WO2005013967A1 - Medicaments comprising pde iv inhibitors and a novel anticholinergic and their use for treating respiratory disorders - Google Patents

Medicaments comprising pde iv inhibitors and a novel anticholinergic and their use for treating respiratory disorders Download PDF

Info

Publication number
WO2005013967A1
WO2005013967A1 PCT/EP2004/008003 EP2004008003W WO2005013967A1 WO 2005013967 A1 WO2005013967 A1 WO 2005013967A1 EP 2004008003 W EP2004008003 W EP 2004008003W WO 2005013967 A1 WO2005013967 A1 WO 2005013967A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
hydroxy
benzyl
benzoylamino
nicotinamide
Prior art date
Application number
PCT/EP2004/008003
Other languages
French (fr)
Inventor
Sabine Germeyer
Christopher John Montague Meade
Helmut Meissner
Gerd Morschhaeuser
Michel Pairet
Sabine Pestel
Michael P. Pieper
Gerald Pohl
Richard Reichl
Georg Speck
Original Assignee
Boehringer Ingelheim International Gmbh
Boehringer Ingelheim Pharma Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim International Gmbh, Boehringer Ingelheim Pharma Gmbh & Co. Kg filed Critical Boehringer Ingelheim International Gmbh
Priority to JP2006521453A priority Critical patent/JP2007500148A/en
Priority to EP04741118A priority patent/EP1651208A1/en
Priority to CA002533786A priority patent/CA2533786A1/en
Publication of WO2005013967A1 publication Critical patent/WO2005013967A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4015Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having oxo groups directly attached to the heterocyclic ring, e.g. piracetam, ethosuximide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/468-Azabicyclo [3.2.1] octane; Derivatives thereof, e.g. atropine, ***e
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0078Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a nebulizer such as a jet nebulizer, ultrasonic nebulizer, e.g. in the form of aqueous drug solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/008Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy comprising drug dissolved or suspended in liquid propellant for inhalation via a pressurized metered dose inhaler [MDI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to novel pharmaceutical compositions based on PDE IN 5 inhibitors and salts of a new anticholinergic, processes for preparing them and their use in the treatment of respiratory complaints.
  • the present invention relates to novel pharmaceutical compositions based on PDE IV 10 inhibitors and salts of a new anticholinergic 1, processes for preparing them and their use in the treatment of respiratory complaints.
  • the anticholinergic agents used are the Salts of formula 1 15
  • an anion with a single negative charge preferably an anion selected from the group consisting of fluoride, chloride, bromide, iodide, sulphate, 20 phosphate, methanesulphonate, nitrate, maleate, acetate, citrate, fumarate, tartrate, oxalate, succinate, benzoate and p-toluenesulphonate.
  • the salts of formula 1 are used wherein X " denotes an anion with a single negative charge selected from among the 25 fluoride, chloride, bromide, 4-toluenesulphonate and methanesulphonate, preferably bromide.
  • the salts of formula 1 are used wherein X " denotes an anion with a single negative charge selected from among the chloride, bromide and methanesulphonate, preferably bromide.
  • an unexpectedly beneficial therapeutic effect can be observed in the treatment of inflammatory and/or obstructive diseases of the respiratory tract if the anticholinergic of formula 1 is used with one or more PDE IV inhibitors 2.
  • any reference to the compound V_ is to be regarded as a reference to the pharmacologically active cation of the following formula contained in the salts 1 :
  • the active substances may be combined in a single preparation or contained in two separate formulations.
  • Pharmaceutical compositions which contain the active substances 1 and 2 in a single preparation are preferred according to the invention.
  • PDE IV inhibitors 2 in the combinations according to the invention are selected from the group consisting of enprofylline, theophylline, roflumilast, ariflo (cilomilast), CP-325,366, BY343, D-4396 (Sch-351591), AWD-12-281 (GW-842470), N-(3,5-dichloro-l-oxo-pyridin-4-yl)-4-difluoromethoxy-3- cyclopropylmethoxybenzamide, NCS-613, pumafentine, (-)p-[(4 ⁇ R*J0bS*)-9-ethoxy- 1 ,2,3 ,4,4a, 10b-hexahydro-8-methoxy-2methylbenzo [s] [ 1 ,6]naphthyridin-6-yl]-N,N- diisopropylbenzamide, (R)-(+)-l-(4-bromobenz
  • the PDE IV inhibitors 2 are selected from the group consisting of enprofylline, roflumilast, ariflo (cilomilast), AWD-12-281 (GW-842470), N-(3,5-dichloro-l-oxo-pyridin-4-yl)-4-difluoromethoxy-3- cyclopropylmethoxybenzamide, T-440, T-2585, arofylline, cis[4-cyano-4-(3- cyclopentyloxy-4-methoxyphenyl)cyclohexan-l-carboxylic acid] , 2-carbomethoxy-4- cyano-4-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan-l-one, cis[4-cyano- 4-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan-l-one, cis[4
  • the PDE IV inhibitors 2 are selected from the group consisting of roflumilast, ariflo (cilomilast), AWD-12-281 (GW- 842470), arofylline, Z-15370, 2-carbomethoxy-4-cyano-4-(3-cyclopropylmethoxy-4- ( ⁇ fluoromethoxyphenyl)cyclohexan-l-one, cis[4-cyano-4-(3-cyclopropylmethoxy-4- difluoromethoxyphenyl)cyclohexan-l-ol], atizoram, 9-cyclopentyl-5,6-dihydro-7-ethyl-3- (2-thienyl)-9H-pyrazolo[3,4-c]-l ,2,4-triazolo[4,3-a]pyridine, and 9-cyclopentyl-5,6- dihydro-7-ethyl-3-(tert-butyl)-9H-pyra
  • the PDE TV inhibitors 2 are selected from the group consisting of 2-(4-fluoro-phenoxy)-N- ⁇ 4-[(6-fluoro-2-hydroxy- benzoylamino)-methyl]-benzyl ⁇ nicotinamide, 2-(4-fluoro-phenoxy)-N- ⁇ 4-[(5-fluoro-2- hydroxy-benzoylamino)-methyl]-benzyl ⁇ nicotinamide, 2-(4-fluoro-phenoxy)-N- ⁇ 4-[(3- hydroxy-4-methyl-benzoylamino)methyl]benzyl ⁇ nicotinamide, 2-(4-fluoro-phenoxy)-N- ⁇ 4- [(3hydroxy-benzoylamino)-methyl] -benzyl ⁇ nicotinamide, 2-(4-f_uoro-phenoxy)-N- ⁇ 4- [(2-hydroxy-benzoylamino)methyl]-
  • a suitable salt thereof may be formed by reactmg the compound with an appropriate base to provide the corresponding base addition salt.
  • bases include alkali metal hydroxides including potassium hydroxide, sodium hydroxide, and lithium hydroxide; alkaline earth metal hydroxides such as barium hydroxide and calcium hydroxide; alkali metal alkoxides, e.g., potassium ethanolate and sodium propanolate; and various organic bases such as piperidine, diethanolamine, and N- methylglutamine.
  • the aluminum salts of the component compounds of the present invention are also included.
  • acid addition salts may be formed by treating said compounds with pharmaceutically acceptable organic and inorganic acids, e.g., hydrohalides such as hydrochloride, hydrobromide, hydroiodide; other mineral acids and their corresponding salts such as sulfate, nitrate, phosphate, etc.; and alkyl- and mono- arylsulfonates such as ethanesulfonate, toluenesulfonate, and benzenesulfonate; and other organic acids and their corresponding salts such as acetate, tartrate, maleate, succinate, citrate, benzoate, salicylate, ascorbate, etc.
  • organic and inorganic acids e.g., hydrohalides such as hydrochloride, hydrobromide, hydroiodide
  • other mineral acids and their corresponding salts such as sulfate, nitrate, phosphate, etc.
  • alkyl- and mono- arylsulfonates such as
  • the pharmaceutically acceptable acid addition salts of the component compounds of the present invention include, but are not limited to: acetate, adipate, alginate, arginate, aspartate, benzoate, benzenesulfonate (besylate), bisulfate, bisulfite, bromide, butyrate, camphorate, camphorsulfonate, caprylate, chloride, chlorobenzoate, citrate, cyclopentanepropionate, digluconate, dihydrogenphosphate, dinitrobenzoate, dodecylsulfate, ethanesulfonate, fumarate, galacterate (from mucic acid), galacturonate, glucoheptanoate, gluconate, glutamate, glycerophosphate, hemisuccinate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-
  • Particularly preferred examples of pharmacologically acceptable acid addition salts of the compounds 2 according to the invention are the pharmaceutically acceptable salts which are selected from among the salts of hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methanesulphonic acid, acetic acid, fumaric acid, succinic acid, lactic acid, citric acid, tartaric acid; l-hydroxy-2-naphthalenecarboxylic acid or maleic acid. If desired, mixtures of the abovementioned acids may also be used to prepare the salts 2.
  • the compounds 2 may be present in the form of their racemates, enantiomers or mixtures thereof.
  • the separation of the enantiomers from the racemates may be carried out using methods known in the art (e.g. by chromatography on chiral phases, etc.).
  • the present invention relates to the abovementioned pharmaceutical compositions which contain, in addition to therapeutically effective quantities of 1 and 2, a pharmaceutically acceptable carrier.
  • the present invention relates to the abovementioned pharmaceutical compositions which do not contain any pharmaceutically acceptable carrier in addition to therapeutically effective quantities of 1 and 2.
  • the present invention also relates to the use of therapeutically effective quantities of the salts 1 for preparing a pharmaceutical composition containing PDE IN inhibitors 2 for treating inflammatory or obstructive diseases of the respiratory tract.
  • the present invention relates to the abovementioned use for preparing a pharmaceutical composition for treating asthma or COPD.
  • the compounds 1 and 2 may be administered simultaneously or successively, while it is preferable according to the invention to administer compounds 1 und 2 simultaneously.
  • the present invention further relates to the use of therapeutically effect amounts of salts 1 and PDEIV inhibitors 2 for treating inflammatory or obstructive respiratory complaints, particularly asthma or COPD.
  • the proportions in which the active substances 1 and 2 may be used in the active substance combinations according to the invention are variable. Active substances 1 and 2 may possibly be present in the form of their solvates or hydrates. Depending on the choice of the compounds 1 and 2, the weight ratios which may be used within the scope of the present invention vary on the basis of the different molecular weights of the various salt forms.
  • the pharmaceutical combinations according to the invention may contain compounds 1 and 2 in ratios by weight ranging from 1:100 to 100:1, preferably from 1:80 to 80:1.
  • the weight ratios of 1 to 2 are most preferably in a range in which T and 2 are present in proportions of about 1:50 to 50:1, more preferably from 1:20 to 20:1.
  • V and PDE-IV inhibitor 2 may be used as for instance ariflo, roflumilast or AWD-12-281.
  • compositions according to the invention containing the combinations of 1 and 2 are normally administered so that 1 and 2 are present together in doses of 0.01 to lOOOO ⁇ g, preferably from 0J to 5000 ⁇ g, more preferably from 1 to 3000 ⁇ g, better still from 10 to 2000 ⁇ g, better still from 20 to 1500 ⁇ g, yet more preferred from 50 to 1200 ⁇ g per single dose.
  • combinations of 1 and 2 according to the invention contain a quantity of V_ and PDE-IV inhibitor 2 (as for instance ariflo, roflumilast or AWD-12-281) such that the total dosage per single dose is about lOO ⁇ g, 105 ⁇ g, HO ⁇ g, 115 ⁇ g, 120 ⁇ g, 125 ⁇ g, 130 ⁇ g, 135 ⁇ g, 140 ⁇ g, 145 ⁇ g, 150 ⁇ g, 155 ⁇ g, 160 ⁇ g, 165 ⁇ g, 170 ⁇ g, 175 ⁇ g, 180 ⁇ g, 185 ⁇ g, 190 ⁇ g, 195 ⁇ g, 200 ⁇ g, 205 ⁇ g, 210 ⁇ g, 215 ⁇ g, 220 ⁇ g, 225 ⁇ g, 230 ⁇ g, 235 ⁇ g, 240 ⁇ g, 245 ⁇ g, 250 ⁇ g, 255 ⁇ g, 260 ⁇ g, 265/xg, 270 ⁇ g, 275 ⁇ g, 280 ⁇ g, 285 ⁇ g, 290 ⁇ g, 295 ⁇ g, 300 ⁇
  • the combinations of 1 and 2 according to the invention may contain a quantity of V_ and PDE-IV inhibitor 2 (as for instance ariflo,'roflumilast or AWD-12-281) such that, for each single dose, 16.5 ⁇ g of V and 25 ⁇ g of 2, 16.5 ⁇ g of V and 50 ⁇ g of 2, 16.5 ⁇ g of V and lOO ⁇ g of 2, 16.5 ⁇ g of
  • the quantities of active substance £ and 2 administered per single dose mentioned before by way of example correspond to the following quantities of 1 and 2 administered per single dose: 20 ⁇ g of 1 and 25 ⁇ g of 2, 20 ⁇ g of 1 and 50 ⁇ g of 2, 20 ⁇ g of 1 and lOO ⁇ g of 2, 20 ⁇ g of 1 and 200 ⁇ g of 2, 20 ⁇ g of 1 and 300 ⁇ g of 2, 20 ⁇ g of 1 and 400 ⁇ g of 2, 20 ⁇ g of 1 and 500 ⁇ g of 2, 20 ⁇ g of 1 and 600 ⁇ g of 2, 20 ⁇ g of 1 and 700 ⁇ g of 2, 20 ⁇ g of 1 and 800 ⁇ g of 2, 20 ⁇ g of 1 and 900 ⁇ g of 2, 20 ⁇ g of 1 and lOOO ⁇ g of 2, 20 ⁇ g of 1 and 1250 ⁇ g of 2, 20 ⁇ g of 1 and 1500 ⁇ g of 2, 20 ⁇ g of 1 and 1750 ⁇ g of 2, 20 ⁇ g of 1 and 2000 ⁇ g of 2, 40 ⁇ g of 1 and 25 ⁇ g
  • the aforementioned examples of possible doses applicable for the combinations according to the invention are to be understood as referring to doses per single application. However, these examples are not be understood as excluding the possibility of administering the combinations according to the invention multiple times. Depending on the medical need patients may receive also multiple inhalative applications. As an example patients may receive the combinations according to the invention for instance two or three times (e.g. two or three puffs with a powder inhaler, an MDI etc) in the morning of each treatment day. As the aforementioned dose examples are only to be understood as dose examples per single application (i.e. per puff) multiple application of the combinations according to the invention leads to multiple doses of the aforementioned examples.
  • the application of the combositions according to the invention can be for instance once a day, or depending on the duration of action of the anticholinergic agent twice a day, or once every 2 or 3 days.
  • the aforementioned dose examples are to be understood as examples of metered doses only. In other terms, the aforementioned dose examples are not to be understood as the effective doses of the combinations according to the invention that do in fact reach the lung. It is clear for the person of ordinary skill in the art that the delivered dose to the lung is generally lower than the metered dose of the administered active ingredients.
  • the active substance combinations of 1 and 2 according to the invention are preferably administered by inhalation.
  • ingredients 1 and 2 have to be made available in forms suitable for inhalation.
  • Inhalable preparations according to the invention include inhalable powders, propellant-containing metered dose aerosols or propellant-free inhalable solutions.
  • Inhalable powders according to the invention containing the combination of active substances 1 and 2 may consist of the active substances on their own or of a mixture of the active substances with physiologically acceptable excipients.
  • the term carrier may optionally be used instead of the term excipient.
  • propellant-free inhalable solutions also includes concentrates or sterile inhalable solutions ready for use.
  • the preparations according to the invention may contain the combination of active substances 1 and 2 either together in one formulation or in two separate formulations. These formulations which may be used within the scope of the present invention are described in more detail in the next part of the specification.
  • the inhalable powders according to the invention may contain 1 and 2 either on their own or in admixture with suitable physiologically acceptable excipients.
  • physiologically acceptable excipients may be used to prepare these inhalable powders according to the invention: monosaccharides (e.g. glucose or arabinose), disaccharides (e.g. lactose, saccharose, maltose, trehalose), oligo- and polysaccharides (e.g. dextran), polyalcohols (e.g. sorbitol, mannitol, xylitol), cyclodextrines (e.g.
  • monosaccharides e.g. glucose or arabinose
  • disaccharides e.g. lactose, saccharose, maltose, trehalose
  • oligo- and polysaccharides e.g. dextran
  • polyalcohols e.g. sorbitol, mannitol, xylitol
  • cyclodextrines e.g.
  • -cyclodextrine ⁇ -cyclodextrine, ⁇ -cyclodextrine, methyl- ⁇ - cyclodextrine, hydroxypropyl- ⁇ -cyclodextrine
  • salts e.g. sodium chloride, calcium carbonate
  • mono- or disaccharides are used, while the use of lactose, trehalose or glucose is preferred, particularly, but not exclusively, in the form of their hydrates.
  • the excipients have a maximum average particle size of up to 250 ⁇ m, preferably between 10 and 150 ⁇ m, most preferably between 15 and 80 ⁇ m. It may sometimes seem appropriate to add finer excipient fractions with an average particle size of 1 to 9 ⁇ m to the excipient mentioned above. These finer excipients are also selected from the group of possible excipients listed hereinbefore. Finally, in order to prepare the inhalable powders according to the invention, micronised active substance 1 and 2, preferably with an average particle size of 0.5 to lO ⁇ m, more preferably from 1 to 6 ⁇ m, is added to the excipient mixture.
  • inhalable powders according to the invention may be prepared and administered either in the form of a single powder mixture which contains both 1 and 2 or in the form of separate inhalable powders which contain only 1 or 2.
  • the inhalable powders according to the invention may be administered using inhalers known from the prior art.
  • Inhalable powders according to the invention which contain one or more physiologically acceptable excipients in addition to 1 and 2 may be administered, for example, by means of inhalers which deliver a single dose from a supply using a measuring chamber as described in US 4570630A, or by other means as described in DE 36 25 685 A.
  • the inhalable powders according to the invention which contain 1 and 2 optionally in conjunction with a physiologically acceptable excipient may be administered, for example, using the inhaler known by the name Turbuhaler ® or using inhalers as disclosed for example in EP 237507 A.
  • the inhalable powders according to the invention which contain physiologically acceptable excipient in addition to 1 and 2 are packed into capsules (to produce so-called inhalettes) which are used in inhalers as described, for example, in WO 94/28958.
  • FIG. 1 A particularly preferred inhaler for using the pharmaceutical combination according to the invention in inhalettes is shown in Figure 1.
  • This inhaler for inhaling powdered pharmaceutical compositions from capsules is characterised by a housing 1 containing two windows 2, a deck 3 in which there are air inlet ports and which is provided with a screen 5 secured via a screen housing 4, an inhalation chamber 6 connected to the deck 3 on which there is a push button 9 provided with two sharpened pins 7 and movable counter to a spring 8, and a mouthpiece 12 which is connected to the housing 1, the deck 3 and a cover 11 via a spindle 10 to enable it to be flipped open or shut, as well as airholes 13 for adjusting the flow resistance.
  • a housing 1 containing two windows 2, a deck 3 in which there are air inlet ports and which is provided with a screen 5 secured via a screen housing 4, an inhalation chamber 6 connected to the deck 3 on which there is a push button 9 provided with two sharpened pins 7 and movable counter to a spring 8, and a mouthpiece 12 which is connected to the housing 1, the deck 3 and a cover 11 via a spindle 10
  • the quantities packed into each capsule should be 1 to 30mg per capsule.
  • These capsules contain, according to the invention, either together or separately, the doses of 1 or £ and 2 mentioned hereinbefore for each single dose.
  • Inhalation aerosols containing propellant gas according to the invention may contain substances 1 and 2 dissolved in the propellant gas or in dispersed form. 1 and 2 may be present in separate formulations or in a single preparation, in which 1 and 2 are either both dissolved, both dispersed or only one component is dissolved and the other is dispersed.
  • the propellant gases which may be used to prepare the inhalation aerosols according to the invention are known from the prior art. Suitable propellant gases are selected from among hydrocarbons such as n-propane, n-butane or isobutane and halohydrocarbons such as fluorinated derivatives of methane, ethane, propane, butane, cyclopropane or cyclobutane.
  • propellant gases mentioned above may be used on their own or in mixtures thereof.
  • Particularly preferred propellant gases are halogenated alkane derivatives selected from TGI 1, TG12, TG134a (lJJ,2Jetrafluoroethane) and TG227 (1,1,1,2,3,3,3- heptafluoropropane) and mixtures thereof, of which the propellant gases TG134a, TG227 and mixtures thereof are preferred.
  • the propellant-driven inhalation aerosols according to the invention may also contain other ingredients such as co-solvents, stabilisers, surfactants, antioxidants, lubricants and pH adjusters. All these ingredients are known in the art.
  • the inhalation aerosols containing propellant gas according to the invention may contain up to 5 wt.-% of active substance 1 and/or 2. Aerosols according to the invention contain, for example, 0.002 to 5 wt.-%, 0.01 to 3 wt.-%, 0.015 to 2 wt.-%, 0.1 to 2 wt.- , 0.5 to 2 wt.-% or 0.5 to 1 wt.-% of active substance 1 and/or 2.
  • the particles of active substance preferably have an average particle size of up to lO ⁇ m, preferably from 0J to 6 ⁇ m, more preferably from 1 to 5 ⁇ m.
  • the present invention relates to pharmaceutical compositions in the form of propellant-driven aerosols as hereinbefore described combined with one or more inhalers suitable for administering these aerosols.
  • the present invention relates to inhalers which are characterised in that they contain the propellant gas- containing aerosols described above according to the invention.
  • the present invention also relates to cartridges fitted with a suitable valve which can be used in a suitable inhaler and which contain one of the above-mentioned propellant gas-containing inhalation aerosols according to the invention. Suitable cartridges and methods of filling these cartridges with the inhalable aerosols containing propellant gas according to the invention are known from the prior art.
  • Propellant-free inhalable solutions and suspensions according to the invention contain, for example, aqueous or alcoholic, preferably ethanolic solvents, optionally ethanolic solvents mixed with aqueous solvents. If aqueous/ethanolic solvent mixtures are used the relative proportion of ethanol compared with water is not limited but preferably the maximum is up to 70 percent by volume, more particularly up to 60 percent by volume of ethanol. The remainder of the volume is made up of water.
  • the solutions or suspensions containing 1 and 2, separately or together, are adjusted to a pH of 2 to 7, preferably 2 to 5, using suitable acids. The pH may be adjusted using acids selected from inorganic or organic acids.
  • Examples of particularly suitable inorganic acids include hydrochloric acid, hydrobromic acid, nitric acid, sulphuric acid and/or phosphoric acid.
  • Examples of particularly suitable organic acids include ascorbic acid, citric acid, malic acid, tartaric acid, maleic acid, succinic acid, fumaric acid, acetic acid, formic acid and/or propionic acid etc.
  • Preferred inorganic acids are hydrochloric and sulphuric acids. It is also possible to use the acids which have already formed an acid addition salt with one of the active substances. Of the organic acids, ascorbic acid, fumaric acid and citric acid are preferred.
  • mixtures of the above acids may be used, particularly in the case of acids which have other properties in addition to their acidifying qualities, e.g. as flavourings, antioxidants or complexing agents, such as citric acid or ascorbic acid, for example.
  • the addition of editic acid (EDTA) or one of the known salts thereof, sodium editate, as stabiliser or complexing agent is unnecessary in the present formulation.
  • Other embodiments may contain this compound or these compounds.
  • the content based on sodium editate is less than lOOmg lOOml, preferably less than 50mg/100 ml, more preferably less than 20mg/100 ml.
  • inhalable solutions ' in which the content of sodium editate is from 0 to lOmg/lOOml are preferred.
  • Co-solvents and/or other excipients may be added to the propellant-free inhalable solutions according to the invention.
  • Preferred co-solvents are those which contain hydroxyl groups or other polar groups, e.g. alcohols - particularly isopropyl alcohol, glycols - particularly propyleneglycol, polyethyleneglycol, polypropyleneglycol, glycolether, glycerol, polyoxyethylene alcohols and polyoxyethylene fatty acid esters.
  • excipients and additives in this context denote any pharmacologically acceptable substance which is not an active substance but which can be formulated with the active substance or substances in the pharmacologically suitable solvent in order to improve the qualitative properties of the active substance formulation.
  • these substances have no pharmacological effect or, in connection with the desired therapy, no appreciable or at least no undesirable pharmacological effect.
  • the excipients and additives include, for example, surfactants such as soya lecithin, oleic acid, sorbitan esters, such as polysorbates, polyvinylpyrrolidone, other stabilisers, complexing agents, antioxidants and/or preservatives which guarantee or prolong the shelf life of the finished pharmaceutical formulation, flavourings, vitamins and/or other additives known in the art.
  • the additives also include pharmacologically acceptable salts such as sodium chloride as isotonic agents.
  • the preferred excipients include antioxidants such as ascorbic acid, for example, provided that it has not already been used to adjust the pH, vitamin A, vitamin E, tocopherols and similar vitamins and provitamins occurring in the human body.
  • Preservatives may be used to protect the formulation from contamination with pathogens. Suitable preservatives are those which are known in the art, particularly cetyl pyridinium chloride, benzalkonium chloride or benzoic acid or benzoates such as sodium benzoate in the concentration known from the prior art.
  • the preservatives mentioned above are preferably present in concentrations of up to 50mg/100ml, more preferably between 5 and 20mg/100ml.
  • Preferred formulations contain, in addition to the solvent water and the combination of active substances 1 and 2, only benzalkonium chloride and sodium editate. In another preferred embodiment, no sodium editate is present.
  • the propellant-free inhalable solutions according to the invention are administered in particular using inhalers of the kind which are capable of nebulising a small amount of a liquid formulation in the therapeutic dose within a few seconds to produce an aerosol suitable for therapeutic inhalation.
  • preferred inhalers are those in which a quantity of less than lOO ⁇ L, preferably less than 50 ⁇ L, more preferably between 20 and 30 ⁇ L of active substance solution can be nebulised in preferably one spray action to form an aerosol with an average particle size of less than 20 ⁇ m, preferably less than lO ⁇ m, in such a way that the inhalable part of the aerosol corresponds to the therapeutically effective quantity.
  • nebulisers devices described therein are known by the name Respimat®.
  • This nebuliser can advantageously be used to produce the inhalable aerosols according to the invention containing the combination of active substances 1 and 2. Because of its cylindrical shape and handy size of less than 9 to 15 cm long and 2 to 4 cm wide, this device can be carried at all times by the patient.
  • the nebuliser sprays a defined volume of pharmaceutical formulation using high pressures through small nozzles so as to produce inhalable aerosols.
  • the preferred atomiser essentially consists of an upper housing part, a pump housing, a nozzle, a locking mechanism, a spring housing, a spring and a storage container, characterised by - a pump housing which is secured in the upper housing part and which comprises at one end a nozzle body with the nozzle or nozzle arrangement, - a hollow plunger with valve body, - a power takeoff flange in which the hollow plunger is secured and which is located in the upper housing part, a locking mechanism situated in the upper housing part, - a spring housing with the spring contained therein, which is rotatably mounted on the upper housing part by means of a rotary bearing, - a lower housing part which is fitted onto the spring housing in the axial direction.
  • the hollow plunger with valve body corresponds to a device disclosed in WO 97/12687. It projects partially into the cylinder of the pump housing and is axially movable within the cylinder. Reference is made in particular to Figures 1 to 4, especially Figure 3, and the relevant parts of the description.
  • the hollow plunger with valve body exerts a pressure of 5 to 60 Mpa (about 50 to 600 bar), preferably 10 to 60 Mpa (about 100 to 600 bar) on the fluid, the measured amount of active substance solution, at its high pressure end at the moment when the spring is actuated. Volumes of 10 to 50 microlitres are preferred, while volumes of 10 to 20 microlitres are particularly preferred and a volume of 15 microlitres per spray is most particularly preferred.
  • the valve body is preferably mounted at the end of the hollow plunger facing the valve body.
  • the nozzle in the nozzle body is preferably microstructured, i.e. produced by microtechnology. Microstructured nozzle bodies are disclosed for example in WO 94/07607; reference is hereby made to the contents of this specification, particularly Figure 1 therein and the associated description.
  • the nozzle body consists for example of two sheets of glass and/or silicon firmly joined together, at least one of which has one or more microstructured channels which connect the nozzle inlet end to the nozzle outlet end.
  • the directions of spraying of the nozzles in the nozzle body may extend parallel to one another or may be inclined relative to one another in the direction of the nozzle opening.
  • the directions of spraying may be at an angle of 20 to 160° to one another, preferably 60 to 150°, most preferably 80 to 100°.
  • the nozzle openings are preferably arranged at a spacing of 10 to 200 microns, more preferably at a spacing of 10 to 100 microns, most preferably 30 to 70 microns. Spacings of 50 microns are most preferred.
  • the directions of spraying will therefore meet in the vicinity of the nozzle openings.
  • the liquid pharmaceutical preparation strikes the nozzle body with an entry pressure of up to 600 bar, preferably 200 to 300 bar, and is atomised into an inhalable aerosol through the nozzle openings.
  • the preferred particle or droplet sizes of the aerosol are up to 20 microns, preferably 3 to 10 microns.
  • the locking mechanism contains a spring, preferably a cylindrical helical compression spring, as a store for the mechanical energy.
  • the spring acts on the power takeoff flange as an actuating member the movement of which is determined by the position of a locking member.
  • the travel of the power takeoff flange is precisely limited by an upper and lower stop.
  • the spring is preferably biased, via a power step-up gear, e.g. a helical thrust gear, by an external torque which is produced when the upper housing part is rotated counter to the spring housing in the lower housing part.
  • the upper housing part and the power takeoff flange have a single or multiple V-shaped gear.
  • the locking member with engaging locking surfaces is arranged in a ring around the power takeoff flange.
  • the locking member consists, for example, of a ring of plastic or metal which is inherently radially elastically deformable.
  • the ring is arranged in a plane at right angles to the atomiser axis. After the biasing of the spring, the locking surfaces of the locking member move into the path of the power takeoff flange and prevent the spring from relaxing.
  • the locking member is actuated by means of a button.
  • the actuating button is connected or coupled to the locking member. In order to actuate the locking mechanism, the actuating button is moved parallel to the annular plane, preferably into the atomiser; this causes the deformable ring to deform in the annular plane. Details of the construction of the locking mechanism are given in WO 97/20590.
  • the lower housing part is pushed axially over the spring housing and covers the mounting, the drive of the spindle and the storage container for the fluid.
  • the upper housing part When the atomiser is actuated the upper housing part is rotated relative to the lower housing part, the lower housing part taking the spring housing with it.
  • the spring is thereby compressed and biased by means of the helical thrust gear and the locking mechanism engages automatically.
  • the angle of rotation is preferably a whole-number fraction of 360 degrees, e.g. 180 degrees.
  • the power takeoff part in the upper housing part is moved along by a given distance, the hollow plunger is withdrawn inside the cylinder in the pump housing, as a result of which some of the fluid is sucked out of the storage container and into the high pressure chamber in front of the nozzle.
  • a number of exchangeable storage containers which contain the fluid to be atomised may be p ' ushed into the atomiser one after another and used in succession.
  • the storage container contains the aqueous aerosol preparation according to the invention.
  • the atomising process is initiated by pressing gently on the actuating button.
  • the locking mechanism opens up the path for the power takeoff member.
  • the biased spring pushes the plunger into the cylinder of the pump housing.
  • the fluid leaves the nozzle of the atomiser in atomised form.
  • the components of the atomiser are made of a material which is suitable for its purpose.
  • the housing of the atomiser and, if its operation permits, other parts as well, are preferably made of plastics, e.g. by injection moulding.
  • physiologically safe materials are used.
  • Figures 6a/b of WO 97/12687 show the nebuliser (Respimat®) which can advantageously be used for inhaling the aqueous aerosol preparations according to the invention.
  • Figure 6a of WO 97/12687 shows a longitudinal section through the atomiser with the spring biased while Figure 6b of WO 97/12687 shows a longitudinal section through the atomiser with the spring relaxed.
  • the upper housing part (51) contains the pump housing (52) on the end of which is mounted the holder (53) for the atomiser nozzle. In the holder is the nozzle body (54) and a filter (55).
  • the hollow plunger (57) fixed in the power takeoff flange (56) of the locking mechanism projects partially into the cylinder of the pump housing. At its end the hollow plunger carries the valve body " (58). The hollow plunger is sealed off by means of the seal (59).
  • the stop (60) Inside the upper housing part is the stop (60) on which the power takeoff flange abuts when the spring is relaxed.
  • the stop (61) On the power takeoff flange is the stop (61) on which the power takeoff flange abuts when the spring is biased.
  • the locking member (62) moves between the stop (61) and a support (63) in the upper housing part.
  • the actuating button (64) is connected to the locking member.
  • the upper housing part ends in the mouthpiece (65) and is sealed off by means of the protective cover (66) which can be placed thereon.
  • the spring housing (67) with compression spring (68) is rotatably mounted on the upper housing part by means of the snap-in lugs (69) and rotary bearing.
  • the lower housing part (70) is pushed over the spring housing.
  • Inside the spring housing is the exchangeable storage container (71) for the fluid (72) which is to be atomised.
  • the storage container is sealed off by the stopper (73) through which the hollow plunger projects into the storage container and is immersed at its end in the fluid (supply of active substance solution).
  • the spindle (74) for the mechanical counter is mounted in the covering of the spring housing.
  • the drive pinion (75) At the end of the spindle facing the upper housing part.
  • the slider (76) sits on the spindle.
  • the nebuliser described above is suitable for nebulising the aerosol preparations according to the invention to produce an aerosol suitable for inhalation.
  • the quantity delivered should correspond to a defined quantity with a tolerance of not more than 25%, preferably 20% of this amount in at least 97%, preferably at least 98% of all operations of the inhaler (spray actuations).
  • the quantity delivered should correspond to a defined quantity with a tolerance of not more than 25%, preferably 20% of this amount in at least 97%, preferably at least 98% of all operations of the inhaler (spray actuations).
  • Preferably, between 5 and 30 mg of formulation, most preferably between 5 and 20 mg of formulation are delivered as a defined mass on each actuation.
  • formulation according to the invention may also be nebulised by means of inhalers other than those described above, e.g. jet stream inhalers or other stationary nebulisers.
  • the invention relates to pharmaceutical formulations in the form of propellant-free inhalable solutions or suspensions as described above combined with a device suitable for administering these formulations, preferably in conjunction with the Respimat®.
  • the invention relates to propellant-free inhalable solutions or suspensions characterised by the combination of active substances 1 and 2 according to the invention in conjunction with the device known by the name Respimat®.
  • the present invention relates to the above-mentioned devices for inhalation, preferably the Respimat®, characterised in that they contain the propellant-free inhalable solutions or suspensions according to the invention as described hereinbefore.
  • inhalable solutions which contain the active substances 1 and 2 in a single preparation are preferred.
  • single preparation also includes preparations which contain the two ingredients 1 and 2 in two-chamber cartridges, as disclosed for example in WO 00/23037. Reference is hereby made to this publication in its entirety.
  • the propellant-free inhalable solutions or suspensions according to the invention may take the form of concentrates or sterile inhalable solutions or suspensions ready for use, as well as the above-mentioned solutions and suspensions designed for use in a Respimat®.
  • Formulations ready for use may be produced from the concentrates, for example, by the addition of isotonic saline solutions.
  • Sterile formulations ready for use may be administered using energy-operated free-standing or portable nebulisers which produce inhalable aerosols by means of ultrasound or compressed air by the Venturi principle or other principles.
  • the present invention relates to pharmaceutical compositions in the form of propellant-free inhalable solutions or suspensions as described hereinbefore which take the form of concentrates or sterile formulations ready for use, combined with a device suitable for administering these solutions, characterised in that the device is an energy-operated free-standing or portable nebuliser which produces inhalable aerosols by means of ultrasound or compressed air by the Venturi principle or other methods.
  • 9-methyl-fluorene-9-carboxylic acid a) methyl 9-methyl-fluorene-9-carboxylate: From 7.6 g (0.33 mol) of sodium and 300 ml of ethanol a sodium ethoxide solution is prepared, to which 69.6 g (0.33 mol) of 9-fluorenecarboxylic acid are added batchwise. After the addition has ended the mixture is stirred for 2.5 hours at ambient temperature. Then it is evaporated to dryness, the residue is suspended in 600 ml of dimethylformamide and 93.96 g (0.662 mol) of methyl iodide are added dropwise. The mixture is stirred for 3 hours at constant temperature.
  • the cloudy solution is stirred into 500 ml of water and 300 ml of diethyl ether with cooling and extracted, the organic phase is washed with water and 10% sodium carbonate solution, dried and evaporated to dryness.
  • tropenol 9-methyl-fluorene-9-carboxylate 6.73 g (0.03 mol) of 9-methyl-fluorene-9-carboxylic acid are suspended in 60 ml dichloromethane, combined with 5.0 g of oxalyl chloride and 1 drop of dimethylformamide, then stirred for one hour at ambient temperature and finally the solvent is distilled off. The acid chloride remaining is used in the next step without any further purification.
  • scopine 9-methyl-fluorene-9-carboxylate methobromide 1.8 g (0.005 mol) of scopine 9-methyl-fluorene-9-carboxylate are taken up in 30 ml acetonitrile and reacted with 2.848 g (0.015 mol) of 50% methyl bromide solution in acetonitrile. The reaction mixture is left to stand for 3 days at ambient temperature, during which time the product crystallises. The crystals precipitated are separated off and recrystallised from diethyl ether to purify them.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Otolaryngology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Emergency Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention relates to novel pharmaceutical compositions based on PDE IV inhibitors and salts of a new anticholinergic, processes for preparing them and their use in the treatment of respiratory complaints.

Description

MEDICAMENTS COMPRISING PDE IV INHIBITORS AND A NOVEL ANTICHOLINERGIC AND THEIR USE FOR TREATING RESPIRATORY DISORDERS
The present invention relates to novel pharmaceutical compositions based on PDE IN 5 inhibitors and salts of a new anticholinergic, processes for preparing them and their use in the treatment of respiratory complaints.
Description of the invention The present invention relates to novel pharmaceutical compositions based on PDE IV 10 inhibitors and salts of a new anticholinergic 1, processes for preparing them and their use in the treatment of respiratory complaints.
Within the scope of the present invention the anticholinergic agents used are the Salts of formula 1 15
Figure imgf000002_0001
wherein denotes an anion with a single negative charge, preferably an anion selected from the group consisting of fluoride, chloride, bromide, iodide, sulphate, 20 phosphate, methanesulphonate, nitrate, maleate, acetate, citrate, fumarate, tartrate, oxalate, succinate, benzoate and p-toluenesulphonate.
Preferably, the salts of formula 1 are used wherein X " denotes an anion with a single negative charge selected from among the 25 fluoride, chloride, bromide, 4-toluenesulphonate and methanesulphonate, preferably bromide.
Most preferably, the salts of formula 1 are used wherein X " denotes an anion with a single negative charge selected from among the chloride, bromide and methanesulphonate, preferably bromide.
Particularly preferred according to the invention is the salt of formula 1 wherein X " denotes bromide.
Surprisingly, an unexpectedly beneficial therapeutic effect can be observed in the treatment of inflammatory and/or obstructive diseases of the respiratory tract if the anticholinergic of formula 1 is used with one or more PDE IV inhibitors 2.
This effect may be observed both when the two active substances are administered simultaneously in a single active substance formulation and when they are administered successively in separate formulations. According to the invention, it is preferable to administer the two active substance ingredients simultaneously in a single formulation. Within the scope of the present invention, any reference to the compound V_ is to be regarded as a reference to the pharmacologically active cation of the following formula contained in the salts 1 :
Figure imgf000003_0001
In the pharmaceutical combinations mentioned above the active substances may be combined in a single preparation or contained in two separate formulations. Pharmaceutical compositions which contain the active substances 1 and 2 in a single preparation are preferred according to the invention.
According to the instant invention preferred PDE IV inhibitors 2 in the combinations according to the invention are selected from the group consisting of enprofylline, theophylline, roflumilast, ariflo (cilomilast), CP-325,366, BY343, D-4396 (Sch-351591), AWD-12-281 (GW-842470), N-(3,5-dichloro-l-oxo-pyridin-4-yl)-4-difluoromethoxy-3- cyclopropylmethoxybenzamide, NCS-613, pumafentine, (-)p-[(4αR*J0bS*)-9-ethoxy- 1 ,2,3 ,4,4a, 10b-hexahydro-8-methoxy-2methylbenzo [s] [ 1 ,6]naphthyridin-6-yl]-N,N- diisopropylbenzamide, (R)-(+)-l-(4-bromobenzyl)-4-[(3-cyclopentyloxy)-4- methoxyphenyl]-2-pyrrolidone, 3-(cyclopentyloxy-4-methoxyphenyl)-l-(4-N'-[N-2-cyano- S-methyl-isothioureido]benzyl)-2-pyrrolidone, cis [4-cyano-4-(3-cyclopentyloxy-4- methoxyphenyl)cyclohexan-l-carboxylic acid], 2-carbomethoxy-4~cyano-4-(3- cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan-l-one, cis[4-cyano-4-(3- cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan- 1 -ol] , (R)-(+)-ethyl [4-(3- cyclopentyloxy-4-methoxyphenyl)pyrrolidine-2-ylidene]acetate, (S)-(-)-ethyl[4-(3- cyclopentyloxy-4-methoxyphenyl)pyrrolidine-2-ylidene]acetate, CDP840, Bay-198004, D- 4418, PD-168787, T-440, T-2585, arofylline, atizoram, V-11294A, Cl-1018, CDC-801, CDC-3052, D-22888, YM-58997, Z-15370, 9-cyclopentyl-5,6-dihydroN-ethyl-3-(2- thienyl)-9H-pyrazolo[3J-c]-l,2,4-triazolo[4,3-a]pyridine, and 9-cyclopentyl-5,6-dihydro- 7-ethyl-3-(tert-butyl)-9H-pyrazolo [3 ,4-c] - 1 ,2,4-triazolo [4,3-a]pyridine, optionally in the form of the racemates, the enantiomers, the diastereomers and optionally the pharmacologically acceptable acid addition salts thereof, and the hydrates thereof.
In a preferred embodiment according to the invention the PDE IV inhibitors 2 are selected from the group consisting of enprofylline, roflumilast, ariflo (cilomilast), AWD-12-281 (GW-842470), N-(3,5-dichloro-l-oxo-pyridin-4-yl)-4-difluoromethoxy-3- cyclopropylmethoxybenzamide, T-440, T-2585, arofylline, cis[4-cyano-4-(3- cyclopentyloxy-4-methoxyphenyl)cyclohexan-l-carboxylic acid] , 2-carbomethoxy-4- cyano-4-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan-l-one, cis[4-cyano- 4-(3-cyclopropylmethoxy-4-difluoromethoxyphenyl)cyclohexan-l-ol], PD-168787, atizoram, V-11294A, Cl-1018, CDC-801, D-22888, YM-58997, Z-15370, 9-cyclopentyl- 5,6-dihydro-7-ethyl-3-(2-thienyl)-9H-pyrazolo[3J-c]-l,2J-triazolo[4,3-a]pyridine, and 9- cyclopentyl-5,6-dihydro-7-ethyl-3-(tert-butyl)-9H-pyrazolo[3,4-c]-l,2,4-triazolo[4,3- a]pyridine, optionally in the form of the racemates, the enantiomers, the diastereomers and optionally the pharmacologically acceptable acid addition salts thereof, and the hydrates thereof.
In another preferred embodiment according to the invention the PDE IV inhibitors 2 are selected from the group consisting of roflumilast, ariflo (cilomilast), AWD-12-281 (GW- 842470), arofylline, Z-15370, 2-carbomethoxy-4-cyano-4-(3-cyclopropylmethoxy-4- (ϋfluoromethoxyphenyl)cyclohexan-l-one, cis[4-cyano-4-(3-cyclopropylmethoxy-4- difluoromethoxyphenyl)cyclohexan-l-ol], atizoram, 9-cyclopentyl-5,6-dihydro-7-ethyl-3- (2-thienyl)-9H-pyrazolo[3,4-c]-l ,2,4-triazolo[4,3-a]pyridine, and 9-cyclopentyl-5,6- dihydro-7-ethyl-3-(tert-butyl)-9H-pyrazolo [3 ,4-c] - 1 ,2,4-triazolo [4,3-a]pyridine, while roflumilast, Z-15370, and AWD-12-281 are particularly preferred as compound 2 according to the invention.
In a yet another preferred embodiment according to the invention the PDE TV inhibitors 2 are selected from the group consisting of 2-(4-fluoro-phenoxy)-N-{4-[(6-fluoro-2-hydroxy- benzoylamino)-methyl]-benzyl} nicotinamide, 2-(4-fluoro-phenoxy)-N-{4-[(5-fluoro-2- hydroxy-benzoylamino)-methyl]-benzyl} nicotinamide, 2-(4-fluoro-phenoxy)-N-{4-[(3- hydroxy-4-methyl-benzoylamino)methyl]benzyl } nicotinamide, 2-(4-fluoro-phenoxy)-N- { 4- [(3hydroxy-benzoylamino)-methyl] -benzyl } nicotinamide, 2-(4-f_uoro-phenoxy)-N- { 4- [(2-hydroxy-benzoylamino)methyl]-benzyl } nicotinamide, 2-(4-f_uoro-phenoxy)-N-{4-[(4- hydroxy-benzoylamino)methyl] -benzyl} nicotinamide, 2-(4-ftuoro-phenoxy)-N-{4-[(2- hydroxy-4-methyl-benzoylamino)methyl] -benzyl} nicotinamide, 2-(4-fIuoro-phenoxy)-N- { 4- [(3-hydroxy-2-methyl-benzoylamino)methyl] -benzyl } nicotinamide, 2-(4-fIuoro- phenoxy)-N-{4-[(2-hydroxy-5-methyl-benzoylamino)methyl]-benzyl} nicotinamide, 5-fluoro-2-(4-fIuoro-phenoxy)-N-{4-[(2-hydroxy-benzoylamino)methyl]-benzyl} nicotinamide, 5-fluoro-2-(4-fIuoro-phenoxy)-N-{4-[(2-hydroxy-acetylamino)methyl]- benzyl} nicotinamide, 5-fluoro-2-(4-fIuoro-phenoxy)-N-{4-[(4-hydroxy- benzoylamino)methyl]-benzyl} nicotinamide, 3-(3-{4-[(3-hydroxy-benzoylamino)methyl]- benzylcarbamoyl}-pyridin-2-yloxy)benzoic acid ethyl ester, 3-(3-{4-[(2-hydroxy- phenacetylamino)methyl]-benzylcarbamoyl}-pyridin-2-yloxy)benzoic acid ethyl ester, 3-(3-{4-[(3-hydroxy-phenacetylamino)methyl]-benzylcarbamoyl}-pyridin-2-yloxy)benzoic acid ethyl ester, 3-(3- {4-[(4-hydroxy-phenacetylamino)methyl]-benzylcarbamoyl } -pyridin- 2-yloxy)benzoic acid ethyl ester, compound 2. a
Figure imgf000006_0001
compound (2.b)
Figure imgf000006_0002
(2.b), optionally in the form of the racemates, the enantiomers, the diastereomers and optionally the pharmacologically acceptable acid addition salts thereof, and the hydrates thereof.
Pharmaceutically acceptable- salt forms of the combinations of compounds of the present invention are prepared for the most part by conventional means. Where the component compound contains a carboxylic acid group, a suitable salt thereof may be formed by reactmg the compound with an appropriate base to provide the corresponding base addition salt. Examples of such bases are alkali metal hydroxides including potassium hydroxide, sodium hydroxide, and lithium hydroxide; alkaline earth metal hydroxides such as barium hydroxide and calcium hydroxide; alkali metal alkoxides, e.g., potassium ethanolate and sodium propanolate; and various organic bases such as piperidine, diethanolamine, and N- methylglutamine. Also included are the aluminum salts of the component compounds of the present invention. For certain component compounds acid addition salts may be formed by treating said compounds with pharmaceutically acceptable organic and inorganic acids, e.g., hydrohalides such as hydrochloride, hydrobromide, hydroiodide; other mineral acids and their corresponding salts such as sulfate, nitrate, phosphate, etc.; and alkyl- and mono- arylsulfonates such as ethanesulfonate, toluenesulfonate, and benzenesulfonate; and other organic acids and their corresponding salts such as acetate, tartrate, maleate, succinate, citrate, benzoate, salicylate, ascorbate, etc.
Accordingly, the pharmaceutically acceptable acid addition salts of the component compounds of the present invention include, but are not limited to: acetate, adipate, alginate, arginate, aspartate, benzoate, benzenesulfonate (besylate), bisulfate, bisulfite, bromide, butyrate, camphorate, camphorsulfonate, caprylate, chloride, chlorobenzoate, citrate, cyclopentanepropionate, digluconate, dihydrogenphosphate, dinitrobenzoate, dodecylsulfate, ethanesulfonate, fumarate, galacterate (from mucic acid), galacturonate, glucoheptanoate, gluconate, glutamate, glycerophosphate, hemisuccinate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2- hydroxyethanesulfonate, iodide, isethionate, t,rø-butyrate, lactate, lactobionate, malate, maleate, malonate, mandelate, metaphosphate, methanesulfonate, methylbenzoate, monohydrogenphosphate, 2-naphthalenesulfonate, nicotinate, nitrate, oxalate, oleate, pamoate, pectinate, persulfate, phenylacetate, 3-phenylpropionate, phosphate, phosphonate, phthalate.
Particularly preferred examples of pharmacologically acceptable acid addition salts of the compounds 2 according to the invention are the pharmaceutically acceptable salts which are selected from among the salts of hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methanesulphonic acid, acetic acid, fumaric acid, succinic acid, lactic acid, citric acid, tartaric acid; l-hydroxy-2-naphthalenecarboxylic acid or maleic acid. If desired, mixtures of the abovementioned acids may also be used to prepare the salts 2.
In the pharmaceutical compositions according to the invention, the compounds 2 may be present in the form of their racemates, enantiomers or mixtures thereof. The separation of the enantiomers from the racemates may be carried out using methods known in the art (e.g. by chromatography on chiral phases, etc.). In one aspect the present invention relates to the abovementioned pharmaceutical compositions which contain, in addition to therapeutically effective quantities of 1 and 2, a pharmaceutically acceptable carrier. In another aspect the present invention relates to the abovementioned pharmaceutical compositions which do not contain any pharmaceutically acceptable carrier in addition to therapeutically effective quantities of 1 and 2.
The present invention also relates to the use of therapeutically effective quantities of the salts 1 for preparing a pharmaceutical composition containing PDE IN inhibitors 2 for treating inflammatory or obstructive diseases of the respiratory tract. Preferably, the present invention relates to the abovementioned use for preparing a pharmaceutical composition for treating asthma or COPD.
Within the scope of the present invention the compounds 1 and 2 may be administered simultaneously or successively, while it is preferable according to the invention to administer compounds 1 und 2 simultaneously.
The present invention further relates to the use of therapeutically effect amounts of salts 1 and PDEIV inhibitors 2 for treating inflammatory or obstructive respiratory complaints, particularly asthma or COPD.
The proportions in which the active substances 1 and 2 may be used in the active substance combinations according to the invention are variable. Active substances 1 and 2 may possibly be present in the form of their solvates or hydrates. Depending on the choice of the compounds 1 and 2, the weight ratios which may be used within the scope of the present invention vary on the basis of the different molecular weights of the various salt forms.
As a rule, the pharmaceutical combinations according to the invention may contain compounds 1 and 2 in ratios by weight ranging from 1:100 to 100:1, preferably from 1:80 to 80:1. In particularly preferred pharmaceutical combinations that contain as component 2 one of the most preferred compounds ariflo, roflumilast, or AWD-12-281 , the weight ratios of 1 to 2 are most preferably in a range in which T and 2 are present in proportions of about 1:50 to 50:1, more preferably from 1:20 to 20:1.
For example, without restricting the scope of the invention thereto, preferred combinations of V and PDE-IV inhibitor 2 (as for instance ariflo, roflumilast or AWD-12-281) may
Figure imgf000009_0001
The pharmaceutical compositions according to the invention containing the combinations of 1 and 2 are normally administered so that 1 and 2 are present together in doses of 0.01 to lOOOOμg, preferably from 0J to 5000μg, more preferably from 1 to 3000μg, better still from 10 to 2000 μg, better still from 20 to 1500μg, yet more preferred from 50 to 1200μg per single dose. For example, combinations of 1 and 2 according to the invention contain a quantity of V_ and PDE-IV inhibitor 2 (as for instance ariflo, roflumilast or AWD-12-281) such that the total dosage per single dose is about lOOμg, 105μg, HOμg, 115μg, 120μg, 125μg, 130μg, 135μg, 140μg, 145μg, 150μg, 155μg, 160μg, 165μg, 170μg, 175μg, 180μg, 185μg, 190μg, 195μg, 200μg, 205μg, 210μg, 215μg, 220μg, 225μg, 230μg, 235μg, 240μg, 245μg, 250μg, 255μg, 260μg, 265/xg, 270μg, 275μg, 280μg, 285μg, 290μg, 295μg, 300μg, 305μg, 310/ig, 315μg, 320μg, 325μg, 330 _g, 335μg, 340i-.g, 345μg, 350μg, 355μg, 360μg, 365μg, 310μg, 375μg, 380μg, 385μg, 390μg, 395μg, 400μg, 405μg, 410μg, 415μg, 420μg, 425μg, 430μg, 435μg, 440μg, 445μg, 450μg, 455μg, 460μg, 465μg, 470μg, 475μg, 480μg, 485μg, 490μg, 495μg, 500μg, 505μg, 510μg, 515μg, 520μg, 525μg, 530μg, 535μg, 540μg, 545μg, 550μg, 555μg, 560μg, 565μg, 570μg, 575μg, 580μg, 585μg, 590μg, 595μg, 600μg, 605μg, 610μg, 615μg, 620μg, 625μg, 630μg, 635μg, 640μg, 645μg, 650μg, 655μg, 660μg, 665μg, 670μg, 675μg, 680μg, 685μg, 690μg, 695μg, 700μg, 705μg, 710μg, 715μg, 720μg, 725μg, 730μg, 735μg, 740μg, 745μg, 750μg, 755μg, 760μg, 765μg, 770μg, 775μg, 780μg, 785μg, 790μg, 795μg, 800μg, 805μg, 810μg, 815μg, 820μg, 825μg, 830μg, 835μg, 840μg, 845μg, 850μg, 855μg, 860μg, 865μg, 870μg, 875μg, 880μg, 885μg, 890μg, 895μg, 900μg, 905μg, 910μg, 915μg, 920μg, 925μg, 930μg, 935μg, 940μg, 945μg, 950μg, 955μg, 960μg, 965μg, 970μg, 975μg, 980μg, 985μg, 990μg, 995μg, lOOOμg, 1005μg, lOlOμg, 1015μg, 1020μg, 1025μg, 1030μg, 1035μg, 1040μg, 1045μg, 1050μg, 1055μg, 1060μg, 1065μg, 1070μg, 1075μg, 1080μg, 1085μg, 1090μg, 1095μg, HOOμg, 1105μg, lllOμg, 1115μg, 1120μg, 1125μg, 1130μg, 1135μg, 1140μg, 1145μg, 1150μg, 1155μg, 1160μg, 1165μg, 1170μg, 1175μg, 1180μg, 1185μg, 1190μg, 1195μg, 1200μg, 1205μg, 1210μg, 1215μg, 1220μg, 1225μg, 1230μg, 1235μg, 1240μg, 1245μg, 1250μg, 1255μg 1260μg, 1265μg I,, 1270μg, 1275μg, 1280μg, 1285μg, 1290μg, 1295μg, 1300μg, 1305μg 1310μg, 1315μg I,, 1320μg, 1325μg, 1330μg, 1335μg, 1340μg, 1345μg, 1350μg, 1355μg 1360μg, 1365μg I,, 1370μg, 1375μg, 1380μg, 1385μg, 1390μg, 1395μg, 1400μg, 1405μg 1410μg, 1415μg I,, 1420μg, 1425μg, 1430μg, 1435μg, 1440μg, 1445μg, 1450μg, 1455μg; 1460μg, 1465μg 1,, 1470μg, 1475μg, 1480μg, 1485μg, 1490μg, 1495μg, 1500μg, 1505μg 1510μg, 1515μg 1,, 1520μg, 1525μg, 1530μg, 1535μg, 1540μg, 1545μg, 1550μg, 1555μg. 1560μg, 1565μg ;,, 1570μg, 1575μg, 1580μg, 1585μg, 1590μg, 1595μg, 1600μg, 1605μg 1610μg, 1615μg 1,, 1620μg, 1625μg, 1630μg, 1635μg, 1640μg, 1645μg, 1650μg, 1655μg; 1660μg, 1665μg 1,, 1670μg, 1675μg, 1680μg, 1685μg, 1690μg, 1695μg, 1700μg, 1705 μg; 1710μg, 1715μg 1,, 1720μg, 1725μg, 1730μg, 1735μg, 1740μg, 1745μg, 1750μg, 1755μg 1760μg, 1765μg I,, 1770μg, 1775μg, 1780μg, 1785μg, 1790μg, 1795μg, 1800μg, 1805μg 1810μg, 1815μg 1,, 1820μg, 1825μg, 1830μg, 1835μg, 1840μg, 1845μg, 1850μg, 1855μg 1860μg, 1865μg I,, 1870μg, 1875μg, 1880μg, 1885μg, 1890μg, 1895μg, 1900μg, 1905μg 1910μg, 1915μg I,, 1920μg, 1925μg, 1930μg, 1935μg, 1940μg, 1945μg, 1950μg, 1955μg 1960μg, 1965μg 1,, 1970μg, 1975μg, 1980μg, 1985μg, 1990μg, 1995μg, 2000μg, or similar. The suggested dosages per single dose specified above are not to be regarded as being limited to the numerical values actually stated, but are intended as dosages which are disclosed by way of example. Of course, dosages which may fluctuate about the abovementioned numerical values within a range of about +/- 2.5 μg are also included in the values given above by way of example. In these dosage ranges, the active substances V_ and 2 may be present in the weight ratios given above.
For example, without restricting the scope of the invention thereto, the combinations of 1 and 2 according to the invention may contain a quantity of V_ and PDE-IV inhibitor 2 (as for instance ariflo,'roflumilast or AWD-12-281) such that, for each single dose, 16.5μg of V and 25μg of 2, 16.5μg of V and 50μg of 2, 16.5μg of V and lOOμg of 2, 16.5μg of
V and 200μg of 2, 16.5μg of V and 300μg of 2, 16.5μg of V and 400μg of 2, 16.5μg of
V and 500μg of 2, 16.5μg of V and 600μg of 2, 16.5μg of V and 700μg of 2, 16.5μg of r and 800μg of 2, 16.5μg of V and 900μg of 2, 16.5μg of V and lOOOμg of 2, 16.5μg of V and 1250μg of 2, 16.5μg of V and 1500μg of 2, 16.5μg of V and 1750μg of 2, 16.5μg of V and 2000μg of 2, 33.0μg of V and 25μg of 2, 33.0μg of V and 50μg of 2, 33.0μg of r and lOOμg of 2, 33.0μg of V and 200μg of 2, 33.0μg of V and 300μg of 2, 33.0μg of r and 400μg of 2, 33.0μg of V and 500μg of 2, 33.0μg of V and 600μg of 2, 33.0μg of V and 700μg of 2, 33.0μg of V and 800μg of 2, 33.0μg of V and 900μg of 2, 33.0μg of V and lOOOμg of 2, 33.0μg of V and 1250μg of 2, 33.0μg of V and 1500μg of 2, 33.0μg of £ and 1750μg of 2, 33.0μg of £ and 2000μg of 2, 49.5μg of £ and 25μg of 2, 49.5μg of £ and 50μg of 2, 49.5μg of £ and lOOμg of 2, 49.5μg of £ and 200μg of 2, 49.5μg of £ and 300μg of 2, 49.5μg of £ and 400μg of 2, 49.5μg of £ and 500μg of 2, 49.5μg of £ and 600μg of 2, 49.5μg of and 700μg of 2, 49.5μg of £ and 800μg of 2, 49.5μg of £ and 900μg of 2, 49.5μg of £ and lOOOμg of 2, 49.5μg of £ and 1250μg of 2, 49.5μg of £ and 1500μg of 2, 49.5μg of £ and 1750μg of 2, 49.5μg of £ and 2000μg of 2, 82.5μg of £ and 25μg of 2, 82.5μg of £ and 50μg of 2, 82.5μg of £ and lOOμg of 2, 82.5μg of £ and 200μg of 2, 82.5μg of and 300μg of 2, 82.5μg of £ and 400μg of 2, 82.5μg of £ and 500μg of 2, 82.5μg of £ and 600μg of 2, 82.5μg of £ and 700μg of 2, 82.5μg of £ and 800μg of 2, 82.5μg of £ and 900μg of 2, 82.5μg of £ and lOOOμg of 2, 82.5μg of £ and 1250μg of 2, 82.5μg of £ and 1500μg of 2, 82.5μg of £ and 1750μg of 2, 82.5μg of £ and 2000μg of 2, 165.0μg of £ and 25μg of 2, 165.0μg of £ and 50μg of 2, 165.0μg of £ and lOOμg of 2, 165.0μg of £ and 200μg of 2, 165.0μg of £ and 300μg of 2, 165.0μg of £ and 400μg of 2, 165.0μg of £ and 500μg of 2, 165.0μg of £ and 600μg of 2, 165.0μg of £ and 700μg of 2, 165.0μg of and 800μg of 2, 165.0μg of £ and 900μg of 2, 165.0μg of £ and lOOOμg of 2, 165.0μg of and 1250μg of 2, 165.0μg of £ and 1500μg of 2, 165.0μg of £ and 1750μg of 2, 165.0μg of £ and 2000μg of 2, 206.2μg of £ and 25μg of 2, 206.2μg of £ and 50μg of 2, 206.2μg of £ and lOOμg of 2, 206.2μg of £ and 200μg of 2, 206.2μg of £ and 300μg of 2, 206.2μg of £ and 400μg of 2, 206.2μg of £ and
500μg of 2 or 206.2μg of £ and 600μg of 2, 206.2μg of £ and 700μg of 2, 206.2μg of £ and 800μg of 2, 206.2μg of £ and 900μg of 2, 206.2μg of £ and lOOOμg of 2, 206.2μg of £ and 1250μg of 2, 206.2μg of £ and 1500μg of 2, 206.2μg of £ and 1750μg of 2, 206.2μg of £ and 2000μg of 2, 412.5μg of £ and 25μg of 2, 412.5μg of £ and 50μg of 2, 412.5μg of £ and lOOμg of 2, 412.5μg of £ and 200μg of 2, 412.5μg of £ and 300μg of 2, 412.5j-ιg of £ and 400μg of 2, 412.5μg of £ and 500μg of 2 or 412.5μg of £ and 600μg of 2, 412.5μg of £ and 700μg of 2, 412.5μg of £ and 800μg of 2, 412.5μg of £ and 900μg of 2, 412.5μg of £ and lOOOμg of 2, 412.5μg of £ and 1250μg of 2, 412.5μg of £ and 1500μg of 2 , 412.5μg of £ and 1750μg of 2, 412.5μg of £ and 2000μg of 2 are administered.
If the active substance combination in which 1 denotes the bromide is used as the preferred combination of 1 and 2 according to the invention, the quantities of active substance £ and 2 administered per single dose mentioned before by way of example correspond to the following quantities of 1 and 2 administered per single dose: 20μg of 1 and 25μg of 2, 20μg of 1 and 50μg of 2, 20μg of 1 and lOOμg of 2, 20μg of 1 and 200μg of 2, 20μg of 1 and 300μg of 2, 20μg of 1 and 400μg of 2, 20μg of 1 and 500μg of 2, 20μg of 1 and 600μg of 2, 20μg of 1 and 700μg of 2, 20μg of 1 and 800μg of 2, 20μg of 1 and 900μg of 2, 20μg of 1 and lOOOμg of 2, 20μg of 1 and 1250μg of 2, 20μg of 1 and 1500μg of 2, 20μg of 1 and 1750μg of 2, 20μg of 1 and 2000μg of 2, 40μg of 1 and 25μg of 2, 40μg of 1 and 50μg of 2, 40μg of 1 and lOOμg of 2, 40μg of 1 and 200μg of 2, 40μg of 1 and 300μg of 2, 40μg of 1 and 400μg of 2, 40μg of 1 and 500μg of 2, 40μg of 1 and 600μg of 2, 40μg of 1 and 700μg of 2, 40μg of 1 and 800μg of 2, 40μg of 1 and 900μg of 2, 40μg of 1 and lOOOμg of 2, 40μg of 1 and 1250μg of 2, 40μg of 1 and 1500μg of 2, 40μg of 1 and 1750μg of 2, 40μg of 1 and 2000μg of 2, 60μg of 1 and 25μg of 2, 60μg of 1 and 50μg of 2, 60μg of 1 and lOOμg of 2, 60μg of 1 and 200μg of 2, 60μg of 1 and 300μg of 2, 60μg of 1 and 400μg of 2, 60μg of 1 and 500μg of 2, 60μg of 1 and 600μg of 2, 60μg of 1 and 700μg of 2, 60μg of 1 and 800μg of 2, 60μg of 1 and 900μg of 2, 60μg of 1 and lOOOμg of 2, 60μg of 1 and 1250μg of 2, 60μg of 1 and 1500μg of 2, 60μg of 1 and 1750μg of 2, 60μg of 1 and 2000μg of 2, lOOμg of 1 and 25μg of 2, lOOμg of 1 and 50μg of 2, lOOμg of 1 and lOOμg of 2, lOOμg of 1 and 200μg of 2, lOOμg of 1 and 300μg of 2, lOOμg of 1 and 400μg of 2, lOOμg of 1 and 500μg of 2, lOOμg of 1 and 600μg of 2, lOOμg of 1 and 700μg of 2, lOOμg of 1 and 800μg of 2, lOOμg of 1 and 900μg of 2, lOOμg of 1 and lOOOμg of 2, lOOμg of 1 and 1250μg of 2, 100μg of 1 and 1500μg of 2, lOOμg of 1 and 1750μg of 2, lOOμg of 1 and 2000μg of 2, 200μg of 1 and 25μg of 2, 200μg of 1 and 50μg of 2, 200μg of 1 and lOOμg of 2, 200μg of 1 and 200μg of 2, 200μg of 1 and 300μg of 2, 200μg of 1 and 400μg of 2, 200μg of 1 and 500μg of 2, 200μg of 1 and 600μg of 2, 200μg of 1 and 700μg of 2, 200μg of 1 and 800μg of 2, 200μg of 1 and 900μg of 2, 200μg of 1 and lOOOμg of 2, 200μg of 1 and 1250μg of 2, 200μg of 1 and 1500μg of 2, 200μg of 1 and 1750μg of 2, 200μg of 1 and 2000μg of 2, 250μg of 1 and 25μg of 2, 250μg of 1 and 50μg of 2, 250μg of 1 and lOOμg of 2, 250μg of 1 and 200μg of 2, 250μg of 1 and 300μg of 2, 250μg of 1 and 400μg of 2, 250μg of 1 and 500μg of 2, 250μg of 1 and 600μg of 2, 250μg of 1 and 700μg of 2, 250μg of 1 and 800μg of 2, 250μg of 1 and 900μg of 2, 250μg of 1 and lOOOμg of 2, 250μg of 1 and 1250μg of 2, 250μg of 1 and 1500μg of 2, 250μg of 1 and 1750μg of 2, 250μg of 1 and 2000μg of 2, 500μg of 1 and 25μg of 2, 500μg of 1 and 50μg of 2, 500μg of 1 and lOOμg of 2, 500μg of 1 and 200μg of 2, 500μg of 1 and 300μg of 2, 500μg of 1 and 400μg of 2, 500μg of 1 and 500μg of 2, 500μg of 1 and 600μg of 2, 500μg of 1 and 700μg of 2, 500μg of 1 and 800μg of 2, 500μg of 1 and 900μg of 2 or 500μg of 1 and lOOOμg of 2, 500μg of 1 and 1250μg of 2, 500μg of 1 and 1500μg of 2, 500μg of 1 and 1750μg of 2 or 500μg of 1 and 2000μg of 2. The aforementioned examples of possible doses applicable for the combinations according to the invention are to be understood as referring to doses per single application. However, these examples are not be understood as excluding the possibility of administering the combinations according to the invention multiple times. Depending on the medical need patients may receive also multiple inhalative applications. As an example patients may receive the combinations according to the invention for instance two or three times (e.g. two or three puffs with a powder inhaler, an MDI etc) in the morning of each treatment day. As the aforementioned dose examples are only to be understood as dose examples per single application (i.e. per puff) multiple application of the combinations according to the invention leads to multiple doses of the aforementioned examples. The application of the combositions according to the invention can be for instance once a day, or depending on the duration of action of the anticholinergic agent twice a day, or once every 2 or 3 days.
Moreover it is emphazised that the aforementioned dose examples are to be understood as examples of metered doses only. In other terms, the aforementioned dose examples are not to be understood as the effective doses of the combinations according to the invention that do in fact reach the lung. It is clear for the person of ordinary skill in the art that the delivered dose to the lung is generally lower than the metered dose of the administered active ingredients.
The active substance combinations of 1 and 2 according to the invention are preferably administered by inhalation. For this purpose, ingredients 1 and 2 have to be made available in forms suitable for inhalation. Inhalable preparations according to the invention include inhalable powders, propellant-containing metered dose aerosols or propellant-free inhalable solutions. Inhalable powders according to the invention containing the combination of active substances 1 and 2 may consist of the active substances on their own or of a mixture of the active substances with physiologically acceptable excipients. Within the scope of the present invention, the term carrier may optionally be used instead of the term excipient. Within the scope of the present invention, the term propellant-free inhalable solutions also includes concentrates or sterile inhalable solutions ready for use. The preparations according to the invention may contain the combination of active substances 1 and 2 either together in one formulation or in two separate formulations. These formulations which may be used within the scope of the present invention are described in more detail in the next part of the specification. A) Inhalable powder containing the combinations of active substances 1 and 2 according to the invention:
The inhalable powders according to the invention may contain 1 and 2 either on their own or in admixture with suitable physiologically acceptable excipients.
If the active substances 1 and 2 are present in admixture with physiologically acceptable excipients, the following physiologically acceptable excipients may be used to prepare these inhalable powders according to the invention: monosaccharides (e.g. glucose or arabinose), disaccharides (e.g. lactose, saccharose, maltose, trehalose), oligo- and polysaccharides (e.g. dextran), polyalcohols (e.g. sorbitol, mannitol, xylitol), cyclodextrines (e.g. -cyclodextrine, β-cyclodextrine, χ-cyclodextrine, methyl-β- cyclodextrine, hydroxypropyl-β-cyclodextrine), salts (e.g. sodium chloride, calcium carbonate) or mixtures of these excipients with one another. Preferably, mono- or disaccharides are used, while the use of lactose, trehalose or glucose is preferred, particularly, but not exclusively, in the form of their hydrates.
Within the scope of the inhalable powders according to the invention the excipients have a maximum average particle size of up to 250μm, preferably between 10 and 150μm, most preferably between 15 and 80μm. It may sometimes seem appropriate to add finer excipient fractions with an average particle size of 1 to 9μm to the excipient mentioned above. These finer excipients are also selected from the group of possible excipients listed hereinbefore. Finally, in order to prepare the inhalable powders according to the invention, micronised active substance 1 and 2, preferably with an average particle size of 0.5 to lOμm, more preferably from 1 to 6μm, is added to the excipient mixture. Processes for producing the inhalable powders according to the invention by grinding and micronising and by finally mixing the ingredients together are known from the prior art. The inhalable powders according to the invention may be prepared and administered either in the form of a single powder mixture which contains both 1 and 2 or in the form of separate inhalable powders which contain only 1 or 2.
The inhalable powders according to the invention may be administered using inhalers known from the prior art. Inhalable powders according to the invention which contain one or more physiologically acceptable excipients in addition to 1 and 2 may be administered, for example, by means of inhalers which deliver a single dose from a supply using a measuring chamber as described in US 4570630A, or by other means as described in DE 36 25 685 A. The inhalable powders according to the invention which contain 1 and 2 optionally in conjunction with a physiologically acceptable excipient may be administered, for example, using the inhaler known by the name Turbuhaler® or using inhalers as disclosed for example in EP 237507 A. Preferably, the inhalable powders according to the invention which contain physiologically acceptable excipient in addition to 1 and 2 are packed into capsules (to produce so-called inhalettes) which are used in inhalers as described, for example, in WO 94/28958.
A particularly preferred inhaler for using the pharmaceutical combination according to the invention in inhalettes is shown in Figure 1.
This inhaler (Handyhaler) for inhaling powdered pharmaceutical compositions from capsules is characterised by a housing 1 containing two windows 2, a deck 3 in which there are air inlet ports and which is provided with a screen 5 secured via a screen housing 4, an inhalation chamber 6 connected to the deck 3 on which there is a push button 9 provided with two sharpened pins 7 and movable counter to a spring 8, and a mouthpiece 12 which is connected to the housing 1, the deck 3 and a cover 11 via a spindle 10 to enable it to be flipped open or shut, as well as airholes 13 for adjusting the flow resistance.
If the inhalable powders according to the invention are packed into capsules (inhalers) for the preferred use described above, the quantities packed into each capsule should be 1 to 30mg per capsule. These capsules contain, according to the invention, either together or separately, the doses of 1 or £ and 2 mentioned hereinbefore for each single dose.
B) Propellant gas-driven inhalation aerosols containing the combinations of active substances 1 and 2:
Inhalation aerosols containing propellant gas according to the invention may contain substances 1 and 2 dissolved in the propellant gas or in dispersed form. 1 and 2 may be present in separate formulations or in a single preparation, in which 1 and 2 are either both dissolved, both dispersed or only one component is dissolved and the other is dispersed. The propellant gases which may be used to prepare the inhalation aerosols according to the invention are known from the prior art. Suitable propellant gases are selected from among hydrocarbons such as n-propane, n-butane or isobutane and halohydrocarbons such as fluorinated derivatives of methane, ethane, propane, butane, cyclopropane or cyclobutane. The propellant gases mentioned above may be used on their own or in mixtures thereof. Particularly preferred propellant gases are halogenated alkane derivatives selected from TGI 1, TG12, TG134a (lJJ,2Jetrafluoroethane) and TG227 (1,1,1,2,3,3,3- heptafluoropropane) and mixtures thereof, of which the propellant gases TG134a, TG227 and mixtures thereof are preferred.
The propellant-driven inhalation aerosols according to the invention may also contain other ingredients such as co-solvents, stabilisers, surfactants, antioxidants, lubricants and pH adjusters. All these ingredients are known in the art.
The inhalation aerosols containing propellant gas according to the invention may contain up to 5 wt.-% of active substance 1 and/or 2. Aerosols according to the invention contain, for example, 0.002 to 5 wt.-%, 0.01 to 3 wt.-%, 0.015 to 2 wt.-%, 0.1 to 2 wt.- , 0.5 to 2 wt.-% or 0.5 to 1 wt.-% of active substance 1 and/or 2.
If the active substances 1 and/or 2 are present in dispersed form, the particles of active substance preferably have an average particle size of up to lOμm, preferably from 0J to 6μm, more preferably from 1 to 5μm.
The propellant-driven inhalation aerosols according to the invention mentioned above may be administered using inhalers known in the art (MDIs = metered dose inhalers).
Accordingly, in another aspect, the present invention relates to pharmaceutical compositions in the form of propellant-driven aerosols as hereinbefore described combined with one or more inhalers suitable for administering these aerosols. In addition, the present invention relates to inhalers which are characterised in that they contain the propellant gas- containing aerosols described above according to the invention. The present invention also relates to cartridges fitted with a suitable valve which can be used in a suitable inhaler and which contain one of the above-mentioned propellant gas-containing inhalation aerosols according to the invention. Suitable cartridges and methods of filling these cartridges with the inhalable aerosols containing propellant gas according to the invention are known from the prior art.
C) Propellant-free inhalable solutions or suspensions containing the combinations of active substances 1 and 2 according to the invention:
Propellant-free inhalable solutions and suspensions according to the invention contain, for example, aqueous or alcoholic, preferably ethanolic solvents, optionally ethanolic solvents mixed with aqueous solvents. If aqueous/ethanolic solvent mixtures are used the relative proportion of ethanol compared with water is not limited but preferably the maximum is up to 70 percent by volume, more particularly up to 60 percent by volume of ethanol. The remainder of the volume is made up of water. The solutions or suspensions containing 1 and 2, separately or together, are adjusted to a pH of 2 to 7, preferably 2 to 5, using suitable acids. The pH may be adjusted using acids selected from inorganic or organic acids. Examples of particularly suitable inorganic acids include hydrochloric acid, hydrobromic acid, nitric acid, sulphuric acid and/or phosphoric acid. Examples of particularly suitable organic acids include ascorbic acid, citric acid, malic acid, tartaric acid, maleic acid, succinic acid, fumaric acid, acetic acid, formic acid and/or propionic acid etc. Preferred inorganic acids are hydrochloric and sulphuric acids. It is also possible to use the acids which have already formed an acid addition salt with one of the active substances. Of the organic acids, ascorbic acid, fumaric acid and citric acid are preferred. If desired, mixtures of the above acids may be used, particularly in the case of acids which have other properties in addition to their acidifying qualities, e.g. as flavourings, antioxidants or complexing agents, such as citric acid or ascorbic acid, for example. According to the invention, it is particularly preferred to use hydrochloric acid to adjust the pH.
According to the invention, the addition of editic acid (EDTA) or one of the known salts thereof, sodium editate, as stabiliser or complexing agent is unnecessary in the present formulation. Other embodiments may contain this compound or these compounds. In a preferred embodiment the content based on sodium editate is less than lOOmg lOOml, preferably less than 50mg/100 ml, more preferably less than 20mg/100 ml. Generally, inhalable solutions' in which the content of sodium editate is from 0 to lOmg/lOOml are preferred.
Co-solvents and/or other excipients may be added to the propellant-free inhalable solutions according to the invention. Preferred co-solvents are those which contain hydroxyl groups or other polar groups, e.g. alcohols - particularly isopropyl alcohol, glycols - particularly propyleneglycol, polyethyleneglycol, polypropyleneglycol, glycolether, glycerol, polyoxyethylene alcohols and polyoxyethylene fatty acid esters. The terms excipients and additives in this context denote any pharmacologically acceptable substance which is not an active substance but which can be formulated with the active substance or substances in the pharmacologically suitable solvent in order to improve the qualitative properties of the active substance formulation. Preferably, these substances have no pharmacological effect or, in connection with the desired therapy, no appreciable or at least no undesirable pharmacological effect. The excipients and additives include, for example, surfactants such as soya lecithin, oleic acid, sorbitan esters, such as polysorbates, polyvinylpyrrolidone, other stabilisers, complexing agents, antioxidants and/or preservatives which guarantee or prolong the shelf life of the finished pharmaceutical formulation, flavourings, vitamins and/or other additives known in the art. The additives also include pharmacologically acceptable salts such as sodium chloride as isotonic agents. The preferred excipients include antioxidants such as ascorbic acid, for example, provided that it has not already been used to adjust the pH, vitamin A, vitamin E, tocopherols and similar vitamins and provitamins occurring in the human body.
Preservatives may be used to protect the formulation from contamination with pathogens. Suitable preservatives are those which are known in the art, particularly cetyl pyridinium chloride, benzalkonium chloride or benzoic acid or benzoates such as sodium benzoate in the concentration known from the prior art. The preservatives mentioned above are preferably present in concentrations of up to 50mg/100ml, more preferably between 5 and 20mg/100ml.
Preferred formulations contain, in addition to the solvent water and the combination of active substances 1 and 2, only benzalkonium chloride and sodium editate. In another preferred embodiment, no sodium editate is present.
The propellant-free inhalable solutions according to the invention are administered in particular using inhalers of the kind which are capable of nebulising a small amount of a liquid formulation in the therapeutic dose within a few seconds to produce an aerosol suitable for therapeutic inhalation. Within the scope of the present invention, preferred inhalers are those in which a quantity of less than lOOμL, preferably less than 50μL, more preferably between 20 and 30μL of active substance solution can be nebulised in preferably one spray action to form an aerosol with an average particle size of less than 20μm, preferably less than lOμm, in such a way that the inhalable part of the aerosol corresponds to the therapeutically effective quantity.
An apparatus of this kind for propellant-free delivery of a metered quantity of a liquid pharmaceutical composition for inhalation is described for example in International Patent Application WO 91/14468 and also in WO 97/12687 (cf. in particular Figures 6a and 6b). The nebulisers (devices) described therein are known by the name Respimat®. This nebuliser (Respimat®) can advantageously be used to produce the inhalable aerosols according to the invention containing the combination of active substances 1 and 2. Because of its cylindrical shape and handy size of less than 9 to 15 cm long and 2 to 4 cm wide, this device can be carried at all times by the patient. The nebuliser sprays a defined volume of pharmaceutical formulation using high pressures through small nozzles so as to produce inhalable aerosols.
The preferred atomiser essentially consists of an upper housing part, a pump housing, a nozzle, a locking mechanism, a spring housing, a spring and a storage container, characterised by - a pump housing which is secured in the upper housing part and which comprises at one end a nozzle body with the nozzle or nozzle arrangement, - a hollow plunger with valve body, - a power takeoff flange in which the hollow plunger is secured and which is located in the upper housing part, a locking mechanism situated in the upper housing part, - a spring housing with the spring contained therein, which is rotatably mounted on the upper housing part by means of a rotary bearing, - a lower housing part which is fitted onto the spring housing in the axial direction.
The hollow plunger with valve body corresponds to a device disclosed in WO 97/12687. It projects partially into the cylinder of the pump housing and is axially movable within the cylinder. Reference is made in particular to Figures 1 to 4, especially Figure 3, and the relevant parts of the description. The hollow plunger with valve body exerts a pressure of 5 to 60 Mpa (about 50 to 600 bar), preferably 10 to 60 Mpa (about 100 to 600 bar) on the fluid, the measured amount of active substance solution, at its high pressure end at the moment when the spring is actuated. Volumes of 10 to 50 microlitres are preferred, while volumes of 10 to 20 microlitres are particularly preferred and a volume of 15 microlitres per spray is most particularly preferred.
The valve body is preferably mounted at the end of the hollow plunger facing the valve body. The nozzle in the nozzle body is preferably microstructured, i.e. produced by microtechnology. Microstructured nozzle bodies are disclosed for example in WO 94/07607; reference is hereby made to the contents of this specification, particularly Figure 1 therein and the associated description.
The nozzle body consists for example of two sheets of glass and/or silicon firmly joined together, at least one of which has one or more microstructured channels which connect the nozzle inlet end to the nozzle outlet end. At the nozzle outlet end there is at least one round or non-round opening 2 to 10 microns deep and 5 to 15 microns wide, the depth preferably being 4.5 to 6.5 microns while the length is preferably 7 to 9 microns.
In the case of a plurality of nozzle openings, preferably two, the directions of spraying of the nozzles in the nozzle body may extend parallel to one another or may be inclined relative to one another in the direction of the nozzle opening. In a nozzle body with at least two nozzle openings at the outlet end the directions of spraying may be at an angle of 20 to 160° to one another, preferably 60 to 150°, most preferably 80 to 100°. The nozzle openings are preferably arranged at a spacing of 10 to 200 microns, more preferably at a spacing of 10 to 100 microns, most preferably 30 to 70 microns. Spacings of 50 microns are most preferred. The directions of spraying will therefore meet in the vicinity of the nozzle openings.
The liquid pharmaceutical preparation strikes the nozzle body with an entry pressure of up to 600 bar, preferably 200 to 300 bar, and is atomised into an inhalable aerosol through the nozzle openings. The preferred particle or droplet sizes of the aerosol are up to 20 microns, preferably 3 to 10 microns.
The locking mechanism contains a spring, preferably a cylindrical helical compression spring, as a store for the mechanical energy. The spring acts on the power takeoff flange as an actuating member the movement of which is determined by the position of a locking member. The travel of the power takeoff flange is precisely limited by an upper and lower stop. The spring is preferably biased, via a power step-up gear, e.g. a helical thrust gear, by an external torque which is produced when the upper housing part is rotated counter to the spring housing in the lower housing part. In this case, the upper housing part and the power takeoff flange have a single or multiple V-shaped gear. The locking member with engaging locking surfaces is arranged in a ring around the power takeoff flange. It consists, for example, of a ring of plastic or metal which is inherently radially elastically deformable. The ring is arranged in a plane at right angles to the atomiser axis. After the biasing of the spring, the locking surfaces of the locking member move into the path of the power takeoff flange and prevent the spring from relaxing. The locking member is actuated by means of a button. The actuating button is connected or coupled to the locking member. In order to actuate the locking mechanism, the actuating button is moved parallel to the annular plane, preferably into the atomiser; this causes the deformable ring to deform in the annular plane. Details of the construction of the locking mechanism are given in WO 97/20590.
The lower housing part is pushed axially over the spring housing and covers the mounting, the drive of the spindle and the storage container for the fluid.
When the atomiser is actuated the upper housing part is rotated relative to the lower housing part, the lower housing part taking the spring housing with it. The spring is thereby compressed and biased by means of the helical thrust gear and the locking mechanism engages automatically. The angle of rotation is preferably a whole-number fraction of 360 degrees, e.g. 180 degrees. At the same time as the spring is biased, the power takeoff part in the upper housing part is moved along by a given distance, the hollow plunger is withdrawn inside the cylinder in the pump housing, as a result of which some of the fluid is sucked out of the storage container and into the high pressure chamber in front of the nozzle.
If desired, a number of exchangeable storage containers which contain the fluid to be atomised may be p'ushed into the atomiser one after another and used in succession. The storage container contains the aqueous aerosol preparation according to the invention. The atomising process is initiated by pressing gently on the actuating button. As a result, the locking mechanism opens up the path for the power takeoff member. The biased spring pushes the plunger into the cylinder of the pump housing. The fluid leaves the nozzle of the atomiser in atomised form.
Further details of construction are disclosed in PCT Applications WO 97/12683 and WO 97/20590, to which reference is hereby made.
The components of the atomiser (nebuliser) are made of a material which is suitable for its purpose. The housing of the atomiser and, if its operation permits, other parts as well, are preferably made of plastics, e.g. by injection moulding. For medicinal purposes, physiologically safe materials are used.
Figures 6a/b of WO 97/12687, show the nebuliser (Respimat®) which can advantageously be used for inhaling the aqueous aerosol preparations according to the invention.
Figure 6a of WO 97/12687 shows a longitudinal section through the atomiser with the spring biased while Figure 6b of WO 97/12687 shows a longitudinal section through the atomiser with the spring relaxed. The upper housing part (51) contains the pump housing (52) on the end of which is mounted the holder (53) for the atomiser nozzle. In the holder is the nozzle body (54) and a filter (55). The hollow plunger (57) fixed in the power takeoff flange (56) of the locking mechanism projects partially into the cylinder of the pump housing. At its end the hollow plunger carries the valve body "(58). The hollow plunger is sealed off by means of the seal (59). Inside the upper housing part is the stop (60) on which the power takeoff flange abuts when the spring is relaxed. On the power takeoff flange is the stop (61) on which the power takeoff flange abuts when the spring is biased. After the biasing of the spring the locking member (62) moves between the stop (61) and a support (63) in the upper housing part. The actuating button (64) is connected to the locking member. The upper housing part ends in the mouthpiece (65) and is sealed off by means of the protective cover (66) which can be placed thereon.
The spring housing (67) with compression spring (68) is rotatably mounted on the upper housing part by means of the snap-in lugs (69) and rotary bearing. The lower housing part (70) is pushed over the spring housing. Inside the spring housing is the exchangeable storage container (71) for the fluid (72) which is to be atomised. The storage container is sealed off by the stopper (73) through which the hollow plunger projects into the storage container and is immersed at its end in the fluid (supply of active substance solution). The spindle (74) for the mechanical counter is mounted in the covering of the spring housing. At the end of the spindle facing the upper housing part is the drive pinion (75). The slider (76) sits on the spindle.
The nebuliser described above is suitable for nebulising the aerosol preparations according to the invention to produce an aerosol suitable for inhalation. If the formulation according to the invention is nebulised using the method described above (Respimat®) the quantity delivered should correspond to a defined quantity with a tolerance of not more than 25%, preferably 20% of this amount in at least 97%, preferably at least 98% of all operations of the inhaler (spray actuations). Preferably, between 5 and 30 mg of formulation, most preferably between 5 and 20 mg of formulation are delivered as a defined mass on each actuation.
However, the formulation according to the invention may also be nebulised by means of inhalers other than those described above, e.g. jet stream inhalers or other stationary nebulisers.
Accordingly, in a further aspect, the invention relates to pharmaceutical formulations in the form of propellant-free inhalable solutions or suspensions as described above combined with a device suitable for administering these formulations, preferably in conjunction with the Respimat®. Preferably, the invention relates to propellant-free inhalable solutions or suspensions characterised by the combination of active substances 1 and 2 according to the invention in conjunction with the device known by the name Respimat®. In addition, the present invention relates to the above-mentioned devices for inhalation, preferably the Respimat®, characterised in that they contain the propellant-free inhalable solutions or suspensions according to the invention as described hereinbefore.
According to the invention, inhalable solutions which contain the active substances 1 and 2 in a single preparation are preferred. The term "single preparation" also includes preparations which contain the two ingredients 1 and 2 in two-chamber cartridges, as disclosed for example in WO 00/23037. Reference is hereby made to this publication in its entirety.
The propellant-free inhalable solutions or suspensions according to the invention may take the form of concentrates or sterile inhalable solutions or suspensions ready for use, as well as the above-mentioned solutions and suspensions designed for use in a Respimat®. Formulations ready for use may be produced from the concentrates, for example, by the addition of isotonic saline solutions. Sterile formulations ready for use may be administered using energy-operated free-standing or portable nebulisers which produce inhalable aerosols by means of ultrasound or compressed air by the Venturi principle or other principles.
Accordingly, in another aspect, the present invention relates to pharmaceutical compositions in the form of propellant-free inhalable solutions or suspensions as described hereinbefore which take the form of concentrates or sterile formulations ready for use, combined with a device suitable for administering these solutions, characterised in that the device is an energy-operated free-standing or portable nebuliser which produces inhalable aerosols by means of ultrasound or compressed air by the Venturi principle or other methods.
The Examples which follow serve to illustrate the present invention in more detail without restricting the scope of the invention to the following embodiments by way of example. First, the preparation of compounds 1 which are not known in the art will be described.
1) Preparation of the compounds of formula 1 (in form of the bromide salt):
1.1.: 9-methyl-fluorene-9-carboxylic acid: a) methyl 9-methyl-fluorene-9-carboxylate: From 7.6 g (0.33 mol) of sodium and 300 ml of ethanol a sodium ethoxide solution is prepared, to which 69.6 g (0.33 mol) of 9-fluorenecarboxylic acid are added batchwise. After the addition has ended the mixture is stirred for 2.5 hours at ambient temperature. Then it is evaporated to dryness, the residue is suspended in 600 ml of dimethylformamide and 93.96 g (0.662 mol) of methyl iodide are added dropwise. The mixture is stirred for 3 hours at constant temperature. The cloudy solution is stirred into 500 ml of water and 300 ml of diethyl ether with cooling and extracted, the organic phase is washed with water and 10% sodium carbonate solution, dried and evaporated to dryness. The residue is purified by column chromatography, eluant: cyclohexane / ethyl acetate 96:4. Yield: 12.61 g of white crystals (= 16% of theoretical); melting point: 108°-109°C.
b) 9-methyl-fluorene-9-carboxylic acid:
12.6 g (0.053 mol) of methyl 9-methyl-fluorene-9-carboxylate and 53 ml of 2 molar, aqueous sodium hydroxide solution are stirred in 120 ml of 1,4-dioxane for 24 hours at ambient temperature. The dioxane is distilled off, made up to a total volume of 300 ml with water and extracted with diethyl ether. The aqueous phase is acidified with 3 molar, aqueous HC1, crystallised and filtered. Yield: 11.25 g of white crystals (= 95% of theoretical); melting point: 168°-169°C.
1.2: tropenol 9-methyl-fluorene-9-carboxylate: 6.73 g (0.03 mol) of 9-methyl-fluorene-9-carboxylic acid are suspended in 60 ml dichloromethane, combined with 5.0 g of oxalyl chloride and 1 drop of dimethylformamide, then stirred for one hour at ambient temperature and finally the solvent is distilled off. The acid chloride remaining is used in the next step without any further purification. 4.18 g (0.03 mol) of tropenol and 4.27 g (0.033 mol) of diisopropylethylamine are suspended in 100 ml of dichloroethane, the acid chloride is added dropwise to 30 ml of dichloroethane at 35-40°C and then stirred for 24 hours at 40° C. The suspension is diluted with dichloromethane and extracted with dilute hydrochloric acid. The organic phase is then washed with water, dried over MgSO and the product is converted into its hydrochloride with a solution of HCl in diethyl ether. The solvent is then removed. To purify it the precipitated hydrochloride is taken up in water and extracted with diethyl ether. The aqueous phase is made basic with 10% aq. sodium carbonate solution and extracted with dichloromethane. The organic phase is dried over MgSO4 and the solvent is distilled off. Yield: 4.40 g of yellow oil (= 42% of theoretical);
1.3: scopine 9-methyl-fluorene-9-carboxylate:
2.5 g (0.007 mol) of tropenol 9-methyl-fluorene-9-carboxylate are suspended in about 25 ml of dimethylformamide and combined with 0J3 g (0.001 mol) of vanadium-(V)-oxide. At 60°C a solution of 1.43 g (0.015 mol) of H2O2-urea in about 5.5 ml of water is added dropwise and stirred for 6 hours at 60°C. After cooling to 20°C the precipitate formed is suction filtered, the filtrate is adjusted to pH 2 with 4 N hydrochloric acid and combined with Na2S2O5 dissolved in water. The resulting solution is evaporated to dryness, the residue is extracted with dichloromethane/water. The acidic aqueous phase is made basic with Na2CO3, extracted with dichloromethane and the organic phase is dried over Na2SO4 and concentrated. Then about 0.4 ml of acetylchloride is added at ambient temperature and the mixture is stirred for 1 hour. After extraction with 1 N hydrochloric acid the aqueous phase is made basic, extracted with dichloromethane, the organic phase is washed with water and dried over Na2SO4. Then the solvent is removed by distillation. The crude product is purified by recrystallisation from diethyl ether. Yield: 1.8 g of white crystals (= 71 % of theoretical).
1.4. scopine 9-methyl-fluorene-9-carboxylate methobromide : 1.8 g (0.005 mol) of scopine 9-methyl-fluorene-9-carboxylate are taken up in 30 ml acetonitrile and reacted with 2.848 g (0.015 mol) of 50% methyl bromide solution in acetonitrile. The reaction mixture is left to stand for 3 days at ambient temperature, during which time the product crystallises. The crystals precipitated are separated off and recrystallised from diethyl ether to purify them.
Yield: 1.6 g of white crystals (= 70 % of theoretical); melting point: 214°C. Elemental analysis: calculated: C (62.13) H (5.93) N (4.26) found: C (62.23) H (6.05) N (4.32).
2) Examples of Formulations The following examples of formulations, which may be obtained analogously to methods known in the art, serve to illustrate the present invention more fully without restricting it to the contents of these examples.
Inhalable powders:
1)
2)
3)
Figure imgf000026_0001
4)
5)
6)
7)
8)
Figure imgf000027_0001
9)
10)
11)
12)
Figure imgf000028_0001
13)
Figure imgf000029_0001
*}2 = each of the following compounds: 2-(4-fluoro-phenoxy)-N-{4-[(2hydroxy-3-methyl-benzoyl amino)-methyl] -benzyl} -nicotinamide, 3-(3-{4-[(3-Hydroxy-benzoylamino)-methyl]-benzyl carbamoyl}- pyridin-2-yloxy)- benzoic acid ethyl ester, 2-(4-fluoro-phenoxy)-N-{4-[(6-fluoro-2- hydroxy-benzoylamino)-methyl]-benzyl } nicotinamide, 2-(4-fluoro-phenoxy)-N-{4- [(5-fluoro-2-hydroxy-benzoylamino)-methyl]-benzyl } nicotinamide, 2-(4-fluoro- phenoxy)-N-{4-[(3-hydroxy-4-methyl-benzoylamino)methyl]benzyl} nicotinamide, 2-(4-fluoro-phenoxy)-N-{4-[(3hydroxy-benzoylamino)-methyl]-benzyl} nicotinamide, 2-(4-fIuoro-phenoxy)-N-{4-[(2-hydroxy-benzoylamino)methyl]- benzyl} nicotinamide, 2-(4-fIuoro-phenoxy)-N-{4-[(4-hydroxy- benzoylamino)methyl] -benzyl} nicotinamide, 2-(4-fIuoro-phenoxy)-N-{4-[(2- hydroxy-4-methyl-benzoylamino)methyl] -benzyl } nicotinamide, 2-(4-fIuoro- phenoxy)-N-{4-[(3-hydroxy-2-methyl-benzoylamino)methyl]-benzyl} nicotinamide, 2-(4-fluoro-phenoxy)-N-{4-[(2-hydroxy-5-methyl-benzoylamino)methyl]-benzyl} nicotinamide, 5-fluoro-2-(4-fIuoro-phenoxy)-N-{4-[(2-hydroxy- benzoylamino)methyl]-benzyl } nicotinamide, 5-fluoro-2-(4-fIuoro-phenoxy)-N-{4- [(2-hydroxy-acetylamino)methyl]-benzyl } nicotinamide, 5-fluoro-2-(4-fIuoro- phenoxy)-N-{4-[(4-hydroxy-benzoylamino)methyl]-benzyl} nicotinamide, 3-(3-{4- [(3-hydroxy-benzoylamino)methyl]-benzylcarbamoyl}-pyridin-2-yloxy)benzoic acid ethyl ester, 3-(3-{4-[(2-hydroxy-phenacetylamino)methyl]-benzylcarbamoyl}- pyridin-2-yloxy)benzoic acid ethyl ester, 3-(3-{4-[(3-hydroxy- phenacetylamino)methyl]-benzylcarbamoyl } -pyridin-2-yloxy)benzoic acid ethyl ester, and 3-(3-{4-[(4-hydroxy-phenacetylamino)methyl]-benzylcarbamoyl}-pyridin- 2-yloxy)benzoic acid ethyl ester, compound 2. a
Figure imgf000030_0001
compound (2.b)
Figure imgf000030_0002
optionally in the form of the racemates, the enantiomers, the diastereomers and optionally the pharmacologically acceptable acid addition salts thereof, and the hydrates thereof.
B) Propellant-containing inhalable aerosols:
1) Suspension aerosol:
2)
3)
Figure imgf000031_0001

Claims

Patent Claims
1) Pharmaceutical compositions, characterised in that they contain one or more salts of formula 1
Figure imgf000032_0001
wherein
X " denotes an anion with a single negative charge, preferably an anion selected from the group consisting of fluoride, chloride, bromide, iodide, sulphate, phosphate, methanesulphonate, nitrate, maleate, acetate, citrate, fumarate, tartrate, oxalate, succinate, benzoate and p-toluenesulphonate
combined with one or more PDE IV inhibitors (2), optionally in the form of the enantiomers, mixtures of the enantiomers or in the form of the racemates thereof, optionally in the form of the solvates or hydrates and optionally together with a pharmaceutically acceptable excipient.
2) Pharmaceutical composition according to claim 1, characterised in that the active substances 1 and 2 are present either together in a single formulation or in two separate formulations.
3) Pharmaceutical composition according to claim 1 or 2, characterised in that the PDE IV inhibitors 2 are selected from the group consisting of enprofylline, theophylline, roflumilast, ariflo (cilomilast), CP-325,366, BY343, D-4396 (Sch-351591), AWD-12-281 (GW-842470), N-(3,5-dichloro-l-oxo-pyridin-4-yl)-4-difluoromethoxy-3- cyclopropylmethoxybenzamide, NCS-613, pumafentine, (-)p-[(4αR*J0bS*)-9-ethoxy- 1 ,2,3 ,4,4a, 10b-hexahydro-8-methoxy-2methylbenzo[s] [ 1 ,6]naphthyridin-6-yl]-N,N- diisopropylbenzamide, (R)-(+)-l-(4-bromobenzyl)-4-[(3-cyclopentyloxy)-4- methoxyphenyl]-2-ρyrrolidone, 3-(cyclopentyloxy-4-methoxyphenyl)-l-(4-N'-[N-2-cyano- S-methyl-isothioureido]benzyl)-2-pyrrolidone, cis[4-cyano-4-(3-cyclopentyloxy-4- methoxyphenyl)cyclohexan-l-carboxylic acid], 2-carbomethoxy-4-cyano-4-(3- cyclopropylmethoxy-4-difluoromethoxyρhenyl)cyclohexan-l-one, cis[4-cyano-4-(3- cycloproρylmethoxy-4-difluoromethoxyphenyl)cyclohexan-l-ol], (R)~(+)-ethyl[4-(3- cyclopentyloxy-4-methoxyphenyl)pyrrolidine-2-ylidene]acetate, (S)-(-)-ethyl[4-(3- cyclopentyloxy-4-methoxyphenyl)ρyrrolidine-2-ylideήe]acetate, CDP840, Bay-198004, D- 4418, PD-168787, T-440, T-2585, arofylline, atizoram, V-11294A, Cl-1018, CDC-801, CDC-3052, D-22888, YM-58997, Z-15370, 9-cyclopentyl-5,6-dihydro-7-ethyl-3-(2- thienyl)-9H-pyrazolo[3,4-c]-l,2,4-triazolo[4,3-a]pyridine, and 9-cyclopentyl-5,6-dihydro- 7-ethyl-3-(tert-butyl)-9H-pyrazolo[3,4-c]-l,2,4-triazolo[4,3-a]pyridine, optionally in the form of the racemates, the enantiomers, the diastereomers and optionally the pharmacologically acceptable acid addition salts thereof, and the hydrates thereof.
4) Pharmaceutical compositions according to one of claims 1 to 3, characterised in that the compounds 2 are selected from the group consisting of enprofylline, roflumilast, ariflo (cilomilast), AWD-12-281 (GW-842470), N-(3,5-dichloro- l-oxo-pyricun-4-yl)-4-difluoromethoxy-3-cyclopropylmethoxybenzamide, T-440, T-2585, arofylline, cis[4-cyano-4-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-l-carboxylic acid], 2-carbomethoxy-4-cyano-4-(3-cyclopropylmethoxy-4- difluoromethoxyphenyl)cyclohexan-l-one, cis[4-cyano-4-(3-cyclopropylmethoxy-4- difluoromethoxyphenyl)cyclohexan-l-ol], PD-168787, atizoram, V-11294A, Cl-1018, CDC-801, D-22888, YM-58997, Z-15370, 9-cyclopentyl-5,6-dihydro-7-ethyl-3-(2- thienyl)-9H-pyrazolo[3,4-c]-l ,2,4-triazolo[4,3-a]ρyridine, and 9-cyclopentyl-5,6-dihydro- 7-ethyl-3-(tert-butyl)-9H-pyrazolo[3,4-c]-l,2,4-triazolo[4,3-a]pyridine, optionally in the form of the racemates, the enantiomers, the diastereomers and optionally the pharmacologically acceptable acid addition salts thereof, and the hydrates thereof.
5) Pharmaceutical compositions according to one of claims 1 to 4, characterised in that the compounds 2 are selected from among roflumilast, ariflo (cilomilast), AWD-12-281 (GW-842470), arofylline, Z-15370, 2-carbomethoxy-4-cyano-4-(3-cyclopropylmethoxy-4- difluoromethoxyphenyl)cyclohexan-l-one, cis[4-cyano-4-(3-cyclopropylmethoxy-4- difluoromethoxyphenyl)cyclohexan- 1 -ol] , atizoram, 9-cyclopentyl-5 ,6-dihydro-7-ethyl-3- (2-thienyl)-9H-pyrazolo[3,4-c]-l,2,4-triazolo[4,3-a]pyridine, and 9-cyclopentyl-5,6- dihydro-7-ethyl-3-(tert-butyl)-9H-pyrazolo[3,4-c]-l ,2,4-triazolo[4,3-a]pyridine, optionally in the form of the racemates, the enantiomers, the diastereomers and optionally the pharmacologically acceptable acid addition salts thereof, and the hydrates thereof.
6) Pharmaceutical compositions according to one of claims 1 to 5, characterised in that the compounds 2 are selected from among roflumilast, Z-15370, and AWD-12-281, optionally in the form of the racemates, the enantiomers, the diastereomers and optionally the pharmacologically acceptable acid addition salts thereof, and the hydrates thereof.
7) Pharmaceutical composition according to claim 1 or 2, characterised in that the PDE IV inhibitors 2 are selected from the group consisting of 2-(4-fluoro-phenoxy)-N-{4- [(6-fluoro-2-hydroxy-benzoylamino)-methyl]-benzyl } nicotinamide, 2-(4-fluoro-phenoxy)- N-{4-[(5-fluoro-2-hydroxy-benzoylamino)-methyl]-benzyl } nicotinamide, 2-(4-fluoro- phenoxy)-N-{4-[(3-hydroxy-4-methyl-benzoylamino)methyl]benzyl} nicotinamide, 2-(4- fluoro-phenoxy)-N-{4-[(3hydroxy-benzoylamino)-methyl]-benzyl} nicotinamide, 2-(4- fIuoro-phenoxy)-N-{4-[(2-hydroxy-benzoylamino)methyl]-benzyl} nicotinamide, 2-(4- fIuoro-phenoxy)-N-{4-[(4-hydroxy-benzoylamino)methyl]-benzyl} nicotinamide, 2-(4- fIuoro-phenoxy)-N- { 4-[(2-hydroxy-4-methyl-benzoylamino)methyl]-benzyl } nicotinamide, 2-(4-fIuoro-phenoxy)-N-{4-[(3-hydroxy-2-methyl-benzoylamino)methyl]- benzyl} nicotinamide, 2-(4- Iuoro-phenoxy)-N-{4-[(2-hydroxy-5-methyl- benzoylamino)methyl] -benzyl} nicotinamide,
5-fluoro-2-(4-fIuoro-phenoxy)-N-{4-[(2-hydroxy-benzoylamino)methyl]-benzyl} nicotinamide, 5-fluoro-2-(4- Iuoro-phenoxy)-N-{4-[(2-hydroxy-acetylamino)methyl]- benzyl } nicotinamide, 5-fluoro-2-(4-fluoro-phenoxy)-N-{4-[(4-hydroxy- benzoylamino)methyl] -benzyl } nicotinamide, 3-(3-{4-[(3 -hydroxy-benzoylamino)methyl] - benzylcarbamoyl}-pyridin-2-yloxy)benzoic acid ethyl ester, 3-(3-{4-[(2-hydroxy- phenacetylamino)methyl]-benzylcarbamoyl}-pyridin-2-yloxy)benzoic acid ethyl ester, 3-(3-{4-[(3-hydroxy-phenacetylamino)methyl]-benzylcarbamoyl}-pyridin-2-yloxy)benzoic acid ethyl ester, 3-(3-{4-[(4-hydroxy-phenacetylamino)methyl]-benzylcarbamoyl}-pyridin- 2-yloxy)benzoic acid ethyl ester, compound 2.a
Figure imgf000035_0001
(2.b), optionally in the form of the racemates, the enantiomers, the diastereomers and optionally the pharmacologically acceptable acid addition salts thereof, and the hydrates thereof.
8) Pharmaceutical compositions according to one of claims 1 to 7, characterised in that the weight ratios of £to 2 are in a range from about 1:100 to 100:1, preferably from 1:80 to 80:1. 9) Pharmaceutical compositions according to one of claims 3 to 8, characterised in that the weight ratios of £
Figure imgf000036_0001
to 2 are in a range from about 1:50 to 50:1, more preferably from 1:20 to 20:1.
10) Pharmaceutical composition according to one of claims 1 to 9, characterised in that it is in the form of a preparation suitable for inhalation.
11) Pharmaceutical composition according to claim 10, characterised in that it is a preparation selected from among the inhalable powders, propellant-containing metered- dose aerosols and propellant-free inhalable solutions.
12) Pharmaceutical composition according to claim 11, characterised in that it is an inhalable powder which contains 1 and 2 in admixture with suitable physiologically acceptable excipients selected from among the monosaccharides, disaccharides, oligo- and polysaccharides, polyalcohols, salts, or mixtures of these excipients with one another.
13) Inhalable powder according to claim 12, characterised in that the excipient has a maximum average particle size of up to 250μm, preferably between 10 and 150μm.
14) Pharmaceutical composition according to claim 13, characterised in that it is an inhalable powder which contains only the active substances 1 and 2 as its ingredients.
15) Pharmaceutical composition according to claim 11 , characterised in that it is a propellant-containing inhalable aerosol which contains 1 and 2 in dissolved or dispersed form. 16) Propellant-containing inhalable aerosol according to claim 15, characterised in that it contains, as propellant gas, hydrocarbons such as n-propane, n-butane or isobutane or halohydrocarbons such as chlorinated and/or fluorinated derivatives of methane, ethane, propane, butane, cyclopropane or cyclobutane.
17) Propellant-containing inhalable aerosol according to claim 16, characterised in that the propellant gas is TGI 1 , TG12, TGI 34a, TG227 or mixtures thereof, preferably
TG134a, TG227 or a mixture thereof.
18) Propellant-containing inhalable aerosol according to one of claims 15 to 17, characterised in that it may contain up to 5 % by weight of active substance £ and/or 2.
19) Pharmaceutical composition according to claim 11, characterised in that it is a propellant-free inhalable solution which contains water, ethanol or a mixture of water and ethanol as solvent.
20) Inhalable solution according to claim 19, characterised in that it optionally contains other co-solvents and/or excipients.
21) Inhalable solution according to claim 20, characterised in that it contains as co-solvents ingredients which contain hydroxyl groups or other polar groups, e.g. alcohols - particularly isopropyl alcohol, glycols - particularly propyleneglycol, polyethyleneglycol, polypropyleneglycol, glycolether, glycerol, polyoxyethylene alcohols and polyoxyethylene fatty acid esters.
22) Inhalable solutions according to one of claims 20 or 21, characterised in that they contain as excipients surfactants, stabilisers, complexing agents, antioxidants and/or preservatives, flavourings, pharmacologically acceptable salts and/or vitamins.
23) Inhalable solutions according to claim 22, characterised in that they contain as complexing agents editic acid or a salt of editic acid, preferably sodium edetate.
24) Use of a composition according to one of claims 1 to 23 for preparing a medicament for the treatment of inflammatory or obstructive respiratory complaints, particularly asthma or COPD.
PCT/EP2004/008003 2003-07-28 2004-07-23 Medicaments comprising pde iv inhibitors and a novel anticholinergic and their use for treating respiratory disorders WO2005013967A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006521453A JP2007500148A (en) 2003-07-28 2004-07-23 Medicament containing PDEIV inhibitor and novel anticholinergic agent and use of the medicament for treating respiratory diseases
EP04741118A EP1651208A1 (en) 2003-07-28 2004-07-23 Medicaments comprising pde iv inhibitors and a novel anticholinergic and their use for treating respiratory disorders
CA002533786A CA2533786A1 (en) 2003-07-28 2004-07-23 Medicaments comprising pde iv inhibitors and a novel anticholinergic and their use for treating respiratory disorders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03017039.3 2003-07-28
EP03017039 2003-07-28

Publications (1)

Publication Number Publication Date
WO2005013967A1 true WO2005013967A1 (en) 2005-02-17

Family

ID=34130036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/008003 WO2005013967A1 (en) 2003-07-28 2004-07-23 Medicaments comprising pde iv inhibitors and a novel anticholinergic and their use for treating respiratory disorders

Country Status (4)

Country Link
EP (1) EP1651208A1 (en)
JP (1) JP2007500148A (en)
CA (1) CA2533786A1 (en)
WO (1) WO2005013967A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005067929A1 (en) * 2004-01-09 2005-07-28 Boehringer Ingelheim International Gmbh New pharmaceutical compositions based on a scopineester and nicotinamide derivatives
WO2006018392A1 (en) * 2004-08-10 2006-02-23 Boehringer Ingelheim International Gmbh Aerosol formulation for inhalation, containing an anticholinergenic agent
JP2009513203A (en) * 2005-10-28 2009-04-02 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Inhaler with mouthpiece having microbiological protection function
JP2009515624A (en) * 2005-11-15 2009-04-16 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Needle for puncturing a powder capsule for inhalation
JP2009517148A (en) * 2005-12-02 2009-04-30 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Metering device
JP2011521938A (en) * 2008-05-27 2011-07-28 アストラゼネカ・アクチエボラーグ Phenoxypyridinylamide derivatives and their use in PDE4-mediated disease states
WO2011163469A1 (en) * 2010-06-23 2011-12-29 Teva Pharmaceutical Industries Ltd. Hydrated form of anti-inflammatory roflumilast-n-oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032899A1 (en) * 2000-10-14 2002-04-25 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel anticholinergic agents that can be used as medicaments and method for the production thereof
WO2002069945A2 (en) * 2001-03-07 2002-09-12 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel medicament compositions on the basis of anticholinergics and pde iv inhibitors
WO2003064419A1 (en) * 2002-01-31 2003-08-07 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel fluorene carboxylic acid esters, methods for the production thereof, and use of the same as pharmaceuticals
WO2004004704A1 (en) * 2002-07-09 2004-01-15 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel pharmaceutical compositions comprising novel anticholinergic agents and pde-iv inhibitors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB765821A (en) * 1954-01-22 1957-01-16 Sandoz Ltd New tropine and nortropine derivatives having a quaternary n-atom and process for their manufacture
GB764227A (en) * 1954-01-22 1956-12-19 Sandoz Ltd New tropine and nortropine derivatives and process for their manufacture
GB813218A (en) * 1956-03-08 1959-05-13 Merck Ag E Nor-tropines and nor-pseudo-tropines and process for their production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032899A1 (en) * 2000-10-14 2002-04-25 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel anticholinergic agents that can be used as medicaments and method for the production thereof
WO2002069945A2 (en) * 2001-03-07 2002-09-12 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel medicament compositions on the basis of anticholinergics and pde iv inhibitors
WO2003064419A1 (en) * 2002-01-31 2003-08-07 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel fluorene carboxylic acid esters, methods for the production thereof, and use of the same as pharmaceuticals
WO2004004704A1 (en) * 2002-07-09 2004-01-15 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel pharmaceutical compositions comprising novel anticholinergic agents and pde-iv inhibitors

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005067929A1 (en) * 2004-01-09 2005-07-28 Boehringer Ingelheim International Gmbh New pharmaceutical compositions based on a scopineester and nicotinamide derivatives
WO2006018392A1 (en) * 2004-08-10 2006-02-23 Boehringer Ingelheim International Gmbh Aerosol formulation for inhalation, containing an anticholinergenic agent
JP2009513203A (en) * 2005-10-28 2009-04-02 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Inhaler with mouthpiece having microbiological protection function
US8397717B2 (en) 2005-10-28 2013-03-19 Boehringer Ingelheim International Gmbh Inhaler with mouthpiece having a microbiological protective function
JP2009515624A (en) * 2005-11-15 2009-04-16 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Needle for puncturing a powder capsule for inhalation
JP2009517148A (en) * 2005-12-02 2009-04-30 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Metering device
JP2011521938A (en) * 2008-05-27 2011-07-28 アストラゼネカ・アクチエボラーグ Phenoxypyridinylamide derivatives and their use in PDE4-mediated disease states
WO2011163469A1 (en) * 2010-06-23 2011-12-29 Teva Pharmaceutical Industries Ltd. Hydrated form of anti-inflammatory roflumilast-n-oxide

Also Published As

Publication number Publication date
EP1651208A1 (en) 2006-05-03
CA2533786A1 (en) 2005-02-17
JP2007500148A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
WO2006008213A1 (en) Medicaments for inhalation comprising pde iv inhibitors and enantiomercally pure glycopyrrolate salts
US20040024007A1 (en) Pharmaceutical compositions based on anticholinergics and PDE-IV inhibitors
US6608054B2 (en) Pharmaceutical compositions based on anticholinergics and endothelin antagonists
US20070208060A1 (en) Compounds for treating inflammatory diseases
US20040058950A1 (en) Pharmaceutical compositions based on anticholinergics and PDE-IV inhibitors
US20020189610A1 (en) Pharmaceutical compositions containing an ipratropium salt and a betamimetic
JP2004521134A (en) Novel pharmaceutical compositions based on anticholinergic drugs and PDE-IV inhibitors
US20110076238A1 (en) Compounds for the treatment of proliferative processes
EP1718326A2 (en) New pharmaceutical compositions based on benzilic acid esters and soluble tnf receptor fusion proteins
US20050026886A1 (en) Medicaments for inhalation comprising an anticholinergic and a PDE IV inhibitor
EP1651224A1 (en) Medicaments for inhalation comprising anticholinergics and a betamimetic
WO2005013967A1 (en) Medicaments comprising pde iv inhibitors and a novel anticholinergic and their use for treating respiratory disorders
EP1651222A1 (en) Medicaments comprising pde iv inhibitors and an anticholinergic for treating respiratory disorders
WO2006007881A2 (en) New pharmaceutical compositions based on fluorenecarboxyclic acid esters and soluble tnf receptor fusion proteins
WO2005014005A1 (en) Combination of an anticholinergic and a steroid and its use to treat respiratory disorders by inhalation
EP1651221A1 (en) Medicaments for inhalation comprising betamimetics and an anticholinergic agent
EP1978955A1 (en) New pharmaceutical compositions based on anticholinergics and andolast
JP2004525920A (en) Novel pharmaceutical compositions based on anticholinergic drugs and endothelin antagonists
US20050043343A1 (en) Medicaments for inhalation comprising an anticholinergic and a PDE IV inhibitor
EP1651230A1 (en) Medicaments for inhalation comprising steroids and a novel anticholinergic
WO2004071384A2 (en) New pharmaceutical compositions based on anticholinergics and tace-inhibitors
WO2004071383A2 (en) New pharmaceutical compositions based on anticholinergics and inhibitors of tnf alpha synthesis or action
EP1594528A1 (en) New pharmaceutical compositions based on anticholinergics and soluble tnf receptor fusion proteins
WO2005079796A1 (en) Pharmaceutical compositions based on anticholinergics and pegsunercept

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004741118

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2533786

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006521453

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004741118

Country of ref document: EP