説明する。
図 1 1は、 本発明で用いる受信機? 〜 2 5 ηの第 2実施形態のプロック構 成図を示す。 同図中、 図 3と同一部分には同一符号を付す。 図 1 1において、 ビ ームフォーマ 3 1は、 アンテナ 2 0 i〜 2 0 4からのデジタル 'ベースバンド信号 に別々の複素ウェイトを乗算したのち合成を行うことでビームフォーミングを行 う。 この構成に加えて各チャネル内で適応的なビームを形成するためのウェイト 推定部 4 0を備えている。
ビームフォーマ 3 1の出力する受信信号は復調回路 3 5及び同期回路 3 6に供 給される。 同期回路 3 6は受信信号から所定の同期パターンを検出して同期検出 信号を復調回路 3 5に供給する。 復調回路 3 5は同期検出信号に同期して受信信 号を復調し、 復号回路 3 7に供給する。 復号回路 3 7は復調信号を復号して元の データに戻し出力する。 また、 状態レジスタ 3 8には自受信機のチャネル使用状 態 (使用/未使用) が保持され、 この使用状態はチャネル割当制御部 2 6に通知 される。
図 1 2は、 任意の受信機における受信信号処理のタイムチャートを示す。 同図 中、 受信機で通信が終了すると、 当該受信機の状態レジスタ 3 8を未使用 (= 0 ) とする。
チャネル割当制御部 2 6は、 当該受信機が未使用であることを認識し、 チヤネ ル管理テーブル 2 9を更新する。 ビーム制御部 2 7は、 第 1実施形態で述べたよ うに、 各ビームの使用状況に応じて未使用の受信機に新たな初期ビームの設定を 行う。 新たなビームの設定を受けるとその受信機は、 状態レジスタ 3 8が使用中 (= 1 ) となり、 ランダムアクセス信号受信のための待受け状態となる。
形成中のビームの方向からランダムアクセス信号が到来すると、 設定された固 定ビームを用いて受信信号処理を開始する。 これと同時に、 各受信機に設けられ たウェイト推定部 4 0では、 通信を行うユーザの状況に応じて適応的にビームを 形成するため、 例えばフィードバック制御またはフィードフォヮード制御による ウェイト推定処理を開始する。 一般に、 このような適応的なウェイト推定処理で は、 精度の高いウェイト推定のためにある一定の時間が必要である。
なお、 起こりえる全ての通信の通信時間がこの収束に必要な時間以下であるシ ステムであれば、 ウェイト推定部を設けることは無意味であり、 第 1実施形態の 固定ビームのみの構成で十分である。 しかしながら、 連続して長時間通信を行う ことも可能なシステムにおいては、 通信ユーザのビーム間の移動に追従すること が必要であり、 隣り合うビーム間に長い時間存在して通信を行うことによる利得 の低下にも対応しておくことが望ましい。
そこで、 本実施形態では、 ウェイト推定精度が得られるまでの時間、 ビーム制 御部 2 7から設定される固定ビームで受信を行い、 ウェイト推定部 4 0によるゥ エイト推定精度が得られ後にも通信が継続している場合には、 各受信機のウェイ ト推定部 4 0で推定した適応ビームに切替えて通信ユーザのトラッキングを行う 。 これにより、 安定したビームフォーミング及ぴ通信を行うことができる。 通信 を終了すると、 状態レジスタを未使用 (= 0 ) とすることで、 新たなビーム割当 を待つこととなる。
図 1 3は、 本発明で用いる受信機 2 5 〜 2 5 nの第 3実施形態のブロック構 成図を示す。 同図中、 図 3と同一部分には同一符号を付す。 図 1 3において、 ビ ームフォーマ 6 0は、 アンテナ 2 0 〜2 0 4からのデジタル ·ベースバンド信号 に別々の複素ウェイトを乗算したのち合成を行うことで m (図 1 3では m= 4 ) 種類のビームフォーミング (固定ビーム) を行い、 m種類のビームの受信信号を 受信機 2 5 〜 2 5 nそれぞれのセレクタ 6 1に供給する。 つまり、 ビームフォ 一マ 6 0は図 4に示す構成を m系統もっている。
ビーム制御部 6 2は、 m種類のビームから 1つのビームの選択を指示する選択 情報を受信機 2 5 〜 2 5 nそれぞれのセレクタ 6 1に供給しており、 各受信機 Z S i Z S nのセレクタ 6 1は選択情報に応じて 1種類のビームの受信信号を 選択する。
セレクタ 6 1の出力する受信信号は復調回路 3 5及び同期回路 3 6に供給され る。 同期回路 3 6は受信信号から所定の同期パターンを検出して同期検出信号を 復調回路 3 5に供給する。 復調回路 3 5は同期検出信号に同期して受信信号を復 調し、 復号回路 3 7に供給する。 復号回路 3 7は復調信号を復号して元のデータ に戻し出力する。 また、 状態レジスタ 3 8には自受信機のチャネル使用状態 (使 用/未使用) が保持され、 この使用状態はチャネル割当制御部 2 6に通知される このように、 ビームフォーマ 6 0を受信機 2 5 i〜2 5 nで共有することによ り、 受信機 2 5 〜 2 5 nの回路規模を小さくすることができる。
このように、 本発明では、 固定ビームを用いてその方向の受信信号処理を行う ため、 ランダムアクセス信号のような到来方向が予測不可能な信号に対してもァ レーアンテナの利得を得て受信することができる。 また、 多元接続のための多数 の受信機とその形成するビームを一元的に管理し、 ビームの使用状況に応じたビ ームを受信機に割当てるため、 アレーアンテナ化による受信機数の増加を抑えな がら、 さらに多くの通信ユーザを収容することができる。
また、 連続的に通信を行うシステムにおいては、 各受信機に設けられたウェイ ト推定部により適応ビーム収束後に切替えるため、 連続的に安定した通信を行う ことが可能である。
このことは、 アレーアンテナを適用した無線通信装置で、 パケット通信やラン ダムアクセスをスムーズに行うことができ、 装置のチャネル数を抑えながら通信 容量を增カ卩させることができ、 力つ安定したビーム捕捉を行うことができる。 従 つて、 形成したビームの精度により通信の品質が左右されるアレーアンテナ無線 通信装置を安定して動作させることが可能である。
なお、 無線受信回路部 2 1 〜 2 l mが請求項記載の受信回路部に対応し、 チ ャネル割当制御部 2 6がチャネル割当制御手段に対応し、 ビームフォーマ 3 1, 6 0がビーム形成手段に対応し、 ビーム制御部 2 7がビーム制御手段に対応し、 ウェイト推定部 4 0がウェイト推定手段に対応し、 セレクタ 6 1が選択手段に対 応する。

Claims

請求の範囲
1 . 多元接続を行う無線通信システムのァレーアンテナのビーム形成方法で 5)つて、
アレーアンテナを構成する複数のアンテナそれぞれに接続され 1つのセクタか ら送信された信号を複数の受信回路部で受信し、
複数の受信機で前記複数の受信回路部から受信信号を供給されてビーム形成を 行い、 多元接続されたチヤネルを同時に復調かつ復号し、
使用中の受信機を把握して未使用の受信機に新たに受信するチャネルを割当て 前記チャネルの割当てに応じて前記 1つのセクタを分割する複数パターンのビ ームのうちどのビームを前記複数の受信機で形成させるかを割当て制御するァレ ーァンテナのビーム形成方法。
2 . 請求項 1記載のァレーアンテナのビーム形成方法において、
各受信機は、 各チャネル内で適応的なビームを形成するためのウェイト推定を 行い、
前記チャネルの割当てに応じた制御により各受信機でビーム形成を行ったのち 、 前記ウェイト推定で推定したウェイ卜でビーム形成を行うアレーアンテナのビ ーム形成方法。
3 . 多元接続を行う無線通信システムのァレーアンテナのビーム形成方法で あって、
ァレーアンテナを構成する複数のアンテナそれぞれに接続され 1つのセクタか ら送信された信号を複数の受信回路部で受信し、
前記複数の受信回路部から受信信号を供給されて前記 1つのセクタを分割する 複数ノ、。ターンのビーム形成を行レ、、
複数の受信機で前記複数パターンのビームのうち 1つのビームを選択し、 多元 接続されたチャネルを同時に復調かつ復号し、 使用中の受信機を把握して未使用の受信機に受信するチャネルを割当て、 前記チャネルの割当てに応じて前記 1つのセクタを分割する複数パターンのビ ームのうちどのビームを前記複数の受信機に選択させるかを割当て制御するァレ 一アンテナのビーム形成方法。
4 . 多元接続を行う無線通信システムのァレーアンテナ無線通信装置であつ て、
ァレーアンテナを構成する複数のアンテナそれぞれに接続され 1つのセクタか ら送信された信号を受信する複数の受信回路部と、
前記複数の受信回路部から受信信号を供給されてビーム形成を行うビーム形成 手段を具備し、 多元接続されたチャネルを同時に復調かつ復号する複数の受信機 と、
使用中の受信機を把握して未使用の受信機に受信するチャネルを割当てるチヤ ネル割当制御手段と、
前記チャネルの割当てに応じて前記 1つのセクタを分割する複数パターンのビ ームのうちどのビームを前記複数の受信機のビーム形成手段に形成させるかを割 当て制御するビーム制御手段を有するアレーアンテナ無線通信装置。
5 . 請求項 4記載のァレーアンテナ無線通信装置において、
前記ビーム制御手段は、 使用中の受信機に割当てられているビームの使用頻度 に応じて、 使用頻度の高いビームほど多く前記複数の受信機のビーム形成手段に 割当てるアレーアンテナ無線通信装置。
6 . 請求項 5記載のアレーアンテナ無線通信装置において、
前記ビーム制御手段は、 初期状態では前記複数の受信機のビーム形成手段に前 記複数パターンのビームを均等に割当てるアレーアンテナ無線通信装置。
7 . 請求項 4乃至 6のレ、ずれかに記載のァレーアンテナ無線通信装置にぉレヽ て、 各受信機は、 各チャネル内で適応的なビームを形成するためのウェイト推定手 段を具備し、
前記ビーム制御手段で各受信機のビーム形成手段を制御してビームを形成させ たのち、 前記ウェイト推定手段で推定したウェイトを用いて前記ビーム形成手段 にビームを形成させるアレーアンテナ無線通信装置。
8 . 請求項 4乃至 7のレ、ずれかに記載のァレーアンテナ無線通信装置にぉレ、 て、
送信信号のビーム形成を行うビーム形成手段を具備し、 多元接続されたチヤネ ルを同時に符号かつ変調する複数の送信機を有し、
前記ビーム制御手段により前記複数の送信機のビーム形成手段を前記複数の受 信機のビーム形成手段と共に制御する了レーアンテナ無線通信装置。
9 . 多元接続を行う無線通信システムのァレーアンテナ無線通信装置であつ て、
アレーアンテナを構成する複数のアンテナそれぞれに接続され 1つのセクタか ら送信された信号を受信する複数の受信回路部と、
前記複数の受信回路部から受信信号を供給されて前記 1つのセクタを分割する 複数パターンのビーム形成を行うビーム形成手段と、
前記ビーム形成手段から供給される複数パターンのビームのうち 1つのビーム を選択する選択手段を具備し、 多元接続されたチャネルを同時に復調かつ復号す る複数の受信機と、
使用中の受信機を把握して未使用の受信機に受信するチャネルを割当てるチヤ ネル割当制御手段と、
前記チャネルの割当てに応じて前記 1つのセクタを分割する複数パターンのビ ームのうちどのビームを前記複数の受信機の選択手段に選択させるかを割当て制 御するビーム制御手段を有するァレーアンテナ無線通信装置。
PCT/JP2003/011528 2003-09-09 2003-09-09 アレーアンテナのビーム形成方法及びアレーアンテナ無線通信装置 WO2005027376A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/011528 WO2005027376A1 (ja) 2003-09-09 2003-09-09 アレーアンテナのビーム形成方法及びアレーアンテナ無線通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/011528 WO2005027376A1 (ja) 2003-09-09 2003-09-09 アレーアンテナのビーム形成方法及びアレーアンテナ無線通信装置

Publications (1)

Publication Number Publication Date
WO2005027376A1 true WO2005027376A1 (ja) 2005-03-24

Family

ID=34308193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011528 WO2005027376A1 (ja) 2003-09-09 2003-09-09 アレーアンテナのビーム形成方法及びアレーアンテナ無線通信装置

Country Status (1)

Country Link
WO (1) WO2005027376A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336027A (ja) * 1992-05-29 1993-12-17 Nec Corp ゾーン制御方式
JPH0779476A (ja) * 1993-08-12 1995-03-20 Northern Telecom Ltd ベース局アンテナ装置
JPH10126139A (ja) * 1996-10-18 1998-05-15 Toshiba Corp アダプティブアンテナ
JPH10285107A (ja) * 1997-03-31 1998-10-23 Radio Frequency Syst Inc 陸上移動無線システムにおけるトラフィック分布分析

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336027A (ja) * 1992-05-29 1993-12-17 Nec Corp ゾーン制御方式
JPH0779476A (ja) * 1993-08-12 1995-03-20 Northern Telecom Ltd ベース局アンテナ装置
JPH10126139A (ja) * 1996-10-18 1998-05-15 Toshiba Corp アダプティブアンテナ
JPH10285107A (ja) * 1997-03-31 1998-10-23 Radio Frequency Syst Inc 陸上移動無線システムにおけるトラフィック分布分析

Similar Documents

Publication Publication Date Title
US7392019B2 (en) Wireless base station apparatus and wireless communication method
JP3404382B2 (ja) 送信ダイバーシティ方法及びシステム
KR100760726B1 (ko) 무선 통신 단말에 있어서의 통신 방법
USRE36591E (en) Transmission diversity for a CDMA/TDD mobile telecommunication system
EP1152628B1 (en) Radio base station device and radio communication method
AU701764B2 (en) Spectrally efficient high capacity wireless communication systems
JP4344427B2 (ja) 無線通信システムにおいて容量を改善するための方法および装置
US7639984B2 (en) Wireless communication system
KR101169918B1 (ko) 공간분할 다중화가 가능한 직교 주파수 분할 다중 접속 무선 네트워크에서 순방향 스케줄링 장치 및 방법
JP3874991B2 (ja) 無線基地局およびそのフレーム構成方法
EP1163740B1 (en) Wireless telecommunications system, base station thereof and beamforming telecommunications method
US20090279512A1 (en) Wireless communication system, radio base station apparatus and radio terminal apparatus
JP2002516550A (ja) セクタ化された無線通信システム用の符号割り当て
JPH09215052A (ja) 空間分割多元接続無線通信システムおよび同システムにおいてチャネルを割り当てる方法
EP1487140A1 (en) Radio terminal device, transmission directivity control method, and transmission directivity control program
US7542725B2 (en) Radio base station and mobile station
KR20060081194A (ko) 다중 안테나 시스템에서 섹터 구성 장치 및 방법
US6947749B2 (en) Apparatus for increasing cell capacity in mobile communication system using adaptive sectorization and method for controlling the same
JP2005236686A (ja) 適応アレーアンテナによる通信システムおよび通信方法
KR20050041874A (ko) 통신 시스템 및 데이터 전송 스케쥴링 방법
JP2001320761A (ja) チャネル割当方法および装置
JP6598104B2 (ja) 端末、基地局、無線通信システム及び回線状態情報取得方法
WO2005027376A1 (ja) アレーアンテナのビーム形成方法及びアレーアンテナ無線通信装置
JP4156854B2 (ja) 無線ベースの通信システムを動作させる方法
KR100825174B1 (ko) 무선 통신 시스템 및 기지국 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR HU IE IT LU MC NL PT RO SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP