WO2005019883A1 - Optically laminated material and manufacturing method thereof - Google Patents

Optically laminated material and manufacturing method thereof Download PDF

Info

Publication number
WO2005019883A1
WO2005019883A1 PCT/JP2004/012194 JP2004012194W WO2005019883A1 WO 2005019883 A1 WO2005019883 A1 WO 2005019883A1 JP 2004012194 W JP2004012194 W JP 2004012194W WO 2005019883 A1 WO2005019883 A1 WO 2005019883A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminate
resin
unstretched
temperature
Prior art date
Application number
PCT/JP2004/012194
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiro Kurosaki
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2005513350A priority Critical patent/JP4434145B2/en
Publication of WO2005019883A1 publication Critical patent/WO2005019883A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to an optical laminate that can be easily manufactured, can suitably compensate for birefringence using the same, and has no brightness unevenness or color unevenness, and a method for manufacturing the same.
  • a high-contrast liquid crystal display device using birefringence such as an STN type is used for various screen displays such as a personal computer and a word processor.
  • a liquid crystal display device using a twist nematic liquid crystal, a cholesteric liquid crystal, and a smectic liquid crystal there is a problem that a viewing angle characteristic is deteriorated due to birefringence of a liquid crystal cell. Poor viewing angle characteristics mean that even when the display screen is viewed from the front, the display is good, but when viewed from an oblique direction, problems such as coloring and disappearance of the display occur.
  • Patent Document 1 discloses that the phase difference when monochromatic light having a wavelength of 632.8 nm is vertically incident is Re, and that the monochromatic light having a wavelength of 632.8 nm is normal to the film surface. And the phase difference when obliquely incident at 40 ° and R is 0.92 ⁇ R / Re ⁇ 1.08
  • a retardation film is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 5-157911 is characterized in that a group of molecules oriented in a plane direction of a film and a group of molecules oriented in a thickness direction are mixed.
  • a shrinkable film is adhered to one or both surfaces of the resin film to form a laminate, and the laminate is heated and stretched to form a laminate of the resin film.
  • a method for producing the birefringent film characterized in that a contraction force in a direction perpendicular to the stretching direction is applied.
  • Patent Document 3 discloses that a film (A) having optical transparency has at least one light beam within 45 ° around the normal direction of the film.
  • Axle Is the force with the ray axis, or the refractive index in the normal direction of the film, n, the longitudinal refraction
  • a liquid crystal display device in which a sheet is inserted between a liquid crystal cell and a polarizing plate is disclosed.
  • the film (A) include a film obtained by laminating a biaxially stretched film or a uniaxially stretched film made of a material having a negative intrinsic birefringence value.
  • the film used in the liquid crystal display device disclosed in Japanese Patent Application Laid-Open No. 2-256023 is particularly a biaxially stretched film or a uniaxially stretched film made of a material having a negative intrinsic birefringence value as the film (A). It is thought that the manufacture is relatively easy and the control of the phase difference can be easily performed by using the.
  • this material is made of a material with a negative intrinsic birefringence, and satisfies the condition of n _ (n + n) Z2> 0
  • Patent Document 1 JP-A-2-160204
  • Patent Document 2 JP-A-5-157911
  • Patent Document 3 Japanese Patent Laid-Open No. 2-256023
  • an object of the present invention is to provide an optical laminated body that can compensate for birefringence more favorably than conventional ones, does not have luminance unevenness or color unevenness, and a manufacturing method that can easily manufacture the same. Is to do.
  • the present inventors have conducted intensive studies to achieve the above object. As a result, a resin material containing a resin having a negative intrinsic birefringence value and a resin material containing the resin having a negative intrinsic birefringence value have been described.
  • a layer containing a resin having a negative intrinsic birefringence value (A layer), and a layer containing a transparent resin provided on at least one side of the A layer (B layer)
  • An optical laminate comprising: a resin having a negative intrinsic birefringence having a glass transition temperature of Tg;
  • the transition temperature was Tg
  • the thickness of the laminate was d
  • the thickness was measured with light at a wavelength of 548.6 nm.
  • Refractive index of the direction of n the 2 the refractive index in the direction orthogonal to the perpendicular to one another in the thickness direction n, n (n, n
  • the stretching step includes heating the unstretched laminate with warm air, and the temperature of the warm air blown at right angles to the unstretched laminate above the unstretched laminate is set to T (° C), warm air.
  • T ° C
  • the temperature of the hot air blown out perpendicular to the unstretched laminate at the bottom of the laminate is T (° c)
  • the wind speed of the hot air is U (m / s)
  • the shortest distance from the unstretched laminate to the outlet of hot air is When L (m), the value of V calculated by the following equation (1) is lower than V at the upper part of the unstretched laminate.
  • V (T X U) / L;
  • the temperature of the left and right regions from the center in the flow direction of the unstretched laminate is set to be within ⁇ 1.5 ° C with respect to the temperature of the center in the above (6) to (8). Any one of the production methods described above.
  • the optical laminate of the present invention can control the phase difference, and has less variation in the phase difference (when the light incident angle is 0 ° and 40 °), and further has less color unevenness and luminance unevenness. Advanced compensation of birefringence becomes possible, and it can be widely applied to devices such as liquid crystal display devices and organic EL display devices as retardation plates and viewing angle compensators, alone or in combination with other members. Further, according to the method of the present invention, the optical laminate of the present invention can be obtained with high production efficiency such that the layer (A layer) containing a resin having a negative intrinsic birefringence value is not broken.
  • the optical laminate of the present invention includes a layer (A layer) containing a resin having a negative intrinsic birefringence value and a layer (B layer) containing a transparent resin provided on at least one surface of the layer. )including.
  • a layer a layer containing a resin having a negative intrinsic birefringence value
  • B layer a layer containing a transparent resin
  • the resin having a negative intrinsic birefringence value used for the A layer of the optical laminate of the present invention is defined as a resin having a uniaxial order when light is incident on a layer in which the light is oriented in the orientation direction. It means that the refractive index is smaller than the refractive index of light in the direction perpendicular to the alignment direction.
  • the resin having a negative intrinsic birefringence used for the A layer includes a discotic liquid crystal polymer, a vinyl aromatic polymer, a polyacrylonitrile polymer, a polymethyl methacrylate polymer, and a cellulose ester polymer. Coalesced copolymers of these (binary, ternary, etc.). These can be used alone or in combination of two or more
  • At least one selected from a Bier aromatic polymer, a polyacrylonitrile polymer, and a polymethyl methacrylate polymer is preferable.
  • a vinyl aromatic polymer is more preferable.
  • the vinyl aromatic polymer is a polymer of a vinyl aromatic monomer or a vinyl aromatic monomer.
  • styrene As the Bier aromatic monomer, styrene; styrene derivatives such as 4-methylstyrene, 4-chlorostyrene, 3-methylstyrene, 4-methoxystyrene, 4-tert-butoxystyrene, ⁇ -methinolestyrene; and the like Is mentioned. These may be used alone or in combination of two or more.
  • Monomers that can be copolymerized with the butyl aromatic monomer include olefins such as propylene and butene; acrylonitrile, etc .; and / 3-ethylenically unsaturated nitrile monomers; acrylic acid, methacrylic acid And ⁇ -ethylenically unsaturated carboxylic acid; acrylic ester; methacrylic ester; maleimide; butyl acetate; butyl chloride; and the like.
  • a copolymer of styrene, styrene, or a styrene derivative and maleic anhydride is preferable among the bullet aromatic polymers.
  • the thickness of the layer is not particularly limited, but is usually 5 to 400 ⁇ , preferably 15 to 250 ⁇ .
  • the glass transition temperature Tg of the resin having a negative intrinsic birefringence used for the layer is preferably 110 ° C. or higher, more preferably 110 ° C. or more, from the viewpoint of excellent heat resistance during use. Is 120 ° C
  • the transparent resin having a glass transition temperature Tg lower than the glass transition temperature Tg of the resin having a negative intrinsic birefringence value used for the layer B used in the optical laminate of the present invention includes:
  • examples include a polymer resin having an alicyclic structure, a linear olefin-based polymer such as polyethylene and polypropylene, and a polycarbonate-based polymer. Coalesce, polyester polymer, polysulfone polymer, polyethersulfone polymer, polystyrene polymer, polyolefin polymer, polyvinyl alcohol polymer, cellulose acetate polymer, polyvinyl chloride polymer, polymethyl Examples include a metathalylate polymer.
  • a polymer resin having an alicyclic structure a chain olefin polymer, a polystyrene polymer, or a polymethyl methacrylate polymer is preferred for transparency, low hygroscopicity, dimensional stability, Such as lightweight From the viewpoint, a polymer resin having an alicyclic structure is particularly preferable. If the same type of resin as that used for the layer A is used, it is preferable to select a resin that is at least 20 ° C lower than the glass transition temperature of the resin used for the layer A.
  • the polymer resin having an alicyclic structure has an alicyclic structure in the main chain and / or the side chain, and has an alicyclic structure in the main chain from the viewpoint of mechanical strength, heat resistance and the like. Those containing are preferred.
  • the alicyclic structure examples include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene) structure. From the viewpoint of mechanical strength and heat resistance, the cycloalkane structure Is preferred.
  • the number of carbon atoms constituting the alicyclic structure is not particularly limited, but is usually in the range of 430, preferably 520, more preferably 5 to 15, the mechanical strength, The properties of heat resistance and film formability are highly balanced and suitable.
  • the proportion of the alicyclic structure-containing repeating unit in the alicyclic structure-containing polymer resin used in the present invention may be appropriately selected according to the purpose of use, but is preferably 30% by weight.
  • the proportion of the repeating unit having an alicyclic structure in the polymer resin having an alicyclic structure is within this range, it is preferable from the viewpoint of the transparency and heat resistance of the optical laminate.
  • polymer resin having an alicyclic structure examples include (1) a norbornene-based polymer, (2) a monocyclic cyclic olefin-based polymer, (3) a cyclic conjugated gen-based polymer, 4) Vinyl alicyclic hydrocarbon polymers and hydrogenated products thereof.
  • a norbornene-based polymer is more preferable from the viewpoint of transparency and moldability.
  • Examples of the norbornene-based polymer include a ring-opening polymer of a norbornene-based monomer, a ring-opening copolymer of a norbornene-based monomer and another monomer capable of ring-opening copolymerization, and hydrogenated products thereof, norbornene-based polymers.
  • Examples thereof include an addition polymer of a monomer and a copolymer of a monomer with another monomer copolymerizable with a norbornene-based monomer.
  • hydrogenated ring-opening (co) polymers of norbornene monomers are most preferred from the viewpoint of transparency.
  • Polymer resins having an alicyclic structure have been disclosed in, for example, JP-A-2002-321302. It is selected from the known polymers shown.
  • X bicyclo [3.3.0] octane-2,4- ethylene structure
  • Y - di I le tricyclo [4. 3. 0. I 2 '5 ] decane - 7, 9_ Jiiru - and a ethylene structure
  • the content of these recurring units, norbornene weight It is preferable that the content is 90% by weight or more based on the whole unit of the united unit, and that the specific force between the X content and the Y content is 100: 0 40:60 by the weight ratio of X: Y. ,.
  • Examples of the monomer having the structure of X as a repeating unit upon polymerization include a norbornene-based monomer having a structure in which a 5-membered ring is bonded to a norbornene ring, and more specifically, tricyclo [4.3. . 0. I 2 ' 5 ] Deca-3,7-gen (common name: dicyclopentadiene) and its derivatives (substituted in the ring), 7,8-benzotricyclo [4.3. 0.1 ° ' 5 ] de-3-ene (common name: methanotetrahydrofluorene) and derivatives thereof.
  • a) a monomer capable of having the above-mentioned structure of X as a repeating unit when polymerized, and a Y-type structure which is repeated when polymerized A method of polymerizing a monomer capable of having a unit as a unit by controlling the copolymerization ratio and hydrogenating an unsaturated bond in the polymer as necessary, or b) a polymer having the structure of X as a repeating unit A method of blending the polymer having the structure of Y as a repeating unit with a controlled blending ratio is exemplified.
  • the glass transition temperature Tg of the transparent resin used for the layer B is the glass transition temperature Tg of the transparent resin used for the layer B.
  • Lower than glass transition temperature Tg of resin with negative intrinsic birefringence Preferably lower by at least 20 ° C
  • the stretching develops the refractive index anisotropy of the B layer, which is more than the refractive index anisotropy of the A layer.
  • Refractive index It is difficult to obtain the relationship.
  • the molecular weight of the transparent resin used for the layer B is determined by gel “permeation” chromatography using cyclohexane (toluene when the polymer resin does not dissolve) as a solvent (hereinafter “GPC”).
  • the weight average molecular weight (Mw) in terms of polyisoprene or polystyrene, as measured in (1), is usually 10,000, 100,000, preferably ⁇ is 15,000 80,000, more preferably ⁇ f, 20, 000 50,000. When the weight average molecular weight is in such a range, the mechanical strength and moldability of the optical laminate are highly balanced and suitable.
  • the molecular weight distribution (weight average molecular weight (Mw) Z number average molecular weight (Mn)) of the transparent resin used for the layer B is not particularly limited, but is usually 110, preferably 114, more preferably 114. The preferred range is 1.2-3.
  • the polymer resin having an alicyclic structure suitably used in the present invention has a resin component having a molecular weight of 2,000 or less (that is, an oligomer component) in a content of 5% by weight or less, preferably 3% by weight. %, More preferably 2% by weight or less.
  • a resin component having a molecular weight of 2,000 or less that is, an oligomer component
  • a content of 5% by weight or less preferably 3% by weight. %, More preferably 2% by weight or less.
  • the amount of the oligomer component In order to reduce the amount of the oligomer component, it is necessary to optimize the selection of a polymerization catalyst or a hydrogenation catalyst, reaction conditions such as polymerization and hydrogenation, and temperature conditions in a step of pelletizing a resin as a molding material. Just fine.
  • the amount of the oligomer component can be measured by gel 'permeation' chromatography using cyclohexane (toluene when the polymer resin does not dissolve).
  • the front phase difference Re of the layer B at a wavelength of 548.6 nm is preferably 30 nm or less, more preferably 20 nm or less. Further, it is preferable that the phase difference Rth in the thickness direction of the layer B at a wavelength of 548.6 nm is 0 to 200 nm.
  • the thickness of the layer B is not particularly limited, but is usually 15 to 250 zm, preferably 25 150 x m.
  • an antioxidant if necessary, may be used for the resin having a negative intrinsic birefringence value for the A layer and the transparent resin for the Z or B layer.
  • Known additives such as agents, metal deactivators, antifouling agents, antibacterial agents and other resins, and thermoplastic elastomers can be added as long as the effects of the invention are not impaired.
  • additives are used in an amount of usually 0.5 parts by weight, preferably 0.3 parts by weight, per 100 parts by weight of the resin having a negative intrinsic birefringence value used for the layer A or 100 parts by weight of the transparent resin used for the layer B. .
  • the proportion of the resin having a negative intrinsic birefringence value in the layer A and the proportion of the transparent resin in the layer B are respectively 95 to 100% by weight, preferably 97 to 100% by weight.
  • n n means the differential force between n and n is usually 0.002 or less, preferably 0.0001 or less,
  • the retardation Rth in the thickness direction needs to be 0 or less.
  • Rth may be set according to the purpose of use, but in order to function as a phase difference compensating element, it is set in the range of ⁇ 50 nm, preferably in the range of ⁇ 100 nm to 500 nm.
  • d is the thickness of the optical laminate.
  • d indicates the thickness of the optical laminate.
  • the variation of the front phase difference Re is determined by measuring the in-plane phase difference at a light incident angle of 0 ° (a state in which the incident light beam is orthogonal to the surface of the laminate of the present invention). The difference between the maximum value and the minimum value among the measured values of Hereinafter, the front phase difference Re may be simply referred to as Re.
  • the variation of the phase difference R40 is ⁇ 2. It is within Onm, preferably within ⁇ 10 nm.
  • the light incidence angle of 40 ° means that the angle between the incident light beam and the normal of the laminate surface is 40 °.
  • the variation of the phase difference R40 is a variation of each measured value with respect to the arithmetic average value of the measured values.
  • the phase difference R40 may be simply referred to as R40.
  • the haze of the optical laminate is preferably 3% or less2. / 0 or less is more preferable. If the haze exceeds 3%, light transmitted through the film is scattered, the polarization becomes non-uniform, and when incorporated in a liquid crystal display device, the contrast of the liquid crystal display tends to decrease, and the display quality tends to deteriorate.
  • the optical laminate of the present invention from the viewpoint of preventing warpage due to moisture absorption, temperature change, or aging, it is preferable to provide the B layer on both sides of the A layer. It is preferable that the thickness of the layer B provided on both sides of the layer is substantially equal. When the B layer is provided only on one side, the number of B layers to be overlapped is not limited, but is usually one layer.
  • an adhesive layer may be provided between the A layer and the B layer.
  • the adhesive layer may be simply referred to as C layer.
  • the layer C can be formed of a material having an affinity for both the material having a negative intrinsic birefringence value used for the layer A and the transparent resin used for the layer B.
  • ethylene monoacrylate copolymers such as ethylene monomethyl acrylate copolymer and ethylene monoethyl acrylate copolymer; ethylene monomethyl methacrylate copolymer, ethylene monoethyl methacrylate copolymer, etc.
  • Ethylene-methacrylic acid ester copolymers ethylene copolymers such as ethylene-butyl acetate copolymer and ethylene-styrene copolymer; and other copolymers of ethylene.
  • a modified product obtained by modifying these copolymers by oxidation, saponification, chlorination, chlororesulfonation, or the like can also be used.
  • the handleability at the time of forming the laminated structure and the heat resistance deterioration of the adhesive strength can be improved.
  • the thickness of the C layer is preferably 1 to 50 ⁇ , more preferably 5 to 30 zm.
  • the glass transition temperature or the softening point Tg of the adhesive used for the C layer is preferably lower than the above-mentioned Tg, and is preferably 20 or less than the Tg. ° C or more
  • CAA More preferably, it is low.
  • the thickness of the optical laminate of the present invention is usually 10 to 500 ⁇ m, preferably 30 to 300 ⁇ m, and more preferably 50 to 200 ⁇ .
  • a certain thickness is required from the viewpoint of mechanical strength and ease of handling.
  • the optical laminate of the present invention is used as a configuration in which another retardation film, for example, a film made of a material having a positive intrinsic birefringence value is combined with a retardation film obtained by uniaxially stretching. Is also good.
  • another retardation film for example, a film made of a material having a positive intrinsic birefringence value is combined with a retardation film obtained by uniaxially stretching. Is also good.
  • the method for producing the optical laminate of the present invention is not particularly limited, but the resin material (a) containing a resin having a negative intrinsic birefringence value, and the intrinsic birefringence value is negative.
  • the resin material (a) containing a resin having a negative intrinsic birefringence value is set at 20 ° C higher than the glass transition temperature Tg of the resin having a negative intrinsic birefringence value. Lower than C
  • the resin material (a) containing a resin having a negative intrinsic birefringence value used in the production method of the present invention comprises a resin having a negative intrinsic birefringence value or a mixture of this resin and other additives. It is a resin composition contained. Examples of the resin having a negative intrinsic birefringence and other additives include the same as those described for the optical laminate of the present invention.
  • the resin material (b) containing a transparent resin used in the production method of the present invention is a transparent resin or a resin composition containing this resin and other additives.
  • the transparent resin and other additives include the same ones as described for the optical laminate of the present invention.
  • Examples of the coextrusion method include a coextrusion T-die method, a coextrusion inflation method, and a coextrusion lamination method. Among them, the co-extrusion T-die method is preferred. Co-extrusion T-die method For example, a feed block method and a multi-manifold method may be mentioned, and a multi-manifold method is more preferable.
  • the extrusion temperature may be appropriately selected according to the type of the resin or the transparent resin having a negative intrinsic birefringence used and the adhesive used as required. At the temperature in the extruder
  • the resin inlet should be Tg (Tg + 100) ° C
  • the extruder outlet should be (Tg + 50) (Tg + 170) ° C
  • the die temperature should be (Tg + 50) ° C (Tg + 170) ° C. I like it.
  • Tg is the glass transition temperature of the extruded resin. In the production method of the present invention, since resins having different Tg are simultaneously extruded, it is preferable that all of the Tg of each resin be within this range.
  • Means for heating the unstretched laminate in the preheating step includes an oven-type heating device, a radiation heating device, and immersion in a heated liquid. Among them, an oven type heating device is preferred.
  • the heating temperature in the preheating step is usually stretching temperature ⁇ 40 ° C.—stretching temperature + 20 ° C., preferably stretching temperature ⁇ 30 ° C.—stretching temperature + 15 ° C.
  • the stretching temperature means a set temperature of the heating device.
  • a chuck is connected with a pantograph, and a pantograph-type tenter that opens at a check interval; the chuck is driven by a screw-shaped shaft to adjust the screw groove interval. Screw-type tenters that increase the chuck interval with a linear motor-type tenter.
  • the method for stretching the laminate is not particularly limited, and a conventionally known method can be applied. More specifically, a uniaxial stretching method such as a method of uniaxially stretching in the longitudinal direction using a difference in peripheral speed on the roll side, a method of uniaxially stretching in the lateral direction by using a tenter; Simultaneous biaxial stretching method, in which the guide rail is stretched in the horizontal direction at the same time as the guide rail spread angle, or stretching in the vertical direction using the difference in peripheral speed between the rolls, then clip both ends.
  • a biaxial stretching method such as a sequential biaxial stretching method of gripping and stretching in the lateral direction using a tenter.
  • the in-plane retardation is balanced by balancing the in-plane refractive index in the orthogonal axis direction. When it is qualitatively zero (positive letterer), the biaxial stretching method is preferred.
  • the stretching temperature is defined as Tg ⁇ 10 (° C.) — Tg + 20, where Tg is the glass transition temperature of the resin having a negative intrinsic birefringence value used for the A layer. (° C), preferably
  • the variation in the thickness of each layer of the unstretched laminate to be stretched is within ⁇ 3%.
  • the variation of Re and R40 of the optical laminate of the present invention can be reduced.
  • the thickness variation here is measured at several points, the arithmetic average value is calculated, and the measured value variation with respect to the arithmetic average value.
  • Means for keeping the thickness variation of each layer of the unstretched laminate within ⁇ 3% are as follows: 1) Enclose the sheet-shaped unstretched laminate extruded from the opening of the die up to the cast roll where it first adheres. 2) Edge piercing both ends of the film on a cast roll and air blasting on the second roll; 3) Keep the distance between the die slip and the cast portion of the unstretched laminate at 200mm or less; It is mentioned.
  • the central portion force in the flow direction of the unstretched laminate in the stretching step The temperature in the left and right regions may be within ⁇ 1.5 ° C with respect to the temperature in the central portion. It is more preferable that the temperature be within ⁇ 1 ° C.
  • the degree of stretching in the left and right becomes uniform, so that the thickness, Re and R40 of the obtained optical laminate can be made uniform. Further, since the left and right thicknesses are uniform, the stress and temperature applied to the unstretched laminate are also uniform, and the degree of stretching and relaxation is uniform.
  • the means for heating the unstretched laminate is hot air
  • the temperature of the hot air is T (° C.)
  • the speed of the hot air is U ( mZ seconds)
  • the ratio of V ( TXUX 1 / L) expressed as L when the shortest distance from the film to the hot air outlet is V at the lower part of the unstretched laminate (V / V)
  • V / V the means for heating the unstretched laminate
  • the temperature of the hot air is a set temperature of a heating device, for example, an oven.
  • the stretching ratio is usually 1.1 to 10 times, preferably 1.35 times.
  • the second stretching magnification is preferably smaller than the first stretching magnification.
  • the second stretching magnification is 0.5 to 0.95 times the first stretching magnification.
  • the relaxation temperature in the heat setting step is usually (room temperature + stretching temperature + 30 ° C, preferably stretching temperature-40 ° C-stretching temperature + 20 ° C). Further, in the heat setting step, the temperature may not be set and the stretching temperature may be maintained.
  • the optical laminate of the present invention can highly compensate for the phase difference caused by birefringence, it can be used alone or in combination with other members to form a phase difference plate, a viewing angle compensation plate, a brightness enhancement film, and the like. It can be widely applied to devices such as liquid crystal display devices and organic EL display devices.
  • the evaluation in this example was performed by the following method.
  • Measurements were made at a measurement interval of lmm using a TOF-4R (Yamabun Denki Co., Ltd.), a contact-type desktop offline thickness measuring device.
  • the thickness was defined as an arithmetic average value T of the measured values.
  • the variation in thickness is defined as T ( ⁇ m) as the maximum value of the measured thickness and T ( ⁇ m) as the minimum value.
  • Thickness variation (%) ( ⁇ - ⁇ ) / ⁇ ⁇ 100
  • the thickness of each layer of the laminated body was determined by cutting out the cross section of the laminated body with a cutter, observing the cross-sectional layer with an optical microscope, and calculating the thickness of each layer from the ratio.
  • the measurement was performed using an automatic birefringence meter (manufactured by Oji Scientific Instruments, KOBRA-21ADH).
  • the dispersion of the front phase difference Re was measured by measuring the front phase difference Re at 20 points (5 points each at 30 mm intervals from the center of the laminate at 30 mm intervals) and a total of 21 points at the center.
  • the maximum value-minimum value of the measured values was defined as the variation of the front phase difference Re.
  • phase difference R40 and its variation when the light incident angle at a wavelength of 5548 nm was 40 ° were measured using an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific Instruments).
  • the variation of R40 was measured at 20 points (5 points each at 30mm intervals from the center of the laminate at 30mm intervals) and a total of 21 points at the center, and the arithmetic average value was defined as R40.
  • the variation of each measured value with respect to R40 was defined as the variation of R40.
  • Laminate force The layer containing the transparent resin was peeled off, and measured using an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific Instruments). (8) Uneven brightness
  • a laminate is placed between the polarizer of a commercially available liquid crystal display (Fujitsu VL-152VA) and the liquid crystal panel, the display background is black, and there is no luminance unevenness (white spots) visually in a dark room. Power, confirmed. The evaluation was performed in the front direction, up, down, left, right and 40 °.
  • ZONOR1020 manufactured by Nippon Zeon Co., glass transition temperature: 105 ° C
  • styrene-maleic anhydride copolymer manufactured by Nova Chemical Co., trade name “Daylark D332”, glass transition temperature: 130 ° C
  • the molten resin was supplied to the above multi-manifold die at an outlet temperature of 180 ° C. Then, each of the norbornene-based polymer, styrene-water-free maleic acid copolymer, and modified ethylene-vinyl acetate copolymer was melted.
  • a non-stretched laminate 1 having a width of 600 mm and a thickness of 400 / im composed of 5 layers of 3 types (90 ⁇ m) was obtained by co-extrusion molding.
  • the back side was covered with an aluminum enclosure member so that the distance from the die to the enclosure member was 200 mm, and the distance from the sheet-shaped unstretched laminate to the enclosure member was 250-300 mm. Both sides of the laminate were trimmed 50 mm each to a width of 300 mm.
  • the variation in the thickness of the layer A was ⁇ 0.5% for a thickness of 200 ⁇ m
  • the variation in the thickness of the layer B was ⁇ 1.4% for a thickness of 90 ⁇ m.
  • a polymethyl methacrylate polymer made by Asahi Kasei Corporation, B layer made of polymethyl methacrylate polymer and styrene-maleic anhydride copolymer in the same manner as in Production Example 1 except that trade name ⁇ Delpet '' 80NH, glass transition temperature is 102 ° C
  • An unstretched laminate 2 having a width of 600 mm and a thickness of 400 ⁇ m, which was composed of five layers of three types, _C layer (10 ⁇ m) and B layer (90 ⁇ m), was obtained.
  • the variation in the thickness of the layer A of the unstretched laminate 2 was ⁇ 0.5% with respect to the thickness of 200 ⁇ m, and the variation in the
  • styrene-methyl methacrylate copolymer (trade name “TX Polymer”, manufactured by Denka Kagaku Kogyo Co., Ltd., TX-100-300S, glass transition temperature 100 ° C) was used.
  • a layer B composed of a styrene-methyl methacrylate copolymer, a layer A composed of a styrene-maleic anhydride copolymer, and an adhesive composed of a modified ethylene-butyl acetate copolymer B layer (91 ⁇ m)-C layer (10 ⁇ m)-A layer (198 / im)-C layer (10 ⁇ m)-B layer (91 ⁇ m) with the agent layer (C layer)
  • An unstretched laminate 3 having a width of 600 mm and a thickness of 400 ⁇ m, comprising a five-layer seed, was obtained.
  • the variation in the thickness of the layer A of the unstretched laminate 3 was ⁇ 0.5% for the thickness of 198 ⁇ , and the variation in the thickness of the layer B was ⁇ 1.9% for the thickness of 91 / im. .
  • An unstretched laminate 4 was obtained in the same manner as in Production Example 1, except that both sides and the back side of the die were not covered with the surrounding members.
  • the variation in the thickness of the layer A was ⁇ 1% with respect to the thickness of 201 / im, and the variation in the thickness of the layer B was ⁇ 3.3% with respect to the thickness of 92 zm.
  • the unstretched laminate 1 obtained in Production Example 1 was cut into a sheet having a length of 210 mm and a width of 160 mm, and this was cut into an oven using a coaxial biaxial stretching machine (manufactured by Takahashi Kogyo Co., Ltd., high-performance thin film apparatus FITZ).
  • a coaxial biaxial stretching machine manufactured by Takahashi Kogyo Co., Ltd., high-performance thin film apparatus FITZ.
  • Table 1 shows the measurement results of the obtained optical laminate 1.
  • Table 1 shows the measurement results of the obtained optical laminate 2.
  • Layer B was obtained in the same manner as in Example 1 except that the unstretched laminate 3 obtained in Production Example 3 was used in place of the unstretched laminate 1 and the stretching ratio was 2.8 times in both the length and width directions.
  • Optical laminate 3 with a thickness of 148 ⁇ m and a width of 350 mm was obtained.
  • Table 1 shows the measurement results of the obtained optical laminate 3.
  • An optical laminate 4 was obtained in the same manner as in Example 1, except that the difference was 0.5 seconds and the stretching ratio was 2 times in both the vertical and horizontal directions.
  • Table 1 shows the measurement results of the obtained optical laminate 4.
  • the luminance unevenness was evaluated using this optical laminated body 4. As a result, the luminance unevenness (white spots) was observed when the front and right and left 40 ° forces were observed. However, no inversion of the characters was observed. When viewed from above and below by 40 °, uneven brightness was observed, and inversion of characters was observed.
  • the optical laminate of the present invention As shown in the examples, when the refractive index in the thickness direction of the laminate is nz , and the refractive indexes in two directions perpendicular to each other perpendicular to the thickness direction are n and n, n> (n + n) / 2 Xyzxyxy represented by, (n -n) X d
  • the variation of the front phase difference Re is within 10 nm, and the variation of the phase difference R40 when the light incident angle is 40 ° is within ⁇ 20 nm. Therefore, when this optical laminated body is used in a liquid crystal display device, it is possible to provide a good display which can eliminate luminance unevenness when viewed from a direction of 40 ° up and down and left and right only in the front direction.
  • n> (n + n) / 2 satisfies a force (n-n) Xd. Is 40 °, the variation of the phase difference R40 is ⁇ 23 nm. For this reason, when this optical laminate was used for a liquid crystal display device, luminance unevenness was observed when viewed from the front direction and the left and right directions of 40 °, and inversion of the characters was observed when viewed from the vertical direction of 40 °.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)

Abstract

There is provided an optically laminated material including a layer (layer A) containing resin having a negative intrinsic birefringence value and a layer (layer B) containing transparent resin arranged on at least one side of the layer A. The optically laminated material satisfies the following conditions [1] to [5]: [1] TgA > TgB; [2] nz > nx, nz > ny, nx ≅ny; [3] nz > (nx + ny)/2; [4] Irregularities of the front phase difference Re expressed by (nx - ny) × d are within 10 nm; [5] Irregularities of the phase difference R40 when the light incident angle is 40 degrees is within ± 20 nm; wherein TgA is a glass-transition temperature of the resin having the negative intrinsic birefringence value, TgB is a glass-transition temperature of the transparent resin, d is a thickness of the laminated material, nz is a refraction index of the thickness direction measured by light having wavelength of 548.6 nm, nx, ny are refraction indexes of two directions vertical to the thickness direction and orthogonally intersecting each other (the orthogonally intersecting axes of nx, ny are defined so that nx - ny is maximum). This enables preferable compensation of birefringence and obtaining an optically laminated material having no luminance irregularities or color irregularities. A manufacturing method of the optically laminated material is also disclosed.

Description

明 細 書  Specification
光学積層体及びその製造方法  Optical laminate and method for producing the same
技術分野  Technical field
[0001] 本発明は、容易に製造が可能で、これを用いて好適に複屈折を補償でき、さらに輝 度ムラや色ムラのない光学積層体及びその製造方法に関する。 背景技術  The present invention relates to an optical laminate that can be easily manufactured, can suitably compensate for birefringence using the same, and has no brightness unevenness or color unevenness, and a method for manufacturing the same. Background art
[0002] パーソナルコンピュータやワードプロセッサ等の種々の画面表示に STN型等の複 屈折性を利用した高コントラストな液晶表示装置が使用されている。し力 ながら、ッ イストネマチック液晶、コレステリック液晶及びスメクチック液晶を使用した液晶表示装 置においては、液晶セルの持つ複屈折によって視野角特性が悪くなるという問題が ある。視野角特性が悪いということは、表示画面を正面から見た場合の表示が良好で も、斜め方向から見た場合に着色や表示の消失などの不具合が生じるということであ る。この不具合を解消するために、液晶セルの複屈折によって生じる位相差を補償 可能な位相差板を、液晶セルと偏光板との間に介在させる方式が主流となっており、 この位相差板について種々の検討がされている。  [0002] A high-contrast liquid crystal display device using birefringence such as an STN type is used for various screen displays such as a personal computer and a word processor. However, in a liquid crystal display device using a twist nematic liquid crystal, a cholesteric liquid crystal, and a smectic liquid crystal, there is a problem that a viewing angle characteristic is deteriorated due to birefringence of a liquid crystal cell. Poor viewing angle characteristics mean that even when the display screen is viewed from the front, the display is good, but when viewed from an oblique direction, problems such as coloring and disappearance of the display occur. In order to solve this problem, a method of interposing a phase difference plate between the liquid crystal cell and the polarizing plate, which can compensate for the phase difference caused by the birefringence of the liquid crystal cell, is mainly used. Various studies have been made.
[0003] 特開平 2-160204号公報(特許文献 1)には、波長 632. 8nmの単色光を垂直入 射した場合の位相差を Re、波長 632. 8nmの単色光をフィルム面の法線とのなす角 度が 40° で斜入射した場合の位相差を R としたとき 0. 92≤R /Re≤1. 08であ  [0003] Japanese Patent Application Laid-Open No. 2-160204 (Patent Document 1) discloses that the phase difference when monochromatic light having a wavelength of 632.8 nm is vertically incident is Re, and that the monochromatic light having a wavelength of 632.8 nm is normal to the film surface. And the phase difference when obliquely incident at 40 ° and R is 0.92≤R / Re≤1.08
40 40  40 40
ることを特徴とする位相差フィルムが開示されている。  A retardation film is disclosed.
[0004] また、特開平 5-157911号公報(特許文献 2)には、フィルムの平面方向に配向し た分子群と厚み方向に配向した分子群とが混在してなることを特徴とする複屈折性フ イルム、及び樹脂フィルムを延伸処理する際に、その樹脂フィルムの片面又は両面に 収縮性フィルムを接着して積層体を形成し、その積層体を加熱延伸処理して前記樹 脂フィルムの延伸方向と直交する方向の収縮力を付与することを特徴とする前記複 屈折性フィルムの製造方法が開示されている。  [0004] Also, Japanese Patent Application Laid-Open No. 5-157911 (Patent Document 2) is characterized in that a group of molecules oriented in a plane direction of a film and a group of molecules oriented in a thickness direction are mixed. When the refractive film and the resin film are stretched, a shrinkable film is adhered to one or both surfaces of the resin film to form a laminate, and the laminate is heated and stretched to form a laminate of the resin film. A method for producing the birefringent film, characterized in that a contraction force in a direction perpendicular to the stretching direction is applied.
[0005] さらに、特開平 2-256023号公報(特許文献 3)には、光透過性を有するフィルム( A)が、該フィルムの法線方向を基準として周囲 45° 以内に少なくとも 1本の光軸又 は光線軸を有する力、又は該フィルムの法線方向の屈折率を n 、長手方向の屈折 [0005] Further, Japanese Patent Application Laid-Open No. 2-256023 (Patent Document 3) discloses that a film (A) having optical transparency has at least one light beam within 45 ° around the normal direction of the film. Axle Is the force with the ray axis, or the refractive index in the normal direction of the film, n, the longitudinal refraction
TH  TH
率を n 、幅方向の屈折率を n としたとき、 n _ (n +n ) /2〉0を満たすかのい Assuming that the refractive index is n and the refractive index in the width direction is n, whether n _ (n + n) / 2> 0 is satisfied
MD TD TH D TD MD TD TH D TD
ずれかの条件を満たし、該フィルム (A)の少なくとも 1枚と正の固有複屈折値を有す るとともに光透過性を有する高分子から形成される 1軸延伸フィルム(B)の少なくとも :!枚とを、液晶セルと偏光板との間に挿入してなる液晶表示装置が開示されている。 前記フィルム (A)として、固有複屈折値が負の材料からなる二軸延伸フィルム又は一 軸延伸フィルムを積層したものが挙げられている。  At least one of the uniaxially stretched films (B) formed from a polymer having a positive intrinsic birefringence value and a light transmitting property and at least one of the films (A) that satisfies any of the following conditions: A liquid crystal display device in which a sheet is inserted between a liquid crystal cell and a polarizing plate is disclosed. Examples of the film (A) include a film obtained by laminating a biaxially stretched film or a uniaxially stretched film made of a material having a negative intrinsic birefringence value.
[0006] し力、しながら、特開平 2-160204号公報に記載の方法では、位相差のばらつきや 輝度ムラや色むらが十分に小さくならず、又製造効率に劣るという問題があった。ま た、この方法では、ハイビジョンテレビ等の大液晶画面などに適用できる大判体を得 ることが困難である。  [0006] However, the method described in Japanese Patent Application Laid-Open No. 2-160204 has a problem that variations in phase difference, luminance unevenness and color unevenness are not sufficiently reduced, and manufacturing efficiency is poor. Also, with this method, it is difficult to obtain a large format that can be applied to a large liquid crystal screen of a high-definition television or the like.
また、特開平 5-157911号公報に記載の方法では、延伸と収縮との比率を精密に コントロールする必要があり、製造工程が複雑になって生産効率に劣る問題がある。 さらに特開平 2-256023号公報に開示されている液晶表示装置に使用されている フィルムは、特に該フィルム (A)として、固有複屈折値が負の材料からなる二軸延伸 フィルム又は一軸延伸フィルムを用いた場合、製造が比較的容易で位相差のコント口 ールも容易にできるものと考えられる。し力 ながら、好適な位相差(レターデーシヨン )を発現し、し力もその均一性を保っためには、ゾーン加熱による縦一軸延伸やテン ターによる横一軸延伸、あるいはこれらを組み合わせた逐次または同時二軸延伸な どを行うことが必要である。し力 ながら、延伸する材料の強度が不足しているために 延伸時に破断しやすぐ破断しないように高温の条件で延伸すると、望ましい位相差 が発現しにくぐまた位相差の発現にムラを生じやすくなる問題があった。従って、こ のように固有複屈折値が負の材料からなり、 n _ (n +n ) Z2 > 0の条件を満たす  In the method described in Japanese Patent Application Laid-Open No. 5-157911, it is necessary to precisely control the ratio between stretching and shrinking, and there is a problem that the manufacturing process is complicated and production efficiency is poor. Further, the film used in the liquid crystal display device disclosed in Japanese Patent Application Laid-Open No. 2-256023 is particularly a biaxially stretched film or a uniaxially stretched film made of a material having a negative intrinsic birefringence value as the film (A). It is thought that the manufacture is relatively easy and the control of the phase difference can be easily performed by using the. In order to develop a suitable phase difference (retardation) while maintaining the uniformity of the force, it is necessary to perform longitudinal uniaxial stretching by zone heating, horizontal uniaxial stretching by a tenter, or a combination of these in a sequential or simultaneous manner. It is necessary to perform biaxial stretching. However, when the film is stretched under high temperature conditions so that it does not break or break immediately during stretching due to the lack of strength of the stretched material, it is difficult to develop the desired retardation and unevenness in the manifestation of the retardation occurs There was a problem that became easier. Therefore, this material is made of a material with a negative intrinsic birefringence, and satisfies the condition of n _ (n + n) Z2> 0
TH MD TD  TH MD TD
ような位相差フィルムは、実用レベルで使用できるものは存在しな力、つた。  There is no such retardation film that can be used at a practical level.
[0007] さらに、固有複屈折値が負の材料からなるフィルムを二軸延伸することにより、面内 の位相差が実質的に無ぐかつ面方向の屈折率よりも厚み方向の屈折率が大きい位 相差フィルム(レ、わゆるポジティブレターダー)の作成が可能となり、例えばコレステリ ック液晶を用いた表示装置の位相差補償フィルムへの応用などが期待できるが、や はり延伸する材料の強度が不足しているために延伸時に破断しやすぐ破断しない ように高温の条件で延伸すると、望ましい位相差が発現しにくぐまた位相差の発現 にムラ、輝度ムラ及び色むらが発生しやすいという理由から、実用レベルで使用でき るものは存在しなかった。 Further, by biaxially stretching a film made of a material having a negative intrinsic birefringence value, there is substantially no in-plane retardation and the refractive index in the thickness direction is larger than the refractive index in the plane direction. It is possible to produce a retardation film (L, so-called positive letterer), and for example, it can be expected to be applied to a retardation compensation film of a display device using cholesteric liquid crystal. When stretched under high-temperature conditions to prevent breakage or short breakage during stretching due to insufficient strength of the stretched material, it is difficult to develop the desired phase difference, and unevenness in brightness, uneven brightness and color Nothing could be used on a practical level because of the tendency for unevenness to occur.
[0008] 特許文献 1 :特開平 2-160204号公報 Patent Document 1: JP-A-2-160204
特許文献 2:特開平 5- 157911号公報  Patent Document 2: JP-A-5-157911
特許文献 3:特開平 2-256023号公報  Patent Document 3: Japanese Patent Laid-Open No. 2-256023
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 従って、本発明の目的は、従来のものよりも、好適に複屈折を補償でき、さらに輝度 ムラや色むらのない光学積層体及びこれを容易に製造することができる製造方法を 提供することにある。 [0009] Accordingly, an object of the present invention is to provide an optical laminated body that can compensate for birefringence more favorably than conventional ones, does not have luminance unevenness or color unevenness, and a manufacturing method that can easily manufacture the same. Is to do.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者らは、上記目的を達成すべく鋭意検討した結果、固有複屈折値が負であ る樹脂を含有してなる樹脂材料と、前記固有複屈折値が負である樹脂のガラス転移 温度 Tgよりも低いガラス転移温度 Tgを有する透明な樹脂を含有してなる樹脂材料[0010] The present inventors have conducted intensive studies to achieve the above object. As a result, a resin material containing a resin having a negative intrinsic birefringence value and a resin material containing the resin having a negative intrinsic birefringence value have been described. A resin material containing a transparent resin having a glass transition temperature Tg lower than the glass transition temperature Tg
A B A B
とを共押出して、未延伸積層体を得、その積層体を特定の条件で延伸処理すること により、上記目的を達成しうることを見出し、この知見に基づいてさらに研究を進め、 本発明を完成するに至った。  And co-extrusion to obtain an unstretched laminate, and by stretching the laminate under specific conditions, it has been found that the above object can be achieved.Further research based on this finding has led to the present invention. It was completed.
[0011] 力べして本発明によれば、 [0011] By virtue of the present invention,
(1)固有複屈折値が負である樹脂を含有してなる層 (A層)、及び前記 A層の少なくと も片面に設けられた透明な樹脂を含有してなる層(B層)を含む光学積層体であって 、前記固有複屈折が負である樹脂のガラス転移温度を Tg、前記透明な樹脂のガラ  (1) A layer containing a resin having a negative intrinsic birefringence value (A layer), and a layer containing a transparent resin provided on at least one side of the A layer (B layer) An optical laminate comprising: a resin having a negative intrinsic birefringence having a glass transition temperature of Tg;
A  A
ス転移温度を Tg、前記積層体の厚みを d、波長 548. 6nmの光で測定した厚み方  The transition temperature was Tg, the thickness of the laminate was d, and the thickness was measured with light at a wavelength of 548.6 nm.
B  B
向の屈折率を n、厚み方向に垂直な互いに直交する 2方向の屈折率を n、 n (n、 n Refractive index of the direction of n, the 2 the refractive index in the direction orthogonal to the perpendicular to one another in the thickness direction n, n (n, n
z y y の直交軸は n -nが最大となるように定められる)としたとき以下の [1]一 [5]の要件を 満たすことを特徴とする光学積層体;  the orthogonal axis of z y y is determined so that n−n is maximized), and the following [1]-[5] requirements are satisfied;
[l]Tg >Tg  [l] Tg> Tg
A B、 [2]n >n n >n n AB, [2] n>nn> nn
z x z y x y  z x z y x y
[3]n > (n +n ) /2  [3] n> (n + n) / 2
[4] (n -n ) X dで表される正面位相差 Reのばらつきが lOnm以内である、  [4] The dispersion of the front phase difference Re represented by (n-n) X d is within lOnm,
X y  X y
[5]光入射角が 40° のときの位相差 R40のばらつきが土 20nm以内である; [5] The variation of the phase difference R40 when the light incident angle is 40 ° is within 20 nm of soil;
(2)ヘイズが 3%以下である前記(1)記載の光学積層体; (2) The optical laminate according to (1), wherein the haze is 3% or less;
(3)前記固有複屈折値が負である樹脂が、ビニル芳香族系重合体である前記(1)又 は (2)記載の光学積層体;  (3) The optical laminate according to (1) or (2), wherein the resin having a negative intrinsic birefringence value is a vinyl aromatic polymer;
(4)前記ビニル芳香族系重合体が、スチレン及び Z又はスチレン誘導体と無水マレ イン酸との共重合体である前記(3)に記載の光学積層体;  (4) The optical laminate according to (3), wherein the vinyl aromatic polymer is a copolymer of styrene and Z or a styrene derivative and maleic anhydride;
(5)前記透明な樹脂が、脂環式構造を有する重合体樹脂である前記(1) (4)のレヽ ずれか 1つに記載の光学積層体;  (5) The optical laminate according to any one of (1) and (4), wherein the transparent resin is a polymer resin having an alicyclic structure;
(6)固有複屈折値が負でありガラス転移温度 Tgを有する樹脂を含有してなる樹脂  (6) A resin containing a resin having a negative intrinsic birefringence and a glass transition temperature Tg
A  A
材料 (a)と、 Tgよりも 20°C以上低いガラス転移温度 Tgを有する透明な樹脂を含有 Contains material (a) and a transparent resin with a glass transition temperature Tg that is at least 20 ° C lower than Tg
A B  A B
してなる樹脂材料 (b)とを共押出して、未延伸積層体を得る工程、及び前記未延伸 積層体を前記 (Tg -10) °C— (Tg + 20) °Cの温度で延伸する工程を有することを特 Co-extrusion with the resulting resin material (b) to obtain an unstretched laminate, and stretching the unstretched laminate at the temperature of (Tg−10) ° C .— (Tg + 20) ° C. Specially having a process
A A  A A
徴とする前記(1) (5)のいずれ力 1つに記載の光学積層体の製造方法; (1) The method for producing an optical laminate according to any one of (1) and (5) above,
(7)前記延伸工程が、未延伸積層体を温風で加熱することを含み、未延伸積層体上 部における未延伸積層体に直角に吹き出す温風の温度を T (°C)、温風の風速を U  (7) The stretching step includes heating the unstretched laminate with warm air, and the temperature of the warm air blown at right angles to the unstretched laminate above the unstretched laminate is set to T (° C), warm air. U wind speed
H  H
(m/秒)、未延伸積層体力 温風の吹き出し口までの最短距離を L (m)、未延伸 (m / s), unstretched laminate strength L (m), shortest distance to hot air outlet, unstretched
H H H H
積層体下部における未延伸積層体に直角に吹き出す温風の温度を T (°c)、温風の 風速を U (m/秒)、未延伸積層体から温風の吹き出し口までの最短距離を L (m) としたとき、下式(1)で計算される Vの、未延伸積層体の上部における Vに対する下 The temperature of the hot air blown out perpendicular to the unstretched laminate at the bottom of the laminate is T (° c), the wind speed of the hot air is U (m / s), and the shortest distance from the unstretched laminate to the outlet of hot air is When L (m), the value of V calculated by the following equation (1) is lower than V at the upper part of the unstretched laminate.
H  H
部における Vの比 (V /V )が、 0. 5 <V /V < 2を満たすことを特徴とする前記( Wherein the ratio of V in the portion (V / V) satisfies 0.5 <V / V <2.
H L H L  H L H L
6)記載の製造方法、  6) The manufacturing method described,
式(1) :V= (T X U) /L ;  Equation (1): V = (T X U) / L;
(8)前記未延伸積層体の各層の厚みのばらつきが ± 3%以内である前記(6)又は(7 )記載の製造方法;  (8) The production method according to the above (6) or (7), wherein the variation of the thickness of each layer of the unstretched laminate is within ± 3%;
及び (9)前記延伸工程において、未延伸積層体の流れ方向の中心部から左右の領域の 温度を中心部の温度に対して ± 1. 5°C以内とする前記(6)— (8)のいずれか 1つに 記載の製造方法;がそれぞれ提供される。 as well as (9) In the stretching step, the temperature of the left and right regions from the center in the flow direction of the unstretched laminate is set to be within ± 1.5 ° C with respect to the temperature of the center in the above (6) to (8). Any one of the production methods described above.
発明の効果  The invention's effect
[0012] 本発明の光学積層体は、位相差のコントロールが可能で、かつ位相差のばらつき( 光入射角が 0° 及び 40° のとき)が少なぐさらに色むらや輝度ムラが少ないので、 複屈折の高度な補償が可能となり、それ単独または他の部材と組み合わせて、位相 差板や視野角補償板などとして、液晶表示装置、有機 EL表示装置などの装置に広 く応用可能である。また、本発明の方法によれば、本発明の光学積層体を、固有複 屈折値が負である樹脂を含有してなる層 (A層)の破断なぐ製造効率よく得ることが できる。  [0012] The optical laminate of the present invention can control the phase difference, and has less variation in the phase difference (when the light incident angle is 0 ° and 40 °), and further has less color unevenness and luminance unevenness. Advanced compensation of birefringence becomes possible, and it can be widely applied to devices such as liquid crystal display devices and organic EL display devices as retardation plates and viewing angle compensators, alone or in combination with other members. Further, according to the method of the present invention, the optical laminate of the present invention can be obtained with high production efficiency such that the layer (A layer) containing a resin having a negative intrinsic birefringence value is not broken.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明の光学積層体は、固有複屈折値が負である樹脂を含有してなる層 (A層)及 びその少なくとも片面に設けられた透明な樹脂を含有してなる層(B層)を含む。以下 、固有複屈折値が負である樹脂を含有してなる層を単に A層、透明な樹脂を含有し てなる層を単に B層と記すことがある。  [0013] The optical laminate of the present invention includes a layer (A layer) containing a resin having a negative intrinsic birefringence value and a layer (B layer) containing a transparent resin provided on at least one surface of the layer. )including. Hereinafter, a layer containing a resin having a negative intrinsic birefringence value may be simply referred to as an A layer, and a layer containing a transparent resin may be simply referred to as a B layer.
[0014] 本発明の光学積層体の A層に使用する固有複屈折値が負である樹脂とは、分子が 一軸性の秩序をもって配向した層に光が入射したとき、前記配向方向の光の屈折率 が前記配向方向に直交する方向の光の屈折率より小さくなるものをいう。  [0014] The resin having a negative intrinsic birefringence value used for the A layer of the optical laminate of the present invention is defined as a resin having a uniaxial order when light is incident on a layer in which the light is oriented in the orientation direction. It means that the refractive index is smaller than the refractive index of light in the direction perpendicular to the alignment direction.
[0015] A層に用いる固有複屈折率が負の樹脂としては、ディスコティック液晶ポリマー、ビ ニル芳香族系重合体、ポリアクリロニトリル系重合体、ポリメチルメタタリレート系重合 体、セルロースエステル系重合体、これらの多元(二元、三元等)共重合体などが挙 げられる。これらは 1種単独で、あるいは 2種以上を組み合わせて用いることができる  The resin having a negative intrinsic birefringence used for the A layer includes a discotic liquid crystal polymer, a vinyl aromatic polymer, a polyacrylonitrile polymer, a polymethyl methacrylate polymer, and a cellulose ester polymer. Coalesced copolymers of these (binary, ternary, etc.). These can be used alone or in combination of two or more
[0016] これらの中でも、ビエル芳香族系重合体、ポリアクリロニトリル系重合体およびポリメ チルメタタリレート系重合体の中から選択される少なくとも 1種が好ましい。中でも複屈 折発現性が高いという観点から、ビニル芳香族系重合体がより好ましい。 [0016] Among these, at least one selected from a Bier aromatic polymer, a polyacrylonitrile polymer, and a polymethyl methacrylate polymer is preferable. Among them, from the viewpoint of high birefringence, a vinyl aromatic polymer is more preferable.
[0017] ビニル芳香族系重合体とは、ビニル芳香族単量体の重合体、又はビニル芳香族単 量体と共重合可能な単量体との共重合体のことをレ、う。 [0017] The vinyl aromatic polymer is a polymer of a vinyl aromatic monomer or a vinyl aromatic monomer. A copolymer of a monomer and a copolymerizable monomer.
ビエル芳香族単量体としては、スチレン; 4 -メチルスチレン、 4-クロロスチレン、 3-メ チノレスチレン、 4-メトキシスチレン、 4-tert-ブトキシスチレン、 α _メチノレスチレンなど のスチレン誘導体;などが挙げられる。これらを単独若しくは 2種以上併用して使用し てもよい。  As the Bier aromatic monomer, styrene; styrene derivatives such as 4-methylstyrene, 4-chlorostyrene, 3-methylstyrene, 4-methoxystyrene, 4-tert-butoxystyrene, α-methinolestyrene; and the like Is mentioned. These may be used alone or in combination of two or more.
ビュル芳香族単量体と共重合可能な単量体としては、プロピレン、ブテン等のォレ フィン;アクリロニトリル等のひ, /3—エチレン性不飽和二トリル単量体;アクリル酸、メタ アクリル酸、無水マレイン酸等のひ, β一エチレン性不飽和カルボン酸;アクリル酸ェ ステル;メタアクリル酸エステル;マレイミド;酢酸ビュル;塩化ビュル;などが挙げられ る。  Monomers that can be copolymerized with the butyl aromatic monomer include olefins such as propylene and butene; acrylonitrile, etc .; and / 3-ethylenically unsaturated nitrile monomers; acrylic acid, methacrylic acid And β-ethylenically unsaturated carboxylic acid; acrylic ester; methacrylic ester; maleimide; butyl acetate; butyl chloride; and the like.
ビュル芳香族系重合体の中でも、耐熱性が高い観点から、スチレン及び Ζ又はス チレン誘導体と無水マレイン酸との共重合体が好ましい。  From the viewpoint of high heat resistance, a copolymer of styrene, styrene, or a styrene derivative and maleic anhydride is preferable among the bullet aromatic polymers.
[0018] 本発明において、 Α層の厚みは、特に限定されないが、通常 5— 400 μ ΐη、好ましく は 15— 250 μ ΐηである。  In the present invention, the thickness of the layer is not particularly limited, but is usually 5 to 400 μΐη, preferably 15 to 250 μΐη.
[0019] 本発明におレ、て、 Α層に用いる固有複屈折値が負である樹脂のガラス転移温度 Tg は、使用時の耐熱性に優れる点から、好ましくは 110°C以上、より好ましくは 120°C In the present invention, the glass transition temperature Tg of the resin having a negative intrinsic birefringence used for the layer is preferably 110 ° C. or higher, more preferably 110 ° C. or more, from the viewpoint of excellent heat resistance during use. Is 120 ° C
A A
以上である。  That is all.
[0020] 本発明の光学積層体に使用する B層に用いる前記固有複屈折値が負である樹脂 のガラス転移温度 Tgよりも低いガラス転移温度 Tgを有する透明な樹脂としては、  The transparent resin having a glass transition temperature Tg lower than the glass transition temperature Tg of the resin having a negative intrinsic birefringence value used for the layer B used in the optical laminate of the present invention includes:
A B  A B
前記 A層に用いる樹脂のガラス転移温度 Tgよりも低いガラス転移温度 Tgを有し、  Having a glass transition temperature Tg lower than the glass transition temperature Tg of the resin used for the A layer,
A B  A B
かつ lmm厚で全光線透過率が 80%以上のものであれば特に制限されず、例えば、 脂環式構造を有する重合体樹脂、ポリエチレンやポリプロピレンなどの鎖状ォレフィ ン系重合体、ポリカーボネート系重合体、ポリエステル系重合体、ポリスルホン系重合 体、ポリエーテルスルホン系重合体、ポリスチレン系重合体、ポリオレフイン系重合体 、ポリビニルアルコール系重合体、酢酸セルロース系重合体、ポリ塩化ビニル系重合 体、ポリメチルメタタリレート系重合体などが挙げられる。これらの中でも、脂環式構造 を有する重合体樹脂、鎖状ォレフィン系重合体、ポリスチレン系重合体、又はポリメチ ノレメタタリレート系重合体が好ましぐ透明性、低吸湿性、寸法安定性、軽量性などの 観点から、脂環式構造を有する重合体樹脂が特に好ましい。もし、 A層に用いる樹脂 と同じ種類のものを用いる場合には、 A層に用いる樹脂のガラス転移温度よりも 20°C 以上低いものを選択することが好ましい。 It is not particularly limited as long as it has a thickness of 1 mm and a total light transmittance of 80% or more.Examples include a polymer resin having an alicyclic structure, a linear olefin-based polymer such as polyethylene and polypropylene, and a polycarbonate-based polymer. Coalesce, polyester polymer, polysulfone polymer, polyethersulfone polymer, polystyrene polymer, polyolefin polymer, polyvinyl alcohol polymer, cellulose acetate polymer, polyvinyl chloride polymer, polymethyl Examples include a metathalylate polymer. Among these, a polymer resin having an alicyclic structure, a chain olefin polymer, a polystyrene polymer, or a polymethyl methacrylate polymer is preferred for transparency, low hygroscopicity, dimensional stability, Such as lightweight From the viewpoint, a polymer resin having an alicyclic structure is particularly preferable. If the same type of resin as that used for the layer A is used, it is preferable to select a resin that is at least 20 ° C lower than the glass transition temperature of the resin used for the layer A.
[0021] 脂環式構造を有する重合体樹脂は、主鎖及び/又は側鎖に脂環式構造を有する ものであり、機械強度、耐熱性などの観点から、主鎖に脂環式構造を含有するものが 好ましい。 [0021] The polymer resin having an alicyclic structure has an alicyclic structure in the main chain and / or the side chain, and has an alicyclic structure in the main chain from the viewpoint of mechanical strength, heat resistance and the like. Those containing are preferred.
[0022] 脂環式構造としては、飽和脂環炭化水素 (シクロアルカン)構造、不飽和脂環炭化 水素(シクロアルケン)構造などが挙げられる力 機械強度、耐熱性などの観点から、 シクロアルカン構造が好ましい。脂環式構造を構成する炭素原子数には、格別な制 限はないが、通常 4一 30個、好ましくは 5 20個、より好ましくは 5— 15個の範囲で あるときに、機械強度、耐熱性、及びフィルムの成形性の特性が高度にバランスされ 、好適である。本発明に使用される脂環式構造含有重合体樹脂中の脂環式構造を 含有してなる繰り返し単位の割合は、使用目的に応じて適宜選択すればよいが、好 ましくは 30重量%以上、さらに好ましくは 50重量%以上、特に好ましくは 70重量% 以上、もっとも好ましくは 90重量%以上である。脂環式構造を有する重合体樹脂中 の脂環式構造を有する繰り返し単位の割合がこの範囲にあると光学積層体の透明性 および耐熱性の観点から好ましレ、。  Examples of the alicyclic structure include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene) structure. From the viewpoint of mechanical strength and heat resistance, the cycloalkane structure Is preferred. The number of carbon atoms constituting the alicyclic structure is not particularly limited, but is usually in the range of 430, preferably 520, more preferably 5 to 15, the mechanical strength, The properties of heat resistance and film formability are highly balanced and suitable. The proportion of the alicyclic structure-containing repeating unit in the alicyclic structure-containing polymer resin used in the present invention may be appropriately selected according to the purpose of use, but is preferably 30% by weight. It is more preferably at least 50% by weight, particularly preferably at least 70% by weight, most preferably at least 90% by weight. When the proportion of the repeating unit having an alicyclic structure in the polymer resin having an alicyclic structure is within this range, it is preferable from the viewpoint of the transparency and heat resistance of the optical laminate.
[0023] 脂環式構造を有する重合体樹脂は、具体的には、(1)ノルボルネン系重合体、(2) 単環の環状ォレフィン系重合体、 (3)環状共役ジェン系重合体、(4)ビニル脂環式 炭化水素重合体、及びこれらの水素添加物などが挙げられる。これらの中でも、透明 性や成形性の観点から、ノルボルネン系重合体がより好ましい。  [0023] Specific examples of the polymer resin having an alicyclic structure include (1) a norbornene-based polymer, (2) a monocyclic cyclic olefin-based polymer, (3) a cyclic conjugated gen-based polymer, 4) Vinyl alicyclic hydrocarbon polymers and hydrogenated products thereof. Among these, a norbornene-based polymer is more preferable from the viewpoint of transparency and moldability.
ノルボルネン系重合体としては、具体的にはノルボルネン系モノマーの開環重合体 、ノルボルネン系モノマーと開環共重合可能なその他のモノマーとの開環共重合体、 及びそれらの水素添加物、ノルボルネン系モノマーの付加重合体、ノルボルネン系 モノマーと共重合可能なその他のモノマーとの付カ卩共重合体などが挙げられる。これ らの中でも、透明性の観点から、ノルボルネン系モノマーの開環(共)重合体水素添 加物が最も好ましい。  Examples of the norbornene-based polymer include a ring-opening polymer of a norbornene-based monomer, a ring-opening copolymer of a norbornene-based monomer and another monomer capable of ring-opening copolymerization, and hydrogenated products thereof, norbornene-based polymers. Examples thereof include an addition polymer of a monomer and a copolymer of a monomer with another monomer copolymerizable with a norbornene-based monomer. Among them, hydrogenated ring-opening (co) polymers of norbornene monomers are most preferred from the viewpoint of transparency.
脂環式構造を有する重合体樹脂は、例えば特開 2002-321302号公報などに開 示されている公知の重合体から選ばれる。 Polymer resins having an alicyclic structure have been disclosed in, for example, JP-A-2002-321302. It is selected from the known polymers shown.
[0024] 本発明の光学積層体の B層に用いる透明な樹脂として好適に用いられるノルボル ネン系重合体の中でも、繰り返し単位として、 X:ビシクロ [3. 3. 0]オクタン- 2, 4-ジ ィル -エチレン構造と、 Y:トリシクロ [4. 3. 0. I2'5]デカン- 7, 9_ジィル -エチレン構造 とを有し、これらの繰り返し単位の含有量が、ノルボルネン系重合体の繰り返し単位 全体に対して 90重量%以上であり、かつ、 Xの含有割合と Yの含有割合との比力 X : Yの重量比で 100: 0 40: 60であるものが好ましレ、。このような樹脂を用いることに より、長期的に寸法変化がなぐ光学特性の安定性に優れる光学積層体を得ることが できる。 [0024] Among norbornene-based polymers suitably used as the transparent resin used for the layer B of the optical laminate of the present invention, X: bicyclo [3.3.0] octane-2,4- ethylene structure, Y - di I le: tricyclo [4. 3. 0. I 2 '5 ] decane - 7, 9_ Jiiru - and a ethylene structure, the content of these recurring units, norbornene weight It is preferable that the content is 90% by weight or more based on the whole unit of the united unit, and that the specific force between the X content and the Y content is 100: 0 40:60 by the weight ratio of X: Y. ,. By using such a resin, it is possible to obtain an optical laminate having excellent stability of optical characteristics in which dimensional change does not occur in a long term.
[0025] 重合したとき Xの構造を繰り返し単位として有するモノマーとしては、ノルボルネン環 に五員環が結合した構造を有するノルボルネン系単量体が挙げられ、より具体的に は、トリシクロ [4. 3. 0. I2'5]デカ -3, 7-ジェン(慣用名:ジシクロペンタジェン)及びそ の誘導体 (環に置換基を有するもの)、 7, 8-ベンゾトリシクロ [4· 3. 0. 1°'5]デ力- 3- ェン (慣用名:メタノテトラヒドロフルオレン)、及びその誘導体が挙げられる。 Examples of the monomer having the structure of X as a repeating unit upon polymerization include a norbornene-based monomer having a structure in which a 5-membered ring is bonded to a norbornene ring, and more specifically, tricyclo [4.3. . 0. I 2 ' 5 ] Deca-3,7-gen (common name: dicyclopentadiene) and its derivatives (substituted in the ring), 7,8-benzotricyclo [4.3. 0.1 ° ' 5 ] de-3-ene (common name: methanotetrahydrofluorene) and derivatives thereof.
また、重合したとき Yの構造を繰り返し単位として有するモノマーとしては、テトラシク 口 [4. 4. 0. I2'5. 1"°]デカ -3, 7-ジェン (慣用名:テトラシクロドデセン)及びその誘 導体 (環に置換基を有するもの)が挙げられる。 The monomer having repeating units of the structure of Y when polymerized, Tetorashiku port [4. 4. 0. I 2 '5 1 "°.] Deca -3, 7- Jen (trivial name: tetracyclododecene ) And derivatives thereof (having a substituent on the ring).
[0026] このようなノルボルネン系重合体を得る手段としては、具体的には a)重合したとき前 記 Xの構造を繰り返し単位として有することができるモノマーと、重合したとき前記 Yの 構造を繰り返し単位として有することができるモノマーとを共重合比をコントロールし て重合し、必要に応じてポリマー中の不飽和結合を水素添加する方法や、 b)前記 X の構造を繰り返し単位として有するポリマーと、前記 Yの構造を繰り返し単位として有 するポリマーとをブレンド比をコントロールしてブレンドする方法が挙げられる。  [0026] As means for obtaining such a norbornene-based polymer, specifically, a) a monomer capable of having the above-mentioned structure of X as a repeating unit when polymerized, and a Y-type structure which is repeated when polymerized A method of polymerizing a monomer capable of having a unit as a unit by controlling the copolymerization ratio and hydrogenating an unsaturated bond in the polymer as necessary, or b) a polymer having the structure of X as a repeating unit A method of blending the polymer having the structure of Y as a repeating unit with a controlled blending ratio is exemplified.
[0027] 本発明において、 B層に用いる透明な樹脂のガラス転移温度 Tgは、 A層に用いる  In the present invention, the glass transition temperature Tg of the transparent resin used for the layer B is
B  B
固有複屈折が負である樹脂のガラス転移温度 Tgよりも低ぐ 20°C以上低いことが好  Lower than glass transition temperature Tg of resin with negative intrinsic birefringence Preferably lower by at least 20 ° C
A  A
ましい。 Tgが Tgと同等以上であると、特に B層に用いる透明な樹脂の固有複屈折  Good. When Tg is equal to or higher than Tg, the intrinsic birefringence of the transparent resin used for the B layer
B A  B A
値が正である場合、延伸によって A層の屈折率異方性だけでなぐ B層の屈折率異 方性が発現してしまい、 目的とする面内の直交軸方向の屈折率と厚み方向の屈折率 との関係、が得られにくくなる。 If the value is positive, the stretching develops the refractive index anisotropy of the B layer, which is more than the refractive index anisotropy of the A layer. Refractive index , It is difficult to obtain the relationship.
[0028] 本発明において、 B層に用いる透明樹脂の分子量は、溶媒としてシクロへキサン( 重合体樹脂が溶解しない場合はトルエン)を用いたゲル'パーミエーシヨン'クロマトグ ラフィー(以下、「GPC」と略す。)で測定したポリイソプレン又はポリスチレン換算の重 量平均分子量(Mw)で、通常 10, 000 100, 000、好まし <は 15, 000 80, 000 、より好まし <fま 20, 000 50, 000である。重量平均分子量力このような範囲にある ときに、光学積層体の機械的強度及び成形カ卩ェ性が高度にバランスされ好適である  In the present invention, the molecular weight of the transparent resin used for the layer B is determined by gel “permeation” chromatography using cyclohexane (toluene when the polymer resin does not dissolve) as a solvent (hereinafter “GPC”). The weight average molecular weight (Mw) in terms of polyisoprene or polystyrene, as measured in (1), is usually 10,000, 100,000, preferably <is 15,000 80,000, more preferably <f, 20, 000 50,000. When the weight average molecular weight is in such a range, the mechanical strength and moldability of the optical laminate are highly balanced and suitable.
[0029] 本発明において、 B層に用いる透明樹脂の分子量分布(重量平均分子量 (Mw) Z 数平均分子量 (Mn) )は特に制限されないが、通常 1一 10、好ましくは 1一 4、より好 ましくは 1. 2-3. 5の範囲である。 [0029] In the present invention, the molecular weight distribution (weight average molecular weight (Mw) Z number average molecular weight (Mn)) of the transparent resin used for the layer B is not particularly limited, but is usually 110, preferably 114, more preferably 114. The preferred range is 1.2-3.
[0030] 本発明に好適に用いる脂環式構造を有する重合体樹脂は、その分子量 2, 000以 下の樹脂成分 (すなわち、オリゴマー成分)の含有量が 5重量%以下、好ましくは 3重 量%以下、より好ましくは 2重量%以下である。オリゴマー成分の量が多いと樹脂積 層体を延伸する際に、表面に微細な凹凸が発生したり、厚みムラを生じたりして面精 度が悪くなる。  [0030] The polymer resin having an alicyclic structure suitably used in the present invention has a resin component having a molecular weight of 2,000 or less (that is, an oligomer component) in a content of 5% by weight or less, preferably 3% by weight. %, More preferably 2% by weight or less. When the amount of the oligomer component is large, when the resin laminate is stretched, fine irregularities are generated on the surface or thickness unevenness occurs, resulting in poor surface accuracy.
[0031] オリゴマー成分の量を低減するためには、重合触媒や水素化触媒の選択、重合、 水素化などの反応条件、樹脂を成形用材料としてペレットィヒする工程における温度 条件、などを最適化すればよい。オリゴマーの成分量は、シクロへキサン (重合体榭 脂が溶解しない場合はトルエン)を用いたゲル'パーミエーシヨン'クロマトグラフィー によって測定することができる。  [0031] In order to reduce the amount of the oligomer component, it is necessary to optimize the selection of a polymerization catalyst or a hydrogenation catalyst, reaction conditions such as polymerization and hydrogenation, and temperature conditions in a step of pelletizing a resin as a molding material. Just fine. The amount of the oligomer component can be measured by gel 'permeation' chromatography using cyclohexane (toluene when the polymer resin does not dissolve).
[0032] 本発明において B層の波長 548. 6nmにおける正面位相差 Reは、 30nm以下であ ることが好ましぐ 20nm以下であることがより好ましレ、。さらに、 B層の波長 548. 6nm における厚み方向の位相差 Rthは、 0 20nmであることが好ましい。  In the present invention, the front phase difference Re of the layer B at a wavelength of 548.6 nm is preferably 30 nm or less, more preferably 20 nm or less. Further, it is preferable that the phase difference Rth in the thickness direction of the layer B at a wavelength of 548.6 nm is 0 to 200 nm.
[0033] 本発明において、 B層の厚みは、特に限定されないが、通常 15— 250 z m、好まし くは 25 150 x mである。  [0033] In the present invention, the thickness of the layer B is not particularly limited, but is usually 15 to 250 zm, preferably 25 150 x m.
[0034] 本発明におレ、て、 A層に用レ、る固有複屈折値が負である樹脂及び Z又は B層に用 いる透明な樹脂には、必要に応じて、酸化防止剤、熱安定剤、光安定剤、紫外線吸 収剤、帯電防止剤、分散剤、塩素捕捉剤、難燃剤、結晶化核剤、ブロッキング防止 剤、防曇剤、離型剤、顔料、有機又は無機の充填材、中和剤、滑剤、分解剤、金属 不活性化剤、汚染防止剤、抗菌剤やその他の樹脂、熱可塑性エラストマ一などの公 知の添加剤を発明の効果が損なわれない範囲で添加することができる。これらの添 加剤は、 A層に用いる固有複屈折値が負である樹脂又は B層に用いる透明な樹脂 1 00重量部に対して、通常 0 5重量部、好ましくは 0 3重量部使用する。 A層にお ける固有複屈折値が負である樹脂及び B層における透明な樹脂の割合は、それぞ れ 95— 100重量%、好ましくは 97 100重量%である。 [0034] In the present invention, an antioxidant, if necessary, may be used for the resin having a negative intrinsic birefringence value for the A layer and the transparent resin for the Z or B layer. Heat stabilizer, light stabilizer, UV absorption Collector, antistatic agent, dispersant, chlorine scavenger, flame retardant, crystallization nucleating agent, antiblocking agent, antifogging agent, mold release agent, pigment, organic or inorganic filler, neutralizing agent, lubricant, decomposition Known additives such as agents, metal deactivators, antifouling agents, antibacterial agents and other resins, and thermoplastic elastomers can be added as long as the effects of the invention are not impaired. These additives are used in an amount of usually 0.5 parts by weight, preferably 0.3 parts by weight, per 100 parts by weight of the resin having a negative intrinsic birefringence value used for the layer A or 100 parts by weight of the transparent resin used for the layer B. . The proportion of the resin having a negative intrinsic birefringence value in the layer A and the proportion of the transparent resin in the layer B are respectively 95 to 100% by weight, preferably 97 to 100% by weight.
[0035] 本発明の光学積層体は、波長 548. 6nmの光で測定した積層体の厚み方向の屈 折率を n、厚み方向に垂直な互いに直交する 2方向の屈折率を n、 n (n、 nの直交 z y y 軸は n -nが最大となるように定められる)としたとき、 n >n、 n >n及び n =n並び x y z x z y x y に n > (n +n ) /2を満たす。 The optical laminate of the present invention has a refractive index in the thickness direction of the laminate measured with light having a wavelength of 548.6 nm as n, and a refractive index in two directions perpendicular to each other perpendicular to the thickness direction with n and n ( n, n orthogonal zyy axes are determined so that n−n is maximized), and n> n, n> n and n = n and xyzxzyxy satisfies n> (n + n) / 2.
z x y  z x y
ここで、 n =nとは、 nと nとの差力 通常 0· 0002以下、好ましくは 0. 0001以下、  Here, n = n means the differential force between n and n is usually 0.002 or less, preferably 0.0001 or less,
X y X y  X y X y
さらに好ましくは 0· 00005以下の範囲である。  More preferably, it is in the range of 0.0005 or less.
[0036] また、本発明の光学積層体をポジティブレターダ一として使用する場合は、厚み方 向の位相差 Rthが 0以下であることが必要である。 Rthは使用目的に応じて設定すれ ばよいが、位相差補償素子としての機能を果たす上では- 50—- lOOOnmの範囲、 好ましくは— 100—— 500nmの範囲とする。 Rthは、式: Rth= ( (n +n ) /2-n ) X d x y z で定義される数値である。なお、 dは光学積層体の厚みである。以下、 dは光学積層 体の厚みをさす。 When the optical laminate of the present invention is used as a positive retarder, the retardation Rth in the thickness direction needs to be 0 or less. Rth may be set according to the purpose of use, but in order to function as a phase difference compensating element, it is set in the range of −50 nm, preferably in the range of −100 nm to 500 nm. Rth is a numerical value defined by the formula: Rth = ((n + n) / 2-n) Xdxyz. Here, d is the thickness of the optical laminate. Hereinafter, d indicates the thickness of the optical laminate.
[0037] 本発明の光学積層体において、 (n -n ) X dで表される正面位相差 Reのばらつき  [0037] In the optical laminate of the present invention, the variation of the front phase difference Re represented by (n-n) Xd
X y  X y
は、 lOnm以内、好ましくは 5nm以内、さらに好ましくは 2nm以内である。正面位相 差 Reのばらつきを、前記範囲にすることにより、液晶表示装置用の位相差補償素子 として用いた場合に表示品質を良好なものにすることが可能になる。ここで、正面位 相差 Reのばらつきは、光入射角 0° (入射光線と本発明の積層体表面が直交する状 態)の時の面内位相差を測定したときの、その面内位相差の測定値の内、最大値と 最小値の差とする。以下、正面位相差 Reのことを単に Reと記すことがある。  Is within lOnm, preferably within 5 nm, more preferably within 2 nm. By setting the variation of the front phase difference Re within the above range, it becomes possible to improve the display quality when used as a phase difference compensating element for a liquid crystal display device. Here, the variation of the front phase difference Re is determined by measuring the in-plane phase difference at a light incident angle of 0 ° (a state in which the incident light beam is orthogonal to the surface of the laminate of the present invention). The difference between the maximum value and the minimum value among the measured values of Hereinafter, the front phase difference Re may be simply referred to as Re.
[0038] 本発明の光学積層体では、光入射角が 40° のときの位相差 R40のばらつきが ± 2 Onm以内、好ましくは ± 10nm以内である。ここで、光入射角が 40° とは、入射光線 と積層体面の法線とのなす角度が 40° であることをいう。また、位相差 R40のばらつ きは、測定値の算術平均値に対する各測定値のばらつきとする。以下、位相差 R40 を単に R40と記すことがある。 [0038] In the optical laminate of the present invention, when the light incident angle is 40 °, the variation of the phase difference R40 is ± 2. It is within Onm, preferably within ± 10 nm. Here, the light incidence angle of 40 ° means that the angle between the incident light beam and the normal of the laminate surface is 40 °. Further, the variation of the phase difference R40 is a variation of each measured value with respect to the arithmetic average value of the measured values. Hereinafter, the phase difference R40 may be simply referred to as R40.
これは、公知の自動複屈折計を用いて測定することができる。  This can be measured using a known automatic birefringence meter.
[0039] 本発明においては、光学積層体のヘイズが 3%以下であることが好ましぐ 2。/0以下 であることがより好ましい。ヘイズが 3%を超えると、フィルムを透過する光が散乱し、 偏光が均一でなくなり、液晶表示装置に組み込んだとき、液晶表示のコントラストが低 下し、表示品位が悪くなる傾向にある。 In the present invention, the haze of the optical laminate is preferably 3% or less2. / 0 or less is more preferable. If the haze exceeds 3%, light transmitted through the film is scattered, the polarization becomes non-uniform, and when incorporated in a liquid crystal display device, the contrast of the liquid crystal display tends to decrease, and the display quality tends to deteriorate.
[0040] 本発明の光学積層体においては、吸湿や温度変化、または経時変化による反りな どを防止する観点からは、 A層の両面に、 B層を設けることが好ましぐこの場合 A層 の両面に設ける B層の厚みは実質的に等しいことが好ましい。また、片面のみに B層 を設ける場合は、重ねる B層の数に限りはなレ、が、通常は 1層である。  [0040] In the optical laminate of the present invention, from the viewpoint of preventing warpage due to moisture absorption, temperature change, or aging, it is preferable to provide the B layer on both sides of the A layer. It is preferable that the thickness of the layer B provided on both sides of the layer is substantially equal. When the B layer is provided only on one side, the number of B layers to be overlapped is not limited, but is usually one layer.
[0041] 本発明の光学積層体においては、 A層と B層との間に接着剤層(C層)を設けてもよ レ、。以下、接着剤層を単に C層と記すことがある。  [0041] In the optical laminate of the present invention, an adhesive layer (C layer) may be provided between the A layer and the B layer. Hereinafter, the adhesive layer may be simply referred to as C layer.
[0042] C層は、 A層に用いる固有複屈折値が負の材料と B層に用いる透明な樹脂との双 方に対して親和性があるものから形成することができる。例えば、エチレン一アタリノレ 酸メチル共重合体、エチレン一アクリル酸ェチル共重合体などのエチレン一アクリル酸 エステル共重合体;エチレン一メタアクリル酸メチル共重合体、エチレン一メタアクリル 酸ェチル共重合体などのエチレン一メタアクリル酸エステル共重合体;エチレン-酢酸 ビュル共重合体、エチレン-スチレン共重合体などのエチレン系共重合体;他のォレ フィン共重合体が挙げられる。また、これらの共重合体を酸化、ケン化、塩素化、クロ ノレスルホン化などにより変性した変性物を用いることもできる。本発明において、変性 した共重合体を使用すると、積層構造体成形時のハンドリング性や接着力の耐熱劣 化性を向上させることができる。  [0042] The layer C can be formed of a material having an affinity for both the material having a negative intrinsic birefringence value used for the layer A and the transparent resin used for the layer B. For example, ethylene monoacrylate copolymers such as ethylene monomethyl acrylate copolymer and ethylene monoethyl acrylate copolymer; ethylene monomethyl methacrylate copolymer, ethylene monoethyl methacrylate copolymer, etc. Ethylene-methacrylic acid ester copolymers; ethylene copolymers such as ethylene-butyl acetate copolymer and ethylene-styrene copolymer; and other copolymers of ethylene. Further, a modified product obtained by modifying these copolymers by oxidation, saponification, chlorination, chlororesulfonation, or the like can also be used. In the present invention, when the modified copolymer is used, the handleability at the time of forming the laminated structure and the heat resistance deterioration of the adhesive strength can be improved.
C層の厚みは、好ましくは 1一 50 μ πι、さらに好ましくは 5— 30 z mである。  The thickness of the C layer is preferably 1 to 50 μπι, more preferably 5 to 30 zm.
[0043] 本発明の光学積層体において、 C層を含む場合は、 C層に用いる接着剤のガラス 転移温度又は軟ィ匕点 Tgは、前記 Tgよりも低いことが好ましぐ Tgよりも 20°C以上 In the case where the optical laminate of the present invention includes the C layer, the glass transition temperature or the softening point Tg of the adhesive used for the C layer is preferably lower than the above-mentioned Tg, and is preferably 20 or less than the Tg. ° C or more
C A A 低いことがさらに好ましい。 CAA More preferably, it is low.
[0044] 本発明の光学積層体の厚みは、通常 10— 500 μ m、好ましくは 30— 300 μ m、さ らに好ましくは 50— 200 μ ΐηである。液晶表示装置等に用いる場合、厚みが薄いほ ど装置全体の薄型化や軽量ィヒが図れるが、機械的強度や取り扱いの容易性の観点 ではある程度の厚みが必要である。  The thickness of the optical laminate of the present invention is usually 10 to 500 μm, preferably 30 to 300 μm, and more preferably 50 to 200 μΐη. When used in a liquid crystal display device and the like, the thinner the thickness, the thinner and lighter the whole device can be. However, a certain thickness is required from the viewpoint of mechanical strength and ease of handling.
[0045] 本発明の光学積層体は、他の位相差フィルム、例えば固有複屈折値が正である材 料からなるフィルムを一軸延伸して得られた位相差フィルムと組み合わせた構成とし て用いてもよい。  [0045] The optical laminate of the present invention is used as a configuration in which another retardation film, for example, a film made of a material having a positive intrinsic birefringence value is combined with a retardation film obtained by uniaxially stretching. Is also good.
[0046] 本発明の光学積層体を製造する方法は、特に制限されないが、固有複屈折値が 負である樹脂を含有してなる樹脂材料 (a)と、前記固有複屈折値が負である樹脂の ガラス転移温度 Tgよりも 20°C以上低いガラス転移温度 Tgを有する透明な樹脂を  The method for producing the optical laminate of the present invention is not particularly limited, but the resin material (a) containing a resin having a negative intrinsic birefringence value, and the intrinsic birefringence value is negative. Transparent resin with a glass transition temperature Tg 20 ° C or more lower than the glass transition temperature Tg of the resin
A B  A B
含有してなる樹脂材料 (b)とを共押出して、未延伸積層体を得る工程、及び前記未 延伸積層体を前記 (Tg -10) °C— (Tg + 20) °Cの温度で延伸する工程を有すること  Co-extrusion of the resin material (b) contained therein to obtain an unstretched laminate, and stretching the unstretched laminate at the temperature of (Tg−10) ° C .— (Tg + 20) ° C. Having a process of doing
A A  A A
が好ましい(以下、この方法を「本発明の製造方法」とする。)。  (Hereinafter, this method is referred to as “the production method of the present invention”).
[0047] 本発明の製造方法では、固有複屈折値が負である樹脂を含有してなる樹脂材料( a)と、前記固有複屈折値が負である樹脂のガラス転移温度 Tgよりも 20°C以上低い [0047] In the production method of the present invention, the resin material (a) containing a resin having a negative intrinsic birefringence value is set at 20 ° C higher than the glass transition temperature Tg of the resin having a negative intrinsic birefringence value. Lower than C
A  A
ガラス転移温度 Tgを有する透明な樹脂を含有してなる樹脂材料 (b)とを共押出して  Coextruded with resin material (b) containing transparent resin having glass transition temperature Tg
B  B
、未延伸積層体を得る。  To obtain an unstretched laminate.
[0048] 本発明の製造方法で用いる固有複屈折値が負である樹脂を含有してなる樹脂材 料 (a)は、固有複屈折値が負である樹脂又はこの樹脂とその他の添加剤を含有して なる樹脂組成物である。固有複屈折値が負である樹脂及びその他の添加剤としては 、本発明の光学積層体で説明したものと同様のものが挙げられる。  [0048] The resin material (a) containing a resin having a negative intrinsic birefringence value used in the production method of the present invention comprises a resin having a negative intrinsic birefringence value or a mixture of this resin and other additives. It is a resin composition contained. Examples of the resin having a negative intrinsic birefringence and other additives include the same as those described for the optical laminate of the present invention.
[0049] 本発明の製造方法で用いる透明な樹脂を含有してなる樹脂材料 (b)は、透明な樹 脂又はこの樹脂とその他の添加剤を含有してなる樹脂組成物である。透明な樹脂及 びその他の添加剤としては、本発明の光学積層体で説明したものと同様のものが挙 げられる。  [0049] The resin material (b) containing a transparent resin used in the production method of the present invention is a transparent resin or a resin composition containing this resin and other additives. Examples of the transparent resin and other additives include the same ones as described for the optical laminate of the present invention.
[0050] 共押出する方法としては、共押出 Tダイ法、共押出インフレーション法、共押出ラミ ネーシヨン法などが挙げられる。中でも、共押出 Tダイ法が好ましい。共押出 Tダイ法 にはフィードブロック方式、マルチマ二ホールド方式が挙げられる力 マルチマニホ 一ルド方式がさらに好ましい。 [0050] Examples of the coextrusion method include a coextrusion T-die method, a coextrusion inflation method, and a coextrusion lamination method. Among them, the co-extrusion T-die method is preferred. Co-extrusion T-die method For example, a feed block method and a multi-manifold method may be mentioned, and a multi-manifold method is more preferable.
押出し温度は、使用する固有複屈折値が負である樹脂や透明な樹脂及び必要に 応じて用いられる接着剤の種類に応じて適宜選択すればよい。押出し機内の温度で The extrusion temperature may be appropriately selected according to the type of the resin or the transparent resin having a negative intrinsic birefringence used and the adhesive used as required. At the temperature in the extruder
、樹脂投入口は Tg (Tg + 100) °C、押出し機出口は (Tg + 50) (Tg+ 170) °C、 ダイス温度は(Tg + 50) °C (Tg+ 170) °Cとするのが好ましレ、。ここで Tgは押出す 樹脂のガラス転移温度である。本発明の製造方法では Tgの異なる樹脂を同時に押 し出すため、各樹脂の Tgの全てがこの範囲内であることが好ましい。 The resin inlet should be Tg (Tg + 100) ° C, the extruder outlet should be (Tg + 50) (Tg + 170) ° C, and the die temperature should be (Tg + 50) ° C (Tg + 170) ° C. I like it. Here, Tg is the glass transition temperature of the extruded resin. In the production method of the present invention, since resins having different Tg are simultaneously extruded, it is preferable that all of the Tg of each resin be within this range.
[0051] 未延伸積層体を延伸する際には、未延伸積層体を予め加熱する工程(予熱工程) 、予熱された未延伸積層体を延伸する工程 (延伸工程)、延伸したフィルムを緩和す る工程 (熱固定工程)を有する。 When stretching the unstretched laminate, a step of preheating the unstretched laminate (preheating step), a step of stretching the preheated unstretched laminate (stretching step), and relaxing the stretched film (A heat setting step).
予熱工程において、未延伸積層体を加熱する手段としては、オーブン型加熱装置 、ラジェーシヨン加熱装置、又は加熱した液体中に浸すことなどが挙げられる。中でも オーブン型加熱装置が好ましレ、。  Means for heating the unstretched laminate in the preheating step includes an oven-type heating device, a radiation heating device, and immersion in a heated liquid. Among them, an oven type heating device is preferred.
予熱工程における加熱温度は、通常、延伸温度- 40°C—延伸温度 + 20°C、好まし くは延伸温度- 30°C—延伸温度 + 15°Cである。延伸温度は、加熱装置の設定温度 を意味する。  The heating temperature in the preheating step is usually stretching temperature−40 ° C.—stretching temperature + 20 ° C., preferably stretching temperature−30 ° C.—stretching temperature + 15 ° C. The stretching temperature means a set temperature of the heating device.
[0052] 延伸工程において、延伸する方法としては、チャックをパンタグラフで連結し、チヤ ック間隔で開くパンタグラフ式のテンター;チャックをスクリュー形状の軸で駆動し、ス クリュー溝の間隔を調整することでチャック間隔を開くスクリュー式のテンター;また、リ ニァモーター式のテンター;などが挙げられる。  [0052] In the stretching step, as a stretching method, a chuck is connected with a pantograph, and a pantograph-type tenter that opens at a check interval; the chuck is driven by a screw-shaped shaft to adjust the screw groove interval. Screw-type tenters that increase the chuck interval with a linear motor-type tenter.
[0053] 積層体を延伸する方法は特に制限はなぐ従来公知の方法が適用され得る。具体 的には、ロール側の周速の差を利用して縦方向に一軸延伸する方法、テンターを用 レ、て横方向に一軸延伸する方法等の一軸延伸法;固定するクリップの間隔を開いて の縦方向の延伸と同時に、ガイドレールの広がり角度により横方向に延伸する同時 二軸延伸法や、ロール間の周速の差を利用して縦方向に延伸した後、その両端部を クリップ把持してテンターを用いて横方向に延伸する逐次二軸延伸法などのニ軸延 伸法;が挙げられる。面内の直交軸方向の屈折率をバランスさせ、面内位相差を実 質的にゼロにする場合 (ポジティブレターダー)には二軸延伸法が好ましい。 The method for stretching the laminate is not particularly limited, and a conventionally known method can be applied. More specifically, a uniaxial stretching method such as a method of uniaxially stretching in the longitudinal direction using a difference in peripheral speed on the roll side, a method of uniaxially stretching in the lateral direction by using a tenter; Simultaneous biaxial stretching method, in which the guide rail is stretched in the horizontal direction at the same time as the guide rail spread angle, or stretching in the vertical direction using the difference in peripheral speed between the rolls, then clip both ends. A biaxial stretching method such as a sequential biaxial stretching method of gripping and stretching in the lateral direction using a tenter. The in-plane retardation is balanced by balancing the in-plane refractive index in the orthogonal axis direction. When it is qualitatively zero (positive letterer), the biaxial stretching method is preferred.
[0054] 本発明の製造方法においては、延伸温度は、 A層に用いる固有複屈折値が負であ る樹脂のガラス転移温度を Tgとしたとき、 Tg -10 (°C)— Tg + 20 (°C)、好ましくは In the production method of the present invention, the stretching temperature is defined as Tg−10 (° C.) — Tg + 20, where Tg is the glass transition temperature of the resin having a negative intrinsic birefringence value used for the A layer. (° C), preferably
A A A  A A A
Tg -5 (°C)— Tg + 15 (°C)の範囲である。延伸温度を上記範囲とすることにより、延 Tg -5 (° C) — in the range of Tg + 15 (° C). By setting the stretching temperature in the above range,
A A A A
伸時に B層の屈折率異方性を発現させずに、さらに A層を破断しないように A層の屈 折率異方性だけを発現させることができ、本発明の光学積層体を容易に得ることがで きる。  It is possible to express only the refractive index anisotropy of the layer A so as not to break the layer A without causing the refractive index anisotropy of the layer B during elongation. Obtainable.
[0055] 本発明の製造方法においては、延伸に供する未延伸積層体の各層の厚みのばら つきが ± 3%以内であることが好ましい。厚みのばらつきを前記範囲にすることにより 、本発明の光学積層体の Reや R40のばらつきを少なくすることができる。ここでいう 厚みのばらつきは、厚みを何点か測定し、その算術平均値を求め、その算術平均値 に対する測定値のばらつきとする。  [0055] In the production method of the present invention, it is preferable that the variation in the thickness of each layer of the unstretched laminate to be stretched is within ± 3%. By setting the thickness variation within the above range, the variation of Re and R40 of the optical laminate of the present invention can be reduced. The thickness variation here is measured at several points, the arithmetic average value is calculated, and the measured value variation with respect to the arithmetic average value.
未延伸積層体の各層の厚みのばらつきを ± 3%以内にするための手段としては、 1 )ダイスの開口部から押出されたシート状の未延伸積層体が最初に密着するキャスト ロールまでを囲い部材で覆う; 2)フィルム両端部をキャストロール上でエッジピエング し、第 2ロール上でエアブラストを行う; 3)ダイスリップと未延伸積層体のキャスト部と の間の距離を 200mm以下とする;ことが挙げられる。  Means for keeping the thickness variation of each layer of the unstretched laminate within ± 3% are as follows: 1) Enclose the sheet-shaped unstretched laminate extruded from the opening of the die up to the cast roll where it first adheres. 2) Edge piercing both ends of the film on a cast roll and air blasting on the second roll; 3) Keep the distance between the die slip and the cast portion of the unstretched laminate at 200mm or less; It is mentioned.
[0056] 本発明の製造方法においては、延伸工程における未延伸積層体の流れ方向の中 心部力 左右の領域の温度が中心部の温度に対して ± 1. 5°C以内とすることが好ま しぐ ± 1°C以内とすることがさらに好ましい。左右の領域の温度差を均一とすることで 左右の延伸度合いが均一となるので、得られる光学積層体の厚み、 Re及び R40を 均一にできる。また、左右の厚みが均一となることから、未延伸積層体にかかる応力 及び温度も均一となり、延伸や緩和の程度が均一となる。  [0056] In the production method of the present invention, the central portion force in the flow direction of the unstretched laminate in the stretching step The temperature in the left and right regions may be within ± 1.5 ° C with respect to the temperature in the central portion. It is more preferable that the temperature be within ± 1 ° C. By making the temperature difference between the left and right regions uniform, the degree of stretching in the left and right becomes uniform, so that the thickness, Re and R40 of the obtained optical laminate can be made uniform. Further, since the left and right thicknesses are uniform, the stress and temperature applied to the unstretched laminate are also uniform, and the degree of stretching and relaxation is uniform.
[0057] 本発明の製造方法においては、前記延伸工程において、未延伸積層体の加熱手 段が温風であって、該温風の温度を T (°C)、温風の風速を U(mZ秒)、フィルムから 温風の吹き出し口の最短距離を Lとしたときに表される V (=T X U X 1/L)の、未延 伸積層体の上部における Vに対する下部における Vの比 (V /V )が、 0. 5<V  In the production method of the present invention, in the stretching step, the means for heating the unstretched laminate is hot air, the temperature of the hot air is T (° C.), and the speed of the hot air is U ( mZ seconds), the ratio of V (= TXUX 1 / L) expressed as L when the shortest distance from the film to the hot air outlet is V at the lower part of the unstretched laminate (V / V), 0.5 <V
H H H  H H H
< 2を満たすことが好ましい。 V /Vを前記範囲とすることにより、温風の熱量 It is preferable to satisfy <2. By setting V / V within the above range, the calorific value of warm air
L H L が上下で均一となり、 B層の Reの発現を抑えることができる。また、厚物フィルムの厚 み方向での延伸度合いが均一となり、 R40力 S均一となる。ここで温風の温度は、加熱 装置、例えばオーブンの設定温度である。 LHL Is uniform in the vertical direction, and the occurrence of Re in the B layer can be suppressed. In addition, the degree of stretching in the thickness direction of the thick film becomes uniform, and the R40 force S becomes uniform. Here, the temperature of the hot air is a set temperature of a heating device, for example, an oven.
[0058] 本発明の製造方法においては、延伸倍率は、通常 1. 1一 10倍、好ましくは 1. 3 5倍である。延伸方法が、逐次二軸延伸である場合には、二回目の延伸倍率を一回 目の延伸倍率よりも小さくすることが好ましい。具体的には、二回目の延伸倍率を、 一回目の延伸倍率の 0. 5-0. 95倍である。延伸倍率が、上記範囲を外れると、酉己 向が不十分で屈折率異方性、ひいては位相差の発現が不十分になったり、積層体 が破断したりするおそれがある。ここでレ、う延伸倍率は、二軸延伸を行う場合は、縦 方向、横方向それぞれの延伸倍率をさす。通常、縦方向とは、積層体の長手方向を 指し、横方向は幅方向を指す。  [0058] In the production method of the present invention, the stretching ratio is usually 1.1 to 10 times, preferably 1.35 times. When the stretching method is sequential biaxial stretching, the second stretching magnification is preferably smaller than the first stretching magnification. Specifically, the second stretching magnification is 0.5 to 0.95 times the first stretching magnification. If the stretching ratio is out of the above range, there is a possibility that the orientation of the rooster is insufficient and the anisotropy of the refractive index and, consequently, the expression of the retardation becomes insufficient, or the laminate is broken. Here, the stretching ratio in the case of performing biaxial stretching refers to the stretching ratio in each of the longitudinal direction and the transverse direction. Usually, the vertical direction refers to the longitudinal direction of the laminate, and the horizontal direction refers to the width direction.
[0059] 熱固定工程における緩和温度は、通常、室温一延伸温度 + 30°C、好ましくは延伸 温度- 40°C—延伸温度 + 20°Cである。また、熱固定工程においては特に温度を設 定せず、延伸温度のまま保持してもよい。  [0059] The relaxation temperature in the heat setting step is usually (room temperature + stretching temperature + 30 ° C, preferably stretching temperature-40 ° C-stretching temperature + 20 ° C). Further, in the heat setting step, the temperature may not be set and the stretching temperature may be maintained.
[0060] 本発明の光学積層体は、複屈折によって生じる位相差の高度な補償が可能なので 、それ単独または他の部材と組み合わせて、位相差板、視野角補償板、輝度向上フ イルムなどとして、液晶表示装置、有機 EL表示装置などの装置に広く応用可能であ る。  Since the optical laminate of the present invention can highly compensate for the phase difference caused by birefringence, it can be used alone or in combination with other members to form a phase difference plate, a viewing angle compensation plate, a brightness enhancement film, and the like. It can be widely applied to devices such as liquid crystal display devices and organic EL display devices.
実施例  Example
[0061] 本発明を、実施例を示しながら、さらに詳細に説明するが、本発明は以下の実施例 のみに限定されるものではなレ、。なお部及び%は特に断りのない限り重量基準であ る。  [0061] The present invention will be described in more detail with reference to examples, but the present invention is not limited to only the following examples. Parts and percentages are by weight unless otherwise specified.
本実施例における評価は、以下の方法によって行なった。  The evaluation in this example was performed by the following method.
(1)分子量  (1) Molecular weight
シクロへキサン (重合体樹脂が溶解しない場合はトルエン)を溶媒にしてゲルパーミ エーシヨンクロマトグラフィー(GPC)で測定し、標準ポリスチレン又はポリイソプレン換 算の重量平均分子量 (Mw)を求めた。  It was measured by gel permeation chromatography (GPC) using cyclohexane (toluene when the polymer resin did not dissolve) as a solvent, and the weight average molecular weight (Mw) of standard polystyrene or polyisoprene conversion was determined.
[0062] (2)ガラス転移温度 (Tg) JIS K7121に基づいて示差走査熱量分析法(DSC)を用いて測定した。 [0062] (2) Glass transition temperature (Tg) The measurement was performed using a differential scanning calorimetry (DSC) based on JIS K7121.
(3)積層体の厚み、積層体各層の厚み及びそのばらつき  (3) Thickness of laminate, thickness of each layer of laminate and its variation
接触式卓上型オフライン厚み計測装置、 TOF-4R (山文電気社製)を用いて、測 定間隔 lmmで測定した。厚みは、その測定値の算術平均値 Tとした。厚みのばらつ きは、前記測定した厚みの内最大値を T ( μ m)、最小値を T ( μ m)として以下  Measurements were made at a measurement interval of lmm using a TOF-4R (Yamabun Denki Co., Ltd.), a contact-type desktop offline thickness measuring device. The thickness was defined as an arithmetic average value T of the measured values. The variation in thickness is defined as T (μm) as the maximum value of the measured thickness and T (μm) as the minimum value.
MAX MIN  MAX MIN
の式から算出した。 It calculated from the formula of.
厚みのばらつき(%) = (Τ -Τ ) /Τ Χ 100  Thickness variation (%) = (Τ -Τ) / Τ Χ 100
MAX MIN  MAX MIN
なお、積層体各層の厚みは、積層体断面をカッターで切り出し、光学顕微鏡で断 面層を観察し、その比率から各層の厚みを求めた。  The thickness of each layer of the laminated body was determined by cutting out the cross section of the laminated body with a cutter, observing the cross-sectional layer with an optical microscope, and calculating the thickness of each layer from the ratio.
(4)ヘイズ  (4) Haze
ASTM D1003に準拠して、濁度計(日本電色工業社製、「NDH_2000」)を用 いて測定した。  Measured using a turbidity meter (“NDH_2000”, manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with ASTM D1003.
(5)波長 548. 6nmにおける積層体の厚み方向の屈折率 (n )、厚み方向に垂直な  (5) The refractive index (n) in the thickness direction of the laminate at a wavelength of 548.6 nm, which is perpendicular to the thickness direction.
z  z
互いに直交する 2方向の屈折率 (n、 n )、位相差 (正面位相差 Re、厚み方向の位相 差 Rth)及び正面位相差 Reのばらつき Variations in refractive index (n, n), phase difference (front phase difference Re, thickness direction phase difference Rth) and front phase difference Re in two directions orthogonal to each other
自動複屈折計 (王子計測器社製、 KOBRA-21ADH)を用いて測定した。なお、 正面位相差 Reのばらつきは、積層体の中心から上下左右に 30mm間隔で 5点ずつ の 20点と中心部の合計 21点で正面位相差 Reを測定して、その算術平均値を正面 位相差 Reとし、測定値の最大値-最小値を正面位相差 Reのばらつきとした。  The measurement was performed using an automatic birefringence meter (manufactured by Oji Scientific Instruments, KOBRA-21ADH). The dispersion of the front phase difference Re was measured by measuring the front phase difference Re at 20 points (5 points each at 30 mm intervals from the center of the laminate at 30 mm intervals) and a total of 21 points at the center. The maximum value-minimum value of the measured values was defined as the variation of the front phase difference Re.
(6)波長 548· 6nmにおける光入射角が 40° のときの位相差 R40及びそのばらつき 自動複屈折計 (王子計測器社製、 KOBRA-21ADH)を用いて測定した。  (6) The phase difference R40 and its variation when the light incident angle at a wavelength of 5548 nm was 40 ° were measured using an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific Instruments).
なお、 R40のばらつきは、積層体の中心から上下左右に 30mm間隔で 5点ずつの 20点と中心部の合計 21点で R40を測定して、その算術平均値を R40とした。各測 定値の R40に対するばらつきを R40のばらつきとした。  The variation of R40 was measured at 20 points (5 points each at 30mm intervals from the center of the laminate at 30mm intervals) and a total of 21 points at the center, and the arithmetic average value was defined as R40. The variation of each measured value with respect to R40 was defined as the variation of R40.
(7)波長 548. 6nmにおける光学積層体中の透明な樹脂を含有してなる層(B層)の 正面位相差 Re及び厚み方向の位相差 Rth  (7) Front phase difference Re and thickness direction phase difference Rth of the layer (layer B) containing the transparent resin in the optical laminate at a wavelength of 548.6 nm
積層体力 透明な樹脂を含有してなる層を剥がして、 自動複屈折計 (王子計測器 社製、 KOBRA-21ADH)を用いて測定した。 [0063] (8)輝度ムラ Laminate force The layer containing the transparent resin was peeled off, and measured using an automatic birefringence meter (KOBRA-21ADH, manufactured by Oji Scientific Instruments). (8) Uneven brightness
市販の液晶ディスプレイ(富士通社製、 VL-152VA)の偏光板と液晶パネルとの間 に積層体を配置し、ディスプレイの背景を黒表示にし、暗室内で目視により輝度ムラ( 白抜け)がない力、確認した。評価は、正面方向、上下左右 40° で行なった。  A laminate is placed between the polarizer of a commercially available liquid crystal display (Fujitsu VL-152VA) and the liquid crystal panel, the display background is black, and there is no luminance unevenness (white spots) visually in a dark room. Power, confirmed. The evaluation was performed in the front direction, up, down, left, right and 40 °.
[0064] (製造例 1)未延伸積層体 1の製造例  (Production Example 1) Production Example of Unstretched Laminate 1
ノルボルネン系重合体(日本ゼオン社製、 ZEONOR1020,ガラス転移温度は 10 5°C)、スチレン-無水マレイン酸共重合体(ノヴァ'ケミカル社製、商品名「Daylark D332」、ガラス転移温度 130°C、オリゴマー成分含有量 3重量%)をそれぞれ 50m mの単軸押出機 (L/D = 28)に導入し、押出機出口温度 260°Cで溶融樹脂をマル チマ二ホールドダイに供給した。一方、変性したエチレン-酢酸ビュル共重合体(三 菱化学社製、商品名「モディック AP A543J、ビカット軟化点 80°C)を 40mmの単軸 押出機 (LZD = 28)に導入し、押出機出口温度 180°Cで溶融樹脂を上記マルチマ 二ホールドダイに供給した。そして、溶融状態のノルボルネン系重合体、スチレン-無 水マレイン酸共重合体、及び変性したエチレン-酢酸ビニル共重合体それぞれをマ ルチマ二ホールドダイから 260°Cで吐出させ、 130°Cに温度調整されたキャストロー ルにキャストし、その後、 50°Cに温度調整された冷却ロールに通して、ノルボルネン 系重合体からなる B層、スチレン-無水マレイン酸共重合体からなる A層、及び変性し たエチレン-酢酸ビュル共重合体からなる接着剤層(C層)を有する、 B層(90 μ m) - C層(10 μ m) -A層 (200 μ m) _C層(10 μ m) _B層(90 μ m)の 3種 5層からなる幅 6 00mm,厚み 400 /i mの未延伸積層体 1を共押出成形により得た。なお、ダイスから 吐出する際に、ダイスの両側とダイスの裏側をアルミニウム製の囲い部材で、ダイスか ら囲い部材までの距離を 200mm、シート状の未延伸積層体から囲い部材までの距 離を 250— 300mmの間になるように覆った。この未延伸積層体の両端 50mmずつ をトリミングして幅 300mmとした。  Norbornene-based polymer (ZEONOR1020, manufactured by Nippon Zeon Co., glass transition temperature: 105 ° C), styrene-maleic anhydride copolymer (manufactured by Nova Chemical Co., trade name “Daylark D332”, glass transition temperature: 130 ° C) , Oligomer component content 3% by weight) were introduced into a 50 mm single screw extruder (L / D = 28), and the molten resin was supplied to a multi-hold die at an extruder outlet temperature of 260 ° C. On the other hand, a modified ethylene-butyl acetate copolymer (trade name: Modic AP A543J, Vicat softening point 80 ° C, manufactured by Mitsubishi Chemical Co., Ltd.) was introduced into a 40 mm single-screw extruder (LZD = 28). The molten resin was supplied to the above multi-manifold die at an outlet temperature of 180 ° C. Then, each of the norbornene-based polymer, styrene-water-free maleic acid copolymer, and modified ethylene-vinyl acetate copolymer was melted. Discharged from a multi-manifold die at 260 ° C, cast on a cast roll whose temperature was adjusted to 130 ° C, and then passed through a cooling roll whose temperature was adjusted to 50 ° C, and consisted of a norbornene-based polymer B layer (90 μm)-C layer (B layer, A layer composed of styrene-maleic anhydride copolymer, and adhesive layer (C layer) composed of modified ethylene-butyl acetate copolymer) 10 μm) -A layer (200 μm) _C layer (10 μm) _B A non-stretched laminate 1 having a width of 600 mm and a thickness of 400 / im composed of 5 layers of 3 types (90 μm) was obtained by co-extrusion molding. The back side was covered with an aluminum enclosure member so that the distance from the die to the enclosure member was 200 mm, and the distance from the sheet-shaped unstretched laminate to the enclosure member was 250-300 mm. Both sides of the laminate were trimmed 50 mm each to a width of 300 mm.
この未延伸積層体 1の A層の厚みのばらつきは、厚み 200 x mに対して ± 0. 5%、 B層の厚みのばらつきは厚み 90 μ mに対して ± 1. 4%であった。  In the unstretched laminate 1, the variation in the thickness of the layer A was ± 0.5% for a thickness of 200 × m, and the variation in the thickness of the layer B was ± 1.4% for a thickness of 90 μm.
[0065] (製造例 2)未延伸積層体 2の製造 (Production Example 2) Production of Unstretched Laminate 2
ノルボルネン系重合体のかわりに、ポリメチルメタタリレート系重合体(旭化成社製、 商品名「デルペット」 80NH、ガラス転移温度は 102°C)を用いた他は、製造例 1と同 様にしてポリメチルメタタリレート系重合体からなる B層、スチレン-無水マレイン酸共 重合体からなる A層、及び変性したエチレン-酢酸ビニル共重合体からなる接着剤層 (C層)を有する、 B層(90 μ m) -C層 ( 10 μ m) -A層(200 μ m) _C層 ( 10 μ m) -B層 (90 μ m)の 3種 5層からなる幅 600mm、厚み 400 μ mの未延伸積層体 2を得た。 この未延伸積層体 2の A層の厚みのばらつきは、厚み 200 x mに対して ± 0. 5%、 B層の厚みのばらつきは厚み 90 μ mに対して ± 1. 7%であった。 Instead of a norbornene-based polymer, a polymethyl methacrylate polymer (made by Asahi Kasei Corporation, B layer made of polymethyl methacrylate polymer and styrene-maleic anhydride copolymer in the same manner as in Production Example 1 except that trade name `` Delpet '' 80NH, glass transition temperature is 102 ° C) B layer (90 μm) -C layer (10 μm) -A layer (200 μm) having A layer consisting of coalesced and adhesive layer (C layer) consisting of modified ethylene-vinyl acetate copolymer ) An unstretched laminate 2 having a width of 600 mm and a thickness of 400 μm, which was composed of five layers of three types, _C layer (10 μm) and B layer (90 μm), was obtained. The variation in the thickness of the layer A of the unstretched laminate 2 was ± 0.5% with respect to the thickness of 200 × m, and the variation in the thickness of the layer B was ± 1.7% with respect to the thickness of 90 μm.
[0066] (製造例 3)未延伸積層体 3の製造 (Production Example 3) Production of Unstretched Laminate 3
ノルボルネン系重合体のかわりに、スチレン一メチルメタタリレート共重合体(電気化 学工業社製、商品名「TXポリマー」、 TX-100— 300S、ガラス転移温度は 100°C)を 用いた他は、製造例 1と同様にしてスチレン-メチルメタタリレート系共重合体からなる B層、スチレン -無水マレイン酸共重合体からなる A層、及び変性したエチレン -酢酸 ビュル共重合体からなる接着剤層(C層)を有する、 B層(91 μ m) -C層(10 μ m) -A 層(198 /i m) - C層(10 μ m)— B層(91 μ m)の 3種 5層力らなる幅 600mm、厚み 40 0 μ mの未延伸積層体 3を得た。  In place of the norbornene-based polymer, a styrene-methyl methacrylate copolymer (trade name “TX Polymer”, manufactured by Denka Kagaku Kogyo Co., Ltd., TX-100-300S, glass transition temperature 100 ° C) was used. In the same manner as in Production Example 1, a layer B composed of a styrene-methyl methacrylate copolymer, a layer A composed of a styrene-maleic anhydride copolymer, and an adhesive composed of a modified ethylene-butyl acetate copolymer B layer (91 μm)-C layer (10 μm)-A layer (198 / im)-C layer (10 μm)-B layer (91 μm) with the agent layer (C layer) An unstretched laminate 3 having a width of 600 mm and a thickness of 400 μm, comprising a five-layer seed, was obtained.
この未延伸積層体 3の A層の厚みのばらつきは、厚み 198 μ ΐηに対して ± 0. 5%、 B層の厚みのばらつきは厚み 91 /i mに対して ± 1. 9%であった。  The variation in the thickness of the layer A of the unstretched laminate 3 was ± 0.5% for the thickness of 198 μΐη, and the variation in the thickness of the layer B was ± 1.9% for the thickness of 91 / im. .
[0067] (製造例 4)未延伸積層体 4の製造 (Production Example 4) Production of Unstretched Laminate 4
ダイスの両側及び裏側を囲い部材で覆わない他は、製造例 1と同様に未延伸積層 体 4を得た。  An unstretched laminate 4 was obtained in the same manner as in Production Example 1, except that both sides and the back side of the die were not covered with the surrounding members.
この未延伸積層体 4の A層の厚みのばらつきは厚み 201 /i mに対して ± 1 %、 B層 の厚みのばらつきは厚み 92 z mに対して ± 3. 3%であった。  In the unstretched laminate 4, the variation in the thickness of the layer A was ± 1% with respect to the thickness of 201 / im, and the variation in the thickness of the layer B was ± 3.3% with respect to the thickness of 92 zm.
[0068] (実施例 1 )光学積層体 1の製造 (Example 1) Production of Optical Laminate 1
製造例 1で得られた未延伸積層体 1を縦 210mm X横 160mmのシートに切断し、 これを同軸二軸延伸機 (巿金工業社製、高機能薄膜装置 FITZ)を用いて、オーブン 温度(予熱温度、延伸温度、熱固定温度) 136°C、フィルム繰り出し速度 lm/分、チ ャックの移動精度 ± 1 %以内、 V /V = 0. 67、未延伸積層体の中心部の温度に対  The unstretched laminate 1 obtained in Production Example 1 was cut into a sheet having a length of 210 mm and a width of 160 mm, and this was cut into an oven using a coaxial biaxial stretching machine (manufactured by Takahashi Kogyo Co., Ltd., high-performance thin film apparatus FITZ). (Preheating temperature, stretching temperature, heat setting temperature) 136 ° C, film feeding speed lm / min, chuck movement accuracy within ± 1%, V / V = 0.67, temperature at the center of unstretched laminate versus
H し  H
する左右の温度差を 1°C以内、左右のチャックがオーブン入り口で未延伸積層体を 挟むときの時間差を 0. 2秒以内として、縦延伸倍率 1. 5倍、横延伸倍率 1. 5倍で同 時二軸延伸を行い、 B層(40 μ m) -C層 (5 μ m) _A層(89 μ m) -C層 (5 μ m) _B層( 40 /1 111)カらなる厚み179 /1 111、幅 450mmの延伸積層体を得た。そして得られた延 伸積層体の両端を 50mmずつトリミングして、厚み 179 x m、幅 350mmの光学積層 体 1を得た。 Temperature difference within 1 ° C, the left and right chucks Assuming that the time difference between sandwiching is within 0.2 seconds, simultaneous biaxial stretching is performed at a longitudinal stretching ratio of 1.5 times and a transverse stretching ratio of 1.5 times. Layer B (40 μm)-Layer C (5 μm ) An _A layer (89 μm) -C layer (5 μm) _B layer (40/1111) was obtained to obtain a stretched laminate having a thickness of 179/1111 and a width of 450 mm. Then, both ends of the obtained stretched laminate were trimmed by 50 mm to obtain an optical laminate 1 having a thickness of 179 xm and a width of 350 mm.
得られた光学積層体 1の測定結果を表 1に示す。  Table 1 shows the measurement results of the obtained optical laminate 1.
また、この光学積層体 1を用いて輝度ムラを評価したところ、正面方向、上下左右 4 0° いずれの方向から見ても輝度ムラは見られなかった。  When luminance unevenness was evaluated using this optical laminated body 1, no luminance unevenness was observed in any of the front direction, the up, down, left, and right directions at 40 °.
[0069] (実施例 2)光学積層体 2の製造 Example 2 Production of Optical Laminate 2
未延伸積層体 1のかわりに製造例 2で得られた未延伸積層体 2を用レ、、延伸倍率を 縦、横共に 2倍とした他は、実施例 1と同様にして、 B層(45 111) -〇層(5 111) -八層 ( 100 μ m) -C層(5 μ m) _B層(45 μ m)力、らなる厚み 200 μ m、幅 350mmの光学 積層体 2を得た。  In the same manner as in Example 1 except that the unstretched laminate 2 obtained in Production Example 2 was used instead of the unstretched laminate 1 and the stretching ratio was set to 2 times in both the length and width directions, 45 111) -〇 layer (5 111) -8 layers (100 μm) -C layer (5 μm) _B layer (45 μm) Force, optical layer 2 with thickness of 200 μm and width of 350 mm Obtained.
得られた光学積層体 2の測定結果を表 1に示す。  Table 1 shows the measurement results of the obtained optical laminate 2.
また、この光学積層体 2を用いて輝度ムラを評価したところ、正面方向、上下左右 4 0° レ、ずれの方向から見ても輝度ムラは見られなかった。  When the uneven brightness was evaluated using this optical laminated body 2, no uneven brightness was observed even when viewed from the front, up, down, left and right, and 40 °.
[0070] (実施例 3)光学積層体 3の製造 Example 3 Production of Optical Laminate 3
未延伸積層体 1のかわりに製造例 3で得られた未延伸積層体 3を用い、延伸倍率を 縦、横共に 2. 8倍とした他は、実施例 1と同様にして、 B層 !^ -じ層^ /!!^ - 八層 (72 μ m) -C層 (5 μ m) _B層(33 μ m)力らなる厚み 148 μ m、幅 350mmの光 学積層体 3を得た。  Layer B was obtained in the same manner as in Example 1 except that the unstretched laminate 3 obtained in Production Example 3 was used in place of the unstretched laminate 1 and the stretching ratio was 2.8 times in both the length and width directions. ^-Layer ^ /! ! ^-Eight layers (72 μm) -C layer (5 μm) _B layer (33 μm) Optical laminate 3 with a thickness of 148 μm and a width of 350 mm was obtained.
得られた光学積層体 3の測定結果を表 1に示す。  Table 1 shows the measurement results of the obtained optical laminate 3.
また、この光学積層体 3を用いて輝度ムラを評価したところ、正面方向、上下左右 4 0° いずれの方向から見ても輝度ムラは見られなかった。  When the luminance unevenness was evaluated using the optical laminated body 3, no luminance unevenness was observed in any of the front direction, the upper, lower, left and right directions of 40 °.
[0071] (比較例 1 )光学積層体 4の製造 (Comparative Example 1) Production of Optical Laminate 4
製造例 4で得られた未延伸積層体 4を用い、オーブン温度(予熱温度、延伸温度、 熱固定温度) 152°C、未延伸積層体の中心部の温度に対する左右の温度差を 5°C、 V /V = 0. 4、左右のチャックがオーブン入り口で未延伸積層体を挟むときの時間 Using the unstretched laminate 4 obtained in Production Example 4, the oven temperature (preheating temperature, stretching temperature, heat setting temperature) was 152 ° C, and the temperature difference between the left and right with respect to the center temperature of the unstretched laminate was 5 ° C. , V / V = 0.4, the time when the left and right chucks sandwich the unstretched laminate at the oven entrance
H し 差を 0. 5秒、延伸倍率を縦横共に 2倍とした他は、実施例 1と同様にして、光学積層 体 4を得た。 H An optical laminate 4 was obtained in the same manner as in Example 1, except that the difference was 0.5 seconds and the stretching ratio was 2 times in both the vertical and horizontal directions.
得られた光学積層体 4の測定結果を表 1に示す。  Table 1 shows the measurement results of the obtained optical laminate 4.
また、この光学積層体 4を用いて輝度ムラを評価したところ、正面、左右 40° 力もみ たところ輝度ムラ(白抜け)が見られた。しかし、文字の反転は見られなかった。上下 4 0° 力 みたところ輝度ムラが見られ、文字の反転が見られた。  The luminance unevenness was evaluated using this optical laminated body 4. As a result, the luminance unevenness (white spots) was observed when the front and right and left 40 ° forces were observed. However, no inversion of the characters was observed. When viewed from above and below by 40 °, uneven brightness was observed, and inversion of characters was observed.
[0072] [表 1] [Table 1]
Figure imgf000021_0001
Figure imgf000021_0001
[0073] 本実施例及び比較例の結果から以下のことがわかる。本発明の光学積層体は、実 施例に示すように、積層体の厚み方向の屈折率を nz、厚み方向に垂直な互いに直 交する 2方向の屈折率を n、 nとしたとき、 n > (n +n ) /2、 (n -n ) X dで表される x y z x y x y [0073] The following can be seen from the results of this example and the comparative example. The optical laminate of the present invention As shown in the examples, when the refractive index in the thickness direction of the laminate is nz , and the refractive indexes in two directions perpendicular to each other perpendicular to the thickness direction are n and n, n> (n + n) / 2 Xyzxyxy represented by, (n -n) X d
正面位相差 Reのばらつきが 10nm以内 nm、光入射角が 40° のときの位相差 R40 のばらつきが ± 20nm以内である。そのため、この光学積層体を液晶表示装置に用 レ、ると、正面方向だけでなぐ上下左右 40° の方向から見たときの輝度ムラもなぐ 良好な表示を提供することができる。 The variation of the front phase difference Re is within 10 nm, and the variation of the phase difference R40 when the light incident angle is 40 ° is within ± 20 nm. Therefore, when this optical laminated body is used in a liquid crystal display device, it is possible to provide a good display which can eliminate luminance unevenness when viewed from a direction of 40 ° up and down and left and right only in the front direction.
一方、比較例の光学積層体は、 n > (n +n ) /2は満たしている力 (n -n ) X dで z x y x y 表される正面位相差 Reのばらつきが 12. 8nm、光入射角が 40° のときの位相差 R4 0のばらつきが ± 23nmである。このため、この光学積層体を液晶表示装置に用いる と、正面方向、左右 40° 方向からみたときに輝度ムラが見られ、さらに上下 40° の 方向からみたときは文字の反転が見られた。  On the other hand, in the optical laminated body of the comparative example, n> (n + n) / 2 satisfies a force (n-n) Xd. Is 40 °, the variation of the phase difference R40 is ± 23 nm. For this reason, when this optical laminate was used for a liquid crystal display device, luminance unevenness was observed when viewed from the front direction and the left and right directions of 40 °, and inversion of the characters was observed when viewed from the vertical direction of 40 °.

Claims

請求の範囲 The scope of the claims
[1] 固有複屈折値が負である樹脂を含有してなる層 (A層)、及び前記 A層の少なくとも 片面に設けられた透明な樹脂を含有してなる層(B層)を含む光学積層体であって、 前記固有複屈折が負である樹脂のガラス転移温度を Tg、前記透明な樹脂のガラ  [1] An optical system including a layer containing a resin having a negative intrinsic birefringence value (A layer) and a layer containing a transparent resin provided on at least one surface of the A layer (B layer) In the laminate, the glass transition temperature of the resin having a negative intrinsic birefringence is Tg, and the glass transition temperature of the transparent resin is Tg.
A  A
ス転移温度を Tg、前記積層体の厚みを d、波長 548. 6nmの光で測定した厚み方  The transition temperature was Tg, the thickness of the laminate was d, and the thickness was measured with light at a wavelength of 548.6 nm.
B  B
向の屈折率を n、厚み方向に垂直な互いに直交する 2方向の屈折率を n、 n (n、 n z y y の直交軸は n— nが最大となるように定められる)としたとき以下の [1]一 [5]の要件を Refractive index of the direction of n, the 2 the refractive index in the direction orthogonal to the perpendicular to one another in the thickness direction n, n (n, orthogonal axes nzyy is n-n is determined to be the maximum) follows when the [ 1] The requirement of [5]
X y  X y
満たすことを特徴とする光学積層体:  Optical laminate characterized by satisfying:
[l]Tg >Tg  [l] Tg> Tg
A B;  A B;
[2]n ノ n、 n ノ n、 n ;  [2] n no n, n no n, n;
z x z y x y  z x z y x y
[3]n > (n +n ) /2 ;  [3] n> (n + n) / 2;
[4] (n -n ) X dで表される正面位相差 Reのばらつきが lOnm以内である;  [4] The variation of the front phase difference Re represented by (n-n) X d is within lOnm;
X y  X y
[5]光入射角が 40° のときの位相差 R40のばらつきが土 20nm以内である。  [5] The dispersion of the phase difference R40 when the light incident angle is 40 ° is within 20 nm of soil.
[2] ヘイズが 3 %以下である請求項 1記載の光学積層体。 [2] The optical laminate according to claim 1, wherein the haze is 3% or less.
[3] 前記固有複屈折値が負である樹脂が、ビュル芳香族系重合体である請求項 1又は 2記載の光学積層体。  3. The optical laminate according to claim 1, wherein the resin having a negative intrinsic birefringence value is a bull aromatic polymer.
[4] 前記ビニル芳香族系重合体が、スチレン及び Z又はスチレン誘導体と無水マレイ ン酸との共重合体である請求項 3に記載の光学積層体。  4. The optical laminate according to claim 3, wherein the vinyl aromatic polymer is a copolymer of styrene and Z or a styrene derivative and maleic anhydride.
[5] 前記透明な樹脂が、脂環式構造を有する重合体樹脂である請求項 1一 4のいずれ 力、 1項に記載の光学積層体。 5. The optical laminate according to claim 1, wherein the transparent resin is a polymer resin having an alicyclic structure.
[6] 固有複屈折値が負でありガラス転移温度 Tgを有する樹脂を含有してなる樹脂材 [6] A resin material containing a resin having a negative intrinsic birefringence and a glass transition temperature Tg
A  A
料 (a)と、 Tgよりも 20°C以上低いガラス転移温度 Tgを有する透明な樹脂を含有し  (A) and a transparent resin having a glass transition temperature Tg that is at least 20 ° C lower than Tg.
A B  A B
てなる樹脂材料 (b)とを共押出して、未延伸積層体を得る工程、及び前記未延伸積 層体を前記 (Tg -10)— (Tg + 20) °Cの温度で延伸する工程を有することを特徴と  Co-extrusion with the resin material (b) to obtain an unstretched laminate, and stretching the unstretched laminate at a temperature of (Tg−10) − (Tg + 20) ° C. Characterized by having
A A  A A
する請求項 1一 5のいずれ力 1項に記載の光学積層体の製造方法。  The method for producing an optical laminate according to any one of claims 1 to 5, wherein
[7] 前記延伸工程が、未延伸積層体を温風で加熱することを含み、未延伸積層体上部 における未延伸積層体に直角に吹き出す温風の温度を T (°C)、温風の風速を U ( [7] The stretching step includes heating the unstretched laminate with warm air, and the temperature of the warm air blown at right angles to the unstretched laminate at the upper part of the unstretched laminate is set to T (° C). Wind speed U (
H H  H H
m/秒)、未延伸積層体力 温風の吹き出し口までの最短距離を L (m)、未延伸積  m / sec), unstretched laminate force L (m) is the shortest distance to the outlet of hot air, unstretched product
H 層体下部における未延伸積層体に直角に吹き出す温風の温度を T (°c)、温風の風 速を U (m/秒)、未延伸積層体から温風の吹き出し口までの最短距離を L (m)とし たとき、下式(1)で計算される Vの、未延伸積層体の上部における Vに対する下部 H The temperature of the hot air blown at right angles to the unstretched laminate at the bottom of the layered body is T (° c), the speed of the hot air is U (m / s), and the shortest distance from the unstretched laminate to the hot air outlet Where L (m) is the lower part of V calculated from the following equation (1) with respect to V in the upper part of the unstretched laminate.
H  H
における Vの比 (V /V )が、 0.5<V /V < 2を満たすことを特徴とする請求項 6  The ratio of V at (V / V) satisfies 0.5 <V / V <2.
H L H L  H L H L
記載の製造方法。  The manufacturing method as described.
式(1) :V=(TXU)/L  Equation (1): V = (TXU) / L
[8] 前記未延伸積層体の各層の厚みのばらつきが ±3%以内である請求項 6又は 7記 載の製造方法。  [8] The production method according to claim 6, wherein a variation in thickness of each layer of the unstretched laminate is within ± 3%.
[9] 前記延伸工程において、未延伸積層体の流れ方向の中心部から左右の領域の温 度を中心部の温度に対して ±1.5C以内とする請求項 6 8のいずれか 1項に記載 の製造方法。  [9] The method according to any one of [68] to [68], wherein in the stretching step, the temperature of the left and right regions from the center in the flow direction of the unstretched laminate is within ± 1.5C with respect to the temperature of the center. Manufacturing method.
PCT/JP2004/012194 2003-08-26 2004-08-25 Optically laminated material and manufacturing method thereof WO2005019883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005513350A JP4434145B2 (en) 2003-08-26 2004-08-25 Method for manufacturing optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-301251 2003-08-26
JP2003301251 2003-08-26

Publications (1)

Publication Number Publication Date
WO2005019883A1 true WO2005019883A1 (en) 2005-03-03

Family

ID=34213875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012194 WO2005019883A1 (en) 2003-08-26 2004-08-25 Optically laminated material and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP4434145B2 (en)
TW (1) TW200508672A (en)
WO (1) WO2005019883A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076026A (en) * 2009-10-02 2011-04-14 Nippon Zeon Co Ltd Optical laminated body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672469B2 (en) * 2005-07-11 2011-04-20 富士フイルム株式会社 Liquid crystal device and projection display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256023A (en) * 1988-11-04 1990-10-16 Fuji Photo Film Co Ltd Liquid crystal display device
JP2003043253A (en) * 2001-07-31 2003-02-13 Sumitomo Chem Co Ltd Laminated optical retardation film
JP2003136635A (en) * 2001-11-01 2003-05-14 Nippon Zeon Co Ltd Laminated structure and phase difference film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256023A (en) * 1988-11-04 1990-10-16 Fuji Photo Film Co Ltd Liquid crystal display device
JP2003043253A (en) * 2001-07-31 2003-02-13 Sumitomo Chem Co Ltd Laminated optical retardation film
JP2003136635A (en) * 2001-11-01 2003-05-14 Nippon Zeon Co Ltd Laminated structure and phase difference film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076026A (en) * 2009-10-02 2011-04-14 Nippon Zeon Co Ltd Optical laminated body

Also Published As

Publication number Publication date
JP4434145B2 (en) 2010-03-17
JPWO2005019883A1 (en) 2007-11-01
TW200508672A (en) 2005-03-01

Similar Documents

Publication Publication Date Title
EP1729156B1 (en) Optical laminate, optical element and liquid crystal display apparatus
US8545970B2 (en) Optical compensation film and retardation film
JP4686261B2 (en) Polarizer protective film, method for producing the same, and polarizing plate using the same
JP5585747B1 (en) Laminated retardation film and method for producing the same
JP2006337569A (en) Polarizer protecting film, and polarizing plate and liquid crystal display device using same
KR101509276B1 (en) Stretched film, process for producing the same, and liquid-crystal display
US8497959B2 (en) Optical film and liquid crystal display
KR20090029537A (en) An optical anisotropic film with high heat resistance and a liquid crystal display device comprising the same
WO2012091009A1 (en) Resin composition, phase-contrast film, method for manufacturing phase-contrast film, and long circularly-polarizing plate
US10754185B2 (en) Viewing angle expansion film, polarizing plate, and liquid crystal display device
JP2010191385A (en) Retardation plate
WO2018123838A1 (en) Viewing angle expansion film, polarizing plate, and liquid crystal display device
JP4433854B2 (en) Optical laminated body with improved viewing angle characteristics, optical element using the optical laminated body, and liquid crystal display device
JP2006047882A (en) Optical laminated body, polarizing plate and liquid crystal display device
JP6131620B2 (en) Laminated retardation film and method for producing laminated retardation film
WO2005019883A1 (en) Optically laminated material and manufacturing method thereof
JP2008247933A (en) Stretched film
JP2006215333A (en) Retardation film
JP4935873B2 (en) OPTICAL LAMINATE, OPTICAL ELEMENT, LIQUID CRYSTAL DISPLAY DEVICE, AND METHOD FOR PRODUCING OPTICAL LAMINATE
JP2004133313A (en) Optical laminate and its manufacturing method
JP4935878B2 (en) Optical laminate manufacturing method, optical element, and liquid crystal display device
JP2010002723A (en) Liquid crystal panel and liquid crystal display
JP2006212989A (en) Laminated film
JP4325317B2 (en) Optical laminate, optical element, liquid crystal display device, and method for producing optical laminate
JP2010185937A (en) Liquid crystal panel and liquid crystal display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513350

Country of ref document: JP

122 Ep: pct application non-entry in european phase