WO2005014290A1 - Liquid jetting device and liquid jetting method - Google Patents

Liquid jetting device and liquid jetting method Download PDF

Info

Publication number
WO2005014290A1
WO2005014290A1 PCT/JP2004/010833 JP2004010833W WO2005014290A1 WO 2005014290 A1 WO2005014290 A1 WO 2005014290A1 JP 2004010833 W JP2004010833 W JP 2004010833W WO 2005014290 A1 WO2005014290 A1 WO 2005014290A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
voltage
solution
tip
distance
Prior art date
Application number
PCT/JP2004/010833
Other languages
French (fr)
Japanese (ja)
Inventor
Hironobu Iwashita
Kazunori Yamamoto
Shigeru Nishio
Kazuhiro Murata
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2005512921A priority Critical patent/JPWO2005014290A1/en
Publication of WO2005014290A1 publication Critical patent/WO2005014290A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/06Ink jet characterised by the jet generation process generating single droplets or particles on demand by electric or magnetic field

Definitions

  • the present invention relates to a liquid ejection device and a liquid ejection method for ejecting liquid droplets on a surface of a base material.
  • a thermal method in which a heating element is provided and heat is generated by the heating element to generate air bubbles, and ink droplets are ejected in response to pressure changes in the ink flow path due to the air bubbles.
  • an electrostatic suction method in which ink droplets are ejected by an electrostatic suction force.
  • Patent Documents 1 and 2 disclose conventional electrostatic suction type inkjet printers.
  • a powerful ink-jet printer has a plurality of convex ink guides for ejecting ink from the front end thereof, a counter electrode disposed opposite to the front end of each ink guide and grounded, and an ink guide for each ink guide. And an ejection electrode for applying an ejection voltage.
  • the convex ink guide is provided with two types of ink guides having different slit widths, and is capable of ejecting droplets of two types by selectively using these types. I do.
  • an ink droplet is ejected by applying a pulse voltage to the ejection electrode, and the ink droplet is guided to the counter electrode side by an electric field formed between the ejection electrode and the counter electrode.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-238774
  • Patent Document 2 JP-A-2000-127410
  • the problems (1) and (4) above also occur because the electric field intensity around the base material and the horn is affected by a change in the distance from the tip of the horn to the base.
  • the distance from the tip of the nose to the substrate can be maintained at a constant value with a certain degree of accuracy by feedback control.
  • high accuracy is achieved by combining the waviness of the substrate surface, the nozzle position accuracy when multiple nozzles are arranged, the stage accuracy for fixing the substrate, and the stage accuracy for fixing the nozzles. To keep the distance constant And it is difficult. For this reason, industrially, it is desired to improve the above-mentioned problems (1)-(4) even if the accuracy of the distance from the nozzle to the base material is poor.
  • An object of the present invention is to provide a liquid ejection apparatus and a liquid ejection method capable of suppressing a change in electric field intensity around a substrate and around the nozzle, irrespective of a change in a distance from the tip of the nozzle to the substrate. It is to provide.
  • a liquid discharging apparatus for discharging droplets of the charged solution of the present invention to a base material
  • a liquid ejection head having a nozzle for ejecting the droplet from the tip having an internal diameter of 25 [/ m] or less;
  • Discharge voltage applying means for applying a discharge voltage to the solution in the nose, the distance h [ ⁇ m] from the tip of the nose to the substrate,
  • nozzle diameter refers to the internal diameter of a nozzle at a tip end for discharging a droplet.
  • the shape of the cross section of the liquid discharge hole in the nozzle is not limited to a circle.
  • the cross-sectional shape of the liquid ejection hole is a polygon, a star, or any other shape, it indicates that the circumscribed circle of the cross-sectional shape is 25 [ ⁇ m] or less.
  • nozzle radius indicates the length of 1Z2 of the nozzle diameter (the inner diameter of the tip of the nozzle).
  • the "substrate” refers to an object to which a droplet of a discharged solution is landed, and the material is not particularly limited. Therefore, for example, when the above configuration is applied to an ink jet printer, a recording medium such as paper or a sheet corresponds to a base material, and when a circuit is formed using a conductive paste, a circuit is formed.
  • the base to be formed corresponds to the base material.
  • the nozzle or the nozzle is positioned such that the receiving surface of the droplet faces the tip of the nose. Is a substrate.
  • the arrangement work for realizing the mutual positional relationship may be performed by either moving the nose or the base material.
  • an electrode dedicated to charging for applying a voltage necessary for charging the solution may be provided.
  • the electric field concentrates, and the solution receives an electrostatic force toward the tip end of the nozzle, and the solution rises at the tip end of the nozzle (convex meniscus).
  • the nozzle is formed of a material having a dielectric breakdown strength of 10 [kV / mm] or more, discharge from the tip is effectively suppressed, and charge of the solution is effectively charged.
  • the electrostatic force of the solution exceeds the surface tension at the convex meniscus, the droplet of the solution flies from the projecting tip of the convex meniscus to the receiving surface of the base material, and falls on the receiving surface of the base material. A dot of the solution is formed.
  • the electrostatic force of the solution changes the discharge amount and the critical voltage, and is affected by the intensity E [V / m] of the electric field acting on the base material and the periphery of the nozzle.
  • This electric field strength is affected by the intensity E [V / m] of the electric field acting on the base material and the periphery of the nozzle.
  • Degree E is the total electric field strength E [V / m] generated by concentrating on the nozzle and the total loc between the nozzle and the substrate.
  • the concentrated electric field strength E depends on the nozzle diameter R [/ m] and the voltage V [v] applied to the nozzle.
  • decentralized field strength E is the distance h [beta m] from the nozzles to the substrate, applied to Nozunore
  • the distance h from the nozzle to the base material satisfies the above equation, and the electric field is concentrated on the tip of the nozzle by making the nozzle into an unprecedented ultra-fine diameter. It is characterized by increasing the electric field strength.
  • the nozzle diameter will be described in detail later.
  • the opposite polarity image charge is induced at a symmetrical position determined by the dielectric constant of the base material with respect to the receiving surface of the base material. You. Then, the droplet is caused to fly by the electrostatic force between the charge induced at the nozzle tip and the mirror image charge or the image charge.
  • a force counter electrode that can eliminate the need for the counter electrode may be used.
  • a counter electrode it is desirable that the base material is arranged along the opposing surface of the counter electrode and that the opposing surface of the counter electrode is disposed perpendicular to the direction of liquid ejection from the nozzle. This makes it possible to use the electrostatic force generated by the electric field between the nozzle and the counter electrode together to guide the flying electrode, and if the counter electrode is grounded, the charge of the charged droplets can be discharged into the air. In addition, it can be released via the counter electrode, and the effect of reducing the accumulation of electric charges can be obtained.
  • a liquid discharging apparatus for discharging a droplet of the charged solution of the present invention to a substrate
  • a liquid ejection head having a nozzle for ejecting the droplet from a tip having an inner diameter R of 25 [ ⁇ m] or less;
  • Discharge voltage applying means for applying a discharge voltage to the solution in the nozzle, wherein the internal diameter R [ ⁇ m] and the distance h [jum] from the tip of the nozzle to the substrate are:
  • the rate of change of the electric field strength E is small. Therefore, from the tip of the nozzle to the substrate
  • the distance h is equal to or less than 500 [zm].
  • the distance h is equal to or less than 500 [xm]
  • the ejection voltage can be reduced, and the landing accuracy of the ejected droplet can be increased.
  • a liquid discharging method for discharging a droplet of a charged solution to a substrate.
  • a liquid ejection head having a nozzle for ejecting the droplet from the tip having an inner diameter of 25 [ ⁇ m] or less
  • the droplet is ejected from the nozzle by applying an ejection voltage to the solution in the nozzle.
  • a liquid discharging method for discharging a droplet of a charged solution to a base material
  • a liquid discharge head As a liquid discharge head, a liquid discharge head having a nose that discharges the droplet from a tip portion having an inner diameter R of 25 [ ⁇ m] or less is used.
  • the droplet is ejected from the nozzle by applying an ejection voltage to the solution in the nozzle.
  • the internal diameter R [am] and the distance h [ ⁇ m] from the tip of the nozzle to the substrate are set to lZ (l + 5R / h)> 0.8.
  • the droplets are ejected in a state where the distance h is set to 500 [ ⁇ m] or less, so that the landing accuracy of the ejected droplets can be improved.
  • the electric field intensity distribution becomes narrow.
  • the electric field can be concentrated.
  • the formed droplets can be made minute and stabilized in shape, and the total applied voltage can be reduced.
  • the droplet is accelerated by the electrostatic force acting between the electric field and the electric charge.
  • the electric field sharply decreases.
  • the droplet is decelerated by air resistance.
  • the droplets which are microdroplets and in which the electric field is concentrated, are accelerated by the image force as they approach the counter electrode.
  • the inner diameter of the nozzle is preferably 8 [ ⁇ ] or less.
  • the inner diameter of the nozzle 8 [ ⁇ ] or less it is possible to concentrate the electric field further, Miniaturization and the effect of variations in the distance of the opposing electrode during flight on the electric field strength distribution can be reduced, so that the position accuracy of the opposing electrode, the properties of the base material, and the thickness of the droplet on the droplet shape are affected. And impact on landing accuracy can be reduced.
  • the inner diameter of the nozzle is set to 4 [xm] or less, a remarkable electric field can be concentrated, the maximum electric field strength can be increased, and the droplet having a stable shape can be made ultra-miniaturized.
  • the initial discharge speed of the droplet can be increased.
  • the flight stability is improved, so that the landing accuracy can be further improved, and the ejection responsiveness can be improved.
  • the inner diameter of the horn is larger than 0.2 [xm].
  • the nozzle is formed of an electrically insulating material, and that an electrode for applying a discharge voltage is inserted in the nozzle, and that a metal plate functioning as the electrode is formed.
  • the nozzle is formed of an electrically insulating material, and an electrode is inserted into the nozzle or a plating as an electrode is formed. It is preferable to provide a discharge electrode.
  • the discharge electrode on the outside of the nozzle is provided, for example, on the entire periphery or a part of the front end side of the nozzle or the side surface on the front end side of the nozzle.
  • the ejection force can be improved. Therefore, even if the diameter of the nozzle is further reduced, the droplet can be ejected at a low voltage.
  • the base material is formed of a conductive material or an insulating material.
  • y surface tension of liquid (N / m)
  • ⁇ 0 dielectric constant of vacuum (F / m)
  • d nozzle diameter (m)
  • h distance between nozzle and substrate (m)
  • k nozzle
  • the proportionality constant depends on the shape (1.5 x k x 8.5).
  • the ejection voltage V in the range of the above equation (1) is applied to the solution in the nozzle.
  • the term on the left side which is a reference for the upper limit of the discharge voltage V, indicates the minimum discharge voltage at the time of performing the conventional liquid discharge by the electric field between the nozzle and the counter electrode.
  • the discharge voltage of the minute droplets is reduced to a range lower than the conventional minimum discharge voltage which has not been realized by the conventional technology, due to the effect of the electric field concentration by the ultra-fine nozzle. Even if V is set, it can be realized.
  • the term on the right side which is the reference for the lower limit of the discharge voltage V in the above equation (1), is the minimum discharge voltage of the present invention for discharging droplets against the surface tension due to the solution at the nozzle tip. Show. In other words, even if a voltage lower than the critical minimum discharge voltage is applied, the droplet is not discharged.
  • on / off control of the ejection operation can be performed. That is, the ON / OFF control of the ejection operation can be performed only by switching the voltage level. In this case, it is desirable that the low voltage value at which the discharge is turned off is close to the minimum discharge voltage. Thereby, it is possible to narrow the width of voltage change in switching on and off, and to improve responsiveness.
  • the applied discharge voltage is 1000 V or less.
  • the discharge voltage is preferably 500 V or less.
  • a configuration in which a pulse width At that is equal to or greater than the time constant ⁇ determined by ⁇ (2) may be applied.
  • dielectric constant of the solution (F / m)
  • conductivity of the solution (S / m).
  • a change in the electric field strength around the base material and the nozzle can be suppressed irrespective of a change in the distance between the base material and the tip of the nozzle, and therefore, compared to the conventional case.
  • the stability of the formation of micro droplets and the ejection amount can be improved, the ejection responsiveness can be improved, and a high voltage can be applied to the tip of the nozzle.
  • the change in the electric field strength around the base material and the nozzle can be suppressed.
  • FIG. 1A Electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 2000 [ ⁇ m] when the nozzle diameter is ⁇ 0.2 [/ im].
  • FIG. 1B shows an electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 100 [ ⁇ ] when the diameter of the nozzle is ⁇ 0.2 [/ im].
  • FIG. 2B An electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 100 [xm] when the diameter of the nozzle is ⁇ 0.4 [zm].
  • FIG. 3 ⁇ shows the electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 100 [zm] when the diameter of the nozzle is ⁇ 1 [ ⁇ ].
  • FIG. 4A Electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 2000 [ ⁇ ] when the nozzle diameter is ⁇ 8 [/ im].
  • FIG. 4B shows an electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 100 [/ im] when the diameter of the nozzle is ⁇ 8 [ ⁇ ].
  • FIG. 5A shows an electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 2000 [ ⁇ ] when the nozzle diameter is ⁇ 20 [/ im].
  • FIG. 5B Electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 100 [/ im] when the diameter of the nozzle is 20 m.
  • FIG. 6A shows an electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 2000 [ ⁇ ] when the nozzle diameter is ⁇ 50 [/ im].
  • FIG. 6B An electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 100 [ ⁇ m] when the diameter of the nozzle is ⁇ 50 [ ⁇ m].
  • FIG. 7 is a chart showing the maximum electric field strength under the conditions shown in FIGS.
  • FIG. 8 is a diagram showing a relationship between a nozzle diameter of a nozzle and a maximum electric field intensity at a meniscus portion.
  • FIG. 9 The nozzle diameter of the nozzle and the discharge start voltage at which the droplet discharged at the meniscus section starts to fly.
  • FIG. 4 is a diagram showing a relationship between a pressure, a voltage value of the initial discharge droplet at a Rayleigh limit, and a ratio of a discharge start voltage to a Rayleigh limit voltage value.
  • FIG. 10A is a graph showing a relationship between a nozzle diameter and a region of a strong electric field in a meniscus portion.
  • FIG. 10B is an enlarged view of FIG. 10A in a range in which the diameter of the blade is very small.
  • FIG. 11 is a cross-sectional view of the liquid ejection device according to the first embodiment, taken along a nose.
  • FIG. 12A is an explanatory diagram showing a relationship between a solution discharging operation and a voltage applied to the solution, and showing a state where discharging is not performed.
  • FIG. 12B is an explanatory diagram showing a relationship between a solution discharging operation and a voltage applied to the solution, and showing a discharging state.
  • FIG. 13A is a partially cutaway perspective view showing another example of the shape of the flow path in the nozzle, and showing an example in which a roundness is provided on the solution chamber side.
  • FIG. 13B is a partially cut-away perspective view showing another example of the shape of the inside flow path of the nose, and showing an example in which the inner wall surface of the flow path has a tapered peripheral surface.
  • FIG. 13C is a partially cut-away perspective view showing another example of the shape of the internal flow path of the nose, and showing an example in which a tapered peripheral surface and a linear flow path are combined.
  • FIG. 14 is a diagram showing a relationship between a distance h and E / V.
  • FIG. 15 is a diagram showing a relationship between a distance h and E ′ / V.
  • FIG. 16 is a diagram showing a relationship between a distance h and E / (E + E).
  • FIG. 17 shows an embodiment of the present invention for explaining the calculation of the electric field intensity of the nozzle.
  • FIG. 18 is a side sectional view showing a liquid ejection apparatus as an example of the present invention.
  • FIG. 19 is a diagram illustrating ejection conditions based on the relationship between distance and voltage in the liquid ejection device according to the embodiment of the present invention.
  • the nozzle diameter of the liquid discharge device described in each of the following embodiments is preferably 25 [/ im] or less, more preferably less than 20 [ ⁇ ], further preferably 10 [/ m] or less, and more preferably It is preferably 8 [/ m] or less, more preferably 4 [ ⁇ ] or less. Further, the nozzle diameter is preferably larger than 0.2 [ ⁇ ], and the force S is preferable.
  • the relationship between the diameter of the nose and the electric field strength This will be described with reference to FIGS. Fig. 1 Corresponding to Fig. 6, the nozzle diameter is ⁇
  • the center position of the nozzle means the center position of the liquid ejection surface of the liquid ejection hole at the tip of the nozzle.
  • a in each figure shows the electric field intensity distribution when the distance between the tip of the nozzle and the counter electrode is set to 3 ⁇ 4000 [zm]
  • B shows the distance between the tip of the nozzle and the counter electrode.
  • the electric field strength distribution when set to 100 [ ⁇ ] is shown.
  • the applied voltage was kept constant at 200 [V] under each condition.
  • the distribution line in the figure indicates a range from the charge strength force l X 10 6 [V / m] to 1 X 10 7 [V / m].
  • FIG. 7 shows a chart showing the maximum electric field strength under each condition.
  • “gap” refers to the distance [ ⁇ m] between the tip of the nozzle and the counter electrode.
  • FIG. 8 shows the relationship between the maximum electric field strength and the strong electric field region when the nozzle diameter of the nozzle and the liquid level is at the tip of the nozzle. From the graph shown in FIG. 8, it was found that when the nozzle diameter was less than ⁇ 4 [ ⁇ ], the electric field concentration became extremely large and the maximum electric field intensity could be increased. As a result, the initial discharge speed of the solution can be increased, so that the flight stability of the droplets is increased, and the discharge response is improved because the speed of movement of the electric charge at the tip of the nozzle is increased.
  • the amount of charge that can be charged to a droplet is expressed by the following equation (3), taking into account the Rayleigh splitting (Rayleigh limit) of the droplet.
  • FIG. 9 is a graph showing the relationship.
  • the ratio between the discharge start voltage and the Rayleigh limit voltage value exceeds 0.6 when the diameter of the nozzle is in the range of ⁇ 0.2 [/ ⁇ ] to ⁇ 4 [/ ⁇ ].
  • a large amount of charge can be applied to the droplets, resulting in good charging efficiency of the droplets, and it has been found that stable ejection can be performed in this range.
  • the relationship between the diameter of the nozzle and the area of the strong electric field (1 ⁇ 10 6 [V / m] or more) at the tip of the nozzle shown in FIG. 10A and FIG. 10B is indicated by the distance from the center position of the nozzle.
  • the field concentration region becomes extremely narrow when the diameter of the nozzle is less than ⁇ 0.2 [ ⁇ m]. This indicates that the ejected droplet cannot receive sufficient energy for acceleration and the flight stability is reduced. Therefore, it is preferable to set the nozzle diameter to be larger than ⁇ 0.2 [ ⁇ m].
  • the gap between the tip of the nozzle and the counter electrode is described as being 2000 zm and 100 / m.However, in consideration of the impact accuracy, the distance between the tip of the nozzle and the substrate is It is preferably at most 500 / im. Therefore, when deciding the composition of the following liquid ejection device, consider not only the case where the distance between the tip of the nozzle and the substrate is 500 ⁇ m or less, but also the case where it is 100 ⁇ ⁇ or less. ing.
  • FIG. 11 is a cross-sectional view of the liquid ejection device 20 taken along a nozzle 21 described later.
  • FIG. 12 is an explanatory diagram showing the relationship between the solution ejection operation and the voltage applied to the solution.
  • FIG. This is a state in which the ejection is not performed, and
  • FIG. 12B shows the ejection state.
  • the liquid discharge device 20 has an ultrafine thread diameter nozzle 21 for discharging a droplet of a chargeable solution from the tip thereof, a facing surface facing the tip of the nozzle 21, and a droplet on the facing surface.
  • a counter electrode 23 that supports the substrate K that receives the landing; a solution supply unit 29 that supplies a solution to the flow path 22 in the nozzle 21; and a discharge voltage application unit 25 that applies a discharge voltage to the solution in the nozzle 21
  • operation control means 50 for controlling the application of the ejection voltage by the ejection voltage applying means 25. Note that a part of the configuration of the nozzle 21 and the solution supply unit 29 and a part of the configuration of the discharge voltage applying unit 25 are integrally formed as a liquid discharge head 26.
  • the tip of the nozzle 21 is shown facing upward, and the counter electrode 23 is provided above the nozzle 21.
  • S Used in a horizontal orientation or below, more preferably vertically downward.
  • Examples of the solution to be discharged by the liquid discharging device 20 include water, COC1, HBr, HNO, HPO, HSO, SOC1, SOCI, FSOH, etc. as the inorganic liquid.
  • Organic liquids include methanol, n-propanol, isopropanol, n-butanol, 2-methynole-1-propanol, tert-butanol, 4-methyl-1-pentanol, benzyl alcohol, ether terpineol, ethylene glycol, and glycerin.
  • Phenols such as phenol, o_cresol, m-cresol, ⁇ _cresol, etc .; dioxane, furfural, ethylene glycol methinolate ethereone, methinoreserosonolev Ethers such as, ethinoleserosonoleb, butinoleserosonoleb, etinolecanolebitonele, butinolecanolebitonele, butinolecanolebitoneorecetate, epiclo mouth hydrin, etc .; acetone, methylethylketone, 2—me Ketones such as Chill-4_pentanone and acetophenone; fatty acids such as formic acid, acetic acid, dichloroacetic acid, and trichloroacetic acid Methyl formate, ethyl formate, methyl acetate, ethyl acetate, n-butyl acetate, isobutynole
  • the above-mentioned target substance to be dissolved or dispersed in the liquid is a nozzle.
  • the phosphor such as PDP, CRT, and FED, conventionally known phosphors can be used without any particular limitation.
  • a red phosphor (Y, Gd) BO: Eu, Y ⁇ : Eu, etc.
  • BaMgAl ⁇ : Eu, BaMgAl ⁇ : Eu, etc. are examples of blue phosphors such as 24121923.
  • binders for example, ethyl cellulose, methyl Cellulose such as norecellulose, nitrocellulose, cellulose acetate, hydroxyethynoresenorelose and derivatives thereof; alkyd resin; polymethalitacrylic acid, polymethyl methacrylate, 2-ethylhexyl methacrylate, methacrylic acid copolymer, lauryl (Meth) acrylic resins and metal salts thereof such as methacrylate and 2-hydroxyethyl methacrylate copolymer; poly (meth) acrylamide resins such as poly N-isopropylacrylamide and poly N, N-dimethylacrylamide Styrene resins such as polystyrene, acrylonitrile 'styrene copolymer, styrene' maleic acid copolymer and styrene 'is
  • the liquid ejection device 20 is used for a patterning method, it is typically used for display purposes.
  • the plasma display Forming light bodies, forming ribs for plasma displays, forming electrodes for plasma displays, forming phosphors for CRTs, forming phosphors for FED (field emission display), forming ribs for FEDs, for liquid crystal displays
  • Examples include a color filter (RGB coloring layer, black matrix layer), a spacer for a liquid crystal display (a pattern corresponding to a black matrix, a dot pattern, and the like).
  • the rib as used herein generally means a barrier, and is used to separate a plasma region of each color when taking a plasma display as an example.
  • Other uses include pattern jung coating of microlenses, magnetic materials, ferroelectrics, and conductive pastes (wiring and antennas) for semiconductor applications, and normal printing and special media (films, fabrics, steel plates, etc.) for graphic applications ), Curved surface printing, printing plates of various printing plates, application using the present invention such as adhesives and encapsulants for processing applications, and pharmaceuticals for bio and medical applications (such as mixing multiple trace components This method can be applied to the application of samples for genetic diagnosis, etc.
  • the tip 21 is formed integrally with a nozzle plate 26c, which will be described later, and stands vertically from the flat surface of the tip plate 26c. Further, at the time of discharging the droplet, the nozzle 21 is used so as to be perpendicular to the receiving surface of the substrate K (the surface on which the droplet lands). Further, the nozzle 21 has a nozzle internal flow path 22 penetrating from the tip end thereof along the center of the nozzle.
  • the nozzle 21 has a uniform opening diameter at the tip end and an inner channel 22 of the nozzle, and as described above, these are formed with an ultrafine diameter.
  • the internal diameter of the nozzle flow path 22 is 25 [ ⁇ ] or less, further less than 20 [zm], further 10 [zm] or less, further 8 [zm] or less.
  • the internal diameter of the inside flow path 22 is preferably set to l [xm].
  • the outer diameter of the tip of the nozzle 21 is set at 2 [xm]
  • the diameter of the root of the nozzle 21 is set at 5 [ ⁇ m]
  • the height of the nozzle 21 is set at 100 [zm]. It is formed as a truncated cone that is as close as possible to a cone.
  • the inner diameter of the nozzle is preferably larger than 0.2 [z m].
  • the height of the nozzle 21 may be 0 [x m].
  • the shape of the flow path 22 in the nozzle is formed in a straight line with a constant inner diameter as shown in FIG. It is not necessary.
  • the cross-sectional shape of an end portion of the in-nozzle flow path 22 on the solution chamber 24 side, which will be described later, may be rounded.
  • the inner diameter at the end of the nozzle flow path 22 on the solution chamber 24 side described later is set to be larger than the inner diameter at the discharge-side end, and the inner surface of the nozzle flow path 22 is tapered. Even if it is formed in a peripheral shape, it is good.
  • FIG. 13C only the end portion of the nozzle flow path 22 on the solution chamber 24 side described later is formed in a tapered peripheral surface shape, and the inner diameter of the discharge end side from the tapered peripheral surface is constant. May be formed in a straight line.
  • the solution supply means 29 is provided inside the liquid ejection head 26 at a position which is the root of the nozzle 21 and communicates with the flow path 22 in the nozzle, and a solution chamber 24 from an external solution tank (not shown) to the solution chamber 24.
  • a supply path 27 for introducing the solution, a supply pump for supplying the supply pressure of the solution to the solution chamber 24, and a supply pump are provided.
  • the supply pump supplies the solution to the tip of the nozzle 21 and supplies the solution while maintaining a supply pressure within a range not spilling from the tip.
  • the supply pump includes a case where a pressure difference depending on the arrangement position of the liquid discharge head and the supply tank is used, and may be configured only with the solution supply path without separately providing a solution supply unit.
  • the force S depends on the design of the pump system.It basically operates when supplying the solution to the liquid ejection head at the start, ejects the liquid from the liquid ejection head, and supplies the solution in accordance with the capillaries and The supply of the solution is performed by optimizing the volume change in the liquid ejection head and each pressure of the supply pump by the convex meniscus forming means.
  • the discharge voltage applying means 25 includes a discharge electrode 28 for applying a discharge voltage provided inside the liquid discharge head 26 and at a boundary position between the solution chamber 24 and the flow path 22 in the nozzle. There is provided a DC power supply 30 for applying a DC bias voltage, and an ejection voltage power supply 31 for applying a pulse voltage to the ejection electrode 28 which is superimposed on the bias voltage and has a potential required for ejection.
  • the discharge electrode 28 is placed inside the solution chamber 24 and directly contacts the solution to charge the solution and apply a discharge voltage. As shown in FIG. 12A, the bias voltage by the DC power supply 30 is reduced by previously applying a constant voltage in a range where the solution is not discharged, thereby reducing the width of the voltage to be applied at the time of the discharge. To improve reactivity.
  • the ejection voltage power supply 31 applies the pulse voltage superimposed on the bias voltage only when the solution is ejected. At this time, the value of the superimposed voltage V is set so that the condition of the following equation is satisfied.
  • H distance between nozzle and substrate (m)
  • k proportional constant (1.5 x k x 8.5) depending on nozzle shape. Note that the above conditions are theoretical values, and in practice, tests were performed when a convex meniscus was formed and when it was not formed.
  • the ejection voltage is set to 400 [V] as an example.
  • the liquid discharge head 26 is located at the lowest layer in FIG. 11 and has a flexible base layer 26a made of a flexible material (for example, metal, silicon, resin, etc.) and an entire upper surface of the flexible base layer 26a.
  • An insulating layer 26d made of an insulating material to be formed, a flow path layer 26b forming a supply path for the solution located thereon, and a nose layer 26c formed further above the flow path layer 26b,
  • the discharge electrode 28 described above is interposed between the flow path layer 26b and the nose plate 26c.
  • the flexible base layer 26a may be made of a material having flexibility as described above, for example, a thin metal plate. As described above, the flexibility is required at a position corresponding to the solution chamber 24 on the outer surface of the flexible base layer 26a, and the piezo element 41 of the convex meniscus forming means 40 described later is provided. This is for bending the flexible base layer 26a. That is, by applying a predetermined voltage to the piezo element 41, the flexible base layer 26a By depressing any of them, the internal volume of the solution chamber 24 can be reduced or increased, and a convex meniscus of the solution can be formed at the tip of the nozzle 21 due to a change in internal pressure, or the liquid surface can be drawn inward. To do that.
  • a resin having a high insulating property is formed in a film shape, and an insulating layer 26d is formed.
  • the insulating layer 26d is formed sufficiently thin so as not to prevent the flexible base layer 26a from being depressed, or a resin material that is more easily deformed is used.
  • a dissolvable resin layer is formed, and at the same time, only a portion according to a predetermined pattern for forming the supply path 27 and the solution chamber 24 is removed and removed, and the remaining portion is removed.
  • An insulating resin layer is formed on the removed portion.
  • This insulating resin layer becomes the flow path layer 26b.
  • an ejection electrode 28 is formed on the upper surface of the insulating resin layer by spreading a conductive material (for example, NiP) in a planar manner, and an insulating resist resin layer or a parylene layer is further formed thereon. Since the resist resin layer strength becomes the S-nozzle plate 26c, this resin layer is formed with a thickness in consideration of the height of the nozzle 21.
  • the insulating resist resin layer is exposed by an electron beam method or a femtosecond laser to form a nozzle shape.
  • the inner flow path 22 is also formed by a laser camera.
  • the dissolvable resin layer according to the pattern of the supply path 27 and the solution chamber 24 is removed, and the supply path 27 and the solution chamber 24 are opened to complete the liquid discharge head 26.
  • the material of the nozzle plate 26c and the nozzle 21 is, specifically, an insulating material such as epoxy, PMMA, phenol, soda glass, and quartz glass, as well as a semiconductor such as Si, Ni, SUS, and the like. Such a conductor may be used. However, when the nozzle plate 26c and the nozzle 21 are formed of a conductor, it is desirable to provide a coating made of an insulating material on at least the tip end face at the tip end of the nozzle 21 and more preferably on the peripheral surface at the tip end.
  • nozzle 21 By forming the nozzle 21 from an insulating material or forming an insulating material film on the surface of the tip, current leakage from the nozzle tip to the counter electrode 23 can be effectively prevented when a discharge voltage is applied to the solution. It is because it becomes possible to suppress the number of times.
  • the opposing electrode 23 has an opposing surface perpendicular to the projecting direction of the lip 21 and supports the substrate K along the opposing surface. Distance from tip of nozzle 21 to substrate K h [ ⁇ m] Is a 500 [ ⁇ ⁇ ] Hereinafter, further 1 / h 2 ° 4 X 10- 4, preferably is set to 1 / h 2 ° 2 X 10- 4.
  • the counter electrode 23 is grounded, the ground potential is always maintained. Therefore, the discharged droplet is guided to the counter electrode 23 side by the electrostatic force due to the electric field generated between the tip end portion of the lip 21 and the facing surface.
  • the liquid discharge device 20 discharges droplets by increasing the electric field strength by the electric field concentration at the tip of the nozzle 21 due to the ultra-miniaturization of the nozzle 21, the liquid discharge device 20 does not need to be guided by the counter electrode 23. It is desirable to induce electrostatic force between the nozzle 21 and the counter electrode 23, which is capable of discharging droplets. It is also possible to release the charge of the charged droplet by grounding the counter electrode 23.
  • the intensity E of the electric field acting around the base material K and the nozzle 21 is concentrated on the nozzle.
  • the concentrated electric field strength E is determined by the nozzle diameter R m] and the voltage V [v]
  • decentralized field strength E is the distance h [beta m] from the nozzles to the substrate, applied to Nozunore
  • Causes of the change include undulation of the surface of the substrate K, deterioration of the positional accuracy of the nozzle 21 in the liquid ejection head 26, and deterioration of the positional accuracy of the counter electrode 23 fixing the substrate K.
  • the operation control means 50 actually has a configuration having an arithmetic unit including a CPU, a ROM, a RAM, and the like. The configuration is realized and the operation control described later is executed.
  • the operation control means 50 continuously applies a bias voltage from the DC power supply 30 and, when receiving an external ejection command, causes the ejection voltage power supply 31 to apply a pulse voltage to the nozzle 21 by applying a pulse voltage. Discharges the droplet at the tip.
  • the solution is supplied to the flow path 22 in the nozzle by the supply pump of the solution supply means, and a bias voltage is constantly applied to the discharge electrode 28 from the DC power supply 30 in a force and a weak state (FIG. 12A).
  • a bias voltage is constantly applied to the discharge electrode 28 from the DC power supply 30 in a force and a weak state (FIG. 12A).
  • the solution is charged, and a concave meniscus is formed at the tip of the nozzle 21 by the solution (FIG. 12A).
  • a pulse voltage is applied to the ejection electrode 28 from the ejection voltage power supply 31.
  • the solution is guided toward the tip of the nozzle 21 by electrostatic force due to the electric field strength of the concentrated electric field, and a convex meniscus protruding to the outside is formed.
  • the electric field concentrates, and eventually a microdroplet is ejected to the counter electrode side against the surface tension of the solution (Fig. 12B).
  • the liquid ejection apparatus 20 regardless of the change in the distance h from the base material K to the tip of the nozzle 21, the change in the electric field intensity E around the base material K and the periphery of the nozzle 21 is suppressed.
  • the stability of the formation of fine droplets and the ejection amount can be improved, the ejection responsiveness can be improved, and a high voltage can be applied to the tip of the nozzle 21. Wear.
  • the distance h is equal to or less than 500 [zm], the force S for improving the landing accuracy of the discharged droplet can be obtained.
  • a constant voltage is always applied to the solution by the DC power supply 30 irrespective of whether or not the solution is ejected, so that the solution is ejected by changing the applied voltage to the solution. In comparison, it is possible to improve the responsiveness at the time of ejection and to stabilize the liquid amount.
  • the liquid discharge device 20 discharges droplets using a nozzle 21 having an unprecedented fine diameter, an electric field is concentrated by a solution in a charged state in the inner channel 22 of the nozzle, and the electric field intensity is reduced. Enhanced. For this reason, with a nozzle having a structure in which the electric field is not concentrated as in the past (for example, an inner diameter of 100 [ ⁇ ]), the voltage required for ejection becomes too high, and it is virtually impossible to eject at a fine diameter.
  • the discharge of the solution by the nozzle can be performed at a lower voltage than before.
  • the solution in the inner channel 22 of the nozzle is restricted by the low conductance of the nozzle, so that the control for reducing the discharge flow rate per unit time can be easily performed.
  • the solution can be ejected with a sufficiently small droplet diameter (0.8 [ ⁇ m] according to the above conditions) without reducing the pulse width.
  • the vapor pressure is reduced even for minute droplets, and by suppressing evaporation, the loss of droplet mass is reduced and flight is stabilized. This prevents a drop in droplet landing accuracy.
  • a force for providing an electrode on the outer periphery of the nozzle 21, or an electrode is provided on the inner surface of the inner channel 22, and an insulating film is coated on the electrode. You may.
  • the wettability of the inner surface of the inner flow path 22 can be enhanced by an electrowetting effect on the solution to which a voltage is applied by the ejection electrode 28 due to an electrowetting effect.
  • the solution can be smoothly supplied to the inside flow path 22 of the nozzle, and the ejection can be performed satisfactorily, and the responsiveness of the ejection can be improved.
  • the ejection voltage applying means 25 always applies a bias voltage and performs ejection of droplets by using a nourse voltage as a trigger.
  • an AC or a continuous rectangular wave is always applied with an amplitude required for ejection.
  • the discharge may be performed by switching the level of the frequency. In order to discharge droplets, it is necessary to charge the solution.If the discharge voltage is applied at a frequency higher than the speed at which the solution is charged, the solution will not be discharged, and if the frequency is changed to a frequency at which the solution can be charged sufficiently. Discharge is performed. Therefore, when not discharging, the discharge voltage is applied at a frequency higher than the dischargeable frequency, and the discharge is performed only when discharging.
  • liquid ejection device 20A according to a second embodiment of the present invention will be described with reference to FIG.
  • the same components as those of the liquid ejection device 20 of the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted.
  • the inner diameter R [zm] of the tip of the nozzle 21 and the distance h from the tip of the nozzle 21 to the base material K are lZ (l + 5R / h)> 0.8.
  • the rate of change of the field strength E is small. Therefore, the distance h from the base material K to the tip of the nozzle 21 is
  • the stability of the formation of fine droplets and the ejection amount can be improved, the ejection responsiveness can be improved, and a high voltage can be applied to the tip of the nozzle 21. Wear.
  • is a solution for discharging droplets from the nozzle tip by electrostatic attraction
  • the conductive solution is injected into the nozzle with the inner diameter d, and the h Suppose you are positioned vertically at height. This is shown in FIG. At this time, it is assumed that the charge induced at the nozzle tip concentrates on the hemisphere at the nozzle tip, and is approximately expressed by the following equation.
  • a This is a proportionality constant that depends on the nozzle shape, etc., and takes a value of about 1-1.5, especially about 1 for d and h.
  • the substrate as the substrate is a conductive substrate
  • reverse charges for canceling the potential due to the charge Q are induced near the surface, and the mirror image charge Q having the opposite sign at the symmetric position in the substrate due to the charge distribution.
  • 'Is considered to be equivalent to the induced state.
  • the reverse charge is induced on the surface side by polarization on the substrate surface, and the image charge Q 'of the opposite sign is similarly induced at the symmetric position determined by the dielectric constant. It is considered that
  • kR a proportional constant, which varies depending on the nozzle shape, etc., but takes a value of about 1.5 to 8.5, and is considered to be about 5 in most cases.
  • FIG. 9 shows the dependence of the discharge limit voltage Vc on the nozzle having a certain inner diameter d. From this figure, it was clarified that the discharge start voltage decreases as the nozzle diameter decreases, considering the electric field concentration effect of the fine nozzle.
  • the discharge voltage can be reduced by making fine noise.
  • Discharge by electrostatic suction is basically based on charging of a liquid (solution) at the end of the nozzle.
  • the charging speed is considered to be about the time constant determined by dielectric relaxation.
  • Each of the above embodiments is characterized by the effect of concentrating the electric field at the tip of the nose, and the effect of the image force induced on the opposing substrate, as shown in FIG. For this reason, it is not necessary to make the substrate or the substrate support conductive as in the prior art, or to apply a voltage to these substrates or the substrate support. That is, an insulating glass substrate, a plastic substrate such as polyimide, a ceramic substrate, a semiconductor substrate, or the like can be used as the substrate.
  • the voltage applied to the electrode may be either positive or negative.
  • the discharge of the solution can be facilitated.
  • the base material may be placed and held in a conductive or insulating base material holder.
  • FIG. 18 is a side sectional view of a nozzle portion of a liquid ejection apparatus as another example of the basic example of the present invention.
  • the electrode 15 is provided on the side surface of the hornet 21, and a controlled voltage is applied between the electrode 15 and the solution 3 in the hornet.
  • the purpose of this electrode 15 is
  • Nozzle 21 is made of an insulator, and the tip When the tube thickness is 1 ⁇ m, the inner diameter of the nozzle is 2 ⁇ m, and the applied voltage is 300 V, the
  • FIG. 9 described above shows the dependence of the ejection start voltage on the nozzle diameter in the present invention.
  • the liquid ejection device shown in FIG. 11 was used. As the nozzle becomes finer, the discharge starting voltage decreases, and it is clear that discharge can be performed at a lower voltage than before.
  • condition of liquid ejection is a function of the distance between the nozzle and the substrate (h), the amplitude of the applied voltage (V), and the frequency of the applied voltage (f).
  • V the amplitude of the applied voltage
  • f the frequency of the applied voltage
  • an error of ⁇ 5 [xm] occurred due to the mechanical accuracy of the liquid ejection apparatus and the undulation of the surface of the substrate K. was.
  • Example 13 and 13 and Comparative Example 1 “silver nanopaste” (trade name: manufactured by Harima Chemicals, Inc.) was used as the solution. Further, as the nozzle 21, a glass nozzle having an inner diameter of 1 [z m] at the tip was used. The rectangular pulse voltage from the discharge voltage power supply 31 was set to 350 [V]. Further, a glass plate was used as the substrate K.
  • the liquid ejecting apparatuses of Examples 13 and 13 and Comparative Example 1 ejected 1,000 droplets of the solution, and measured the diameter of dots that landed on the surface of the base material K, that is, the impact diameter.
  • the landing diameter was measured by processing the dot image and then measuring the outer diameter of the dot in the image. To capture the dot images, a Keyence laser microscope was used.
  • Example 1 the value of 1 / h 2 is 4 X 10- 4 or less is Example 1 one 3, smaller than the variation rate of Chaku ⁇ 5% instrument good results Was. Furthermore, in Example 1, 2 value of LZH 2 is 2 X 10- 4 or less, the variation rate of the landing diameter is 2% or less, better results were obtained. On the other hand, the value of 1 / h 2 is 4 X 10- 4 greater than Comparative Example 1, the fluctuation rate of the landing diameter is 10%, which resulted not good.
  • 1 / h 2 value of 4 X 10- 4 or less increases the stability of the fine small droplet formation and discharge amount, as a result, the dot shape Can be more uniform You can see that.
  • Example 419 and Comparative Examples 2-7 “Silver nanopaste” (trade name: manufactured by Harima Chemicals, Inc.) was used as the solution.
  • a glass nozzle was used as the nozzle 21.
  • the rectangular pulse voltage from the discharge voltage power supply 31 was set to 350 [V]. Further, a glass plate was used as the substrate K.
  • the solution was ejected by using the liquid ejecting apparatuses of Examples 4-1 9 and Comparative Examples 2-7: LOOO droplets, and the impact diameter on the surface of the substrate K was measured.
  • Example 4-1 9 where the value of 1 / (1 + 51/11) was greater than 0.8, the variation rate of the impact diameter was less than 5%, and good results were obtained. Obtained.
  • Comparative Example 2-7 in which the value of l / (l + 5RZh) is 0.8 or less, the variation rate of the impact diameter is 5. /. This is not a good result.

Abstract

A liquid jetting device jetting the charged droplets of a solution to a base material, comprising a liquid jetting head having a nozzle jetting the droplets from the tip part thereof with an inner diameter of 25 μm or smaller and a jetting voltage application means applying a jetting voltage to the solution inside the nozzle. The liquid jetting device is characterized in that a distance (h) μm from the tip part of the nozzle to the base material can meet the requirement of 1/h2 < 4 × 10-4.

Description

明 細 書  Specification
液体吐出装置及び液体吐出方法  Liquid ejection device and liquid ejection method
技術分野  Technical field
[0001] 本発明は、基材の表面に液滴を吐出する液体吐出装置及び液体吐出方法に関す る。  The present invention relates to a liquid ejection device and a liquid ejection method for ejecting liquid droplets on a surface of a base material.
^景技術  ^ Scenic technology
[0002] 従来、基材の表面に液滴を吐出するインクジェット記録方式としては、圧電素子の 振動によりインク流路を変形させることによりインク液滴を吐出させるピエゾ方式、イン ク流路内に発熱体を設け、その発熱体を発熱させて気泡を発生させ、気泡によるイン ク流路内の圧力変化に応じてインク液滴を吐出させるサーマル方式、インク流路内 のインクを帯電させてインクの静電吸引力によりインク液滴を吐出させる静電吸引方 式が知られている。  [0002] Conventionally, as an ink jet recording method for discharging droplets on the surface of a base material, a piezo method for discharging ink droplets by deforming an ink flow path by vibrating a piezoelectric element, and generating heat in the ink flow path. A thermal method in which a heating element is provided and heat is generated by the heating element to generate air bubbles, and ink droplets are ejected in response to pressure changes in the ink flow path due to the air bubbles. There is known an electrostatic suction method in which ink droplets are ejected by an electrostatic suction force.
[0003] 従来の静電吸引方式のインクジェットプリンタとして、特許文献 1 , 2に記載のものが 挙げられる。力かるインクジェットプリンタは、その先端部からインクの吐出を行う複数 の凸状インクガイドと、各インクガイドの先端に対向して配設されると共に接地された 対向電極と、インクガイドごとにインクに吐出電圧を印加する吐出電極とを備えている 。そして、凸状インクガイドは、インクを案内するスリット幅が異なる二種類のものを用 意し、これらのものを使い分けることで、二種類の大きさの液滴を吐出可能とすること を特徴とする。  [0003] Patent Documents 1 and 2 disclose conventional electrostatic suction type inkjet printers. A powerful ink-jet printer has a plurality of convex ink guides for ejecting ink from the front end thereof, a counter electrode disposed opposite to the front end of each ink guide and grounded, and an ink guide for each ink guide. And an ejection electrode for applying an ejection voltage. The convex ink guide is provided with two types of ink guides having different slit widths, and is capable of ejecting droplets of two types by selectively using these types. I do.
そして、この従来のインクジェットプリンタは、吐出電極にパルス電圧を印加すること でインク液滴を吐出し、吐出電極と対向電極間で形成された電界によりインク液滴を 対向電極側に導いている。  In this conventional ink jet printer, an ink droplet is ejected by applying a pulse voltage to the ejection electrode, and the ink droplet is guided to the counter electrode side by an electric field formed between the ejection electrode and the counter electrode.
特許文献 1:特開平 8 - 238774号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 8-238774
特許文献 2 :特開 2000— 127410号公報  Patent Document 2: JP-A-2000-127410
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力、しながら、上記従来例には、以下の問題があった。 (1)微小液滴形成の安定性 [0004] However, the above conventional example has the following problems. (1) stability of microdroplet formation
ノズノレ径が大きいため、ノズルから吐出される液滴の形状が安定しない。  Since the diameter of the nozzle is large, the shape of the droplet discharged from the nozzle is not stable.
(2)高印加電圧  (2) High applied voltage
微小液滴の吐出のためには、ノズノレの吐出口の微細化を図ることが重要因子とな つてくるが、従来の静電吸引方式の原理では、ノズル径が大きいことにより、ノズル先 端部の電界強度が弱ぐ液滴を吐出するのに必要な電界強度を得るために、高い吐 出電圧(例えば 2000[V]に近レ、非常に高レ、電圧)を印加する必要があった。従って、 高い電圧を印加するために、電圧の駆動制御が高価になり、さらに、安全性の面から も問題があった。  In order to discharge micro droplets, it is important to reduce the size of the nozzle outlet. However, according to the conventional principle of the electrostatic suction method, the nozzle diameter is large and the nozzle tip is Electric field strength is weak To obtain the electric field strength necessary to eject a droplet, it was necessary to apply a high ejection voltage (for example, near 2000 [V], very high voltage) . Therefore, since a high voltage is applied, drive control of the voltage becomes expensive, and there is a problem in terms of safety.
(3)吐出応答性  (3) Discharge response
上記の特許文献 1, 2に開示されたインクジェット装置では、上記(2)と同様の理由 により高い吐出電圧の印加により吐出を行うため、メニスカス部の中心に電荷が移動 するための電荷の移動時間が吐出応答性に影響し、印字速度の向上において問題 となっていた。また、インクに対するパルス電圧を印加することのみによりインク吐出を 行うために、そのパルス電圧を印加する電極に高電圧を印加する必要があり、上述し た(2)、(3)の問題を助長する傾向にある、という不都合があった。  In the ink jet devices disclosed in Patent Documents 1 and 2 described above, ejection is performed by applying a high ejection voltage for the same reason as in the above (2), so that the electric charge transfer time for the electric charge to move to the center of the meniscus portion. This affects the ejection responsiveness, and has been a problem in improving the printing speed. Further, in order to perform ink discharge only by applying a pulse voltage to the ink, it is necessary to apply a high voltage to the electrode to which the pulse voltage is applied, which promotes the problems (2) and (3) described above. There was a disadvantage that they tended to do so.
(4)吐出量の安定性  (4) Discharge rate stability
上記の特許文献 1, 2に開示された従来のドロップオンデマンド型静電吸引型インク ジェット方式では、吐出の制御は印加電圧の ON/OFFによって行われる方式、あるい は、ある程度の直流バイアス電圧を印加しておき、それに信号電圧を重ねることによ つて行われる振幅変調方式が用いられている。し力しながら、吐出休止後、再度吐出 開始する際の時間応答性が悪ぐまた吐出量も不安定になる問題があった。  In the conventional drop-on-demand type electrostatic suction type inkjet method disclosed in Patent Documents 1 and 2 described above, the ejection is controlled by turning on / off an applied voltage, or a certain DC bias voltage is applied. Is applied, and an amplitude modulation method performed by superimposing a signal voltage thereon is used. However, there is a problem that the time response when the discharge is restarted after the suspension of the discharge and the discharge amount becomes unstable while the discharge amount becomes unstable.
また、上記(1)一 (4)の問題点は、基材及びノズノレ周辺の電界強度がノズノレの先端 部から基材までの距離の変化によって影響を受けることによつても生じていた。なお、 ノズノレの先端部から基材までの距離は、フィードバック制御により或る程度の精度で 一定の値に保つことが可能である。しかし、基材表面のうねりや、複数のノズルを配し た場合のノズル位置の精度、基材を固定するステージの精度、ノズルを固定するステ ージの精度などを組み合わせて総合的に高い精度で前記距離を一定の値に保つこ とは困難である。このため、工業的には、ノズルから基材までの距離の精度が悪くて も、上記(1)一(4)の問題点を改善することが望まれてレ、る。 Further, the problems (1) and (4) above also occur because the electric field intensity around the base material and the horn is affected by a change in the distance from the tip of the horn to the base. Note that the distance from the tip of the nose to the substrate can be maintained at a constant value with a certain degree of accuracy by feedback control. However, high accuracy is achieved by combining the waviness of the substrate surface, the nozzle position accuracy when multiple nozzles are arranged, the stage accuracy for fixing the substrate, and the stage accuracy for fixing the nozzles. To keep the distance constant And it is difficult. For this reason, industrially, it is desired to improve the above-mentioned problems (1)-(4) even if the accuracy of the distance from the nozzle to the base material is poor.
[0006] 本発明の課題は、ノズノレの先端部から基材までの距離の変化に関わらず、基材及 びノズノレ周辺の電界強度の変化を抑制することができる液体吐出装置及び液体吐 出方法を提供することである。 [0006] An object of the present invention is to provide a liquid ejection apparatus and a liquid ejection method capable of suppressing a change in electric field intensity around a substrate and around the nozzle, irrespective of a change in a distance from the tip of the nozzle to the substrate. It is to provide.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の第 1の側面によれば、本発明の帯電した溶液の液滴を基材に吐出する液 体吐出装置であって、 [0007] According to a first aspect of the present invention, there is provided a liquid discharging apparatus for discharging droplets of the charged solution of the present invention to a base material,
内部直径が 25[ / m]以下の先端部から前記液滴を吐出するノズルを有する液体吐 出ヘッド、と、  A liquid ejection head having a nozzle for ejecting the droplet from the tip having an internal diameter of 25 [/ m] or less;
前記ノズノレ内の溶液に吐出電圧を印加する吐出電圧印加手段とを備え、 前記ノズノレの先端部から前記基材までの距離 h [ μ m]は、  Discharge voltage applying means for applying a discharge voltage to the solution in the nose, the distance h [μm] from the tip of the nose to the substrate,
l/h2< 4 X 10— 4 l / h 2 <4 X 10— 4
を満たす。  Meet.
[0008] 以下、ノズル径という場合には、液滴を吐出する先端部におけるノズノレの内部直径  [0008] Hereinafter, the term "nozzle diameter" refers to the internal diameter of a nozzle at a tip end for discharging a droplet.
(ノズルの先端部の内部直径)を示すものとする。なお、ノズル内の液体吐出穴の断 面形状は円形に限定されるものではなレ、。例えば、液体吐出穴の断面形状が多角 形、星形その他の形状である場合にはその断面形状の外接円が 25[ μ m]以下となる ことを示すものとする。  (Internal diameter of the tip of the nozzle). The shape of the cross section of the liquid discharge hole in the nozzle is not limited to a circle. For example, when the cross-sectional shape of the liquid ejection hole is a polygon, a star, or any other shape, it indicates that the circumscribed circle of the cross-sectional shape is 25 [μm] or less.
以下、ノズル径或いはノズルの先端部の内部直径という場合において、他の数値 限定を行っている場合にも同様とする。また、ノズル半径という場合には、このノズル 径(ノズノレの先端部の内部直径)の 1Z2の長さを示すものとする。  Hereinafter, the same applies to the case where other numerical values are limited in terms of the nozzle diameter or the internal diameter of the nozzle tip. In addition, the term “nozzle radius” indicates the length of 1Z2 of the nozzle diameter (the inner diameter of the tip of the nozzle).
[0009] 本発明において、「基材」とは吐出された溶液の液滴の着弾を受ける対象物をいい 材質的には特に限定されない。従って、例えば、上記構成をインクジェットプリンタに 適応した場合には、用紙やシート等の記録媒体が基材に相当し、導電性ペーストを 用いて回路の形成を行う場合には、回路が形成されるべきベースが基材に相当する こととなる。 [0009] In the present invention, the "substrate" refers to an object to which a droplet of a discharged solution is landed, and the material is not particularly limited. Therefore, for example, when the above configuration is applied to an ink jet printer, a recording medium such as paper or a sheet corresponds to a base material, and when a circuit is formed using a conductive paste, a circuit is formed. The base to be formed corresponds to the base material.
[0010] 上記構成にあっては、ノズノレの先端部に液滴の受け面が対向するように、ノズル又 は基材が配置される。これら相互の位置関係を実現するための配置作業は、ノズノレ の移動又は基材の移動のいずれにより行っても良い。 [0010] In the above configuration, the nozzle or the nozzle is positioned such that the receiving surface of the droplet faces the tip of the nose. Is a substrate. The arrangement work for realizing the mutual positional relationship may be performed by either moving the nose or the base material.
また、ノズノレ内の溶液は吐出を行うために帯電した状態にあることが要求される。そ のため、溶液の帯電に必要な電圧印加を行う帯電専用の電極を設けても良い。  In addition, the solution in the nozzle must be charged to discharge. Therefore, an electrode dedicated to charging for applying a voltage necessary for charging the solution may be provided.
そして、ノズル内において溶液が帯電することにより電界が集中し、溶液はノズル先 端部側への静電力を受け、ノズノレ先端部において溶液が盛り上がった状態(凸状メ ニスカス)が形成される。このとき、ノズルは絶縁破壊強度 10[kV/mm]以上の材料で 形成されているので、当該先端部からの放電が効果的に抑制され、溶液の電荷のチ ヤージが効果的に行われる。そして、溶液の静電力が凸状メニスカスにおける表面張 力を上回ることにより、凸状メニスカスの突出先端部から溶液の液滴が基材の受け面 に対して飛翔し、基材の受け面上には溶液のドットが形成される。  When the solution is charged in the nozzle, the electric field concentrates, and the solution receives an electrostatic force toward the tip end of the nozzle, and the solution rises at the tip end of the nozzle (convex meniscus). At this time, since the nozzle is formed of a material having a dielectric breakdown strength of 10 [kV / mm] or more, discharge from the tip is effectively suppressed, and charge of the solution is effectively charged. Then, when the electrostatic force of the solution exceeds the surface tension at the convex meniscus, the droplet of the solution flies from the projecting tip of the convex meniscus to the receiving surface of the base material, and falls on the receiving surface of the base material. A dot of the solution is formed.
[0011] このように溶液の静電力は、吐出量や臨界電圧を変化させるものであり、基材及び ノズノレの周辺に作用する電界の強度 E [V/m]によって影響を受ける。この電界強  [0011] As described above, the electrostatic force of the solution changes the discharge amount and the critical voltage, and is affected by the intensity E [V / m] of the electric field acting on the base material and the periphery of the nozzle. This electric field strength
total  total
度 E は、ノズノレに集中して生じる集中電界強度 E [V/m]と、ノズルと基材との間に total loc  Degree E is the total electric field strength E [V / m] generated by concentrating on the nozzle and the total loc between the nozzle and the substrate.
生じる非集中電界強度 E [V/m]とから、例えば以下の式のように表される。  From the resulting non-concentrated electric field strength E [V / m], for example, it is expressed by the following equation.
E =E +E  E = E + E
total loc gap  total loc gap
また、集中電界強度 E は、ノズル径 R[ / m]と、ノズノレに印加される電圧 V[v]とに  Also, the concentrated electric field strength E depends on the nozzle diameter R [/ m] and the voltage V [v] applied to the nozzle.
loc  loc
よって以下の式のように表される。  Therefore, it is represented by the following equation.
E =V/kR (但し、 kは定数)  E = V / kR (where k is a constant)
また、非集中電界強度 E は、ノズルから基材までの距離 h[ β m]と、ノズノレに印加 Also, decentralized field strength E is the distance h [beta m] from the nozzles to the substrate, applied to Nozunore
gap  gap
される電圧 Vとによって以下の式のように表される。  The following equation is represented by the applied voltage V.
E =V/h  E = V / h
gap  gap
以上の式から、距離 hの微小変化に対する電界強度 E の変化率 (微分係数)は、  From the above equation, the rate of change (differential coefficient) of the electric field strength E with respect to minute changes in the distance h is
total  total
E ' =-V/h2 E '= -V / h 2
total  total
となる。これにより、 lZh2の値が小さい程、距離 hの微小変化に対する電界強度 E total の変化率が 0に近づくことが分かる。 It becomes. This indicates that the smaller the value of lZh 2 , the closer the change rate of the electric field strength E total to a small change in the distance h becomes to zero.
[0012] このようにすれば、ノズノレの先端部から基材までの距離 h[ x m]が 0く l/h2 (=— E [0012] By doing so, the distance h [xm] from the tip of the nose to the base material becomes 0 / l / h 2 (= —E
く 4 X 10— 4を満たすので、距離 hの微小変化に対する電界強度 E の変化 Since satisfy Ku 4 X 10- 4, changes in the electric field strength E for microscopic change in the distance h
total 率が 0に近い。従って、ノズノレの先端部から基材までの距離 hの変化に関わらず、基 材及びノズル周辺の電界強度 E の変化を抑制することができるため、従来と比較し total The rate is close to 0. Therefore, regardless of the change in the distance h from the tip of the nose to the substrate, the change in the electric field strength E around the substrate and the nozzle can be suppressed.
total  total
て、微小液滴形成及び吐出量の安定性を高め、かつ吐出応答性を改善し、かつノズ ルの先端に高電圧を印加することができる。  Therefore, it is possible to enhance the stability of the formation of the minute droplet and the ejection amount, improve the ejection response, and apply a high voltage to the tip of the nozzle.
[0013] なお、上記構成にあっては、ノズルから基材までの距離 hが上記の式を満たすこと の他に、ノズノレを従来にない超微細径とすることでノズル先端部に電界を集中させて 電界強度を高めることに特徴がある。ノズルの小径化に関しては後の記載により詳述 する。かかる場合、ノズノレの先端部に対向する対向電極がなくとも液滴の吐出を行う ことが可能である。例えば、対向電極が存在しない状態で、ノズル先端部に対向させ て基材を配置した場合、当該基材が導体である場合には、基材の受け面を基準とし てノズル先端部の面対称となる位置に逆極性の鏡像電荷が誘導され、基材が絶縁 体である場合には、基材の受け面を基準として基材の誘電率により定まる対称位置 に逆極性の映像電荷が誘導される。そして、ノズル先端部に誘起される電荷と鏡像 電荷又は映像電荷間での静電力により液滴の飛翔が行われる。  [0013] In the above configuration, the distance h from the nozzle to the base material satisfies the above equation, and the electric field is concentrated on the tip of the nozzle by making the nozzle into an unprecedented ultra-fine diameter. It is characterized by increasing the electric field strength. The nozzle diameter will be described in detail later. In such a case, it is possible to discharge droplets without a counter electrode facing the tip of the nose. For example, when the base material is placed facing the nozzle tip in the absence of the counter electrode, and when the base material is a conductor, the nozzle tip is symmetric with respect to the receiving surface of the base material. When the base material is an insulator, the opposite polarity image charge is induced at a symmetrical position determined by the dielectric constant of the base material with respect to the receiving surface of the base material. You. Then, the droplet is caused to fly by the electrostatic force between the charge induced at the nozzle tip and the mirror image charge or the image charge.
但し、本発明の構成は、対向電極を不要とすることを可能とする力 対向電極を併 用しても構わない。対向電極を併用する場合には、当該対向電極の対向面に沿わ せた状態で基材を配置すると共に対向電極の対向面がノズルからの液体吐出方向 に垂直に配置されることが望ましぐこれによりノズル一対向電極間での電界による静 電力を飛翔電極の誘導のために併用することも可能となるし、対向電極を接地すれ ば、帯電した液滴の電荷を空気中への放電に加え、対向電極を介して逃がすことが でき、電荷の蓄積を低減する効果も得られるので、むしろ併用することが望ましい構 成といえる。  However, in the configuration of the present invention, a force counter electrode that can eliminate the need for the counter electrode may be used. When a counter electrode is used in combination, it is desirable that the base material is arranged along the opposing surface of the counter electrode and that the opposing surface of the counter electrode is disposed perpendicular to the direction of liquid ejection from the nozzle. This makes it possible to use the electrostatic force generated by the electric field between the nozzle and the counter electrode together to guide the flying electrode, and if the counter electrode is grounded, the charge of the charged droplets can be discharged into the air. In addition, it can be released via the counter electrode, and the effect of reducing the accumulation of electric charges can be obtained.
[0014] また、前記距離 hは、  [0014] Further, the distance h is
lZh2< 2 X 10— 4 lZh 2 <2 X 10— 4
を満たすこと好ましい。  It is preferable to satisfy
[0015] このようにすれば、前記距離 hが lZh2< 2 X 10— 4を満たすので、距離 hの微小変化 に対する電界強度 E の変化率がより 0に近い。従って、基材とノズル先端との間隔 [0015] Thus, since the distance h satisfies lZh 2 <2 X 10- 4, the change rate of the electric field strength E for microscopic change in the distance h is closer to zero. Therefore, the distance between the substrate and the tip of the nozzle
total  total
の変化に起因する基材及びノズル周辺の電界強度 E の変化を、より小さく抑えるこ  Changes in the electric field strength E around the base material and the nozzle due to changes in
total とができる。 total You can.
[0016] 本発明の第 2の側面によれば、本発明の帯電した溶液の液滴を基材に吐出する液 体吐出装置であって、  According to a second aspect of the present invention, there is provided a liquid discharging apparatus for discharging a droplet of the charged solution of the present invention to a substrate,
内部直径 Rが 25[ μ m]以下の先端部から前記液滴を吐出するノズルを有する液体 吐出ヘッドと、  A liquid ejection head having a nozzle for ejecting the droplet from a tip having an inner diameter R of 25 [μm] or less;
前記ノズノレ内の溶液に吐出電圧を印加する吐出電圧印加手段とを備え、 前記内部直径 R [ μ m]と前記ノズルの先端部から前記基材までの距離 h [ ju m]と は、  Discharge voltage applying means for applying a discharge voltage to the solution in the nozzle, wherein the internal diameter R [μm] and the distance h [jum] from the tip of the nozzle to the substrate are:
l/ ( l + 5R/h) > 0. 8  l / (l + 5R / h)> 0.8
を満たす。  Meet.
[0017] ここで、距離 hの微小変化に対する電界強度 E ( = E + E )の変化率は、電界  Here, the change rate of the electric field strength E (= E + E) with respect to a minute change in the distance h is
total loc gap  total loc gap
強度 E に対する非集中電界強度 E の割合が小さい程、つまり電界強度 E に対 total gap total する集中電界強度 E の割合が大きい程、小さくなる。そして、電界強度 E に対す  The smaller the ratio of the non-concentrated electric field strength E to the strength E, that is, the larger the ratio of the concentrated electric field strength E to the total gap total with respect to the electric field strength E, the smaller the ratio. And the field strength E
loc total る集中電界強度 E の割合とは、  The ratio of the concentrated electric field strength E
loc  loc
E /E + E = { (V/kR) / (V/kR) + (V/h) }  E / E + E = {(V / kR) / (V / kR) + (V / h)}
loc loc gap  loc loc gap
= l/ { l + (kR/h) }  = l / {l + (kR / h)}
で表されるものである。  It is represented by
[0018] このようにすれば、内部直径 R m]と、ノズルの先端部から基材までの距離 h m]とが l / ( l + 5R/h) > 0. 8を満たすので、つまり、定数 k= 5としたときの電界強 度 E に対する集中電界強度 E の割合が 0. 8より大きいので、距離 hの微小変化 total loc  [0018] In this way, the inner diameter R m] and the distance hm] from the tip of the nozzle to the base material satisfy l / (l + 5R / h)> 0.8, that is, the constant Since the ratio of the concentrated electric field strength E to the electric field strength E when k = 5 is greater than 0.8, a small change in the distance h total loc
に対する電界強度 E の変化率が小さい。従って、ノズルの先端部から基材までの  The rate of change of the electric field strength E is small. Therefore, from the tip of the nozzle to the substrate
total  total
距離の変化に関わらず、基材及びノズル周辺の電界強度 E の変化を抑制すること  Suppress changes in the electric field strength E around the substrate and nozzle regardless of the change in distance
total  total
ができるため、従来と比較して、微小液滴形成及び吐出量の安定性を高め、かつ吐 出応答性を改善し、かつノズノレの先端部に高電圧を印加することができる。  Therefore, compared to the related art, it is possible to enhance the stability of the formation of the minute droplets and the ejection amount, improve the ejection responsiveness, and apply a high voltage to the tip of the nozzle.
[0019] また、前記距離 hは 500 [ z m]以下であることが好ましい。  It is preferable that the distance h is equal to or less than 500 [zm].
このようにすれば、前記距離 hが 500 [ x m]以下であるので、吐出電圧を低くするこ とができるとともに、吐出された液滴の着弾精度を高めることができる。  With this configuration, since the distance h is equal to or less than 500 [xm], the ejection voltage can be reduced, and the landing accuracy of the ejected droplet can be increased.
[0020] 本発明の第 3の側面によれば、帯電した溶液の液滴を基材に吐出する液体吐出方 法であって、 According to a third aspect of the present invention, there is provided a liquid discharging method for discharging a droplet of a charged solution to a substrate. The law,
液体吐出ヘッドとして、内部直径が 25[ μ m]以下の先端部から前記液滴を吐出す るノズルを有するものを用い、  A liquid ejection head having a nozzle for ejecting the droplet from the tip having an inner diameter of 25 [μm] or less,
前記ノズノレの先端部から前記基材までの距離 h [ x m]を、  The distance h [xm] from the tip of the nose to the substrate,
lZh2< 4 X 10— 4 lZh 2 <4 X 10— 4
とした状態で、  In the state
前記ノズノレ内の溶液に吐出電圧を印加することにより前記ノズルから前記液滴を吐 出させる。  The droplet is ejected from the nozzle by applying an ejection voltage to the solution in the nozzle.
[0021] このようにすれば、ノズノレの先端部から基材までの距離 h[ x m]を 0く l/h2 ( =— E [0021] In this way, the distance h [xm] from the tip of the nose to the base material is reduced to 0 / l / h 2 (= —E
W)く 4 X 10— 4とした状態とすることにより、液滴の吐出の際における距離 hの微 total With state and W) Ku 4 X 10- 4, fine total distance h at the time of ejection of the droplet
小変化に対する電界強度 E の変化率が 0に近くなる。従って、ノズルの先端部から  The rate of change of the electric field strength E for small changes approaches zero. Therefore, from the tip of the nozzle
total  total
基材までの距離の変化に関わらず、基材及びノズル周辺の電界強度 E の変化を  Regardless of the change in the distance to the base material, the change in the electric field strength E around the base material and the nozzle is
total  total
抑制することができるため、従来と比較して、微小液滴形成及び吐出量の安定性を 高め、かつ吐出応答性を改善し、かつノズノレの先端に高電圧を印加することができる  As compared with the conventional method, it is possible to increase the stability of the formation of fine droplets and the discharge amount, improve the discharge response, and apply a high voltage to the tip of the nose.
[0022] また、前記距離 hを、 [0022] Further, the distance h is
l/h2< 2 X 10— 4 l / h 2 <2 X 10— 4
とした状態で、  In the state
前記ノズノレ内の溶液に吐出電圧を印加することが好ましい。  It is preferable to apply an ejection voltage to the solution in the nozzle.
[0023] このようにすれば、前記距離 hを l/h2< 2 X 10— 4とした状態とすることにより、液滴 の吐出の際における距離 hの微小変化に対する電界強度 E の変化率がより 0に近 [0023] In this way, by setting a state where the distance h was l / h 2 <2 X 10- 4, the change rate of the electric field strength E for microscopic change in the distance h at the time of ejection of the droplet Is closer to 0
total  total
くなる。従って、基材とノズル先端との間隔の変化に起因する基材及びノズル周辺の 電界強度 E の変化を、より小さく抑えること力できる。  Become. Therefore, it is possible to further suppress a change in the electric field strength E around the base material and the nozzle due to a change in the distance between the base material and the nozzle tip.
total  total
[0024] 本発明の第 4の側面によれば、帯電した溶液の液滴を基材に吐出する液体吐出方 法であって、  According to a fourth aspect of the present invention, there is provided a liquid discharging method for discharging a droplet of a charged solution to a base material,
液体吐出ヘッドとして、内部直径 Rが 25[ μ m]以下の先端部から前記液滴を吐出す るノズノレを有するものを用い、  As a liquid discharge head, a liquid discharge head having a nose that discharges the droplet from a tip portion having an inner diameter R of 25 [μm] or less is used.
前記内部直径 R[ μ m]と前記ノズルの先端部から前記基材までの距離 h[ μ m]と を、 The internal diameter R [μm] and the distance h [μm] from the tip of the nozzle to the substrate. To
l/ (l + 5R/h) > 0. 8  l / (l + 5R / h)> 0.8
とした状態で、  In the state
前記ノズノレ内の溶液に吐出電圧を印加することにより前記ノズルから前記液滴を吐 出させる。  The droplet is ejected from the nozzle by applying an ejection voltage to the solution in the nozzle.
[0025] このようにすれば、内部直径 R[ a m]と、ノズルの先端部から基材までの距離 h[ μ m]とを lZ (l + 5R/h) > 0. 8とした状態で液滴を吐出させることにより、つまり、定 数 k = 5としたときの電界強度 E に対する集中電界強度 E の割合を 0. 8より大きく  [0025] By doing so, the internal diameter R [am] and the distance h [μm] from the tip of the nozzle to the substrate are set to lZ (l + 5R / h)> 0.8. By discharging droplets, that is, the ratio of the concentrated electric field strength E to the electric field strength E when the constant k = 5 is larger than 0.8
total loc  total loc
した状態とすることにより、液滴の吐出の際における距離 hの微小変化に対する電界 強度 E の変化率が小さくなる。従って、ノズノレの先端部から基材までの距離の変化 total  In this state, the rate of change of the electric field strength E with respect to a minute change in the distance h during the ejection of the droplet is reduced. Therefore, the change in distance from the tip of the nose to the substrate total
に関わらず、基材及びノズル周辺の電界強度 E の変化を抑制することができるた  Irrespective of this, it is possible to suppress the change in the electric field strength E around the substrate and the nozzle.
total  total
め、従来と比較して、微小液滴形成及び吐出量の安定性を高め、かつ吐出応答性を 改善し、かつノズノレの先端に高電圧を印加することができる。  Therefore, as compared with the related art, it is possible to enhance the stability of the formation of the minute droplets and the ejection amount, improve the ejection response, and apply a high voltage to the tip of the nozzle.
[0026] また、前記距離 hを、 500 m]以下とした状態で、  [0026] Further, with the distance h set to 500 m or less,
前記ノズノレ内の溶液に吐出電圧を印加することが好ましい。  It is preferable to apply an ejection voltage to the solution in the nozzle.
[0027] このようにすれば、前記距離 hを 500 [ μ m]以下とした状態で液滴を吐出させること により、吐出された液滴の着弾精度を高めることができる。  [0027] With this configuration, the droplets are ejected in a state where the distance h is set to 500 [μm] or less, so that the landing accuracy of the ejected droplets can be improved.
[0028] 本発明においては、ノズル径を 100[ /i m]未満、好ましくは 20 [ /i m]以下、より好まし くは 10 m]以下とすることにより、電界強度分布が狭くなる。このことにより、電界を 集中させることができる。その結果、形成される液滴を微小で且つ形状の安定化した ものとすることができると共に、総印加電圧を低減することができる。また、液滴は、ノ ズルから吐出された直後、電界と電荷の間に働く静電力により加速されるが、ノズノレ 力 離れると電界は急激に低下するので、その後は、空気抵抗により減速する。しか しながら、微小液滴でかつ電界が集中した液滴は、対向電極に近づくにつれ、鏡像 力によりカロ速される。この空気抵抗による減速と鏡像力による加速とのバランスをとる ことにより、微小液滴を安定に飛翔させ、着弾精度を向上させることが可能となる。 また、ノズルの内部直径は、 8[ μ πι]以下であることが好ましい。ノズルの内部直径を 8[ μ πι]以下とすることにより、さらに電界を集中させることが可能となり、さらなる液滴 の微小化と、飛翔時に対向電極の距離の変動が電界強度分布に影響することを低 減させることができるので、対向電極の位置精度や基材の特性や厚さの液滴形状へ の影響や着弾精度への影響を低減することができる。 [0028] In the present invention, by setting the nozzle diameter to less than 100 [/ im], preferably 20 [/ im] or less, and more preferably 10 m or less, the electric field intensity distribution becomes narrow. Thus, the electric field can be concentrated. As a result, the formed droplets can be made minute and stabilized in shape, and the total applied voltage can be reduced. Immediately after the droplet is ejected from the nozzle, the droplet is accelerated by the electrostatic force acting between the electric field and the electric charge. However, when the droplet is separated, the electric field sharply decreases. Thereafter, the droplet is decelerated by air resistance. However, the droplets, which are microdroplets and in which the electric field is concentrated, are accelerated by the image force as they approach the counter electrode. By balancing the deceleration due to the air resistance and the acceleration due to the mirror image force, it is possible to stably fly the fine droplet and improve the landing accuracy. Further, the inner diameter of the nozzle is preferably 8 [μπι] or less. By making the internal diameter of the nozzle 8 [μπι] or less, it is possible to concentrate the electric field further, Miniaturization and the effect of variations in the distance of the opposing electrode during flight on the electric field strength distribution can be reduced, so that the position accuracy of the opposing electrode, the properties of the base material, and the thickness of the droplet on the droplet shape are affected. And impact on landing accuracy can be reduced.
さらに、ノズルの内部直径を 4[ x m]以下とすることにより、顕著な電界の集中を図る ことができ、最大電界強度を高くすることができ、形状の安定な液滴の超微小化と、 液滴の初期吐出速度を大きくすることができる。これにより、飛翔安定性が向上するこ とにより、着弾精度をさらに向上させ、吐出応答性を向上することができる。  Furthermore, by setting the inner diameter of the nozzle to 4 [xm] or less, a remarkable electric field can be concentrated, the maximum electric field strength can be increased, and the droplet having a stable shape can be made ultra-miniaturized. However, the initial discharge speed of the droplet can be increased. As a result, the flight stability is improved, so that the landing accuracy can be further improved, and the ejection responsiveness can be improved.
また、ノズノレの内部直径は 0.2[ x m]より大きい方が望ましい。ノズノレの内径を 0·2[ μ m]より大きくすることで、液滴の帯電効率を向上させることができるので、液滴の吐出 安定性を向上させることができる。  Also, it is desirable that the inner diameter of the horn is larger than 0.2 [xm]. By making the inner diameter of the nozzle larger than 0.2 [μm], the charging efficiency of the droplet can be improved, so that the ejection stability of the droplet can be improved.
さらに、上記各側面において、  Further, in each of the above aspects,
(1)ノズルを電気絶縁材で形成し、ノズノレ内に吐出電圧印加用の電極を揷入あるレ、 は当該電極として機能するメツキ形成を行うことが好ましい。  (1) It is preferable that the nozzle is formed of an electrically insulating material, and that an electrode for applying a discharge voltage is inserted in the nozzle, and that a metal plate functioning as the electrode is formed.
(2)上記各側面の構成又は上記(1)の構成にぉレ、て、ノズルを電気絶縁材で形成し 、ノズノレ内に電極を挿入或いは電極としてのメツキを形成すると共にノズルの外側に も吐出用の電極を設けることが好ましい。  (2) According to the configuration of each of the side surfaces or the configuration of (1), the nozzle is formed of an electrically insulating material, and an electrode is inserted into the nozzle or a plating as an electrode is formed. It is preferable to provide a discharge electrode.
ノズノレの外側の吐出用電極は、例えば、ノズルの先端側端面或いは、ノズルの先 端部側の側面の全周若しくは一部に設けられる。  The discharge electrode on the outside of the nozzle is provided, for example, on the entire periphery or a part of the front end side of the nozzle or the side surface on the front end side of the nozzle.
(1)及び(2)により、上記各側面による作用効果に加え、吐出力を向上させることが できるので、ノズノレ径をさらに微細化しても、低電圧で液滴を吐出することができる。 ( 3)上記各側面の構成、上記(1)又は(2)の構成において、基材を導電性材料または 絶縁性材料により形成することが好ましレ、。  According to (1) and (2), in addition to the function and effect of each of the above-described side surfaces, the ejection force can be improved. Therefore, even if the diameter of the nozzle is further reduced, the droplet can be ejected at a low voltage. (3) In the configuration of each of the side surfaces, the configuration of (1) or (2), it is preferable that the base material is formed of a conductive material or an insulating material.
(4)上記各側面の構成、上記(1)、 (2)又は(3)の構成において、吐出電圧印加手 段よる吐出電圧 Vを、  (4) In the configuration of each of the side surfaces, the configuration of (1), (2) or (3) above, the discharge voltage V by the discharge voltage application means is
[数 1]
Figure imgf000012_0001
で表される流域において駆動することが好ましい。
[Number 1]
Figure imgf000012_0001
It is preferable to drive in a basin represented by
ただし、 y:液体の表面張力(N/m)、 ε 0:真空の誘電率(F/m)、 d:ノズル直径(m) 、 h :ノズル一基材間距離 (m)、 k:ノズル形状に依存する比例定数(1.5く kく 8.5)とする。 ノズノレ内の溶液に対して上式(1)の範囲の吐出電圧 Vの印加が行われる。上式(1 )において、吐出電圧 Vの上限の基準となる左側の項は、従来におけるノズル一対向 電極間での電界による液体吐出を行う場合での限界最低吐出電圧を示す。本発明 は、前述したように、ノズルの超微細化による電界集中の効果により、微小液滴の吐 出を、従来技術では実現されなかった従来の限界最低吐出電圧よりも低い範囲に吐 出電圧 Vを設定しても、実現することができる。  Where, y: surface tension of liquid (N / m), ε 0: dielectric constant of vacuum (F / m), d: nozzle diameter (m), h: distance between nozzle and substrate (m), k: nozzle The proportionality constant depends on the shape (1.5 x k x 8.5). The ejection voltage V in the range of the above equation (1) is applied to the solution in the nozzle. In the above equation (1), the term on the left side, which is a reference for the upper limit of the discharge voltage V, indicates the minimum discharge voltage at the time of performing the conventional liquid discharge by the electric field between the nozzle and the counter electrode. As described above, according to the present invention, the discharge voltage of the minute droplets is reduced to a range lower than the conventional minimum discharge voltage which has not been realized by the conventional technology, due to the effect of the electric field concentration by the ultra-fine nozzle. Even if V is set, it can be realized.
また、上式(1)における吐出電圧 Vの下限の基準となる右側の項は、ノズル先端部 における溶液による表面張力に抗して液滴の吐出を行うための本発明の限界最低 吐出電圧を示す。つまり、この限界最低吐出電圧よりも低い電圧を印加しても液滴の 吐出は実行されないが、例えば、この限界最低吐出電圧を境界とするこれより高い値 を吐出電圧とし、これより低い値の電圧と吐出電圧とを切り替えることで、吐出動作の オンオフの制御を行うことができる。即ち、電圧の高低の切替のみにより吐出動作の オンオフの制御が可能となる。なお、この場合、吐出のオフ状態に切り替える低電圧 値は、限界最低吐出電圧に近いことが望ましい。これにより、オンオフの切替におけ る電圧変化幅を狭小化し、応答性の向上を図ることが可能となるからである。  The term on the right side, which is the reference for the lower limit of the discharge voltage V in the above equation (1), is the minimum discharge voltage of the present invention for discharging droplets against the surface tension due to the solution at the nozzle tip. Show. In other words, even if a voltage lower than the critical minimum discharge voltage is applied, the droplet is not discharged. By switching between the voltage and the ejection voltage, on / off control of the ejection operation can be performed. That is, the ON / OFF control of the ejection operation can be performed only by switching the voltage level. In this case, it is desirable that the low voltage value at which the discharge is turned off is close to the minimum discharge voltage. Thereby, it is possible to narrow the width of voltage change in switching on and off, and to improve responsiveness.
(5)上記各側面の構成、上記(1)、 (2)、 (3)又は (4)の構成において、印加する吐 出電圧が 1000V以下であることが好ましい。  (5) In the configuration of each of the side surfaces, the configuration of (1), (2), (3) or (4), it is preferable that the applied discharge voltage is 1000 V or less.
吐出電圧の上限値をこのように設定することにより、吐出制御を容易とすると共に装 置の耐久性の向上及び安全対策の実行により確実性の向上を容易に図ることが可 能となる。  By setting the upper limit value of the discharge voltage in this way, the discharge control is facilitated, and the durability of the device is improved, and the reliability is easily improved by implementing safety measures.
(6)上記各側面の構成、上記(1)、 (2)、(3)、(4)又は(5)の構成において、印加す る吐出電圧が 500V以下であることが好ましい。 (6) In the configuration of each side described above, the configuration of (1), (2), (3), (4) or (5) above, The discharge voltage is preferably 500 V or less.
吐出電圧の上限値をこのように設定することにより、吐出制御をより容易とすると共 に装置の耐久性のさらなる向上及び安全対策の実行により確実性のさらなる向上を 容易に図ることが可能となる。  By setting the upper limit value of the discharge voltage in this way, it is possible to further facilitate the discharge control, to further improve the durability of the device, and to further improve the reliability by executing safety measures. .
(7)上記各側面の構成、上記(1)一(6)のいずれかの構成において、ノズノレと基材と の距離が 500[ μ m]以下とすることが、ノズル径を微細にした場合でも高い着弾精度を 得ることができるので好ましレ、。  (7) In any of the configurations of the above-mentioned respective side surfaces and the configuration of any of the above (1)-(6), when the distance between the nozzle and the base material is 500 [μm] or less, when the nozzle diameter is reduced. However, I like it because I can get high landing accuracy.
(8)上記各側面の構成、上記(1)一(7)のいずれかの構成において、ノズノレ内の溶 液に圧力を印加するように構成することが好ましレ、。  (8) In the configuration of each of the side surfaces, in any one of the configurations (1) to (7), it is preferable that the pressure is applied to the solution in the nozzle.
(9)上記各側面の構成、上記(1)一(8)いずれかの構成において、単一パルスによ つて吐出する場合、  (9) In the configuration of each of the above-mentioned side surfaces, in any of the above (1)-(8), when discharging by a single pulse
[数 2] ε  [Equation 2] ε
τ =—  τ = —
σ (2) により決まる時定数 τ以上のパルス幅 A tを印加する構成としても良い。ただし、 ε : 溶液の誘電率 (F/m)、 σ:溶液の導電率(S/m)とする。  A configuration in which a pulse width At that is equal to or greater than the time constant τ determined by σ (2) may be applied. Here, ε: dielectric constant of the solution (F / m), σ: conductivity of the solution (S / m).
発明の効果  The invention's effect
[0030] 第 1及び第 3の側面によれば、基材とノズノレ先端との間隔の変化に関わらず、基材 及びノズノレ周辺の電界強度の変化を抑制することができるため、従来と比較して、微 小液滴形成及び吐出量の安定性を高め、かつ吐出応答性を改善し、かつノズルの 先端に高電圧を印加することができる。  According to the first and third aspects, a change in the electric field strength around the base material and the nozzle can be suppressed irrespective of a change in the distance between the base material and the tip of the nozzle, and therefore, compared to the conventional case. As a result, the stability of the formation of micro droplets and the ejection amount can be improved, the ejection responsiveness can be improved, and a high voltage can be applied to the tip of the nozzle.
[0031] また、第 2及び第 4の側面によれば、基材とノズル先端との間隔の変化に関わらず、 基材及びノズノレ周辺の電界強度の変化を抑制することができるため、従来と比較し て、微小液滴形成及び吐出量の安定性を高め、かつ吐出応答性を改善し、かつノズ ルの先端部に高電圧を印加することができる。  Further, according to the second and fourth aspects, regardless of the change in the distance between the base material and the tip of the nozzle, the change in the electric field strength around the base material and the nozzle can be suppressed. In comparison, it is possible to enhance the stability of the formation and discharge amount of the fine droplet, improve the discharge response, and apply a high voltage to the tip of the nozzle.
図面の簡単な説明 [図 1 A]ノズル径を φ 0.2 [/im]とした場合に、ノズノレと対向電極との距離が 2000[μ m] に設定されたときの電界強度分布を示す。 Brief Description of Drawings [FIG. 1A] Electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 2000 [μm] when the nozzle diameter is φ 0.2 [/ im].
[図 1B]ノズノレ径を φ 0.2 [/im]とした場合に、ノズルと対向電極との距離が 100[μπι]に 設定されたときの電界強度分布を示す。  FIG. 1B shows an electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 100 [μπι] when the diameter of the nozzle is φ 0.2 [/ im].
[図 2Α]ノズル径を φ 0.4 [ zm]とした場合に、ノズノレと対向電極との距離が 2000[ μπι] に設定されたときの電界強度分布を示す。  [Fig. 2Α] Electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 2000 [μπι] when the nozzle diameter is φ 0.4 [zm].
[図 2B]ノズノレ径を φ 0.4 [ zm]とした場合に、ノズルと対向電極との距離が 100[ xm]に 設定されたときの電界強度分布を示す。  [FIG. 2B] An electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 100 [xm] when the diameter of the nozzle is φ 0.4 [zm].
[図 3Α]ノズル径を φ 1 [ zm]とした場合に、ノズノレと対向電極との距離が 2000[ xm]に 設定されたときの電界強度分布を示す。  [Fig. 3Α] The electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 2000 [xm] when the nozzle diameter is φ1 [zm].
[図 3Β]ノズノレ径を φ 1 [μπι]とした場合に、ノズルと対向電極との距離が 100[ zm]に 設定されたときの電界強度分布を示す。  [Fig. 3Β] shows the electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 100 [zm] when the diameter of the nozzle is φ1 [μπι].
[図 4A]ノズル径を Φ8 [/im]とした場合に、ノズルと対向電極との距離が 2000[ μπι]に 設定されたときの電界強度分布を示す。  [FIG. 4A] Electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 2000 [μπι] when the nozzle diameter is Φ8 [/ im].
[図 4B]ノズノレ径を φ 8 [μπι]とした場合に、ノズルと対向電極との距離が 100[/im]に 設定されたときの電界強度分布を示す。  FIG. 4B shows an electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 100 [/ im] when the diameter of the nozzle is φ 8 [μπι].
[図 5A]ノズル径を Φ20 [/im]とした場合に、ノズルと対向電極との距離が 2000[ μπι] に設定されたときの電界強度分布を示す。  FIG. 5A shows an electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 2000 [μπι] when the nozzle diameter is Φ20 [/ im].
[図 5B]ノズノレ径を φ 20 m]とした場合に、ノズルと対向電極との距離が 100[/i m]に 設定されたときの電界強度分布を示す。  [FIG. 5B] Electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 100 [/ im] when the diameter of the nozzle is 20 m.
[図 6A]ノズル径を Φ50 [/im]とした場合に、ノズルと対向電極との距離が 2000[ μπι] に設定されたときの電界強度分布を示す。  FIG. 6A shows an electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 2000 [μπι] when the nozzle diameter is Φ50 [/ im].
[図 6B]ノズノレ径を φ 50 [μ m]とした場合に、ノズノレと対向電極との距離が 100[μ m]に 設定されたときの電界強度分布を示す。  [FIG. 6B] An electric field intensity distribution when the distance between the nozzle and the counter electrode is set to 100 [μm] when the diameter of the nozzle is φ50 [μm].
[図 7]図 1一図 6の各条件下での最大電界強度を示す図表を示す。  FIG. 7 is a chart showing the maximum electric field strength under the conditions shown in FIGS.
[図 8]ノズノレのノズル径とメニスカス部における最大電界強度との関係を示す線図で める。  FIG. 8 is a diagram showing a relationship between a nozzle diameter of a nozzle and a maximum electric field intensity at a meniscus portion.
[図 9]ノズノレのノズル径とメニスカス部で吐出する液滴が飛翔を開始する吐出開始電 圧、該初期吐出液滴のレイリー限界での電圧値及び吐出開始電圧とレイリー限界電 圧値の比との関係を示す線図である。 [FIG. 9] The nozzle diameter of the nozzle and the discharge start voltage at which the droplet discharged at the meniscus section starts to fly. FIG. 4 is a diagram showing a relationship between a pressure, a voltage value of the initial discharge droplet at a Rayleigh limit, and a ratio of a discharge start voltage to a Rayleigh limit voltage value.
[図 10A]ノズル径とメニスカス部の強電界の領域の関係で表されるグラフである。  FIG. 10A is a graph showing a relationship between a nozzle diameter and a region of a strong electric field in a meniscus portion.
[図 10B]図 10Aにおけるノズノレ径が微小な範囲での拡大図を示す。  FIG. 10B is an enlarged view of FIG. 10A in a range in which the diameter of the blade is very small.
[図 11]第一の実施形態たる液体吐出装置のノズノレに沿った断面図である。  FIG. 11 is a cross-sectional view of the liquid ejection device according to the first embodiment, taken along a nose.
[図 12A]溶液の吐出動作と溶液に印加される電圧との関係を示す説明図であって、 吐出を行わなレ、状態を示す図である。  FIG. 12A is an explanatory diagram showing a relationship between a solution discharging operation and a voltage applied to the solution, and showing a state where discharging is not performed.
[図 12B]溶液の吐出動作と溶液に印加される電圧との関係を示す説明図であって、 吐出状態を示す図である。  FIG. 12B is an explanatory diagram showing a relationship between a solution discharging operation and a voltage applied to the solution, and showing a discharging state.
[図 13A]ノズル内流路の他の形状の例を示す一部切り欠いた斜視図であり、溶液室 側に丸みを設けた例を示す図である。  FIG. 13A is a partially cutaway perspective view showing another example of the shape of the flow path in the nozzle, and showing an example in which a roundness is provided on the solution chamber side.
[図 13B]ノズノレ内流路の他の形状の例を示す一部切り欠いた斜視図であり、流路内 壁面をテーパ周面とした例を示す図である。  FIG. 13B is a partially cut-away perspective view showing another example of the shape of the inside flow path of the nose, and showing an example in which the inner wall surface of the flow path has a tapered peripheral surface.
[図 13C]ノズノレ内流路の他の形状の例を示す一部切り欠いた斜視図であり、テーパ 周面と直線状の流路とを組み合わせた例を示す図である。  FIG. 13C is a partially cut-away perspective view showing another example of the shape of the internal flow path of the nose, and showing an example in which a tapered peripheral surface and a linear flow path are combined.
[図 14]距離 hと E /Vとの関係を示す図である。 FIG. 14 is a diagram showing a relationship between a distance h and E / V.
gap  gap
[図 15]距離 hと E ' /Vとの関係を示す図である。  FIG. 15 is a diagram showing a relationship between a distance h and E ′ / V.
total  total
[図 16]距離 hと E / (E +E )との関係を示す図である。  FIG. 16 is a diagram showing a relationship between a distance h and E / (E + E).
loc gap  loc gap
[図 17]本発明の実施の形態として、ノズルの電界強度の計算を説明するために示し たものである。  FIG. 17 shows an embodiment of the present invention for explaining the calculation of the electric field intensity of the nozzle.
[図 18]本発明の一例としての液体吐出装置の側面断面図を示したものである。  FIG. 18 is a side sectional view showing a liquid ejection apparatus as an example of the present invention.
[図 19]本発明の実施の形態の液体吐出装置における距離一電圧の関係による吐出 条件を説明した図である。 FIG. 19 is a diagram illustrating ejection conditions based on the relationship between distance and voltage in the liquid ejection device according to the embodiment of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下の各実施形態で説明する液体吐出装置のノズル径は、 25[ /i m]以下であること が好ましぐさらに好ましくは 20[ μ πι]未満、さらに好ましくは 10[ / m]以下、さらに好ま しくは 8[ / m]以下、さらに好ましくは 4[ μ πι]以下とすることが好ましい。また、ノズル径 は、 0·2[ μ πι]より大きレ、こと力 S好ましい。以下、ノズノレ径と電界強度との関係について 、図 1一図 6を参照しながら説明する。図 1一図 6に対応して、ノズル径を φ The nozzle diameter of the liquid discharge device described in each of the following embodiments is preferably 25 [/ im] or less, more preferably less than 20 [μπι], further preferably 10 [/ m] or less, and more preferably It is preferably 8 [/ m] or less, more preferably 4 [μπι] or less. Further, the nozzle diameter is preferably larger than 0.2 [μπι], and the force S is preferable. Hereinafter, the relationship between the diameter of the nose and the electric field strength This will be described with reference to FIGS. Fig. 1 Corresponding to Fig. 6, the nozzle diameter is φ
0.2,0.4, 1,8,20 111]及び参考として従来にて使用されてぃるノズル径( ) 50[ /1 111]の場 合の電界強度分布を示す。 0.2, 0.4, 1, 8, 20 111] and the electric field intensity distribution in the case of the nozzle diameter () 50 [/ 111] conventionally used as a reference are shown.
ここで、各図において、ノズノレ中心位置とは、ノズル先端の液体吐出孔の液体吐出 面の中心位置を示す。また、各々の図の Aは、ノズルの先端部と対向電極との距離 力 ¾000[ z m]に設定されたときの電界強度分布を示し、 Bは、ノズルの先端部と対向 電極との距離が 100[ μ πι]に設定されたときの電界強度分布を示す。なお、印加電圧 は、各条件とも 200[V]と一定にした。図中の分布線は、電荷強度力 l X 106[V/m]から 1 X 107[V/m]までの範囲を示している。 Here, in each figure, the center position of the nozzle means the center position of the liquid ejection surface of the liquid ejection hole at the tip of the nozzle. A in each figure shows the electric field intensity distribution when the distance between the tip of the nozzle and the counter electrode is set to ¾000 [zm], and B shows the distance between the tip of the nozzle and the counter electrode. The electric field strength distribution when set to 100 [μπι] is shown. The applied voltage was kept constant at 200 [V] under each condition. The distribution line in the figure indicates a range from the charge strength force l X 10 6 [V / m] to 1 X 10 7 [V / m].
図 7に、各条件下での最大電界強度を示す図表を示す。なお、図 7中、「ギャップ」 とは、ノズルの先端部と対向電極との距離 [ μ m]のことである。  FIG. 7 shows a chart showing the maximum electric field strength under each condition. In FIG. 7, “gap” refers to the distance [μm] between the tip of the nozzle and the counter electrode.
図 1一図 6から、ノズノレ径が φ 20[ μ πι] (図 5)以上だと電界強度分布は広い面積に 広がっていることが分かった。また、図 7から、ノズルの先端部と対向電極との距離が 電界強度に影響していることも分かった。  From FIG. 1 and FIG. 6, it was found that the electric field intensity distribution was spread over a wide area when the diameter of the horn was larger than φ20 [μπι] (FIG. 5). From Fig. 7, it was also found that the distance between the tip of the nozzle and the counter electrode affected the electric field strength.
これらのことから、ノズノレ径が φ 8[ /ι πι] (図 4)以下であると電界強度は集中すると共 に、対向電極の距離の変動が電界強度分布にほとんど影響することがなくなる。従つ て、ノズノレ径が φ 8 m]以下であれば、対向電極の位置精度及び基材の材料特性 のバラツキや厚さのバラツキの影響を受けずに安定した吐出が可能となる。  From these facts, when the diameter of the nozzle is less than φ8 [/ ιπι] (FIG. 4), the electric field strength is concentrated, and the fluctuation of the distance between the counter electrodes hardly affects the electric field strength distribution. Therefore, if the diameter of the nozzle is φ8 m or less, stable ejection can be performed without being affected by the positional accuracy of the counter electrode, the variation in the material properties of the base material, and the thickness.
次に、上記ノズノレのノズル径とノズルの先端位置に液面があるとした時の最大電界 強度と強電界領域の関係を図 8に示す。図 8に示すグラフから、ノズル径が φ 4[ μ πι] 以下になると、電界集中が極端に大きくなり最大電界強度を高くすることができるの が分かった。これによつて、溶液の初期吐出速度を大きくすることができるので、液滴 の飛翔安定性が増すと共に、ノズルの先端部での電荷の移動速度が増すために吐 出応答性が向上する。  Next, FIG. 8 shows the relationship between the maximum electric field strength and the strong electric field region when the nozzle diameter of the nozzle and the liquid level is at the tip of the nozzle. From the graph shown in FIG. 8, it was found that when the nozzle diameter was less than φ4 [μπι], the electric field concentration became extremely large and the maximum electric field intensity could be increased. As a result, the initial discharge speed of the solution can be increased, so that the flight stability of the droplets is increased, and the discharge response is improved because the speed of movement of the electric charge at the tip of the nozzle is increased.
続いて、吐出した液滴における帯電可能な最大電荷量について、以下に説明する 。液滴に帯電可能な電荷量は、液滴のレイリー***(レイリー限界)を考慮した以下 の(3)式で示される。  Next, the maximum chargeable amount of the discharged droplet will be described below. The amount of charge that can be charged to a droplet is expressed by the following equation (3), taking into account the Rayleigh splitting (Rayleigh limit) of the droplet.
[数 3] g = 8 x x ( 0 x y x ) 2 (3) ここで、 qはレイリー限界を与える電荷量 (C)、 ε 0は真空の誘電率 (F/m)、 γは溶 液の表面張力(N/m)、 dは液滴の直径 (m)である。 [Number 3] g = 8 xx (0 xyx) 2 (3) , where the charge amount q is giving Rayleigh limit (C), epsilon 0 is the vacuum dielectric constant (F / m), γ is the solvent liquid surface tension (N / m) and d are the droplet diameters (m).
0  0
上記(3)式で求められる電荷量 qがレイリー限界値に近いほど、同じ電界強度でも 静電力が強ぐ吐出の安定性が向上するが、レイリー限界値に近すぎると、逆にノズ ルの液体吐出孔で溶液の霧散が発生してしまい、吐出安定性に欠けてしまう。  The closer the charge q obtained by the above equation (3) is to the Rayleigh limit value, the greater the electrostatic force is, even at the same electric field strength. The ejection stability is improved. Spraying of the solution occurs at the liquid ejection holes, resulting in a lack of ejection stability.
ここで、ノズルのノズノレ径とノズルの先端部で吐出する液滴が飛翔を開始する吐出 開始電圧、該初期吐出液滴のレイリー限界での電圧値及び吐出開始電圧とレイリー 限界電圧値の比との関係を示すグラフを図 9に示す。  Here, the nozzle diameter of the nozzle, the discharge start voltage at which the droplet discharged at the tip of the nozzle starts to fly, the voltage value at the Rayleigh limit of the initial discharge droplet, and the ratio of the discharge start voltage to the Rayleigh limit voltage value FIG. 9 is a graph showing the relationship.
図 9に示すグラフから、ノズノレ径が φ 0.2[ /ι πι]から φ 4[ /ι πι]の範囲において、吐出 開始電圧とレイリー限界電圧値の比が 0.6を超え、低い吐出電圧でも比較的大きな帯 電量を液滴に与えることができ、液滴の帯電効率が良い結果となっており、該範囲に おいて安定した吐出が行えることが分かった。  From the graph shown in Fig. 9, the ratio between the discharge start voltage and the Rayleigh limit voltage value exceeds 0.6 when the diameter of the nozzle is in the range of φ0.2 [/ ιπι] to φ4 [/ ιπι]. A large amount of charge can be applied to the droplets, resulting in good charging efficiency of the droplets, and it has been found that stable ejection can be performed in this range.
例えば、図 10A及び図 10Bに示すノズノレ径とノズノレの先端部の強電界(1 X 106 [V/m]以上)の領域をノズルの中心位置からの距離で示したものの値との関係で表さ れるグラフでは、ノズノレ径が φ 0.2[ μ m]以下になると電界集中の領域が極端に狭くな ること力 S示されてレ、る。このことは、吐出する液滴は、加速するためのエネルギーを十 分に受けることができず飛翔安定性が低下することを示す。よって、ノズル径は φ 0.2[ μ m]より大きく設定することが好ましい。 For example, the relationship between the diameter of the nozzle and the area of the strong electric field (1 × 10 6 [V / m] or more) at the tip of the nozzle shown in FIG. 10A and FIG. 10B is indicated by the distance from the center position of the nozzle. In the graph shown, it is shown that the field concentration region becomes extremely narrow when the diameter of the nozzle is less than φ0.2 [μm]. This indicates that the ejected droplet cannot receive sufficient energy for acceleration and the flight stability is reduced. Therefore, it is preferable to set the nozzle diameter to be larger than φ0.2 [μm].
なお、上記図 7においては、ノズルの先端部と対向電極とのギャップを 2000 z m及 び 100 / mであるとして説明したが、着弾精度を考慮すると、ノズノレの先端部と基材 との距離は 500 /i m以下であることが好ましい。そのため、以下の液体吐出装置の構 成を決定するにあたっては、ノズルの先端部と基材との距離を 500 μ m以下とした場 合は勿論、 100 μ ΐη以下とした場合についても検討を行っている。  In FIG. 7, the gap between the tip of the nozzle and the counter electrode is described as being 2000 zm and 100 / m.However, in consideration of the impact accuracy, the distance between the tip of the nozzle and the substrate is It is preferably at most 500 / im. Therefore, when deciding the composition of the following liquid ejection device, consider not only the case where the distance between the tip of the nozzle and the substrate is 500 μm or less, but also the case where it is 100 μ μη or less. ing.
[第 1の実施形態] [First Embodiment]
(液体吐出装置の全体構成) 以下、本発明の第 1の実施形態である液体吐出装置 20について図 11及び図 12に 基づいて説明する。図 11は後述するノズル 21に沿った液体吐出装置 20の断面図 であり、図 12は溶液の吐出動作と溶液に印加される電圧との関係を示す説明図であ つて、図 12Aは吐出を行わない状態であり、図 12Bは吐出状態を示す。 (Overall configuration of liquid ejection device) Hereinafter, a liquid ejection device 20 according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 11 is a cross-sectional view of the liquid ejection device 20 taken along a nozzle 21 described later. FIG. 12 is an explanatory diagram showing the relationship between the solution ejection operation and the voltage applied to the solution. FIG. This is a state in which the ejection is not performed, and FIG. 12B shows the ejection state.
この液体吐出装置 20は、帯電可能な溶液の液滴をその先端部から吐出する超微 糸田径のノズノレ 21と、ノズノレ 21の先端部に対向する対向面を有すると共にその対向面 で液滴の着弾を受ける基材 Kを支持する対向電極 23と、ノズル 21内の流路 22に溶 液を供給する溶液供給手段 29と、ノズル 21内の溶液に吐出電圧を印加する吐出電 圧印加手段 25と、吐出電圧印加手段 25による吐出電圧の印加を制御する動作制 御手段 50とを備えている。なお、上記ノズル 21と溶液供給手段 29の一部の構成と吐 出電圧印加手段 25の一部の構成は液体吐出ヘッド 26として一体的に形成されてい る。  The liquid discharge device 20 has an ultrafine thread diameter nozzle 21 for discharging a droplet of a chargeable solution from the tip thereof, a facing surface facing the tip of the nozzle 21, and a droplet on the facing surface. A counter electrode 23 that supports the substrate K that receives the landing; a solution supply unit 29 that supplies a solution to the flow path 22 in the nozzle 21; and a discharge voltage application unit 25 that applies a discharge voltage to the solution in the nozzle 21 And operation control means 50 for controlling the application of the ejection voltage by the ejection voltage applying means 25. Note that a part of the configuration of the nozzle 21 and the solution supply unit 29 and a part of the configuration of the discharge voltage applying unit 25 are integrally formed as a liquid discharge head 26.
なお、図 11では、説明の便宜上、ノズノレ 21の先端部が上方を向き、ノズル 21の上 方に対向電極 23が配設されている状態で図示されているが、実際上は、ノズル 21力 S 水平方向か或いはそれよりも下方、より望ましくは垂直下方に向けた状態で使用され る。  In FIG. 11, for convenience of explanation, the tip of the nozzle 21 is shown facing upward, and the counter electrode 23 is provided above the nozzle 21. S Used in a horizontal orientation or below, more preferably vertically downward.
(溶液)  (Solution)
上記液体吐出装置 20による吐出を行う溶液の例としては、無機液体としては、水、 COC1、 HBr、 HNO、 H PO、 H SO、 SOC1、 SO CI、 FSO Hなどが挙げられる Examples of the solution to be discharged by the liquid discharging device 20 include water, COC1, HBr, HNO, HPO, HSO, SOC1, SOCI, FSOH, etc. as the inorganic liquid.
。有機液体としては、メタノール、 n—プロパノール、イソプロパノール、 n—ブタノール、 2—メチノレ一 1_プロパノール、 tert-ブタノール、 4-メチル一2—ペンタノール、ベンジ ノレアルコール、 ひ—テルピネオール、エチレングリコール、グリセリン、ジエチレングリ コーノレ、トリエチレングリコールなどのアルコール類;フエノール、 o_クレゾール、 m—ク レゾール、 ρ_クレゾール、などのフエノール類;ジォキサン、フルフラール、エチレング リコーノレジメチノレエーテノレ、メチノレセロソノレブ、ェチノレセロソノレブ、ブチノレセロソノレブ、 ェチノレカノレビトーノレ、ブチノレカノレビトーノレ、ブチノレカノレビトーノレアセテート、ェピクロ口 ヒドリンなどのエーテル類;アセトン、メチルェチルケトン、 2—メチルー 4_ペンタノン、ァ セトフヱノンなどのケトン類;ギ酸、酢酸、ジクロロ酢酸、トリクロ口酢酸などの脂肪酸類 ;ギ酸メチル、ギ酸ェチル、酢酸メチル、酢酸ェチル、酢酸 - n -ブチル、酢酸イソブチ ノレ、酢酸 3—メトキシブチル、酢酸 _n_ペンチル、プロピオン酸ェチル、乳酸ェチル 、安息香酸メチル、マロン酸ジェチル、フタル酸ジメチル、フタル酸ジェチル、炭酸ジ ェチル、炭酸エチレン、炭酸プロピレン、セロソルブアセテート、ブチルカルビトール アセテート、ァセト酢酸ェチル、シァノ酢酸メチル、シァノ酢酸ェチルなどのエステル 類;ニトロメタン、ニトロベンゼン、ァセトニトリル、プロピオ二トリル、スクシノニトリル、八 レロニトリノレ、ベンゾニトリノレ、ェチノレアミン、ジェチノレアミン、エチレンジァミン、ァニリ ン、 N—メチルァニリン、 N, N—ジメチルァニリン、 o—トルイジン、 p—トルイジン、ピペリ ジン、ピリジン、 ひ一ピコリン、 2, 6 ノレチジン、キノリン、プロピレンジァミン、ホノレムアミ ド、 N—メチルホルムアミド、 N, N—ジメチルホルムアミド、 N, N—ジェチルホルムアミド 、ァセトアミド、 N—メチルァセトアミド、 N—メチルプロピオンアミド、 N, N, Ν', Νしテト ラメチル尿素、 Ν メチルピロリドンなどの含窒素化合物類;ジメチルスルホキシド、ス ルホランなどの含硫黄化合物類;ベンゼン、 ρ—シメン、ナフタレン、シクロへキシルベ ンゼン、シクロへキセンなどの炭化水素類; 1 , 1—ジクロロェタン、 1 , 2—ジクロ口エタ ン、 1 , 1 , 1-卜リクロロェタン、 1 , 1 , 1 , 2-テ卜ラクロロェタン、 1 , 1 , 2, 2-テ卜ラクロ口 ェタン、ペンタクロロェタン、 1 , 2—ジクロ口エチレン(cis—)、テトラクロロエチレン、 2— クロロブタン、 1 クロロー 2—メチノレプロパン、 2—クロロー 2—メチノレプロパン、ブロモメタ ン、トリブロモメタン、 1-ブロモプロパンなどのハロゲン化炭化水素類、などが挙げら れる。また、上記各液体を二種以上混合して溶液として用いても良い。 . Organic liquids include methanol, n-propanol, isopropanol, n-butanol, 2-methynole-1-propanol, tert-butanol, 4-methyl-1-pentanol, benzyl alcohol, ether terpineol, ethylene glycol, and glycerin. Phenols such as phenol, o_cresol, m-cresol, ρ_cresol, etc .; dioxane, furfural, ethylene glycol methinolate ethereone, methinoreserosonolev Ethers such as, ethinoleserosonoleb, butinoleserosonoleb, etinolecanolebitonele, butinolecanolebitonele, butinolecanolebitoneorecetate, epiclo mouth hydrin, etc .; acetone, methylethylketone, 2—me Ketones such as Chill-4_pentanone and acetophenone; fatty acids such as formic acid, acetic acid, dichloroacetic acid, and trichloroacetic acid Methyl formate, ethyl formate, methyl acetate, ethyl acetate, n-butyl acetate, isobutynole acetate, 3-methoxybutyl acetate, _n_ pentyl acetate, ethyl propionate, ethyl ethyl lactate, methyl benzoate, getyl malonate, phthalate Esters such as dimethyl acid, getyl phthalate, diethyl ether, ethylene carbonate, propylene carbonate, cellosolve acetate, butyl carbitol acetate, ethyl acetate acetate, methyl cyanoacetate, ethyl ethyl cyanoacetate; nitromethane, nitrobenzene, acetonitrile, propionitrile Succinonitrile, octanolonitrile, benzonitrinole, ethinoleamine, ethynoleamine, ethylenediamine, aniline, N-methylaniline, N, N-dimethylaniline, o-toluidine, p-toluidine, piperidin, pyri Gin, hypicolin, 2,6-norethidine, quinoline, propylenediamine, honolemamide, N-methylformamide, N, N-dimethylformamide, N, N-getylformamide, acetamide, N-methylacetamide, Nitrogen-containing compounds such as N-methylpropionamide, N, N, Ν ', dimethyl tetraurea, Νmethylpyrrolidone; sulfur-containing compounds such as dimethyl sulfoxide and sulfolane; Hydrocarbons such as hexylbenzene and cyclohexene; 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,1,2-tetrachloroethane, 1 , 1,2,2-tetrachloroethane, pentachloroethane, 1,2-dichloroethylene (cis—), tetrachloroethylene, 2-chlorobutane, Halogenated hydrocarbons such as 1-chloro-2-methinolepropane, 2-chloro-2-methinolepropane, bromomethane, tribromomethane, and 1-bromopropane; Alternatively, two or more of the above liquids may be mixed and used as a solution.
さらに、高電気伝導率の物質 (銀粉等)が多く含まれるような導電性ペーストを溶液 として使用し、吐出を行う場合には、上述した液体に溶解又は分散させる目的物質と しては、ノズルで目詰まりを発生するような粗大粒子を除けば、特に制限されない。 P DP、 CRT, FEDなどの蛍光体としては、従来より知られているものを特に制限なく用 レ、ることができる。例えば、赤色蛍光体として、(Y, Gd) BO: Eu、 Y〇: Euなど、緑  Furthermore, in the case where a conductive paste containing a large amount of a substance having high electric conductivity (such as silver powder) is used as a solution and a discharge is performed, the above-mentioned target substance to be dissolved or dispersed in the liquid is a nozzle. There is no particular limitation, except for coarse particles that cause clogging. As the phosphor such as PDP, CRT, and FED, conventionally known phosphors can be used without any particular limitation. For example, as a red phosphor, (Y, Gd) BO: Eu, Y〇: Eu, etc.
3 3  3 3
色蛍光体として、 Zn Si〇: Mn、 BaAl O : Mn、(Ba, Sr, Mg) 0 -ひ— Al〇: Mn As color phosphors, Zn Si〇: Mn, BaAl O: Mn, (Ba, Sr, Mg) 0 -hyper Al〇: Mn
2 4 12 19 2 3 など、青色蛍光体として、 BaMgAl 〇 : Eu, BaMgAl 〇 : Euなどが挙げられる。  BaMgAl〇: Eu, BaMgAl〇: Eu, etc. are examples of blue phosphors such as 24121923.
14 23 10 17  14 23 10 17
上記の目的物質を記録媒体上に強固に接着させるために、各種バインダーを添カロ するのが好ましレ、。用いられるバインダーとしては、例えば、ェチルセルロース、メチ ノレセルロース、ニトロセルロース、酢酸セルロース、ヒドロキシェチノレセノレロース等の セルロースおよびその誘導体;アルキッド樹脂;ポリメタタリタクリル酸、ポリメチルメタク リレート、 2—ェチルへキシルメタタリレート'メタクリル酸共重合体、ラウリルメタタリレー ト · 2—ヒドロキシェチルメタタリレート共重合体などの (メタ)アクリル樹脂およびその金 属塩;ポリ N—イソプロピルアクリルアミド、ポリ N, N—ジメチルアクリルアミドなどのポリ( メタ)アクリルアミド樹脂;ポリスチレン、アクリロニトリル 'スチレン共重合体、スチレン' マレイン酸共重合体、スチレン 'イソプレン共重合体などのスチレン系樹脂;スチレン' n—ブチルメタタリレート共重合体などのスチレン.アクリル樹脂;飽和、不飽和の各種 ポリエステル樹脂;ポリプロピレン等のポリオレフイン系樹脂;ポリ塩化ビュル、ポリ塩 化ビニリデン等のハロゲン化ポリマー;ポリ酢酸ビュル、塩化ビュル'酢酸ビュル共重 合体等のビュル系樹脂;ポリカーボネート樹脂;エポキシ系樹脂;ポリウレタン系樹脂 ;ポリビュルホルマール、ポリビュルブチラール、ポリビュルァセタール等のポリアセタ ール榭脂;エチレン.酢酸ビュル共重合体、エチレン.ェチルアタリレート共重合樹脂 などのポリエチレン系樹脂;ベンゾグアナミン等のアミド樹脂;尿素樹脂;メラミン樹脂; ポリビニルアルコール樹脂及びそのァニオン力チオン変性;ポリビュルピロリドンおよ びその共重合体;ポリエチレンオキサイド、カルボキシル化ポリエチレンオキサイド等 のアルキレンォキシド単独重合体、共重合体及び架橋体;ポリエチレングリコール、 ポリプロピレングリコールなどのポリアルキレングリコーノレ;ポリエーテルポリオール; S BR、 NBRラテックス;デキストリン;アルギン酸ナトリウム;ゼラチン及びその誘導体、 カゼイン、トロロアオイ、トラガントガム、プノレラン、アラビアゴム、ローカストビーンガム 、グァガム、ぺクチン、カラギニン、にかわ、アルブミン、各種澱粉類、コーンスターチ 、こんにやぐふのり、寒天、大豆蛋白等の天然或いは半合成樹脂;テルペン樹脂;ケ トン樹脂;ロジン及びロジンエステル;ポリビュルメチルエーテル、ポリエチレンィミン、 ポリスチレンスルフォン酸、ポリビニルスルフォン酸などを用いることができる。これら の樹脂は、ホモポリマーとしてだけでなぐ相溶する範囲でブレンドして用いても良い 液体吐出装置 20をパターンニング方法に使用する場合には、代表的なものとして はディスプレイ用途に使用することができる。具体的には、プラズマディスプレイの蛍 光体の形成、プラズマディスプレイのリブの形成、プラズマディスプレイの電極の形成 、 CRTの蛍光体の形成、 FED (フィールドェミッション型ディスプレイ)の蛍光体の形 成、 FEDのリブの形成、液晶ディスプレイ用カラーフィルター(RGB着色層、ブラック マトリクス層)、液晶ディスプレイ用スぺーサー(ブラックマトリクスに対応したパターン 、ドットパターン等)などが挙げることができる。ここでいうリブとは一般的に障壁を意味 し、プラズマディスプレイを例に取ると各色のプラズマ領域を分離するために用いら れる。その他の用途としては、マイクロレンズ、半導体用途として磁性体、強誘電体、 導電性ペースト(配線、アンテナ)などのパターンユング塗布、グラフィック用途として は、通常印刷、特殊媒体 (フィルム、布、鋼板など)への印刷、曲面印刷、各種印刷 版の刷版、加工用途としては粘着材、封止材などの本発明を用いた塗布、バイオ、 医療用途としては医薬品 (微量の成分を複数混合するような)、遺伝子診断用試料等 の塗布等に応用することができる。 In order to firmly adhere the above-mentioned target substance onto the recording medium, it is preferable to add various binders. As the binder used, for example, ethyl cellulose, methyl Cellulose such as norecellulose, nitrocellulose, cellulose acetate, hydroxyethynoresenorelose and derivatives thereof; alkyd resin; polymethalitacrylic acid, polymethyl methacrylate, 2-ethylhexyl methacrylate, methacrylic acid copolymer, lauryl (Meth) acrylic resins and metal salts thereof such as methacrylate and 2-hydroxyethyl methacrylate copolymer; poly (meth) acrylamide resins such as poly N-isopropylacrylamide and poly N, N-dimethylacrylamide Styrene resins such as polystyrene, acrylonitrile 'styrene copolymer, styrene' maleic acid copolymer and styrene 'isoprene copolymer; styrene resins such as styrene' n-butyl methacrylate copolymer; acrylic resin; Various types of unsaturation Polyester resins such as polypropylene; halogenated polymers such as polychlorinated vinyl and polyvinylidene chloride; vinyl resins such as polyacetate and vinyl chloride / butyl acetate copolymer; polycarbonate resin; epoxy resin; polyurethane Resins: Polyacetal resins such as polybutylformal, polybutylbutyral, and polybutylacetal; polyethylene resins such as ethylene / butyl acetate copolymer and ethylene / ethyl acrylate copolymer resin; amides such as benzoguanamine Resins; urea resins; melamine resins; polyvinyl alcohol resins and their anionic thione modifications; polybutylpyrrolidone and its copolymers; alkylene oxide homopolymers such as polyethylene oxide and carboxylated polyethylene oxide; and copolymers And polyalkylene glycols such as polyethylene glycol and polypropylene glycol; polyether polyols; SBR, NBR latex; dextrin; sodium alginate; gelatin and its derivatives; casein, trollooi, tragacanth gum, punorelane, gum arabic, locust bean gum Guar gum, pectin, carrageenan, glue, albumin, various starches, corn starch, konnyaku funori, agar, soybean protein and other natural or semi-synthetic resins; terpene resins; ketone resins; rosin and rosin esters; Methyl ether, polyethyleneimine, polystyrenesulfonic acid, polyvinylsulfonic acid and the like can be used. These resins may be blended as long as they are compatible with each other, not only as a homopolymer.When the liquid ejection device 20 is used for a patterning method, it is typically used for display purposes. Can be. Specifically, the plasma display Forming light bodies, forming ribs for plasma displays, forming electrodes for plasma displays, forming phosphors for CRTs, forming phosphors for FED (field emission display), forming ribs for FEDs, for liquid crystal displays Examples include a color filter (RGB coloring layer, black matrix layer), a spacer for a liquid crystal display (a pattern corresponding to a black matrix, a dot pattern, and the like). The rib as used herein generally means a barrier, and is used to separate a plasma region of each color when taking a plasma display as an example. Other uses include pattern jung coating of microlenses, magnetic materials, ferroelectrics, and conductive pastes (wiring and antennas) for semiconductor applications, and normal printing and special media (films, fabrics, steel plates, etc.) for graphic applications ), Curved surface printing, printing plates of various printing plates, application using the present invention such as adhesives and encapsulants for processing applications, and pharmaceuticals for bio and medical applications (such as mixing multiple trace components This method can be applied to the application of samples for genetic diagnosis, etc.
[0038] (ノズル) [0038] (Nozzle)
上記ノズノレ 21は、後述するノズルプレート 26cと一体的に形成されており、当該ノズ ルプレート 26cの平板面上から垂直に立設されている。また、液滴の吐出時において は、ノズル 21は、基材 Kの受け面 (液滴が着弾する面)に対して垂直に向けて使用さ れる。さらに、ノズル 21にはその先端部からノズルの中心に沿って貫通するノズノレ内 流路 22が形成されている。  The tip 21 is formed integrally with a nozzle plate 26c, which will be described later, and stands vertically from the flat surface of the tip plate 26c. Further, at the time of discharging the droplet, the nozzle 21 is used so as to be perpendicular to the receiving surface of the substrate K (the surface on which the droplet lands). Further, the nozzle 21 has a nozzle internal flow path 22 penetrating from the tip end thereof along the center of the nozzle.
[0039] ノズノレ 21についてさらに詳説する。ノズル 21は、その先端部における開口径とノズ ノレ内流路 22とが均一であって、前述の通り、これらが超微細径で形成されている。具 体的な各部の寸法の一例を挙げると、ノズル内流路 22の内部直径は、 25[ μ πι]以下 、さらに 20[ z m]未満、さらに 10[ z m]以下、さらに 8[ z m]以下、さらに 4[ x m]以下が好 ましぐ本実施形態ではノズノレ内流路 22の内部直径が l[ x m]に設定されている。そ して、ノズノレ 21の先端部における外部直径は 2[ x m]、ノズル 21の根元の直径は 5[ μ m]、ノズノレ 21の高さは 100[ z m]に設定されており、その形状は限りなく円錐形に近い 円錐台形に形成されている。また、ノズルの内部直径は 0.2[ z m]より大きい方が好ま しレヽ。なお、ノズノレ 21の高さは、 0[ x m]でも構わなレヽ。  [0039] Nozonore 21 will be described in more detail. The nozzle 21 has a uniform opening diameter at the tip end and an inner channel 22 of the nozzle, and as described above, these are formed with an ultrafine diameter. As an example of the specific dimensions of each part, the internal diameter of the nozzle flow path 22 is 25 [μπι] or less, further less than 20 [zm], further 10 [zm] or less, further 8 [zm] or less. In the present embodiment, the internal diameter of the inside flow path 22 is preferably set to l [xm]. The outer diameter of the tip of the nozzle 21 is set at 2 [xm], the diameter of the root of the nozzle 21 is set at 5 [μm], and the height of the nozzle 21 is set at 100 [zm]. It is formed as a truncated cone that is as close as possible to a cone. The inner diameter of the nozzle is preferably larger than 0.2 [z m]. The height of the nozzle 21 may be 0 [x m].
[0040] なお、ノズル内流路 22の形状は、図 11に示すような、内径一定の直線状に形成し なくとも良い。例えば、図 13Aに示すように、ノズル内流路 22の後述する溶液室 24 側の端部における断面形状が丸みを帯びて形成されていても良い。また、図 13Bに 示すように、ノズル内流路 22の後述する溶液室 24側の端部における内径が吐出側 端部における内径と比して大きく設定され、ノズル内流路 22の内面がテーパ周面形 状に形成されていても良レ、。さらに、図 13Cに示すように、ノズル内流路 22の後述す る溶液室 24側の端部のみがテーパ周面形状に形成されると共に当該テーパ周面よ りも吐出端部側は内径一定の直線状に形成されていても良い。 The shape of the flow path 22 in the nozzle is formed in a straight line with a constant inner diameter as shown in FIG. It is not necessary. For example, as shown in FIG. 13A, the cross-sectional shape of an end portion of the in-nozzle flow path 22 on the solution chamber 24 side, which will be described later, may be rounded. Further, as shown in FIG. 13B, the inner diameter at the end of the nozzle flow path 22 on the solution chamber 24 side described later is set to be larger than the inner diameter at the discharge-side end, and the inner surface of the nozzle flow path 22 is tapered. Even if it is formed in a peripheral shape, it is good. Further, as shown in FIG. 13C, only the end portion of the nozzle flow path 22 on the solution chamber 24 side described later is formed in a tapered peripheral surface shape, and the inner diameter of the discharge end side from the tapered peripheral surface is constant. May be formed in a straight line.
[0041] (溶液供給手段) (Solution supply means)
溶液供給手段 29は、液体吐出ヘッド 26の内部であってノズル 21の根元となる位置 に設けられると共にノズル内流路 22に連通する溶液室 24と、図示しない外部の溶液 タンクから溶液室 24に溶液を導く供給路 27と、溶液室 24への溶液の供給圧力を付 与する図示しなレ、供給ポンプとを備えてレ、る。  The solution supply means 29 is provided inside the liquid ejection head 26 at a position which is the root of the nozzle 21 and communicates with the flow path 22 in the nozzle, and a solution chamber 24 from an external solution tank (not shown) to the solution chamber 24. A supply path 27 for introducing the solution, a supply pump for supplying the supply pressure of the solution to the solution chamber 24, and a supply pump are provided.
上記供給ポンプは、ノズル 21の先端部まで溶液を供給し、当該先端部からこぼれ 出さない範囲の供給圧力を維持して溶液の供給を行う。  The supply pump supplies the solution to the tip of the nozzle 21 and supplies the solution while maintaining a supply pressure within a range not spilling from the tip.
供給ポンプとは、液体吐出ヘッドと供給タンクの配置位置による差圧を利用する場 合も含み、別途、溶液供給手段を設けなくとも溶液供給路のみで構成しても良い。ポ ンプシステムの設計にもよる力 S、基本的にはスタート時に液体吐出ヘッドに溶液を供 給するときに稼動し、液体吐出ヘッドから液体を吐出し、それに応じた溶液の供給は 、キヤビラリ及び凸状メニスカス形成手段による液体吐出ヘッド内の容積変化及び供 給ポンプの各圧力の最適化を図って溶液の供給が実施される。  The supply pump includes a case where a pressure difference depending on the arrangement position of the liquid discharge head and the supply tank is used, and may be configured only with the solution supply path without separately providing a solution supply unit. The force S depends on the design of the pump system.It basically operates when supplying the solution to the liquid ejection head at the start, ejects the liquid from the liquid ejection head, and supplies the solution in accordance with the capillaries and The supply of the solution is performed by optimizing the volume change in the liquid ejection head and each pressure of the supply pump by the convex meniscus forming means.
[0042] (吐出電圧印加手段) (Ejection Voltage Applying Means)
吐出電圧印加手段 25は、液体吐出ヘッド 26の内部であって溶液室 24とノズル内 流路 22との境界位置に設けられた吐出電圧印加用の吐出電極 28と、この吐出電極 28に常時,直流のバイアス電圧を印加する直流電源 30と、吐出電極 28にバイアス 電圧に重畳して吐出に要する電位とするパルス電圧を印加する吐出電圧電源 31と を備えている。  The discharge voltage applying means 25 includes a discharge electrode 28 for applying a discharge voltage provided inside the liquid discharge head 26 and at a boundary position between the solution chamber 24 and the flow path 22 in the nozzle. There is provided a DC power supply 30 for applying a DC bias voltage, and an ejection voltage power supply 31 for applying a pulse voltage to the ejection electrode 28 which is superimposed on the bias voltage and has a potential required for ejection.
[0043] 上記吐出電極 28は、溶液室 24内部にぉレ、て溶液に直接接触し、溶液を帯電させ ると共に吐出電圧を印加する。 直流電源 30によるバイアス電圧は、図 12Aに示すように、溶液の吐出が行われな い範囲で常時電圧印加を行うことにより、吐出時に印加すべき電圧の幅を予め低減 し、これによる吐出時の反応性の向上を図っている。 The discharge electrode 28 is placed inside the solution chamber 24 and directly contacts the solution to charge the solution and apply a discharge voltage. As shown in FIG. 12A, the bias voltage by the DC power supply 30 is reduced by previously applying a constant voltage in a range where the solution is not discharged, thereby reducing the width of the voltage to be applied at the time of the discharge. To improve reactivity.
吐出電圧電源 31は、図 12Bに示すように、溶液の吐出を行う際にのみパルス電圧 をバイアス電圧に重畳させて印加する。このときの重畳電圧 Vは次式の条件を満た すようにノ ルス電圧の値が設定されてレ、る。  As shown in FIG. 12B, the ejection voltage power supply 31 applies the pulse voltage superimposed on the bias voltage only when the solution is ejected. At this time, the value of the superimposed voltage V is set so that the condition of the following equation is satisfied.
[数 4]  [Number 4]
Figure imgf000023_0001
ただし、 y:溶液の表面張力(N/m)、 ε :真空の誘電率(F/m)、 d:ノズル直径 (m)
Figure imgf000023_0001
Where, y: surface tension of the solution (N / m), ε: dielectric constant of vacuum (F / m), d: nozzle diameter (m)
、 h :ノズル一基材間距離 (m)、 k :ノズル形状に依存する比例定数(1.5く kく 8.5)とする。 なお、上記条件は理論値であり、実際上は、凸状メニスカスの形成時と非形成時に おける試験を行レ、、適宜な電圧値を求めても良レ、。 , H: distance between nozzle and substrate (m), k: proportional constant (1.5 x k x 8.5) depending on nozzle shape. Note that the above conditions are theoretical values, and in practice, tests were performed when a convex meniscus was formed and when it was not formed.
本実施形態では、一例として吐出電圧を 400[V]とする。  In the present embodiment, the ejection voltage is set to 400 [V] as an example.
[0044] (液体吐出ヘッド)  (Liquid Discharge Head)
液体吐出ヘッド 26は、図 11において最も下層に位置し、可撓性を有する素材(例 えば金属,シリコン、樹脂等)からなる可撓ベース層 26aと、この可撓ベース層 26aの 上面全体に形成される絶縁素材からなる絶縁層 26dと、その上に位置する溶液の供 給路を形成する流路層 26bと、この流路層 26bのさらに上に形成されるノズノレプレー ト 26cとを備え、流路層 26bとノズノレプレート 26cとの間には前述した吐出電極 28が 介挿されている。  The liquid discharge head 26 is located at the lowest layer in FIG. 11 and has a flexible base layer 26a made of a flexible material (for example, metal, silicon, resin, etc.) and an entire upper surface of the flexible base layer 26a. An insulating layer 26d made of an insulating material to be formed, a flow path layer 26b forming a supply path for the solution located thereon, and a nose layer 26c formed further above the flow path layer 26b, The discharge electrode 28 described above is interposed between the flow path layer 26b and the nose plate 26c.
[0045] 上記可撓ベース層 26aは、上述の如ぐ可撓性を有する素材であれば良ぐ例えば 金属薄板を使用しても良い。このように、可撓性が要求されるのは、可撓ベース層 26 aの外面であって溶液室 24に対応する位置に、後述する凸状メニスカス形成手段 40 のピエゾ素子 41を設け、可撓ベース層 26aを撓ませるためである。即ち、ピエゾ素子 41に所定電圧を印加して、可撓ベース層 26aを上記位置において内側又は外側の いずれにも窪ませることで溶液室 24の内部容積を縮小又は増加させ、内圧変化によ りノズノレ 21の先端部に溶液の凸状メニスカスを形成し又は液面を内側に引き込むこ とを可能とするためである。 [0045] The flexible base layer 26a may be made of a material having flexibility as described above, for example, a thin metal plate. As described above, the flexibility is required at a position corresponding to the solution chamber 24 on the outer surface of the flexible base layer 26a, and the piezo element 41 of the convex meniscus forming means 40 described later is provided. This is for bending the flexible base layer 26a. That is, by applying a predetermined voltage to the piezo element 41, the flexible base layer 26a By depressing any of them, the internal volume of the solution chamber 24 can be reduced or increased, and a convex meniscus of the solution can be formed at the tip of the nozzle 21 due to a change in internal pressure, or the liquid surface can be drawn inward. To do that.
[0046] 可撓ベース層 26aの上面には絶縁性の高い樹脂を膜状に形成し、絶縁層 26dが 形成される。かかる、絶縁層 26dは、可撓ベース層 26aが窪むことを妨げないように 十分に薄く形成されるか、より変形が容易な樹脂素材が使用される。  On the upper surface of the flexible base layer 26a, a resin having a high insulating property is formed in a film shape, and an insulating layer 26d is formed. The insulating layer 26d is formed sufficiently thin so as not to prevent the flexible base layer 26a from being depressed, or a resin material that is more easily deformed is used.
そして、絶縁層 26dの上には、溶解可能な樹脂層を形成すると共に供給路 27及び 溶液室 24を形成するための所定のパターンに従う部分のみを残して除去し、当該残 存部を除いて除去された部分に絶縁樹脂層を形成する。この絶縁樹脂層が流路層 2 6bとなる。そして、この絶縁樹脂層の上面に面状に広がりをもって導電素材 (例えば NiP)のメツキにより吐出電極 28を形成し、さらにその上から絶縁性のレジスト樹脂層 或いはパリレン層を形成する。このレジスト樹脂層力 Sノズノレプレート 26cとなるので、こ の樹脂層はノズノレ 21の高さを考慮した厚みで形成される。そして、この絶縁性のレジ スト樹脂層を電子ビーム法やフェムト秒レーザにより露光し、ノズル形状を形成する。 ノズノレ内流路 22もレーザカ卩ェにより形成される。そして、供給路 27及び溶液室 24の パターンに従う溶解可能な樹脂層を除去し、これら供給路 27及び溶液室 24が開通 して液体吐出ヘッド 26が完成する。  Then, on the insulating layer 26d, a dissolvable resin layer is formed, and at the same time, only a portion according to a predetermined pattern for forming the supply path 27 and the solution chamber 24 is removed and removed, and the remaining portion is removed. An insulating resin layer is formed on the removed portion. This insulating resin layer becomes the flow path layer 26b. Then, an ejection electrode 28 is formed on the upper surface of the insulating resin layer by spreading a conductive material (for example, NiP) in a planar manner, and an insulating resist resin layer or a parylene layer is further formed thereon. Since the resist resin layer strength becomes the S-nozzle plate 26c, this resin layer is formed with a thickness in consideration of the height of the nozzle 21. Then, the insulating resist resin layer is exposed by an electron beam method or a femtosecond laser to form a nozzle shape. The inner flow path 22 is also formed by a laser camera. Then, the dissolvable resin layer according to the pattern of the supply path 27 and the solution chamber 24 is removed, and the supply path 27 and the solution chamber 24 are opened to complete the liquid discharge head 26.
[0047] なお、ノズルプレート 26c及びノズル 21の素材は、具体的には、エポキシ、 PMMA 、フエノール、ソーダガラス、石英ガラス等の絶縁材の他、 Siのような半導体、 Ni、 SU S等のような導体であっても良い。但し、導体によりノズルプレート 26c及びノズル 21 を形成した場合には、少なくともノズノレ 21の先端部における先端部端面、より望ましく は先端部における周面については、絶縁材による被膜を設けることが望ましい。ノズ ル 21を絶縁材から形成し又はその先端部表面に絶縁材被膜を形成することにより、 溶液に対する吐出電圧印加時にぉレ、て、ノズル先端部から対向電極 23への電流の リークを効果的に抑制することが可能となるからである。  [0047] The material of the nozzle plate 26c and the nozzle 21 is, specifically, an insulating material such as epoxy, PMMA, phenol, soda glass, and quartz glass, as well as a semiconductor such as Si, Ni, SUS, and the like. Such a conductor may be used. However, when the nozzle plate 26c and the nozzle 21 are formed of a conductor, it is desirable to provide a coating made of an insulating material on at least the tip end face at the tip end of the nozzle 21 and more preferably on the peripheral surface at the tip end. By forming the nozzle 21 from an insulating material or forming an insulating material film on the surface of the tip, current leakage from the nozzle tip to the counter electrode 23 can be effectively prevented when a discharge voltage is applied to the solution. It is because it becomes possible to suppress the number of times.
[0048] (対向電極)  [0048] (Counter electrode)
対向電極 23は、ノズノレ 21の突出方向に垂直な対向面を備えており、かかる対向面 に沿うように基材 Kの支持を行う。ノズル 21の先端部から基材 Kまでの距離 h[ μ m] は、 500 [ μ ΐη]以下となっており、更に 1/h2く 4 X 10— 4、好ましくは 1/h2く 2 X 10— 4 に設定されている。 The opposing electrode 23 has an opposing surface perpendicular to the projecting direction of the lip 21 and supports the substrate K along the opposing surface. Distance from tip of nozzle 21 to substrate K h [μm] Is a 500 [μ ΐη] Hereinafter, further 1 / h 2 ° 4 X 10- 4, preferably is set to 1 / h 2 ° 2 X 10- 4.
また、この対向電極 23は接地されているため、常時,接地電位を維持している。従 つて、ノズノレ 21の先端部と対向面との間に生じる電界による静電力により吐出された 液滴を対向電極 23側に誘導する。  Further, since the counter electrode 23 is grounded, the ground potential is always maintained. Therefore, the discharged droplet is guided to the counter electrode 23 side by the electrostatic force due to the electric field generated between the tip end portion of the lip 21 and the facing surface.
なお、液体吐出装置 20は、ノズノレ 21の超微細化による当該ノズノレ 21の先端部で の電界集中により電界強度を高めることで液滴の吐出を行うことから、対向電極 23に よる誘導がなくとも液滴の吐出を行うことは可能ではある力 ノズノレ 21と対向電極 23 との間での静電力による誘導が行われた方が望ましい。また、帯電した液滴の電荷を 対向電極 23の接地により逃がすことも可能である。  Since the liquid discharge device 20 discharges droplets by increasing the electric field strength by the electric field concentration at the tip of the nozzle 21 due to the ultra-miniaturization of the nozzle 21, the liquid discharge device 20 does not need to be guided by the counter electrode 23. It is desirable to induce electrostatic force between the nozzle 21 and the counter electrode 23, which is capable of discharging droplets. It is also possible to release the charge of the charged droplet by grounding the counter electrode 23.
[0049] ここで、基材 Kとノズノレ 21との周辺に作用する電界の強度 E は、ノズノレに集中し [0049] Here, the intensity E of the electric field acting around the base material K and the nozzle 21 is concentrated on the nozzle.
total  total
て生じる集中電界強度 E と、ノズルと基材との間に生じる非集中電界強度 E とから  From the concentrated electric field strength E generated by the
loc gap loc gap
、例えば以下の式のように表される。 For example, it is represented by the following equation.
E =E +E  E = E + E
total loc gap  total loc gap
このうち、集中電界強度 E は、ノズノレ径 R m]と、ノズルに印加される電圧 V[v]  Of these, the concentrated electric field strength E is determined by the nozzle diameter R m] and the voltage V [v]
loc  loc
とによって以下の式のように表される。  Is represented by the following equation.
E =V/kR (但し、 kは定数)  E = V / kR (where k is a constant)
loc  loc
また、非集中電界強度 E は、ノズルから基材までの距離 h[ β m]と、ノズノレに印加 Also, decentralized field strength E is the distance h [beta m] from the nozzles to the substrate, applied to Nozunore
gap  gap
される電圧 Vとによって、以下の式のように表される。なお、図 14に E /Vと距離 hと  The following equation is represented by the applied voltage V. Figure 14 shows E / V and distance h
gap  gap
の関係を示す。  Shows the relationship.
E =V/h  E = V / h
gap  gap
これらの式から、距離 hが変化する場合に、距離 hの変化に対する電界強度 E の  From these equations, when the distance h changes, the electric field strength E
total 変化率 (微分係数)は、図 15に示すように、 E ' =_V/h2となる。なお、距離 hが変 The total change rate (differential coefficient) is E ′ = _ V / h 2 as shown in FIG. Note that the distance h
total  total
化する原因としては、基材 Kの表面のうねりや、液体吐出ヘッド 26におけるノズノレ 21 の位置精度の劣化、基材 Kを固定する対向電極 23の位置精度の劣化などがある。  Causes of the change include undulation of the surface of the substrate K, deterioration of the positional accuracy of the nozzle 21 in the liquid ejection head 26, and deterioration of the positional accuracy of the counter electrode 23 fixing the substrate K.
[0050] (動作制御手段) (Operation control means)
動作制御手段 50は、実際的には CPU, ROM, RAM等を含む演算装置を有する 構成であり、これらに所定のプログラムが入力されることにより、下記に示す機能的な 構成を実現すると共に後述する動作制御を実行する。 The operation control means 50 actually has a configuration having an arithmetic unit including a CPU, a ROM, a RAM, and the like. The configuration is realized and the operation control described later is executed.
上記動作制御手段 50は、直流電源 30によるバイアス電圧の印加を連続的に行わ せると共に、外部からの吐出指令の入力を受けると吐出電圧電源 31にパルス電圧の 印加を行わせることによってノズル 21の先端部力、ら液滴を吐出させる。  The operation control means 50 continuously applies a bias voltage from the DC power supply 30 and, when receiving an external ejection command, causes the ejection voltage power supply 31 to apply a pulse voltage to the nozzle 21 by applying a pulse voltage. Discharges the droplet at the tip.
[0051] (液体吐出装置による微小液滴の吐出動作)  (Discharge Operation of Micro Droplet by Liquid Discharge Apparatus)
図 11及び図 12により液体吐出装置 20の動作説明を行う。  The operation of the liquid ejection device 20 will be described with reference to FIGS.
溶液供給手段の供給ポンプによりノズル内流路 22には溶液が供給された状態にあ り、力、かる状態で定常的に直流電源 30から吐出電極 28にバイアス電圧が印加され ている(図 12A)。かかる状態で、溶液は帯電すると共に、ノズル 21の先端部におい て溶液による凹状に窪んだメニスカスが形成される(図 12A)。  The solution is supplied to the flow path 22 in the nozzle by the supply pump of the solution supply means, and a bias voltage is constantly applied to the discharge electrode 28 from the DC power supply 30 in a force and a weak state (FIG. 12A). ). In this state, the solution is charged, and a concave meniscus is formed at the tip of the nozzle 21 by the solution (FIG. 12A).
そして、外部から動作制御手段 50に吐出指令信号が入力されると、吐出電圧電源 31からパルス電圧が吐出電極 28に印加される。ノズノレ 21の先端部では集中された 電界の電界強度による静電力により溶液がノズル 21の先端側に誘導され、外部に突 出した凸状メニスカスが形成されると共に、力かる凸状メニスカスの頂点により電界が 集中し、ついには溶液の表面張力に抗して微小液滴が対向電極側に吐出される(図 12B)。このとき、基材 Kの表面のうねりなどに起因してノズル 21から基材 Kまでの距 離 h[ β m]が変化しても、この距離 h[ β m]は 0く 1/h2 (=_E ' /V)く 4 X 10— 4、 total When an ejection command signal is input to the operation control means 50 from the outside, a pulse voltage is applied to the ejection electrode 28 from the ejection voltage power supply 31. At the tip of the nozzle 21, the solution is guided toward the tip of the nozzle 21 by electrostatic force due to the electric field strength of the concentrated electric field, and a convex meniscus protruding to the outside is formed. The electric field concentrates, and eventually a microdroplet is ejected to the counter electrode side against the surface tension of the solution (Fig. 12B). At this time, even after changing the distance h [beta m] from the nozzle 21 due like undulation of the surface of the substrate K to base K, the distance h [beta m] is 0 ° 1 / h 2 (= _E '/ V) × 4 X 10— 4 , total
好ましくは 1/h2く 2 X 10— 4を満たすので、上記図 15に示すように、距離 hの変化に 対する上記電界強度 E の変化率は 0に近くなつている。 Since preferably satisfy 1 / h 2 ° 2 X 10- 4, as shown in FIG. 15, the change rate of the electric field intensity E against the change in the distance h is summer close to zero.
total  total
[0052] 以上のような液体吐出装置 20によれば、基材 Kからノズル 21の先端部までの距離 hの変化に関わらず、基材 K及びノズノレ 21の周辺における電界強度 E の変化を抑  According to the liquid ejection apparatus 20 as described above, regardless of the change in the distance h from the base material K to the tip of the nozzle 21, the change in the electric field intensity E around the base material K and the periphery of the nozzle 21 is suppressed.
total  total
制することができるため、従来と比較して、微小液滴形成及び吐出量の安定性を高 め、かつ吐出応答性を改善し、かつノズノレ 21の先端部に高電圧を印加することがで きる。  As compared with the conventional method, the stability of the formation of fine droplets and the ejection amount can be improved, the ejection responsiveness can be improved, and a high voltage can be applied to the tip of the nozzle 21. Wear.
また、前記距離 hが 500 [ z m]以下であるので、吐出された液滴の着弾精度を高め ること力 Sできる。  Further, since the distance h is equal to or less than 500 [zm], the force S for improving the landing accuracy of the discharged droplet can be obtained.
[0053] また、吐出の有無にかかわらず、溶液に対しては直流電源 30により常に一定の電 圧を印加することとなるので、溶液に対する印加電圧を変化させて吐出を行う場合と 比較して、吐出の際の応答性の向上及び液量の安定化を図ることが可能となる。 Further, a constant voltage is always applied to the solution by the DC power supply 30 irrespective of whether or not the solution is ejected, so that the solution is ejected by changing the applied voltage to the solution. In comparison, it is possible to improve the responsiveness at the time of ejection and to stabilize the liquid amount.
[0054] さらに、上記液体吐出装置 20は、従来にない微細径のノズノレ 21により液滴の吐出 を行うので、ノズノレ内流路 22内で帯電した状態の溶液により電界が集中され、電界 強度が高められる。このため、従来のように電界の集中化が行われない構造のノズル (例えば内径 100[ μ πι])では吐出に要する電圧が高くなり過ぎて事実上吐出不可能 とされていた微細径でのノズルによる溶液の吐出を従来よりも低電圧で行うことを可 能としている。  Further, since the liquid discharge device 20 discharges droplets using a nozzle 21 having an unprecedented fine diameter, an electric field is concentrated by a solution in a charged state in the inner channel 22 of the nozzle, and the electric field intensity is reduced. Enhanced. For this reason, with a nozzle having a structure in which the electric field is not concentrated as in the past (for example, an inner diameter of 100 [μπι]), the voltage required for ejection becomes too high, and it is virtually impossible to eject at a fine diameter. The discharge of the solution by the nozzle can be performed at a lower voltage than before.
そして、微細径であるがために、ノズノレコンダクタンスの低さによりノズノレ内流路 22 における溶液の流動が制限されることから、その単位時間あたりの吐出流量を低減 する制御を容易に行うことができると共に、パルス幅を狭めることなく十分に小さな液 滴径(上記各条件によれば 0.8[ μ m])による溶液の吐出を実現している。  And, because of the small diameter, the flow of the solution in the inner channel 22 of the nozzle is restricted by the low conductance of the nozzle, so that the control for reducing the discharge flow rate per unit time can be easily performed. In addition, the solution can be ejected with a sufficiently small droplet diameter (0.8 [μm] according to the above conditions) without reducing the pulse width.
さらに、吐出される液滴は帯電されているので、微小の液滴であっても蒸気圧が低 減され、蒸発を抑制することから液滴の質量の損失を低減し、飛翔の安定化を図り、 液滴の着弾精度の低下を防止する。  Furthermore, since the ejected droplets are charged, the vapor pressure is reduced even for minute droplets, and by suppressing evaporation, the loss of droplet mass is reduced and flight is stabilized. This prevents a drop in droplet landing accuracy.
[0055] なお、ノズル 21にエレクトロウエツティング効果を得るために、ノズノレ 21の外周に電 極を設ける力、また或いは、ノズノレ内流路 22の内面に電極を設け、その上から絶縁 膜で被覆しても良い。そして、この電極に電圧を印加することで、吐出電極 28により 電圧が印加されてレ、る溶液に対して、エレクトロウエツティング効果によりノズノレ内流 路 22の内面のぬれ性を高めることができ、ノズノレ内流路 22への溶液の供給を円滑 に行うことができ、良好に吐出を行うと共に、吐出の応答性の向上を図ることが可能と なる。 In order to obtain an electrowetting effect on the nozzle 21, a force for providing an electrode on the outer periphery of the nozzle 21, or an electrode is provided on the inner surface of the inner channel 22, and an insulating film is coated on the electrode. You may. By applying a voltage to this electrode, the wettability of the inner surface of the inner flow path 22 can be enhanced by an electrowetting effect on the solution to which a voltage is applied by the ejection electrode 28 due to an electrowetting effect. The solution can be smoothly supplied to the inside flow path 22 of the nozzle, and the ejection can be performed satisfactorily, and the responsiveness of the ejection can be improved.
[0056] また、吐出電圧印加手段 25ではバイアス電圧を常時印加すると共にノ ルス電圧を トリガーとして液滴の吐出を行っているが、吐出に要する振幅で常時交流又は連続 する矩形波を印加すると共にその周波数の高低を切り替えることで吐出を行う構成と しても良い。液滴の吐出を行うためには溶液の帯電が必須であり、溶液の帯電する 速度を上回る周波数で吐出電圧を印加していても吐出が行われず、溶液の帯電が 十分に図れる周波数に替えると吐出が行われる。従って、吐出を行わないときには吐 出可能な周波数より大きな周波数で吐出電圧を印加し、吐出を行う場合にのみ吐出 可能な周波数帯域まで周波数を低減させる制御を行うことで、溶液の吐出を制御す ること力 S可能となる。かかる場合、溶液に印加される電位自体に変化はないので、より 時間応答性を向上させると共に、これにより液滴の着弾精度を向上させることが可能 となる。 In addition, the ejection voltage applying means 25 always applies a bias voltage and performs ejection of droplets by using a nourse voltage as a trigger. However, an AC or a continuous rectangular wave is always applied with an amplitude required for ejection. The discharge may be performed by switching the level of the frequency. In order to discharge droplets, it is necessary to charge the solution.If the discharge voltage is applied at a frequency higher than the speed at which the solution is charged, the solution will not be discharged, and if the frequency is changed to a frequency at which the solution can be charged sufficiently. Discharge is performed. Therefore, when not discharging, the discharge voltage is applied at a frequency higher than the dischargeable frequency, and the discharge is performed only when discharging. By performing control to reduce the frequency to a possible frequency band, it becomes possible to control the ejection of the solution. In such a case, there is no change in the potential itself applied to the solution, so that it is possible to further improve the time responsiveness and thereby improve the landing accuracy of the droplet.
[0057] [第 2の実施形態]  [Second Embodiment]
次に、本発明の第 2の実施形態である液体吐出装置 20Aについて図 11に基づい て説明する。なお、本実施形態の説明において、第 1の実施形態の液体吐出装置 2 0と同一の構成については同符号を付し、重複する説明は省略するものとする。  Next, a liquid ejection device 20A according to a second embodiment of the present invention will be described with reference to FIG. In the description of the present embodiment, the same components as those of the liquid ejection device 20 of the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted.
[0058] 本第 2の実施の形態における液体吐出装置 20Aは、ノズル 21の先端部の内部直 径 R[ z m]と、ノズル 21の先端部から基材 Kまでの距離 hとが lZ (l + 5R/h) > 0. 8を満たすようになつている。 [0058] In the liquid ejection device 20A according to the second embodiment, the inner diameter R [zm] of the tip of the nozzle 21 and the distance h from the tip of the nozzle 21 to the base material K are lZ (l + 5R / h)> 0.8.
ここで、距離 hの微小変化に対する電界強度 E ( = E +E )の変化率は、図 16  Here, the rate of change of the electric field strength E (= E + E) with respect to the minute change of the distance h is
total loc gap  total loc gap
に示すように、電界強度 E に対する集中電界強度 E の割合が大きい程、小さくな  As shown in the figure, the larger the ratio of the concentrated electric field strength E to the
total loc  total loc
る。但し、電界強度 E に対する集中電界強度 E の割合とは、  The However, the ratio of the concentrated electric field strength E to the electric field strength E is
total loc  total loc
E /E +E = (V/kR) /{ (V/kR) + (V/h) }  E / E + E = (V / kR) / {(V / kR) + (V / h)}
loc loc gap  loc loc gap
= l/ { l + (kR/h) }  = l / {l + (kR / h)}
(但し、 k:定数)  (However, k: constant)
で表されるものである。  It is represented by
[0059] 以上のような液体吐出装置 20によれば、定数 k= 5としたときの電界強度 E に対  According to the liquid ejection apparatus 20 as described above, the electric field strength E when the constant k = 5 is
total する集中電界強度 E の割合が 0. 8より大きいので、距離 hの微小変化に対する電  Since the ratio of the total concentrated electric field strength E is greater than 0.8, the
loc  loc
界強度 E の変化率が小さい。従って、基材 Kからノズル 21の先端部までの距離 h  The rate of change of the field strength E is small. Therefore, the distance h from the base material K to the tip of the nozzle 21 is
total  total
の変化に関わらず、基材 K及びノズノレ 21の周辺における電界強度 E の変化を抑  The change in the electric field strength E around the substrate K and around
total  total
制することができるため、従来と比較して、微小液滴形成及び吐出量の安定性を高 め、かつ吐出応答性を改善し、かつノズノレ 21の先端部に高電圧を印加することがで きる。  As compared with the conventional method, the stability of the formation of fine droplets and the ejection amount can be improved, the ejection responsiveness can be improved, and a high voltage can be applied to the tip of the nozzle 21. Wear.
[0060] [液体吐出装置の理論説明]  [Theoretical Description of Liquid Discharge Apparatus]
以下に、本発明による液体吐出の理論説明及びこれに基づく基本例の説明を行う 。なお、以下に説明する理論及び基本例におけるノズノレの構造、各部の素材及び吐 出液体の特性、ノズル周囲に付加する構成、吐出動作に関する制御条件等全ての 内容は、可能な限り上述した各実施形態中に適用しても良いことはいうまでもない。 (印加電圧低下および微少液滴量の安定吐出実現の方策) Hereinafter, a theoretical description of the liquid ejection according to the present invention and a basic example based on the theoretical explanation will be given. It should be noted that, in the theory and the basic example described below, the structure of the nozzle, the material of each part and the discharge It goes without saying that all the contents such as the characteristics of the discharged liquid, the configuration added around the nozzle, and the control conditions for the discharge operation may be applied to the above-described embodiments as much as possible. (Measures for reducing applied voltage and achieving stable ejection of minute droplets)
従前は以下の条件式により定まる範囲を超えて液滴の吐出は不可能と考えられて いた。  Previously, it was considered impossible to discharge droplets beyond the range defined by the following conditional expression.
[数 5] dく [Equation 5] d
2  2
(4)  (Four)
λ は静電吸引力によりノズル先端部からの液滴の吐出を可能とするための溶液液 λ is a solution for discharging droplets from the nozzle tip by electrostatic attraction
C C
面における成長波長(m)であり、 λ =2 π y hV ε で求められる。 It is the growth wavelength (m) on the surface, and can be obtained by λ = 2πyhVε.
c o  c o
[数 6] dく  [Equation 6] d
(5)  (Five)
[数 7][Number 7]
Figure imgf000029_0001
本発明では、静電吸引型インクジェット方式において果たすノズノレの役割を再考察 し、従来吐出不可能として試みられていなかった領域において、マクスゥヱルカなど を利用することで、微小液滴を形成することができる。
Figure imgf000029_0001
In the present invention, by reviewing the role of squeezing that plays a role in the electrostatic suction type inkjet method, it is possible to form minute droplets by using MaxDurka or the like in an area that has not been conventionally attempted as impossible ejection. .
このような駆動電圧低下および微少量吐出実現の方策のための吐出条件等を近 似的に表す式を導出したので以下に述べる。  An equation that approximates the ejection conditions and the like for such a drive voltage reduction and a method of realizing the minute amount ejection is derived, and will be described below.
以下の説明は、上記各本発明の実施形態で説明した液体吐出装置に適用可能で ある。  The following description is applicable to the liquid ejection devices described in the above embodiments of the present invention.
いま、内径 dのノズルに導電性溶液を注入し、基材としての無限平板導体から hの 高さに垂直に位置させたと仮定する。この様子を図 17に示す。このとき、ノズル先端 部に誘起される電荷は、ノズル先端の半球部に集中すると仮定し、以下の式で近似 的に表される。 Now, the conductive solution is injected into the nozzle with the inner diameter d, and the h Suppose you are positioned vertically at height. This is shown in FIG. At this time, it is assumed that the charge induced at the nozzle tip concentrates on the hemisphere at the nozzle tip, and is approximately expressed by the following equation.
[数 8] ΰ = 2πε0 Υά (フ) ここで、 Q :ノズル先端部に誘起される電荷(C)、 ε :真空の誘電率 (F/m)、 ε:基 [Equation 8] ΰ = 2πε 0フ (F) where, Q: electric charge (C) induced at the tip of the nozzle, ε: dielectric constant of vacuum (F / m), ε: group
0  0
材の誘電率(F/m)、 h:ノズル—基材間距離(m)、 d:ノズル内部の直径(m)、 V:ノズノレ に印加する総電圧 (V)である。 a:ノズル形状などに依存する比例定数で、 1一 1.5程 度の値を取り、特に dくく hのときほぼ 1程度となる。 The dielectric constant of the material (F / m), h: distance between the nozzle and the substrate (m), d: diameter inside the nozzle (m), V: total voltage (V) applied to the nozzle. a: This is a proportionality constant that depends on the nozzle shape, etc., and takes a value of about 1-1.5, especially about 1 for d and h.
また、基材としての基板が導体基板の場合、電荷 Qによる電位を打ち消すための逆 電荷が表面付近に誘起され、それらの電荷分布により、基板内の対称位置に反対の 符号を持つ鏡像電荷 Q 'が誘導された状態と等価となると考えられる。また、基板が 絶縁体の場合は、基板表面で分極により逆電荷が表面側に誘起され、誘電率によつ て定まる対称位置に同様に反対符号の映像電荷 Q 'が誘導された状態と等価となる と考えられる。  When the substrate as the substrate is a conductive substrate, reverse charges for canceling the potential due to the charge Q are induced near the surface, and the mirror image charge Q having the opposite sign at the symmetric position in the substrate due to the charge distribution. 'Is considered to be equivalent to the induced state. When the substrate is an insulator, the reverse charge is induced on the surface side by polarization on the substrate surface, and the image charge Q 'of the opposite sign is similarly induced at the symmetric position determined by the dielectric constant. It is considered that
ところで、ノズル先端部に於ける凸状メニスカスの先端部の集中電界強度 E [V/m] loc. は、凸状メニスカス先端部の曲率半径を R[m]と仮定すると、  By the way, assuming that the radius of curvature of the convex meniscus tip is R [m], the concentrated electric field strength E [V / m] loc.
[数 9] [Number 9]
kR (8) で与えられる。ここで k :比例定数で、ノズル形状などにより異なるが、 1.5— 8.5程度の 値をとり、多くの場合 5程度と考えられる。 (P. J. Birdseye and D.A. Smith, Surface Science, 23 (1970) 198-210)。 given by kR (8). Here, k is a proportional constant, which varies depending on the nozzle shape, etc., but takes a value of about 1.5 to 8.5, and is considered to be about 5 in most cases. (P. J. Birdseye and D.A. Smith, Surface Science, 23 (1970) 198-210).
今簡単のため、 dZ2 = Rとする。これは、ノズル先端部に表面張力で導電性溶液 がノズルの半径と同じ半径を持つ半球形状に盛り上がつている状態に相当する。 ノズノレ先端の液体に働く圧力のバランスを考える。まず、静電的な圧力は、ノズル 先端部の液面積を S[m2]とすると、 For the sake of simplicity, let dZ2 = R. This corresponds to a state in which the conductive solution is swelled in a hemispherical shape having the same radius as the nozzle at the tip of the nozzle due to surface tension. Consider the balance of the pressure acting on the liquid at the tip of the nozzle. First, as for the electrostatic pressure, if the liquid area at the tip of the nozzle is S [m 2 ],
[数 10]
Figure imgf000031_0001
[Number 10]
Figure imgf000031_0001
(7)、(8)、 (9)式より α = 1とおいて、 From Equations (7), (8), and (9), setting α = 1,
[数 11] [Number 11]
Figure imgf000031_0002
と表される。
Figure imgf000031_0002
It is expressed.
一方、ノズル先端部に於ける液体の表面張力を Psとすると、  On the other hand, if the surface tension of the liquid at the nozzle tip is Ps,
[数 12]
Figure imgf000031_0003
ここで、 Ί:表面張力(N/m)、である。静電的な力により流体の吐出が起こる条件は 、静電的な力が表面張力を上回る条件なので、
[Number 12]
Figure imgf000031_0003
Here, :: surface tension (N / m). The condition under which the fluid is ejected by the electrostatic force is a condition where the electrostatic force exceeds the surface tension.
[数 13]
Figure imgf000031_0004
となる。十分に小さいノズル直径 dをもちいることで、静電的な圧力が、表面張力を上 回らせる事が可能である。この関係式より、 Vと dの関係を求めると、
[Number 13]
Figure imgf000031_0004
It becomes. By using a sufficiently small nozzle diameter d, the electrostatic pressure can exceed the surface tension. When the relationship between V and d is obtained from this relational expression,
[数 14]
Figure imgf000032_0001
が吐出の最低電圧を与える。すなわち、式(6)および式(13)より、
[Number 14]
Figure imgf000032_0001
Gives the lowest voltage for ejection. That is, from equations (6) and (13),
[数 15]  [Number 15]
Figure imgf000032_0002
力 本発明の動作電圧となる。
Figure imgf000032_0002
Force The operating voltage of the present invention.
[0064] ある内径 dのノズルに対し、吐出限界電圧 Vcの依存性を前述した図 9に示す。この 図より、微細ノズルによる電界の集中効果を考慮すると、吐出開始電圧は、ノズル径 の減少に伴い低下する事が明らかになった。  FIG. 9 shows the dependence of the discharge limit voltage Vc on the nozzle having a certain inner diameter d. From this figure, it was clarified that the discharge start voltage decreases as the nozzle diameter decreases, considering the electric field concentration effect of the fine nozzle.
従来の電界に対する考え方、すなわちノズルに印加する電圧と対向電極間の距離 によって定義される電界のみを考慮した場合では、微細ノズノレになるに従レ、、吐出に 必要な電圧は増加する。一方、局所電界強度に注目すれば、微細ノズノレ化により吐 出電圧の低下が可能となる。  If the conventional concept of an electric field, that is, only the electric field defined by the voltage applied to the nozzle and the distance between the opposing electrodes, is considered, the voltage required for ejection increases as finer noise occurs. On the other hand, if attention is paid to the local electric field intensity, the discharge voltage can be reduced by making fine noise.
[0065] 静電吸引による吐出は、ノズノレ端部における液体 (溶液)の帯電が基本である。帯 電の速度は誘電緩和によって決まる時定数程度と考えられる。  [0065] Discharge by electrostatic suction is basically based on charging of a liquid (solution) at the end of the nozzle. The charging speed is considered to be about the time constant determined by dielectric relaxation.
[数 16] ε  [Equation 16] ε
τ =―  τ = ―
σ (2) ここで、 ε:溶液の誘電率(F/m)、 σ:溶液の導電率(S/m)である。溶液の比誘電 率を 10、導電率を 10— 6 S/mを仮定すると、 て = 1.854 X 10— 5secとなる。あるいは、臨界 周波数を MHz]とすると、 σ (2) where, ε: dielectric constant of the solution (F / m), σ: conductivity of the solution (S / m). When the relative dielectric constant of the solution 10, the conductivity is assumed to 10- 6 S / m, a = 1.854 X 10- 5 sec Te. Or if the critical frequency is MHz]
[数 17] f [Number 17] f
J c - £ (14) となる。この fcよりも早い周波数の電界の変化に対しては、応答できず吐出は不可能 になると考えられる。上記の例について見積もると、周波数としては 10 kHz程度となる 。このとき、ノズノレ半径 2 z m、電圧 500V弱の場合、ノズノレ内流量 Gは 10— 13m3/sと見積 もること力できる力 上記の例の液体の場合、 10kHzでの吐出が可能なので、 1周期 での最小吐出量は 10fl (フェムトリットル、 lfl : 10— 15 1)程度を達成できる。 J c- £ (14). It is thought that it is impossible to respond to the change of the electric field with a frequency faster than fc and discharge becomes impossible. Estimating the above example results in a frequency of about 10 kHz. At this time, if the radius of the nozzle is 2 zm and the voltage is slightly less than 500 V, the flow rate G in the nozzle is estimated to be 10-13 m 3 /s.The force that can be estimated at 10 kHz is possible for the liquid in the above example. The minimum discharge rate in one cycle can achieve about 10 fl (femtoliter, lfl: 10-15 1).
[0066] なお、各上記本実施の形態においては、図 17に示したようにノズノレ先端部に於け る電界の集中効果と、対向基板に誘起される鏡像力の作用を特徴とする。このため、 先行技術のように基板または基板支持体を導電性にすることや、これら基板または基 板支持体への電圧の印加は必ずしも必要はない。すなわち、基板として絶縁性のガ ラス基板、ポリイミドなどのプラスチック基板、セラミックス基板、半導体基板などを用 レ、ることが可能である。 Each of the above embodiments is characterized by the effect of concentrating the electric field at the tip of the nose, and the effect of the image force induced on the opposing substrate, as shown in FIG. For this reason, it is not necessary to make the substrate or the substrate support conductive as in the prior art, or to apply a voltage to these substrates or the substrate support. That is, an insulating glass substrate, a plastic substrate such as polyimide, a ceramic substrate, a semiconductor substrate, or the like can be used as the substrate.
また、上記各実施形態において電極への印加電圧はプラス、マイナスのどちらでも 良い。  In each of the above embodiments, the voltage applied to the electrode may be either positive or negative.
さらに、ノズルと基材との距離は、 500[ μ πι]以下に保つことにより、溶液の吐出を容 易にすることができる。また、図示しないが、ノズル位置検出によるフィードバック制御 を行い、ノズルを基材に対し一定に保つようにすることが望ましレ、。  Further, by keeping the distance between the nozzle and the substrate at 500 [μπι] or less, the discharge of the solution can be facilitated. Although not shown, it is desirable to perform feedback control based on nozzle position detection so as to keep the nozzle constant with respect to the base material.
また、基材を、導電性または絶縁性の基材ホルダーに裁置して保持するようにして も良い。  Further, the base material may be placed and held in a conductive or insulating base material holder.
[0067] 図 18は、本発明の他の基本例の一例としての液体吐出装置のノズル部分の側面 断面図を示したものである。ノズノレ 21の側面部には電極 15が設けられており、ノズノレ 内溶液 3との間に制御された電圧が印加される。この電極 15の目的は、  FIG. 18 is a side sectional view of a nozzle portion of a liquid ejection apparatus as another example of the basic example of the present invention. The electrode 15 is provided on the side surface of the hornet 21, and a controlled voltage is applied between the electrode 15 and the solution 3 in the hornet. The purpose of this electrode 15 is
Electrowetting効果を制御するための電極である。十分な電場がノズルを構成する 絶縁体に力かる場合この電極がなくとも Electrowetting効果は起こると期待される。し かし、本基本例では、より積極的にこの電極を用いて制御することで、吐出制御の役 割も果たすようにしたものである。ノズノレ 21を絶縁体で構成し、先端部におけるノズ ルの管厚が 1 β m、ノズノレ内径が 2 μ m、印加電圧が 300Vの場合、約 30気圧の This is an electrode for controlling the Electrowetting effect. If a sufficient electric field is exerted on the insulator constituting the nozzle, the Electrowetting effect is expected to occur without this electrode. However, in this basic example, the role of discharge control is also achieved by more positively controlling the electrodes. Nozzle 21 is made of an insulator, and the tip When the tube thickness is 1 β m, the inner diameter of the nozzle is 2 μm, and the applied voltage is 300 V, the
Electrowetting効果になる。この圧力は、吐出のためには、不十分であるが溶液のノ ズノレ先端部への供給の点からは意味があり、この制御電極により吐出の制御が可能 と考えられる。  Electrowetting effect. Although this pressure is insufficient for discharge, it is significant from the viewpoint of supplying the solution to the tip of the nozzle, and it is considered that discharge can be controlled by this control electrode.
[0068] 前述した図 9は、本発明における吐出開始電圧のノズノレ径依存性を示したものであ る。液体吐出装置として、図 11に示すものを用いた。微細ノズルになるに従い吐出開 始電圧が低下し、従来より低電圧で吐出可能なことが明らかになった。  FIG. 9 described above shows the dependence of the ejection start voltage on the nozzle diameter in the present invention. The liquid ejection device shown in FIG. 11 was used. As the nozzle becomes finer, the discharge starting voltage decreases, and it is clear that discharge can be performed at a lower voltage than before.
[0069] 上記各実施形態にぉレ、て、液体吐出の条件は、ノズル一基材間距離 (h)、印加電圧 の振幅 (V)、印加電圧振動数 (f)のそれぞれの関数になり、それぞれにある一定の条 件を満たすことが吐出条件として必要になる。逆にどれか一つの条件を満たさない場 合他のパラメーターを変更する必要がある。  In each of the above embodiments, the condition of liquid ejection is a function of the distance between the nozzle and the substrate (h), the amplitude of the applied voltage (V), and the frequency of the applied voltage (f). In addition, it is necessary to satisfy certain conditions as the discharge conditions. Conversely, if any one of the conditions is not met, other parameters need to be changed.
[0070] この様子を図 19を用いて説明する。  [0070] This situation will be described with reference to FIG.
まず吐出のためには、それ以上の電界でないと吐出しないというある一定の臨界電 界 Ecが存在する。この臨界電界は、ノズル径、溶液の表面張力、粘性などによって変 わってくる値で、 Ec以下での吐出は困難である。臨界電界 Ec以上すなわち吐出可能 電界強度において、ノズル一基材間距離 (h)と印加電圧の振幅 (V)の間には、おおむ ね比例の関係が生じ、ノズル一基材間距離を縮めた場合、臨界印加電圧 Vを小さく する事が出来る。  First, for discharge, there is a certain critical electric field Ec that discharge occurs only when the electric field is larger than that. This critical electric field varies depending on the nozzle diameter, surface tension of the solution, viscosity, etc., and it is difficult to discharge below Ec. At a critical electric field Ec or higher, that is, at the dischargeable electric field strength, there is a roughly proportional relationship between the distance between the nozzle and the substrate (h) and the amplitude of the applied voltage (V), which reduces the distance between the nozzle and the substrate. In this case, the critical applied voltage V can be reduced.
逆に、ノズル-基材間距離 hを極端に離し、印加電圧 Vを大きくした場合、仮に同じ 電界強度を保ったとしても、コロナ放電による作用などによって、流体液滴の破裂す なわちバーストが生じてしまう。  Conversely, when the distance h between the nozzle and the substrate is extremely large and the applied voltage V is increased, even if the same electric field strength is maintained, the burst of the fluid droplets, that is, the burst Will happen.
[実施例 1]  [Example 1]
[0071] ぐ第 1の実施の形態の実施例 > Example of the First Embodiment
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるも のではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
本実施例においては、上記第 1の実施の形態の液体吐出装置 20として、以下の表 1に示すように、ノス、ノレ 21の先端咅 B力ら基材 Kまでの £巨離 h力 S 150, 85, 55 [ z m]で あるもの、つまり 1/h2の値が 4. 4 X 10—5、 1. 4 X 10—4、 3. 3 X 10— 4のものを形成した (実施例 1一 3参照)。また、対照として、前記距離 hが 30 [ μ πι]であるもの、つまり 1 /h2の値が 1. 1 X 10— 3のものを形成した(比較例 1参照)。なお、これら実施例 1一 3 及び比較例 1における距離 hの値を計測したところ、液体吐出装置の機械的精度と、 基板 Kの表面のうねり等とによって ± 5 [ x m]の誤差が生じていた。 In the present example, as shown in Table 1 below, as the liquid ejection device 20 of the first embodiment, as shown in Table 1 below, the great force h 150, 85, 55 as a [zm], i.e. the value of 1 / h 2 4. 4 X 10- 5, 1. 4 X 10- 4, to form those 3. 3 X 10- 4 (See Examples 1-3). As a control, the distance that h is 30 [μ πι], i.e. the value of 1 / h 2 was formed ones 1. 1 X 10- 3 (see Comparative Example 1). When the value of the distance h was measured in Examples 13 and 13 and Comparative Example 1, an error of ± 5 [xm] occurred due to the mechanical accuracy of the liquid ejection apparatus and the undulation of the surface of the substrate K. Was.
また、これら実施例 1一 3及び比較例 1において、溶液には「銀ナノペースト」(商品 名:ハリマ化成株式会社製)を用いた。また、ノズル 21として、先端部の内部直径が 1 [ z m]であるガラス製のノズノレを用いた。また、吐出電圧電源 31による矩形パルス電 圧は 350 [V]とした。更に、基材 Kとして、ガラス板を用いた。  In Examples 13 and 13 and Comparative Example 1, “silver nanopaste” (trade name: manufactured by Harima Chemicals, Inc.) was used as the solution. Further, as the nozzle 21, a glass nozzle having an inner diameter of 1 [z m] at the tip was used. The rectangular pulse voltage from the discharge voltage power supply 31 was set to 350 [V]. Further, a glass plate was used as the substrate K.
[0072] [表 1] [Table 1]
Figure imgf000035_0001
Figure imgf000035_0001
[0073] これら実施例 1一 3及び比較例 1の液体吐出装置によって溶液を 1000滴吐出し、 基材 Kの表面に着弾したドットの径、つまり着弾径を計測した。これら着弹径のバラッ キの変動率(=標準偏差/平均値)を求めたところ、上記表 1のようになった。なお、 着弾径の計測は、ドットの画像を画像処理した後、画像中のドットの外径を計測する ことにより行った。ドット画像の撮影には、キーエンス社製のレーザー顕微鏡を用いた [0073] The liquid ejecting apparatuses of Examples 13 and 13 and Comparative Example 1 ejected 1,000 droplets of the solution, and measured the diameter of dots that landed on the surface of the base material K, that is, the impact diameter. The variation rate (= standard deviation / average value) of the variation of the landing diameter was obtained, and the result is as shown in Table 1 above. The landing diameter was measured by processing the dot image and then measuring the outer diameter of the dot in the image. To capture the dot images, a Keyence laser microscope was used.
[0074] 表 1から分かるように、 1 /h2の値が 4 X 10— 4以下である実施例 1一 3では、着弹径 の変動率が 5%より小さぐ良好な結果が得られた。更に、 lZh2の値が 2 X 10— 4以下 である実施例 1, 2では、着弾径の変動率が 2%以下であり、より良好な結果が得られ た。一方、 1/h2の値が 4 X 10— 4より大きい比較例 1では、着弾径の変動率が 10%で あり、良好ではない結果となった。 [0074] As can be seen from Table 1, the value of 1 / h 2 is 4 X 10- 4 or less is Example 1 one 3, smaller than the variation rate of Chaku弹径5% instrument good results Was. Furthermore, in Example 1, 2 value of LZH 2 is 2 X 10- 4 or less, the variation rate of the landing diameter is 2% or less, better results were obtained. On the other hand, the value of 1 / h 2 is 4 X 10- 4 greater than Comparative Example 1, the fluctuation rate of the landing diameter is 10%, which resulted not good.
以上から、 1/h2の値を 4 X 10— 4以下、好ましくは 2 X 10— 4以下とすることにより、微 小液滴形成及び吐出量の安定性を高め、その結果、ドットの形状をより均一化できる ことがわかる。 From the above, 1 / h 2 value of 4 X 10- 4 or less, preferably by a 2 X 10- 4 or less, increases the stability of the fine small droplet formation and discharge amount, as a result, the dot shape Can be more uniform You can see that.
[実施例 2]  [Example 2]
[0075] <第 2の実施の形態の実施例 >  <Example of Second Embodiment>
本実施例においては、上記第 2の実施の形態の液体吐出装置 20として、以下の表 2に示すように、前記距離 h[ z m]とノズルの直径 R[ x m]との組合せ (h, R)が(230 , 2. 5)、(130, 2. 5)、 (80, 2. 5)、 (230, 6)、 (130, 6)、 (240, 9)であるもの、 つまり l/ (l + 5RZh)の値力 SO. 95, 0. 91 , 0. 86, 0. 88, 0. 81, 0. 84であるも のを形成した(実施例 4一 9参照)。また、対照として、前記距離 hとノズルの直径 と の組合せ(h, R)力 S (30, 2. 5)、(80, 6)、(30, 6)、 (140, 9)、 (80, 9)、 (30, 9) であるもの、つまり lZ ( l + 5R/h)の値力 71, 0. 73, 0. 50, 0. 76, 0. 64, 0. 40であるものを形成した(比較例 2— 7参照)。なお、これら実施例 4一 9及び比較例 2 一 7における距離 hの値を計測したところ、液体吐出装置の機械的精度と、基板 の 表面のうねり等とによって ± 5 [ /i m]の誤差が生じていた。  In the present embodiment, as shown in Table 2 below, a combination (h, R) of the distance h [zm] and the nozzle diameter R [xm] as the liquid ejection device 20 of the second embodiment described above. ) Is (230, 2.5), (130, 2.5), (80, 2.5), (230, 6), (130, 6), (240, 9), that is, l / (l + 5RZh) were formed with the values of SO.95, 0.91, 0.86, 0.88, 0.81 and 0.84 (see Examples 4-1 9). As a control, the combination of the distance h and the nozzle diameter (h, R) force S (30, 2.5), (80, 6), (30, 6), (140, 9), (80 , 9), (30, 9), that is, lZ (l + 5R / h) with a value of 71, 0.73, 0.50, 0.76, 0.64, 0.40 Formed (see Comparative Examples 2-7). When the value of the distance h was measured in Example 419 and Comparative Example 217, an error of ± 5 [/ im] was found due to the mechanical accuracy of the liquid ejection device and the undulation of the substrate surface. Had occurred.
また、これら実施例 4一 9及び比較例 2— 7において、溶液には「銀ナノペースト」 ( 商品名:ハリマ化成株式会社製)を用いた。また、ノズノレ 21として、ガラス製のノズル を用いた。また、吐出電圧電源 31による矩形パルス電圧は 350 [V]とした。更に、基 材 Kとして、ガラス板を用いた。  In Examples 419 and Comparative Examples 2-7, “Silver nanopaste” (trade name: manufactured by Harima Chemicals, Inc.) was used as the solution. In addition, a glass nozzle was used as the nozzle 21. The rectangular pulse voltage from the discharge voltage power supply 31 was set to 350 [V]. Further, a glass plate was used as the substrate K.
[0076] [表 2] [Table 2]
ノズル直径 距離 h 着弾径の変動率 Nozzle diameter Distance h Landing diameter fluctuation rate
1/ (1 +5R/h)  1 / (1 + 5R / h)
L u mJ [%J 実施例 4 2. 5 230 u. yo 1  L u mJ [% J Example 4 2. 5 230 u.yo 1
 "
実施例 5 2. 5 130 U. 91  Example 5 2.5 130 U. 91
実施例 6 2. 5 80 0. 86 0  Example 6 2.5 80 0.80
 "
比較例 2 2. 5 30 0. 71 10 実施例 7 6 230 0. 88 2 実施例 8 6 130 0. 81  Comparative Example 2 2.5 5 0 0.71 10 Example 7 6 230 0.88 2 Example 8 6 130 0.81
比較例 3 0 U. / Ό 比較例 4 6 30 0. 50 1 8 実施例 9 9 240 0. 84 3 比較例 5 9 140 0. 76 5 比較例 6 9 80 0. 64 8 比較例 7 9 30 0. 40 25 "  Comparative Example 3 0 U./Ό Comparative Example 4 6 30 0.50 1 8 Example 9 9 240 0.84 3 Comparative Example 5 9 140 0.76 5 Comparative Example 6 9 80 0.64 8 Comparative Example 7 9 30 0.40 25 "
[0077] これら実施例 4一 9及び比較例 2— 7の液体吐出装置によって溶液を: LOOO滴吐出 し、基材 Kの表面における着弾径を計測した。これら着弾径のバラツキの変動率(= 標準偏差 Z平均値)を求めたところ、上記表 2のようになった。 The solution was ejected by using the liquid ejecting apparatuses of Examples 4-1 9 and Comparative Examples 2-7: LOOO droplets, and the impact diameter on the surface of the substrate K was measured. The variation rate (= standard deviation Z average value) of these variations in landing diameter was calculated, and the results are as shown in Table 2 above.
[0078] 表 2から分かるように、 1/ (1 + 51 /11)の値が0. 8より大きい実施例 4一 9では、着 弾径の変動率が 5%より小さく、良好な結果が得られた。一方、 l/ ( l +5RZh)の 値が 0· 8以下である比較例 2—7では、着弾径の変動率が 5。/。以上であり、良好では ない結果となった。  [0078] As can be seen from Table 2, in Example 4-1 9 where the value of 1 / (1 + 51/11) was greater than 0.8, the variation rate of the impact diameter was less than 5%, and good results were obtained. Obtained. On the other hand, in Comparative Example 2-7 in which the value of l / (l + 5RZh) is 0.8 or less, the variation rate of the impact diameter is 5. /. This is not a good result.
以上から、 17 ( 1 + 51¾71 )の値を0. 8より大きくすることにより、微小液滴形成及 び吐出量の安定性を高め、その結果、ドットの形状を均一化できることがわかる。  From the above, it can be seen that by setting the value of 17 (1 + 51¾71) to be greater than 0.8, the stability of the formation of fine droplets and the ejection amount can be improved, and as a result, the dot shape can be made uniform.
[0079] また、表 2からは、ノズルの先端部の内部直径が小さいほど、距離 hの変化に起因 する着弾径の変動率が小さレ、ことが分かる。  Further, from Table 2, it can be seen that the smaller the inner diameter of the tip portion of the nozzle, the smaller the rate of change in the impact diameter due to the change in the distance h.
産業上の利用可能性  Industrial applicability
[0080] 以上のように、本発明に係る液体吐出装置及び液体吐出方法は、ノズルの先端部 から基材までの距離の変化に関わらず、基材及びノズル周辺の電界強度の変化^ 抑制するのに有用であり、特に、微小液滴形成及び吐出量の安定性を高め、かつ吐 出応答性を改善し、かつノズノレの先端部に高電圧を印加するのに適している。 符号の説明 As described above, in the liquid ejection apparatus and the liquid ejection method according to the present invention, irrespective of the change in the distance from the tip of the nozzle to the base material, the change in the electric field strength around the base material and the nozzle ^ It is useful for suppressing, particularly suitable for enhancing the stability of the formation of fine droplets and the discharge amount, improving the discharge response, and applying a high voltage to the tip of the nose. Explanation of reference numerals
20 液体吐出装置 20 Liquid ejection device
21 ノズノレ 21 Nozore
25 吐出電圧印加手段  25 Discharge voltage applying means
26 液体吐出 26 Liquid ejection
K 基材 K substrate

Claims

請求の範囲 The scope of the claims
[1] 帯電した溶液の液滴を基材に吐出する液体吐出装置であって、  [1] A liquid ejection device for ejecting droplets of a charged solution to a substrate,
内部直径が 25[ μ m]以下の先端部から前記液滴を吐出するノズルを有する液体吐 出ヘッド、と、  A liquid ejection head having a nozzle for ejecting the droplet from the tip having an inner diameter of 25 [μm] or less;
前記ノズノレ内の溶液に吐出電圧を印加する吐出電圧印加手段とを備え、 前記ノズノレの先端部から前記基材までの距離 h[ μ m]は、  Discharge voltage applying means for applying a discharge voltage to the solution in the nose, the distance h [μm] from the tip of the nose to the substrate,
l/h2<4X10— 4 l / h 2 <4X10— 4
を満たすことを特徴とする液体吐出装置。  A liquid ejection device characterized by satisfying the following.
[2] 前記距離 hは、 [2] The distance h is
l/h2<2X10— 4 l / h 2 <2X10— 4
を満たすことを特徴とする請求の範囲第 1項に記載の液体吐出装置。  2. The liquid ejection device according to claim 1, wherein the liquid ejection device satisfies the following.
[3] 帯電した溶液の液滴を基材に吐出する液体吐出装置であって、 [3] A liquid ejection device for ejecting droplets of the charged solution to a substrate,
内部直径 Rが 25[ μ m]以下の先端部から前記液滴を吐出するノズルを有する液体 吐出ヘッドと、  A liquid ejection head having a nozzle for ejecting the droplet from a tip having an inner diameter R of 25 [μm] or less;
前記ノズノレ内の溶液に吐出電圧を印加する吐出電圧印加手段とを備え、 前記内部直径 R[ μ m]と前記ノズルの先端部から前記基材までの距離 h[ jum]と は、  Discharge voltage applying means for applying a discharge voltage to the solution in the nozzle, wherein the internal diameter R [μm] and the distance h [jum] from the tip of the nozzle to the substrate are:
l/(l + 5R/h) >0. 8  l / (l + 5R / h)> 0.8
を満たすことを特徴とする液体吐出装置。  A liquid ejection device characterized by satisfying the following.
[4] 前記距離 hは、 500 [ xm]以下であることを特徴とする請求の範囲第 1項一第 3項の 何れか一項に記載の液体吐出装置。 [4] The liquid ejection device according to any one of claims 1 to 3, wherein the distance h is equal to or less than 500 [xm].
[5] 帯電した溶液の液滴を基材に吐出する液体吐出方法であって、 [5] A liquid ejection method for ejecting droplets of the charged solution to a base material,
液体吐出ヘッドとして、内部直径が 25[μ m]以下の先端部から前記液滴を吐出す るノズノレを有するものを用い、  As the liquid discharge head, a liquid discharge head having a nose that discharges the droplet from the tip having an internal diameter of 25 [μm] or less is used.
前記ノズノレの先端部から前記基材までの距離 h[ xm]を、  The distance h [xm] from the tip of the nose to the substrate,
l/h2<4X10— 4 l / h 2 <4X10— 4
とした状態で、  In the state
前記ノズノレ内の溶液に吐出電圧を印加することにより前記ノズルから前記液滴を吐 出させることを特徴とする液体吐出方法。 The droplet is ejected from the nozzle by applying an ejection voltage to the solution in the nozzle. A liquid discharging method characterized in that the liquid is discharged.
[6] 前記距離 hを、  [6] The distance h is
l/h2<2X10— 4 l / h 2 <2X10— 4
とした状態で、  In the state
前記ノズノレ内の溶液に吐出電圧を印加することを特徴とする請求の範囲第 5項に 記載の液体吐出方法。  6. The liquid discharging method according to claim 5, wherein a discharging voltage is applied to the solution in the nozzle.
[7] 帯電した溶液の液滴を基材に吐出する液体吐出方法であって、 [7] A liquid ejection method for ejecting droplets of the charged solution to a base material,
液体吐出ヘッドとして、内部直径 Rが 25[μ m]以下の先端部から前記液滴を吐出す るノズノレを有するものを用い、  As the liquid discharge head, a liquid discharge head having a nose that discharges the droplet from a tip portion having an inner diameter R of 25 [μm] or less is used.
前記内部直径 R[ μ m]と前記ノズルの先端部から前記基材までの距離 h[ jum]と を、  The internal diameter R [μm] and the distance h [jum] from the tip of the nozzle to the substrate are represented by:
l/(l + 5R/h) >0. 8  l / (l + 5R / h)> 0.8
とした状態で、  In the state
前記ノズノレ内の溶液に吐出電圧を印加することにより前記ノズルから前記液滴を吐 出させることを特徴とする液体吐出方法。  A liquid discharge method, wherein the liquid droplet is discharged from the nozzle by applying a discharge voltage to the solution in the nozzle.
[8] 前記距離 hを、 500 [μΐη]以下とした状態で、 [8] With the distance h set to 500 [μΐη] or less,
前記ノズノレ内の溶液に吐出電圧を印加することを特徴とする請求の範囲第 5項一 第 7項の何れか一項に記載の液体吐出方法。  8. The liquid ejection method according to claim 5, wherein an ejection voltage is applied to the solution in the nozzle.
PCT/JP2004/010833 2003-08-08 2004-07-29 Liquid jetting device and liquid jetting method WO2005014290A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005512921A JPWO2005014290A1 (en) 2003-08-08 2004-07-29 Liquid ejection apparatus and liquid ejection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003290497 2003-08-08
JP2003-290497 2003-08-08

Publications (1)

Publication Number Publication Date
WO2005014290A1 true WO2005014290A1 (en) 2005-02-17

Family

ID=34131590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010833 WO2005014290A1 (en) 2003-08-08 2004-07-29 Liquid jetting device and liquid jetting method

Country Status (3)

Country Link
JP (2) JPWO2005014290A1 (en)
TW (1) TW200517268A (en)
WO (1) WO2005014290A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121574A (en) * 2011-12-12 2013-06-20 Ulvac Japan Ltd Coating method and coating apparatus
KR101392272B1 (en) 2012-09-24 2014-05-07 엔젯 주식회사 Printing apparatus capable of controlling inejection precisely

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244673A (en) * 1997-03-04 1998-09-14 Nec Niigata Ltd Printing head gap regulating mechanism
JPH11245390A (en) * 1998-03-04 1999-09-14 Hitachi Ltd Ink-jet recording apparatus
JP2001137758A (en) * 1999-11-16 2001-05-22 Dainippon Printing Co Ltd Method for controlling electric field discharge and discharge head
WO2002004216A1 (en) * 2000-07-12 2002-01-17 Hitachi, Ltd. Ink jet recorder
JP2002172787A (en) * 2000-12-08 2002-06-18 Ricoh Co Ltd Recording method using liquid developer
JP2003211718A (en) * 2001-10-18 2003-07-29 Fuji Photo Film Co Ltd Imaging method and imaging apparatus
JP2004165587A (en) * 2002-02-21 2004-06-10 National Institute Of Advanced Industrial & Technology Superfine fluid jet device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263818A (en) * 1999-03-12 2000-09-26 Seiko Epson Corp Ink jet recorder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244673A (en) * 1997-03-04 1998-09-14 Nec Niigata Ltd Printing head gap regulating mechanism
JPH11245390A (en) * 1998-03-04 1999-09-14 Hitachi Ltd Ink-jet recording apparatus
JP2001137758A (en) * 1999-11-16 2001-05-22 Dainippon Printing Co Ltd Method for controlling electric field discharge and discharge head
WO2002004216A1 (en) * 2000-07-12 2002-01-17 Hitachi, Ltd. Ink jet recorder
JP2002172787A (en) * 2000-12-08 2002-06-18 Ricoh Co Ltd Recording method using liquid developer
JP2003211718A (en) * 2001-10-18 2003-07-29 Fuji Photo Film Co Ltd Imaging method and imaging apparatus
JP2004165587A (en) * 2002-02-21 2004-06-10 National Institute Of Advanced Industrial & Technology Superfine fluid jet device

Also Published As

Publication number Publication date
JPWO2005014290A1 (en) 2007-09-27
TW200517268A (en) 2005-06-01
JP2011126282A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP3956222B2 (en) Liquid ejection device
JP3956224B2 (en) Liquid ejection device
WO2006067966A1 (en) Liquid ejection head, liquid ejection device, and liquid ejection method
WO2006011403A1 (en) Liquid discharging device
JP4372101B2 (en) Liquid ejection apparatus, liquid ejection method, and circuit board wiring pattern forming method
JP4218949B2 (en) Electrostatic suction type liquid discharge head manufacturing method, nozzle plate manufacturing method, electrostatic suction type liquid discharge head driving method, and electrostatic suction type liquid discharge device
JP4893823B2 (en) Liquid discharge head and liquid discharge apparatus
KR100939584B1 (en) Liquid jetting device
WO2006068036A1 (en) Liquid ejector
US7703870B2 (en) Liquid ejection apparatus
JP2006315232A (en) Liquid ejector
JP4218948B2 (en) Liquid ejection device
JP4830299B2 (en) Liquid ejection device
WO2005014290A1 (en) Liquid jetting device and liquid jetting method
JP4715214B2 (en) Liquid discharge head and liquid discharge apparatus
JP3956223B2 (en) Liquid ejection device
JP2005067046A (en) Liquid discharging method and liquid discharging device
JP2004136657A (en) Liquid ejector and its manufacturing process
JP4335612B2 (en) Liquid ejection method and wiring pattern forming method
JP2006181926A (en) Liquid ejection head, liquid ejection device, and liquid ejecting method
JP2006035585A (en) Liquid discharge device
JP2004136658A (en) Liquid ejector and its solution supply method
JP2005059301A (en) Method for ejecting liquid and impact object
JP2005059297A (en) Liquid ejector and liquid ejecting method
JP2006175296A (en) Liquid delivery apparatus and liquid delivery method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512921

Country of ref document: JP

122 Ep: pct application non-entry in european phase