WO2005024921A1 - 露光装置及びデバイス製造方法 - Google Patents

露光装置及びデバイス製造方法 Download PDF

Info

Publication number
WO2005024921A1
WO2005024921A1 PCT/JP2004/013190 JP2004013190W WO2005024921A1 WO 2005024921 A1 WO2005024921 A1 WO 2005024921A1 JP 2004013190 W JP2004013190 W JP 2004013190W WO 2005024921 A1 WO2005024921 A1 WO 2005024921A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure apparatus
atmosphere forming
atmosphere
optical system
projection optical
Prior art date
Application number
PCT/JP2004/013190
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Nagasaka
Soichi Owa
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to KR1020067003372A priority Critical patent/KR101162527B1/ko
Priority to JP2005513730A priority patent/JP4517367B2/ja
Priority to EP04772929A priority patent/EP1667210A4/en
Publication of WO2005024921A1 publication Critical patent/WO2005024921A1/ja
Priority to US11/364,075 priority patent/US8253921B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70816Bearings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70933Purge, e.g. exchanging fluid or gas to remove pollutants

Definitions

  • the present invention relates to an exposure apparatus and a device manufacturing method used when manufacturing an electronic device such as a semiconductor element, a liquid crystal display element, an imaging element (such as a CCD), and a thin-film magnetic head.
  • an electronic device such as a semiconductor element, a liquid crystal display element, an imaging element (such as a CCD), and a thin-film magnetic head.
  • a pattern image of a mask or reticle (hereinafter, referred to as a reticle) on which a pattern is formed is exposed to a photosensitive material (resist) through a projection optical system.
  • a projection exposure apparatus is used to project each shot (short) area on a substrate coated with (g).
  • the circuit of the electronic device is transferred by exposing a circuit pattern on a substrate to be exposed by the projection exposure apparatus, and is formed by post-processing.
  • the wavelength of the exposure illumination beam (exposure light) in the projection exposure apparatus tends to be shorter.
  • a short-wavelength light source such as a KrF excimer laser (wavelength: 248 nm) will be used instead of the mercury lamp that has been the mainstream until now, and an even shorter-wavelength ArF excimer laser (193 nm) will be used.
  • Practical use of an exposure system that uses a laser is entering the final stage. Exposure equipment using an F 2 laser (157 nm) is being developed with the aim of achieving even higher density integration.
  • Beams with wavelengths less than about 190 nm belong to the vacuum ultraviolet region, and these beams do not pass through air. This is because the energy of the beam is absorbed by substances such as oxygen molecules, water molecules, and carbon dioxide molecules (hereinafter referred to as light absorbing substances) contained in the air. It is.
  • the space on the optical path is surrounded by a housing, and a transparent gas that transmits the exposure light is supplied into the housing.
  • the concentration of the light absorbing substance in the space on the optical path is practically less than about 1 ppm.
  • an atmosphere forming mechanism for forming a local gas atmosphere is arranged between the projection optical system and the substrate, and the light absorbing material is excluded from the space on the optical path.
  • the atmosphere forming mechanism is arranged between the projection optical system and the substrate in a state where a clearance of about several mm is provided for the substrate (Japanese Patent Application Laid-Open No. 2001-21058). No. 7).
  • the stage for mounting the substrate and the projection optical system are supported by different supports.
  • Each of the stage-side support and the projection optical system-side support is provided with an active anti-vibration device for suppressing vibration from the floor surface.
  • the distance between the stage and the projection optical system is maintained in a predetermined state by independent driving. If a problem occurs in the active vibration isolator and the projection optical system and the stage move closer to each other, the movement amount will be the same unless the atmosphere forming mechanism is arranged between the projection optical system and the substrate. Is sufficiently small compared to the distance between the projection optical system and the substrate, so that the possibility of particularly serious problems was low.
  • the clearance between the substrate and the atmosphere forming mechanism becomes smaller than the above-described movement amount.
  • the acty If a problem occurs in the vibration isolator and the projection optical system and the stage approach each other, the stage or the substrate may come into contact with the atmosphere forming mechanism. When the stage or substrate comes into contact with the atmosphere forming mechanism in this manner, a force resulting from this contact is transmitted to the projection optical system via the atmosphere forming mechanism, and changes the imaging performance of the projection optical system. Disclosure of the invention
  • the present invention has been made in view of the above-described problems, and forms an image of a projection optical system caused by transmission of a force resulting from contact between a stage or a substrate and an atmosphere forming mechanism to the projection optical system.
  • the purpose is to prevent performance changes.
  • a first aspect of the present invention includes a projection optical system (PL) for projecting an image of a mask (R) on a substrate (W) held on a stage (45).
  • An exposure apparatus having an atmosphere forming mechanism for forming a specific fluid atmosphere between the projection optical system and the stage, wherein the atmosphere forming mechanism is configured to generate a force caused by contact with the stage or the substrate.
  • a configuration is adopted in which a buffer is provided to suppress transmission of this force to the projection optical system.
  • the buffer section (71a, 71b) extends and contracts to relatively bring the projection optical system side and the stage side of the atmosphere forming mechanism closer to each other.
  • the structure which has the expansion-contraction mechanism which makes it adopt is adopted.
  • a third aspect of the present invention is the exposure apparatus according to the second aspect, wherein the atmosphere forming mechanism has an atmosphere forming unit that forms the specific fluid atmosphere,
  • the buffer unit recuperates a configuration further including a flexible member that connects between the atmosphere forming unit and a lens barrel that holds the projection optical system.
  • a fourth aspect of the present invention is the exposure apparatus according to the second aspect, wherein the atmosphere forming mechanism includes: an atmosphere forming unit that forms the specific fluid atmosphere; and a support unit that supports the atmosphere forming city on a support base. , And a configuration in which the supporting portion also serves as the expansion / contraction mechanism is adopted.
  • the support section is related to a first support section having one end attached to the support table, and the other end of the first support section.
  • a second support portion having one end portion that fits and the other end portion attached to the atmosphere forming portion, wherein the first support portion is provided when the atmosphere forming portion contacts the stage or the substrate.
  • a configuration is adopted in which the engagement between the other end of the portion and one end of the second support portion is released.
  • a sixth aspect of the present invention is the exposure apparatus according to the fifth aspect, wherein the other end of the first support portion has a first flange portion formed in a direction away from the projection optical system; (2) One end of the support portion has a second flange portion formed toward the projection optical system, and the first support portion and the second support portion are configured such that the second flange portion is the first flange portion.
  • a configuration that engages by storing in a part is adopted.
  • a seventh aspect of the present invention is the exposure apparatus according to the second aspect, wherein the atmosphere forming mechanism has an atmosphere forming section for forming the specific fluid atmosphere, and the expansion and contraction mechanism is configured such that one end has the support. And a string-shaped member whose other end is attached to the atmosphere forming portion.
  • the buffer section (120, 121, 72) is configured such that the shape of the buffer section (120, 121, 72) is changed so that the projection optical system side and the stage side of the atmosphere forming mechanism are relatively positioned.
  • a configuration having a shape changing portion that is brought close to each other is adopted.
  • a ninth aspect of the present invention employs a configuration in which an elastic deformation member (120) is used for the shape changing portion.
  • a tenth aspect of the present invention adopts a configuration in which a plastically deformable member (121) is used for the shape changing portion.
  • the atmosphere forming mechanism has an atmosphere forming part that forms the specific fluid atmosphere, and the buffering part is a part of the atmosphere forming part.
  • the configuration provided in a part is adopted.
  • the atmosphere forming mechanism employs a configuration in which the atmosphere forming part is supported via the buffer part.
  • a thirteenth aspect of the present invention is the exposure apparatus according to the eleventh aspect, wherein the buffer section is provided on a part of the atmosphere forming section on the stage or the substrate side. Adopt a configuration that is
  • the buffer section is formed of a plastic deformation member or an elastic deformation member.
  • the atmosphere forming mechanism has an atmosphere forming part for forming the specific fluid atmosphere, and the buffering part is the same as the atmosphere forming part.
  • the atmosphere forming unit moves between the atmosphere forming unit and the projection optical system when the stage or the substrate and the atmosphere forming mechanism come into contact with each other.
  • Adopt a configuration in which a clearance (d) longer than the distance is provided.
  • a seventeenth aspect of the present invention employs a configuration including a step of transferring a device pattern formed on the mask onto the substrate using the exposure apparatus of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of an exposure apparatus 10 to which the present invention is applied.
  • FIG. 2 is a schematic diagram for explaining a support structure of the projection optical system PL and the wafer stage 46 in the exposure apparatus 10.
  • FIG. 3 is a diagram showing an enlarged view of the vicinity of the working 'distance unit WD of the exposure apparatus 10 according to the first embodiment.
  • FIG. 4 is a diagram showing an enlarged view of the vicinity of the working distance unit WD of the exposure apparatus 10 according to the first embodiment.
  • FIG. 5 is a diagram showing an enlarged view of the vicinity of the working distance unit WD of the exposure apparatus 10 according to the first embodiment.
  • FIG. 6 is a diagram showing a state where the wafer W and the atmosphere forming unit 70 come into contact with each other in the exposure apparatus 10 according to the first embodiment.
  • FIG. 7 is a diagram showing an enlarged view of the vicinity of the working distance unit WD of the exposure apparatus 10 according to the second embodiment.
  • FIG. 8 is a diagram showing a state where the wafer W and the atmosphere forming unit 70 come into contact with each other in the exposure apparatus 10 according to the second embodiment.
  • FIG. 9 is a diagram showing an enlarged view of the vicinity of the working distance unit WD of the exposure apparatus 10 according to the third embodiment.
  • FIG. 10 is a diagram showing a state where the wafer W and the atmosphere forming unit 70 are in contact with each other in the exposure apparatus 10 according to the third embodiment.
  • FIG. 11 is a diagram showing an enlarged view of the vicinity of a working distance section WD of an exposure apparatus 10 according to the fourth embodiment.
  • FIG. 12 is a diagram showing an enlarged view of the vicinity of the working distance unit WD of the exposure apparatus 10 according to the fifth embodiment.
  • FIG. 13 is a diagram showing a state in which the wafer W and the atmosphere forming unit 70 come into contact with each other in the exposure apparatus 10 according to the fifth embodiment.
  • FIG. 14 is a diagram showing a configuration of an atmosphere forming section 100 of the immersion exposure apparatus.
  • FIG. 15 is a flowchart illustrating an example of a device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention is applied to a step-and-scan projection exposure apparatus using vacuum ultraviolet light as an energy beam for exposure.
  • FIG. 1 is a diagram showing a schematic configuration of an exposure apparatus 10 to which the present invention is applied.
  • the mechanical unit of the exposure apparatus 10 is largely divided into an illumination optical system 21, a reticle operating unit 22, a projection optical system PL, and a wafer operating unit 23.
  • the illumination optical system 21, the reticle operation unit 22, and the projection optical system PL are provided inside the illumination system chamber 25, the reticle room 26, and the lens barrel 27, respectively. It is housed in a state where it is isolated from power and airtightness is enhanced.
  • the exposure apparatus 10 as a whole is used for environmental control in which the expected internal temperature is controlled within a predetermined target range.
  • the exposure light source 2 0, F 2 laser light source for generating pulse rates one laser light having a wavelength of 1 5 7 nm in the vacuum ultraviolet region in this embodiment is used.
  • the emission end of the exposure light source 20 is attached to a lower part of the illumination system chamber 25.
  • Exposure light IL (energy beam) emitted from the exposure light source 20 into the illumination system chamber 25 at the time of exposure is reflected upward by the mirror 30, and the automatic tracking unit (
  • the light enters a fly-eye lens (or rod lens) 32 as an optical integrator (homogenizer) via a beam shaping optical system 31 for shaping the cross-sectional shape of the illumination system and controlling the amount of light.
  • An aperture stop (not shown) is arranged on the exit surface of the fly-eye lens 32.
  • the exposure light IL that has passed through the fly-eye lens 32 and the aperture stop is deflected in a substantially horizontal direction by a mirror 34 and relayed. Reach the field stop (reticle blind) 3 6 through 3 5.
  • the arrangement surface of the field stop 36 is optically almost the same as the pattern surface of the reticle R to be exposed.
  • the field stop 36 has a fixed blind that defines the shape of an elongated rectangular illumination area on the pattern surface.
  • a movable blind for closing the illumination area is provided.
  • the exposure light IL that has passed through the field stop 36 passes through the relay lens 37, the mirror 38, and the condenser lens system 39 fixed to the tip of the illumination system chamber 25 to form a rectangle ( Illuminate the illumination area (on the slit) with a uniform illuminance distribution.
  • the illumination optical system 21 is composed of the exposure light source 20 to the condenser lens system 39, and the optical path of the exposure light IL in the illumination optical system 21; that is, the optical path from the exposure light source 20 to the condenser lens system 39 is the illumination system. Sealed by chamber 25.
  • the image of the pattern in the illumination area of the reticle R passes through the projection optical system PL at a projection magnification ⁇ ( ⁇ is, for example, 1/4, 1 Z5, etc.). It is projected onto the wafer W (substrate) coated with the photosensitive material (photoresist).
  • the wafer W is a disk-shaped substrate such as a semiconductor (silicon or the like) or SOI (silicon on insulator).
  • reticle R is held on reticle stage 40.
  • the reticle stage 40 minutely drives the reticle R in the Y direction on a reticle base (not shown) in synchronization with a soil earth stage described later.
  • Reticle stage 4 0 The position and the rotation angle are measured with high accuracy by a laser interferometer (not shown), and the reticle stage 4 is controlled based on the measured values and a control signal from a main control system 2 composed of a computer that controls the overall operation of the apparatus. 0 is driven.
  • the optical path of the reticle stage 40 and the exposure light IL (not shown), that is, the optical path from the condenser lens system 39 to the projection optical system PL is sealed by the reticle chamber 26.
  • a plurality of optical elements constituting the projection optical system PL are housed in the lens barrel 27, and the optical path from the optical element on the reticle side of the projection optical system PL to the optical element on the wafer side is inside the lens barrel 27. Sealed.
  • the optical glass material having good transmittance is doped with fluorite (C a F 2 crystal), fluorine, hydrogen, or the like. limited to quartz glass and magnesium fluoride (M g F 2) or the like. Therefore, a refractive optical system may be configured using an optical glass material having a good transmittance.
  • fluorite C a F 2 crystal
  • fluorine fluorine
  • hydrogen hydrogen
  • M g F 2 quartz glass and magnesium fluoride
  • a refractive optical system may be configured using an optical glass material having a good transmittance.
  • catadioptric optics combining a refractive optical element and a reflecting mirror is preferred. A system may be employed.
  • the wafer W is suction-held on the mounting surface on the wafer holder 45, and the wafer holder 45 is fixed on the wafer stage 46.
  • the wafer stage 46 continuously moves the wafer W in the Y direction on the wafer platen to be described later in synchronization with the reticle stage described above, and also moves the wafer W stepwise in the X and Y directions.
  • the wafer stage 46 projects the surface of the wafer W by an autofocus method based on information on the position (focus position) in the optical axis AX direction of the surface of the wafer W measured by an autofocus sensor (not shown). The image plane.
  • Position of wafer stage 46 in X and Y directions, rotation angle around X axis (pitching amount), rotation angle around Y axis (rolling amount), rotation angle around Z axis (jowing amount) Is measured with high accuracy by a laser interferometer 47, and the wafer stage 46 is driven via a stage drive system 48 based on the measured value and a control signal from the main control system 24.
  • the reflecting mirror 47a which is mounted on the wafer stage 46 (wafer holder 45) and reflects the laser beam (measuring beam) from the laser interferometer 47, is composed of separate prismatic mirrors.
  • a wafer operation unit 23 is constituted by the wafer holder 45, the wafer stage 46, the wafer surface plate, and the like, and a wafer loader or the like (not shown) as a transfer system is disposed beside the wafer operation unit 23. I have.
  • a flange portion 101 integrated with the lens barrel 27 is provided on the outer periphery of the lens barrel 27 of the projection optical system PL.
  • the lens barrel 27 is inserted from above or from the side into a lens barrel base 104 supported substantially horizontally on the first support base 102 via the active anti-vibration device 103, and It is supported by the engagement of the flange portions 101.
  • the lens barrel surface plate 104 is made of cypress.
  • the active anti-vibration device 103 is installed at each corner of the lens barrel base 104 (the active anti-vibration device at the back of the paper is not shown), and an air mount with adjustable internal pressure is available. And voice coil motors 106 and 9.
  • the air mount 105 and the voice coil motor 106 are arranged in series on the first support 102.
  • the vibration transmitted from the outside via the first support 102 is transmitted to the projection optical system PL by the active anti-vibration apparatus 103. It is insulated at the micro G level.
  • a wafer surface plate 107 is provided below the wafer stage 46.
  • the wafer base 107 is placed almost horizontally above the second support base 108 formed separately from the first support base 102 via an active anti-vibration device 109. Supported.
  • the active anti-vibration device 109 is arranged at each corner of the wafer platen 107 (the active anti-vibration device at the back of the paper is not shown), and the air mount 110 and the voice coil motor 110 are provided. 1 are arranged on the second support base 108 in parallel.
  • On the bottom of the wafer stage 46 a plurality of air bearings 111, which are non-contact bearings, are installed.
  • the wafer stage 46 is placed above the wafer surface plate 107, For example, it is levitated and supported through a clearance of several microns.
  • the exposure apparatus 10 uses an active anti-vibration apparatus 109 to transmit vibration transmitted from the outside via the second support base 108. The movement is transmitted to the wafer stage 46 at the micro G level.
  • light-absorbing substances for the exposure light IL include oxygen (O 2 ), water (water vapor: H 2 ⁇ ), and — There are carbon oxide (CO), carbon dioxide (carbon dioxide: co 2 ), organic substances and halides.
  • the gases through which the exposure light IL passes include nitrogen gas (N 2 ), hydrogen (H 2 ), helium (He), neon (Ne;), and argon (Ar). , Krypton (Kr), xenon (Xe) and radon (Rn).
  • nitrogen gas and the rare gas will be collectively referred to as “permeable gas”.
  • the exposure apparatus 10 of the present embodiment includes the above-described transparent gas, which has a small energy absorption with respect to a beam in the vacuum ultraviolet region, in a space on an optical path, that is, in each of the illumination system champer 25, reticle chamber 26, and lens barrel 27.
  • Gas supply and exhaust system 50 which has the same or higher pressure than the atmospheric pressure (for example, within the range of 0.001 to 10% of the atmospheric pressure).
  • Gas supply / exhaust system 50 includes vacuum pumps 51A, 51B, 51C for exhaust, cylinders 53 in which permeable gas is compressed or liquefied in a high-purity state, and valves 52 that are controlled to open and close.
  • A, 52 B, 52 C etc. are included. In addition, these numbers and installation locations are not limited to those illustrated.
  • Nitrogen gas acts as a light-absorbing substance for light with a wavelength of about 150 nm or less, and real gas can be used as a transparent gas up to a wavelength of about 100 nm.
  • helium gas has a thermal conductivity that is about six times that of nitrogen gas, and the amount of change in the refractive index with respect to changes in atmospheric pressure is about 1/8 that of nitrogen gas. Excellent in stability and cooling performance. Since helium gas is expensive, if 1 5 O nm or more as the wavelength of the exposure light IL is the F 2 laser beam, using nitrogen gas as a transmissive gas in order to reduce the operating costs May be.
  • an atmosphere of a specific fluid is formed by an atmosphere forming mechanism.
  • the atmosphere forming mechanism is composed of an atmosphere forming section 70 arranged in the working distance section WD, and one end connected to the cylinder 53 of the fluid supply / exhaust system 50.
  • a gas supply pipe 62 whose other end is connected to the atmosphere forming section 70, a pulp 63 disposed at an intermediate portion of the gas supply pipe 62, and a vacuum pump 60 whose one end is an exhaust gas. And a first exhaust pipe 61 and a second exhaust pipe 64 whose other ends are connected to the atmosphere forming section 70.
  • the atmosphere forming unit 70 is supported by a support unit 71 described later on a lens barrel 27 that holds the projection optical system PL. Further, in this embodiment, the chain cylinder 27 functions as a support that supports the force S and the atmosphere forming portion 70.
  • Fig. 3 to Fig. 5 show the working distance section and the vicinity of the WD. Fig.
  • FIG. 3 is a diagram showing the vicinity of the working distance part WD viewed from the X direction in Fig. 1
  • Fig. 4 is a diagram showing the vicinity of the working distance part WD viewed from the Y direction.
  • Fig. 5 shows the working distance part near the WD viewed from above.
  • the atmosphere forming section 70 is disposed so as to surround the optical path of the exposure light IL.
  • the atmosphere forming section 70 includes a gas supply port 65 to which the other end of the gas supply pipe 62 is connected and a first gas intake port 66 to which the other end of the first exhaust pipe 61 is connected. Are arranged.
  • the gas supply port 65 and the first gas intake port 66 are respectively connected to the gas supply pipe 62 and the first exhaust pipe 61 so that the flow of the permeable gas in the working part WD is uniform.
  • Each has an opening end larger than the tube diameter of the projection optical system PL, and is disposed so as to sandwich the optical axis AX of the projection optical system PL therebetween and to face each other.
  • the atmosphere forming part 70 surrounds the optical path of the exposure light IL, is disposed outside the gas supply port 65 and the first intake port 66, and is connected to the other end of the second exhaust pipe 64.
  • a second air inlet 67 is provided.
  • the second suction port 67 is formed outside the gas supply port 65 and the first suction port 66 so as to surround the optical path of the exposure light IL.
  • the permeated gas that has flowed out between the working distance WD and the working distance part WD is drawn into the working distance part WD without leaking out of the working distance part WD.
  • the body takes in air from the second air inlet 67 before reaching the optical path of the exposure light IL.
  • the exposure apparatus 10 according to the present embodiment can ensure that the optical path of the exposure light IL is a transparent gas atmosphere, and that the transparent gas is used in the working distance unit W. It can be prevented from leaking out of D.
  • the wafer stage 46 (wafer holder 45) is located between the upper part of the atmosphere forming part 70 and the tip of the projection optical system PL due to the independent drive of each of the above-described active anti-vibration devices.
  • a clearance d is provided that is equal to or greater than the distance that the atmosphere forming unit 0 moves when the wafer W comes into contact with the atmosphere forming unit 70.
  • the wafer stage 46 (wafer holder 45) or the wafer W does not come into contact with the atmosphere forming section 70 during the normal operation of the exposure apparatus 10. For example, a large vibration is applied to the exposure apparatus 10 from the outside.
  • the above-mentioned active anti-vibration devices 103 and 109 may come into contact by independently driving.
  • the film forming member 68 for preventing leakage of the permeable gas from the clearance d surrounds the optical axis AX of the projection optical system PL. It is installed between the upper part and the tip of the lens barrel 27.
  • the film-like member 68 is formed of a flexible material that does not allow a permeable gas to permeate, and is made of, for example, EVAL (trade name). Since the film member 68 has flexibility, transmission of vibration to the projection optical system PL via the atmosphere forming part 70 can be suppressed. Note that the film-shaped member 68 constitutes a part of the buffer mechanism according to the present invention.
  • the support portions 71 are for supporting the atmosphere forming portion 70 on the lens barrel 27, and a plurality of the support portions 71 are arranged between the lens barrel 27 and the atmosphere forming portion 70.
  • the support portion 71 includes a first support portion 71 a having one end fixed to the lens barrel 27, and a second support portion 71 b having one end fixed to the atmosphere forming portion 70. I have. 'The other end of the first support portion 71a has a first flange portion 71a1 protruding in a direction away from the projection optical system PL. A second flange portion 71b1 projecting toward the optical axis AX of the projection optical system PL and engaging with the first flange portion 71a1 from above is formed at the end.
  • the support portion 71 has a part of the buffer portion and the function of the expansion and contraction mechanism according to the present invention.
  • the film-shaped member 68 and the support portion 71 interact with each other. By doing so, it functions as a buffer according to the present invention.
  • the supporting portion 70 is in contact with the wafer stage 46 (wafer holder 45) or the wafer W and the atmosphere forming portion 70, and the atmosphere forming portion 70 is moved in the Z direction in FIG.
  • the first flange portion 71a1 and the second flange portion 71b1 are disengaged from each other, they expand and contract in the Z direction.
  • a damper can be arranged between the first flange portion 71 a1 and the second flange portion 71 b1, and the damper can be expanded and contracted in the Z direction.
  • the exposure apparatus 10 includes a wafer stage 46 (a wafer holder 45) or a wafer W (a stage of the exposure apparatus according to the present invention) that expands and contracts the support 71 and the film-shaped member 68. Side) and the atmosphere forming section 70 (the projection optical system side according to the present invention) are relatively close to each other, and the wafer stage 46 (wafer holder 45) or the wafer W is in contact with the atmosphere forming section 70. Is suppressed from being transmitted to the projection optical system PL.
  • the force resulting from the contact between the wafer stage 46 (wafer holder 45) or the wafer W and the atmosphere forming section 70 is applied to the support section 71 and the film. Since the expansion and contraction of the shape member 68 is buffered, it is possible to prevent a change in the imaging performance of the projection optical system PL. As described above, when the wafer stage 46 (wafer holder 45) or the wafer W comes into contact with the atmosphere forming section 70, the weight of the atmosphere forming section 70 is added to the wafer stage 46, Since the weight of the portion 70 is not so large, the wafer stage 46 is not damaged.
  • One end of the first support portion 71a may not be fixed to the lens barrel 27 as described above.
  • the first support portion 71a may be fixed to the lens barrel surface plate 104. That is, the lens barrel surface plate 104 functions as the support base of the present invention.
  • the atmosphere forming portion 70 is supported by the plurality of supporting portions 71, but the present invention is not limited to this.
  • a single cylindrical supporting portion surrounding the optical path of the exposure light IL may be used.
  • the atmosphere forming portion 70 may be supported.
  • the exposure apparatus 10 projects the pattern image of the reticle R onto each shot area on the wafer W via an optical path maintained in a transparent gas atmosphere during normal operation. I have. (Second embodiment)
  • FIG. 7 is a diagram showing the vicinity of the working distance unit WD viewed from the X direction in FIG. 1 described in the first embodiment.
  • the shape changing portion 120 is made of an elastic member (for example, rubber or elastic plastic) that does not transmit a permeable gas, and is located above the atmosphere forming portion 70, that is, above the gas supply port 65. In addition, it forms at least a part of the upper part of the first intake port 66.
  • the shape changing section 120 also serves as the expansion / contraction mechanism and the film-shaped member 68 provided in the exposure apparatus 10 according to the first embodiment described above.
  • the shape changing portion 120 has the functions of the buffer portion and the support portion according to the present invention.
  • the wafer stage 46 (wafer holder 45) or the wafer W comes into contact with the atmosphere forming unit 70, and the atmosphere forming unit 70 is In the case of moving in the Z direction, as shown in FIG. 8, the shape changing portion 120 itself changes shape.
  • the force resulting from the contact between the wafer stage 46 (wafer holder 45) or the wafer W and the atmosphere forming portion 70 is buffered, so that the exposure apparatus 10 according to the second embodiment is The same effects as those of the exposure apparatus 10 according to the first embodiment can be obtained.
  • FIG. 9 is a diagram showing the vicinity of the working distance unit WD in the exposure apparatus according to the third embodiment as viewed from the X direction in FIG. 1 described in the first embodiment.
  • the shape change portion 121 is made of a plastically deformable member (for example, glass, metal, or the like), and the exposure apparatus 10 according to the third embodiment has the same structure as that of the second embodiment.
  • the wafer stage 46 (wafer holder 45) or the wafer W comes into contact with the atmosphere forming unit 70, and the atmosphere forming unit 70 is When it moves in the Z direction at, the shape-changed portion 121 plastically deforms.
  • the shape change portion 122 is made of glass, as shown in FIG. 10, the shape change portion 121 is broken by plastic deformation.
  • the force caused by the contact between the wafer stage 46 (wafer holder 45) or the wafer W and the atmosphere forming section 70 is buffered, and the exposure apparatus 1 according to the third embodiment is buffered. 0 can provide the same effect as the exposure apparatus 10 according to the first embodiment.
  • the atmosphere forming portion 70 When the shape-changed portion 121 is destroyed as described above, the atmosphere forming portion 70 needs to be replaced, but the atmosphere forming portion 70 is manufactured at a lower cost than the projection optical system PL. can do. Therefore, the exposure apparatus can be easily restarted as compared with the case where the projection optical system PL is replaced.
  • the shape change portion 121 may be used as the shape change portion 121, and in this case, the shape change portion 121 is bent, for example, so that the wafer stage 46 ( Wafer holder 45) or buffers the force caused by contact between wafer W and atmosphere forming portion 70.
  • Teflon registered trademark
  • the shape change portion 122 may be formed of a brittle material that breaks without undergoing plastic deformation.
  • a brittle material ceramics such as alumina, zirconia, and titanium aluminum can be used.
  • FIG. 11 is a diagram showing the vicinity of the working distance unit WD in the exposure apparatus according to the fourth embodiment as viewed from the X direction in FIG. 1 described in the first embodiment.
  • the exposure apparatus 10 according to the fourth embodiment has the atmosphere changing section 120 (122) described in the exposure apparatus 10 according to the second and third embodiments. It is provided at a part of a lower part of the forming part 70, that is, at least a part of a lower part of the gas supply port 65 and a lower part of the first intake port 66.
  • the fourth embodiment has a structure in which the upper portion of the atmosphere forming portion 70 is directly fixed to the lens barrel 27 to support the atmosphere forming portion 70. 0 at the top It has the function of the support according to the present invention. Further, the shape changing section 120 (122) has the function of the buffer section according to the present invention.
  • the configuration of the exposure apparatus according to the fourth embodiment other than the above is the same as that of the first embodiment. +
  • the wafer stage 46 (wafer holder 45) or the wafer W comes into contact with the atmosphere forming unit 70, and the atmosphere forming unit 70 is In the case of moving in the Z direction at, the shape-changed portion 121 deforms elastically or plastically. Accordingly, the force caused by the contact between the wafer stage 46 (the wafer holder 45) or the wafer W and the atmosphere forming portion 70 is buffered, and the exposure apparatus 10 according to the fourth embodiment is buffered. Can achieve the same effects as those of the exposure apparatus 10 according to the first embodiment.
  • FIG. 12 is a diagram showing the vicinity of the working distance unit WD of the exposure apparatus according to the fifth embodiment viewed from the X direction in FIG. 1 described in the first embodiment.
  • the exposure apparatus according to the fifth embodiment includes a support portion 72 having a variable shape instead of the support portion 71 described in the first embodiment.
  • the configuration is the same as in the first embodiment.
  • a string-like member such as a chain can be used.
  • the wafer stage 46 (wafer holder 45) or the wafer W comes into contact with the atmosphere forming unit 70, and the atmosphere forming unit 70 is When moved in the Z direction at, the support portion 72 changes its shape as shown in FIG. Accordingly, the force caused by the contact between the wafer stage 46 (wafer holder 45) or the wafer W and the atmosphere forming portion 70 is buffered, and the exposure apparatus 10 according to the fifth embodiment is buffered. Can achieve the same effects as those of the exposure apparatus 10 according to the first embodiment.
  • the exposure apparatus is provided with a sensor for detecting that the force caused by the contact between the wafer stage 46 (wafer holder 45) or the wafer W and the atmosphere forming portion 70 has been buffered. Is also good. Further, an emergency stop means for temporarily stopping the operation of the exposure apparatus based on information obtained from the sensor may be provided. Further, all of the atmosphere forming portions according to the above embodiment may be constituted by the shape changing portions 120 (122) described in the second, third, and fourth embodiments.
  • atmosphere forming mechanism according to the present invention may be applied to an immersion exposure apparatus.
  • the atmosphere forming mechanism according to the present invention is applied to a liquid immersion exposure apparatus
  • the optical element 2F at the front end constituting the projection optical system PL is exposed from the lens barrel 27, and comes into contact with the liquid LQ in the immersion area AR.
  • the atmosphere forming section 150 is connected to a liquid supply mechanism (not shown), and is connected to a liquid supply path 151 for supplying the liquid LQ to the marking / distance section WD and a liquid recovery mechanism (not shown) for working.
  • ⁇ Distance section Equipped with a liquid recovery path 152 for recovering liquid LQ from WD.
  • the liquid supply path 15 1 has a liquid supply port 15 1 A arranged to face the surface of the substrate W, and the liquid recovery path 15 2 is arranged to face the surface of the substrate W. It is equipped with a liquid ⁇ recovery port 15 2 ⁇ .
  • the liquid supply port 15A is provided at each position on both sides in the X-axis direction across the projection area AR of the projection optical system PL, and the liquid collection port 15A is provided with one projection optical system PL.
  • the projection area AR is provided outside the liquid supply port 151A so as to surround the projection area AR. Due to the atmosphere forming section 150 configured as described above, a part of the substrate W including the projection area AR, which is larger than the projection area AR, is provided between the projection optical system PL and the wafer W.
  • a liquid atmosphere smaller than W can be formed.
  • the atmosphere forming unit 150 that forms the liquid atmosphere is supported by the support unit 71 as described in the first embodiment, and a part of the atmosphere forming unit 150 is As described in the measure 2 and the third embodiment, the shape change portions 120 and 121 may be used.
  • the entire atmosphere forming part 150 or at least a part thereof (for example, the wafer stage 46 side) is made of a material that is more easily flared than the material forming the lens barrel 27 or the wafer stage 46 (wafer holder 45). It is composed of a brittle material (for example, glass, ceramics such as alumina, zirconia, and titanium aluminum). When the wafer stage 46 (wafer holder 45) comes into contact with the atmosphere forming section 1 • 0, the atmosphere forming section 1 A part of 00 may be omitted.
  • the image plane It is also possible to employ a projection optical system that fills both the optical element (parallel plane plate) on the (wafer) side and the optical path space on the object plane (reticle) side with liquid.
  • the wafer stage 46 includes a measurement stage as shown in Japanese Patent Application Laid-Open No. 11-135400.
  • the lens barrel 27 has been described as an example of a support that supports the atmosphere forming portions 70 and 150, but the present invention is not limited to this configuration.
  • a lens barrel surface plate 104 can be used as the support.
  • the vibration of the atmosphere forming section 70 itself generated during supply of the permeated gas or the intake, or the vibration of the atmosphere forming section 150 itself that died when supplying or recovering the liquid affects the projection optical system PL.
  • the vibration can be separated and attached to the lens barrel base 104.
  • Ar F excimer laser light (wavelength 193 ⁇ ) When m) is used, pure water is supplied as the liquid LQ for immersion exposure.
  • the refractive index n of pure water (water) for exposure light with a wavelength of about 193 nm is said to be approximately 1.44.
  • the wavelength is shortened to l / n, ie, about 134 nm, and high resolution is achieved. can get.
  • Pure water has the advantage that it can be easily obtained in large quantities at a semiconductor manufacturing plant or the like, and that it has no adverse effect on the photoresist on the substrate (wafer) or the optical element (lens).
  • pure water has no adverse effect on the environment and has a very low impurity content. Therefore, it can be expected to have an effect of cleaning the surface of the substrate and the surface of the optical element provided on the front end surface of the projection optical system.
  • the depth of focus is further increased to about n times, that is, about 1.44 times as compared with that in the air.
  • liquid it is also possible to use a liquid that is transparent to the exposure light, has a refractive index as high as possible, and is stable with respect to the projection optical system and the photoresist applied to the substrate surface. .
  • the fluorine-based liquid such as F 2 lasers light permeable as fluorine-based oil and perfluoropolyether (PFPE) good.
  • the exposure apparatus according to the present invention is applicable not only to a scanning exposure type projection exposure apparatus, but also to a batch exposure type (stepper type) projection exposure apparatus. Further, the magnification of the projection optical system may be not only a reduction magnification but also an equal magnification or an enlargement.
  • K r 2 laser beam (wavelength 146 nm) to use Ar F Ekishimare laser light (wavelength 1 93 nm), Ar 2 laser light (wavelength 1 26 nm ),
  • the wavelength of the harmonic such as the YAG laser beam or the semiconductor laser is 200 nn! It can also be applied to vacuum ultraviolet light of about 100 nm.
  • a single-wavelength laser in the infrared or visible range oscillated from a DFB (Distributed feedback) semiconductor laser or fiber laser is used, for example, erbium (Er).
  • the exposure apparatus is not limited to the exposure apparatus for semiconductor manufacturing,
  • the present invention can be widely applied to an exposure apparatus for a liquid crystal for exposing a liquid crystal display element pattern to a square glass plate and an exposure apparatus for manufacturing a thin film magnetic head.
  • the exposure apparatus of the present embodiment as described above performs various subsystems including each component listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. It is manufactured by assembling. Before and after this assembly, adjustments to achieve electrical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electric systems Is adjusted to achieve electrical accuracy.
  • the process of assembling the exposure apparatus from various subsystems includes mechanical connection, wiring connection of electric circuits, and wiring connection of pneumatic circuits among the various subsystems. It goes without saying that there is an individual assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. When the assembly of the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure the various precisions of the entire exposure apparatus. It is desirable that the manufacture of the exposure apparatus be performed in a clean room in which the temperature and the degree of cleanliness are controlled.
  • a device such as a semiconductor device is subjected to a step 201 for designing the function and performance of the device, a step 202 for creating a mask (reticle) based on this design step, and a silicon material.
  • Step 2 of manufacturing a wafer from a wafer Wafer processing step 204 of exposing a reticle pattern to a wafer by the exposure apparatus according to the present invention, Device assembling step (including dicing step, bonding step, and package step) 2 It is manufactured through 05 and the inspection step 206.
  • the projection caused by the force resulting from the contact between the stage or the substrate and the atmosphere forming mechanism being transmitted to the projection optical system even when the atmosphere forming mechanism comes into contact with the stage or the substrate, the projection caused by the force resulting from the contact between the stage or the substrate and the atmosphere forming mechanism being transmitted to the projection optical system. A change in the performance of the optical system can be prevented.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

ステージに保持された基板Wにマスクの像を投影する投影光学系を有し、この投影光学系と上記ステージとの間に特定ガス雰囲気を形成するための雰囲気形成機構70,71を備える露光装置において、上記雰囲気形成機構70,71は、上記ステージもしくは上記基板Wと接触したことに起因する力をやわらげ、この力が上記投影光学系PLに伝達するのを抑制する緩衝部71a,71bを有する。このような構成により、ステージもしくは基板Wと雰囲気形成機構70,71とが接触することに起因する力が投影光学系PLに伝達されることによって生じる投影光学系PLの損傷を防止することができる。

Description

明 細 書 露光装置及びデパイス製造方法 技術分野
本発明は、 半導体素子、 液晶表示素子、撮像素子 (CCD等)、 薄膜磁気へッド 等の電子デバイスを製造する際に用いられる露光装置及びデバイス製造方法に関 する。
本願は、 2003年 9月 3日に出願された特願 2003-31 1 923号に対 し優先権を主張し、 その内容をここに援用する。 背景技術
半導体素子や液晶表示素子等の電子デパイスをフォトリソグラフィ工程で製造 する際に、 パターンが形成されたマスクもしくはレチクル (以下、 レチクルと称 する) のパターン像を投影光学系を介して感光材 (レジス ト) が塗布された基板 上の各投影 (ショッ ト) 領域に投影する投影露光装置が使用されている。 電子デ パイスの回路は、 上記投影露光装置で被露光基板上に回路パターンを露光するこ とによって転写され、 後処理によって形成される。
近年、 集積回路の高密度集積化、 すなわち、 回路パターンの微細化が進められ ている。
そのため、 投影露光装置における露光用照明ビーム (露光光) が短波長化される 傾向にある。 すなわち、 これまで主流だった水銀ランプに代わって、 Kr Fェキ シマレーザ(波長: 248 nm)といった短波長の光源が用いられるようになり、 さらに短波長の A r Fエキシマレーザ (1 93 nm) を用いた露光装置の実用化 も最終段階に入りつつある。 また、 さらなる高密度集積化をめざして、 F2レー ザ (157 nm) を用いた露光装置の開発が進められている。
波長約 1 90 nm以下のビームは真空紫外域に属し、 これらのビームは、 空気 を透過しない。 これは、 空気中に含まれる酸素分子 ·水分子 ·二酸化炭素分子等 の物質 (以下、 吸光物質と称する) によってビームのエネルギが吸収されるため である。
真空紫外域の露光光を用いた露光装置において、 被露光基板上に露光光を十分 な照度で到達させるには、 露光光の光路上の空間から吸光物質を低減もしくは排 除する必要がある。 そのため、 露光装置では、 光路上の空間を筐体で囲い、 その 筐体内に露光光を透過する透過性のガスを供給している。 この場合、 例えば全光 路長を 1 0 0 O mmとすると、 光路上の空間内の吸光物質の濃度は、 1 p p m程 度以下が実用的とされている。
しかしながら、 露光装置では、 基板が頻繁に交換されることから、 光路上の空 間の内、 投影光学系と基板との間の空間の吸光物質を排除するのに困難が伴う。 例えば、 この空間を筐体で囲うには、 基板交換用の機構も含めて囲えるような大 型の筐体を設置する構成が考えられる。 しかしこの構成では、 筐体の大型に伴つ て筐体内に供給するガスの消費量が多くなつてしまいコスト的な負担が大きくな る。
そのため、 露光装置では、 投影光学系と基板との間に局所的なガス雰囲気を形 成する雰囲気形成機構を配置し、 光路上の空間から吸光物質を排除する技術が考 えられている。 この構成では、 雰囲気形成機構は、 投影光学系と基板との間に、 基板に対して数 mm程度のクリアランスが設けられた状態で配置される (特開 2 0 0 1 - 2 1 0 5 8 7号公報参照)。
このような露光装置において、基板を載置するためのステージと投影光学系は、 各々異なる支持台によって支持されている。 このようなステージ側の支持台と投 影光学系側の支持台とには、 床面からの振動を抑制するためのァクティブ除震装 置が各々設けられており、 これらのァクティブ除震装置の独立した駆動によって ステージと投影光学系との間隔を所定の状態に維持している。 このアクティブ除 振装置に何らかのトラブルが発生し、 投影光学系とステージとが互いに接近する 動きをした場合、 投影光学系と基板との間に雰囲気形成機構が配置されていなけ れば、 その移動量は、 投影光学系と基板との問の間隔に比べて十分に小さいため 特に重大な問題が発生する可能性が低かった。 しかしながら、 基板と投影光学系 との間に上述のような雰囲気形成機構が配置されると、 基板と雰囲気形成機構と のクリアランスが上述した移動量よりも小さくなつてしまう。 そして、 ァクティ ブ除振装置に何らかのトラブルが発生し、 投影光学系とステージとが互いに接近 すると、 ステージもしくは基板と、 雰囲気形成機構とが接触する可能性がある。 このようにステージもしくは基板と、 雰囲気形成機構とが接触すると、 この接触 に起因する力が雰囲気形成機構を介して投影光学系に伝達され、 投影光学系の結 像性能を変化させてしまう。 発明の開示
本発明は、 上述する問題点に鑑みてなされたもので、 ステージもしくは基板と 雰囲気形成機構とが接触することに起因する力が投影光学系に伝達されることに よって生じる投影光学系の結像性能変化を防止する'ことを目的とする。
上記目的を達成するために、 本願発明の第 1の態様は、 ステージ (4 5 ) に保 持された基板 (W) にマスク (R) の像を投影する投影光学系 (P L ) を有し、 この投影光学系と上記ステージとの間に特定流体雰囲気を形成するための雰囲気 形成機構を備える露光装置において、 上記雰囲気形成機構は、 上記ステージもし くは上記基板と接触したことに起因する力をやわらげ、 この力が上記投影光学系 に伝達するのを抑制する緩衝部を有するという構成を採用する。
このような本発明に係る露光装置によれば、 雰囲気形成機構がステージもしく は基板と接触した場合であっても、 その接触による力が投影光学系に伝達される ことが緩衝部によつて抑制される。
本願発明の第 2の態様は、 上記緩衝部 (7 1 a, 7 1 b ) は、 伸縮することに よつて上記雰囲気形成機構の上記投影光学系側と上記ステージ側とを相対的に接 近させる伸縮機構を有するという構成を採用する。
本願発明の第 3の態様は、 第 2の態様の露光装置において、 前記雰囲気形成機 構は、 前記特定流体雰囲気を形成する雰囲気形成部を有し、
前記緩衝部は、 前記雰囲気形成部と、 前記投影光学系を保持する鏡筒との間を 接続する可撓性部材をさらに備えるという構成を静養する。
本願発明の第 4の態様は、 第 2の態様の露光装置において、 前記雰囲気形成機 構は、 前記特定流体雰囲気を形成する雰囲気形成部と、 該雰囲気形成都を支持台 に支持する支持部とを有し、前記支持部が前記伸縮機構を兼ねる構成を採用する。 本願発明の第 5の態様は、 第 4の態様の露光装置において、 前記支持部は、 前記 支持台に取り付けられる一端部を備える第 1支持部と、 前記第 1支持部の他端部 に係合する一端部及び前記雰囲気形成部に取り付けられる他端部を備える第 2支 持部とを有し、 前記雰囲気形成都と、 前記ステージもしくは前記基板とが接触し た際に、 前記第 1支持部の他端部と前記第 2支持部の一端部との係合が解除する 構成を採用する。
本願発明の第 6の態様は、 第 5の態様の露光装置において、 前記第 1支持部の 他端部は、 前記投影光学系から離れる方向に形成された第 1フランジ部を有し、 前記第 2支持部の一端部は、 前記投影光学系に向かって形成された第 2フランジ 部を有し、 前記第 1支持部と前記第 2支持部とは、 前記第 2フランジ部が前記第 1フランジ部に蔵置することによって係合する構成を採用する。
本願発明の第 7の態様は、 第 2の態様の露光装置において、 前記雰囲気形成機 構は、 前記特定流体雰囲気を形成する雰囲気形成部を有し、 前記伸縮機構は、 一 端部が前記支持合に取り付けられ、 他端部が前記雰囲気形成部に取り付けられる 紐状部材を有する構成を採用する。
本願発明の第 8の態様は、 上記緩衝部 (1 2 0 , 1 2 1 , 7 2 ) は、 形状変化 することによつて上記雰囲気形成機構の上記投影光学系側と上記ステージ側とを 相対的に接近させる形状変化部を有するという構成を採用する。
本願発明の第 9の態様は、 上記形状変化部には、 弾性変形部材 (1 2 0 ) が用 いられるという構成を採用する。
本願発明の第 1 0の態様は上記形状変化部には、 塑性変形部材 (1 2 1 ) が用 いられるという構成を採用する。
本願発明の第 1 1の態様は、 第 1の態様の露光装置において、 前記雰囲気形成 機構は、 前記特定流体雰囲気を形成する雰囲気形成部を有し、 前記緩衝都は、 前 記雰囲気形成部の一部に設けられる構成を採用する。
本願発明の第 1 2の態様は、 第 1 1の態様の露光装置において、 前記雰囲気形 成機構は、 前記緩衝部を介して、 前記雰囲気形成部を支持する構成を採用する。 本願発明の第 1 3の態様は、第 1 1の態様の露光装置において、前記緩衝部は、 前記雰囲気形成部のうち、 前記前記ステージもしくは前記基板側の一部に設けら れる構成を採用する。
本願発明の第 1 4の態様は、第 1 3の態様の露光装置において、前記緩衝部は、 塑性変形部材又は弾性変形部材で形成される構成を採用する。
本願発明の第 1 5の態様は、 第 1の態様の露光装置において、 前記雰囲気形成 機構は、 前記特定流体雰囲気を形成する雰囲気形成部を有し、 前記緩衝部は、 前 記雰囲気形成部の少なくとも一部を形成し、 かつ脆性材料で構成される攻勢を採 用する。
本願発明の第 1 6の態様は、 上記雰囲気形成部と上記投影光学系との間には、 上記ステージもしくは上記基板と上記雰囲気形成機構とが接触した際に上記雰囲 気形成部が移動する距離以上のクリアランス (d ) が設けられているという構成 を採用する。
次に、 本願発明の第 1 7の態様は、 本願発明における露光装置を用いて、 上記 マスク上に形成されたデバイスパターンを上記基板上に転写する工程を含むとい う構成を採用する。 図面の簡単な説钥
図 1は、 本発明を適用した露光装置 1 0の概略構成を示す図である。
図 2は、 露光装置 1 0における投影光学系 P L及ぴウェハステージ 4 6の支持 構造を説明するための模式図である。
図 3は、 第 1実施形態に係る露光装置 1 0のワーキング 'ディスタンス部 WD 付近を拡大した様子を示した図である。
図 4は、 第 1実施形態に係る露光装置 1 0のワーキング ·ディスタンス部 WD 付近を拡大した様子を示した図である。
図 5は、 第 1実施形態に係る露光装置 1 0のワーキング ·デイスタンス部 WD 付近を拡大した様子を示した図である。
図 6は、 第 1実施形態に係る露光装置 1 0においてウェハ Wと雰囲気形成部 7 0とが接触した際の様子を示した図である。
図 7は、 第 2実施形態に係る露光装置 1 0のワーキング.ディスタンス部 WD 付近を拡大した様子を示した図である。 図 8は、 第 2実施形態に係る露光装置 1 0においてウェハ Wと雰囲気形成部 7 0とが接触した際の様子を示した図である。
図 9は、 第 3実施形態に係る露光装置 1 0のワーキング ·ディスタンス部 WD 付近を拡大した様子を示した図である。
図 1 0は、 第 3実施形態に係る露光装置 1 0においてウェハ Wと雰囲気形成部 7 0とが接触した際の様子を示した図である。
図 1 1は、 第 4実施形態に係る露光装置 1 0のワーキング 'ディスタンス部 W D付近を拡大した様子を示した図である。
図 1 2は、 第 5実施形態に係る露光装置 1 0のワーキング ·ディスタンス部 W D付近を拡大した様子を示した図である。
図 1 3は、 第 5実施形態に係る露光装置 1 0においてウェハ Wと雰囲気形成部 7 0とが接触した際の様子を示した図である。
図 1 4は液浸露光装置の雰囲気形成部 1 0 0の構成を示した図である。
図 1 5は、 デバイスの製造工程の一例を示すフローチャート図である。 発明を実施するための最良の形態
以下、 図面を参照して、 本発明に係る露光装置及びデバイス製造方法の一実施 形態について説明する。 なお、 以下の実施形態は、 露光用のエネルギビームとし て真空紫外光を用いるステップ.アンド.スキャン方式の投影露光装置に本発明 を適用したものである。
(第 1実施形態) .
図 1は、 本発明を適用した露光装置 1 0の概略構成を示す図である。 この図に おいて、 露光装置 1 0の機構部は、 照明光学系 2 1、 レチクル操作部 2 2、 投影 光学系 P L及ぴウェハ操作部 2 3に大きく分かれている。 照明光学系 2 1、 レチ クル操作部 2 2及び投影光学系 P Lは、 各々照明系チャンバ 2 5、 レチクル室 2 6及び鏡筒 2 7の内部に、 外気 (ここでは後述の環境制御用チャンバ内の気体) 力 ら隔離されかつ気密性が高められた状態で収納されている。 また、 露光装置 1 0は全体として、 内部の期待の温度が所定の目標範囲内に制御された環境制御用
(不図示) の内部に収納されている。 露光光源 2 0は、 本実施形態において真空紫外域の波長 1 5 7 n mのパルスレ 一ザ光を発生する F 2レーザ光源が使用されている。 露光光源 2 0の射出端は、 照明系チャンバ 2 5の下部に取り付けられている。 露光時に露光光源 2 0から照 明系チャンバ 2 5内に射出された露光光 I L (エネルギビーム) は、 ミラー 3 0 で上方に反射され、振動等による光軸ずれを合わせるための自動追尾部(不図示) 及び照明系の断面形状の整形と光量制御とを行うビーム整形光学系 3 1を介して オプティカル 'インテグレータ (ホモジナイザ) としてのフライアイレンズ (ま たはロッドレンズ) 3 2に入射する。 フライアイレンズ 3 2の射出面には開口絞 り (不図示) が配置され、 フライアイレンズ 3 2及び開口絞りを通過した露光光 I Lは、 ミラー 3 4によってほぼ水平方向に偏向されてリレーレンズ 3 5を介し て視野絞り (レチクルブラインド) 3 6に達する。
視野絞り 3 6の配置面は露光対象のレチクル Rのパターン面と光学的にほぼ共 役であり、 視野絞り 3 6は、 そのパターン面での細長い長方形の照明領域の形状 を規定する固定ブラインドと、 走査露光の開始時及ぴ終了時に不要な部分への露 光を防止するためにその照明領域を閉じる可動ブラインドとを備えている。 視野 絞り 3 6を通過した露光光 I Lは、 リ レーレンズ 3 7、 ミラー 3 8及び照明系チ ヤンバ 2 5の先端部に固定されたコンデンサレンズ系 3 9を介してレチクル の パターン面上の長方形 (スリ ッ ト上) の照明領域を均一な照度分布で照明する。 露光光源 2 0〜コンデンサレンズ系 3 9により照明光学系 2 1が構成され、 照明 光学系 2 1内の露光光 I Lの光路、 すなわち露光光源 2 0からコンデンサレンズ 系 3 9までの光路が照明系チャンバ 2 5によって密閉されている。
照明光学系 2 1からの露光光のもとで、 レチクル Rの照明領域内のパターンの 像が投影光学系 P Lを介して投影倍率 β (β は例えば 1 / 4 , 1 Z 5等) で、 感 光材 (フォトレジスト) が塗布されたウェハ W (基板) 上に投影される。 ウェハ Wは例えば半導体 (シリコン等) または S O I (silicon on insulator) 等の円板 状の基板である。
レチクル操作部 2 2において、 レチクル Rはレチクルステージ 4 0上に保持さ れている。 レチクルステージ 4 0は不図示のレチクルベース上で後述のゥ土ハス テージと同期して Y方向にレチクル Rを微小駆動する。 レチクルステージ 4 0の 位置及び回転角は不図示のレーザ干渉計によつて高精度に計測され、 この計測値 及び装置全体の動作を統括制御するコンピュータよりなる主制御系 2 からの制 御信号に基づいてレチクルステージ 4 0が駆動される。 レチクルステージ 4 0及 び不図示の露光光 I Lの光路、 すなわちコンデンサレンズ系 3 9から投影光学系 P Lまでの光路がレチクル室 2 6によって密閉されている。
投影光学系 P Lを構成する複数の光学素子が鏡筒 2 7内に収納されており、'投 影光学系 P Lのレチクル側の光学素子からゥェハ側の光学素子までの光路が鏡筒 2 7内に密閉されている。
ここで、 本実施形態のように露光光 I Lが F 2レーザ光である場合には、 透過 率の良好な光学硝材は、 蛍石 (C a F 2の結晶)、 フッ素や水素等をドープした石 英ガラス及びフッ化マグネシウム (M g F 2) 等に限られる。 そこで、 これら透 過率の良好な光学硝材を用いて屈折光学系を構成してもよい。 また、 高透過率の 光学材料の種類が限定されるため、 所望の結像特性 (色収差特性等) を得ること が困難である場合には、 屈折光学素子と反射鏡とを組み合わせた反射屈折光学系 を採用してもよい。
ウェハ操作部 2 3において、 ウェハ Wはウェハホルダ 4 5上の载置面に吸着保 持され、 ウェハホルダ 4 5はウェハステージ 4 6上に固定されている。 ウェハス テージ 4 6は後述のウェハ定盤上で上述したレチクルステージと同期して Y方向 にウェハ Wを連続移動すると共に、 X方向及び Y方向にウェハ Wをステップ移動 する。 また、 ウェハステージ 4 6は、 不図示のオートフォーカスセンサによって 計測されるウェハ W表面の光軸 A X方向の位置 (フォーカス位置) に関する情報 に基づいてオートフォーカス方式でウェハ Wの表面を投影光学系 P Lの像面に合 わせる。ウェハステージ 4 6の X方向、 Y方向の位置及び X軸の回りの回転角(ピ ツチング量)、 Y軸の回りの回転角 (ローリング量)、 Z軸の回りの回転角 (ョー イング量) はレーザ干渉計 4 7によつて高精度に計測され、 この計測値及び主制 御系 2 4からの制御信号に基づいてステージ駆動系 4 8を介してウェハステージ 4 6が騍動される。 なお、 ウェハステージ 4 6 (ウェハホルダ 4 5 ) に取付けら れ、 レーザ干渉計 4 7からのレーザビーム (測長ビーム) を反射する反射鏡 4 7 aは、 別々の角柱状のミラーからなる構成、 あるいは一体型の L字型のミラーか らなる構成、 あるいはウェハステージ 4 6 (ウェハホルダ 4 5 ) の側面を鏡面加 ェしてミラーとして用いる構成等、 様々な構成が適用される。 また、 ウェハホル ダ 4 5、 ウェハステージ 4 6及びウェハ定盤等によってウェハ操作部 2 3が構成 され、 ウェハ操作部 2 3の側方に搬送系としてのウェハローダ等 (不図示) が配 置されている。
ここで、 図≥に示す模式図を参照して投影光学系 P L及びウェハステージ 4 6 の支持構造について概略説明する。 投影光学系 P Lの鏡筒 2 7の外周には、 この 鏡筒 2 7と一体化されたフランジ部 1 0 1が設けられている。 そして、 鏡筒 2 7 は、 第 1支持台 1 0 2にアクティブ除震装置 1 0 3を介してほぼ水平に支持され た鏡筒定盤 1 0 4に、 上方あるいは側方から挿入され、 かつ、 フランジ部 1 0 1 が係合することによって支持される。なお、鏡筒定盤 1 0 4は鐃物で構成される。 アクティブ除震装置 1 0 3は、鏡筒定盤 1 0 4の各コーナ部に設置され(なお、 紙面奥側のァクティブ除震装置については不図示)、内圧が調整可能なエアマゥン ト 1 0 5とボイスコイルモータ 1 0 6と 9とを備える。 エアマウント 1 0 5ボイ スコイルモータ 1 0 6とは第 1支持台 1 0 2上に直列に配置されている。
本実施形態に係る露光装置 1 0は、 これらのアクティブ除震装置 1 0 3によつ て、 第 1支持台 1 0 2を介して外部から伝達される振動が投影光学系 P Lに伝達 されることをマイクロ Gレベルで絶縁する。
ウェハステージ 4 6の下方には、 ウェハ定盤 1 0 7が配設されている。 このゥ ェハ定盤 1 0 7は、 上記第 1支持台 1 0 2とは別体として形成された第 2支持台 1 0 8の上方にアクティブ除震装置 1 0 9を介してほぼ水平に支持されている。 アクティブ除震装置 1 0 9は、ウェハ定盤 1 0 7の各コーナ部に配置され(なお、 紙面奥側のアクティブ除震装置については不図示)、エアマウント 1 1 0とボイス コイルモータ 1 1 1が第 2支持台 1 0 8上に並列に配置された構成を有している。 そして、 ウェハステージ 4 6の底面には非接触ベアリングであるエアベアリング 1 1 2が複数設置されており、 これらのエアベアリング 1 1 2によってウェハス テージ 4 6がウェハ定盤 1 0 7の上方に、 例えば数ミクロン程度のクリアランス を介して浮上支持されている。 なお、 本実施形態に係る露光装置 1 0は、 ァクテ イブ除震装置 1 0 9によって、 第 2支持台 1 0 8を介して外部から伝達される振 動がウェハステージ 46に伝達されることをマイクロ Gレベルで絶縁している。 図 1に戻り、 本実施形態の露光光 I Lは波長 1 57 n mの紫外光であるため、 その露光光 I Lに対する吸光物質としては、 酸素 (O2)、 水 (水蒸気: H2〇)、 —酸化炭素 (CO)、 炭酸ガス (二酸化炭素: co2)、 有機物及びハロゲン化物 等がある。 一方、 露光光 I Lが透過する気体(エネルギ吸収がほとんど無い物質) としては、 窒素ガス (N2)、 水素 (H2)、 ヘリウム (He)、 ネオン (Ne;)、 ァ ルゴン (A r )、 クリプトン (Kr)、 キセノン (Xe)、 ラドン (Rn) よりなる 希ガスがある。 以降、 この窒素ガス及び希ガスをまとめて 「透過性ガス」 と呼ぶ ことにする。
本実施形態の露光装置 10は、光路上の空間、すなわち、照明系チャンパ 25、 レチクル室 26及ぴ鏡筒 27の各内部に真空紫外域のビームに対してエネルギ吸 収の少ない上記透過性ガスを供給して満たし、 その気圧を大気圧と同程度もしく はより高く (例えば、 大気圧に対して 0. 001〜10%の範囲内で高く) する ガス供給 ·排気系 50を備えている。 ガス供給 ·排気系 50は、 排気用の真空ポ ンプ 51A, 5 1 B, 51 C、 透過性ガスが高純度の状態で圧縮または液化され て貯蔵されたボンべ 53及び開閉制御されるバルブ 52 A, 52 B, 52 C等を 含む。 なお、 これらの数及び設置場所については図示したものに限定されない。 窒素ガスは波長が 150 nm程度以下の光に対しては吸光物質として作用し、 へ リゥムガスは波長 100 nm程度まで透過性ガスとして使用することができる。 また、 ヘリウムガスは熱伝導率が窒素ガスの約 6倍であり、 気圧変化に対する屈 折率の変動量が窒素ガスの約 1 / 8であるため、 特に高透過率と光学系の結像特 性の安定性や冷却性とで優れている。 なお、 ヘリウムガスは高価であるため、 露 光光 I Lの波長が F2レーザ光のように 1 5 O nm以上であれば、 運転コストを 低減させるためにその透過性ガスとして窒素ガスを使用しても良い。
また、 ワーキング ·ディスタンス部 WD、すなわち投影光学系 PLの先端部(射 出端) とウェハ Wとの間の空間には、 雰囲気形成機構によって、 特定流体の雰囲 気が形成している。 なお、 ここでは特定流体として、 上記透過性ガスを用いるも のとして説明する。 雰囲気形成機構は、 ワーキング 'ディスタンス部 WDに配置 される雰囲気形成部 70、 一端部が流体供給 ·排気系 50のボンべ 53に接続さ W
11
れ、 他端部が雰囲気形成部 7 0に接続されるガス供給配管 6 2、 このガス供給配 管 6 2の途中部位に配設されるパルプ 6 3、 一端部が排気用の真空ポンプ 6 0に 接続され、 他端部が雰囲気形成部 7 0に接続される第 1排気配管 6 1及び第 2排 気配管 6 4を備える。 なお、 本実施形態では、 雰囲気形成部 7 0は、 投影光学系 P Lを保持する鏡筒 2 7に後述する支持部 7 1によって支持される。 また、 本実 施形態では、 鎖筒 2 7力 S、 雰囲気形成部 7 0を支持する支持台として機能する。 図 3〜図 5にワーキング ·ディスタンス部 WD付近を拡大した様子を示す。 な お、 図 3はワーキング .ディスタンス部 WD付近を図 1における X方向から見た 様子を示す図であり、 図 4はワーキング ·ディスタンス部 WD付近を Y方向から 見た様子を示す図であり、 図 5はワーキング ·ディスタンス部 WD近傍を上方か ら見た様子を示す囪である。
図 3〜図 5に示すように、 ワーキング ·ディスタンス部 WDにおいて、 雰囲気 形成部 7 0は、 露光光 I Lの光路を囲うように配設されている。 この雰囲気形成 部 7 0には、 ガス供給配管 6 2の他端部が接続されるガス供給口 6 5と第 1排気 管 6 1の他端部が接続される第 1ガス吸気口 6 6とが配設されている。 これらの ガス供給口 6 5と第 1ガス吸気口 6 6とは、 ワーキング .ディスタンス部 WDに おける透過性ガスの流れを一様とするように各々ガス供給配管 6 2と第 1排気管 6 1との管径よりも大きな開口端を有しており、 各々によって投影光学系 P Lの 光軸 A Xを挟み込むようにかつ互いに対向して配設されている。
さらに雰囲気形成部 7 0は、 露光光 I Lの光路を囲み、 かつガス供給口 6 5及 ぴ第 1吸気口 6 6の外側に配置され、 第 2排気管 6 4の他端部が接続される第 2 吸気口 6 7を備える。 このように、 第 2吸気口 6 7がガス供給口 6 5及ぴ第 1吸 気口 6 6の外側において露光光 I Lの光路を囲うように形成されることによって、 ウェハ Wと雰囲気形成部 7 0との間に流出した透過性ガスはワーキング .デイス タンス部 WDの外部に漏出せずに吸気され、 さらにワーキング .ディスタンス部 WDの外部からワーキング ·ディスタンス部 WD内に新たに侵入しょうとする気 体では第 2吸気口 6 7より露光光 I Lの光路に到達する以前に吸気される。 この ため、 本実施形態に係る露光装置 1 0は、 露光光 I Lの光路を確実に透過性ガス 雰囲気とすることができると共に、 透過性ガスがワーキング ·ディスタンス部 W Dの外部に漏出することを防止することができる。
雰囲気形成部' 7 0の上部と投影光学系 P Lの先端部との間には、 上述したァク ティブ除震装置の各々の独立駆動に起因して、 ウェハステージ 4 6 (ウェハホル ダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触した際に雰囲気形成部 Ί 0が移動する距離以上のクリアランス dが設けられている。 なお、 ウェハステー ジ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とは、 露光装 置 1 0の通常稼動において接触することはないが、 例えば外部から露光装置 1 0 に大きな振動が加わった場合等のトラブル時に上述したアクティブ除震装置 1 0 3, 1 0 9が独立駆動することによって接触する場合がある。
本実施形態に係る露光装置 1 0には、 クリァランス dからの透過性ガスの漏出 を防止するためのフィルム状部材 6 8が投影光学系 P Lの光軸 A Xを囲うように 雰囲気形成部 7 0の上部と鏡筒 2 7の先端部との間に設置されている。 このブイ ルム状部材 6 8は、 透過性ガスが透過しないような可撓性を有する材料から形成 されており、 例えばェバール (商品名) 等からなる。 フィルム状部材 6 8は、 可 撓性を有しているため、 雰囲気形成部 7 0を介して投影光学系 P Lに振動の伝達 を抑制することができる。なお、上記フィルム状部材 6 8は、本発明に係る緩衝部 機構の一部を構成するものである。
支持部 7 1は、 雰囲気形成部 7 0を鏡筒 2 7に支持するためのものであり、 鏡 筒 2 7と雰囲気形成部 7 0との間に複数配置されている。支持部 7 1は、一端部が 鏡筒 2 7に固定される第 1支持部 7 1 aと、 一端部が雰囲気形成部 7 0に固定さ れる第 2支持部 7 1 bとから構成されている。'第 1支持部 7 1 aの他端部には投 影光学系 P Lから離れる方向に向かって突出する第 1フランジ部 7 1 a 1が形成 されており、 第 2支持部 7 1 bの他端部には投影光学系 P Lの光軸 A Xに向かつ て突出し上記第 1フランジ部 7 1 a 1に上方から係合する第 2フランジ部 7 1 b 1が形成されている。 そして、第 1フランジ部 7 l a lに第 2フランジ部 7 1 b 1 が载置されることによって、 第 1フランジ部 7 l a lと第 2フランジ部 7 1 b 1と が係合し、雰囲気形成部 7 0が鏡筒 2 7に支持される。なお、本実施形態に係る露 光装置 1 0では、 支持部 7 1が本発明に係る緩衝部の一部及び伸縮機構の機能を 有している。本実施形態では、フィルム状部材 6 8及び支持部 7 1とが相互に作用 することによって、 本願発明に係る緩衝部として機能する。
したがって、 図 6に示すように、 支持部 7 0は、 ウェハステージ 4 6 (ウェハ ホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触して雰囲気形成部 7 0が図 1における Z方向に移動した場合に、 第 1フランジ部 7 1 a 1と第 2フラ ンジ部 7 1 b 1との係合が解除することによって Z方向に伸縮する。 なお、 第 1 フランジ部 7 1 a lと第 2フランジ部 7 1 b 1との間にダンパーを配置し、 このダ ンパーを Z方向に伸縮させることができる。本実施形態に係る露光装置 1 0は、こ の支持部 7 1及ぴフィルム状部材 6 8の伸縮によって、 ウェハステージ 4 6 (ゥ ェハホルダ 4 5 ) もしくはウェハ W (本発明に係る露光装置のステージ側) と雰 囲気形成部 7 0 (本発明に係る投影光学系側) とを相対的に接近させ、 ウェハス テージ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触 したことに起因する力が投影光学系 P Lに伝達されることを抑制する。このため、 本実施形態に係る露光装置 1 0においては、 ウェハステージ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触したことに起因する力が支 持部 7 1及びフィルム状部材 6 8が伸縮することによって緩衝されるので、 投影 光学系 P Lの結像性能変化を防止することが可能となる。 また、 上述のようにゥ ェハステージ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0と が接触した際には、 雰囲気形成部 7 0の重量がウェハステージ 4 6に加わるが、 雰囲気形成部 7 0の重量はさほど大きいものではないためにウェハステージ 4 6 が損傷することはない。
なお、 第 1支持部 7 1 aは、 上述のように一端部が鏡筒 2 7に固定されていな くとも良く、 例えば鏡筒定盤 1 0 4に固定されていても良い。. すなわち、 鏡筒定 盤 1 0 4が本発明の支持台として機能する。
また、 上記実施形態において複数の支持部 7 1によって雰囲気形成部 7 0を支 持したが、 これに限定されるものではなく、 例えば露光光 I Lの光路を囲む円筒 形状の単一の支持部によつて雰囲気形成部 7 0を支持しても良い。
このような本実施形態に係る露光装置 1 0は、 通常稼動時には、 透過性ガス雰 囲気に保たれた光路を介して、 レチクル Rのパターン像をウェハ W上の各ショッ ト領域に投影している。 (第 2実施形態)
次に、 図 7及ぴ図 8を参照して本発明に係る露光装置の第 2実施形態について 説明する。 なお、 本第 2実施形態においては、 雰囲気形成部 7 0の一部に形状変 化部 1 2 0を設けた形態について説明する。 また、 本第 2実施形態において、 上 記第 1実施形態と同一の機能を有するものは同一の符号を付し、 その説明を省略 または簡略化する。
図 7は、 ワーキング ·ディスタンス部 WD付近を上記第 1実施形態で説明した 図 1における X方向から見た様子を示す図である。 この図 7において、 形状変化 部 1 2 0は、 透過性ガスを透過しない弾性体部材 (例えばゴムや弾性プラスチッ ク等) からなり、 雰囲気形成部 7 0の上部、 すなわちガス供給口 6 5の上部及ぴ 第 1吸気口 6 6の上部の少なくとも一部を構成している。
本第 2実施形態に係る露光装置 1 0は、 形状変化部 1 2 0が上述した第 1実施 形態に係る露光装置 1 0が備えていた伸縮機構及びフィルム状部材 6 8を兼ねて いる。 なお、 本第 2実施形態においては、 形状変化部 1 2 0が本発明に係る緩衝 部及び支持部の機能を有している。
このように構成された本第 2実施形態に係る露光装置 1 0において、 ウェハス テージ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触 して雰囲気形成部 7 0が図 1における Z方向に移動した場合には、 図 8に示すよ うに、 形状変化部 1 2 0自体が形状変化する。 これによつて、 ウェハステージ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触したこと に起因する力が緩衝されるので、 本第 2実施形態に係る露光装置 1 0は、 上記第 1実施形態に係る露光装置 1 0と同様の効果を奏することができる。
(第 3実施形態)
次に、 図 9及び図 1 0を参照して本発明に係る露光装置の第 3実施形態につい て説明する。 図 9は、 本第 3実施形態に係る露光装置におけるワーキング ·ディ スタンス部 WD付近を上記第 1実施形態で説明した図 1における X方向から見た 様子を示す図である。 この図 9において形状変化部 1 2 1は塑性変形部材 (例え ば、 ガラスや金属等) からなつており、 本第 3実施形態に係る露光装置 1 0は、 他の構成は上記第 2実施形態と同様である。 このように構成された本第 3実施形態に係る露光装置 1 0において、 ウェハス テージ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触 して雰囲気形成部 7 0が図 1における Z方向に移動した場合には、 形状変化部 1 2 1が塑性変形する。 例えば、 形状変化部 1 2 1がガラスからなる場合には、 図 1 0に示すように、 形状変化部 1 2 1が塑性変形することによって破壊される。 これによつて、 ウェハステージ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰 囲気形成部 7 0とが接触したことに起因する力が緩衝されるので、 本第 3実施形 態に係る露光装置 1 0は、 上記第 1実施形態に係る露光装置 1 0と同様の効果を 奏することができる。 なお、 上述のように形状変化部 1 2 1が破壊された場合に は、 雰囲気形成部 7 0を交換する必要があるが、 雰囲気形成部 7 0は投影光学系 P Lと比較して安価に製造することができる。 このため、 投影光学系 P Lを交換 する場合と比較して容易に露光装置を再稼動させることが可能である。
なお、 形状変化部 1 2 1としてテフロン (登録商標) 等からなる薄い金属板を 用いても良く、 この場合には、 形状変化部 1 2 1が例えば折れ曲がることによつ てウェハステージ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触したことに起因する力を緩衝する。
なお、 形状変化部 1 2 1を、 塑性変形せずに破壊する脆性材料で形成してもよ い。 この脆性材料としては、 アルミナ、 ジルコニァ、 チッカアルミなどのセラミ ックス等を用いることができる。
(第 4実施形態)
次に、 図 1 1を参照して、 本発明に係る露光装置の第 4実施形態について説明 する。 図 1 1は、 本第 4実施形態に係る露光装置におけるワーキング ·ディスタ ンス部 WD付近を上記第 1実施形態で説明した図 1における X方向から見た様子 を示す図である。 この図に示すように、 本第 4実施形態に係る露光装置 1 0は、 上記第 2及び第 3実施形態に係る露光装置 1 0において説明した形状変化部 1 2 0 ( 1 2 1 ) が雰囲気形成部 7 0の下部の一部、 すなわちガス供給口 6 5の下部 及び第 1吸気口 6 6の下部の少なくとも一部に備えられている。 なお、 本第 4実 施形態において、 雰囲気形成部 7 0の上部が直接鏡筒 2 7に固定されることによ つて雰囲気形成部 7 0を支持する構造を有しており、 雰囲気形成部 7 0の上部が 本発明に係る支持部の機能を有している。 また、 形状変化部 1 2 0 ( 1 2 1 ) が 本発明に係る緩衝部の機能を有している。 また、 本第 4実施形態に係る露光装置 の上述以外の構成は、 上記第 1実施形態と同様である。 +
このように構成された本第 4実施形態に係る露光装置 1 0において、 ウェハス テージ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触 して雰囲気形成部 7 0が図 1における Z方向に移動した場合には、 形状変化部 1 2 1が弾性変形もしくは塑性変形する。 これによつて、 ウェハステージ 4 6 (ゥ ェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触したことに起因 する力が緩衝されるので、 本第 4実施形態に係る露光装置 1 0は、 上記第 1実施 形態に係る露光装置 1 0と同様の効果を奏することができる。
(第 5実施形態)
次に図 1 2及び図 1 3を参照して本発明に係る露光装置の第 5実施形態につい て説明する。 なお、 本第 5実施形態においては、 本発明に係る露光装置が雰囲気 形成部 7 0とは別体に形状可変な支持部 7 2を有している形態について説明する。 図 1 2は、 本第 5実施形態に係る露光装置のワーキング ·ディスタンス部 WD 付近を上記第 1実施形態で説明した図 1における X方向から見た様子を示す図で ある。 この図 1 2に示すように、 本第 5実施形態に係る露光装置は、 上記第 1実 施形態で説明した支持部 7 1の代わりに形状可変な支持部 7 2を有しており、 他 の構成は上記第 1実施形態と同様である。 この形状可変な支持部 7 2としては、 例えばチェーン等の紐状部材を用いることができる。
このように構成された本第 5実施形態に係る露光装置 1 0において、 ウェハス テージ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触 して雰囲気形成部 7 0が図 1における Z方向に移動した場合には、 支持部 7 2が 図 1 3に示すように形状変化する。 これによつて、 ウェハステージ 4 6 (ウェハ ホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触したことに起因する 力が緩衝されるので、 本第 5実施形態に係る露光装置 1 0は、 上記第 1実施形態 に係る露光装置 1 0と同様の効果を奏することができる。
以上、 添付図面を参照しながら本発明に係る露光装置の実施形態について説明 したが、 本発明は上述の実施形態に限定されないことは言うまでもない。 当業者 であれば、 特許請求の範囲に記載された技術思想の範囲内において、 各種の変更 '例または修正例に想到し得ることは明らかであり、 それらについても当然に本発 明の技術的範囲に属するものと了解される。
なお、 上記実施形態において、 ウェハステージ 4 6 (ウェハホルダ 4 5 ) もし くはウェハ Wと雰囲気形成部 7 0とが垂直に接触した場合を図示した。 しかしな がら、 ウェハステージ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成 部 7 0とが斜めに接触した場合であってもウェハステージ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触したことに起因する力は緩衝 される。
また、 上記実施形態に係る露光装置に、 ウェハステージ 4 6 (ウェハホルダ 4 5 ) もしくはウェハ Wと雰囲気形成部 7 0とが接触したことに起因する力が緩衝 されたことを検知するセンサを備えても良い。 また、 このセンサから得られる情 報に基づいて露光装置の稼動を一時的に停止する非常停止手段を備えても良い。 また、 上記実施形態に係る雰囲気形成部全てを第 2、 第 3、 第 4実施形態で説 明した形状変化部 1 2 0 ( 1 2 1 ) で構成しても良い。
また、 本発明に係る雰囲気形成機構を液浸露光装置に適用しても良い。
上述した形態では、 投影光学系 P Lの先端部とウェハ Wとの間の空間に特定流 体として、 透過性ガスを供給する構成について説明した。 しかしながら、 液浸露 光装置に適用する場合には、透過性ガスの代わりに液浸露光用の液体を供給する。 液浸露光用の液体を供給する場合には、 ガス供給配管 6 2の代わりに液体供給配 管を使用し、 また、 第 1排気配管 6 1及び第 2排気配管 6 4の代わりに第 1排水 配管及び第 2排水配管を使用する。
さらに、 本発明に係る雰囲気形成機構を液浸露光装置に適用した他の実施形態 を図 1 4を参照して説明する。 液浸露光装置では、 投影光学系 P Lを構成する先 端部の光学素子 2 Fは、 鏡筒 2 7より露出しており、 液浸領域 ARの液体 L Qが 接触する。 雰囲気形成部 1 5 0は、 不図示の液体供給機構に接続され、 ヮーキン グ ·ディスタンス部 WDに液体 L Qを供給する液体供給路 1 5 1と、 不図示の液 体回収機構に接続され、 ワーキング ·ディスタンス部 WDから液体 L Qを回収す る液体回収路 1 5 2とを備える。 液体供給路 1 5 1は、基板 W表面に対向するように配置された液体供給口 1 5 1 Aを備え、 また、 液体回収路 1 5 2は、 基板 W表面に対向するように配置された 液体 Θ«回収口 1 5 2 Αを備える。 液体供給口 1 5 1 Aは、 投影光学系 P Lの 投影領域 A Rを挾んだ X軸方向両側のそれぞれの位置に設けられており、 液体回 収ロ 1 5 2 Aは、一投影光学系 P Lの投影領域 A Rに対して液体供給口 1 5 1 Aの 外側で、 投影領域 A Rを囲うように設けられている。 このように構成された雰囲 気形成部 1 5 0により、 投影光学系 P Lとウェハ Wとの間には、 投影領域 A Rを 含む基板 W上の一部に、 投影領域 ARよりも大きく且つ基板 Wよりも小さい液体 雰囲気を形成することができる。 このように、 液体雰囲気を形成する雰囲気形成 部 1 5 0は、 第 1実施形態で説明したように、 支持部 7 1で支持したり、 また、 雰囲気形成部 1 5 0自身の一部を、 策 2、 第 3実施形成で説明したように、 形状 変化部 1 2 0、 1 2 1で構成してもよレ、。 また、 雰囲気形成部 1 5 0全体又は少 なくとも一部 (例えば、 ウェハステージ 4 6側) を鏡筒 2 7やウェハステージ 4 6 (ウェハホルダ 4 5 )を構成する材料よりも壌れ易い材質の脆性材料(例えば、 ガラスや、 アルミナ、 ジルコニァ、 チッカアルミなどのセラミックス等) で構成 し、 ウェハステージ 4 6 (ウェハホルダ 4 5 ) と雰囲気形成部 1◦ 0とが接触し たときに、 雰囲気形成部 1 0 0の一部が欠けるようにしても良い。
なお、 液浸露光装置に本発明を通用する場合、 国際公開第 2 0 0 4 / 0 1 9 1 2 8号に開示されているように、投影光学系を構成する光学素子のうち、像面(ゥ ェハ) 側の光学素子 (平行平面板) 及び物体面 (レチクル) 側の両方の光路空間 を液体で満たす投影光学系を採用することもできる。 また、 ウェハステージ 4 6 は、 特開平 11-135400に図示されているような計測用のステージを含む。
なお、 各実施形態において、 雰囲気形成部 7 0、 1 5 0を支持する支持台とし て、 鏡筒 2 7を例に説明したが、 この構成に限られるものではない。 例えば、 支 持台として、 鏡筒定盤 1 0 4を用いることもできる。 その際に、 透過ガスの供給 時又は吸気時に発生する雰囲気形成部 7 0自身の振動、 あるいは、 液体の供給時 又は回収時に死生する雰囲気形成部 1 5 0自身の振動が投影光学系 P Lに影響し ないように、振動を分離した状態で、鏡筒定盤 1 0 4に取り付けることかできる。 液浸露光装置において、 露光光として A r Fエキシマレーザ光 (波長 1 9 3 η m) を用いる場合には、 液浸露光用の液体 LQとして純水が供給される。 波長 1 93 nm程度の露光光に対して純水(水)の屈折率 nは、ほぼ 1. 44といわれ、 基板上では、 l/n、 すなわち約 134 nmに短波長化されて高い解像度が得ら れる。 純水は、 半導体製造工場等で容易に大量に入手できるとともに、 基板 (ゥ ェハ) 上のフォトレジストや光学素子 (レンズ) 等に対する悪影響がない利点が ある。 また、 純水は環境に対する悪影響がないとともに、 不純物の含有率が極め て低いため、 基板の表面、 及び投影光学系の先端面に設けられている光学素子の 表面を洗浄する作用も期待できる。
このように、露光光の光源として A r Fエキシマレーザ光を用いた場合、更に、 焦点深度は空気中に比べて約 n倍、 すなわち約 1. 44倍に拡大される。
また、 液体としては、 その他にも、 露光光に対する透過性があってできるだけ 屈折率が高く、 投影光学系や基板表面に塗布されているフォトレジストに対して 安定なものを用いることも可能である。
また、 露光光として F2レーザ光を用いる場合には、 液体 LQとしては F 2レー ザ光を透過可能な例えばフッ素系オイルや過フッ化ポリエーテル (PFPE) 等 のフッ素系の液体を用いれば良い。
また、 本発明に係る露光装置は、 走査露光型の投影露光装置のみならず、 一括 露光型 (ステッパー型) の投影露光装置等に適用可能である。 また、 投影光学系 の倍率は縮小倍率のみならず、 等倍や拡大であつても良い。
また、 本発明に係る露光装置のエネルギービームとして、 Ar Fエキシマレー ザ光 (波長 1 93 nm) を使用する場合や、 K r 2レーザ光 (波長 146 n m)、 Ar 2レーザ光 (波長 1 26 nm)、 Y AGレーザ光等の高調波または半導体レー ザの高調波等の波長が 200 nn!〜 100 n m程度の真空紫外光にも適用できる。 また、 エキシマレーザや F 2レーザ光等の代わりに、 DF B (Distributed feedback:分布帰還型) 半導体レーザまたはファイバーレーザから発振される赤 外域または可視域の単一波長レーザを、例えばエルビウム (E r) (またはェルビ ゥムとイッテルビウム (Yb) との両方) がドープされたファイバーアンプで増 幅し、 非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。 また、露光装置の用途としては半導体製造用の露光装置に限定されることなく、 例えば角型のガラスプレートに液晶表示素子パタ一ンを露光する液晶用の露光装 置や、 薄膜磁気へッドを製造するための露光装置にも広く適用できる。
以上のような本実施形態の露光装置は、 本願特許請求の範囲に挙げられた各構 成要素を含む各種サブシステムを、 所定の機械的精度、 電気的精度、 光学的精度 を保つように、 組立てることで製造される。 これら各種精度を確保するために、 この組立ての前後には、各種光学系については電気的精度を'達成するための調整、 各種機械系については機械的精度を達成するための調整、 各種電気系については 電気的精度を達成するための調整が行われる。 各種サブシステムからの露光装置 への組立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、 気圧回路の配線接続等が含まれる。 この各種サブシステムから露光装置への組立 て工程の前、 各サブシステム個々の組立て工程があることは言うまでもない。 各 種サブシステムの露光装置への組立てが終了したら、 総合調整が行われ、 露光装 置全体としての各種精度が確保される。 なお、 露光装置の製造は温度及ぴクリー ン度等が管理されたクリーンルームで行われることが望ましい。
そして、 半導体素子等のデバイスは、 図 1 5に示すように、 デバイスの機能 ' 性能設計を行うステップ 2 0 1、 この設計ステップに基づいてマスク (レチクル) を作成するステップ 2 0 2、シリコン材料からウェハを製造するステップ 2 0 3、 本発明に係る露光装置によってレチクルのパターンをウェハに露光するウェハ処 理ステップ 2 0 4、 デバイス組立てステップ (ダイシング工程、 ボンディングェ 程、 パッケージ工程を含む) 2 0 5、 検查ステップ 2 0 6等を経て製造される。 産業上の利用の可能性
本発明によれば、 雰囲気形成機構がステージもしくは基板と接触した場合であ つても、 ステージもしくは基板と雰囲気形成機構とが接触することに起因する力 が投影光学系に伝達されることによって生じる投影光学系の性能変化を防止する ことができる。

Claims

請求の範囲
1 . ステージに保持された基板にマスクの像を投影する投影光学系と、 該投影光 学系と前記ステージもしくは前記基板との間に特定流体雰囲気を形成するための 雰囲気形成機構とを備える露光装置において、
前記雰囲気形成機構は、 前記ステージもしくは前記基板と接触したことに起因 する力をやわらげ、 該力が前記投影光学系に伝達するのを抑制する緩衝部を有す ることを特徴とする露光装置。
2 . 前記緩衝部は、 伸縮することによつて前記雰囲気形成機構の前記投影光学系 側と前記ステージ側とを相対的に接近させる伸縮機構を有することを特徴とする 請求項 1記載の露光装置。
3 .前記雰囲気形成機構は、前記特定流体雰囲気を形成する雰囲気形成部を有し、 前記緩衝部は、 前記雰囲気形成部と、 前記投影光学系を保持する鏡筒との間を 接続する可撓性部材をさらに備えることを特徴とする請求項 2に記載の露光装置。
4 . 前記雰囲気形成機構は、 前記特定流体雰囲気を形成する雰囲気形成部と、 該 雰囲気形成都を支持台に支持する支持部とを有し、 前記支持部が前記伸縮機構を 兼ねることを特徴とする請求項 2に記載の露光装置。
5 . 前記支持部は、 前記支持台に取り付けられる一端部を備える第 1支持部と、 前記第 1支持部の他端部に係合する一端部及び前記雰囲気形成部に取り付けられ る他端部を備える第 2支持部とを有し、 前記雰囲気形成都と、 前記ステージもし くは前記基板とが接触した際に、 前記第 1支持部の他端部と前記第 2支持部の一 端部との係合が解除することを特徴とする請求項 4に記載の露光装置。
6 . 前記第 1支持部の他端部は、 前記投影光学系から離れる方向に形成された第 1フランジ部を有し、 前記第 2支持部の一端部は、 前記投影光学系に向かって形 成された第 2フランジ部を有し、 前記第 1支持部と前記第 2支持部とは、 前記第 2フランジ部が前記第 1フランジ部に蔵置することによつて係合することを特徴 とする請求項 5に記載の露光装置。
7 .前記雰囲気形成機構は、前記特定流体雰囲気を形成する雰囲気形成部を有し、 前記伸縮機構は、 一端部が前記支持台に取り付けられ、 他端部が前記雰囲気形 成部に取り付けられる紐状部材を有することを特徴とする請求項 2に記載の露光
8 . 前記緩衝部は、 形状変化することによって前記雰囲気形成機構の前記投影光 学系側と前記ステージ側とを相対的に接近させる形状変化部を有することを特徴 とする請求項 1記載の露光装置。
9 . 前記形状変化部には、 弾性変形部材が用いられることを特徴とする請求項 8 記載の露光装置。
1 0 . 前記形状変化部には、 塑性変形部材が用いられることを特徵とする請求項 9記載の露光装置。
1 1 . 前記雰囲気形成機構は、 前記特定流体雰囲気を形成する雰囲気形成部を有 し、
前記緩衝都は、 前記雰囲気形成部の一部に設けられることを特徴とする蹟求項 1に記載の露光装置。
1 2 . 前記雰囲気形成機構は、 前記緩衝部を介して、 前記雰囲気形成部を支持す ることを特徴とする請求項 1 1に記載の露光装置。
1 3 . 前記緩衝部は、 前記雰囲気形成部のうち、 前記前記ステージもしくは前記 基板側の一部に設けられることを特徴とする請求項 1 1に記載の詰光装置。
1 4 . 前記緩衝部は、 塑性変形部材又は弾性変形部材で形成されることを特徴と する請求項 1 2又は 1 3に記載の露光装置。
1 5 . 前記雰囲気形成機構は、 前記特定流体雰囲気を形成する雰囲気形成部を有 し、
前記緩衝部は、 前記雰囲気形成部の少なくとも一部を形成し、 力 脆性材料で 構成されることを特徴とする請求項 1に記載の露光装置。
1 6 . 前記雰囲気形成部と前記投影光学系との間には、 前記ステージもしくは前 記基板と前記雰囲気形成機構とが接触した際に前記雰囲気形成部が移動する距離 以上のクリァランスが設けられていることを特徴とする請求項 1に記載の露光装
1 7 . 請求項 1〜1 6いずれかに記載の露光装置を用いて、 前記マスク上に形成 されたデバイスパターンを前記基板上に転写する工程を含むことを特徴とするデ パイス製造方法。
PCT/JP2004/013190 2003-09-03 2004-09-03 露光装置及びデバイス製造方法 WO2005024921A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020067003372A KR101162527B1 (ko) 2003-09-03 2004-09-03 노광 장치 및 디바이스 제조 방법
JP2005513730A JP4517367B2 (ja) 2003-09-03 2004-09-03 露光装置及びデバイス製造方法
EP04772929A EP1667210A4 (en) 2003-09-03 2004-09-03 EXPOSURE DEVICE AND COMPONENTS MANUFACTURING METHOD
US11/364,075 US8253921B2 (en) 2003-09-03 2006-03-01 Exposure apparatus and device fabricating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003311923 2003-09-03
JP2003-311923 2003-09-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/364,075 Continuation US8253921B2 (en) 2003-09-03 2006-03-01 Exposure apparatus and device fabricating method

Publications (1)

Publication Number Publication Date
WO2005024921A1 true WO2005024921A1 (ja) 2005-03-17

Family

ID=34269718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013190 WO2005024921A1 (ja) 2003-09-03 2004-09-03 露光装置及びデバイス製造方法

Country Status (7)

Country Link
US (1) US8253921B2 (ja)
EP (1) EP1667210A4 (ja)
JP (1) JP4517367B2 (ja)
KR (1) KR101162527B1 (ja)
CN (2) CN101477312B (ja)
TW (1) TWI385707B (ja)
WO (1) WO2005024921A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060250593A1 (en) * 2004-06-10 2006-11-09 Nikon Corporation Exposure apparatus and device fabricating method
JP2006319242A (ja) * 2005-05-16 2006-11-24 Nikon Corp 露光装置
JP2006344960A (ja) * 2005-06-10 2006-12-21 Internatl Business Mach Corp <Ibm> 浸漬リソグラフィ装置および方法(少なくとも投影光学コンポーネントとウェハ上で等圧力を有する浸漬リソグラフィ装置)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180571B2 (en) * 2004-12-08 2007-02-20 Asml Netherlands B.V. Lithographic projection apparatus and actuator
US8027023B2 (en) 2006-05-19 2011-09-27 Carl Zeiss Smt Gmbh Optical imaging device and method for reducing dynamic fluctuations in pressure difference
DE102006023876A1 (de) * 2006-05-19 2007-11-22 Carl Zeiss Smt Ag Optische Abbildungseinrichtung
DE102007063305A1 (de) * 2007-12-27 2009-07-02 Carl Zeiss Smt Ag Optische Einrichtung mit einer Federeinrichtung mit einem Bereich konstanter Federkraft
KR101977308B1 (ko) * 2017-08-28 2019-05-13 (주)대일시스템 능동형 제진장치 이용한 이송장치의 외란 제어방법
CN111712766B (zh) * 2018-02-16 2024-04-02 Asml荷兰有限公司 包括气锁的设备
CN115421356A (zh) * 2022-08-26 2022-12-02 星源电子科技(深圳)有限公司 一种改进型Micro-LED芯片制备用曝光***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157419A (ja) * 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
JP2002373849A (ja) * 2001-06-15 2002-12-26 Canon Inc 露光装置
US20040031932A1 (en) * 2002-06-13 2004-02-19 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
JP2004228497A (ja) * 2003-01-27 2004-08-12 Nikon Corp 露光装置及び電子デバイスの製造方法
JP2004303808A (ja) * 2003-03-28 2004-10-28 Nikon Corp 露光装置及び露光方法、フィルム構造体

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS58202448A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
JPS5919912A (ja) 1982-07-26 1984-02-01 Hitachi Ltd 液浸距離保持装置
DD221563A1 (de) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
DD224448A1 (de) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Einrichtung zur fotolithografischen strukturuebertragung
JPS6265326A (ja) 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
US4801352A (en) * 1986-12-30 1989-01-31 Image Micro Systems, Inc. Flowing gas seal enclosure for processing workpiece surface with controlled gas environment and intense laser irradiation
EP0462554B1 (en) * 1990-06-20 2000-10-11 Hitachi, Ltd. Charged particle beam apparatus
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH0562877A (ja) 1991-09-02 1993-03-12 Yasuko Shinohara 光によるlsi製造縮小投影露光装置の光学系
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JPH07220990A (ja) 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
JPH08316125A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JP3747566B2 (ja) 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
JP3817836B2 (ja) 1997-06-10 2006-09-06 株式会社ニコン 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
JP4210871B2 (ja) 1997-10-31 2009-01-21 株式会社ニコン 露光装置
JPH11176727A (ja) 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
JP3554186B2 (ja) * 1998-04-08 2004-08-18 キヤノン株式会社 露光装置、デバイス製造方法および反力受け方法
JP2000058436A (ja) 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
AU5653699A (en) * 1999-09-20 2001-04-24 Nikon Corporation Parallel link mechanism, exposure system and method of manufacturing the same, and method of manufacturing devices
TW563002B (en) * 1999-11-05 2003-11-21 Asml Netherlands Bv Lithographic projection apparatus, method of manufacturing a device using a lithographic projection apparatus, and device manufactured by the method
JP2002083766A (ja) * 2000-06-19 2002-03-22 Nikon Corp 投影光学系、該光学系の製造方法、及び前記光学系を備えた投影露光装置
JP2002151400A (ja) * 2000-11-15 2002-05-24 Canon Inc 露光装置、その保守方法並びに同装置を用いた半導体デバイス製造方法及び半導体製造工場
JP2003029414A (ja) * 2001-07-19 2003-01-29 Adtec Engineeng Co Ltd 露光装置
CN1423147A (zh) * 2001-12-05 2003-06-11 株式会社尼康 投影光学***和具有该投影光学***的曝光装置
US6934003B2 (en) * 2002-01-07 2005-08-23 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
JP2003234281A (ja) * 2002-02-08 2003-08-22 Canon Inc 露光装置、デバイス製造方法
WO2003085708A1 (fr) * 2002-04-09 2003-10-16 Nikon Corporation Procede d'exposition, dispositif d'exposition et procede de fabrication dudit dispositif
EP1477852A1 (en) 2003-05-16 2004-11-17 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7362508B2 (en) 2002-08-23 2008-04-22 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
CN101424881B (zh) * 2002-11-12 2011-11-30 Asml荷兰有限公司 光刻投射装置
KR20130010039A (ko) * 2002-12-10 2013-01-24 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
EP1431710A3 (en) * 2002-12-19 2004-09-15 ASML Holding N.V. Liquid flow proximity sensor for use in immersion lithography
EP2282233A1 (en) * 2003-05-13 2011-02-09 ASML Netherlands BV Lithographic apparatus
DE10324477A1 (de) * 2003-05-30 2004-12-30 Carl Zeiss Smt Ag Mikrolithographische Projektionsbelichtungsanlage
US6867844B2 (en) * 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
EP1498778A1 (en) * 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005006417A1 (ja) * 2003-07-09 2005-01-20 Nikon Corporation 露光装置及びデバイス製造方法
EP1503244A1 (en) * 2003-07-28 2005-02-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157419A (ja) * 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
JP2002373849A (ja) * 2001-06-15 2002-12-26 Canon Inc 露光装置
US20040031932A1 (en) * 2002-06-13 2004-02-19 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
JP2004228497A (ja) * 2003-01-27 2004-08-12 Nikon Corp 露光装置及び電子デバイスの製造方法
JP2004303808A (ja) * 2003-03-28 2004-10-28 Nikon Corp 露光装置及び露光方法、フィルム構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1667210A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060250593A1 (en) * 2004-06-10 2006-11-09 Nikon Corporation Exposure apparatus and device fabricating method
JP2006319242A (ja) * 2005-05-16 2006-11-24 Nikon Corp 露光装置
JP2006344960A (ja) * 2005-06-10 2006-12-21 Internatl Business Mach Corp <Ibm> 浸漬リソグラフィ装置および方法(少なくとも投影光学コンポーネントとウェハ上で等圧力を有する浸漬リソグラフィ装置)

Also Published As

Publication number Publication date
CN100472713C (zh) 2009-03-25
TWI385707B (zh) 2013-02-11
US20060209279A1 (en) 2006-09-21
JPWO2005024921A1 (ja) 2006-11-16
EP1667210A1 (en) 2006-06-07
CN101477312A (zh) 2009-07-08
CN101477312B (zh) 2015-04-08
KR20060063946A (ko) 2006-06-12
CN1846298A (zh) 2006-10-11
KR101162527B1 (ko) 2012-07-09
JP4517367B2 (ja) 2010-08-04
US8253921B2 (en) 2012-08-28
TW200515480A (en) 2005-05-01
EP1667210A4 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
US8253921B2 (en) Exposure apparatus and device fabricating method
KR100805142B1 (ko) 노광방법 및 노광장치
US7098991B2 (en) Exposure method, exposure apparatus, and method for manufacturing device
JP4844123B2 (ja) 露光装置、及びデバイス製造方法
WO1999027570A1 (fr) Dispositif d&#39;exposition par projection
JP4081813B2 (ja) 光学装置、露光装置、及びデバイス製造方法
KR20020036951A (ko) 노광방법 및 장치
JP4265257B2 (ja) 露光装置及び露光方法、フィルム構造体
JP2001284224A (ja) 露光装置及び露光方法
JP4258840B2 (ja) 支持装置、光学装置及び露光装置、並びにデバイス製造方法
TW200931189A (en) Exposure apparatus, exposure method, and device manufacturing method
JP2005136263A (ja) 露光装置とそのガス供給方法
JP2003257821A (ja) 光学装置及び露光装置
JP2000195779A (ja) 露光装置及びマイクロデバイスの製造方法
JP4400390B2 (ja) 露光装置及びデバイス製造方法
JP2004095654A (ja) 露光装置及びデバイス製造方法
JP2004241478A (ja) 露光方法及びその装置、並びにデバイス製造方法
WO2004038773A1 (ja) 極短紫外線露光装置及び真空チャンバ
JPWO2003030229A1 (ja) 露光装置及びデバイス製造方法
JP2005079294A (ja) 露光装置、露光システム、及びデバイス製造方法
JP2002328298A (ja) 光学装置、露光装置、並びにデバイス製造方法
JP2002260998A (ja) 露光方法及び露光装置並びにデバイスの製造方法
JPWO2001093319A1 (ja) ガス供給システム、露光装置及びデバイスの製造方法
WO2003075327A1 (en) Exposure equipment and device manufacturing method
JP2005150359A (ja) 露光装置及びデバイスの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480025055.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513730

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067003372

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11364075

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004772929

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004772929

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067003372

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11364075

Country of ref document: US