WO2005006797A1 - Overreach detection method and mobile device using the same - Google Patents

Overreach detection method and mobile device using the same Download PDF

Info

Publication number
WO2005006797A1
WO2005006797A1 PCT/JP2003/008801 JP0308801W WO2005006797A1 WO 2005006797 A1 WO2005006797 A1 WO 2005006797A1 JP 0308801 W JP0308801 W JP 0308801W WO 2005006797 A1 WO2005006797 A1 WO 2005006797A1
Authority
WO
WIPO (PCT)
Prior art keywords
overreach
base station
detection method
power
mobile
Prior art date
Application number
PCT/JP2003/008801
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Matsuoka
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2005503856A priority Critical patent/JP4171745B2/en
Priority to PCT/JP2003/008801 priority patent/WO2005006797A1/en
Publication of WO2005006797A1 publication Critical patent/WO2005006797A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/248Connectivity information update

Definitions

  • the present invention relates to an overreach detection method and a mobile device using the same.
  • the present invention relates to an overreach detection method and a mobile device using the same, and more particularly, to a method for detecting overreach during standby and a mobile device using the same.
  • CDMA Code Division Multiple Access
  • different spreading codes are assigned to adjacent base stations 10, 11, 12, 13, and 14, and base stations 15 at predetermined intervals are, for example, The same spreading code as that of base station 14 is assigned.
  • the base station assigns spreading codes in consideration of radio wave propagation characteristics due to surrounding terrain, etc., but in places where the propagation environment changes significantly, the mobile station cannot receive radio waves from nearby base stations. In some cases, overreach of receiving radio waves from distant base stations may occur. In particular, when the mobile station 20 is handing over in a building area, if the reception sensitivity from the nearby base station 14 is poor, stop receiving signals from that base station 14 and stop May receive signals from station 15.
  • the transmission power of each synchronization is controlled to average the reception level at the base station of the cell.
  • the mobile station 20 sends a high power signal to the distant base station 15 and the distant base station 15 sends a high power signal to the mobile station 20 Will do. Therefore, it causes great interference to other cells and sectors, If the stem capacity is greatly deteriorated, there is a problem.
  • Patent Document 1
  • the mobile device since the mobile device does not judge whether or not overreach is occurring, even if the currently connected cell is in good reception, it can talk and communicate with long-distance base stations. I often go there.
  • a general object of the present invention is to provide an overreach detection method capable of improving the call maintenance rate by performing overreach detection on the mobile device side, and a mobile device using the same.
  • the present invention relates to an overreach detection method in a mobile communication system employing a code division multiple access system, wherein during standby, power measurement of a received signal is performed, and the power measurement result is obtained.
  • the base station is configured to detect as overreach.
  • overreach detection can be performed on the mobile device side, and the base station that has detected overreach can be excluded from the serving cell, thereby improving the call retention rate of the call.
  • FIG. 1 is a schematic diagram of a mobile communication system.
  • Figure 2 is a conceptual diagram of the protocol architecture between the base station and the mobile station.
  • FIG. 3 is a block diagram of an embodiment of the overreach detection function of the present invention.
  • FIG. 4 is a flowchart of a process executed by the overreach detection function of the present invention.
  • FIG. 5 is a flowchart of the overreach detection process.
  • FIG. 6 is a diagram showing a preamble signature.
  • FIG. 2 shows a conceptual diagram of the protocol architecture between the base station and the mobile station.
  • a mobile station (UE) 20 includes a physical layer (L1) section 21, a MAC (Medium Access Control) layer section 22 which is a sub-layer of a data link layer, and an RLC (Radio L i) section. It is composed of a nk Control 1) layer section 23 and a network layer RRC (Radio Resource Control) layer section 24.
  • the base station radio access network (UTRAN) 30 includes a physical layer unit 31, a MAC layer unit 32 and a RLC layer unit 33, which are sublayers of a data link layer, and an RRC layer unit 34 of a network layer. Have been. ,
  • the physical layer units 21 and 31 perform multiplexing, channel coding, spreading, modulation and the like.
  • the MAC layer units 22 and 32 perform user requests, such as scheduling and monitoring the traffic volume in consideration of the usage status of the wireless line. 11.
  • the layer units 23 and 33 control error data processing and data retransmission, and add information for retransmission control to signaling messages from the RRC layers 24 and 34 so that they can be transmitted correctly. I have.
  • the RRC layers 24 and 34 generate and terminate signaling messages such as system information and outgoing / incoming messages, and acquire measurement data from the physical layers 21 and 31 and the MAC layers 22 and 32 to acquire physical The operation of each of the sections 21 and 31 and the MAC layers 22 and 32 is controlled.
  • the overreach detection function built into the mobile device 20 of the present invention has two main processes. Divided into functional functions. Based on the two processing results, it is determined whether or not overreach has been detected. If overreach is detected, control is performed so as to stop communication with the base station.
  • the physical layer unit 21 performs communication quality judgment (detection S: Squa 1 [quality], S rx 1 ev [level]) by the cell monitoring (cell reselection) function. If the measured path loss value is lower than the threshold value in the path loss threshold value determination process, the distance may be long, and the overreach detection is performed by the second processing function. When the measured path loss value is lower than the threshold value, the second processing function checks each serving cell in order to confirm whether the communication state is possible by calling / incoming call using the common channel in the MAC layer unit 22.
  • the MAC layer unit 22 of the mobile device 20 determines that the corresponding serving cell is overreach, and excludes the serving cell from candidates for a waiting base station. Serving cells for which overreach has not been detected are considered as standby candidates.
  • FIG. 3 shows a block diagram of an embodiment of the overreach detection function of the present invention.
  • This overreach detection function uses the cell monitoring function at the time of cell transition.
  • the purpose of the cell monitoring function is to select a cell of good quality, even if it is not always the best cell, as a serving cell so that it can be awaited.
  • the mobile station 30 monitors appropriate system information and performs the necessary measurements for cell monitoring evaluation.
  • the cell monitoring and evaluation process is a process to find out if there is a better cell, which is performed when the mobile device's internal trigger or system information is changed.
  • the measuring unit 40 measures the level of the serving cell.
  • the path entrance calculator 42 calculates path loss based on the measurement result supplied from the measuring unit 40 by the following equation.
  • the measured path loss value Pa ss 1 oss is calculated using the following equation.
  • Primary CP I CH Tx power is based on IE “Primary CP I CH” [dBm] included in system information layer 3 information. used.
  • CP I CH RSCP is the signal code power [dBm] of the common pilot channel CP I CH (Common Pilot Channel) after despreading.
  • the filter unit 44 filters each of the measured value and the measured path loss value supplied from the measuring unit 40 to remove a noise component.
  • the detection S calculation unit 46 calculates the detection S by the following equation.
  • the detection S that is, Squ a 1 or S r x 1 e v is calculated by the following equation.
  • the threshold values S i n t r a se a r ch and S i n t e r se a r a ch are reported from the base station 30 by system information.
  • the detection S determination unit 48 is a process for determining whether or not to perform the measurement of the serving cell, and makes the following determination using S qua 1 (or S rx 1 ev). If S qua 1 (or S r 1 ev)> S intrasearch, the measurement is not performed for the same frequency cell as the S judgment is good.
  • the measured path loss value P ass 1 oss obtained by the path loss calculation unit 42 is filtered by the filter unit 44 and supplied to the overreach detection processing unit 50.
  • the overreach detection processing unit 50 outputs the measured path loss value P ass 1
  • the oss is compared with a threshold reported from the base station 30 in the system information, and if the measured path loss value is lower than the threshold of the system information, an overreach detection process is performed.
  • the measurement unit 40, the path loss calculation unit 42, the filter unit 44, and the detection S calculation unit 46 in FIG. 3 belong to the physical layer unit 21, and the overreach detection processing unit 50 belongs to the MAC layer unit 22.
  • FIG. 4 shows a flowchart of a process executed by the overreach detection function of the present invention. This process is executed for each serving cell at predetermined time intervals, for example, 2.56 sec.
  • step S10 the level of each serving cell is measured by the measuring unit 40.
  • step S12 the detection S calculation section 46 and the detection S determination section 48 perform detection S calculation and detection S determination of each serving cell.
  • step S14 the overreach detection processing section 50 determines whether or not the measured path loss value is lower than the threshold value of the system information. Execute the reach detection process.
  • step S18 it is determined in step S18 whether the overreach of each serving cell has been detected or not, and the serving cell in which overreach has not been detected cannot perform communication by calling / incoming calls on a common channel. Therefore, in step S20, the value 1 is set to the overreach flag in the corresponding serving cell column of the cell table provided in the physical layer unit 31. In the cell table, for each serving cell, the frequency used, the scramble record, the measured value of the measuring unit 40, the detected S, the measured path loss value, and the like are registered.
  • step S22 the corresponding serving cell column (frequency used, scramble code, measured value of measurement unit 40, detected S, measured value of path loss, etc.) of the cell table is updated.
  • the value of the overreach flag is set to 0, indicating that overreach is not performed.
  • the overreach detection processing unit 50 determines whether the measured value of the path loss is larger than the threshold value of the system information by the overreach detection processing unit 50 in step S14. If the measured value of the path loss is larger than the threshold value of the system information by the overreach detection processing unit 50 in step S14, the corresponding serving cell column (frequency used, scramble code, measurement unit) in the cell table is also set in step S22. 40 Measured value, detected S, measured path loss value, etc.) are updated. In this case as well, the overreach flag is set to a value of 0, indicating that it is not overreach.
  • step S20 After the above steps S20 and S22, only the serving cell whose overreach flag registered in the cell table in step S24 has a value of 0 is used to transfer the measured value, detected S, measured pathloss value, etc. to the upper RRC. This is notified to the layer section 24, and this processing ends.
  • FIG. 5 shows a flowchart of the overreach detection processing executed by the overreach detection processing section 50 in step S16. This process is performed for each serving cell.
  • the overreach detection processing unit 50 resets the number of transmissions to 0 in step S30, and then performs preamble transmission to the corresponding serving cell in step S32. This briamble transmission is performed in order to confirm whether communication is possible by calling / incoming calls on the common channel, and the uplink common transport channel RACH (corresponding to PRACH in the physical layer). ).
  • the preamble is a signal of 496 chips composed of 16 types of sequences called signatures.
  • the Shigunechiya P 0 to P 1 5 each 1 6 chip shown in FIG. 6 repeats it respectively 2 5 6 times are a preamble.
  • step S34 it is determined whether or not the base station 30 of the corresponding serving cell has not responded (Ack) to the preamble transmission and the timer has timed out. . If the timer times out, the number of transmissions is incremented by 1 in step S36. Thereafter, in step S38, it is determined whether the number of transmissions is equal to or greater than a threshold value such as 32, for example. If it is determined that the number of transmissions is less than the threshold, the process proceeds to step S32 to repeat the preamble transmission. If the number of transmissions is equal to or greater than the threshold, the process proceeds to step S40.
  • the power of the brimble transmission is smaller than the optimum transmission power estimated from the measurement of the downlink common pilot channel! /, Starting from power, increasing sequentially as the number of transmissions increases.
  • step S40 since communication is not possible due to outgoing / incoming calls on the common channel, the process is terminated as overreach detection for base station 30 of the corresponding serving cell.
  • step S38 if there is a response from the base station 30 to the preamble transmission before the number of transmissions becomes equal to or more than the threshold value in step S38, the process proceeds to step S42, and the process is terminated as overreach is not detected. .
  • the serving cell that has detected overreach is not notified to the RRC layer unit 24, and the serving cell that has detected overreach is called by the RRC layer unit 24 by calling / calling on a common channel. Therefore, it is excluded from serving cell candidates because communication is not possible. For this reason, only the serving cells for which over-reach has not been detected remain, and the maintenance rate of call connection of the remaining serving cells can be increased.
  • Steps S10 and S12 correspond to the power measuring means described in the claims
  • step S32 corresponds to the preamble transmitting means
  • step S40 corresponds to the overreach detecting means
  • S20 and S24 correspond to cell exclusion means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An overreach detection method in a mobile communication system employing the code division multi-connection method. Reception signal power measurement is performed during wait. When the power measurement result is lower than a threshold value, one or more preamble transmissions are performed. If no response is received from a base station in response to the preamble transmission, the base station is detected to be an overreach. Thus, it is possible to detect the overreach at the mobile device and exclude the base station detected to be overreach from a serving cell, thereby improving the call maintaining ratio.

Description

オーバーリーチ検出方法及びそれを用いた移動機 技術分野  TECHNICAL FIELD The present invention relates to an overreach detection method and a mobile device using the same.
本発明は、 オーバーリーチ検出方法及びそれを用いた移動機に関し、 特に、 待 ち受け時にオーバーリーチを検出する方法及びそれを用いた移動機に関する。 背景技術  The present invention relates to an overreach detection method and a mobile device using the same, and more particularly, to a method for detecting overreach during standby and a mobile device using the same. Background art
C DMA (符号分割多元接続) 方式の移動体通信システムでは、 近距離に置か れた基地局には異なる拡散符号を割当て、 所定間隔を隔てた基地局には同一の拡 散符号が割り当てられる。  In a CDMA (Code Division Multiple Access) mobile communication system, different spreading codes are assigned to base stations located at short distances, and the same spreading code is assigned to base stations separated by a predetermined interval.
図 1に示す移動体通信システムでは、隣接する基地局 1 0, 1 1, 1 2, 1 3, 1 4では異なる拡散符号が割り当てられ、 所定間隔を隔てた基地局 1 5には、 例 えば基地局 1 4と同一の拡散符号が割り当てられている。  In the mobile communication system shown in FIG. 1, different spreading codes are assigned to adjacent base stations 10, 11, 12, 13, and 14, and base stations 15 at predetermined intervals are, for example, The same spreading code as that of base station 14 is assigned.
上記基地局の拡散符号の割り当ては、 周囲の地形等による電波伝搬特性も考慮 して行われるが、 伝搬環境が著しく変ィヒする場所では、 移動機が近くの基地局の 電波を受信せずに、 遠くの基地局の電波を受信するオーバーリーチが生じる場合 がある。 特に、 移動機 2 0がビル街でハンドオーバしている際に、 近くの基地局 1 4からの受信感度が悪い場合は、 その基地局 1 4からの信号の受信を止めて、 遠距離の基地局 1 5からの信号の受信を行うことがある。  The base station assigns spreading codes in consideration of radio wave propagation characteristics due to surrounding terrain, etc., but in places where the propagation environment changes significantly, the mobile station cannot receive radio waves from nearby base stations. In some cases, overreach of receiving radio waves from distant base stations may occur. In particular, when the mobile station 20 is handing over in a building area, if the reception sensitivity from the nearby base station 14 is poor, stop receiving signals from that base station 14 and stop May receive signals from station 15.
C DMA方式は、 電力レベルが著しく異なる信号を多重化すると、 大電力信号 が小電力信号に大きな干渉を与えるので収容可能な回線数 (システム容量) が低 下する。 この問題を解消するため C D M A方式では同一セル内に複数の移動機が 存在する場合、 各位同期の送信電力を制御して当該セルの基地局における受信レ ベルを平均化している。 ·  In the CDMA method, when signals with significantly different power levels are multiplexed, the number of lines (system capacity) that can be accommodated is reduced because a large power signal causes large interference with a small power signal. In order to solve this problem, in the CDMA system, when multiple mobile stations exist in the same cell, the transmission power of each synchronization is controlled to average the reception level at the base station of the cell. ·
しかし、 上記のオーバーリーチが発生すると、 移動機 2 0が遠くの基地局 1 5 に対し大電力信号を送出し、 また、 遠くの基地局 1 5が移動機 2 0に対し大電力 信号を送出することになる。 従って、 他のセル、 セクタに大きな干渉を与え、 シ ステム容量を大きく劣化させるとレ、う問題があった。 However, when the above-mentioned overreach occurs, the mobile station 20 sends a high power signal to the distant base station 15 and the distant base station 15 sends a high power signal to the mobile station 20 Will do. Therefore, it causes great interference to other cells and sectors, If the stem capacity is greatly deteriorated, there is a problem.
従来のオーバーリーチ検出は、 特許文献 1に記載のように、 基地局で行われて いる。  Conventional overreach detection is performed by a base station as described in Patent Document 1.
特許文献 1  Patent Document 1
特開 2 0 0 2— 4 4 0 0 6号公報  Japanese Patent Application Laid-Open No. 2000-244400
ところが、 移動機側ではオーバーリーチが発生する状態になっているかどうか の判断が無いため、 現在接続しているセルの受信状態が良い場合であっても、 遠 距離の基地局と通話、 通信を行ってしまうことが多々ある。  However, since the mobile device does not judge whether or not overreach is occurring, even if the currently connected cell is in good reception, it can talk and communicate with long-distance base stations. I often go there.
特に、 ビル街でのハンドオーバ中は、 近くの基地局に対する受信感度が悪い場 合は、 その近くの基地局からの信号の受信を止めて遠距離の基地局からの信号受 信を行うが、 距離が遠レヽと受信感度が悪くなるため、 アウター-ループ ' コント 口ールによつて基地局送信電力が強められ、 他の端末に千渉してしまうおそれが あるといった問題があった。 発明の開示  In particular, during handover in a building, if reception sensitivity to a nearby base station is poor, reception of signals from nearby base stations is stopped and signal reception from long-distance base stations is performed. Since the receiving sensitivity deteriorates when the distance is far, there is a problem that the transmission power of the base station is increased by the outer-loop control, which may cause interference with other terminals. Disclosure of the invention
本発明は、 移動機側でオーバーリーチ検出を行い、 呼の維持率を向上すること ができるオーバーリーチ検出方法及ぴそれを用いた移動機を«することを総括 的な目的とする。  A general object of the present invention is to provide an overreach detection method capable of improving the call maintenance rate by performing overreach detection on the mobile device side, and a mobile device using the same.
この目的を達成するため、 本発明は、 符号分割多元接続方式を採用した移動体 通信システムにおけるオーバーリーチ検出方法であって、 待ち受け中に、 受信信 号のパワー測定を行い、 前記パワー測定結果が閾値より低い場合に 1回以上のプ リ了ンブル送信を行レ、、 前記プリァンプル送信に対する基地局からの応答がなレ、 とき該基地局はオーバーリーチとして検出するよう構成する。  In order to achieve this object, the present invention relates to an overreach detection method in a mobile communication system employing a code division multiple access system, wherein during standby, power measurement of a received signal is performed, and the power measurement result is obtained. When the value is lower than the threshold, one or more preamble transmissions are performed, and when a response from the base station to the preamble transmission is not received, the base station is configured to detect as overreach.
このようなオーバーリーチ検出方法によれば、 移動機側でオーバーリーチ検出 を行うことができ、 オーバーリーチを検出した基地局をサービングセルから除外 することで呼の糸隹持率を向上することができる。 図面の簡単な説明  According to such an overreach detection method, overreach detection can be performed on the mobile device side, and the base station that has detected overreach can be excluded from the serving cell, thereby improving the call retention rate of the call. . Brief Description of Drawings
図 1は、 移動体通信システムの概要図である。 図 2は、 基地局と移動機間のプロトコルアーキテクチャの概念図である。 FIG. 1 is a schematic diagram of a mobile communication system. Figure 2 is a conceptual diagram of the protocol architecture between the base station and the mobile station.
図 3は、 本発明のオーバーリーチ検出機能の一実施例のプロック図である。 図 4は、 本発明のオーバーリーチ検出機能が実行する処理のフローチヤ一トで ある。  FIG. 3 is a block diagram of an embodiment of the overreach detection function of the present invention. FIG. 4 is a flowchart of a process executed by the overreach detection function of the present invention.
図 5は、 オーバーリーチ検出処理のフローチャートである。  FIG. 5 is a flowchart of the overreach detection process.
図 6は、 プリアンプル ·シグネチヤを示す図である。 発明を実施するための最良の形態  FIG. 6 is a diagram showing a preamble signature. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 2は、 基地局と移動機間のプロトコルアーキテクチャの概念図を示す。 同図 中、 移動機 (UE)20は、 物理レイヤ (L 1) 部 21と、 データリンクレイヤの サブレイヤである MAC (Me d i um Ac c e s s Con t r o l) レイ ャ部 22及び RLC(Ra d i o L i nk C o n t r o 1 )レイヤ部 23と、 ネットワークレイヤの RRC(Ra d i o Re s ou r c e Con t r o l) レイヤ部 24から構成されている。また、基地局の無線アクセスネットワーク(U TRAN) 30は、 物理レイヤ部 31と、 データリンクレイヤのサブレイヤであ る MACレイャ部 32及ぴ RLCレイヤ部 33と、 ネットワークレイヤの RRC レイヤ部 34から構成されている。 ,  Figure 2 shows a conceptual diagram of the protocol architecture between the base station and the mobile station. In the figure, a mobile station (UE) 20 includes a physical layer (L1) section 21, a MAC (Medium Access Control) layer section 22 which is a sub-layer of a data link layer, and an RLC (Radio L i) section. It is composed of a nk Control 1) layer section 23 and a network layer RRC (Radio Resource Control) layer section 24. The base station radio access network (UTRAN) 30 includes a physical layer unit 31, a MAC layer unit 32 and a RLC layer unit 33, which are sublayers of a data link layer, and an RRC layer unit 34 of a network layer. Have been. ,
物理レイヤ部 21, 31は多重化、 チャネル符号化、 拡散、 変調等を行う。 M ACレイヤ部 22, 32は、 ユーザの要求を無線回線の使用状況を考慮したスケ ジユーリングやトラヒック量の監視等を行う。 1 1^じレィャ部23, 33は誤り データの処置やデータ再送等の制御を行レ、、 R R Cレイヤ部 24, 34からきた シグナリングメッセージに再送制御用の情報を付加し正しく送信できるようにし ている。  The physical layer units 21 and 31 perform multiplexing, channel coding, spreading, modulation and the like. The MAC layer units 22 and 32 perform user requests, such as scheduling and monitoring the traffic volume in consideration of the usage status of the wireless line. 11. The layer units 23 and 33 control error data processing and data retransmission, and add information for retransmission control to signaling messages from the RRC layers 24 and 34 so that they can be transmitted correctly. I have.
R R Cレイヤ部 24 , 34ではシステム情報、 発着信メッセージなどシグナリ ングメッセージの生成、 終端を行い、 また、 物理レイヤ部 21, 31及ぴ MAC レイヤ部 22, 32それぞれから測定データを取得して物理レイヤ部 21, 31 及び M A Cレイヤ部 22, 32それぞれの動作制御を行う。  The RRC layers 24 and 34 generate and terminate signaling messages such as system information and outgoing / incoming messages, and acquire measurement data from the physical layers 21 and 31 and the MAC layers 22 and 32 to acquire physical The operation of each of the sections 21 and 31 and the MAC layers 22 and 32 is controlled.
本発明の移動機 20に内蔵されるオーバーリーチ検出機能は、 大きく 2つの処 理機能に分かれる。 その 2つの処理結果より、 オーバーリーチを検出したかどう かを認識し、 オーバーリーチを検出した場合、 当該基地局との通信を止めるよう に制御する。 The overreach detection function built into the mobile device 20 of the present invention has two main processes. Divided into functional functions. Based on the two processing results, it is determined whether or not overreach has been detected. If overreach is detected, control is performed so as to stop communication with the base station.
第 1処理機能としては、 物理レイャ部 2 1で、 セル監視 (セル ·リセレクショ ン)機能により通信品質判定(検出 S: S q u a 1 [品質], S r x 1 e v [レべ ル] )を行レ、、パスロスの閾値判定処理で閾値よりもパスロス実測値が低レ、場合は 遠距離の可能性があるので、 第 2処理機能によつてオーバーリーチ検出を行う。 第 2処理機能は、 パスロス実測値が閾値より低い場合、 MA Cレイヤ部 2 2に て共通チャネルによる発呼/着呼によつて通信状態が可能であるかどうかを確認 するために、 各サービングセルに対してプリアンブルを送信する。 そのセルの基 地局からの応答 (A c k ) が来ないでタイマ.タイムアウトした場合、 または、 再度プリアンブルを送信する処理サイクルを一定回数だけ行って、 それでも基地 局側からの応答が来ない場合、 移動機 2 0の MACレイヤ部 2 2において該当サ 一ビングセルをオーバーリーチであると判断して、 待ち受ける基地局の候補から 除外する。 オーバーリーチが未検出のサービングセルについては待ち受け候補と する。  As the first processing function, the physical layer unit 21 performs communication quality judgment (detection S: Squa 1 [quality], S rx 1 ev [level]) by the cell monitoring (cell reselection) function. If the measured path loss value is lower than the threshold value in the path loss threshold value determination process, the distance may be long, and the overreach detection is performed by the second processing function. When the measured path loss value is lower than the threshold value, the second processing function checks each serving cell in order to confirm whether the communication state is possible by calling / incoming call using the common channel in the MAC layer unit 22. Sends a preamble to Timer without a response (Ack) from the base station of the cell If timeout occurs, or if the processing cycle of retransmitting the preamble is repeated a certain number of times and the response from the base station still does not come Then, the MAC layer unit 22 of the mobile device 20 determines that the corresponding serving cell is overreach, and excludes the serving cell from candidates for a waiting base station. Serving cells for which overreach has not been detected are considered as standby candidates.
図 3は、 本発明のオーバーリーチ検出機能の一実施例のブロック図を示す。 こ のオーバーリーチ検出機能は、 セル移行時のセル監視機能を利用している。 セル 監視機能の目的は、 たとえそれがいつも最良のセルでなくても十分良い品質をも つセルをサービングセルとして選択し、 待ち受けの対象とできるようにすること である。  FIG. 3 shows a block diagram of an embodiment of the overreach detection function of the present invention. This overreach detection function uses the cell monitoring function at the time of cell transition. The purpose of the cell monitoring function is to select a cell of good quality, even if it is not always the best cell, as a serving cell so that it can be awaited.
待ち受けの際、 移動機 3 0は、 適切なシステム情報を監視して、 セル監視評価 のために必要な測定を実行する。 セル監視評価プロセスは、 すなわち、 よりよい セルが存在するかどうかを見つけるためのプロセスであり、 それは、 移動機の内 部トリガ、 もしくは、 システム情報が変えられる時に実行される。  During standby, the mobile station 30 monitors appropriate system information and performs the necessary measurements for cell monitoring evaluation. The cell monitoring and evaluation process is a process to find out if there is a better cell, which is performed when the mobile device's internal trigger or system information is changed.
なお、 階層化セルが使用される時、 階層化セル優先度レベル (H C S— P R I O) が高いセルだけを処理対象とすることで、 測定されるセルの範囲をさらに制 限することも可能である。 この場合、 測定はサービングセルよりも階層化セル優 先度レベルが低いか等しレ、セルにっレヽて実行される。 図 3におレ、て、 測定部 40は、 サービングセルのレベル測定を行う。パス口ス 計算部 42は、 測定部 40から供給される測定結果に基づき、 次式により、 パス ロス計算を行う。 パスロス実測値 Pa s s 1 o s sは次式を用いて計算する。 When hierarchical cells are used, it is possible to further limit the range of cells to be measured by processing only cells with a high hierarchical cell priority level (HCS-PRIO). . In this case, the measurement is performed on a cell-by-cell basis, whether the hierarchical cell priority level is lower than that of the serving cell or not. In FIG. 3, the measuring unit 40 measures the level of the serving cell. The path entrance calculator 42 calculates path loss based on the measurement result supplied from the measuring unit 40 by the following equation. The measured path loss value Pa ss 1 oss is calculated using the following equation.
Pa s s l o s s = P r ima r y CP I CH T χ owe r  Pa s s l o s s = P rima r y CP I CH T χ owe r
- CP I CH RSCP ··· (1) 伹し、 P r ima r y CP I CH Tx p o w e rは、 システム情報のレ ィャ 3情報に含まれる I E "P r i ma r y CP I CH" [dBm]が使用さ れる。 CP I CH RSCPは共通パイロットチャネル CP I CH (Commo n P i l o t Ch a nne l) の逆拡散後の信号コードパワー [dBm] で ある。  -CP I CH RSCP ··· (1) Primary CP I CH Tx power is based on IE “Primary CP I CH” [dBm] included in system information layer 3 information. used. CP I CH RSCP is the signal code power [dBm] of the common pilot channel CP I CH (Common Pilot Channel) after despreading.
フィルタ部 44は、 測定部 40から供給される測定値及びパスロス実測値それ ぞれのフィルタリングを行ってノイズ成分を除去する。 検出 S計算部 46は、 次 式により検出 Sを計算する。 検出 S即ち S qu a 1または S r x 1 e vは、 以下 の式で算出する。 また、 閾値 S i n t r a s e a r ch, S i n t e r s e a r c hは基地局 30からシステム情報で報知される。  The filter unit 44 filters each of the measured value and the measured path loss value supplied from the measuring unit 40 to remove a noise component. The detection S calculation unit 46 calculates the detection S by the following equation. The detection S, that is, Squ a 1 or S r x 1 e v is calculated by the following equation. In addition, the threshold values S i n t r a se a r ch and S i n t e r se a r a ch are reported from the base station 30 by system information.
S q u a 1 = Qqu a lme a s 一 Qqua lmi n ■·· (2) S r x l e v = Qr x l e vme a s 一 Qr x l e vmi n  S q u a 1 = Qqu a lme a s one Qqua lmi n (2) S r x l e v = Qr x l e vme a s one Qr x l e vmin
― Pc omp e n s a t i o n ··· (3) 但し、 計測セル品質値 Q qu a lme a sは CP I CH (Co mm on P i l o t Cha nne 1) の Ec/NO [dB] であり、 Qqu a lmi nはセ ルにおける最低要求品質レベル [dB] である。 計測セル受信レベル値 Q r X 1 e vme a sは CP I CH RSCP (C P I CHの逆拡散後の信号コードパヮ 一) [dBm]であり、 Qr x l e vmi nはセルにおける最低要求受信レベル [ d Bm] であり、 Pc omp e n s a t i o nは移動機が RACH (Ra n d om Ac c e s s Ch a nne l) でセノレにアクセスするときの許容最大送信パヮ 一 [dBm] 力 ^移動機の最大高周波出力パワー [dBm] を減算した値と、 0 とのいずれか大きい方である。  ― Pc omp ensation (3) However, the measurement cell quality value Q qu a lme as is the Ec / NO [dB] of CP I CH (Comm on Pilot Channel 1), and Q qu a l min is This is the minimum required quality level [dB] for the cell. The measured cell reception level value Q r X 1 evme as is CP I CH RSCP (signal code rate after despreading of CPI CH) [dBm], and Qr xle vmin is the minimum required reception level in the cell [d Bm] Pcommp ensation is the maximum permissible transmission power [dBm] power when the mobile device accesses the senor by RACH (Random Access Channel) ^ The maximum high-frequency output power [dBm] of the mobile device. The larger of the subtracted value and 0.
検出 S判定部 48は、 サービングセルの測定を実行するかしないかの判定を行 う処理であり、 S q u a 1 (または S r x 1 e v) を用いて以下に判定を行う。 S q u a 1 (または S r 1 e v) >S i n t r a s e a r c hの場ち、、 S判 定良好として、 同周波セルに対して測定を行わない。 The detection S determination unit 48 is a process for determining whether or not to perform the measurement of the serving cell, and makes the following determination using S qua 1 (or S rx 1 ev). If S qua 1 (or S r 1 ev)> S intrasearch, the measurement is not performed for the same frequency cell as the S judgment is good.
S q u a 1 (または S r 1 e v) >S i n t e r s e a r c hの場合、 S判 定不良として、 異周波セルに対して測定を行わない。  If Squa1 (or Sr1ev)> Sintearse, then the measurement is not performed for the different frequency cell as a poor S decision.
また、 パスロス計算部 42で得たパスロス実測値 P a s s 1 o s sはフィルタ 部 44でフィルタリングされてオーバーリーチ検出処理部 50に供給されており、 オーバーリーチ検出処理部 50はこのパスロス実測値 P a s s 1 o s sを基地局 30からシステム情報で報知された閾値と比較して、 パスロス実測値がシステム 情報の閾値より低い場合、 オーバーリーチ検出処理を実行する。  The measured path loss value P ass 1 oss obtained by the path loss calculation unit 42 is filtered by the filter unit 44 and supplied to the overreach detection processing unit 50. The overreach detection processing unit 50 outputs the measured path loss value P ass 1 The oss is compared with a threshold reported from the base station 30 in the system information, and if the measured path loss value is lower than the threshold of the system information, an overreach detection process is performed.
ところで、 図 3における測定部 40、 パスロス計算部 42、 フィルタ部 44、 検出 S計算部 46は物理レイャ部 21に属し、 オーバーリーチ検出処理部 50は MACレイヤ部 22に属する。  Incidentally, the measurement unit 40, the path loss calculation unit 42, the filter unit 44, and the detection S calculation unit 46 in FIG. 3 belong to the physical layer unit 21, and the overreach detection processing unit 50 belongs to the MAC layer unit 22.
図 4は、 本発明のオーバーリーチ検出機能が実行する処理のフローチャートを 示す。 この処理は例えば 2. 56 s e c等の所定時間間隔で、 各サービングセル について実行される。 同図中、 ステップ S 10で測定部 40により各サービング セルのレベル測定を行う。 次に、 ステップ S 12で検出 S計算部 46及ぴ検出 S 判定部 48により各サービングセルの検出 S計算及び検出 S判定を行う。  FIG. 4 shows a flowchart of a process executed by the overreach detection function of the present invention. This process is executed for each serving cell at predetermined time intervals, for example, 2.56 sec. In the figure, in step S10, the level of each serving cell is measured by the measuring unit 40. Next, in step S12, the detection S calculation section 46 and the detection S determination section 48 perform detection S calculation and detection S determination of each serving cell.
次に、 ステップ S 14でオーバーリーチ検出処理部 50によりパスロス実測値 がシステム情報の閾値より低いか否かを判別して、 パスロス実測値が閾値より低 い場合、 ステップ S 16で各サービングセルのオーバーリーチ検出処理を実行す る。  Next, in step S14, the overreach detection processing section 50 determines whether or not the measured path loss value is lower than the threshold value of the system information. Execute the reach detection process.
オーバーリーチ検出処理が終了すると、 ステップ S 18で各サービングセルの オーバーリーチが検出された力否かを判別し、 オーバーリーチが検出ざれたサー ビングセルは、 共通チャネルによる発呼/着呼によって通信ができないため、 ス テツプ S 20で物理レイヤ部 31に設けられているセルテーブルの該当サービン グセルの欄のオーバーリ一チフラグに値 1をセットする。 なお、 セルテーブルに はサービングセル毎に、 使用する周波数, スクランプノレコード, 測定部 40の測 定値, 検出 S, パスロス実測値等が登録される。  When the overreach detection process is completed, it is determined in step S18 whether the overreach of each serving cell has been detected or not, and the serving cell in which overreach has not been detected cannot perform communication by calling / incoming calls on a common channel. Therefore, in step S20, the value 1 is set to the overreach flag in the corresponding serving cell column of the cell table provided in the physical layer unit 31. In the cell table, for each serving cell, the frequency used, the scramble record, the measured value of the measuring unit 40, the detected S, the measured path loss value, and the like are registered.
—方、 オーバーリーチが検出されなかったサービングセルについては、 ステツ プ S 2 2で、 セルテーブルの該当サービングセルの欄 (使用する周波数, スクラ ンブルコード, 測定部 4 0の測定値, 検出 S, パスロス実測値等) を更新する。 この際、 オーバーリーチフラグは値 0とされ、 オーバーリーチではないことを表 す。 -For serving cells for which no overreach was detected, In step S22, the corresponding serving cell column (frequency used, scramble code, measured value of measurement unit 40, detected S, measured value of path loss, etc.) of the cell table is updated. At this time, the value of the overreach flag is set to 0, indicating that overreach is not performed.
なお、 ステップ S 1 4でオーバーリーチ検出処理部 5 0によりパスロス実測値 がシステム情報の閾値より大きい場合もステップ S 2 2で、 セルテーブルの該当 サービングセルの欄 (使用する周波数, スクランブルコード, 測定部 4 0の測定 値, 検出 S , パスロス実測値等) を更新する。 この場合も、 オーバーリーチフラ グは値 0とされ、 オーバーリーチではないことを表す。  If the measured value of the path loss is larger than the threshold value of the system information by the overreach detection processing unit 50 in step S14, the corresponding serving cell column (frequency used, scramble code, measurement unit) in the cell table is also set in step S22. 40 Measured value, detected S, measured path loss value, etc.) are updated. In this case as well, the overreach flag is set to a value of 0, indicating that it is not overreach.
上記ステップ S 2 0, S 2 2の後、 ステップ S 2 4でセルテーブルに登録され ているオーバーリーチフラグが値 0のサービングセルについてのみ、 測定値, 検 出 S , パスロス実測値等を上位の R R Cレイヤ部 2 4に通知して、 この処理を終 了する。  After the above steps S20 and S22, only the serving cell whose overreach flag registered in the cell table in step S24 has a value of 0 is used to transfer the measured value, detected S, measured pathloss value, etc. to the upper RRC. This is notified to the layer section 24, and this processing ends.
図 5は、 オーバーリーチ検出処理部 5 0がステップ S 1 6で実行するオーバー リーチ検出処理のフローチャートを示す。 この処理は各サービングセルについて 実行される。 同図中、 ステップ S 3 0でオーバーリーチ検出処理部 5 0は送信回 数を 0にリセットした後、 ステップ S 3 2で該当サービングセルに対しプリアン ブル送信を行う。 このブリアンブル送信は、 共通チャネルによる発呼/着呼によ つて通信が可能であるカゝ否かを確認するために行われ、 上り共通トランスポート チャネルである RA C H (物理レイヤでは P R A C Hに対応する) を用いて行わ れる。  FIG. 5 shows a flowchart of the overreach detection processing executed by the overreach detection processing section 50 in step S16. This process is performed for each serving cell. In the figure, the overreach detection processing unit 50 resets the number of transmissions to 0 in step S30, and then performs preamble transmission to the corresponding serving cell in step S32. This briamble transmission is performed in order to confirm whether communication is possible by calling / incoming calls on the common channel, and the uplink common transport channel RACH (corresponding to PRACH in the physical layer). ).
プリアンブルは、 1 6種類のシグネチヤと呼ばれる系列で構成される 4 0 9 6 チップの信号である。 図 6に示す各 1 6チップのシグネチヤ P 0〜P 1 5をそれぞ れ 2 5 6回繰り返してプリアンブルとしている。 The preamble is a signal of 496 chips composed of 16 types of sequences called signatures. The Shigunechiya P 0 to P 1 5 each 1 6 chip shown in FIG. 6 repeats it respectively 2 5 6 times are a preamble.
その後、 ステップ S 3 4でリセットしたタイマをスタートさせて、 ステップ S 3 5で上記プリアンブル送信に対し該当サービングセルの基地局 3 0から応答 (A c k ) がなくタイマがタイムアウトした力否かを判別する。 タイマがタイム アウトした場合にはステップ S 3 6で送信回数を 1だけインクリメントする。 その後、 ステップ S 3 8で送信回数が例えば 3 2等の閾値以上である力否かを 判別し、 送信回数が閾値未満であればステップ S 3 2に進んでプリァンブル送信 を繰り返す。 そして、 送信回数が閾値以上であればステップ S 4 0に進む。 なお、 ブリアンブル送信の電力は、 下り共通パイロットチヤネルの測定から推 定された最適送信電力より小さ!/、電力から開始して送信回数が増加するに従って 順次増大させている。 Thereafter, the timer reset in step S34 is started, and in step S35, it is determined whether or not the base station 30 of the corresponding serving cell has not responded (Ack) to the preamble transmission and the timer has timed out. . If the timer times out, the number of transmissions is incremented by 1 in step S36. Thereafter, in step S38, it is determined whether the number of transmissions is equal to or greater than a threshold value such as 32, for example. If it is determined that the number of transmissions is less than the threshold, the process proceeds to step S32 to repeat the preamble transmission. If the number of transmissions is equal to or greater than the threshold, the process proceeds to step S40. The power of the brimble transmission is smaller than the optimum transmission power estimated from the measurement of the downlink common pilot channel! /, Starting from power, increasing sequentially as the number of transmissions increases.
ステップ S 4 0では、 共通チャネルによる発呼/着呼によって通信ができない ため、 該当サービングセルの基地局 3 0についてオーバーリーチ検出としてこの 処理を終了する。  In step S40, since communication is not possible due to outgoing / incoming calls on the common channel, the process is terminated as overreach detection for base station 30 of the corresponding serving cell.
—方、 ステップ S 3 8で送信回数が閾値以上となる前に、 プリアンブル送信に 対する基地局 3 0からの応答があればステップ S 4 2に進んで、 オーバーリーチ 未検出としてこの処理を終了する。  On the other hand, if there is a response from the base station 30 to the preamble transmission before the number of transmissions becomes equal to or more than the threshold value in step S38, the process proceeds to step S42, and the process is terminated as overreach is not detected. .
このように、 オーバーリーチを検出したサービングセルについては R R Cレイ ャ部 2 4への通知が行われないので、 R R Cレイヤ部 2 4ではオーバーリーチを 検出したサービングセルは共通チャネルによる発呼/着呼によつて通信ができな いとしてサービングセル候補から除外する。 このため、 サービングセルはオーバ 一リーチ未検出のものだけが残り、 残つたサービングセルの呼接続の維持率を上 げることができる。  As described above, the serving cell that has detected overreach is not notified to the RRC layer unit 24, and the serving cell that has detected overreach is called by the RRC layer unit 24 by calling / calling on a common channel. Therefore, it is excluded from serving cell candidates because communication is not possible. For this reason, only the serving cells for which over-reach has not been detected remain, and the maintenance rate of call connection of the remaining serving cells can be increased.
なお、 ステップ S 1 0, S 1 2が請求項記載のパワー測定手段に対応し、 ステ ップ S 3 2がプリアンブル送信手段に対応し、 ステップ S 4 0がオーバーリーチ 検出手段に対応し、 ステップ S 2 0, S 2 4がセル除外手段に対応する。  Steps S10 and S12 correspond to the power measuring means described in the claims, step S32 corresponds to the preamble transmitting means, step S40 corresponds to the overreach detecting means, S20 and S24 correspond to cell exclusion means.

Claims

請求の範囲 The scope of the claims
1 · 符号分割多元接続方式を採用した移動体通信システムにおけるオーバー リーチ検出方法であって、 1 · An overreach detection method in a mobile communication system employing a code division multiple access method,
待ち受け中に、 受信信号のパワー測定を行い、  During standby, measure the power of the received signal,
前記パワー測定結果が閾値より低い場合に 1回以上のプリアンブル送信を行い、 前記プリアンブル送信に対する基地局からの応答がないとき該基地局はオーバ 一リーチとして検出するオーバーリーチ検出方法。  An overreach detection method in which one or more preamble transmissions are performed when the power measurement result is lower than a threshold, and the base station detects overreach when there is no response from the base station to the preamble transmission.
2. 請求項 1記載のオーバーリーチ検出方法において、 2. In the overreach detection method according to claim 1,
前記オーバーリーチとして検出した基地局を、 待ち受けを行うサービングセル 力ら除外するオーバーリーチ検出方法。  An overreach detection method for excluding a base station detected as the overreach from serving cells that perform standby.
3. 請求項 1記載のオーバーリーチ検出方法において、 3. In the overreach detection method according to claim 1,
前記受信信号のパワー測定は、 共通パイロットチャネルの逆拡散後の信号コー ドパワーを測定するオーバーリーチ検出方法。  The overreach detection method includes measuring the power of the received signal after despreading a common pilot channel.
4. 請求項 3記載のオーバーリーチ検出方法において、 4. In the overreach detection method according to claim 3,
前記閾値は、 システム情報で報知された値であるオーバーリーチ検出方法。  The overreach detection method, wherein the threshold is a value notified by system information.
5 .符号分割多元接続方式を採用した移動体通信システムの移動機であって、 待ち受け中に、 受信信号のパワー測定を行うパワー測定手段と、 5. A mobile station of a mobile communication system employing a code division multiple access system, wherein the mobile station measures power of a received signal while waiting.
前記パワー測定結果が閾値より低い場合に 1回以上のプリアンブル送信を行う プリアンブル送信手段と、  Preamble transmitting means for performing one or more preamble transmission when the power measurement result is lower than a threshold,
前記プリアンブル送信に対する基地局からの応答がないとき該基地局はオーバ 一リーチとして検出するオーバーリーチ検出手段を  When there is no response from the base station to the preamble transmission, the base station performs overreach detection means for detecting as overreach.
有する移動機。 Having mobile equipment.
6 . 請求項 5記載の移動機において、 前記オーバーリーチとして検出した基地局を、 待ち受けを行うサービングセル から除外するセル除外手段を 6. The mobile device according to claim 5, Cell exclusion means for excluding the base station detected as the overreach from serving cells to perform standby.
有する移動機。 Having mobile equipment.
7 . 請求項 5記載の移動機においで、 7. In the mobile device according to claim 5,
前記受信信号のパワー測定は、 共通パイロットチャネルの逆拡散後の信号コー ドパワーを測定する移動機。  The mobile station measures the power of the received signal, and measures the signal code power of the common pilot channel after despreading.
8 . 請求項 6記載の移動機にぉレ、て、 8. The mobile device according to claim 6,
tin己閾値は、 システム情報で報知された値である移動機。  tin The self-threshold is the value reported in the system information.
PCT/JP2003/008801 2003-07-10 2003-07-10 Overreach detection method and mobile device using the same WO2005006797A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005503856A JP4171745B2 (en) 2003-07-10 2003-07-10 Overreach detection method and mobile device using the same
PCT/JP2003/008801 WO2005006797A1 (en) 2003-07-10 2003-07-10 Overreach detection method and mobile device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/008801 WO2005006797A1 (en) 2003-07-10 2003-07-10 Overreach detection method and mobile device using the same

Publications (1)

Publication Number Publication Date
WO2005006797A1 true WO2005006797A1 (en) 2005-01-20

Family

ID=34044612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008801 WO2005006797A1 (en) 2003-07-10 2003-07-10 Overreach detection method and mobile device using the same

Country Status (2)

Country Link
JP (1) JP4171745B2 (en)
WO (1) WO2005006797A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023791A1 (en) * 2006-08-25 2008-02-28 Panasonic Corporation Wireless transmitting apparatus, wireless receiving apparatus and wireless communication method
JP2012134995A (en) * 2005-12-23 2012-07-12 Qualcomm Inc Method and apparatus for determining output transmit power for access channel in wireless communication network
JP5051470B2 (en) * 2006-03-08 2012-10-17 日本電気株式会社 Portable communication terminal, communication system, communication method, and control program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044006A (en) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp Cdma cellular communication system, cdma base station device and overreach detection method
JP2002209253A (en) * 2001-01-09 2002-07-26 Mitsubishi Electric Corp Cdma network side device and overreach eliminating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044006A (en) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp Cdma cellular communication system, cdma base station device and overreach detection method
JP2002209253A (en) * 2001-01-09 2002-07-26 Mitsubishi Electric Corp Cdma network side device and overreach eliminating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134995A (en) * 2005-12-23 2012-07-12 Qualcomm Inc Method and apparatus for determining output transmit power for access channel in wireless communication network
US8798661B2 (en) 2005-12-23 2014-08-05 Qualcomm Incorporated Method and apparatus for determining output transmit power for an access channel in a wireless communication network
JP5051470B2 (en) * 2006-03-08 2012-10-17 日本電気株式会社 Portable communication terminal, communication system, communication method, and control program
US8942118B2 (en) 2006-03-08 2015-01-27 Lenovo Innovations Limited (Hong Kong) Mobile communication in which monitoring beacon signal arrival is changed based on probability of terminal-to-access point connection
WO2008023791A1 (en) * 2006-08-25 2008-02-28 Panasonic Corporation Wireless transmitting apparatus, wireless receiving apparatus and wireless communication method
JPWO2008023791A1 (en) * 2006-08-25 2010-01-14 パナソニック株式会社 Wireless transmission device, wireless reception device, and wireless communication method

Also Published As

Publication number Publication date
JP4171745B2 (en) 2008-10-29
JPWO2005006797A1 (en) 2006-08-31

Similar Documents

Publication Publication Date Title
KR100767351B1 (en) Access parameter adaptation and packet data resource management using detailed mobile status information
JP4503854B2 (en) Subscriber unit and cell selection method for cellular communication system
US7643565B2 (en) Portable terminal, communication system, and communication method
US7978634B2 (en) TDD system based cell handoff method and user equipment
JP3966369B2 (en) Forward traffic channel power control method and apparatus for CDMA wireless subscriber network system
US6263207B1 (en) Mobile radio communication system and radio circuit controlling method therefor
US7647064B2 (en) Mobile communications system and control technique thereof
EP1352531B1 (en) Idle handoff method for mobile communication devices taking into account critical system jobs
EP0872140B1 (en) A method for selecting the way to perform a handover, and a cellular radio system
US20020183086A1 (en) Technique for improving open loop power control in spread spectrum telecommunications systems
US6788253B1 (en) Method and apparatus for use in improving accuracy in geo-location estimates
US7228147B2 (en) Method for controlling transmission power
JP3526243B2 (en) Base station apparatus and line quality deterioration prevention method
JPH10322268A (en) Mobile communication system
KR20070067221A (en) Maximum allowable transmission rate deciding method, mobile station and wireless base station
EP2198648A2 (en) A method for reducing the risk of dropped calls in a mobile communications network
KR101988990B1 (en) Handover method in base station
WO2005006797A1 (en) Overreach detection method and mobile device using the same
US7194265B2 (en) Method and system for determining antenna of radio base station at moving target area during handover
CN113891406B (en) Cell switching method and device in multi-frequency network
JP2004015333A (en) Communication system, communication method, and control apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503856

Country of ref document: JP

122 Ep: pct application non-entry in european phase