WO2005017145A1 - Method of identifying or presuming gene under regulation regulated by functional rna and method of using the same - Google Patents

Method of identifying or presuming gene under regulation regulated by functional rna and method of using the same Download PDF

Info

Publication number
WO2005017145A1
WO2005017145A1 PCT/JP2004/011624 JP2004011624W WO2005017145A1 WO 2005017145 A1 WO2005017145 A1 WO 2005017145A1 JP 2004011624 W JP2004011624 W JP 2004011624W WO 2005017145 A1 WO2005017145 A1 WO 2005017145A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
functional rna
controlled
region
expression
Prior art date
Application number
PCT/JP2004/011624
Other languages
French (fr)
Japanese (ja)
Inventor
Roberto Antonio Barrero
Takuro c/o BITS Co. Ltd. TAMURA
Tadashi Imanishi
Takashi Gojobori
Kazunari Taira
Hiroaki Kawasaki
Original Assignee
Japan Biological Informatics Consortium
Bits Co., Ltd.
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Biological Informatics Consortium, Bits Co., Ltd., National Institute Of Advanced Industrial Science And Technology filed Critical Japan Biological Informatics Consortium
Publication of WO2005017145A1 publication Critical patent/WO2005017145A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes
    • C12N2320/12Applications; Uses in screening processes in functional genomics, i.e. for the determination of gene function

Definitions

  • the present invention relates to the field of biomolecule control. More specifically, the present invention relates to a method for controlling gene expression using a nucleic acid molecule.
  • RNAi Ribonucleic acid molecules regulate gene expression by RNAi in animals and in plants by RNAi.
  • Non-Patent Document 1 Hutvagner and Zamore 2002 Curr. Opin. Gen. Dev. 12: 225-232.
  • RNAi and PTGS inhibit gene expression by selectively destroying mRNAs that are highly complementary to siRNA sequences.
  • This method is used in the field of gene expression research to suppress the expression of a target gene by artificially introducing double-stranded RNA into cells.
  • a single-stranded short RNA called miRNA has been attracting attention as a short biological RNA molecule involved in the control of gene expression (Non-patent document 2 Lagos-Quintana et al.
  • miRNAs small 21-22 base RNA families in three groups, Drosophila melanogaster, nematodes, and humans. These small RNAs were considered specific at the time of development and were named MicroRNAs (miRNAs).
  • miRNAs One of the characteristics of miRNA is that when predicting the secondary structure of a sequence that is considered to be precursor RNA, the stem-loop structure shRNA (short hairpin RNA) containing all dsRNA (duplex RNA) regions is used. .
  • miRNAs are transcribed as precursor RNAs, dozens to hundreds of bases long with a basil structure containing base pair mismatches, presumably to prevent the expression of various genes induced by dsRNA. (Non-patent document 3 RNAi experimental protocol p.22).
  • Non-Patent Document 4 Eric C. Lai Nature Genetics 30, 363-364 (2002).
  • siRNAs inhibit gene expression by specifically cleaving target mRNAs with high complementarity.On the other hand, miRNAs are thought to act on mRNA with a 3 'UTR complementary region and suppress its translation.
  • Non-patent document l Hutvagner and Zamore 2002 Curr.Opin.Gen. Dev. 12: 225-232
  • Non-patent document 2 Lagos-Quintana et al. 2001 Science 294: 858-862
  • Non-Patent Document 3 “RNAi Experimental Protocol”, Separate Volume on Experimental Medicine, p.22 (2003)
  • Non-Patent Document 4 Eric C ⁇ ai Nature Genetics 30, 363-364 (2002)
  • RNAi and PTGS in living organisms are to function as an ecological defense system and to destroy foreign RNA contaminated by bacterial infection.
  • gene expression control using these is mainly intended for artificial control points.
  • miRNAs are thought to control gene expression by interacting with target mRNAs.
  • the regulation of mRNA expression by miRNA is a mechanism of gene regulation that exists in nature. If miRNA and one or more regulated genes that are targets of the miRNA can be predicted or identified, this mechanism regulates the regulated gene. It becomes possible to intentionally manipulate gene expression control in living organisms for genes.
  • the present invention as a method for predicting or identifying miRNAs and one or more controlled genes as their targets, it has been confirmed that they are present in human or other animal or plant cells, The characteristics of the base sequence of miRNA were examined for the target miRNA molecule, and the target mRNA molecule was predicted in consideration of the obtained characteristics.
  • the present invention provides a method for predicting or identifying a gene (mRNA) controlled by a target of a functional RNA molecule capable of controlling gene expression, for example, miRNA or the like, as a target of the functional RNA molecule. I do.
  • the present invention provides a method for controlling the expression of an mRNA using the miRNA by identifying the mRNA targeted by the miRNA, and the method of using the miRNA as an active ingredient for controlling the expression of the mRNA. And a drug containing the expression control agent.
  • the present invention also includes preparing an siRNA having a degrading effect on the miRNA, and releasing, in the cell, a controlled gene whose translation is inhibited by the miRNA from translation inhibition and translating the gene. included.
  • the functional RNA molecule of the present invention is an RNA molecule having a length of 16 to 25 bases.
  • the functional RNA molecule includes miRNA.
  • RNA molecule in the present invention a naturally occurring miRNA can be used for any living organism such as human, nematode, and fly fly.
  • RNA molecule is a miRNA
  • the method for predicting or identifying a gene controlled by a miRNA (regulated gene) of the present invention includes the following first step and second step.
  • the base sequence of the miRNA molecule is not shared with a region having a region common to a plurality of miRNAs (conserved region), and a region having a base sequence (region other than the conserved region) (Non-storage area).
  • ambiguity search accuracy level value set by a separate criterion is given to the conserved area with a relatively gentle criterion and to the non-conserved area with a relatively strict criterion.
  • This is a step (process) of searching for a gene (a controlled gene candidate) having a base sequence complementary to the search base sequence (functional RNA molecule) as the search base sequence.
  • a search for “regions complementary to the entire miRNA sequence” can be performed by requesting different degrees of complementarity between conserved and non-conserved regions.
  • the full-length functional RNA molecule sequence combining the conserved region and the non-conserved region is set to a relatively mild standard, the non-conserved region is set to a strict standard, and each is set to a different standard.
  • a step (step) of searching for a gene (candidate to be controlled) having a base sequence complementary to a functional RNA molecule can be used as a search base sequence.
  • controlled gene candidate having a search accuracy level or more is found in the second step, this is predicted or identified as a gene controlled by the functional RNA molecule (controlled gene).
  • any miRNA sequence already collected in various databases can be used.
  • a sequence complementary to the motif sequence among several miRNAs (having a common property) in a region having a length of 6 to 8 bases from the 5 'end, as compared with various miRNAs, Sequence) is found to be present.
  • Examples of motif sequences are shown in FIGS. 4 and 5.
  • Such motif sequences include, for example, UAUCACAG PowerS.
  • the 6-8 base region from the 5 'end of the miRNA is called a "conserved region", which is adjacent to the conserved region.
  • the 8 bases region from the 5 'end of the miRNA is classified as a "conserved region”
  • the 9 bases after the 5' end adjacent to the conserved region are classified as a "non-conserved region”.
  • the first base from the 5 'end of the miRNA may be different from the motif in some cases, at least the 5' end force and the 57 base region from the second base may be used as a conserved region. .
  • a certain miRNA is a target gene for regulation, that is, a candidate for a regulated gene. Since sequences of a large number of genes (cDNAs) are already stored in the database, cDNA sequences stored in any database such as DDBJ and EBI can be used. Particularly preferably, a cDNA sequence stored in a database of NCBI (US National Center for Biotechnology Information, hereinafter abbreviated as NCBI) can be used.
  • NCBI US National Center for Biotechnology Information
  • cDNA containing the 3 'UTR is extracted from any database. Then, for each of the extracted cDNAs, from the start position of the 3 ′ UTR, that is, immediately after the end of the protein coding region on the mRNA, for example, within a range of 3500 to 500 bases, specifically 3000 Bases, preferably 1500 bases, more preferably 1000 bases, can be the sequence under consideration.
  • the miRNA is compared with the sequence to be examined (candidate target base sequence), and a certain level (a relatively mild standard for the total length of the functional RNA molecule within the search accuracy level) is determined.
  • a candidate primary target sequence having a portion having a certain degree of complementarity with the miRNA sequence is first selected as a complementary region.
  • the complementarity is more than an appropriate value selected from 50-90%, preferably between 60% -75%, specifically, 50% or more, 55% or more , 80% or more, or 90% or more, preferably 60% or more, 65% or more, 70% or more, or 75% or more complementarity.
  • the primary selection is performed using a target base sequence 1J having a region in which two-thirds or more bases are complementary to the miRNA base sequence as a complementary region.
  • the phrase that two-thirds or more of the bases are complementary means that two-thirds or more of the number of bases of the miRNA is complementary.
  • the miRNA is composed of 22 bases, Means that at least 15 bases are complementary. Relatively mild criteria for the total length of a functional RNA molecule can employ such selection criteria.
  • the mismatch rate is changed in the storage area and the non-storage area so as to reduce the mismatch in the non-storage area.
  • the allowable mismatch rate is stored.
  • the non-conserved region is less than half, preferably less than one-fourth, and the gene whose base sequence satisfies the mismatch ratio between the two is controlled by the miRNA (controlled gene) It is also possible to adopt a method of predicting or identifying that
  • the prediction or identification of the method of the present invention may further include, for example, a step of confirming that the regulated gene identified in the second step is controlled by the miRNA.
  • the step of confirming that the miRNA controls and regulates the regulated gene is the step of actually introducing the miRNA into the sample cell to determine whether the expression of the predicted or identified regulated gene is affected.
  • a means for detecting the presence of mRNA or protein expression such as Northern blotting and Western blotting, can be used.
  • the effect on the expression of the controlled gene is preferably a fragment of the candidate controlled gene or its complementary strand, usually 15 or more bases in a continuous manner that can distinguish the candidate controlled gene or its complementary strand from other genes.
  • a DNA chip in which a large number of probe sequences of about 20 to 30 bases are arranged, the expression of miRNA-introduced cells can be confirmed for the collected mRNA or cDNA library.
  • a DNA chip microarray
  • the expression of the target gene can be controlled using the miRNA, and the miRNA can be used as an agent for controlling the expression of the target gene.
  • miRNA is an expression vector that produces a miRNA that can be directly introduced into cells. Can be prepared.
  • Target gene expression inhibitors include miRNAs or miRNA expression vectors and, if necessary, other additives effective for introduction into the target organism, such as calcium phosphate, ribofurin, polylysine, and other additives. Can be contained.
  • RNA expression vector For preparation of the miRNA expression vector, a gene recombination method usually employed for the target organism species can be used. For example, for plants, the hairpin RNA expression plasmid method can be used. For animals, the siRNA expression vector method can be used. As a system for expressing siRNA, RNA polymeraseasel can be used, and there are a tandem type and a stem loop type. For example, piGENETMhU6 and piGENETMtRNA (iGENE Therapeutics) can be used. Preferably, (i) the siRNA corresponding to the selected miRNA is amplified with primers containing sense and antisense sequences, and the amplified fragment is digested with restriction enzymes.
  • oligonucleotide is inserted downstream of the U6 promoter to make it a tandem type.
  • An oligonucleotide containing sense, loop, and antisense sequences can be annealed and inserted downstream of the U6 promoter (see RNAi Experimental Protocol). "Experimental Medicine Supplement, pages 95-110)
  • the expression vector can be introduced into cells using a cell introduction kit such as EffectinTM.
  • the miRNA expression vector is introduced into a cell or an organism by a well-known method, for example, by electoporation, Ca + polyphosphate method, particle gun method, or the like.
  • an siRNA complementary to the miRNA can be designed.
  • the expression of the protein encoded by the regulated gene can be controlled by the siRNA.
  • the present invention provides a protein encoded by a regulated gene whose expression is controlled by miRNA. It also encompasses the development of treatments for protein-related diseases, and treatments for diseases, using siRNA when the quality is suppressed by the presence of the miRNA.
  • miRNAs can be designed by dividing them into constant regions and variable regions. For example, based on a known miRNA sequence, in the constant region and the variable region, a base sequence having any possibility in the ambiguity set separately is generated, and a miRNA sequence data library is created. The miRNA sequence data thus generated can be searched for the presence of a complementary sequence on the 3 ′ UTR of the mRNA to be subjected to translation control.
  • the gene to be controlled (target gene) controlled by miRNA predicted by the present invention can be used to control gene expression and protein translation by miRNA or siRNA acting on miRNA. Thus, it can be used for the development of a treatment for a disease associated with the protein encoded by the predicted target gene and a treatment for a disease associated with the protein encoded by the predicted target gene.
  • the 5 'side has a common arrangement of several miRNAs, such as let-7a, let-7b, let-7c, let_7d, let_7e, and let_7f, respectively.
  • the motif sequence uGACCUAU exists as a sequence complementary to the above sequence. Based on this tendency, 8 bases on the 5 ′ side of miRNA were defined as “conserved region”, and 9 bases and beyond were defined as “non-conserved region”.
  • a region complementary to the known human miRNA collected in the candidate target base sequence was searched for and used as a complementary region.
  • a search using relatively mild criteria specifically, a region in which two-thirds or more of the base is complementary to the full-length nucleotide sequence of miRNA is selected, and (305).
  • a search based on strict criteria specifically, a base sequence that is continuous at least 8 bases exists. Those were selected and set as target regions (306). As a result, 474 target regions corresponding to 95 human miRNAs were obtained. That is, a gene having a target region for each miRNA is a target gene (controlled gene) (Table 2).
  • fSSOSlT is o— 538SSO "" ⁇ ) 6i-a iuI
  • miR-118 Marauder 144679 From the results obtained in Example 1, three types of miRNAs (miR-17 (SEQ ID NO: 9), miR-29 (SEQ ID NO: 23), and miR-102 (SEQ ID NO: 38)) were selected. One gene was selected from the predicted target genes (NM_001949 (SEQ ID NO: 108), NM020390 (SEQ ID NO: 109), NM_004496 (SEQ ID NO: 110)), and by experiment, each synthetic miRNA was encoded by each target gene. The inhibitory activity on protein translation was examined by observing the effect on the expression of the proteins (E2F3, eIF5A, HNF3alpha) (Fig. 2).
  • DMEM Dulbecco's modified Eagle's Medium
  • FBS fetal bovine serum
  • miR-17, miR_29, and miR-102 shown in Table 1 were respectively synthesized. Each of the above synthetic miRNAs was introduced into human G2 cells at 2 ⁇ ⁇ using 01igofectamin TM (Invitrogen).
  • NM_001949 is an E2F transcription factor 3 [synonym: KIAA0075,
  • E2F3, E2F-3 Transcription factor E2F3, E2F-3].
  • the E2F transcription factor is located at the E2 site recognition site (TTTCC / GCGC) found in the promoter region of the gene encoding a protein involved in cell cycle regulation and gene replication. Binds to DNA in cooperation with the DB protein.
  • the DRTF1 / E2F complex functions in controlling the transition from G1 to S phase of the cell cycle.
  • E2F3 selectively binds to retinoblastoma protein 1 (RB1) depending on the cell cycle. Match. Suppression of the E2F3 protein impairs cell cycle transition, cell division, and differentiation, and correlates with cancer progression and dysregulated E2F2 expression. Therefore, suppression of E2F3 expression by miR-17 can be used to block cell division in human cancer tumors, that is, can be used to treat cancer.
  • Eukaryotic translation initiator factor 5A2 [Synonyms: eIF-5A2 protein, eIF5Ali, eIF_5A2 proteinj.
  • Eukaryotic initiation factor 5A (eIF5A) (eIF-4D, eIF_5A) is a ribosomal peptidyl transferase
  • eIF_5A has been identified as one of the essential cofactors of the HIV-1 transmutabeta protein Rev. Rev plays a key role in the complex regulation of HIV-1 gene expression and therefore in the development of virion infection. Expression of eIF_5A is essential for Rev function, and inhibition of this interaction leads to a block in the viral replication cycle. Therefore, suppression of eIF5A protein expression by miR_29 can be used to block the HIV virus replication cycle, that is, it can be used to treat HIV diseases.
  • NM_004496 is an H-marked atocyte nuclear factor 3, alpha [synonym: HNF3a, HNF3A, MGC33105, TCF3A, forkhead box Al, hepatocyte nuclear factor 3-alpha (HNF-3a) (Forkhead box protein Al)].
  • HNF-3a acts as a transcription activator of many liver genes such as AFP, Albumin, tyrosine aminotransferase, and PEP CK. Interacts with the cis-regulatory regions of these genes.
  • HNF_3a is a member of the forkhead class, a DNA-binding protein. Similar family members in mice have a role in regulating metabolic differences in pancreas and liver.
  • miR_102 suppression of HNF3a protein expression by miR_102 can be used to block the growth of human cancer tumors, that is, it can be used to treat cancer.
  • NMjt ? such as the above numbers (NM_001949, NM.020390, NM_004496) Indicates the gene registration number assigned by BI.
  • expression of a protein encoded by a regulated gene can be controlled by a combination of a miRNA and a regulated gene predicted by the method for searching for a regulated gene of a functional RNA in the present invention. It can be used in the technical field of genetic engineering.
  • FIG. 1 is a flowchart of a miRNA target gene prediction procedure.
  • Fig. 2 shows the combination of miRNA, target gene, and target protein verified by experiments.
  • Figure 3 shows the effect of miRNAs (miR-17, miR-29, miR-102) on the expression of E2F3, eIF5A, and HNF3alpha.
  • Fig. 4 shows examples of motif sequences and miRNAs having the motif sequences.
  • Figure 5 shows examples of miRNAs with the same motif

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To control gene expression with the use of miRNAs via the phenomenon of gene expression regulation by miRNA, which is a gene regulation system occurring in nature, it is intended to presume or identify miRNA(s) and one or more genes under the regulation targeted thereby. Base sequences of miRNA molecules are divided into a region having a base sequence common to a plural number of miRNAs (a conserved region) and another region with uncommon base sequences (region other than the conserved region; unconserved region). Then ambiguities (searching accuracy levels) of different standards are set in these regions, that is, ambiguity of a relatively mild standard is set in the conserved region while ambiguity of a relatively strict standard is set in the unconserved region. Using the base sequences for searching thus obtained, a gene having a base sequence complementary to a functional RNA molecule (namely, a candidate for the gene under the regulation) is searched for followed by presumption or identification.

Description

明 細 書  Specification
機能性 RNAが制御する被制御遺伝子の同定'予測方法及びその利用方 法  Identification of regulated genes controlled by functional RNA'Prediction method and method of using the same
技術分野  Technical field
[0001] 本発明は、生体分子制御の分野に関連する。より詳細には、本発明は、核酸分子 を用いて遺伝子発現制御を行うための方法に関連する。  The present invention relates to the field of biomolecule control. More specifically, the present invention relates to a method for controlling gene expression using a nucleic acid molecule.
背景技術  Background art
[0002] 核酸分子が遺伝子発現の制御を行う方法としては、動物では RNAi、植物では [0002] Nucleic acid molecules regulate gene expression by RNAi in animals and in plants by RNAi.
PTGSと呼ばれるプロセスによって生成される siRNAと呼ばれる短い 2本鎖の RNAによ る方法が知られている(非特許文献 1 Hutvagner and Zamore 2002 Curr. Opin. Gen. Dev. 12:225-232)。 RNAiと PTGSは、 siRNA配列と高い相補性を持つ mRNAを 選択的に破壊することで、遺伝子発現を阻害する。この方法は、遺伝子発現研究の 分野において、人為的に二本鎖 RNAを細胞に導入することによって目的遺伝子の発 現を抑制することに利用されている。近年、この siRNAと同様に、遺伝子発現の制御 に関わる短い生体 RNA分子として、 miRNAと呼ばれる 1本鎖の短レ、 RNAが注目され ている(非特許文献 2 Lagos-Quintana et al. 2001 Science 294: 858-862)。 2001年 10月に、ほぼ同時に 3つのグループ力 ショウジヨウバエ、線虫、ヒトで、合わせてほ ぼ 100種類の 21-22塩基の小さな RNAファミリーが存在することを報告した。それら の小さレ、 RNAは、発生の時期に特異的と考えられ、 MicroRNA (miRNA)と名づけられ た。 miRNAに特徴的であるのは、前駆体 RNAと考えられる配列の 2次構造を予測する と、すべて dsRNA(2重鎖 RNA)領域を含むステムループ構造 shRNA (short hairpin RNA)をとることである。 miRNAは、おそらく dsRNAに誘導されるさまざまな遺伝子の発 現を防ぐために、塩基対のミスマッチを含むバジル構造を持った数十から数百の塩 基の長レ、前駆体 RNAとして転写され、 Dicerによってプロセシングされると考えられて いる(非特許文献 3 RNAi実験プロトコール p.22)。 A method using a short double-stranded RNA called siRNA generated by a process called PTGS is known (Non-Patent Document 1 Hutvagner and Zamore 2002 Curr. Opin. Gen. Dev. 12: 225-232). RNAi and PTGS inhibit gene expression by selectively destroying mRNAs that are highly complementary to siRNA sequences. This method is used in the field of gene expression research to suppress the expression of a target gene by artificially introducing double-stranded RNA into cells. In recent years, similar to this siRNA, a single-stranded short RNA called miRNA has been attracting attention as a short biological RNA molecule involved in the control of gene expression (Non-patent document 2 Lagos-Quintana et al. 2001 Science 294). : 858-862). In October 2001, we reported at about the same time that there were almost 100 different small 21-22 base RNA families in three groups, Drosophila melanogaster, nematodes, and humans. These small RNAs were considered specific at the time of development and were named MicroRNAs (miRNAs). One of the characteristics of miRNA is that when predicting the secondary structure of a sequence that is considered to be precursor RNA, the stem-loop structure shRNA (short hairpin RNA) containing all dsRNA (duplex RNA) regions is used. . miRNAs are transcribed as precursor RNAs, dozens to hundreds of bases long with a basil structure containing base pair mismatches, presumably to prevent the expression of various genes induced by dsRNA. (Non-patent document 3 RNAi experimental protocol p.22).
[0003] miRNAは、ヒトを含む多くの生物種において、数百種類が報告されている。 miRNA は、 5'側の塩基配列に共通の構造が多いことが知られている(非特許文献 4 Eric C.Lai Nature Genetics 30, 363-364 (2002))。また、 siRNA力 相補性の高い標的 mRNAを特異的に切断することによる遺伝子発現阻害であるのに対し、 miRNAは、 3' UTRに相補性領域のある mRNAと作用し、その翻訳を抑制すると考えられている。 非特許文献 l : Hutvagner and Zamore 2002 Curr. Opin. Gen. Dev. 12:225-232 非特許文献 2 : Lagos-Quintana et al. 2001 Science 294: 858-862 [0003] Hundreds of miRNAs have been reported in many biological species including humans. It is known that miRNAs have many structures common to the 5'-side nucleotide sequence (Non-Patent Document 4 Eric C. Lai Nature Genetics 30, 363-364 (2002)). In addition, siRNAs inhibit gene expression by specifically cleaving target mRNAs with high complementarity.On the other hand, miRNAs are thought to act on mRNA with a 3 'UTR complementary region and suppress its translation. Have been. Non-patent document l: Hutvagner and Zamore 2002 Curr.Opin.Gen. Dev. 12: 225-232 Non-patent document 2: Lagos-Quintana et al. 2001 Science 294: 858-862
非特許文献 3 :「RNAi実験プロトコール」実験医学別冊 p.22 (2003)  Non-Patent Document 3: “RNAi Experimental Protocol”, Separate Volume on Experimental Medicine, p.22 (2003)
非特許文献 4 : Eric C丄 ai Nature Genetics 30, 363-364 (2002)  Non-Patent Document 4: Eric C 丄 ai Nature Genetics 30, 363-364 (2002)
発明の開示  Disclosure of the invention
[0004] RNAi及び PTGSの生体における本来の役割は、生態防御システムとして機能し、細 菌感染によって混入してくる外来 RNAを破壊することが主であると考えられている。す なわち、これらを用いた遺伝子発現制御は、主に人工的な制御点を対象とした制御 となる。  [0004] It is thought that the primary role of RNAi and PTGS in living organisms is to function as an ecological defense system and to destroy foreign RNA contaminated by bacterial infection. In other words, gene expression control using these is mainly intended for artificial control points.
[0005] 一方、 miRNAは、対象となる mRNAと相互作用することにより遺伝子の発現を制御し てレ、ると考えられてレ、る。 miRNAによる mRNAの発現制御は自然界に存在する遺伝 子制御の仕組みであり、 miRNAとそれらのターゲットとなる 1つまたは複数の被制御 遺伝子を予測又は同定することができれば、この仕組みにより、該被制御遺伝子を 対象として、生体における遺伝子発現制御を意図的に操作することが可能となる。  [0005] On the other hand, miRNAs are thought to control gene expression by interacting with target mRNAs. The regulation of mRNA expression by miRNA is a mechanism of gene regulation that exists in nature.If miRNA and one or more regulated genes that are targets of the miRNA can be predicted or identified, this mechanism regulates the regulated gene. It becomes possible to intentionally manipulate gene expression control in living organisms for genes.
[0006] さらに、 miRNA分子及び被制御遺伝子の情報を基に実験的手法を適用することに より、生体における遺伝子の役割の解明や、疾病のための処置手法の開発、また、 疾病のための処置そのものが可能となる。  [0006] Furthermore, by applying an experimental method based on information on miRNA molecules and regulated genes, the role of genes in living organisms is elucidated, treatment methods for diseases are developed, and The treatment itself is possible.
[0007] 本発明においては、 miRNAとそれらのターゲットとなる 1つまたは複数の被制御遺 伝子を予測又は同定する方法として、ヒト又はそれ以外の動植物細胞において存在 することが確認されてレ、る miRNA分子を対象として、 miRNAの塩基配列の特徴を調 查し、得られた特徴を考慮して miRNAのターゲットとなる mRNA分子を予測した。  [0007] In the present invention, as a method for predicting or identifying miRNAs and one or more controlled genes as their targets, it has been confirmed that they are present in human or other animal or plant cells, The characteristics of the base sequence of miRNA were examined for the target miRNA molecule, and the target mRNA molecule was predicted in consideration of the obtained characteristics.
[0008] 予測した miRNAとターゲット mRNA分子の組み合わせは実験によって確認し、その 機能と有用性を実証した。  [0008] The combination of the predicted miRNA and target mRNA molecule was confirmed by experiments, and its function and usefulness were demonstrated.
[0009] 本明細書は本願の優先権の基礎である日本国特許出願 2003-293129号の明細書 および/または図面に記載される内容を包含する。 発明を実施するための最良の形態 [0009] This description includes part or all of the contents as disclosed in the description and / or drawings of Japanese Patent Application No. 2003-293129, which is a priority document of the present application. BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本件発明は、遺伝子発現を制御することができる機能性 RNA分子、例えば、 miRNA 等に対して、当該機能性 RNA分子がターゲットとして制御する遺伝子 (mRNA)を予測 又は同定する方法を提供する。 [0010] The present invention provides a method for predicting or identifying a gene (mRNA) controlled by a target of a functional RNA molecule capable of controlling gene expression, for example, miRNA or the like, as a target of the functional RNA molecule. I do.
[0011] 更に、本件発明は、ある miRNAがターゲットとする mRNAを同定することにより、その miRNAを用いる当該 mRNAの発現を制御する方法、及び mRNAの発現を制御するた めの、 miRNAを有効成分として含む発現制御剤、並びに該発現制御剤を含有する医 薬を提供する。 [0011] Further, the present invention provides a method for controlling the expression of an mRNA using the miRNA by identifying the mRNA targeted by the miRNA, and the method of using the miRNA as an active ingredient for controlling the expression of the mRNA. And a drug containing the expression control agent.
[0012] 更に本件発明には、当該 miRNAに対し分解作用を有する siRNAを調製し、細胞中 で、当該 miRNAにより翻訳阻害されている被制御遺伝子を、翻訳阻害から解放し、翻 訳させることも含まれる。  [0012] Further, the present invention also includes preparing an siRNA having a degrading effect on the miRNA, and releasing, in the cell, a controlled gene whose translation is inhibited by the miRNA from translation inhibition and translating the gene. included.
[0013] 本件発明における機能性 RNA分子としては、 16から 25塩基長の RNA分子であって[0013] The functional RNA molecule of the present invention is an RNA molecule having a length of 16 to 25 bases.
、遺伝子発現制御活性を持つものが含まれる。具体的には、機能性 RNA分子として は、 miRNAが含まれる。 And those having gene expression regulating activity. Specifically, the functional RNA molecule includes miRNA.
[0014] 本件発明における機能性 RNA分子は、ヒト、線虫、ショウジヨウバエ、等いずれの生 物でも、天然に存在する miRNAを用いることができる。  [0014] As the functional RNA molecule in the present invention, a naturally occurring miRNA can be used for any living organism such as human, nematode, and fly fly.
[0015] [miRNAが制御する対象遺伝子の同定] [0015] [Identification of target gene controlled by miRNA]
以下に機能性 RNA分子が、 miRNAの場合について以下に具体的に説明する。  The case where the functional RNA molecule is a miRNA will be specifically described below.
[0016] 他の機能性 RNA分子についても同様に行うことができる。 [0016] The same can be applied to other functional RNA molecules.
[0017] 本件発明の miRNAが制御する遺伝子 (被制御遺伝子)の予測又は同定方法は、次 の第 1ステップ及び第 2ステップを含んでいる。  [0017] The method for predicting or identifying a gene controlled by a miRNA (regulated gene) of the present invention includes the following first step and second step.
[0018] 第 1ステップは、 miRNA分子の塩基配列を、複数の miRNA間で共通性のある領域を 有する領域 (保存領域)と共通でなレ、塩基配列を有する領域 (保存領域以外の領域) (非保存領域)とに分別するステップである。  [0018] In the first step, the base sequence of the miRNA molecule is not shared with a region having a region common to a plurality of miRNAs (conserved region), and a region having a base sequence (region other than the conserved region) (Non-storage area).
[0019] 第 2ステップとして、該保存領域では比較的穏やかな基準で、及び非保存領域で は比較的厳密な基準で、各々別々の基準で設定した曖昧さ (探索精度水準値)を与 え探索用塩基配列とし、探査用塩基配列 (機能性 RNA分子)に相補である塩基配列 を有する遺伝子 (被制御遺伝子候補)を探索するステップ(工程)である。具体的には 、「miRNA配列全体に相補な領域」の探索を、保存領域と非保存領域に異なる相補 性の強さを要求して行うことができる。 [0019] As a second step, ambiguity (search accuracy level value) set by a separate criterion is given to the conserved area with a relatively gentle criterion and to the non-conserved area with a relatively strict criterion. This is a step (process) of searching for a gene (a controlled gene candidate) having a base sequence complementary to the search base sequence (functional RNA molecule) as the search base sequence. In particular Alternatively, a search for “regions complementary to the entire miRNA sequence” can be performed by requesting different degrees of complementarity between conserved and non-conserved regions.
[0020] なお、第 2ステップとしては、保存領域と非保存領域を合わせた全長機能性 RNA分 子配列について比較的穏やかな基準で、非保存領域では厳密な基準で、各々別々 の基準で設定した曖昧さ (探索精度水準値)を与え探索用塩基配列として、機能性 RNA分子に相補である塩基配列を有する遺伝子 (被制御遺伝子候補)を探索するス テツプ(工程)とすることもできる。具体的には、 (1)探査用塩基配列として全長機能 R NA分子を用いて、全長機能 RNA分子配列について比較的穏ゃ力、な基準で相補 的である塩基配列を有する遺伝子を探索し、次に(2)当該機能性 RNA分子の非保 存領域を探査用塩基配列とし、比較的に厳密な基準で相補的な配列を有する遺伝 子 (被制御遺伝子候補)を探索するするステップが挙げられる。  [0020] In the second step, the full-length functional RNA molecule sequence combining the conserved region and the non-conserved region is set to a relatively mild standard, the non-conserved region is set to a strict standard, and each is set to a different standard. Given the ambiguity (search accuracy level value), a step (step) of searching for a gene (candidate to be controlled) having a base sequence complementary to a functional RNA molecule can be used as a search base sequence. Specifically, (1) using a full-length functional RNA molecule as an exploratory nucleotide sequence, searching for a gene having a nucleotide sequence that is relatively mild and complementary to the full-length functional RNA molecule sequence based on certain criteria; Next, (2) a step of using a non-conserved region of the functional RNA molecule as a search base sequence and searching for a gene having a complementary sequence (candidate gene to be controlled) based on relatively strict criteria. Can be
[0021] そして、第 2ステップで探索精度水準値以上の被制御遺伝子候補が見出されれば 、これを、機能性 RNA分子が制御する遺伝子 (被制御遺伝子)と予測又は同定する。  Then, if a controlled gene candidate having a search accuracy level or more is found in the second step, this is predicted or identified as a gene controlled by the functional RNA molecule (controlled gene).
[0022] 本件発明において用いる miRNAの配列は、各種データベースに既に収集されてい る任意の miRNAの配列を用いることができる。  [0022] As the miRNA sequence used in the present invention, any miRNA sequence already collected in various databases can be used.
[0023] 上記第 1ステップとしては、種々の miRNAの間での比較から、 5 '末端から 6— 8塩基 長の領域にいくつかの miRNA間でモチーフ配列に相補である配列(共通性を有する 配列)が存在することが見出されたことを利用して分別する。モチーフ配列の例を図 4 及び図 5に掲げた。このようなモチーフ配列としては、例えば、 UAUCACAG力 S挙げら れる。  [0023] In the first step, a sequence complementary to the motif sequence among several miRNAs (having a common property) in a region having a length of 6 to 8 bases from the 5 'end, as compared with various miRNAs, Sequence) is found to be present. Examples of motif sequences are shown in FIGS. 4 and 5. Such motif sequences include, for example, UAUCACAG PowerS.
[0024] そこで、 miRNAの 5'末端から 6— 8塩基領域、を「保存領域」、保存領域に隣接する  [0024] Therefore, the 6-8 base region from the 5 'end of the miRNA is called a "conserved region", which is adjacent to the conserved region.
7— 9塩基以降を「非保存領域」と分別する。好適には、 miRNAの 5'末端から 8塩基 領域を「保存領域」、保存領域に隣接する 5'末端から 9塩基以降を「非保存領域」と 分別する。  7–9 bases and beyond are classified as “non-conserved regions”. Preferably, the 8 bases region from the 5 'end of the miRNA is classified as a "conserved region", and the 9 bases after the 5' end adjacent to the conserved region are classified as a "non-conserved region".
[0025] なお、 miRNAの 5 '末端から第 1番目の塩基はモチーフと相違する場合も見られるこ とから、少なくとも 5'末端力も第 2番目の塩基から 5 7塩基領域を保存領域としても 良い。  [0025] Since the first base from the 5 'end of the miRNA may be different from the motif in some cases, at least the 5' end force and the 57 base region from the second base may be used as a conserved region. .
[0026] ある miRNAが制御の標的(ターゲット)とする遺伝子、つまり被制御遺伝子の候補に ついては、既に、多数の遺伝子の配列(cDNA)がデータベースに保存されていること から、 DDBJ、 EBI等任意のデータベースに保存されている cDNA配列を用いることが できる。特に好適には、 NCBI (米国 National Center for Biotechnology Information, 以下 NCBIと略すことあり)のデータベースに保存されている cDNA配列を利用するこ とができる。 [0026] A certain miRNA is a target gene for regulation, that is, a candidate for a regulated gene. Since sequences of a large number of genes (cDNAs) are already stored in the database, cDNA sequences stored in any database such as DDBJ and EBI can be used. Particularly preferably, a cDNA sequence stored in a database of NCBI (US National Center for Biotechnology Information, hereinafter abbreviated as NCBI) can be used.
[0027] 具体的には、任意のデータベースから、 3 ' UTRが含まれる cDNAを抽出する。そし て、抽出された cDNAについて、それぞれ、 3 ' UTRの開始位置、つまり mRNA上の蛋 白質コード領域の終了直後から、たとえば、 3500塩基から 500塩基の範囲内で、具 体的には、 3000塩基、好適には、 1500塩基、更に好適には、 1000塩基を検討対 象の配列とすることができる。  [0027] Specifically, cDNA containing the 3 'UTR is extracted from any database. Then, for each of the extracted cDNAs, from the start position of the 3 ′ UTR, that is, immediately after the end of the protein coding region on the mRNA, for example, within a range of 3500 to 500 bases, specifically 3000 Bases, preferably 1500 bases, more preferably 1000 bases, can be the sequence under consideration.
[0028] 第 2ステップとして次のようなステップを採用することもできる。  [0028] The following steps may be employed as the second step.
[0029] まず、 miRNAと検討対象配列(ターゲット塩基配列候補)とを比較参照し、一定の水 準 (探索精度水準の内、機能性 RNA分子の全長についての比較的穏ゃ力な基準)を 満たす配列を探索する。例えば、 miRNA配列と一定値以上の相補性がある部分を有 するターゲット塩基配列候補を相補性領域としてまず一次選抜する。一定値以上の 相補性としては、相補性 50— 90%、好適には 60%-75%の間で選択される適切な 値以上の相補性、具体的には、 50%以上、 55%以上、 80%以上、又は 90%以上、 好適には、 60%以上、 65%以上、 70%以上、又は 75%以上の相補性を採用できる 。更に好適には、 miRNAの塩基配列に対して 3分の 2以上の塩基が相補的である領 域を有するターゲット塩基配歹 1Jを相補性領域として 1次選抜する。なお、ここで、 3分 の 2以上の塩基が相補的であるとは、 miRNAの塩基数の 3分の 2以上が相補的である ことを意味し、例えば、 miRNAが 22塩基からなる場合は、 15塩基以上が相補的であ ることを意味する。機能性 RNA分子の全長についての比較的穏やかな基準とは、こ のような選択基準を採用することができる。  [0029] First, the miRNA is compared with the sequence to be examined (candidate target base sequence), and a certain level (a relatively mild standard for the total length of the functional RNA molecule within the search accuracy level) is determined. Search for an array that satisfies. For example, a candidate primary target sequence having a portion having a certain degree of complementarity with the miRNA sequence is first selected as a complementary region. As the complementarity above a certain value, the complementarity is more than an appropriate value selected from 50-90%, preferably between 60% -75%, specifically, 50% or more, 55% or more , 80% or more, or 90% or more, preferably 60% or more, 65% or more, 70% or more, or 75% or more complementarity. More preferably, the primary selection is performed using a target base sequence 1J having a region in which two-thirds or more bases are complementary to the miRNA base sequence as a complementary region. Here, the phrase that two-thirds or more of the bases are complementary means that two-thirds or more of the number of bases of the miRNA is complementary.For example, when the miRNA is composed of 22 bases, Means that at least 15 bases are complementary. Relatively mild criteria for the total length of a functional RNA molecule can employ such selection criteria.
[0030] 次にこの 1次選抜されたターゲット塩基配列候補 (相補性領域)の中から、更に、 miRNAの非保存性領域中の連続する 8塩基に対し、対応するターゲット塩基配列候 補中連続した 8塩基が、相補的な配列である、ターゲット塩基配列候補をターゲット 塩基配列として選抜する。この選抜基準を、非保存領域における探索精度水準とす ること力 Sできる。このようにして選抜されたターゲット塩基配列が抽出された遺伝子を、 当該 miRNAが制御対象とする遺伝子 (被制御遺伝子)であると予測又は同定する。 [0030] Next, from among the candidate base sequence candidates (complementary regions) selected in the first step, eight consecutive bases in the non-conserved region of the miRNA correspond to the contiguous target base sequence candidates. The target base sequence candidates whose eight bases are complementary sequences are selected as the target base sequence. This selection criterion is used as the search accuracy level in the non-conserved area. S power The gene from which the target base sequence thus selected is extracted is predicted or identified as the gene to be controlled by the miRNA (controlled gene).
[0031] なお、第 2ステップの他の態様としては、例えば、保存領域、非保存領域でミスマツ チ率を、非保存領域ではミスマッチが少ないように変える、例えば、許容されるミスマ ツチ率を保存領域に対して、非保存領域では、半分以下、好適には、 4分の 1以下と し、両者のミスマッチ率を満たす塩基配列を有する遺伝子を当該 miRNAが制御対象 とする遺伝子 (被制御遺伝子)であると予測又は同定する方法を採用することもできる [0031] As another mode of the second step, for example, the mismatch rate is changed in the storage area and the non-storage area so as to reduce the mismatch in the non-storage area. For example, the allowable mismatch rate is stored. The non-conserved region is less than half, preferably less than one-fourth, and the gene whose base sequence satisfies the mismatch ratio between the two is controlled by the miRNA (controlled gene) It is also possible to adopt a method of predicting or identifying that
[0032] [miRNAが被制御遺伝子を制御してレ、ることの確認] [0032] [Confirmation that miRNA controls a regulated gene]
本発明の方法の予測又は同定は、更に、例えば、上記の第 2ステップで特定された 被制御遺伝子を miRNAが制御してレ、ることを確認するステップを包含しても良レ、。 miRNAが被制御遺伝子を制御してレ、ることを確認するステップは、実際に miRNAを試 料細胞中に導入して、予測又は同定された被制御遺伝子の発現が影響されるか否 かを、例えば、ノーザンブロティング、ウェスターンブロティング等の mRNAの存在又 はタンパク質の発現を検出する手段によることができる。  The prediction or identification of the method of the present invention may further include, for example, a step of confirming that the regulated gene identified in the second step is controlled by the miRNA. The step of confirming that the miRNA controls and regulates the regulated gene is the step of actually introducing the miRNA into the sample cell to determine whether the expression of the predicted or identified regulated gene is affected. For example, a means for detecting the presence of mRNA or protein expression, such as Northern blotting and Western blotting, can be used.
[0033] 被制御遺伝子の発現への影響は、被制御遺伝子候補又はその相補鎖の断片、通 常当該被制御遺伝子候補又はその相補鎖を他遺伝子から区別できる連続して 15塩 基以上、好適には約 20から 30塩基のプローブとなる配列を多数配置した DNAチッ プを用いて、 miRNAを導入した細胞力も採取された mRNA又は cDNAライブライリーを 対象に、発現確認することができる。このような DNAチップ (マイクロアレイ)には、光リ ソグラフィ法による DNAチップ、 DNA試料をドット固着させる方法など、周知の方法で 調製できる。  [0033] The effect on the expression of the controlled gene is preferably a fragment of the candidate controlled gene or its complementary strand, usually 15 or more bases in a continuous manner that can distinguish the candidate controlled gene or its complementary strand from other genes. For example, using a DNA chip in which a large number of probe sequences of about 20 to 30 bases are arranged, the expression of miRNA-introduced cells can be confirmed for the collected mRNA or cDNA library. Such a DNA chip (microarray) can be prepared by a well-known method such as a DNA chip by a photolithography method and a method of fixing a DNA sample to dots.
[0034] [miRNAの使用方法]  [0034] [Method of using miRNA]
[標的遺伝子の発現抑制剤]  [Target gene expression inhibitor]
miRNAにより発現が制御される標的遺伝子力 S、同定されれば、当該 miRNAを用い てその標的遺伝子の発現を制御することができ、 miRNAは、当該標的遺伝子の発現 制御剤として用いることができる。  If the target gene S whose expression is controlled by the miRNA is identified, the expression of the target gene can be controlled using the miRNA, and the miRNA can be used as an agent for controlling the expression of the target gene.
[0035] 例えば、 miRNAは、そのまま細胞に導入するほ力 miRNAを生成する発現ベクター を調製することができる。標的遺伝子の発現抑制剤は、 miRNA又は miRNA発現べク ター、及び、必要があれば、対象生物への導入に有効な他の添加剤、例えば、リン 酸カルシウム、リボフヱリン、ポリリジン、その他の添加剤を含有することができる。 [0035] For example, miRNA is an expression vector that produces a miRNA that can be directly introduced into cells. Can be prepared. Target gene expression inhibitors include miRNAs or miRNA expression vectors and, if necessary, other additives effective for introduction into the target organism, such as calcium phosphate, ribofurin, polylysine, and other additives. Can be contained.
[0036] miRNA発現ベクターの調製には、通常その対象生物種により採用されている遺伝 子組み換え法を用いることができる。例えば、植物については、ヘアピン型 RNA発現 プラスミド法によること力 Sできる。動物については、 siRNA発現ベクター法を応用して 用いることができる。 siRNAを発現させる系としては、 RNApolymeraselllを用いることが でき、タンデムタイプと、ステムループタイプがある。例えば、 piGENETMhU6、 piGENETMtRNA (iGENE Therapeutics)を用いることができ、好適には、(i)選択され た miRNAに対応する siRNAをセンス、アンチセンス配列を含むプライマーで増幅し、 増幅断片を制限酵素で切断し、 U6プロモーターの下流に揷入し、タンデムタイプと する力 \ (ii)センス、ループ、アンチセンス配列を含むオリゴヌクレオチドをァニールし 、 U6プロモータの下流に挿入することができる(「RNAi実験プロトコール」実験医学別 冊第 95—110頁)。発現ベクターは、 EffectinTMなどの細胞導入用キットを用いて、細 胞に導入することができる。  [0036] For preparation of the miRNA expression vector, a gene recombination method usually employed for the target organism species can be used. For example, for plants, the hairpin RNA expression plasmid method can be used. For animals, the siRNA expression vector method can be used. As a system for expressing siRNA, RNA polymeraseasel can be used, and there are a tandem type and a stem loop type. For example, piGENETMhU6 and piGENETMtRNA (iGENE Therapeutics) can be used. Preferably, (i) the siRNA corresponding to the selected miRNA is amplified with primers containing sense and antisense sequences, and the amplified fragment is digested with restriction enzymes. Then, the oligonucleotide is inserted downstream of the U6 promoter to make it a tandem type. (Ii) An oligonucleotide containing sense, loop, and antisense sequences can be annealed and inserted downstream of the U6 promoter (see RNAi Experimental Protocol). "Experimental Medicine Supplement, pages 95-110) The expression vector can be introduced into cells using a cell introduction kit such as EffectinTM.
[0037] 調製 miRNA発現ベクターは、周知の方法で、例えば、エレクト口ポレーシヨン、 Ca+ ポリリン酸法、パーティクルガン法等により、細胞又は、生物体に導入される。  Preparation The miRNA expression vector is introduced into a cell or an organism by a well-known method, for example, by electoporation, Ca + polyphosphate method, particle gun method, or the like.
[0038] 次に、このように特定された制御対象遺伝子の発現が実際に miRNAの導入により、 阻害されるかどうかを確認する。もし、その制御対象遺伝子の機能が、確認されてい ない場合については、更に阻害された結果の表現型の変化を確認する。  Next, it is confirmed whether or not the expression of the thus-regulated gene to be controlled is actually inhibited by the introduction of miRNA. If the function of the gene to be controlled is not confirmed, the phenotypic change as a result of the inhibition is further confirmed.
[0039] [miRNAに対する siRNAの設計]  [0039] [Design of siRNA for miRNA]
被制御遺伝子の発現を細胞中で阻害している天然の miRNAを阻害するために、当 該 miRNAに対し、相補的な siRNAを設計することができる。これにより、標準状態にお いて、 miRNAにより発現が制御されている被制御遺伝子によりコードされる蛋白質が 、該 miRNAの存在により生産が抑制されている場合、 siRNAによって対象 miRNAの蛋 白質の翻訳阻害活性が抑制されることにより生産が開始させることができる。このよう に、 siRNAによって、被制御遺伝子がコードする蛋白質の発現が制御可能となる。本 発明には、 miRNAにより発現が制御されている被制御遺伝子によりコードされる蛋白 質が、該 miRNAの存在により生産が抑制されている場合に、 siRNAを用いる、蛋白質 に関連した疾病のための処置の開発、及び、疾病のための処置をも包含している。 In order to inhibit a natural miRNA that inhibits the expression of a regulated gene in a cell, an siRNA complementary to the miRNA can be designed. Thus, in a standard state, when the production of a protein encoded by a regulated gene whose expression is controlled by miRNA is suppressed by the presence of the miRNA, the translation inhibition of the protein of the target miRNA is inhibited by the siRNA. Production can be started by suppressing the activity. Thus, the expression of the protein encoded by the regulated gene can be controlled by the siRNA. The present invention provides a protein encoded by a regulated gene whose expression is controlled by miRNA. It also encompasses the development of treatments for protein-related diseases, and treatments for diseases, using siRNA when the quality is suppressed by the presence of the miRNA.
[0040] [標的配列に対する人工 miRNAの設計]  [0040] [Design of artificial miRNA for target sequence]
miRNAを不変領域と可変領域に分け設計することができる。例えば、既知の miRNA 配列を元に、不変領域、可変領域ににおいて、別々に設定した曖昧度においてあら ゆる可能性のある塩基配列を生成し、 miRNA配列データライブラリーを作成する。こ のように生成した miRNA配列データに対し、翻訳制御対象としたい mRNAの 3' UTR上 に相補な配列が存在するかどうかを検索することができる。  miRNAs can be designed by dividing them into constant regions and variable regions. For example, based on a known miRNA sequence, in the constant region and the variable region, a base sequence having any possibility in the ambiguity set separately is generated, and a miRNA sequence data library is created. The miRNA sequence data thus generated can be searched for the presence of a complementary sequence on the 3 ′ UTR of the mRNA to be subjected to translation control.
[0041] 本発明によって予測した miRNAにより制御される被制御遺伝子(ターゲット遺伝子) を、 miRNA又は miRNAに作用する siRNAによって、遺伝子発現の制御、蛋白質翻訳 の制御をすることができる。これにより、予測したターゲット遺伝子がコードする蛋白質 に関連した疾病のための処置の開発、及び、予測したターゲット遺伝子がコードする 蛋白質に関連した疾病のための処置に利用することができる。  The gene to be controlled (target gene) controlled by miRNA predicted by the present invention can be used to control gene expression and protein translation by miRNA or siRNA acting on miRNA. Thus, it can be used for the development of a treatment for a disease associated with the protein encoded by the predicted target gene and a treatment for a disease associated with the protein encoded by the predicted target gene.
実施例  Example
[0042] 実施例 1 Example 1
国際 DNAデータバンク及び論文より、既知のヒト miRNA、 107種類(表 1)を収集し た (302)。  We collected 107 known human miRNAs (Table 1) from international DNA data banks and papers (302).
[表 1] [table 1]
塩 ¾配列 Salt ¾ array
Figure imgf000011_0001
T A.¾GGCACGCGGTGA,\TGC miE-220 CCACACCGTATCTGACACTTT
Figure imgf000011_0001
T A.¾GGCACGCGGTGA, \ TGC miE-220 CCACACCGTATCTGACACTTT
mi -139 TCTACAGTGCACGTGTCT miR- 22上 AGCTACATTGTCTGCTGGG'rri'C mi 7 GTGTGTGGAAATGCTTCTGC miR-222 AGCTACATCTGGCTACTfiGOTOTC mi i-7 TGGAAGACTAGTGATT1TGTT miR-223 TGTCAGTTTGTCAAATACCCC  mi -139 TCTACAGTGCACGTGTCT miR-22 on AGCTACATTGTCTGCTGGG'rri'C mi 7 GTGTGTGGAAATGCTTCTGC miR-222 AGCTACATCTGGCTACTfiGOTOTC mi i-7 TGGAAGACTAGTGATT1TGTT miR-223 TGTCAGTTTGTCAAATACCCC
TACCCTGTAGATCCGAArTTGTG miR-224 CAAGTCACTAGTGGTTCCGTTTA miR-lOb TACCCTGTAGAACCGAATT GT miR- IDS ATAAGGATTTTTAGGGanATT  TACCCTGTAGATCCGAArTTGTG miR-224 CAAGTCACTAGTGGTTCCGTTTA miR-lOb TACCCTGTAGAACCGAATT GT miR- IDS ATAAGGATTTTTAGGGanATT
miRS4 I'GGCAGTGTC TAGCTGGITGT miR- 109 CTGGTCGAGTCGGCCTC CG C miR"181a AACATTCA4CGCTGTCGGTGAGT -nO TCGAGCGGCCGACGTCG miR-lSlb ACCATCGACCGTTCATTGTACC miR-111 TGTGCAAATCTATGCAAAACTGT  miRS4 I'GGCAGTGTC TAGCTGGITGT miR- 109 CTGGTCGAGTCGGCCTC CG C miR "181a AACATTCA4CGCTGTCGGTGAGT -nO TCGAGCGGCCGACGTCG miR-lSlb ACCATCGACCGTTCATTGTACC miR-111 TGTGCAAATCTATGCAAAACTGT
AACATTCAACCTGTCGGTGAGT miR- 112 GGTCCTGACATC A UGAA miH- 1S2 TGGTTCTACACrTGCCAACTA miE-113 TCGAGCCCTGGTGCGCCCACCA miR- 183 TATGGCACTGGTAGAATTCACTG miR-lld TAGCTGCACGTAAATATTGGCG mill- 187 TCGTGTCTTGTGTTGCAGCCG miR- 115 TGAAGCGGAGCTGGAA  AACATTCAACCTGTCGGTGAGT miR-112 GGTCCTGACATC A UGAA miH-1S2 TGGTTCTACACrTGCCAACTA miE-113 TCGAGCCCTGGTGCGCCCACCA miR- 183 TATGGCACTGGTAGAATTCACTG miR-lld TAGCTGCACGTAAATATTGGCG TGACGTGTGTGGATGTGGATGTGGATGTGTGCGCGTGTCTGGATGTCGAGCTGTCGATCTGGCGATCTGGCTGTCGATCTGGCTGTCGATCTGGCTGTCGATCTGGCTGTCGATCTGGCTGTCGATCTGGCTGTCGATCGATCTCGCGTGAGTTCGATCTGGCTGTCGAC
miR*lH9a CCCAG'J^'I CAGAUTAC T^I C miR- 116 TTGATCCTGGCTCAGGACGAACGCTG miR- 199b CCCAGTGTTTAGACTATCTGTTC miR- 117 TTCAGCAGGAACAGTT  miR * lH9a CCCAG'J ^ 'I CAGAUTAC T ^ I C miR- 116 TTGATCCTGGCTCAGGACGAACGCTG miR- 199b CCCAGTGTTTAGACTATCTGTTC miR- 117 TTCAGCAGGAACAGTT
miR- 203 GTCAAATGT TAGGACCACTAG miR- 1 IB ATQCCTTGAGTGTAGGAT mi - 204 TTCCCTTTGTCATCCTATGCCT miK- L19 ATTGCCAGGGATTACCAT mi -205 TCCTTCATTCCACCGGAGTCTG niiK-120 GGCGGGACGCAGCGTGT miR-2L0 CTGTGCG G'l'GACAGCGG TG miR- 121 TG CCACCTGATCCCTTCCCGAA miR-211 TTCCCTTTGTCATCCTTCGGCT miR-2X ATCCAATAAAATAATAA AAAA miR-212 TAACAGTCTCCAGTCACGGCC miK-117a CTTTCAGCAGGAACAGTT miR-213 AACATTCATTGCTGTCGGTGGGTT miR- 117b TTCAGCAGGAACAGTTGT miR- 214 ACAG CAGG CACAGACAGGCAG mill- Π 7c CTTTCAGCAGGAACAGTTGT miR-215 ATGACCTATGAATTGACAGAC mill-llTd CCCTTTCAGCAGGAACAGT ιηίΕ.·216 TAATCTCAGCTGGCAACTGTG miR-117e TTCAGCAGGAACAGTTCTAT mill-217 TACTGCATCAGGAACTGAT GGAT  miR- 203 GTCAAATGT TAGGACCACTAG miR- 1 IB ATQCCTTGAGTGTAGGAT mi - 204 TTCCCTTTGTCATCCTATGCCT miK- L19 ATTGCCAGGGATTACCAT mi -205 TCCTTCATTCCACCGGAGTCTG niiK-120 GGCGGGACGCAGCGTGT miR-2L0 CTGTGCG G'l'GACAGCGG TG miR- 121 TG CCACCTGATCCCTTCCCGAA miR-211 TTCCCTTTGTCATCCTTCGGCT miR-2X ATCCAATAAAATAATAA AAAA miR-212 TAACAGTCTCCAGTCACGGCC miK-117a CTTTCAGCAGGAACAGTT miR-213 AACATTCATTGCTGTCGGTGGGTT miR- 117b TTCAGCAGGAACAGTTGT miR- 214 ACAG CAGG CACAGACAGGCAG mill- Π 7c CTTTCAGCAGGAACAGTTGT miR-215 ATGACCTATGAATTGACAGAC mill-llTd CCCTTTCAGCAGGAACAGT ιηίΕ. · 216 TAATCTCAGCTGGCAACTGTG miR-117e TTCAGCAGGAACAGTTCTAT mill-217 TACTGCATCAGGAACTGAT GGAT
raiR-218 TTGTGCTTGATCTAACCATGT  raiR-218 TTGTGCTTGATCTAACCATGT
miR.219 TGATTGTCCAAACGCA.4TTCT  miR.219 TGATTGTCCAAACGCA.4TTCT
[0043] これらの配列においては、 5 '側に幾つかの miRNAで共通性のある配歹 IJ、例えば let-7a, let-7b, let - 7c, let_7d, let_7e,及び let_7fの間では,それぞれの配列が相補 的な配列としてのモチーフ配列 uGACCUAUが存在している。このような傾向より、 miRNAの 5 '側 8塩基を「保存領域」、 9塩基以降を「非保存領域」と定義した。 [0043] In these sequences, the 5 'side has a common arrangement of several miRNAs, such as let-7a, let-7b, let-7c, let_7d, let_7e, and let_7f, respectively. The motif sequence uGACCUAU exists as a sequence complementary to the above sequence. Based on this tendency, 8 bases on the 5 ′ side of miRNA were defined as “conserved region”, and 9 bases and beyond were defined as “non-conserved region”.
[0044] 被制御遺伝子の候補として、米国 National Center for Biotechnology Informationに おける Reference Sequence Projectが構築している RefSeqデータベースより、ゲノム上 にマップされた完全長 cDNA16, 133種類を収集した (2002/8/13) (以下図 1参照)。そ の内、 20塩基長以上の 3 ' UTRを持つ cDNA15,062種類を被制御遺伝子候補 (303)と した。続いて被制御遺伝子候補の 3 ' UTRの開始位置(5 '端)より 1,050塩基長の塩基 配列を、ターゲット塩基配列候補とした (304)。 [0044] The US National Center for Biotechnology Information From the RefSeq database constructed by the Reference Sequence Project, 16,133 types of full-length cDNA mapped on the genome were collected (August 13, 2002) (see Figure 1 below). Of these, 15,062 types of cDNA having a 3 ′ UTR having a length of 20 bases or more were selected as controlled gene candidates (303). Subsequently, a nucleotide sequence 1,050 bases from the start position (5 'end) of the 3' UTR of the candidate gene to be controlled was determined as a candidate target nucleotide sequence (304).
[0045] ターゲット塩基配列候補中に収集した既知のヒト miRNAに相補性のある領域を検索 し、相補性領域とした。相補性領域の検索においては、比較的穏やかな基準による 探索、具体的には miRNAの全長塩基配列に対して 3分の 2以上の塩基が相補的であ る領域を選抜し、相補性領域とした (305)。  [0045] A region complementary to the known human miRNA collected in the candidate target base sequence was searched for and used as a complementary region. In the search for the complementary region, a search using relatively mild criteria, specifically, a region in which two-thirds or more of the base is complementary to the full-length nucleotide sequence of miRNA is selected, and (305).
[0046] さらに、相補性領域の内、 miRNA塩基配列の非保存領域に対応する領域において 、厳格な基準による探索、具体的には、 8塩基以上連続して相補的な塩基配列が存 在するものを選別し、ターゲット領域とした (306)。その結果、 95種類のヒト miRNAに対 応する 474箇所ターゲット領域が得られた。すなわち、各 miRNAに対するターゲット領 域を有する遺伝子がターゲット遺伝子 (被制御遺伝子)である (表 2)。  [0046] Further, in a region corresponding to the non-conserved region of the miRNA base sequence among the complementary regions, a search based on strict criteria, specifically, a base sequence that is continuous at least 8 bases exists. Those were selected and set as target regions (306). As a result, 474 target regions corresponding to 95 human miRNAs were obtained. That is, a gene having a target region for each miRNA is a target gene (controlled gene) (Table 2).
[表 2] [Table 2]
(表 2 ) miRNAと予測されたターゲット πιΚΝΛ (Table 2) miRNA and predicted target πιΚΝΛ
One
一 一 一 One one one
一 mi_025J08  One mi_025J08
 one
_0ai079  _0ai079
 One
-ie -ie
一 一 One one
Figure imgf000015_0001
Figure imgf000015_0001
εΐ· εΐ
62l-a![U s 5S 62l-a! [U s 5S
ssswo S OSOO"V f=tSG0O"I¾N  ssswo S OSOO "V f = tSG0O" I¾N
εο 966810"1 BfSS00" ]M  εο 966810 "1 BfSS00"] M
Q lOOO~I¾  Q lOOO ~ I¾
SPSOStT (ίβΐ-ΐΐ!111 i=tiO0OO~I¾M SPSOStT (ίβΐ-ΐΐ! 111 i = tiO0OO ~ I¾M
IS 0 9  IS 0 9
6δ3 TO一 066200~IV i«0SllT 96X-aTur 6δ3 TO-1 066200 ~ IV i «0SllT 96X-a Tur
sorno 961  sorno 961
589000~IA[N ti91T0~M  589000 ~ IA [N ti91T0 ~ M
39 300— 96  39 300— 96
ItSS!ID一 ΡΪ OEE500~MN  ItSS! ID ΡΪ OEE500 ~ MN
fSSOSlT is o— 538SSO "" <)6i-aiuI fSSOSlT is o— 538SSO ""<) 6i-a iuI
an" ¾iBSO0"I¾ 801 H e 0—  an "¾iBSO0" I¾ 801 He 0—
ES9000— 508ΐΌ0~Κ S^9S10"IMN  ES9000—508ΐΌ0 ~ Κ S ^ 9S10 "IMN
iliui OS£SlO"HM 06 [  iliui OS £ SlO "HM 06 [
lt≤900"NN 02ΤΞ00 ¾ yy ϋ—  lt≤900 "NN 02ΤΞ00 ¾ yy ϋ—
sex - sex-
S til 900— S til 900—
G0GCOO"K Loz ol  G0GCOO "K Loz ol
sgssoc 9L8000"WW  sgssoc 9L8000 "WW
SG SS(T iSOSSO 90Γ·Ή SG SS (T iSOSSO 90Γ
fiitfii? W  fiitfii? W
ε lo—KN Β · s o— ε lo—KN Β · s o—
LM Hi™ OG s i — LM Hi ™ OG s i —
8100— SS CO eor-^  8100— SS CO eor- ^
oo df/丄: M I St-lZ.l0/S00i OAV oo df / 丄: MI St-lZ.l0 / S00i OAV
Figure imgf000017_0001
9ΐ請 OOZdf/ェ:) d 91- miR-115 NM_000065 mi -119 NM_000361 miR-115 丽 JJ02790 miR-119 雇一 012145 miR-115 丽— 0060" miR-119 丽 025135 miR-115 丽一 006748 miR-119 M_00 1S4 miR'115 NM_078483 miR-119 雇一 033316 miH*115 NM_001913 miE'119 丽 J) 18189 miR-115 匪一 001128 miK-119 NM— 017791 miR-115 NM_006813 miR-119 N _014007 miR'I15 NM_016257 miR-119 NM_016396 miR-115 NM_0004S1 miR-119 NM一 138323 miR-115 NM_006274 miK-119 NM一 018561 miR 116 NM_018482 miR-119 N _03079O miR-117 NM_004157 miR-120 N _032255 mi -117 NM_007195 miR-120 NM_ 144640 miR-117 NM^O 13448 miR-121 NM_014887 miR-117 M^O 16033 miR-121 NM— 015996 miR-117 M_006479
Figure imgf000017_0001
9ΐ Contract OOZdf / e :) d 91- miR-115 NM_000065 mi -119 NM_000361 miR-115 丽 JJ02790 miR-119 hired 012145 miR-115 丽 — 0060 "miR-119 丽 025135 miR-115 丽 一 006748 miR-119 M_00 1S4 miR'115 NM_078483 miR-119 hired 033316 miH * 115 NM_001913 miE'119 丽 J) 18189 miR-115 138323 miR-115 NM_006274 miK-119 NM -117 M ^ O 16033 miR-121 NM— 015996 miR-117 M_006479
miR-117 M_014394 miR-117 M_014394
miK-117 M_020648 miK-117 M_020648
miR-117 丽— 144684 . miR-117 丽 — 144684.
miR-117 NM_I449S3 miR-117 NM_I449S3
miR-118 丽— 016563 miR-118 丽 — 016563
miii-118 NM_006687 miii-118 NM_006687
miR-113 NM_004256 miR-113 NM_004256
miR*118 画—002959 miR * 118 picture—002959
miR-llS 匪— 022060 miR-llS Marauder— 022060
miR-118 匪— 002921 miR-118 Marauder—002921
miR-118 匪一 144679 実施例 1で得られた結果より、 3種類の miRNA (miR-17 (配列番号 9) , miR-29 (配列 番号 23), miR-102 (配列番号 38) )を選び、また、各 miRNAについて予測されたター ゲット遺伝子より 1遺伝子を選択し (NM_001949 (配列番号 108) , NM020390 (配列番 号 109), NM_004496 (配列番号 110) )、実験により、各合成 miRNAが、各ターゲット 遺伝子がコードしている蛋白質 (E2F3, eIF5A, HNF3alpha)の発現に与える影響を見 ることにより蛋白質翻訳阻害活性を調べた(図 2)。 miR-118 Marauder 144679 From the results obtained in Example 1, three types of miRNAs (miR-17 (SEQ ID NO: 9), miR-29 (SEQ ID NO: 23), and miR-102 (SEQ ID NO: 38)) were selected. One gene was selected from the predicted target genes (NM_001949 (SEQ ID NO: 108), NM020390 (SEQ ID NO: 109), NM_004496 (SEQ ID NO: 110)), and by experiment, each synthetic miRNA was encoded by each target gene. The inhibitory activity on protein translation was examined by observing the effect on the expression of the proteins (E2F3, eIF5A, HNF3alpha) (Fig. 2).
[0048] ヒト HepG2細胞は、 10%牛胎児血清(FBS)添加ベルべッコのイーグル改変培地( DMEM : Dulbecco's modified Eagle's Medium)で培養された。  [0048] The human HepG2 cells were cultured in Verbecco's Eagle's modified medium (DMEM: Dulbecco's modified Eagle's Medium) supplemented with 10% fetal bovine serum (FBS).
[0049] 表 1記載の miR-17, miR_29及び miR-102をそれぞれ合成した。上記合成 miRNAを それぞれ 2 μ Μで、ヒト Η印 G2細胞に、 01igofectamin™(Invitrogen)を用いて導入した  [0049] miR-17, miR_29, and miR-102 shown in Table 1 were respectively synthesized. Each of the above synthetic miRNAs was introduced into human G2 cells at 2 μ 細胞 using 01igofectamin ™ (Invitrogen).
[0050] ヒト H印 G2細胞から回収した全タンパク質を、 10%ポリアクリルアミドゲルで SDS電 気泳動し、 PVDF膜にエレクトロブ口ティングにより移した。 E2F3, eIF5A, HNF3alpha に対するポリクローナル抗体及び ECL検出キット(アマシャム)で免疫複合体が可視 化された。 [0050] All proteins recovered from human H-marked G2 cells were subjected to SDS electrophoresis on a 10% polyacrylamide gel, and transferred to a PVDF membrane by electroporation. Immune complexes were visualized using polyclonal antibodies against E2F3, eIF5A, and HNF3alpha and an ECL detection kit (Amersham).
[0051] その結果、 WT (野生株、 miRNAを導入してレ、なレ、株)とそれぞれの miRNAを導入し た細胞におけるタンパク質の発現を比較することにより、上記 3種類の蛋白質は、上 記 3種類の miRNAの存在により抑制され、 miRNAにより蛋白質の翻訳が阻害されてい ることが証明された(図 4)。  [0051] As a result, by comparing the expression of proteins in WT (wild type, miRNA-introduced, strain, strain) and the cells into which each miRNA was introduced, the above three types of proteins were found to be The presence of the three types of miRNAs was suppressed, and it was demonstrated that protein translation was inhibited by the miRNAs (Fig. 4).
[0052] 以上により、上記 3種類の miRNAが上記 3種類の蛋白質の発現を制御することを確 認し、また、上記 3種類の合成 miRNAにより上記 3種類の蛋白質の発現が制御可能で あることを示した。  From the above, it was confirmed that the three types of miRNAs control the expression of the three types of proteins, and that the expression of the three types of proteins can be controlled by the three types of synthetic miRNAs. showed that.
[0053] ところで、(1) NM_001949は、 E2F transcription factor 3 [同義名: KIAA0075, [0053] By the way, (1) NM_001949 is an E2F transcription factor 3 [synonym: KIAA0075,
Transcription factor E2F3, E2F-3]であり、 E2F転写因子は、細胞周期調節や遺伝子 複製にかかわる蛋白質をコードした遺伝子のプロモータ領域で見つかつている E2部 位認識部位 (TTTCC/GCGC)を介して、 DB蛋白質と共同して DNAに結合する。 Transcription factor E2F3, E2F-3]. The E2F transcription factor is located at the E2 site recognition site (TTTCC / GCGC) found in the promoter region of the gene encoding a protein involved in cell cycle regulation and gene replication. Binds to DNA in cooperation with the DB protein.
DRTF1/E2F複合体は、細胞周期の G1期から S期への移行のコントロールにおいて機 能する。 E2F3は、細胞周期に依存して、 retinoblastoma protein 1(RB1)に選択的に結 合する。 E2F3蛋白質の抑制によって、細胞周期の移行、細胞***、分化が機能不 全となり、さらに、ガンの進行と、無調節な E2F2の発現には相関がある。したがって、 miR-17による E2F3の発現抑制は、ヒトガン腫瘍における細胞***をブロックすること に利用可能であり、すなわち、ガンの治療に利用可能である。 The DRTF1 / E2F complex functions in controlling the transition from G1 to S phase of the cell cycle. E2F3 selectively binds to retinoblastoma protein 1 (RB1) depending on the cell cycle. Match. Suppression of the E2F3 protein impairs cell cycle transition, cell division, and differentiation, and correlates with cancer progression and dysregulated E2F2 expression. Therefore, suppression of E2F3 expression by miR-17 can be used to block cell division in human cancer tumors, that is, can be used to treat cancer.
[0054] また、 (2) NM_020390は、 Eukaryotic translation initiator factor 5A2とレヽわれ、 [同 義名: eIF-5A2 protein, eIF5Ali, eIF_5A2 proteinjである。 Eukaryotic initiation factor 5A (eIF5A)(eIF-4D, eIF_5A)は、 ribosomal peptidyl transferase活'性(  [0054] (2) NM_020390 is referred to as Eukaryotic translation initiator factor 5A2. [Synonyms: eIF-5A2 protein, eIF5Ali, eIF_5A2 proteinj. Eukaryotic initiation factor 5A (eIF5A) (eIF-4D, eIF_5A) is a ribosomal peptidyl transferase
HIV_l_mRNAsを輸送し exportinlと 4に結合する)を刺激する。 eIF_5Aは、 HIV-1トラ ンスァタティベータ蛋白質 Revの必須コファクタ一として同定されている。 Revは HIV-1 遺伝子発現の複合調節において、それゆえ、ウィルス粒子の感染の発生においてか ぎとなる役割を演じる。 eIF_5Aの発現は、 Revの機能に必須であり、この相互作用の 阻害はウィルスの複製サイクルのブロックにつながる。したがって、 miR_29による eIF5A蛋白質の発現抑制は、 HIVウィルス複製サイクルのブロックに利用可能であり、 すなわち、 HIV疾患の治療に利用可能と考えられる。  Transports HIV_l_mRNAs and binds to exportinl and 4). eIF_5A has been identified as one of the essential cofactors of the HIV-1 transmutabeta protein Rev. Rev plays a key role in the complex regulation of HIV-1 gene expression and therefore in the development of virion infection. Expression of eIF_5A is essential for Rev function, and inhibition of this interaction leads to a block in the viral replication cycle. Therefore, suppression of eIF5A protein expression by miR_29 can be used to block the HIV virus replication cycle, that is, it can be used to treat HIV diseases.
[0055] 更に、(3) NM_004496は、 H印 atocyte nuclear factor 3, alpha [同義名: HNF3a, HNF3A, MGC33105, TCF3A, forkhead box Al, hepatocyte nuclear factor 3-alpha (HNF-3a)(Forkhead box protein Al)]である。 HNF- 3aは、 AFP, Albumin, tyrosine aminotransferase, PEP CKといった、多くの肝臓の遺伝子の転写ァクティベータ一とし て働く。これらの遺伝子のシス調節領域と相互作用する。 HNF_3aは DNA-結合蛋白 質である forkheadクラスのメンバーである。マウスにおける同様のファミリーのメンバー は、すい臓と肝臓における代謝の違いを調節する役割を持っている。最近、食道 (esophageal)ガンや肺ガンにおける、この遺伝子の腫瘍形成における潜在的な役割 が示唆されている。したがって、 miR_102による HNF3a蛋白質の発現抑制は、ヒトガン 腫瘍の増殖のブロックに利用可能であり、すなわち、ガンの治療に利用可能と考えら れる。  [0055] Furthermore, (3) NM_004496 is an H-marked atocyte nuclear factor 3, alpha [synonym: HNF3a, HNF3A, MGC33105, TCF3A, forkhead box Al, hepatocyte nuclear factor 3-alpha (HNF-3a) (Forkhead box protein Al)]. HNF-3a acts as a transcription activator of many liver genes such as AFP, Albumin, tyrosine aminotransferase, and PEP CK. Interacts with the cis-regulatory regions of these genes. HNF_3a is a member of the forkhead class, a DNA-binding protein. Similar family members in mice have a role in regulating metabolic differences in pancreas and liver. Recently, a potential role for this gene in tumorigenesis in esophageal and lung cancers has been suggested. Therefore, suppression of HNF3a protein expression by miR_102 can be used to block the growth of human cancer tumors, that is, it can be used to treat cancer.
[0056] これらの結果はまた、本発明が、上記 3種類の蛋白質に関連した疾病のための処置 の開発、及び、疾病のための処置に有用であることを示している。  [0056] These results also indicate that the present invention is useful for the development of treatments for diseases related to the above three proteins and for the treatment for diseases.
[0057] なお、上記番号 (NM_001949, NM.020390, NM_004496)等 NMjt?始まる番号は、 NC BIで付与されてレ、る遺伝子登録番号を示す。 [0057] The numbers starting with NMjt ?, such as the above numbers (NM_001949, NM.020390, NM_004496) Indicates the gene registration number assigned by BI.
http://www.ncbi.nlm.nih.gov/ entrez/query.fcgi?db=Nucieotideで検 すること力 eさ る。  http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucieotide
[0058] 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本 明細書にとり入れるものとする。  [0058] All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety.
[0059] 更に、本件出願は、 2003年 8月 13日に日本国特許庁になされた特願 2003—293[0059] Further, the present application was filed with Japanese Patent Application No. 2003-293 filed on August 13, 2003 with the Japan Patent Office.
129号に基づく優先権を主張する出願であって、上記出願の内容を引用により、取り 込むものである。 An application claiming priority based on No. 129, the contents of which are incorporated by reference.
産業上の利用の可能性  Industrial potential
[0060] 本発明によれば、本発明における機能性 RNAの被制御遺伝子探索手法によって 予測された miRNAと被制御遺伝子の組み合わせによって、被制御遺伝子にコードさ れた蛋白質の発現の制御が可能で、遺伝子工学の技術分野において利用すること ができる。 According to the present invention, expression of a protein encoded by a regulated gene can be controlled by a combination of a miRNA and a regulated gene predicted by the method for searching for a regulated gene of a functional RNA in the present invention. It can be used in the technical field of genetic engineering.
[0061] さらに本発明によれば、 miR-17, miR-29,及び miR_102、またはそれらをターゲット とした siRNAによって、蛋白質、 E2F3, eIF5A,及び HNF3alphaの発現を制御すること が可能である。また、本発明における蛋白質発現制御を利用した疾病のための処置 の開発及び疾病のための処置が可能である。  [0061] Further, according to the present invention, it is possible to control the expression of proteins, E2F3, eIF5A, and HNF3alpha by miR-17, miR-29, and miR_102, or siRNA targeting them. Further, it is possible to develop a treatment for a disease using the regulation of protein expression in the present invention and to treat the disease.
図面の簡単な説明  Brief Description of Drawings
[0062] [図 1]図 1は、 miRNAターゲット遺伝子予測手順のフローチャート  [FIG. 1] FIG. 1 is a flowchart of a miRNA target gene prediction procedure.
[図 2]図 2は、実験により実証した miRNA、ターゲット遺伝子、対象蛋白質の組み合わ せ  [Fig. 2] Fig. 2 shows the combination of miRNA, target gene, and target protein verified by experiments.
[図 3]図 3は、 miRNA (miR-17, miR-29, miR-102)の E2F3, eIF5A, HNF3alphaの発現 に与える影響  [Figure 3] Figure 3 shows the effect of miRNAs (miR-17, miR-29, miR-102) on the expression of E2F3, eIF5A, and HNF3alpha.
[図 4]図 4は、モチーフ配列と、当該モチーフ配列を有する miRNAの例  [Fig. 4] Fig. 4 shows examples of motif sequences and miRNAs having the motif sequences.
[図 5]図 5は、同じモチーフを持つ miRNAの例  [Figure 5] Figure 5 shows examples of miRNAs with the same motif

Claims

請求の範囲 [1] 遺伝子発現制御機能を持つ 16 25塩基長の機能性 RNA分子により発現が制御さ れる被制御遺伝子を予測又は同定する方法であって、 Claims [1] A method for predicting or identifying a controlled gene whose expression is controlled by a functional RNA molecule having a length of 1625 bases having a gene expression controlling function,
(1)複数種類の機能性 RNA分子の塩基配列間で共通の塩基配列を有する領域 (保 存領域)と共通でない塩基配列を有する領域 (非保存領域)とに分別決定するステツ プと、  (1) a step of discriminating between a region having a common base sequence (conserved region) and a region having a non-common base sequence (non-conserved region) between base sequences of a plurality of types of functional RNA molecules,
(2)機能性 RNA配列の全長について比較的穏ゃ力な基準で、非保存領域では厳密 な基準で、各々別々の基準で設定した曖昧さ (探索精度水準値)を与え、探索用塩 基配列とし、前記機能性 RNA分子の塩基配列に相補である塩基配列を有する遺伝 子 (被制御遺伝子候補)を探索するステップとを含み、  (2) A relatively mild standard for the total length of the functional RNA sequence, and a strict standard for the non-conserved region. Searching for a gene having a nucleotide sequence that is complementary to the nucleotide sequence of the functional RNA molecule (candidate controlled gene).
探索精度水準値を満たす被制御遺伝子候補を前記対象生物の機能性 RNA分子よ り予測又は同定された被制御遺伝子とする、機能性 RNA分子により発現が制御され る被制御遺伝子を予測又は同定する方法。  Predict or identify a controlled gene whose expression is controlled by a functional RNA molecule, wherein a controlled gene candidate that satisfies the search accuracy level value is a controlled gene predicted or identified by a functional RNA molecule of the target organism. Method.
[2] 前記(1)のステップが、機能性 RNA分子の塩基配列間での共通の塩基配列を有する 領域 (保存領域)として 5'末から 8塩基の領域を、共通でない塩基配列を有する領域 (非保存領域)として 5'末から 9塩基以降の領域に分別するステップである請求の範 囲第 1項記載の方法。 [2] In the step (1), the region having a common base sequence between the base sequences of the functional RNA molecules (conserved region) is a region having 8 bases from the 5 ′ end, and a region having a non-common base sequence. 2. The method according to claim 1, wherein the method is a step of classifying as a (non-conserved region) a region of 9 bases or more from the 5 'end.
[3] 前記(2)のステップが、機能性 RNA配列の全長にっレ、て比較的穏やかな基準として 機能性 RNA配列全長と 3分の 2以上が相補的な配歹を有する被制御遺伝子候補を 選択する基準で、前記非保存領域での厳密な基準として、 miRNAの非保存性領域 中の連続する 8塩基に対し相補的な配列である被制御遺伝子候補を選択する基準 である請求の範囲第 1項記載の方法。  [3] In the step (2), the controlled gene having a configuration in which two-thirds or more of the total length of the functional RNA sequence is complementary to the entire length of the functional RNA sequence is a relatively mild standard. The criterion for selecting a candidate, as a strict criterion in the non-conserved region, is a criterion for selecting a controlled gene candidate that is a sequence complementary to eight consecutive bases in the non-conserved region of the miRNA. The method of claim 1.
[4] 遺伝子発現制御機能を持つ 16 25塩基長の機能性 RNA分子により発現が制御さ れる被制御遺伝子を予測又は同定する方法であって、  [4] A method for predicting or identifying a regulated gene whose expression is controlled by a functional RNA molecule having a length of 16 25 bases having a gene expression controlling function,
(1)複数種類の機能性 RNA分子の塩基配列間で共通の塩基配列を有する領域 (保 存領域)と共通でない塩基配列を有する領域 (非保存領域)とに分別決定するステツ プと、  (1) a step of discriminating between a region having a common base sequence (conserved region) and a region having a non-common base sequence (non-conserved region) between base sequences of a plurality of types of functional RNA molecules,
(2)機能性 RNA配列の全長について比較的穏ゃ力な基準で、非保存領域では厳密 な基準で、各々別々の基準で設定した曖昧さ (探索精度水準値)を与えるステップ、 及び (2) Relatively mild criteria for the total length of the functional RNA sequence, strict for non-conserved regions Giving ambiguities (search accuracy level values) set by different criteria, respectively, and
(3)被制御遺伝子候補から、 (i)全長の機能性 RNA配列と比較的緩や力な基準によ る相補性を満たす塩基配列を有する遺伝子であって、且つ (Π)機能性 RNA配列の非 保存領域と厳密な基準による相補性を満たす塩基配列を有する遺伝子を、被制御 遺伝子として抽出するステップとを含む、  (3) From a candidate gene to be controlled, (i) a gene having a base sequence that satisfies the complementarity with a full-length functional RNA sequence by relatively mild criteria, and (Π) a functional RNA sequence Extracting a gene having a base sequence that satisfies complementarity according to strict criteria with the non-conserved region of as a controlled gene.
機能性 RNA分子により発現が制御される被制御遺伝子を予測又は同定する方法。  A method for predicting or identifying a regulated gene whose expression is controlled by a functional RNA molecule.
[5] 更に、機能性 RNA分子を細胞に導入し、被制御遺伝子の発現に対する影響を確認 するステップを更に含む、請求の範囲第 1一 4いずれ力 4項記載の機能性 RNA分子 により発現が制御される被制御遺伝子を予測又は同定する方法。  [5] The expression by the functional RNA molecule according to claim 1, further comprising a step of introducing the functional RNA molecule into the cell and confirming the effect on the expression of the regulated gene. A method for predicting or identifying a controlled gene to be controlled.
[6] 複数の被制御候補遺伝子又はその相補鎖を表面に配置した核酸チップを用いて、 被制御遺伝子の mRNA又は cDNAを検出することにより、被制御遺伝子候補の発現 の影響を調べることを更に含む請求の範囲第 1一 5いずれ力 1項記載の機能性 RNA 分子により発現が制御される被制御遺伝子を予測又は同定する方法。  [6] Using a nucleic acid chip having a plurality of controlled candidate genes or their complementary strands arranged on the surface, detecting the mRNA or cDNA of the controlled gene to further examine the influence of the expression of the controlled gene candidate. A method for predicting or identifying a controlled gene whose expression is controlled by the functional RNA molecule according to claim 1-5.
[7] 機能性 RNA分子が miRNA (microRNA)である請求の範囲第 1一 6項記載の方法。  [7] The method according to claim 16, wherein the functional RNA molecule is miRNA (microRNA).
[8] 機能性 RNA力 配列番号 1-107のいずれ力 1の配列番号で表される miRNAである、 請求の範囲第 7項の被制御遺伝子の予測又は同定方法。  [8] The method for predicting or identifying a regulated gene according to claim 7, which is a miRNA represented by SEQ ID NO: 1 in any one of SEQ ID NOs: 1-107.
[9] 以下に示される Xnの遺伝子の発現を制御するため、それぞれ、 Ynで表される核酸 を有効成分として含む Χη遺伝子発現制御剤(但し η= 1、 2、 3又は 4)。  [9] Χη gene expression regulators (where η = 1, 2, 3, or 4) each containing, as an active ingredient, a nucleic acid represented by Yn in order to control the expression of the Xn gene shown below.
X1 : E2F転写因子 3 (E2F transcription factor 3 (NM_001949)、配列番号 108) X2 : eIF-5A2タンパク質(eIF-5A2 protein (NM_020390)、配列番号 109)  X1: E2F transcription factor 3 (NM_001949), SEQ ID NO: 108 X2: eIF-5A2 protein (eIF-5A2 protein (NM_020390), SEQ ID NO: 109)
X3 :肝細胞核因子 3ひ h印 atocyte nuclear factor 3, alpha (NM_004496)、配列番号 1 10)  X3: Hepatocyte nuclear factor 3, alpha (NM_004496), SEQ ID NO: 1 10)
Yl : (l) ACTGCAGTGAAGGCACTTGT (配列番号 9)  Yl: (l) ACTGCAGTGAAGGCACTTGT (SEQ ID NO: 9)
Y2: (2) CTAGCACCATCTGAAATCGGTT (配列番号 23)  Y2: (2) CTAGCACCATCTGAAATCGGTT (SEQ ID NO: 23)
Y3: (3) TAGCACCATTTGAAATCAGT (配列番号 38)  Y3: (3) TAGCACCATTTGAAATCAGT (SEQ ID NO: 38)
[10] 請求項 9記載の Xn遺伝子発現制御剤を有効成分として含む医薬。 (但し、 n=l , 2又 は 3で、 XIは、 E2F transcription factor 3 (NM_001949)、 X2は、 eIF_5A2 protein (NM— 020390)、 X3は、 h印 atocyte nuclear factor 3, alpha (NM— 004496)を表す。) [10] A medicament comprising the Xn gene expression regulator according to claim 9 as an active ingredient. (However, n = l, 2 or 3, XI is E2F transcription factor 3 (NM_001949), X2 is eIF_5A2 protein (NM-020390), X3 represents the h mark atocyte nuclear factor 3, alpha (NM-004496). )
[11] 機能性 RNA分子を用いて、請求の範囲第 1一 6項いずれか 1項記載の方法で当該機 能性 RNA分子により発現が制御されると予測又は同定された被制御遺伝子の発現 を制御する方法。 [11] The expression of a regulated gene predicted or identified to be regulated by the functional RNA molecule by the method according to any one of claims 1 to 16 using the functional RNA molecule. How to control.
[12] 機能性 RNA分子を用いて、請求の範囲第 1一 6項いずれ力 4項記載の方法で予測又 は同定された被制御遺伝子の発現を制御することにより、 (ヒト以外の)生体機能を制 御する方法。  [12] By controlling the expression of a controlled gene predicted or identified by the method according to claim 1-16, using a functional RNA molecule, a (non-human) organism can be obtained. How to control features.
[13] 疾病の処置の開発のために、 (ヒト以外の)生体機能を制御する請求の範囲第 1 1項 に記載の方法。  [13] The method of claim 11 for controlling a (non-human) biological function for the development of a treatment for the disease.
[14] 疾病の処置のために(ヒト以外の)生体機能を制御する、請求の範囲第 11項に記載 の方法。  [14] The method according to claim 11, wherein a biological function (other than a human) is controlled for the treatment of a disease.
PCT/JP2004/011624 2003-08-13 2004-08-12 Method of identifying or presuming gene under regulation regulated by functional rna and method of using the same WO2005017145A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-293129 2003-08-13
JP2003293129 2003-08-13

Publications (1)

Publication Number Publication Date
WO2005017145A1 true WO2005017145A1 (en) 2005-02-24

Family

ID=34190985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011624 WO2005017145A1 (en) 2003-08-13 2004-08-12 Method of identifying or presuming gene under regulation regulated by functional rna and method of using the same

Country Status (1)

Country Link
WO (1) WO2005017145A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2425311A (en) * 2005-04-15 2006-10-25 Ist Superiore Sanita Micro RNA against kit protein
JP2009521944A (en) * 2006-01-04 2009-06-11 セフィード Functional clustering of nucleic acids
JP2010178741A (en) * 2004-11-12 2010-08-19 Ambion Inc METHOD AND COMPOSITION RELATED TO miRNA AND miRNA INHIBITORY MOLECULE
US8304397B2 (en) 2006-08-01 2012-11-06 Board Of Regents, The University Of Texas System Identification of a micro-RNA that activates expression of β-myosin heavy chain
US8440636B2 (en) 2007-07-31 2013-05-14 The Board Of Regents, The University Of Texas System Micro-RNA family that modulates fibrosis and uses thereof
US8481507B2 (en) 2007-07-31 2013-07-09 The Board Of Regents, The University Of Texas System Micro-RNAs that control myosin expression and myofiber identity
US8513209B2 (en) 2007-11-09 2013-08-20 The Board Of Regents, The University Of Texas System Micro-RNAS of the MIR-15 family modulate cardiomyocyte survival and cardiac repair
US8629119B2 (en) 2009-02-04 2014-01-14 The Board Of Regents, The University Of Texas System Dual targeting of MIR-208 and MIR-499 in the treatment of cardiac disorders
US8642751B2 (en) 2010-12-15 2014-02-04 Miragen Therapeutics MicroRNA inhibitors comprising locked nucleotides
US9163235B2 (en) 2012-06-21 2015-10-20 MiRagen Therapeutics, Inc. Inhibitors of the miR-15 family of micro-RNAs
US9388408B2 (en) 2012-06-21 2016-07-12 MiRagen Therapeutics, Inc. Oligonucleotide-based inhibitors comprising locked nucleic acid motif
US9428749B2 (en) 2011-10-06 2016-08-30 The Board Of Regents, The University Of Texas System Control of whole body energy homeostasis by microRNA regulation
US9885042B2 (en) 2015-01-20 2018-02-06 MiRagen Therapeutics, Inc. miR-92 inhibitors and uses thereof
JP2019512489A (en) * 2016-03-07 2019-05-16 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ MicroRNA and method of using the same
CN110021361A (en) * 2018-06-27 2019-07-16 中山大学 A kind of miRNA microRNA target prediction method based on convolutional Neural net
US11597930B2 (en) 2020-04-02 2023-03-07 Mirecule, Inc. Targeted inhibition using engineered oligonucleotides
WO2024040126A3 (en) * 2022-08-16 2024-04-18 The Regents Of The University Of California Improved glycemic control by administration of micro-rna 192

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062973A1 (en) * 2000-02-24 2001-08-30 Isis Pharmaceuticals, Inc. Antisense modulation of e2f transcription factor 3 expression

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062973A1 (en) * 2000-02-24 2001-08-30 Isis Pharmaceuticals, Inc. Antisense modulation of e2f transcription factor 3 expression

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BINGLE C D ET AL: "Molecular cloning of the forkhead transcription factor HNF-3alpha from a human pulmonary adenocarcinoma cell line", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1307, 1996, pages 17 - 20, XP002904215 *
JENKINS Z A ET AL: "Human EIF5A2 on Chromosome 3q25-q27 Is a Phylogenetically Conserved Vertebrate Variant of Eukaryotic Translation Initiation Factor 5A with Tissue-Specific Expression", GENOMICS, vol. 71, 2001, pages 101 - 109, XP002904214 *
MARTINEZ L A ET AL: "Synthetic small inhibiting RNAS: Efficient tools to inactivate oncogenic mutations and restore p53 pathways", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 99, 2002, pages 14849 - 14854, XP002225999 *
RHOADES M W ET AL: "Prediction of plant microRNA targets", CELL, vol. 110, 23 August 2002 (2002-08-23), pages 513 - 520, XP002295225 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765709B2 (en) 2004-11-12 2014-07-01 Asuragen, Inc. Methods and compositions involving miRNA and miRNA inhibitor molecules
JP2010178741A (en) * 2004-11-12 2010-08-19 Ambion Inc METHOD AND COMPOSITION RELATED TO miRNA AND miRNA INHIBITORY MOLECULE
US9506061B2 (en) 2004-11-12 2016-11-29 Asuragen, Inc. Methods and compositions involving miRNA and miRNA inhibitor molecules
US9447414B2 (en) 2004-11-12 2016-09-20 Asuragen, Inc. Methods and compositions involving miRNA and miRNA inhibitor molecules
US8563708B2 (en) 2004-11-12 2013-10-22 Asuragen, Inc. Methods and compositions involving miRNA and miRNA inhibitor molecules
US8946177B2 (en) 2004-11-12 2015-02-03 Mima Therapeutics, Inc Methods and compositions involving miRNA and miRNA inhibitor molecules
GB2425311A (en) * 2005-04-15 2006-10-25 Ist Superiore Sanita Micro RNA against kit protein
JP2009521944A (en) * 2006-01-04 2009-06-11 セフィード Functional clustering of nucleic acids
US8304397B2 (en) 2006-08-01 2012-11-06 Board Of Regents, The University Of Texas System Identification of a micro-RNA that activates expression of β-myosin heavy chain
US8940713B2 (en) 2007-07-31 2015-01-27 The Board Of Regents, The University Of Texas System Micro-RNA family that modulates fibrosis and uses thereof
US8481507B2 (en) 2007-07-31 2013-07-09 The Board Of Regents, The University Of Texas System Micro-RNAs that control myosin expression and myofiber identity
US8940711B2 (en) 2007-07-31 2015-01-27 The Board Of Regents, The University Of Texas System Micro-RNA family that modulates fibrosis and uses thereof
US9719086B2 (en) 2007-07-31 2017-08-01 The Board Of Regents, The University Of Texas System Micro-RNA family that modulates fibrosis and uses thereof
US8940712B2 (en) 2007-07-31 2015-01-27 The Board Of Regents, The University Of Texas System Micro-RNA family that modulates fibrosis and uses thereof
US9719088B2 (en) 2007-07-31 2017-08-01 The Board Of Regents, The University Of Texas System Micro-RNA family that modulates fibrosis and uses thereof
US8962588B2 (en) 2007-07-31 2015-02-24 The Board Of Regents, The University Of Texas System Micro-RNAS that control myosin expression and myofiber identity
US9719087B2 (en) 2007-07-31 2017-08-01 The Board Of Regents, The University Of Texas System Micro-RNA family that modulates fibrosis and uses thereof
US10392618B2 (en) 2007-07-31 2019-08-27 The Board Of Regents, The University Of Texas System Micro-RNA family that modulates extracellular matrix genes and uses thereof
US8440636B2 (en) 2007-07-31 2013-05-14 The Board Of Regents, The University Of Texas System Micro-RNA family that modulates fibrosis and uses thereof
US9078919B2 (en) 2007-11-09 2015-07-14 The Board Of Regents, The University Of Texas System Micro-RNAs of the miR-15 family modulate cardiomyocyte survival and cardiac repair
US8513209B2 (en) 2007-11-09 2013-08-20 The Board Of Regents, The University Of Texas System Micro-RNAS of the MIR-15 family modulate cardiomyocyte survival and cardiac repair
US8629119B2 (en) 2009-02-04 2014-01-14 The Board Of Regents, The University Of Texas System Dual targeting of MIR-208 and MIR-499 in the treatment of cardiac disorders
US8642751B2 (en) 2010-12-15 2014-02-04 Miragen Therapeutics MicroRNA inhibitors comprising locked nucleotides
US9428749B2 (en) 2011-10-06 2016-08-30 The Board Of Regents, The University Of Texas System Control of whole body energy homeostasis by microRNA regulation
US9388408B2 (en) 2012-06-21 2016-07-12 MiRagen Therapeutics, Inc. Oligonucleotide-based inhibitors comprising locked nucleic acid motif
US9803202B2 (en) 2012-06-21 2017-10-31 MiRagen Therapeutics, Inc. Oligonucleotide-based inhibitors comprising locked nucleic acid motif
US10337005B2 (en) 2012-06-21 2019-07-02 MiRagen Therapeutics, Inc. Oligonucleotide-based inhibitors comprising locked nucleic acid motif
US9163235B2 (en) 2012-06-21 2015-10-20 MiRagen Therapeutics, Inc. Inhibitors of the miR-15 family of micro-RNAs
US9885042B2 (en) 2015-01-20 2018-02-06 MiRagen Therapeutics, Inc. miR-92 inhibitors and uses thereof
US10280422B2 (en) 2015-01-20 2019-05-07 MiRagen Therapeutics, Inc. MiR-92 inhibitors and uses thereof
JP2019512489A (en) * 2016-03-07 2019-05-16 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ MicroRNA and method of using the same
US11655469B2 (en) 2016-03-07 2023-05-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services MicroRNAs and methods of their use
CN110021361A (en) * 2018-06-27 2019-07-16 中山大学 A kind of miRNA microRNA target prediction method based on convolutional Neural net
CN110021361B (en) * 2018-06-27 2023-04-07 中山大学 miRNA target gene prediction method based on convolutional neural network
US11597930B2 (en) 2020-04-02 2023-03-07 Mirecule, Inc. Targeted inhibition using engineered oligonucleotides
US11795459B2 (en) 2020-04-02 2023-10-24 Mirecule, Inc. Targeted inhibition using engineered oligonucleotides
WO2024040126A3 (en) * 2022-08-16 2024-04-18 The Regents Of The University Of California Improved glycemic control by administration of micro-rna 192

Similar Documents

Publication Publication Date Title
Mi et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide
WO2005017145A1 (en) Method of identifying or presuming gene under regulation regulated by functional rna and method of using the same
Zhao et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii
Holoch et al. RNA-mediated epigenetic regulation of gene expression
Schlüter et al. A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti
Calo et al. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides
Nicolas et al. mRNA expression profiling reveals conserved and non-conserved miR-140 targets
Hong et al. Target gene abundance contributes to the efficiency of siRNA-mediated gene silencing
Tarrant et al. Synonymous codons, ribosome speed, and eukaryotic gene expression regulation
Przanowska et al. Distinct MUNC lncRNA structural domains regulate transcription of different promyogenic factors
Sioud et al. Potential design rules and enzymatic synthesis of siRNAs
Grosswendt et al. Essentials of miRNA-dependent control of mRNA translation and decay, miRNA targeting principles, and methods for target identification
de la Peña Circular RNAs biogenesis in eukaryotes through self-cleaving hammerhead ribozymes
Chang et al. An efficient RNA interference screening strategy for gene functional analysis
US20090137505A1 (en) Method for Predicting and Identifying Target mRnas Controlled By Functional Rnas and Method of Using the Same
Khan et al. Biogenesis of Non-coding RNAs (ncRNAs) and Their Biological Role in Rice (Oryza sativa L.)
Yukawa et al. A common sequence motif involved in selection of transcription start sites of Arabidopsis and budding yeast tRNA genes
Xiao et al. Screening and identification of natural antisense transcripts in Helicobacter pylori by a novel approach based on RNase I protection assay
Røsok et al. Systematic search for natural antisense transcripts in eukaryotes
CN105008537A (en) Small interference RNA for inhibiting intracellular expression of ribosomal protein
Lin et al. Isolation and identification of gene-specific microRNAs
Nelson et al. Use of random ribozyme libraries for the rapid screening of apoptosis-and metastasis-related genes
Wang Efforts to elucidate functional and regulatory aspects of gene expression in Trichomonas vaginalis
Skúladóttir miR-199a expression and its targets during development in different Arctic charr morphs
Sugao et al. Enzymatic production of RNAi libraries from cDNAs and high-throughput selection of effective shRNA expression constructs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase