WO2005005327A1 - Water purification high-level treatment method and apparatus - Google Patents

Water purification high-level treatment method and apparatus Download PDF

Info

Publication number
WO2005005327A1
WO2005005327A1 PCT/JP2004/009709 JP2004009709W WO2005005327A1 WO 2005005327 A1 WO2005005327 A1 WO 2005005327A1 JP 2004009709 W JP2004009709 W JP 2004009709W WO 2005005327 A1 WO2005005327 A1 WO 2005005327A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treatment
treated
biological treatment
anaerobic
Prior art date
Application number
PCT/JP2004/009709
Other languages
French (fr)
Japanese (ja)
Inventor
Mika Takemura
Ken-Ichi Futami
Yuichi Fuchu
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to JP2005511522A priority Critical patent/JPWO2005005327A1/en
Publication of WO2005005327A1 publication Critical patent/WO2005005327A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes

Definitions

  • the present invention relates to a method for treating purified water, and more particularly to a method and apparatus for treating purified water capable of obtaining highly purified drinking water from raw water such as river water, lake water, and groundwater.
  • this method is a combination of a conventional coagulation-sedimentation step 2 and a filtration step 3 with an ozone treatment step 4 and a biological activated carbon treatment step 7.
  • the water to be treated is first treated in the coagulation sedimentation step 2 and then in the filtration step 3 such as sand filtration. Then, the polluted components that cannot be removed in the coagulation sedimentation and filtration steps are oxidatively decomposed by the ozone treatment 4.
  • odorants such as trihalomethane precursors, diosmin and 2-MIB (2-methylisoborneol) are removed, and a safe and delicious water supply can be achieved. it can.
  • Bromic acid generated in the ozone treatment step cannot be removed by the subsequent biological activated carbon treatment. Attempts have been made to reduce the amount of bromic acid generated in the ozone oxidation process (2003 National Water Works Conference, p. 242, 2003). However, this response mainly involves reducing the amount of ozone added to the mixture, and the oxidizing power of ozone This means that bromine acid is produced by reducing the amount of bromine acid, but at the same time the oxidative decomposition power of trace organic substances, which is the original purpose, is also reduced.
  • bromine is generally more reactive with ozone than trihalomethane precursors such as humic acid and fulvic acid. It is conceivable that. Therefore, unless the trace organic substance is extremely reactive, reducing the amount of added ozone means that the oxidizing power to the trace organic substance is directly reduced. Therefore, reducing the amount of ozone added for the purpose of suppressing the production of bromic acid impairs the original purpose of the advanced water purification treatment method of supplying safe and delicious drinking water, and is said to be a symptomatic treatment for emergency treatment. I have no choice. Disclosure of the invention
  • the present invention provides a fundamental solution to the above-mentioned problems of the prior art based on scientific empirical evidence, and fully utilizes the advantages of the conventional advanced water purification system. It is another object of the present invention to provide a new water purification method and apparatus that prevents the production of bromate and, as a result, supplies safe and delicious drinking water.
  • one embodiment of the present invention is a water purification method for obtaining drinking water from river water, lake water, groundwater, or the like as raw water, through a coagulation sedimentation step, a filtration step, and an ozone treatment step.
  • An ozone-treated water is treated in an anaerobic biological treatment step after the ozone treatment step.
  • the treated water in the anaerobic biological treatment step can be further treated in the aerobic biological treatment step.
  • a deaeration step can be provided between the ozone treatment step and the anaerobic organism treatment step, and the treatment in the anaerobic organism treatment step involves removing organic substances (particularly food additives).
  • the degassing step can be performed by any of a vacuum degassing method, a nitrogen gas stirring method, and a film degassing method.
  • another embodiment of the present invention relates to a water purification treatment device having a coagulation sedimentation device, a filtration device, and an ozone treatment device for obtaining drinking water using river water, lake water, groundwater, or the like as raw water.
  • An anaerobic biological treatment device for treating the ozonated water is provided after the treatment device.
  • the water purification step water is degassed and / or an organic substance is contained in the water purification step water.
  • a method for removing bromic acid is provided.
  • a deaerator for degassing the water for purification process in a device for removing bromate from water for purification process containing bromic acid, a deaerator for degassing the water for purification process, and Z or the water purification device.
  • a device for removing bromic acid is provided, wherein a means for adding an organic substance to water and a biological treatment tank having a facultative anaerobic action and a biological oxidation action are sequentially arranged.
  • the biological treatment tank having the facultative anaerobic bacteria action and the biological oxidizing action includes the following.
  • FIG. 1 is a flow process chart showing a conventionally known water purification treatment method.
  • FIG. 2 is a flowchart showing an example of a water purification method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart showing an example of a water purification method according to another embodiment of the present invention.
  • FIG. 4 is a conceptual diagram showing a configuration of a biological treatment tank combining an anaerobic treatment tank and an aerobic treatment tank that can be used in one embodiment of the present invention.
  • FIG. 5 (a)-(c) is a conceptual diagram showing a configuration example of a biological treatment tank partitioned into an anaerobic reaction section and an aerobic reaction section that can be used in the present invention.
  • FIG. 6 An anaerobic reaction section and an aerobic reaction section that can be used in one embodiment of the present invention. It is a conceptual diagram showing composition of a biological treatment tank provided with a thing reaction part.
  • FIG. 2 is a flowchart showing an example of a water purification treatment method according to one embodiment of the present invention.
  • raw drinking water 1 such as river water, lake water, groundwater, etc. is subjected to a treatment known in the art such as a coagulation sedimentation step 2, a sand filtration step 3, and the like.
  • zoning process 4 Processed in zoning process 4.
  • the ozonized water subjected to the ozone treatment is subjected to the degassing step 5 and then to the anaerobic biological treatment step 6.
  • the organic substance 8 may be added to the ozonized water, and the anaerobic treatment step 6 may be performed.
  • both the deaeration step 5 and the addition of organic matter 8 can be performed.
  • aerobic bacteria take in dissolved oxygen and assimilate the organic matter, thereby consuming the oxygen and making the atmosphere anaerobic.
  • the coagulation sedimentation step 2 and the sand filtration step 3 performed as pre-treatments of the ozone treatment are known techniques in the water purification treatment process, and any method can be adopted. Further, as a pre-treatment of the ozone treatment, another treatment apparent to those skilled in the art can be performed.
  • sterilization is performed by blowing ozone into the raw water.
  • bromine ions contained in the raw water are oxidized by the ozone to generate bromate ions.
  • bromate cannot be removed by the conventional biological activated carbon treatment process (aerobic treatment).
  • the reduction method by anaerobic biological treatment employed in the method of the present invention does not use a special catalyst or chemicals and is based on a natural purification action, so that the safety is high.
  • the present invention is based on this principle. Hydrogen resulting from microbial metabolism reduces bromate ions to bromine ions. [0021] [Formula 2]
  • a degassing step 5 is provided, or oxygen is easily decomposed biologically in order to efficiently remove oxygen by metabolism of microorganisms. It is conceivable to add an organic substance 8. Moreover, both can be used together.
  • the deaeration step 5 As the deaeration means, a vacuum deaeration method, a nitrogen gas stirring method or a film deaeration method is appropriate.
  • the vacuum degassing method is a method in which the inside of the tank is kept at a vacuum and all dissolved gases in the liquid to be treated are removed.
  • the nitrogen gas stirring method is a method of reducing oxygen partial pressure by bubbling nitrogen gas into a closed tank to remove oxygen in the liquid to be treated. At this time, it is effective to use a nitrogen gas cylinder if the amount is small, and use a PSA device that utilizes the molecular sieve effect if the amount is large.
  • the membrane degassing method is a method of removing dissolved gas by reducing the pressure on one side of a membrane such as a hollow piece.
  • the concentration of dissolved oxygen in the liquid to be treated after degassing is preferably 2 mg / L or less, preferably 1 mg / L or less, and more preferably 0.3 mg / L or less.
  • the treated water thus degassed is led to the anaerobic biological treatment step 6.
  • Anaerobic The biofilm method is suitable for biological treatment.
  • a microbial carrier such as activated carbon, rubber, two-cam tube material, or fabric material is filled, and water to be treated is introduced into a filling tank (anaerobic biological treatment tank) maintained in an anaerobic state to form on the surface of the carrier.
  • the treated microbial membrane comes into contact with the water to be treated, and the biological treatment of the water to be treated by microorganisms is performed.
  • the flotation method may be adopted.However, the concentration of the substance to be treated is at the ⁇ g / L level in the purified water that is the target of the present invention. Therefore, the floating method is not appropriate.
  • organic substances 8 can be added. If the effect of the degassing step is excellent and the biological reduction action does not need to be accelerated, the addition of the organic substance can be omitted.
  • the organic substance 8 to be added may be any organic substance used for the metabolism of facultative anaerobic bacteria.However, if it is a food additive such as ethanol or acetic acid, it is assumed that it remains in drinking water. No need to worry about safety.
  • BOD sources such as alcohols such as methanol, organic acids such as lactic acid and citric acid, sugars such as glucose, ratatose, fructose, and malulose, and lower fatty acids such as propionic acid, butyric acid, and valeric acid.
  • organic substances such as lactic acid and citric acid
  • sugars such as glucose, ratatose, fructose, and malulose
  • lower fatty acids such as propionic acid, butyric acid, and valeric acid.
  • the facultative anaerobic bacteria are activated, the remaining dissolved oxygen can be quickly taken into the cells, and the water to be treated can be brought into an anoxic state.
  • the oxygen in the bromate ion is used for metabolism.
  • the organic substance remains at this time, if it acts as a hydrogen donor, endogenous respiration occurs It is possible to reduce bromate ions regardless of the reaction, and the reaction is promoted.
  • the bromate ions in the water to be treated are treated as described above by the action of the facultative anaerobic microorganisms and / or the absolute anaerobic microorganisms in the anaerobic treatment tank. Is reduced to bromine ions.
  • biological activated carbon function refers to the function or action of decomposing a chemical substance adsorbed on micropores, which is a biological force that propagates in macropores of activated carbon. Due to the activated carbon adsorption function and the above-mentioned “bioactive carbon function”, an extremely excellent purification action can be expected.
  • anaerobic biologically treated water (purified water) 9 as it is or apply simple aeration. It can be used for drinking water.
  • FIG. 3 shows a flowchart of a water purification method according to another embodiment.
  • the same components as those described in the previous drawings are denoted by the same reference numerals, and description thereof will not be repeated.
  • pretreatment such as coagulation sedimentation 2 and sand filtration 3
  • ozone treatment 4
  • the ozonized water subjected to the ozone treatment is subjected to an anaerobic treatment step 6 after addition of a force ⁇ and / or an organic substance 8 applied to a deaeration step 5, followed by an air injection 12 and an aerobic treatment step 11. And purified water 9 is obtained.
  • the biofilm method is suitable as in the case of the anaerobic biological treatment step. The simplest method is to provide a gas-liquid contact section at the outlet of the anaerobic biological treatment tank (or between the anaerobic biological treatment tank and the aerobic biological treatment tank), and to dissolve oxygen in the liquid to be treated.
  • a biological activated carbon tank (aerobic biological treatment tank) with the same configuration as the conventional method.
  • air 12 may be directly blown into the aerobic biological treatment tank.
  • activated carbon is filled as a microbial carrier, and water to be treated is introduced into a reaction tank maintained under aerobic conditions, and the microbial membrane formed on the carrier surface is treated with the treated microorganism.
  • the aerobic biological treatment of the water to be treated is carried out by bringing it into contact with water.
  • it is effective to diffuse the gas from the lower part of the carrier-packed layer because oxygen utilization efficiency is high.
  • porous materials such as zeolite and artificial lightweight aggregate that do not necessarily need to be activated carbon as a filler, and in some cases, sand and anthrite, which are ordinary filter media, may be used. These fillers may be combined.
  • odor-causing substances such as trihalomethane precursors, diosmin, and 2-MIB, which are slightly remaining, can be treated by a bioactive carbon action or a purification action by a biofilm.
  • odor-causing substances such as trihalomethane precursors, diosmin, and 2-MIB, which are slightly remaining, can be treated by a bioactive carbon action or a purification action by a biofilm.
  • the anaerobic treatment and the aerobic treatment are performed in separate reaction tanks.
  • Fig. 4 shows such a biological treatment apparatus. That is, the water to be treated, which is obtained by degassing or adding organic matter to the ozonized water, is first introduced into the anaerobic biological reaction tank 6 to disturb the water. After performing the aerobic biological treatment, the effluent from the anaerobic biological reaction tank is then introduced into the aerobic biological reaction tank 11, and the aerobic biological treatment is performed while blowing the air 12.
  • treated water is introduced into the lower part of the anaerobic biological reaction tank, anaerobic treated water is taken out from the upper part of the anaerobic biological reaction tank, and It can supply power to the lower part.
  • one reaction tank is divided by a partition plate to form a biological reaction tank having an anaerobic reaction section and an aerobic reaction section, and the anaerobic biological treatment and the aerobic biological treatment are performed using this. It can be carried out.
  • FIG. 5 shows such a biological treatment apparatus.
  • the water to be treated which is obtained by degassing or adding organic matter to the ozone-treated water, is introduced into a lower portion of the anaerobic reaction section 6, and the treated water of the anaerobic reaction section 6 is supplied to the partition plate 14.
  • the effluent from the anaerobic reaction section is supplied to the upper section of the aerobic reaction section 11 and air is blown from the air supply pipe 15 to perform aerobic biological treatment. Then, the water discharged from the aerobic reaction section 11 can be taken out from the lower part of the aerobic reaction section. Further, as shown in FIG. 5b, a liquid flow port 16 is provided at the lower part of the partition plate 14, and the biological reaction tank is configured to supply the treated water of the anaerobic reaction section from the lower part of the tank to the aerobic reaction section. You can also. Furthermore, as shown in Fig.
  • an aeration unit is provided between the anaerobic reaction unit 6 and the aerobic reaction unit 11, and treated water is introduced into the aeration unit from the lower part of the anaerobic reaction unit, and air inside the aeration unit is introduced.
  • the biological reaction tank may be configured so that after the air is blown from the supply pipe 15, the water to be treated is introduced into the aerobic reaction section 11 from the upper end of the partition plate.
  • a biological reaction tank in which a circular reaction tank is divided into a central part and a circumferential part by a partition plate and each part is used as an anaerobic reaction part or an aerobic reaction part can be used. .
  • any material known in the art can be used.
  • granular activated carbon, a honeycomb tube, a fabric material, a synthetic zeolite, an artificial lightweight aggregate, a porous sintered material, a coal carbonized product, and the like can be used.
  • a biological treatment tank provided with an anaerobic reaction section and an aerobic reaction section above and below one reaction tank, that is, an anaerobic reaction section and an aerobic reaction section (A biological oxidation reaction section) can be used.
  • Biological treatment tank of such an embodiment Figure 6 shows the configuration.
  • the liquid to be treated containing the ozone-treated bromate ions passes through the inlet 31, a raw water distribution mechanism and a backwashing mechanism 32, and forms a uniform ascending flow to fill the material. It reaches layer A (anaerobic reaction zone).
  • the filler a in the filler layer A must be porous and not form an intumescent layer during backwashing.
  • the environment In order to biologically reduce bromate ions at extremely low concentrations of tens of ⁇ g / L, the environment must be easy for facultative anaerobic bacteria to inhabit.
  • the size of the facultative anaerobic bacterium is of the order of submicron, a material with macropores having pores several times larger than that of the filler a is good, and a ventilation pipe 33 is provided as described later. Therefore, it is preferable not to form an expansion layer during backwashing. If the expansion layer is formed at the time of backwashing, bridging occurs due to the ventilation pipe 33, and voids (spaces and gaps) are generated in the filler layer A after the backwashing, and it often occurs that an appropriate layer cannot be formed. If this is significant, the gap may be crushed while the treatment is continuing. In this case, since the filler layer A and the filler layer B described later are mixed, proper biological treatment cannot be performed. Therefore, it is desirable that the filler layer A does not expand due to backwashing.
  • the vent pipe 33 used in the biological reaction tank shown in FIG. 6 it is preferable to use a porous pipe in which a tubular member has a large number of holes. It is appropriate that the diameter of the vent formed in the perforated tube is about 2 mm. If it is less than 2 mm, it may be blocked due to microbial membrane contamination. Furthermore, the purpose of ventilation is to reduce the amount of dissolved oxygen in the atmosphere to zero mg / L, preferably 5 mg / L or more. Is extremely small. In general, the amount of diffused air supplied by sewage and wastewater treatment by the aerobic filter method (biofilm filtration method) is based on the volume of treated water according to the second edition of Water Treatment Engineering (ed.
  • the volume of the treated water is preferably 1 time or less, more preferably 0.5 time or less.
  • the particle size of the filler a is not less than 2 mm, preferably not less than 3 mm, and more preferably not more than 4 mm. .
  • the particle size of the filler is too large, the biofilm attachment area will be small. And the biological treatment effect is reduced. Empirically, it is desirable that the particle size of the filler a be 15 mm or less, and more preferably 10 mm or less.
  • the material of the filler a that satisfies these conditions may be any of granulated activated carbon for gas phase, synthetic zeolite, artificial lightweight aggregate, porous sintered material, and coal distillate.
  • the environmental purification granules described in JP-A-1977682 are extremely effective because the raw material is a fired product of waste sand and activated carbon.
  • a vent pipe 33 is provided above the filler layer A. Air is exhausted from the vent of the vent pipe 33 to supply oxygen.
  • This vent pipe should have a simple structure. A diffuser that generates microbubbles has recently been developed, but is not very suitable for use in biological reactors, as shown in Figure 6.
  • a porous tube having a vent hole is most desirable as a means for preventing the flow of water in the filler layer and having high durability.
  • the location of the ventilation pipe is preferably near the upper end of the filler layer A, specifically 100 mm or less, preferably about 200 mm from the upper end of the filler layer A. Of course, this value is a specific example, and varies depending on the size of the biological reaction tank, the particle size of the filler, the packing density, and the like.
  • the ventilation pipe is arranged at the upper end of the filler layer A or at the boundary between the filler layer A and the filler layer B, the filler b forming the filler layer B enters the ventilation port. It is feared that. Further, if the ventilation pipe is provided below the filler layer A, it is difficult to obtain an oxygen-free state of the filler layer A. Secondly, the air flowing out of the air vent, which does not immediately become an aerobic state near the position of the ventilation pipe, is repeatedly contacted with the filler a in the filler layer A. Divided. Therefore, the oxygen dissolving efficiency increases as the temperature rises gradually from the vent pipe arrangement position.
  • the concentration of DO (dissolved oxygen) in the water to be treated was measured with the vent pipe position as the zero point.
  • the horizontal cross-sectional shape of the ventilation pipe can be, for example, a shape in which a plurality of branch pipes are connected to both sides of a main pipe arranged at the center.
  • Hydrogen resulting from the metabolism of microorganisms reduces bromate ions to bromine ions.
  • the liquid to be treated which has undergone the anaerobic biological treatment in the filler layer A reaches the filler layer B, and is subjected to the aerobic biological treatment in a state where the dissolved oxygen is sufficient by aeration from the air pipe 33. It is done.
  • the filler layer B is composed of the filler b. It is preferable that the filler b forms a swelling layer during backwashing and is a porous material.
  • the expansion rate during backwashing is 5 to 40%, preferably 10 to 30% .When this degree of expansion occurs, the fillers will collide with each other appropriately, causing excess biofilm adhering to the filler surface, It is capable of properly discharging suspended solids captured during the period.
  • a biofilm composed of aerobic microorganisms has high adhesiveness. It is indispensable to carry out backwashing which repeats the above-mentioned collisions.
  • backwashing by collision between the packing materials will excessively exfoliate the biofilm. , Which is not preferable.
  • the packing layer A does not expand even in the backwashing, and it is more appropriate to discharge excess biofilm by the water flowing through the packing layer a.
  • the filling material a may be slightly moved without expanding, for example, by increasing the washing speed once a month or using air washing together, for example, once a month. .
  • the position of each of the fillers a does not change, but the direction of change is good. Can be activated.
  • activated carbon similar to biological activated carbon (activated carbon for water treatment) used in an advanced water purification treatment system can be given, provided that the above-mentioned requirements are satisfied.
  • Synthetic zeolite, artificial lightweight aggregate, porous sintered material, coal distillate, etc. are not specified.
  • the backwashing speed is first determined by the filler b.
  • the washing speed is about 0.3 to 0.8 m / min, and even with other fillers, the maximum is about 1.Om/min. is there.
  • the washing speed is about 0.3 to 0.8 m / min, and it is preferable that the filler a does not expand at this washing rate.
  • the granulated activated carbon for gas phase, synthetic zeolite, artificial light aggregate, porous sintered material, coal dry distillation, etc. is preferred.
  • an aerobic state is obtained by ventilation from the ventilation pipe 33, and the residual organic substances and the off-flavor-causing substances are removed by the aerobic biological treatment.
  • activated carbon is used as the filler b, a biological activated carbon effect will occur.
  • the liquid to be treated thus purified flows out of the outlet 35 via the trough 34.
  • the treatment is continued for a certain period of time, specifically, half a day, one or two days, the filtration resistance increases in the packing layer, especially in the packing layer B, due to excess biofilm and suspended suspended substances.
  • backwashing is preferably performed.
  • the method of backwashing is not much different from a normal filtration device.
  • the intermediate drain port 36 of the biological reaction tank is opened to lower the water level in the tank. This lowering of the water level can be omitted. It is desirable to prevent the flow of the filler b.
  • backwash water is introduced from the backwash port 37, and washing is performed without expanding the filler a and expanding the filler b.
  • the backflow cleaning port 37 can also be used as the liquid inlet 31 to be treated. Although not used regularly, air cleaning may be incorporated into the backwashing mechanism in case air cleaning is required.
  • Backwash water is discharged out of the system through an outlet 35 through a trough 34 [0049] The backwashing is stopped after the turbidity of the backwashing wastewater has been reduced, specifically after a lapse of about 10 to 30 minutes.
  • the treatment may be started as it is, the water level may be lowered by the intermediate drain port 36, or the biological treated water after resumption may be circulated for a certain period of time. Moore.
  • the filler layer A performs a biological reducing action
  • the ventilation pipe 33 disposed above the filler layer A 33
  • Biological oxidizing action (aerobic treatment) in the filler layer B, which can maintain an aerobic state by aeration from the air, reduces odor-causing substances such as trihalomethane precursors, diosmin, and 2-MIB.
  • safe and delicious drinking water without worrying about the bromate ion can be supplied.
  • the anaerobic biological treatment includes both so-called facultative anaerobic biological treatment and absolute anaerobic biological treatment.
  • facultative anaerobic bacteria and obligate anaerobic bacteria are in a mixed state in the anaerobic treatment tank.
  • the action of aerobic bacteria still exists in the introduction part of the water to be treated, but in the middle part the action of facultative anaerobic bacteria is dominant, and in the latter part of the anaerobic reaction section. It is considered more preferable to operate the biological reactor under conditions where the action of anaerobic bacteria is dominant.
  • the treated water discharged from the biological treatment tank after performing the anaerobic treatment and possibly the aerobic treatment according to the present invention includes metazoan animals adhering to the biological carrier in the biological treatment tank. (Daphnia magna, Plumbushi, etc.), fine particles generated by peeling-off of the carrier, and anaerobic and aerobic microorganisms adhering to the biological carrier may be mixed. To remove these contaminants, the treated water obtained by the present invention can be further filtered.
  • a water purification method characterized by performing anaerobic biological treatment after ozone treatment of the water to be treated.
  • a water purification treatment method comprising subjecting treated water to ozone treatment, anaerobic biological treatment, and subsequent aerobic biological treatment.
  • a water purification treatment device comprising: an ozone treatment device for treating ozonated water; an anaerobic treatment device for anaerobic treatment of ozone-treated treatment water.
  • the apparatus further comprises a degassing apparatus for degassing the water to be treated ozone-treated by the ozone treatment apparatus and / or an organic substance adding apparatus for adding an organic substance to the water to be treated ozone-treated.
  • Item 12 The water purification device according to Item 11.
  • the water purification apparatus according to the above item 12, wherein the deaeration apparatus is any one of a vacuum deaerator, a nitrogen gas stirring apparatus and a membrane deaerator.
  • a filtration device is provided downstream of the anaerobic biological treatment device for filtering the water to be treated. 14.
  • the water purification apparatus according to any one of the above paragraphs 11 to 13.
  • An ozone treatment apparatus for ozonating treated water; an anaerobic biological treatment apparatus for treating an anaerobic biological treatment of ozone-treated treated water; aerobic biological treatment for anaerobic treated water to be treated A water purification treatment device comprising: an aerobic biological treatment device.
  • the anaerobic biological treatment device and the aerobic biological treatment device are constituted by separate reaction tanks, and a pipe for supplying the effluent from the anaerobic biological treatment device to the aerobic biological treatment device is provided.
  • Item 16 The device according to Item 15, above.
  • One reaction tank is divided into two by a partition plate. One is an anaerobic reaction section, and the other is a biological treatment tank functioning as an aerobic reaction section. Item 16. The device according to Item 15, which is used as an aerobic biological treatment device.
  • a reaction tank provided with an anaerobic reaction section and an aerobic reaction section, having a raw water inlet at a lower part of the tank, a treated water outlet at an upper part of the tank, and an upper part of the raw water inlet.
  • the anaerobic biological treatment apparatus is characterized by a filler layer that is formed continuously in two layers, upper and lower, and a ventilation pipe is provided near the upper end of the lower filler layer. 16.
  • the apparatus according to the above item 15 which is used as an aerobic biological treatment apparatus.
  • the above item 11 to item 19 further comprising: a coagulation sedimentation device for coagulating sedimentation of raw water; and a filtration device for filtering the water to be treated after coagulation sedimentation.
  • a water purification treatment device according to any one of the above.
  • drinking water that can sufficiently satisfy the carcinogenic substance, bromic acid, which is inevitably generated in the conventional advanced water purification system for water, to 10 ⁇ g / L or less according to the WHO guidelines. And the ability to select the most economical method depending on the quality of the raw water.
  • Example 1 Except for the river water of Example 1 (a), lake water that had undergone eutrophication was used as raw water.
  • raw water was subjected to coagulation settling treatment, sand filtration treatment, ozone treatment, and biological activated carbon treatment, which are conventional treatment systems for water purification, in this order.
  • the coagulation and sedimentation treatment is performed using a square coagulation sedimentation apparatus with dimensions of 500 mm x 3200 mm and XI 200 mm height.
  • the sand filtration treatment is performed on a cylindrical PVC column with dimensions of 160 mm diameter x 3000 mm height, using an anthra as a filter material.
  • the treatment tank filled with activated carbon for water treatment (Evadia LG-20S, diameter 1.2 mm, manufactured by EBARA CORPORATION) is used for the biological activated carbon treatment.
  • water to be treated was introduced into a 160 mm diameter X 3000 mm height cylindrical PVC column).
  • Example 1 (a) anaerobic treatment was performed on the water to be treated which had been subjected to the above-mentioned coagulation / sedimentation treatment, sand filtration treatment, and ozone treatment.
  • Example 1 (b) and 1 (c) the anaerobic treated water was further subjected to an aerobic treatment step.
  • the ozone-treated water was deaerated using a membrane deaerator, and the anaerobic biological treatment was performed under the dissolved oxygen conditions shown in Table 1. went.
  • Example 1 (d) anaerobic treatment was performed after adding 10 mg / L of ethanol as an organic substance to ozone-treated water without using a deaerator.
  • Example 1 In the anaerobic biological treatment, water to be treated was supplied to a reaction tank filled with artificial lightweight aggregate having an average particle diameter of 2.0 mm (Ebarasite L412, trade name, manufactured by Ebara Corporation) as a filler.
  • the effluent of the anaerobic biological treatment tank was introduced into a reaction tank filled with the same activated carbon as the comparative example as a filler
  • Example 1 (c) The effluent from the anaerobic biological treatment tank was introduced into the reaction tank filled with artificial lightweight aggregate (Ebarasite, trade name, Ebara Corporation) having an average particle size of 1.1 mm as the filler.
  • artificial lightweight aggregate Ebarasite, trade name, Ebara Corporation
  • the effluent from the anaerobic biological treatment tank was introduced into a reaction tank filled with activated carbon (Ebara Corporation, Evadia LG-20S, 1.2 mm diameter) as a filler.
  • activated carbon Ebara Corporation, Evadia LG-20S, 1.2 mm diameter
  • the superficial velocity (SV) of the anaerobic treatment tank and the superficial velocity of the aerobic treatment tank were all 1 Oh- 1 .
  • Example 1 (a) The raw water used in Example 1 (a) was river water having a dam lake as its headwater, and had low trihalomethane production ability, but had a relatively high concentration of off-flavor components. As shown in Table 1, 2-MIB was sufficiently decomposed in the ozone oxidation process. Bromic acid decreased to 0.9 ⁇ g / L in the anaerobic biological treatment process, which had increased to approximately 40 ⁇ g / L in the ozone oxidation process.
  • Example 1 (b) lake water having high levels of torino, methane-forming ability, and off-flavor substances was used as raw water.
  • the trihalomethane production capacity was 38 ⁇ g / L and 2-MIB was below the detection limit, but 34 ⁇ g / L was produced as bromate.
  • tribromethane production ability also decreased.
  • Bromic acid decreased to 1 ⁇ g / L.
  • the bioactive carbon effect reduced trihalomethane production to 9 ⁇ g / L, 2-MIB to 5 / ig / L or less, and bromate to 0.5 ⁇ g / L.
  • the removal rate of trihalomethane-forming ability in the aerobic biological treatment step was about 30%, and tended to be inferior to Example 1 (b).
  • Water purification treatment was performed using a biological treatment tank having an anaerobic reaction section and an aerobic reaction section having the structure shown in Fig. 6. River water with eutrophic lake water as a water source was used as raw water.
  • Raw water was subjected to a coagulation sedimentation treatment, a sand filtration treatment, an ozone treatment, and a biological activated carbon treatment, which are conventional treatment systems for water purification, in this order.
  • the coagulation sedimentation treatment, the sand filtration treatment, and the biological activated carbon treatment were each performed using an apparatus having the same configuration as that used in Example 1.
  • the ozone-treated water obtained by this water purification treatment is subjected to deaeration treatment and / or addition of organic substances, and then introduced into a biological treatment tank with the structure shown in Fig. 6 to perform anaerobic biological treatment. / Aerobic treatment was performed.
  • a nitrogen gas stirred column was used as a degasser, and ethanol was added as an organic substance.
  • the properties of the various fillers in Table 3 are as follows.
  • the biological treatment tank is 160 mm in diameter and 4000 mm in height.
  • the lower part is an anaerobic reaction part (layer height 1000 mm)
  • the upper part is an aerobic reaction part (layer height 1500 mm)
  • the water to be treated is introduced from the lower part of the treatment tank. Collected from the top.
  • a vent pipe (porous pipe with a diameter of 2 mm: covered with a net with a mesh of about 0.5 mm to prevent penetration into the filter medium) was placed 50 mm from the upper end of the anaerobic reaction section, and air was blown through the blower. Blows the upper part of the biological treatment tank (filler b) Aerobic conditions were used.
  • the superficial velocity (SV) in the biological treatment tank was 10h- 1 .
  • Example 1 (a) is a method in which degassing was performed but no organic substance was added.
  • Example 1 (b) was a method in which degassing was performed and an organic substance was added at 2 mg / L. Things.
  • Example 1 (c) an organic substance was added in an amount of 11 mg / L without degassing.
  • Example 1 (d) artificial lightweight aggregate was used for both the fillers a and b.
  • Example 1 the trihalomethane forming ability (THM-FP), an organic substance, and 2-MIB, an off-flavor substance, were sufficiently purified, and at the same time, bromate ions were treated to a sufficiently low value.
  • THM-FP trihalomethane forming ability
  • 2-MIB an off-flavor substance
  • the raw water is river water with a dam lake as the headwater (Example 3 (a)) or eutrophication has progressed. Lake water (Example 3 (b) and Comparative Example) was used.
  • raw water was subjected to a conventional sedimentation treatment, sand filtration, ozone treatment, and biological activated carbon treatment, which are conventional treatment systems for water purification.
  • the coagulation sedimentation treatment, the sand filtration treatment, and the ozone treatment were performed using the same apparatus as that used in Example 1, respectively.
  • activated carbon for gas phase having a particle size of 46mm columnumn shape, iodine adsorption amount 1130mg / g, manufactured by EBARA SEISAKUSHO, trade name Evadia AG-400
  • the water to be treated was supplied to a reaction tank filled with (a)) or an artificial lightweight aggregate having a particle size of 36 mm (spherical shape, manufactured by Ebara Corporation, trade name: Evacite L412).
  • activated carbon for water treatment with a particle size of 0.6--1.5 mm crushed shape, iodine adsorption amount 1010 mg / g, Ebara Corporation, trade name Evadia LG-20S
  • the discharged water from the anaerobic biological treatment tank was introduced into the filled reaction tank.
  • the superficial velocity (SV) of the anaerobic treatment tank and the superficial velocity of the aerobic treatment tank were all 1 Ohm.
  • trihalomethane forming ability TMM-FP
  • 2-MIB removal ability were high, but bromic acid remained at 22 ⁇ g / L and did not satisfy the WHO standard of 10 ⁇ g / L or less.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

[PROBLEMS] To provide a novel water purification method and apparatus with which while satisfactorily realizing the advantages of conventional water purification high-level treatment system, the occurrence of bromic acid can be eliminated to thereby supply safe good-taste water. [MEANS FOR SOLVING PROBLEMS] In one aspect, there is provided a method of water purification treatment characterized in that ozonization of water to be treated is followed by anaerobic biological treatment, optionally further by aerobic biological treatment. In another aspect, there is provided a water purification treatment apparatus characterized by including an ozonization unit for ozonizing water to be treated and an anaerobic biological treatment unit for performing anaerobic biological treatment of ozonized water optionally together with an aerobic biological treatment unit for performing aerobic biological treatment of water having undergone the anaerobic biological treatment.

Description

明 細 書  Specification
浄水高度処理方法及び装置  Advanced water purification method and equipment
技術分野  Technical field
[0001] 本発明は、浄水の処理方法に係り、特に、河川水、湖沼水、地下水等の原水から 高度に浄化された飲料水を得ることができる浄水処理方法及び装置に関する。 背景技術  The present invention relates to a method for treating purified water, and more particularly to a method and apparatus for treating purified water capable of obtaining highly purified drinking water from raw water such as river water, lake water, and groundwater. Background art
[0002] 汚濁の進んだ原水を飲料水にする浄水方法として、浄水高度処理システムが普及 している。  [0002] As a water purification method for converting polluted raw water into drinking water, an advanced water purification system is widely used.
[0003] この方法は、図 1のフロー工程図に示されるように、従来の凝集沈殿工程 2及びろ 過工程 3に、オゾン処理工程 4と生物活性炭処理工程 7を組合わせたものである。被 処理水を、まず凝集沈殿工程 2で処理し、次に砂ろ過等のろ過工程 3で処理する。そ して、凝集沈殿及びろ過工程で取りきれない汚濁成分を、オゾン処理 4によって酸化 分解する。その後、オゾン処理による酸化分解物と残存物質とを活性炭層を通過さ せるなどの生物活性炭処理 7 (好気処理)にかけることにより、活性炭に自生した微生 物によって汚濁物質を生物分解すると共に、活性炭吸着によって除去する。  [0003] As shown in the flow chart of Fig. 1, this method is a combination of a conventional coagulation-sedimentation step 2 and a filtration step 3 with an ozone treatment step 4 and a biological activated carbon treatment step 7. The water to be treated is first treated in the coagulation sedimentation step 2 and then in the filtration step 3 such as sand filtration. Then, the polluted components that cannot be removed in the coagulation sedimentation and filtration steps are oxidatively decomposed by the ozone treatment 4. After that, by subjecting the oxidative decomposition products and residual substances by ozone treatment to biological activated carbon treatment 7 (aerobic treatment), such as passing through an activated carbon layer, the pollutants are biodegraded by micro-organisms naturally grown on the activated carbon. , Removed by activated carbon adsorption.
[0004] このような浄化工程を経ることで、トリハロメタン前駆物質やジォスミンや 2—MIB (2— メチルイソボルネオール)などの臭気物質の除去が行われ、安全でおいしい水を供 給すること力 Sできる。  [0004] Through such a purification process, odorants such as trihalomethane precursors, diosmin and 2-MIB (2-methylisoborneol) are removed, and a safe and delicious water supply can be achieved. it can.
[0005] このシステムは、上記のように優れている面が認められている。し力し、最近の研究 において、オゾン処理工程で、臭素イオンが酸化されて臭素酸になることが明らかに なってきている。臭素酸は、発ガン性物質であり、昨今、 WHOでは臭素酸の飲料水 許容値を 10 x g/Lにした。わが国においても、現在、飲料水基準として 10 z g/L以下 に強化することが検討されてレ、る。  [0005] This system has been recognized for its advantages as described above. However, recent studies have shown that bromine ions are oxidized to bromate during the ozonation process. Bromic acid is a carcinogen, and recently the WHO has set the permissible value for bromic acid in drinking water at 10 x g / L. In Japan, it is currently under consideration to increase the drinking water standard to 10 zg / L or less.
[0006] オゾン処理工程において生成した臭素酸は、その後の生物活性炭処理では除去 することができない。そこで、オゾン酸化工程での臭素酸の生成量を減少させる試み がなされている(平成 15年度全国水道研究発表会講演集、 p. 242、 2003年)。しか しながら、この対応は、オゾン添力卩量を少なくすることが主体であり、オゾンの酸化力 を低下させて臭素酸を生成しに《しているものの、本来の目的である微量有機物質 の酸化分解力を同時に低下させていることになる。 [0006] Bromic acid generated in the ozone treatment step cannot be removed by the subsequent biological activated carbon treatment. Attempts have been made to reduce the amount of bromic acid generated in the ozone oxidation process (2003 National Water Works Conference, p. 242, 2003). However, this response mainly involves reducing the amount of ozone added to the mixture, and the oxidizing power of ozone This means that bromine acid is produced by reducing the amount of bromine acid, but at the same time the oxidative decomposition power of trace organic substances, which is the original purpose, is also reduced.
[0007] つまり、オゾンとの競合反応について詳細に検討されているわけではないが、一般 に、フミン酸ゃフルボ酸などのトリハロメタン前駆物質より、臭素の方がオゾンに対して 反応性が高いものと考えられる。したがって、微量有機物質の方が極端に反応性が 高い場合を除いて、オゾン添加量を減少させることは、そのまま微量有機物質への酸 化力が低下することを意味する。したがって、臭素酸生成抑制を目的としてオゾン添 加量を抑制することは、安全でおいしい飲料水を供給するという高度浄水処理法の 本来の目的自体を損なうものであり、急場しのぎの対症療法と言わざるを得ない。 発明の開示  [0007] That is, although a competitive reaction with ozone has not been studied in detail, bromine is generally more reactive with ozone than trihalomethane precursors such as humic acid and fulvic acid. it is conceivable that. Therefore, unless the trace organic substance is extremely reactive, reducing the amount of added ozone means that the oxidizing power to the trace organic substance is directly reduced. Therefore, reducing the amount of ozone added for the purpose of suppressing the production of bromic acid impairs the original purpose of the advanced water purification treatment method of supplying safe and delicious drinking water, and is said to be a symptomatic treatment for emergency treatment. I have no choice. Disclosure of the invention
[0008] 本発明は、上記の従来技術の問題点に対して、科学的実証的根拠に基づいて抜 本的な解決策を講じるものであり、従来の浄水高度処理システムの利点を十分生か した上で、臭素酸の生成を防止し、その結果、安全でおいしい飲料水を供給する新 しい浄水方法と装置を提供することを課題とするものである。  [0008] The present invention provides a fundamental solution to the above-mentioned problems of the prior art based on scientific empirical evidence, and fully utilizes the advantages of the conventional advanced water purification system. It is another object of the present invention to provide a new water purification method and apparatus that prevents the production of bromate and, as a result, supplies safe and delicious drinking water.
[0009] 上記課題を解決する手段として、本発明の一態様は、河川水、湖沼水又は地下水 などを原水として、凝集沈殿工程、ろ過工程及びオゾン処理工程を経て、飲料水を 得る浄水処理方法において、オゾン処理工程の後に、オゾン処理水を嫌気性生物 処理工程で処理することを特徴とする浄水処理方法を提供する。  [0009] As a means for solving the above problems, one embodiment of the present invention is a water purification method for obtaining drinking water from river water, lake water, groundwater, or the like as raw water, through a coagulation sedimentation step, a filtration step, and an ozone treatment step. , An ozone-treated water is treated in an anaerobic biological treatment step after the ozone treatment step.
[0010] また、本発明の他の態様においては、前記浄水処理方法において、嫌気性生物処 理工程の処理水を、さらに好気性生物処理工程で処理することができる。また、前記 オゾン処理工程と嫌気性生物処理工程の間には、脱気工程を配することができ、ま た、嫌気性生物処理工程での処理は、有機物質(特に、食品添加物)を添加して行う ことができ、前記脱気工程は、真空脱気方式、窒素ガス撹拌方式、膜脱気方式のい ずれかを用いることができる。  [0010] In another aspect of the present invention, in the water purification treatment method, the treated water in the anaerobic biological treatment step can be further treated in the aerobic biological treatment step. In addition, a deaeration step can be provided between the ozone treatment step and the anaerobic organism treatment step, and the treatment in the anaerobic organism treatment step involves removing organic substances (particularly food additives). The degassing step can be performed by any of a vacuum degassing method, a nitrogen gas stirring method, and a film degassing method.
[0011] また、本発明の他の態様は、河川水、湖沼水又は地下水などを原水として飲料水 を得る、凝集沈殿装置、ろ過装置及びオゾン処理装置を有する浄水処理装置にお いて、前記オゾン処理装置の後に、該オゾン処理水を処理する嫌気性生物処理装 置を配備したことを特徴とする浄水処理装置を提供する。 [0012] 本発明の更に他の態様では、臭素酸を含む浄水工程水から臭素酸を除去する方 法において、前記浄水工程水を脱気するか、及び/又は、前記浄水工程水に有機 物質を添加して、通性嫌気性菌作用と生物学的酸化作用とを有する生物処理槽 (即 ち、嫌気性生物反応部と好気性生物反応部とを備えた生物処理槽)で処理すること を特徴とする臭素酸の除去方法が提供される。 [0011] Further, another embodiment of the present invention relates to a water purification treatment device having a coagulation sedimentation device, a filtration device, and an ozone treatment device for obtaining drinking water using river water, lake water, groundwater, or the like as raw water. An anaerobic biological treatment device for treating the ozonated water is provided after the treatment device. [0012] In still another aspect of the present invention, in the method for removing bromic acid from the water purification step water containing bromic acid, the water purification step water is degassed and / or an organic substance is contained in the water purification step water. To be treated in a biological treatment tank having a facultative anaerobic bacteria action and a biological oxidizing action (that is, a biological treatment tank having an anaerobic reaction section and an aerobic reaction section). A method for removing bromic acid is provided.
[0013] また、本発明の更に他の態様では、臭素酸を含む浄水工程水から臭素酸を除去す る装置において、前記浄水工程水を脱気する脱気装置、及び Z又は、前記浄水ェ 程水に有機物質を添加する手段と、通性嫌気性菌作用と生物学的酸化作用とを有 する生物処理槽とを、順次配備したことを特徴とする臭素酸の除去装置が提供される  [0013] In still another aspect of the present invention, in a device for removing bromate from water for purification process containing bromic acid, a deaerator for degassing the water for purification process, and Z or the water purification device. A device for removing bromic acid is provided, wherein a means for adding an organic substance to water and a biological treatment tank having a facultative anaerobic action and a biological oxidation action are sequentially arranged.
[0014] なお、前記通性嫌気性菌作用と生物学的酸化作用とを有する生物処理槽は、次の [0014] The biological treatment tank having the facultative anaerobic bacteria action and the biological oxidizing action includes the following.
(a)一 (c)の各構成を有するのがよレ、。  (a) It is preferable to have each of the configurations of (c).
(a)槽下部に原水流入口を有し、槽上部に処理水流出口を有し、槽底部に逆流洗 浄機構を配備する構成;  (a) A configuration having a raw water inlet at the bottom of the tank, a treated water outlet at the top of the tank, and a backwashing mechanism at the bottom of the tank;
(b)逆流洗浄機構の上部に、上下 2層で連続形成される充填材層を形成し、前記下 層の充填材が、水に沈みかつ逆流洗浄時に膨張層を形成しない多孔質粒状材から なり、前記上層の充填材が、水に沈みかつ逆流洗浄時に膨張層を形成する多孔質 粒状材からなる構成;  (b) A filler layer formed continuously in two layers, upper and lower, is formed on the upper part of the backwashing mechanism, and the lower filler is made of a porous granular material that sinks in water and does not form an expansion layer during backwashing. A configuration in which the filler in the upper layer is formed of a porous granular material that sinks in water and forms an expansion layer during backwashing;
(c)下層の充填材層に通気管を配備する構成。  (c) A configuration in which a ventilation tube is provided in a lower filler layer.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]従来公知の浄水処理方法を示すフロー工程図である。  FIG. 1 is a flow process chart showing a conventionally known water purification treatment method.
[図 2]本発明の一態様に係る浄水処理方法の一例を示すフロー工程図である。  FIG. 2 is a flowchart showing an example of a water purification method according to an embodiment of the present invention.
[図 3]本発明の他の態様に係る浄水処理方法の一例を示すフロー工程図である。  FIG. 3 is a flowchart showing an example of a water purification method according to another embodiment of the present invention.
[図 4]本発明の一態様において使用することのできる嫌気性処理槽と好気性処理槽 とを組みあわせた生物処理槽の構成を示す概念図である。  FIG. 4 is a conceptual diagram showing a configuration of a biological treatment tank combining an anaerobic treatment tank and an aerobic treatment tank that can be used in one embodiment of the present invention.
[図 5]図 5 (a)一 (c)は、本発明において使用することのできる嫌気反応部と好気反応 部とに仕切られた生物処理槽の構成例を示す概念図である。  FIG. 5 (a)-(c) is a conceptual diagram showing a configuration example of a biological treatment tank partitioned into an anaerobic reaction section and an aerobic reaction section that can be used in the present invention.
[図 6]本発明の一態様において使用することのできる嫌気性生物反応部と好気性生 物反応部とを備えた生物処理槽の構成を示す概念図である。 [FIG. 6] An anaerobic reaction section and an aerobic reaction section that can be used in one embodiment of the present invention. It is a conceptual diagram showing composition of a biological treatment tank provided with a thing reaction part.
発明の実施形態  Embodiment of the Invention
[0016] 本発明の各種実施態様を図面を参照して説明する。図 2は、本発明の一態様に係 る浄水処理方法の一例を示すフロー工程図である。  Various embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a flowchart showing an example of a water purification treatment method according to one embodiment of the present invention.
[0017] 図 2の浄水処理方法においては、河川水、湖沼水、地下水等の飲料原水 1は、凝 集沈殿工程 2、砂ろ過工程 3などの当該技術において公知の処理がされた後、ォゾ ン処理工程 4で処理される。次に、本発明方法においては、オゾン処理されたオゾン 処理水を脱気工程 5にかけた後に嫌気性生物処理工程 6にかける。また、脱気工程 5に代えてオゾン処理水に有機物 8を添加して、嫌気性生物処理工程 6にかけてもよ レ、。或いは脱気工程 5と有機物 8の添カ卩の両方を行うこともできる。有機物 8を添加す ると、好気性細菌が溶存酸素を取り入れて有機物を資化することで酸素が消費され、 雰囲気を嫌気性にすることができる。  In the water purification treatment method shown in FIG. 2, raw drinking water 1 such as river water, lake water, groundwater, etc. is subjected to a treatment known in the art such as a coagulation sedimentation step 2, a sand filtration step 3, and the like. Processed in zoning process 4. Next, in the method of the present invention, the ozonized water subjected to the ozone treatment is subjected to the degassing step 5 and then to the anaerobic biological treatment step 6. Alternatively, instead of the deaeration step 5, the organic substance 8 may be added to the ozonized water, and the anaerobic treatment step 6 may be performed. Alternatively, both the deaeration step 5 and the addition of organic matter 8 can be performed. When organic matter 8 is added, aerobic bacteria take in dissolved oxygen and assimilate the organic matter, thereby consuming the oxygen and making the atmosphere anaerobic.
[0018] 本発明方法において、オゾン処理の前段処理として行う凝集沈殿工程 2及び砂ろ 過工程 3は、浄水処理プロセスにおいて公知の技術であり、任意の方法を採用する こと力 Sできる。また、オゾン処理の前段処理として、当業者に明らかな他の処理を行う ことちできる。  [0018] In the method of the present invention, the coagulation sedimentation step 2 and the sand filtration step 3 performed as pre-treatments of the ozone treatment are known techniques in the water purification treatment process, and any method can be adopted. Further, as a pre-treatment of the ozone treatment, another treatment apparent to those skilled in the art can be performed.
[0019] オゾン処理工程 4では、原水にオゾンを吹き込むことによって殺菌が行われる力 そ れと同時に、原水中に含まれる臭素イオンがオゾンによって酸化され、臭素酸イオン を生成する。  [0019] In the ozone treatment step 4, sterilization is performed by blowing ozone into the raw water. At the same time, bromine ions contained in the raw water are oxidized by the ozone to generate bromate ions.
[0020] [化 1]  [0020] [Formula 1]
B r + 0 3→B r〇3ー この臭素酸は、従来の生物活性炭処理工程 (好気処理)では除去することができな レ、。臭素酸を除去する方法として、本発明方法で採用する嫌気性生物処理による還 元法は、特別な触媒や薬品を使用せず、 自然界の浄化作用に基づいているため、 安全性も高い。本発明は、この原理に基づいている。微生物の代謝作用から生じる 水素によって、臭素酸イオンが還元されて臭素イオンになる。 [0021] [化 2] B r + 0 3 → B r 〇 3 -This bromate cannot be removed by the conventional biological activated carbon treatment process (aerobic treatment). As a method for removing bromic acid, the reduction method by anaerobic biological treatment employed in the method of the present invention does not use a special catalyst or chemicals and is based on a natural purification action, so that the safety is high. The present invention is based on this principle. Hydrogen resulting from microbial metabolism reduces bromate ions to bromine ions. [0021] [Formula 2]
B r 0 3 - + 2 (H 2 ) 微生物代謝→B r + 2 O H— + H 2 0 オゾン酸化工程 4においては、オゾンと共に酸素が供給されるため、被処理液は酸 素リッチの状態である。被処理液中に酸素が十分に溶解していると、嫌気性生物処 理は作用しない。 Br 0 3- + 2 (H 2 ) Microbial metabolism → Br + 2 OH— + H 20 In the ozone oxidation step 4, oxygen is supplied together with ozone, so that the liquid to be treated is oxygen-rich. is there. Anaerobic biological treatment does not work if oxygen is sufficiently dissolved in the liquid to be treated.
[0022] 被処理液中の酸素を除去する方法として、脱気工程 5を設けるか、又は、酸素を微 生物の代謝作用によって効率的に除去するために、生物学的に容易に分解される 有機物質 8を添加する方法とが考えられる。また、両者を併用することもできる。  [0022] As a method for removing oxygen in the liquid to be treated, a degassing step 5 is provided, or oxygen is easily decomposed biologically in order to efficiently remove oxygen by metabolism of microorganisms. It is conceivable to add an organic substance 8. Moreover, both can be used together.
[0023] 先ず、脱気工程 5を配した場合について説明する。脱気手段としては、真空脱気方 式もしくは窒素ガス撹拌方式もしくは膜脱気方式が適切である。真空脱気方式とは、 槽内を真空に保ち、被処理液中の溶存気体をすベて取り除く方法である。次に、窒 素ガス撹拌方式とは、密閉槽に窒素ガスをパブリングすることによって酸素分圧を減 らし、被処理液中の酸素を除去する方法である。この際、窒素ガスを得る方法として、 少量であれば窒素ガスボンベを用い、多量であれば分子篩効果を利用した PSA装 置を用いることが効果的である。また、膜脱気方式とは、中空子等の膜の片側を減圧 することによって溶存ガスを除去する方法である。脱気後の被処理液の溶存酸素濃 度は、 2mg/L以下、望ましくは lmg/L以下、さらに望ましくは 0. 3mg/L以下とすること が好ましい。  First, the case where the deaeration step 5 is provided will be described. As the deaeration means, a vacuum deaeration method, a nitrogen gas stirring method or a film deaeration method is appropriate. The vacuum degassing method is a method in which the inside of the tank is kept at a vacuum and all dissolved gases in the liquid to be treated are removed. Next, the nitrogen gas stirring method is a method of reducing oxygen partial pressure by bubbling nitrogen gas into a closed tank to remove oxygen in the liquid to be treated. At this time, it is effective to use a nitrogen gas cylinder if the amount is small, and use a PSA device that utilizes the molecular sieve effect if the amount is large. The membrane degassing method is a method of removing dissolved gas by reducing the pressure on one side of a membrane such as a hollow piece. The concentration of dissolved oxygen in the liquid to be treated after degassing is preferably 2 mg / L or less, preferably 1 mg / L or less, and more preferably 0.3 mg / L or less.
[0024] このようにして脱気された被処理水は、嫌気性生物処理工程 6に導かれる。嫌気性 生物処理方法としては生物膜法が適している。即ち、活性炭、ノ、二カムチューブ材、 布帛材などの微生物担体を充填し、嫌気状態に保持した充填槽 (嫌気性生物処理 槽)に被処理水を導入することにより、担体の表面に形成された微生物膜と被処理水 とが接触して、微生物による被処理水の生物処理が行われる。下水などのように被生 物処理物質が多い場合は浮遊法を採用することも考えられるが、本発明が処理対象 とする浄水原水では、被生物処理物質の濃度が μ g/Lレベルであるため浮遊法は適 切ではない。  [0024] The treated water thus degassed is led to the anaerobic biological treatment step 6. Anaerobic The biofilm method is suitable for biological treatment. In other words, a microbial carrier such as activated carbon, rubber, two-cam tube material, or fabric material is filled, and water to be treated is introduced into a filling tank (anaerobic biological treatment tank) maintained in an anaerobic state to form on the surface of the carrier. The treated microbial membrane comes into contact with the water to be treated, and the biological treatment of the water to be treated by microorganisms is performed. In the case of a large amount of substances to be treated such as sewage, the flotation method may be adopted.However, the concentration of the substance to be treated is at the μg / L level in the purified water that is the target of the present invention. Therefore, the floating method is not appropriate.
[0025] なお、脱気工程 5を省略する場合や、脱気工程 5での脱気が不十分の場合、さらに は嫌気性生物処理速度を高める目的で、有機物質 8を添加することができる。脱気 工程の効果が優れていて且つ生物学的還元作用を早める必要がない場合には、有 機物質の添加を省略することができる。添加する有機物質 8は、通性嫌気性菌の代 謝に利用される有機物質であれば何でもよいが、エタノールや酢酸をはじめとした食 品添加物であれば、万が一飲料水中に残存したとしても安全性の面で心配が要らな レ、。これ以外にも例えば、メタノールなどのアルコール類、乳酸、クェン酸などの有機 酸類、グルコース、ラタトース、フルクトース、マルロースなどの糖類、プロピオン酸、酪 酸、吉草酸などの低級脂肪酸類など、更に BOD源となる他の任意の物質を有機物 質として使用すること力 Sできる。これらの有機物質を被処理水に添加することによって 、通性嫌気性菌が活性化され、残存溶存酸素をいち早く細胞内に取り入れ、被処理 水を無酸素状態に導くことができる。更に、被処理水が既に無酸素状態であれば、 臭素酸イオン中の酸素を代謝に利用し、加えてこのとき有機物質が残存してレ、れば 水素供与体として作用し、内生呼吸によらない臭素酸イオンの還元が可能になり、反 応が促進されることになる。 [0025] If the degassing step 5 is omitted or if the degassing in the degassing step 5 is insufficient, In order to increase the rate of anaerobic biological treatment, organic substances 8 can be added. If the effect of the degassing step is excellent and the biological reduction action does not need to be accelerated, the addition of the organic substance can be omitted. The organic substance 8 to be added may be any organic substance used for the metabolism of facultative anaerobic bacteria.However, if it is a food additive such as ethanol or acetic acid, it is assumed that it remains in drinking water. No need to worry about safety. In addition, BOD sources such as alcohols such as methanol, organic acids such as lactic acid and citric acid, sugars such as glucose, ratatose, fructose, and malulose, and lower fatty acids such as propionic acid, butyric acid, and valeric acid. Can be used as an organic substance. By adding these organic substances to the water to be treated, the facultative anaerobic bacteria are activated, the remaining dissolved oxygen can be quickly taken into the cells, and the water to be treated can be brought into an anoxic state. Furthermore, if the water to be treated is already in anoxic condition, the oxygen in the bromate ion is used for metabolism. In addition, if the organic substance remains at this time, if it acts as a hydrogen donor, endogenous respiration occurs It is possible to reduce bromate ions regardless of the reaction, and the reaction is promoted.
[0026] 上記のような嫌気性条件で浄水を処理することにより、嫌気処理槽内の通性嫌気性 微生物及び/又は絶対嫌気性微生物の働きによって、上述したように被処理水中の 臭素酸イオンが還元され臭素イオンとなる。  [0026] By treating the purified water under the anaerobic conditions as described above, the bromate ions in the water to be treated are treated as described above by the action of the facultative anaerobic microorganisms and / or the absolute anaerobic microorganisms in the anaerobic treatment tank. Is reduced to bromine ions.
[0027] ところで、嫌気性生物処理工程での生物付着担体として活性炭を用いることによつ て、生物活性炭機能を期待することもできる。ここで、「生物活性炭機能」若しくは「生 物活性炭作用」とは、活性炭のマクロポアに繁殖する生物力 ミクロポアに吸着した 化学物質を分解する機能又は作用のことである。活性炭の吸着機能と、上記の「生 物活性炭機能」によって、極めて優れた浄化作用を期待できる。特に、原水中に有 機物質がほとんどなぐジォスミンや 2— MIBなどの異臭味対策として高度浄水処理 システムを導入する場合では、嫌気性生物処理水(浄水) 9を、そのままもしくは簡単 なエアレーシヨンを施すことで飲料水に供することができる。  By the way, by using activated carbon as a bioadhesive carrier in the anaerobic biological treatment step, a biological activated carbon function can be expected. Here, the term “biological activated carbon function” or “biological activated carbon action” refers to the function or action of decomposing a chemical substance adsorbed on micropores, which is a biological force that propagates in macropores of activated carbon. Due to the activated carbon adsorption function and the above-mentioned “bioactive carbon function”, an extremely excellent purification action can be expected. In particular, when introducing an advanced water purification system as a countermeasure against unpleasant odors such as diosmin and 2-MIB, in which raw materials contain almost no organic substances, use anaerobic biologically treated water (purified water) 9 as it is or apply simple aeration. It can be used for drinking water.
[0028] また、本発明の他の態様によれば、原水中にトリハロメタン前駆物質が存在する場 合などには、嫌気性生物処理工程の後段に好気性生物処理工程を配備することが 望ましレ、。嫌気性生物処理工程の後段として好気性生物処理工程を配した本発明 の他の態様に係る浄水処理方法のフロー工程図を図 3に示す。従前の図面で説明 したものと同じ構成要素に関しては、同じ参照番号を付して、適宜説明を省略する。 図 3に示す浄水処理方法においては、原水は、凝集沈殿 2、砂ろ過 3などの前処理を 行った後、オゾン処理 4にかけられる。オゾン処理されたオゾン処理水は、脱気工程 5 にかけられる力 \及び/又は有機物 8が添加された後、嫌気処理工程 6にかけられ、 続いて空気注入 12がされて、好気処理工程 11にかけられ、浄水 9が得られる。本発 明の力かる態様において用いられる好気性生物処理工程でも、嫌気性生物処理ェ 程の場合と同様に生物膜法が適している。最も簡単な方法は、嫌気性生物処理槽の 出口(或いは嫌気性生物処理槽と好気性生物処理槽との間)に気液接触部を設け、 被処理液中に酸素を溶解させた後、従来法と同様の構成の生物活性炭槽 (好気性 生物処理槽)に導くことである。また、好気性生物処理槽に空気 12を直接吹き込んで もよレ、。生物活性炭槽 (好気性生物処理槽)では、微生物担体として活性炭を充填し 、好気性条件に保った反応槽に被処理水を導入して、担体表面に形成された微生 物膜と被処理水とを接触させて、被処理水の好気性生物処理を行う。なお、好気性 生物処理槽を好気性条件に保っための手段としては、特許第 1642399号公報に記 載のように担体充填層の下部から散気すると酸素利用効率が高いため効果的である 。また、生物膜処理効果が促進されるため、充填材として必ずしも活性炭である必要 はなぐゼォライトや人工軽量骨材などの多孔質材、場合によっては、通常のろ過材 である砂やアンスライトでも良ぐこれら充填材を組み合わせても良い。 [0028] According to another aspect of the present invention, when a trihalomethane precursor is present in raw water, it is desirable to provide an aerobic biological treatment step after the anaerobic biological treatment step. Les ,. The present invention in which an aerobic biological treatment step is arranged as a latter stage of the anaerobic biological treatment step FIG. 3 shows a flowchart of a water purification method according to another embodiment. The same components as those described in the previous drawings are denoted by the same reference numerals, and description thereof will not be repeated. In the water purification method shown in FIG. 3, raw water is subjected to pretreatment such as coagulation sedimentation 2 and sand filtration 3, and then subjected to ozone treatment 4. The ozonized water subjected to the ozone treatment is subjected to an anaerobic treatment step 6 after addition of a force \ and / or an organic substance 8 applied to a deaeration step 5, followed by an air injection 12 and an aerobic treatment step 11. And purified water 9 is obtained. Also in the aerobic biological treatment step used in the powerful embodiment of the present invention, the biofilm method is suitable as in the case of the anaerobic biological treatment step. The simplest method is to provide a gas-liquid contact section at the outlet of the anaerobic biological treatment tank (or between the anaerobic biological treatment tank and the aerobic biological treatment tank), and to dissolve oxygen in the liquid to be treated. This is to lead to a biological activated carbon tank (aerobic biological treatment tank) with the same configuration as the conventional method. Alternatively, air 12 may be directly blown into the aerobic biological treatment tank. In the biological activated carbon tank (aerobic biological treatment tank), activated carbon is filled as a microbial carrier, and water to be treated is introduced into a reaction tank maintained under aerobic conditions, and the microbial membrane formed on the carrier surface is treated with the treated microorganism. The aerobic biological treatment of the water to be treated is carried out by bringing it into contact with water. As a means for maintaining the aerobic biological treatment tank under aerobic conditions, as described in Japanese Patent No. 1642399, it is effective to diffuse the gas from the lower part of the carrier-packed layer because oxygen utilization efficiency is high. In addition, since the biofilm treatment effect is promoted, porous materials such as zeolite and artificial lightweight aggregate that do not necessarily need to be activated carbon as a filler, and in some cases, sand and anthrite, which are ordinary filter media, may be used. These fillers may be combined.
[0029] 好気性生物処理工程 11では、生物活性炭作用もしくは生物膜による浄化作用によ つて、わずかに残存しているトリハロメタン前駆物質やジォスミン、 2—MIBなどの臭気 原因物質を処理することができる。もちろん、好気性生物処理工程において臭素酸ィ オンの生成は皆無であり、臭素酸の懸念のない安全で、おいしい飲料水を安心して 供給できる。 [0029] In the aerobic biological treatment step 11, odor-causing substances such as trihalomethane precursors, diosmin, and 2-MIB, which are slightly remaining, can be treated by a bioactive carbon action or a purification action by a biofilm. . Of course, there is no generation of bromate ion in the aerobic biological treatment process, and safe and delicious drinking water without the concern of bromate can be supplied with confidence.
[0030] 本発明において、オゾン処理水を脱気又は有機物添加した後に嫌気性処理し、続 いて好気性処理する場合においては、嫌気性処理と好気性処理とは、別々の反応 槽で行うことができる。かかる形態の生物処理装置を図 4に示す。即ち、オゾン処理 水を脱気又は有機物添加した被処理水を、まず嫌気性生物反応槽 6に導入して嫌 気性生物処理を行った後に、嫌気性生物反応槽からの排出水を次に好気性生物反 応槽 11に導入して空気 12を吹き込みながら好気性生物処理を行う。この場合、例え ば図 4に示す形態のように、嫌気性生物反応槽の下部に処理水を導入し、嫌気性生 物反応槽の上部より嫌気性処理水を取り出して好気性生物反応槽の下部に供給す ること力 Sできる。 [0030] In the present invention, in the case where the ozone-treated water is subjected to anaerobic treatment after deaeration or addition of an organic substance, and subsequently to aerobic treatment, the anaerobic treatment and the aerobic treatment are performed in separate reaction tanks. Can be. Fig. 4 shows such a biological treatment apparatus. That is, the water to be treated, which is obtained by degassing or adding organic matter to the ozonized water, is first introduced into the anaerobic biological reaction tank 6 to disturb the water. After performing the aerobic biological treatment, the effluent from the anaerobic biological reaction tank is then introduced into the aerobic biological reaction tank 11, and the aerobic biological treatment is performed while blowing the air 12. In this case, for example, as shown in Fig. 4, treated water is introduced into the lower part of the anaerobic biological reaction tank, anaerobic treated water is taken out from the upper part of the anaerobic biological reaction tank, and It can supply power to the lower part.
[0031] また、一つの反応槽を仕切り板によって区切って嫌気性反応部と好気性反応部と を形成した生物反応槽を構成し、これを用いて嫌気性生物処理及び好気性生物処 理を行うことができる。かかる形態の生物処理装置を図 5に示す。この場合、例えば、 図 5aに示すように、オゾン処理水を脱気又は有機物添加した被処理水を嫌気性反 応部 6の下部に導入し、嫌気性反応部 6の処理水が仕切り板 14を溢流するように仕 切り板を構成して、嫌気性反応部の上部の処理水を好気性反応部 11の上部に供給 して、空気供給管 15より空気を吹き込みながら好気性生物処理を行い、好気性反応 部 11の排出水を好気性反応部の下部より取り出すことができる。また、図 5bに示す ように、仕切り板 14の下部に液流通口 16を設けて、嫌気性反応部の処理水を槽下 部より好気性反応部に供給するように生物反応槽を構成することもできる。更には、 図 5cに示すように、嫌気性反応部 6と好気性反応部 11との間に曝気部を設け、嫌気 性反応部の下部より曝気部に処理水を導入し、曝気部内で空気供給管 15より空気 を吹き込んだ後に、仕切板の上端より好気性反応部 1 1に被処理水を導入するように 生物反応槽を構成することもできる。また、円状の反応槽を仕切板によって中心部と 円周部とに区切り、それぞれの部分を嫌気性反応部又は好気性反応部として使用す るように構成した生物反応槽を用いることもできる。  [0031] In addition, one reaction tank is divided by a partition plate to form a biological reaction tank having an anaerobic reaction section and an aerobic reaction section, and the anaerobic biological treatment and the aerobic biological treatment are performed using this. It can be carried out. FIG. 5 shows such a biological treatment apparatus. In this case, for example, as shown in FIG. 5a, the water to be treated, which is obtained by degassing or adding organic matter to the ozone-treated water, is introduced into a lower portion of the anaerobic reaction section 6, and the treated water of the anaerobic reaction section 6 is supplied to the partition plate 14. The effluent from the anaerobic reaction section is supplied to the upper section of the aerobic reaction section 11 and air is blown from the air supply pipe 15 to perform aerobic biological treatment. Then, the water discharged from the aerobic reaction section 11 can be taken out from the lower part of the aerobic reaction section. Further, as shown in FIG. 5b, a liquid flow port 16 is provided at the lower part of the partition plate 14, and the biological reaction tank is configured to supply the treated water of the anaerobic reaction section from the lower part of the tank to the aerobic reaction section. You can also. Furthermore, as shown in Fig. 5c, an aeration unit is provided between the anaerobic reaction unit 6 and the aerobic reaction unit 11, and treated water is introduced into the aeration unit from the lower part of the anaerobic reaction unit, and air inside the aeration unit is introduced. The biological reaction tank may be configured so that after the air is blown from the supply pipe 15, the water to be treated is introduced into the aerobic reaction section 11 from the upper end of the partition plate. In addition, a biological reaction tank in which a circular reaction tank is divided into a central part and a circumferential part by a partition plate and each part is used as an anaerobic reaction part or an aerobic reaction part can be used. .
[0032] なお、本発明方法において用いる嫌気性反応槽及び好気性反応槽に生物担体と して用いることのできる充填材としては、当該技術において公知の任意の材料を使用 すること力 Sできる。例えば、粒状活性炭、ハニカムチューブ、布帛材料、合成ゼォライ ト、人工軽量骨材、多孔質焼結材、石炭乾留物などを使用することができる。  [0032] As a filler that can be used as a biological carrier in the anaerobic reaction tank and the aerobic reaction tank used in the method of the present invention, any material known in the art can be used. For example, granular activated carbon, a honeycomb tube, a fabric material, a synthetic zeolite, an artificial lightweight aggregate, a porous sintered material, a coal carbonized product, and the like can be used.
[0033] 更に、本発明の他の態様によれば、一つの反応槽の上下に嫌気性反応部と好気 性反応部とを設けた生物処理槽、即ち、嫌気性反応部と好気性反応部(生物学的酸 化反応部)とを有する生物処理槽を使用することができる。かかる態様の生物処理槽 の構成を図 6に示す。 Further, according to another embodiment of the present invention, a biological treatment tank provided with an anaerobic reaction section and an aerobic reaction section above and below one reaction tank, that is, an anaerobic reaction section and an aerobic reaction section (A biological oxidation reaction section) can be used. Biological treatment tank of such an embodiment Figure 6 shows the configuration.
[0034] 図 6において、オゾン処理された臭素酸イオンが含まれる被処理液は、流入口 31 力 原水分配機構兼逆流洗浄機構 32を経由して、均等な上昇流を形成しながら充 填材層 A (嫌気性反応部)に至る。充填材層 Aの充填材 aは、多孔質でかつ逆流洗 浄時に膨張層を形成するものであってはならない。数十 μ g/Lという極希薄濃度の臭 素酸イオンを生物学的に還元するためには、通性嫌気性菌が生息し易い環境でな ければならない。したがって、充填材 aは、通性嫌気性菌の大きさがサブミクロンォー ダであるから、その数倍の孔を有するマクロポアの発達した物が良ぐさらに、後述す るように通気管 33が配備されるので、逆流洗浄時に膨張層を形成しないことが好まし レ、。逆流洗浄時に膨張層を形成すると、通気管 33によりブリッジングが生じ、逆流洗 浄後に充填材層 Aに空隙 (空間、隙間)が生じ、適正な層を形成できないことがしば しば生じる。これが著しい場合には、処理を継続している最中に空隙がつぶれること 力 Sある。このようになると、充填材層 Aと、後に説明する充填材層 Bとが混合するため 、適正な生物処理ができなくなる。したがって、逆流洗浄によって充填材層 Aは膨張 しないことが望ましい。  In FIG. 6, the liquid to be treated containing the ozone-treated bromate ions passes through the inlet 31, a raw water distribution mechanism and a backwashing mechanism 32, and forms a uniform ascending flow to fill the material. It reaches layer A (anaerobic reaction zone). The filler a in the filler layer A must be porous and not form an intumescent layer during backwashing. In order to biologically reduce bromate ions at extremely low concentrations of tens of μg / L, the environment must be easy for facultative anaerobic bacteria to inhabit. Therefore, since the size of the facultative anaerobic bacterium is of the order of submicron, a material with macropores having pores several times larger than that of the filler a is good, and a ventilation pipe 33 is provided as described later. Therefore, it is preferable not to form an expansion layer during backwashing. If the expansion layer is formed at the time of backwashing, bridging occurs due to the ventilation pipe 33, and voids (spaces and gaps) are generated in the filler layer A after the backwashing, and it often occurs that an appropriate layer cannot be formed. If this is significant, the gap may be crushed while the treatment is continuing. In this case, since the filler layer A and the filler layer B described later are mixed, proper biological treatment cannot be performed. Therefore, it is desirable that the filler layer A does not expand due to backwashing.
[0035] 図 6に示す生物反応槽において用いられる通気管 33としては、管状部材に多数の 孔を形成した多孔管を用いることが好ましい。多孔管に形成する通気口径は、 2mm 程度が適切である。 2mm以下であると微生物膜による汚染により閉塞する可能性が ある。さらに、通気の目的は、雰囲気中の溶存酸素をゼロ力 数 mgん、好ましくは 5 mg/L以上にするだけでよぐ下水や排水処理で用いる散気管に比べて通気量 (散気 量)は極端に少ない。一般に、好気性ろ床法 (生物膜ろ過法)の下水や排水処理で 供給する散気量は、水処理工学第 2版 (井出哲夫編著、技報堂出版、 1976、 p348) によれば、処理水量の 2倍から 4倍である。本発明の場合では、処理水量の 1倍以下 、さらに好ましくは 0. 5倍以下でよぐその結果、均等な分配を考慮すると通気孔径 は小さければ小さいほど良レ、。つまり、閉塞を防止するための最小径である 2mm程度 が妥当でなる。通気口径が 2mmであれば、充填材 aの粒径は 2mm以上、望ましくは 3 mm以上、さらに望ましくは 4mm以上でなければ、通気口が充填材 aで閉塞することに なるので好ましくなレ、。加えて、充填材の粒径が大きすぎると、生物膜付着面積が少 なくなり、生物処理効果が低下する。経験的には、充填材 aの粒径は 15mm以下、さ らには 10mm以下が望ましい。 As the vent pipe 33 used in the biological reaction tank shown in FIG. 6, it is preferable to use a porous pipe in which a tubular member has a large number of holes. It is appropriate that the diameter of the vent formed in the perforated tube is about 2 mm. If it is less than 2 mm, it may be blocked due to microbial membrane contamination. Furthermore, the purpose of ventilation is to reduce the amount of dissolved oxygen in the atmosphere to zero mg / L, preferably 5 mg / L or more. Is extremely small. In general, the amount of diffused air supplied by sewage and wastewater treatment by the aerobic filter method (biofilm filtration method) is based on the volume of treated water according to the second edition of Water Treatment Engineering (ed. 2 to 4 times of In the case of the present invention, the volume of the treated water is preferably 1 time or less, more preferably 0.5 time or less. As a result, the smaller the vent hole diameter is, the better the uniform distribution is. In other words, a minimum diameter of about 2 mm to prevent blockage is appropriate. If the diameter of the vent is 2 mm, the particle size of the filler a is not less than 2 mm, preferably not less than 3 mm, and more preferably not more than 4 mm. . In addition, if the particle size of the filler is too large, the biofilm attachment area will be small. And the biological treatment effect is reduced. Empirically, it is desirable that the particle size of the filler a be 15 mm or less, and more preferably 10 mm or less.
[0036] このような条件を満たす充填材 aの材質は、気相用造粒活性炭、合成ゼォライト、人 ェ軽量骨材、多孔質焼結材、石炭乾留物などいずれでもよぐとりわけ、特開平 1 1一 197682号公報に記載されている環境浄化用造粒物は、原料が廃铸物砂と活性炭 の焼成物であることから極めて有効である。  [0036] The material of the filler a that satisfies these conditions may be any of granulated activated carbon for gas phase, synthetic zeolite, artificial lightweight aggregate, porous sintered material, and coal distillate. The environmental purification granules described in JP-A-1977682 are extremely effective because the raw material is a fired product of waste sand and activated carbon.
[0037] 図 6に示す生物反応槽においては、充填材層 Aの上方部に、通気管 33が配備さ れている。通気管 33の通気口から空気が排出され、酸素を供給する。この通気管は 単純な構造が望ましい。微細気泡を発生させる散気装置が昨今開発されているが、 図 6に示す生物反応槽において用いるのにはあまり適切ではなレ、。図 6に示す生物 反応槽におレ、ては、充填材層の水の流れを妨害しなレ、で且つ耐久性の高レ、手段と して、通気口を有する多孔管がもっとも望ましい。通気管の配設位置は、充填材層 A の上端付近、具体的には充填材層 Aの上端から 100mm以下、望ましくは 200mm程 度が望ましい。勿論、この値は一具体例であり、生物反応槽の大きさや、充填材の粒 径、充填密度などによって変動する。  In the biological reaction tank shown in FIG. 6, a vent pipe 33 is provided above the filler layer A. Air is exhausted from the vent of the vent pipe 33 to supply oxygen. This vent pipe should have a simple structure. A diffuser that generates microbubbles has recently been developed, but is not very suitable for use in biological reactors, as shown in Figure 6. In the biological reaction tank shown in FIG. 6, a porous tube having a vent hole is most desirable as a means for preventing the flow of water in the filler layer and having high durability. The location of the ventilation pipe is preferably near the upper end of the filler layer A, specifically 100 mm or less, preferably about 200 mm from the upper end of the filler layer A. Of course, this value is a specific example, and varies depending on the size of the biological reaction tank, the particle size of the filler, the packing density, and the like.
[0038] この理由として 2点あげられる。第 1には、通気管を充填材層 Aの上端若しくは充填 材層 Aと充填材層 Bとの境界に配設したのでは、充填材層 Bを形成する充填材 bが通 気口へ侵入することが懸念される。また、通気管を充填材層 Aの下方部に配設した のでは、充填材層 Aの無酸素状態が得られにくい。第 2には、通気管の配設位置付 近がすぐに好気状態になるのではなぐ通気口から均等に出た空気は、充填材層 A の中で充填材 aと接触を繰り返すことによって分割される。したがって、通気管配設位 置から徐々に上昇するにしたがって酸素溶解効率が上がっていく。水温 23°Cのとき に小型実験機で確認したところ、通気管位置をゼロ点として被処理水中の DO (溶存 酸素)濃度を測定したところ、ゼロ点では 0. Omg/ + 20mm点では 0. 0 0. 2 mg/L、 + 50mm点では 0— 0. 4mg/L、 + 100mm時点では 0. 3mg/L 1. 3mg/L、 + 150mm点では 1. lmg/L— 1. 6mg/L、 + 200mm時点では 2. 3mg/L 4. 2mg/L 、 + 300mm点では 3. 8mg/L 7. lmg/Lであった。したがって、通気管配設位置より 100mm上方までは微好気状態であり、 200mm時点まで来ると、はっきりした好気状 態になることを実験的に確認した。 [0038] There are two reasons for this. First, if the ventilation pipe is arranged at the upper end of the filler layer A or at the boundary between the filler layer A and the filler layer B, the filler b forming the filler layer B enters the ventilation port. It is feared that. Further, if the ventilation pipe is provided below the filler layer A, it is difficult to obtain an oxygen-free state of the filler layer A. Secondly, the air flowing out of the air vent, which does not immediately become an aerobic state near the position of the ventilation pipe, is repeatedly contacted with the filler a in the filler layer A. Divided. Therefore, the oxygen dissolving efficiency increases as the temperature rises gradually from the vent pipe arrangement position. When the temperature of the water was 23 ° C, the concentration of DO (dissolved oxygen) in the water to be treated was measured with the vent pipe position as the zero point. 0 0.2 mg / L, 0-0.4mg / L at + 50mm point, 0.3mg / L 1.3mg / L at + 100mm point, 1.lmg / L-1.6mg / L at + 150mm point At +200 mm, it was 2.3 mg / L and 4.2 mg / L, and at +300 mm, it was 3.8 mg / L and 7.1 mg / L. Therefore, it is slightly aerobic up to 100 mm above the position of the ventilation pipe, and it becomes clear aerobic at 200 mm. It was confirmed experimentally that it was in a state.
[0039] また、通気管の水平断面形状は、例えば、中心に配置された主管の両側に枝管が 複数本接続されたような形状とすることができる。  [0039] The horizontal cross-sectional shape of the ventilation pipe can be, for example, a shape in which a plurality of branch pipes are connected to both sides of a main pipe arranged at the center.
[0040] このように形成された充填材層 Aでの臭素酸イオン除去機構は、次の通りである。 [0040] The bromate ion removal mechanism in the filler layer A thus formed is as follows.
微生物の代謝作用から生じる水素によって、臭素酸イオンが還元されて臭素イオン になる。  Hydrogen resulting from the metabolism of microorganisms reduces bromate ions to bromine ions.
[0041] [化 3] [0041]
B r〇3 - + 2 (H 2 ) 微生物代謝— B r - + 2 O H - + H 2 0 この方法は、特別な触媒や薬品を使用せず、 自然界の浄化作用に基づいた還元 作用に基づレ、てレ、るため、安全性の面でも優れてレ、る。 B r〇 3- + 2 (H 2 ) Microbial metabolism—B r-+ 2 OH-+ H 20 This method is based on the reduction action based on the natural purification action without using special catalysts or chemicals. Therefore, it is excellent in terms of safety.
[0042] 次に、充填材層 Aで嫌気性生物処理を受けた被処理液は、充填材層 Bに至り、空 気管 33からの通気によって溶存酸素が十分にある状態で好気性生物処理が行われ る。充填材層 Bは、充填材 bによって構成される。充填材 bは、逆流洗浄時に膨張層 を形成し、かつ多孔質材であることが好ましい。逆洗時の膨張率は 5から 40%、望ま しくは 10から 30%が良ぐこの程度膨張すると、充填材同士が適度に衝突し、充填 材表面に付着した過剰な生物膜や、充填材の間に補足した浮遊物質を、適切に排 出すること力 Sできる。 Next, the liquid to be treated which has undergone the anaerobic biological treatment in the filler layer A reaches the filler layer B, and is subjected to the aerobic biological treatment in a state where the dissolved oxygen is sufficient by aeration from the air pipe 33. It is done. The filler layer B is composed of the filler b. It is preferable that the filler b forms a swelling layer during backwashing and is a porous material. The expansion rate during backwashing is 5 to 40%, preferably 10 to 30% .When this degree of expansion occurs, the fillers will collide with each other appropriately, causing excess biofilm adhering to the filler surface, It is capable of properly discharging suspended solids captured during the period.
[0043] ところで、一般に、好気状態の微生物によって構成された生物膜は粘着性が高ぐ 上記のような衝突を繰り返す逆流洗浄が不可欠であるが、嫌気状態で且つ浄水処理 工程水のように、有機物質と被還元物質が数 10 μ g/Lレベルと極微量である場合に は、充填材同士の衝突による逆流洗浄は、生物膜を過剰に剥離してしまうため、力、え つて性能を低下させる原因になり、好ましくない。あくまで充填材層 Aは、逆流洗浄に おいても膨張せず、充填材 aの間をすり抜ける水流によって、過剰な生物膜を排出す る方が適切である。ただし、水温が高く生物活性が高い時には、たとえば月に一度程 度、水洗速度を高め、もしくは空気洗浄を併用するなどして、充填材 aを膨張させな い状態でわずかに移動させても良い。理想的には、充填材 aの各個の位置は変わら ないで、向きが変わる程度が良ぐこの程度で十分に、余剰生物膜の排除と微生物 の活性化が図れる。 By the way, in general, a biofilm composed of aerobic microorganisms has high adhesiveness. It is indispensable to carry out backwashing which repeats the above-mentioned collisions. However, when the organic substance and the substance to be reduced are very small, at the level of several tens of μg / L, backwashing by collision between the packing materials will excessively exfoliate the biofilm. , Which is not preferable. The packing layer A does not expand even in the backwashing, and it is more appropriate to discharge excess biofilm by the water flowing through the packing layer a. However, when the water temperature is high and the biological activity is high, the filling material a may be slightly moved without expanding, for example, by increasing the washing speed once a month or using air washing together, for example, once a month. . Ideally, the position of each of the fillers a does not change, but the direction of change is good. Can be activated.
[0044] 充填材 bの代表例として、高度浄水処理システムで採用されている生物活性炭(水 処理用活性炭)と同様な活性炭をあげることができるが、先に示した要件を満たすも のであれば、合成ゼォライト、人工軽量骨材、多孔質焼結材、石炭乾留物など何でも よぐ特に規定するものではない。  [0044] As a representative example of the filler b, activated carbon similar to biological activated carbon (activated carbon for water treatment) used in an advanced water purification treatment system can be given, provided that the above-mentioned requirements are satisfied. , Synthetic zeolite, artificial lightweight aggregate, porous sintered material, coal distillate, etc. are not specified.
[0045] 逆流洗浄速度は、先ず、充填材 bによって定める。充填材 bとして高度浄水処理シ ステムにおける活性炭を採用した場合では、水洗速度 0. 3から 0. 8m/min程度であ り、他の充填材の場合でも、最大で 1. Om/min程度である。  [0045] The backwashing speed is first determined by the filler b. When activated carbon in an advanced water treatment system is used as the filler b, the washing speed is about 0.3 to 0.8 m / min, and even with other fillers, the maximum is about 1.Om/min. is there.
[0046] 次に充填材 aの選定について説明する。充填材 bとして高度浄水処理システムにお ける活性炭を採用した場合では、水洗速度が 0. 3から 0. 8m/min程度となり、充填材 aは、この水洗速度で膨張しないものであることが好ましい。更に先に述べた粒径と多 孔性を加味すると、すでに示したように気相用造粒活性炭、合成ゼォライト、人工軽 量骨材、多孔質焼結材、石炭乾留物などが充填材 aとして好ましい。  Next, selection of the filler a will be described. When activated carbon in an advanced water purification system is used as the filler b, the washing speed is about 0.3 to 0.8 m / min, and it is preferable that the filler a does not expand at this washing rate. . In addition, taking into account the particle size and porosity described above, the granulated activated carbon for gas phase, synthetic zeolite, artificial light aggregate, porous sintered material, coal dry distillation, etc. Is preferred.
[0047] 充填材層 Bにおいては、通気管 33からの通気によって好気状態が得られ、好気性 生物処理作用によって残存有機物質や異臭味原因物質が除去される。もちろん、充 填材 bとして活性炭を用いれば、生物活性炭作用が生じる。このようにして浄化され た被処理液は、トラフ 34を経由して流出口 35から流出する。  [0047] In the filler layer B, an aerobic state is obtained by ventilation from the ventilation pipe 33, and the residual organic substances and the off-flavor-causing substances are removed by the aerobic biological treatment. Of course, if activated carbon is used as the filler b, a biological activated carbon effect will occur. The liquid to be treated thus purified flows out of the outlet 35 via the trough 34.
[0048] 処理をある程度の時間、具体的には半日、 1日もしくは 2日継続すると、充填材層、 とりわけ充填材層 Bにおいて、生物膜の過剰分や補足された浮遊物質によってろ過 抵抗が増してくる。このような場合には逆流洗浄を行うことが好ましい。逆流洗浄の方 法は通常のろ過装置と大きく変わらない。先ず、生物反応槽の中間排水口 36を開け 、槽内水位の低下を図る。この水位低下は省略することができる力 充填材 bの流出 を防止する上から実施することが望ましい。次に、逆流洗浄水を逆流洗浄口 37から 入れ、充填材 aを膨張させないで且つ充填材 bを膨張させた状態で洗浄する。逆流 洗浄口 37は、被処理液流入口 31と兼用することもできる。また、定常的には使用し ないが、空気洗浄が必要となる場合に備えて、逆流洗浄機構のなかに空気洗浄を組 み込んでも良い。逆流洗浄水は、トラフ 34を通って流出口 35から系外に排出される [0049] 逆流洗浄排水に濁りが少なくなつた段階、具体的には 10分から 30分程度の時間 が経過した後で、逆流洗浄を停止する。生物処理の再開に際しては、そのまま処理 を開始しても良いし、中間排水口 36による水位低下を図ってもよぐさらには再開後 の生物処理水を、一定時間循環するなどの操作を施してもょレ、。 [0048] If the treatment is continued for a certain period of time, specifically, half a day, one or two days, the filtration resistance increases in the packing layer, especially in the packing layer B, due to excess biofilm and suspended suspended substances. Come. In such a case, backwashing is preferably performed. The method of backwashing is not much different from a normal filtration device. First, the intermediate drain port 36 of the biological reaction tank is opened to lower the water level in the tank. This lowering of the water level can be omitted. It is desirable to prevent the flow of the filler b. Next, backwash water is introduced from the backwash port 37, and washing is performed without expanding the filler a and expanding the filler b. The backflow cleaning port 37 can also be used as the liquid inlet 31 to be treated. Although not used regularly, air cleaning may be incorporated into the backwashing mechanism in case air cleaning is required. Backwash water is discharged out of the system through an outlet 35 through a trough 34 [0049] The backwashing is stopped after the turbidity of the backwashing wastewater has been reduced, specifically after a lapse of about 10 to 30 minutes. When resuming biological treatment, the treatment may be started as it is, the water level may be lowered by the intermediate drain port 36, or the biological treated water after resumption may be circulated for a certain period of time. Moore.
[0050] 図 6に示す本発明の一態様に係る生物処理fを用いれば、充填材層 Aで生物学 的な還元作用を施し、また、充填材層 Aの上方部に配備した通気管 33からの通気に よって好気状態を維持できる充填材層 Bにおいて、生物学的な酸化作用(好気性処 理)を施すことによって、トリハロメタン前駆物質やジォスミン、 2—MIBなどの臭気原 因物質を処理すると共に、臭素酸イオンに懸念のない安全で、おいしい飲料水を安 心して供給できる。  When the biological treatment f according to one embodiment of the present invention shown in FIG. 6 is used, the filler layer A performs a biological reducing action, and the ventilation pipe 33 disposed above the filler layer A 33 Biological oxidizing action (aerobic treatment) in the filler layer B, which can maintain an aerobic state by aeration from the air, reduces odor-causing substances such as trihalomethane precursors, diosmin, and 2-MIB. Along with the treatment, safe and delicious drinking water without worrying about the bromate ion can be supplied.
[0051] なお、本発明において、嫌気性生物処理とは、所謂通性嫌気性生物処理と絶対嫌 気性生物処理の両方を包含する。実際の運転においては、嫌気性処理槽内では通 性嫌気性細菌と絶対嫌気性細菌の両方が混在して作用する状態になっていると推 測すること力 Sできる。特に上記に説明したような一つの生物反応槽内に嫌気性反応 部と好気性反応部とを形成した反応装置を用いてオゾン処理された被処理水の生物 処理を行う場合には、嫌気性反応部においては、被処理水の導入部分では好気性 細菌の作用も未だ存在してレ、るが、中間部分では通性嫌気性細菌の作用が支配的 となり、嫌気性反応部の後半部分では絶対嫌気性細菌の作用が支配的となるような 条件で生物反応槽を運転することがより好ましいと考えられる。  [0051] In the present invention, the anaerobic biological treatment includes both so-called facultative anaerobic biological treatment and absolute anaerobic biological treatment. In actual operation, it can be estimated that both facultative anaerobic bacteria and obligate anaerobic bacteria are in a mixed state in the anaerobic treatment tank. In particular, when performing biological treatment of ozone-treated water using a reactor in which an anaerobic reaction section and an aerobic reaction section are formed in one biological reaction tank as described above, In the reaction section, the action of aerobic bacteria still exists in the introduction part of the water to be treated, but in the middle part the action of facultative anaerobic bacteria is dominant, and in the latter part of the anaerobic reaction section. It is considered more preferable to operate the biological reactor under conditions where the action of anaerobic bacteria is dominant.
[0052] なお、本発明によって嫌気性処理及び場合によっては更に好気性処理を行った後 に生物処理槽から排出される処理水には、生物処理槽での生物担体に付着してい る後生動物(ミジンコ、ヮムシなど)や、担体が剥離'脱落して生成する微粒子、更に は生物担体に付着してレ、る嫌気性微生物及び好気性微生物自体が混入する場合 力ある。これらの夾雑物を排除するために、本発明によって得られる処理水を更にろ 過処理することができる。  [0052] The treated water discharged from the biological treatment tank after performing the anaerobic treatment and possibly the aerobic treatment according to the present invention includes metazoan animals adhering to the biological carrier in the biological treatment tank. (Daphnia magna, Plumbushi, etc.), fine particles generated by peeling-off of the carrier, and anaerobic and aerobic microorganisms adhering to the biological carrier may be mixed. To remove these contaminants, the treated water obtained by the present invention can be further filtered.
[0053] 本発明の各種形態は以下の通りである。  [0053] Various embodiments of the present invention are as follows.
[0054] 1.被処理水をオゾン処理した後、嫌気性生物処理を行うことを特徴とする浄水処 理方法。 [0055] 2.オゾン処理した被処理水に脱気処理を行うか、及び/又は、オゾン処理した被 処理水に有機物を添加した後に、嫌気性生物処理を行う上記第 1項に記載の浄水 処理方法。 [0054] 1. A water purification method characterized by performing anaerobic biological treatment after ozone treatment of the water to be treated. [0055] 2. The water purification according to the above-mentioned item 1, wherein the ozonized water to be treated is degassed and / or an anaerobic biological treatment is carried out after adding an organic substance to the ozone treated water. Processing method.
[0056] 3.脱気処理によって被処理水中の溶存酸素濃度を 2mg/L以下にする上記第 2項 に記載の浄水処理方法。  3. The water purification treatment method according to the above item 2, wherein the concentration of dissolved oxygen in the water to be treated is reduced to 2 mg / L or less by deaeration treatment.
[0057] 4.被処理水の脱気処理を、真空脱気方法、窒素ガス撹拌方法又は膜脱気方法の いずれかの方法によって行う上記第 2項又は第 3項に記載の方法。 [0057] 4. The method according to the above item 2 or 3, wherein the deaeration of the water to be treated is performed by any one of a vacuum deaeration method, a nitrogen gas stirring method and a membrane deaeration method.
[0058] 5.被処理水に有機物としてエタノール又は酢酸を加える上記第 2項に記載の浄水 処理方法。 [0058] 5. The water purification method according to the above item 2, wherein ethanol or acetic acid is added to the water to be treated as an organic substance.
[0059] 6.嫌気性生物処理の後段処理として、被処理水をろ過処理する上記第 1項一第 5 項のレ、ずれかに記載の浄水処理方法。  [0059] 6. The method for water purification according to any one of Items 1 to 5 above, wherein the water to be treated is subjected to a filtration treatment as a post-treatment of the anaerobic organism treatment.
[0060] 7.被処理水をオゾン処理した後、嫌気性生物処理し、続レ、て好気性生物処理する ことを特徴とする浄水処理方法。 [0060] 7. A water purification treatment method comprising subjecting treated water to ozone treatment, anaerobic biological treatment, and subsequent aerobic biological treatment.
[0061] 8.好気性生物処理の後段処理として、被処理水をろ過処理する上記第 7項に記 載の浄水処理方法。 [0061] 8. The water purification method according to the above item 7, wherein the water to be treated is subjected to a filtration treatment as a post-treatment of the aerobic biological treatment.
[0062] 9.被処理水として、原水を凝集沈殿処理及びろ過処理にかけた処理水を用いる 上記第 1項一第 8項のいずれかに記載の浄水処理方法。  [0062] 9. The water purification treatment method according to any one of the above items 1 to 8, using treated water obtained by subjecting raw water to coagulation sedimentation treatment and filtration treatment as the water to be treated.
[0063] 10.原水として、河川水、湖沼水又は地下水を用いる上記第 9項に記載の浄水処 理方法。 [0063] 10. The water purification treatment method according to the above item 9, wherein river water, lake water, or groundwater is used as raw water.
[0064] 11.被処理水をオゾン処理するオゾン処理装置;オゾン処理された被処理水を嫌 気性生物処理する嫌気性生物処理装置;を具備することを特徴とする浄水処理装置  [0064] 11. A water purification treatment device comprising: an ozone treatment device for treating ozonated water; an anaerobic treatment device for anaerobic treatment of ozone-treated treatment water.
[0065] 12.オゾン処理装置でオゾン処理された被処理水を脱気処理する脱気処理装置、 及び/又は、オゾン処理された被処理水に有機物を添加する有機物添加装置を更 に具備する上記第 11項に記載の浄水処理装置。 12. The apparatus further comprises a degassing apparatus for degassing the water to be treated ozone-treated by the ozone treatment apparatus and / or an organic substance adding apparatus for adding an organic substance to the water to be treated ozone-treated. Item 12. The water purification device according to Item 11.
[0066] 13.脱気処理装置が、真空脱気装置、窒素ガス撹拌装置又は膜脱気装置のいず れかである上記第 12項に記載の浄水処理装置。  13. The water purification apparatus according to the above item 12, wherein the deaeration apparatus is any one of a vacuum deaerator, a nitrogen gas stirring apparatus and a membrane deaerator.
[0067] 14.嫌気性生物処理装置の後段に、更に被処理水をろ過処理するろ過装置を具 備する上記第 11項一第 13項のいずれかに記載の浄水処理装置。 [0067] 14. A filtration device is provided downstream of the anaerobic biological treatment device for filtering the water to be treated. 14. The water purification apparatus according to any one of the above paragraphs 11 to 13.
[0068] 15.被処理水をオゾン処理するオゾン処理装置;オゾン処理された被処理水を嫌 気性生物処理する嫌気性生物処理装置;嫌気性処理された被処理水を好気性生物 処理する好気性生物処理装置;を具備することを特徴とする浄水処理装置。 [0068] 15. An ozone treatment apparatus for ozonating treated water; an anaerobic biological treatment apparatus for treating an anaerobic biological treatment of ozone-treated treated water; aerobic biological treatment for anaerobic treated water to be treated A water purification treatment device comprising: an aerobic biological treatment device.
[0069] 16.嫌気性生物処理装置と好気性生物処理装置とが別々の反応槽によって構成 され、嫌気性生物処理装置からの排出水を好気性生物処理装置に供給する配管が 備えられている上記第 15項に記載の装置。 [0069] 16. The anaerobic biological treatment device and the aerobic biological treatment device are constituted by separate reaction tanks, and a pipe for supplying the effluent from the anaerobic biological treatment device to the aerobic biological treatment device is provided. Item 16. The device according to Item 15, above.
[0070] 17.一つの反応槽が仕切板によって二つに区切られていて、一方が嫌気性反応 部、もう一方が好気性反応部として機能する生物処理槽を嫌気性生物処理装置及 び好気性生物処理装置として用いる上記第 15項に記載の装置。 [0070] 17. One reaction tank is divided into two by a partition plate. One is an anaerobic reaction section, and the other is a biological treatment tank functioning as an aerobic reaction section. Item 16. The device according to Item 15, which is used as an aerobic biological treatment device.
[0071] 18.嫌気反応部と好気反応部とを備えた反応槽であって、槽下部に原水流入口を 有し、槽上部に処理水流出口を有しており、原水流入口の上部に、上下 2層で連続 形成される充填材層が形成されており、下層の充填材層の上端付近に通気管が配 備されていることを特徴とする生物処理槽を嫌気性生物処理装置及び好気性生物 処理装置として用いる上記第 15項に記載の装置。 18. A reaction tank provided with an anaerobic reaction section and an aerobic reaction section, having a raw water inlet at a lower part of the tank, a treated water outlet at an upper part of the tank, and an upper part of the raw water inlet. The anaerobic biological treatment apparatus is characterized by a filler layer that is formed continuously in two layers, upper and lower, and a ventilation pipe is provided near the upper end of the lower filler layer. 16. The apparatus according to the above item 15, which is used as an aerobic biological treatment apparatus.
[0072] 19.好気性生物処理装置の後段に、更に被処理水をろ過処理するろ過装置を具 備する上記第 15項一第 18項のいずれかに記載の浄水処理装置。 [0072] 19. The water purification apparatus according to any one of the above-mentioned items 15 to 18, further comprising a filtration device downstream of the aerobic biological treatment device for filtering the water to be treated.
[0073] 20.オゾン処理装置の前段として、原水を凝集沈殿処理する凝集沈殿装置;及び 凝集沈殿処理された被処理水をろ過処理するろ過装置;を更に具備する上記第 11 項一第 19項のいずれかに記載の浄水処理装置。 [0073] 20. As a preceding stage of the ozone treatment apparatus, the above item 11 to item 19, further comprising: a coagulation sedimentation device for coagulating sedimentation of raw water; and a filtration device for filtering the water to be treated after coagulation sedimentation. A water purification treatment device according to any one of the above.
産業上の利用の可能性  Industrial potential
[0074] 本発明によれば、従来の浄水高度処理システムで必然的に生成する発がん性物 質である臭素酸を WHOガイドラインの 10 μ g/L以下を十分に満足することができる 飲料水を得ることができ、さらに、原水の水質に応じた最も経済的な方法を選択する こと力 Sできる。 [0074] According to the present invention, drinking water that can sufficiently satisfy the carcinogenic substance, bromic acid, which is inevitably generated in the conventional advanced water purification system for water, to 10 µg / L or less according to the WHO guidelines. And the ability to select the most economical method depending on the quality of the raw water.
実施例  Example
[0075] 以下、実施例により本発明の各種態様を具体的に説明するが、以下の記載は本発 明を制限するものではない。 実施例 1 Hereinafter, various embodiments of the present invention will be described specifically with reference to Examples, but the following description does not limit the present invention. Example 1
原水として、実施例 1 (a)の河川水を除いていずれも富栄養化の進行した湖水を用 いた。比較例においては、原水に対して、従来の浄水高度処理システムである凝集 沈殿処理、砂ろ過処理、オゾン処理、生物活性炭処理をこの順番で行った。凝集沈 殿処理は、寸法が 500mm X 3200mm X I 200mm高さの角型凝集沈殿装置で行レ、、 砂ろ過処理は、寸法が 160mm径 X 3000mm高さの筒型塩ビ製カラムに、濾材として アンスラ(1. 2mm径)、珪砂(0. 6mm径)及び支持砂利をそれぞれ 200mm、 400mm 、 300mmの高さに充填した砂濾過装置で行レ、、オゾン処理は、寸法が 160mm径 X 3 000mm高さの筒型塩ビ製カラムのオゾン散気式オゾン処理装置で行い、生物活性 炭処理では、水処理用活性炭(エバダイヤ LG - 20S、径 1. 2mm,荏原製作所製)を 充填した処理槽(寸法が 160mm径 X 3000mm高さの筒型塩ビ製カラム)に被処理水 を導入した。  Except for the river water of Example 1 (a), lake water that had undergone eutrophication was used as raw water. In the comparative example, raw water was subjected to coagulation settling treatment, sand filtration treatment, ozone treatment, and biological activated carbon treatment, which are conventional treatment systems for water purification, in this order. The coagulation and sedimentation treatment is performed using a square coagulation sedimentation apparatus with dimensions of 500 mm x 3200 mm and XI 200 mm height.The sand filtration treatment is performed on a cylindrical PVC column with dimensions of 160 mm diameter x 3000 mm height, using an anthra as a filter material. (1.2 mm diameter), silica sand (0.6 mm diameter) and sand gravel filled with sand gravel to 200 mm, 400 mm, and 300 mm height respectively, and ozone treatment measures 160 mm diameter x 3000 mm height. In the biological activated carbon treatment, the treatment tank filled with activated carbon for water treatment (Evadia LG-20S, diameter 1.2 mm, manufactured by EBARA CORPORATION) is used for the biological activated carbon treatment. However, water to be treated was introduced into a 160 mm diameter X 3000 mm height cylindrical PVC column).
[0076] 実施例 1 (a)では、上記の凝集沈殿処理 -砂ろ過処理 -オゾン処理を行った被処理 水に、嫌気性処理を行った。また、実施例 1 (b)、(c)では、嫌気性処理を行った被処 理水に対して更に好気性処理工程を行った。実施例 1 (a) , (b) , (c)では、オゾン処 理処理水を、膜脱気装置を用いて脱気処理を行い、表 1に示す溶存酸素条件にして 嫌気性生物処理を行った。実施例 1 (d)では、脱気装置を用いずに、オゾン処理水 に、有機物質としてエタノール 10mg/Lをカ卩えた後に嫌気性処理を行った。  In Example 1 (a), anaerobic treatment was performed on the water to be treated which had been subjected to the above-mentioned coagulation / sedimentation treatment, sand filtration treatment, and ozone treatment. In Examples 1 (b) and 1 (c), the anaerobic treated water was further subjected to an aerobic treatment step. In Examples 1 (a), (b), and (c), the ozone-treated water was deaerated using a membrane deaerator, and the anaerobic biological treatment was performed under the dissolved oxygen conditions shown in Table 1. went. In Example 1 (d), anaerobic treatment was performed after adding 10 mg / L of ethanol as an organic substance to ozone-treated water without using a deaerator.
[0077] 嫌気性生物処理では、充填材として平均粒径 2. 0mmの人工軽量骨材 (荏原製作 所製、商品名エバサイト L412)を充填した反応槽に被処理水を供給した。好気性生 物処理においては、実施例 1 (b)では、充填材として比較例と同じ活性炭を充填した 反応槽に嫌気性生物処理槽の排出水を導入し、実施例 1 (c)では、充填材として平 均粒径 1. 1mmの人工軽量骨材 (荏原製作所製、商品名エバサイト)を充填した反応 槽に嫌気性生物処理槽の排出水を導入し、実施例 1 (d)では、充填材として活性炭( 荏原製作所製、エバダイヤ LG - 20S、 1. 2mm径)を充填した反応槽に嫌気性生物 処理槽の排出水を導入した。嫌気性処理槽の空塔速度(SV)及び好気性処理槽の 空塔速度は、全て 1 Oh— 1とした。 In the anaerobic biological treatment, water to be treated was supplied to a reaction tank filled with artificial lightweight aggregate having an average particle diameter of 2.0 mm (Ebarasite L412, trade name, manufactured by Ebara Corporation) as a filler. In the aerobic biological treatment, in Example 1 (b), the effluent of the anaerobic biological treatment tank was introduced into a reaction tank filled with the same activated carbon as the comparative example as a filler, and in Example 1 (c), The effluent from the anaerobic biological treatment tank was introduced into the reaction tank filled with artificial lightweight aggregate (Ebarasite, trade name, Ebara Corporation) having an average particle size of 1.1 mm as the filler. The effluent from the anaerobic biological treatment tank was introduced into a reaction tank filled with activated carbon (Ebara Corporation, Evadia LG-20S, 1.2 mm diameter) as a filler. The superficial velocity (SV) of the anaerobic treatment tank and the superficial velocity of the aerobic treatment tank were all 1 Oh- 1 .
[0078] 以上の実験の結果を表 1にまとめる。 [0079] [表 1] [0078] Table 1 summarizes the results of the above experiments. [0079] [Table 1]
Figure imgf000019_0001
比較例では、トリハロメタン生成能 (THM— FP)や 2— MIBの除去能力は高いが、 臭素酸が 35 a g/L残り、 WHOの基準 10 μ g/L以下を満足しな力、つた。
Figure imgf000019_0001
In the comparative example, the ability to remove trihalomethane (THM-FP) and the ability to remove 2-MIB were high, but bromic acid remained at 35 ag / L, and the power did not satisfy the WHO standard of 10 μg / L or less.
[0080] 実施例 1 (a)で用いた原水はダム湖を源流に持つ河川水であり、トリハロメタン生成 能は低いが、異臭味成分が比較的高濃度に存在する原水であった。表 1に示すよう に、オゾン酸化工程で 2— MIBは十分に分解されていた。臭素酸はオゾン酸化工程 で約 40 μ g/Lまで増加していた力 嫌気性生物処理工程で 0. 9 μ g/Lまで低下した [0080] The raw water used in Example 1 (a) was river water having a dam lake as its headwater, and had low trihalomethane production ability, but had a relatively high concentration of off-flavor components. As shown in Table 1, 2-MIB was sufficiently decomposed in the ozone oxidation process. Bromic acid decreased to 0.9 μg / L in the anaerobic biological treatment process, which had increased to approximately 40 μg / L in the ozone oxidation process.
[0081] 実施例 1 (b)では、トリノ、ロメタン生成能及び異臭味物質とも高い湖水を原水として 用いた。オゾン酸化工程でトリハロメタン生成能が 38 μ g/Lに、 2— MIBは検出限界 以下になっているが、臭素酸として 34 μ g/Lが生成していた。嫌気性生物処理工程 でトリハロメタン生成能も減少している力 臭素酸は 1 β g/Lまで低下した。好気性生 物処理工程では、生物活性炭効果によってトリハロメタン生成能は 9 μ g/Lに、 2-MI Bは 5 /i g/L以下に、さらに臭素酸は 0. 5 μ g/Lまで低下した。 [0082] 実施例 1 (c)では、ほぼ実施例 1 (b)と同様な処理状況が得られた。但し、好気性生 物処理工程でのトリハロメタン生成能の除去率は 30%程度であり、実施例 1 (b)に比 ベると劣る傾向があった。 [0081] In Example 1 (b), lake water having high levels of torino, methane-forming ability, and off-flavor substances was used as raw water. In the ozone oxidation process, the trihalomethane production capacity was 38 μg / L and 2-MIB was below the detection limit, but 34 μg / L was produced as bromate. In the anaerobic biological treatment process, tribromethane production ability also decreased. Bromic acid decreased to 1 β g / L. In the aerobic biological treatment process, the bioactive carbon effect reduced trihalomethane production to 9 μg / L, 2-MIB to 5 / ig / L or less, and bromate to 0.5 μg / L. . In the example 1 (c), a processing state almost similar to that of the example 1 (b) was obtained. However, the removal rate of trihalomethane-forming ability in the aerobic biological treatment step was about 30%, and tended to be inferior to Example 1 (b).
実施例 2  Example 2
図 6に示す構造の嫌気性反応部及び好気性反応部を有する生物処理槽を用いて 浄水処理を行った。原水として富栄養化の進行した湖水を水源に持つ河川水を用い た。  Water purification treatment was performed using a biological treatment tank having an anaerobic reaction section and an aerobic reaction section having the structure shown in Fig. 6. River water with eutrophic lake water as a water source was used as raw water.
[0083] 原水に対して、従来の浄水高度処理システムである凝集沈殿処理、砂ろ過処理、 オゾン処理、生物活性炭処理をこの順番で行った。凝集沈殿処理、砂ろ過処理、生 物活性炭処理は、それぞれ実施例 1で用いたものと同じ構成の装置を用いて処理を 行った。この浄水処理によって得られたオゾン処理水に対して、表 3に示すように、脱 気処理及び/又は有機物添加を行った後、図 6に示す構造の生物処理槽に導入し て嫌気生物処理/好気生物処理を行った。脱気装置としては窒素ガス撹拌式カラム を用い、有機物質としてはエタノールを添加した。表 3中の各種充填材の性状は、次 の通りである。  [0083] Raw water was subjected to a coagulation sedimentation treatment, a sand filtration treatment, an ozone treatment, and a biological activated carbon treatment, which are conventional treatment systems for water purification, in this order. The coagulation sedimentation treatment, the sand filtration treatment, and the biological activated carbon treatment were each performed using an apparatus having the same configuration as that used in Example 1. As shown in Table 3, the ozone-treated water obtained by this water purification treatment is subjected to deaeration treatment and / or addition of organic substances, and then introduced into a biological treatment tank with the structure shown in Fig. 6 to perform anaerobic biological treatment. / Aerobic treatment was performed. A nitrogen gas stirred column was used as a degasser, and ethanol was added as an organic substance. The properties of the various fillers in Table 3 are as follows.
[0084] [表 2]  [Table 2]
<充填材& >
Figure imgf000020_0001
<Filling material &>
Figure imgf000020_0001
く充填材 b>
Figure imgf000020_0002
Filler b>
Figure imgf000020_0002
生物処理槽は、径 160mm、高さ 4000mmであり、下部を嫌気反応部(層高 1000 mm)、上部を好気反応部(層高 1500mm)とし、被処理水を処理槽下部より導入し、 上部より回収した。嫌気反応部の上端から 50mmの位置に通気管(径 2mmの多孔管: 目開き約 0. 5mmのネットで表面を覆って濾材の内部への侵入を防止した)を配置し 、ブロア一により空気を吹き込むことにより、生物処理槽の上部(充填材 bの部分)を 好気性条件とした。生物処理槽内の空塔速度(SV)は 10h— 1とした。 The biological treatment tank is 160 mm in diameter and 4000 mm in height. The lower part is an anaerobic reaction part (layer height 1000 mm), the upper part is an aerobic reaction part (layer height 1500 mm), and the water to be treated is introduced from the lower part of the treatment tank. Collected from the top. A vent pipe (porous pipe with a diameter of 2 mm: covered with a net with a mesh of about 0.5 mm to prevent penetration into the filter medium) was placed 50 mm from the upper end of the anaerobic reaction section, and air was blown through the blower. Blows the upper part of the biological treatment tank (filler b) Aerobic conditions were used. The superficial velocity (SV) in the biological treatment tank was 10h- 1 .
[0085] 実施例 1 (a)は、脱気を行ったが有機物質の添加を行わなかった方法であり、実施 例 1 (b)は、脱気を行うと共に有機物質を 2mg/L添加したものである。実施例 1 (c)で は、脱気を行わずに有機物質を l l mg/L添加した。実施例 1 (d)では、人工軽量骨材 を充填材 a, bの双方に使った。 Example 1 (a) is a method in which degassing was performed but no organic substance was added. Example 1 (b) was a method in which degassing was performed and an organic substance was added at 2 mg / L. Things. In Example 1 (c), an organic substance was added in an amount of 11 mg / L without degassing. In Example 1 (d), artificial lightweight aggregate was used for both the fillers a and b.
[0086] 結果を表 3に示す。 [0086] The results are shown in Table 3.
[0087] [表 3] 表 3 :実施例 2の結果 [Table 3] Table 3: Results of Example 2
Figure imgf000021_0001
Figure imgf000021_0001
レ、ずれの方式とも有機物質であるトリハロメタン生成能 (THM— FP)、異臭味物質 の 2— MIBが十分浄化され、同時に臭素酸イオンも十分に低い値に処理された。 ただし、実施例 1 (d)では、トリハロメタン生成能や臭素酸イオンの除去率が他の実 施例よりやや劣っていた。 In both methods, the trihalomethane forming ability (THM-FP), an organic substance, and 2-MIB, an off-flavor substance, were sufficiently purified, and at the same time, bromate ions were treated to a sufficiently low value. However, in Example 1 (d), the trihalomethane forming ability and the removal rate of bromate ion were slightly inferior to those of the other examples.
実施例 3  Example 3
原水として、ダム湖を源流に持つ河川水(実施例 3 (a) )、又は富栄養化の進行した 湖水(実施例 3 (b)及び比較例)を用いた。比較例においては、原水に対して、従来 の浄水高度処理システムである凝集沈殿処理、砂ろ過処理、オゾン処理、生物活性 炭処理をこの順番で行った。凝集沈殿処理、砂ろ過処理、オゾン処理は、それぞれ 実施例 1で用レ、たものと同じ構成の装置を用レ、て処理を行った。 The raw water is river water with a dam lake as the headwater (Example 3 (a)) or eutrophication has progressed. Lake water (Example 3 (b) and Comparative Example) was used. In the comparative example, raw water was subjected to a conventional sedimentation treatment, sand filtration, ozone treatment, and biological activated carbon treatment, which are conventional treatment systems for water purification. The coagulation sedimentation treatment, the sand filtration treatment, and the ozone treatment were performed using the same apparatus as that used in Example 1, respectively.
[0089] 実施例 3 (a)、 3 (b)共に、上記の凝集沈殿処理一砂ろ過処理一オゾン処理を行った 被処理水(オゾン処理水)に、窒素ガス撹拌式カラムを用いて脱気処理を行なレ、、検 出限界以下まで溶存酸素を減少させた。更に有機物質としてエタノールを 1 Omg/L 添加し、嫌気性処理及び好気性処理を行った。  [0089] In both Examples 3 (a) and 3 (b), the water to be treated (ozone-treated water) subjected to the above-mentioned coagulation sedimentation treatment, sand filtration treatment and ozone treatment was desorbed using a nitrogen gas stirring column. The dissolved oxygen was reduced to below the detection limit. Further, 1 Omg / L of ethanol was added as an organic substance, and anaerobic treatment and aerobic treatment were performed.
[0090] 嫌気性生物処理では、充填材として粒径 4一 6mmの気相用活性炭(円柱形状、ョ ゥ素吸着量 1130mg/g、荏原製作所製、商品名エバダイヤ AG— 400) (実施例 3 (a) )又は粒径 3 6mmの人工軽量骨材 (球状、荏原製作所製、商品名エバサイト L412 )を充填した反応槽に被処理水を供給した。好気性生物処理においては、充填材と して粒径 0. 6— 1. 5mmの水処理用活性炭 (破砕形状、ヨウ素吸着量 1010mg/g、荏 原製作所製、商品名エバダイヤ LG - 20S)を充填した反応槽に嫌気性生物処理槽 の排出水を導入した。嫌気性処理槽の空塔速度(SV)及び好気性処理槽の空塔速 度は、全て 1 Oh— した。  [0090] In the anaerobic biological treatment, activated carbon for gas phase having a particle size of 46mm (column shape, iodine adsorption amount 1130mg / g, manufactured by EBARA SEISAKUSHO, trade name Evadia AG-400) as the filler was used in the anaerobic biological treatment (Example 3). The water to be treated was supplied to a reaction tank filled with (a)) or an artificial lightweight aggregate having a particle size of 36 mm (spherical shape, manufactured by Ebara Corporation, trade name: Evacite L412). In aerobic biological treatment, activated carbon for water treatment with a particle size of 0.6--1.5 mm (crushed shape, iodine adsorption amount 1010 mg / g, Ebara Corporation, trade name Evadia LG-20S) is used as a filler. The discharged water from the anaerobic biological treatment tank was introduced into the filled reaction tank. The superficial velocity (SV) of the anaerobic treatment tank and the superficial velocity of the aerobic treatment tank were all 1 Ohm.
[0091] 以上の実験の結果を表 4にまとめる。  [0091] Table 4 summarizes the results of the above experiments.
[0092] [表 4] [0092] [Table 4]
表 4 : 実施例 3の結果 Table 4: Results of Example 3
Figure imgf000023_0001
比較例ではトリハロメタン生成能 (THM— FP)や 2—MIBの除去能力は高レ、が、臭 素酸が 22 μ g/L残り、 WHOの基準 10 μ g/L以下を満足しなかった。
Figure imgf000023_0001
In the comparative example, trihalomethane forming ability (THM-FP) and 2-MIB removal ability were high, but bromic acid remained at 22 μg / L and did not satisfy the WHO standard of 10 μg / L or less.
これに対して実施例 3 (a) , 3 (b)では、オゾン酸化工程で臭素酸はそれぞれ 23 μ gん、 35 / g/Lまで増加したが、その後の嫌気性処理工程で十分に低減された。トリ ハロメタン生成能はオゾン酸化工程で約 60— 75%程度除去され、 2-MIBは定量下 限未満まで低減されていた。更に、好気性処理により、トリノ、ロメタン生成能が従来法 と同等か又はそれ以上まで十分に低減された。  In contrast, in Examples 3 (a) and 3 (b), the amount of bromic acid increased to 23 μg and 35 / g / L respectively in the ozone oxidation step, but was sufficiently reduced in the subsequent anaerobic treatment step. Was done. About 60-75% of the trihalomethane-forming ability was removed in the ozone oxidation process, and the 2-MIB was reduced to below the lower limit of quantification. Furthermore, the aerobic treatment sufficiently reduced the ability to form torino and rhomethane to be equal to or better than the conventional method.

Claims

請求の範囲  The scope of the claims
[I] 被処理水をオゾン処理した後、嫌気性生物処理を行うことを特徴とする浄水処理方 法。  [I] A water purification method comprising subjecting treated water to ozone treatment and then performing anaerobic biological treatment.
[2] オゾン処理した被処理水に脱気処理を行うか、及び Z又は、オゾン処理した被処理 水に有機物を添加した後に、嫌気性生物処理を行う請求項 1に記載の浄水処理方 法。  [2] The water purification method according to claim 1, wherein the ozonized water to be treated is degassed, and an anaerobic biological treatment is carried out after adding an organic substance to the Z or ozone treated water. .
[3] 脱気処理によって被処理水中の溶存酸素濃度を 2mg/L以下にする請求項 2に記載 の浄水処理方法。  3. The water purification method according to claim 2, wherein the concentration of dissolved oxygen in the water to be treated is reduced to 2 mg / L or less by degassing.
[4] 被処理水の脱気処理を、真空脱気方法、窒素ガス撹拌方法又は膜脱気方法のレ、ず れかの方法によって行う請求項 2又は 3に記載の方法。  4. The method according to claim 2 or 3, wherein the deaeration of the water to be treated is performed by a vacuum deaeration method, a nitrogen gas stirring method, or a membrane deaeration method.
[5] 被処理水に有機物としてエタノール又は酢酸を加える請求項 2に記載の浄水処理方 法。 [5] The water purification method according to claim 2, wherein ethanol or acetic acid is added to the water to be treated as an organic substance.
[6] 嫌気性生物処理の後段処理として、被処理水をろ過処理する請求項 1一 5のいずれ かに記載の浄水処理方法。  [6] The water purification treatment method according to any one of [15] to [15], wherein the water to be treated is subjected to a filtration treatment as a post-stage treatment of the anaerobic organism treatment.
[7] 被処理水をオゾン処理した後、嫌気性生物処理し、続いて好気性生物処理すること を特徴とする浄水処理方法。 [7] A water purification method comprising subjecting treated water to ozone treatment, anaerobic biological treatment, and then aerobic biological treatment.
[8] 好気性生物処理の後段処理として、被処理水をろ過処理する請求項 7に記載の浄 水処理方法。 [8] The water purification method according to claim 7, wherein the water to be treated is subjected to a filtration treatment as a post-treatment of the aerobic biological treatment.
[9] 被処理水として、原水を凝集沈殿処理及びろ過処理にかけた処理水を用いる請求 項 1一 8のいずれかに記載の浄水処理方法。  [9] The water purification method according to any one of [18] to [18], wherein the treated water is treated water obtained by subjecting raw water to coagulation sedimentation treatment and filtration treatment.
[10] 原水として、河川水、湖沼水又は地下水を用いる請求項 9に記載の浄水処理方法。 10. The water purification treatment method according to claim 9, wherein river water, lake water, or groundwater is used as raw water.
[II] 被処理水をオゾン処理するオゾン処理装置;オゾン処理された被処理水を嫌気性生 物処理する嫌気性生物処理装置;を具備することを特徴とする浄水処理装置。  [II] A water purification treatment device comprising: an ozone treatment device that treats water to be treated with ozone; an anaerobic biological treatment device that treats anaerobic biological treatment of ozone-treated water to be treated.
[12] オゾン処理装置でオゾン処理された被処理水を脱気処理する脱気処理装置、及び /又は、オゾン処理された被処理水に有機物を添加する有機物添加装置を更に具 備する請求項 11に記載の浄水処理装置。  [12] The method according to claim 1, further comprising a deaeration treatment device for deaeration of the water to be treated ozone-treated by the ozone treatment device and / or an organic substance addition device for adding an organic substance to the ozone-treated water to be treated. 12. The water purification device according to item 11.
[13] 脱気処理装置が、真空脱気装置、窒素ガス撹拌装置又は膜脱気装置のいずれかで ある請求項 12に記載の浄水処理装置。 13. The water purification treatment device according to claim 12, wherein the deaeration treatment device is one of a vacuum deaeration device, a nitrogen gas stirring device, and a membrane deaeration device.
[14] 嫌気性生物処理装置の後段に、更に被処理水をろ過処理するろ過装置を具備する 請求項 11一 13のいずれかに記載の浄水処理装置。 14. The water purification treatment device according to claim 11, further comprising a filtration device downstream of the anaerobic biological treatment device for filtering the water to be treated.
[15] 被処理水をオゾン処理するオゾン処理装置;オゾン処理された被処理水を嫌気性生 物処理する嫌気性生物処理装置;嫌気性処理された被処理水を好気性生物処理す る好気性生物処理装置;を具備することを特徴とする浄水処理装置。 [15] Ozone treatment device for ozonating treated water; anaerobic biological treatment device for treating anaerobic biological treatment of ozone-treated treated water; aerobic biological treatment for anaerobic treated water A water purification treatment device comprising: an aerobic biological treatment device.
[16] 嫌気性生物処理装置と好気性生物処理装置とが別々の反応槽によって構成され、 嫌気性生物処理装置からの排出水を好気性生物処理装置に供給する配管が備えら れてレ、る請求項 15に記載の装置。 [16] The anaerobic biological treatment device and the aerobic biological treatment device are constituted by separate reaction tanks, and a pipe is provided for supplying the effluent from the anaerobic biological treatment device to the aerobic biological treatment device. 16. The device according to claim 15, wherein the device comprises:
[17] 一つの反応槽が仕切板によって二つに区切られていて、一方が嫌気性反応部、もう 一方が好気性反応部として機能する生物処理槽を嫌気性生物処理装置及び好気 性生物処理装置として用いる請求項 15に記載の装置。 [17] One reaction tank is divided into two by a partition plate. One is an anaerobic reaction section, and the other is a biological treatment tank functioning as an aerobic reaction section. The apparatus according to claim 15, which is used as a processing apparatus.
[18] 嫌気反応部と好気反応部とを備えた反応槽であって、槽下部に原水流入口を有し、 槽上部に処理水流出口を有しており、原水流入口の上部に、上下 2層で連続形成さ れる充填材層が形成されており、下層の充填材層の上端付近に通気管が配備され ていることを特徴とする生物処理槽を嫌気性生物処理装置及び好気性生物処理装 置として用いる請求項 15に記載の装置。 [18] A reaction tank provided with an anaerobic reaction section and an aerobic reaction section, having a raw water inlet at a lower part of the tank, a treated water outlet at an upper part of the tank, and an upper part of the raw water inlet, The biological treatment tank is characterized by the fact that a filler layer consisting of two layers, one above the other, is formed continuously, and a vent pipe is provided near the upper end of the lower filler layer. The device according to claim 15, which is used as a biological treatment device.
[19] 好気性生物処理装置の後段に、更に被処理水をろ過処理するろ過装置を具備する 請求項 15— 18のいずれかに記載の浄水処理装置。 [19] The water purification treatment device according to any one of claims 15 to 18, further comprising a filtration device downstream of the aerobic biological treatment device for filtering the water to be treated.
[20] オゾン処理装置の前段として、原水を凝集沈殿処理する凝集沈殿装置;及び凝集沈 殿処理された被処理水をろ過処理するろ過装置;を更に具備する請求項 11一 19の いずれかに記載の浄水処理装置。 [20] The apparatus according to any of claims 11 to 19, further comprising, as a preceding stage of the ozone treatment apparatus, a coagulation sedimentation apparatus for coagulating and sedimenting raw water; The water purification device according to the above.
PCT/JP2004/009709 2003-07-10 2004-07-08 Water purification high-level treatment method and apparatus WO2005005327A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005511522A JPWO2005005327A1 (en) 2003-07-10 2004-07-08 Water purification advanced treatment method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003272777 2003-07-10
JP2003-272778 2003-07-10
JP2003272778 2003-07-10
JP2003-272777 2003-07-10

Publications (1)

Publication Number Publication Date
WO2005005327A1 true WO2005005327A1 (en) 2005-01-20

Family

ID=34067376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009709 WO2005005327A1 (en) 2003-07-10 2004-07-08 Water purification high-level treatment method and apparatus

Country Status (2)

Country Link
JP (1) JPWO2005005327A1 (en)
WO (1) WO2005005327A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092889A (en) * 2009-12-15 2011-06-15 信刚高新技术有限公司 Method for lake purification and water ecological environmental renovation
CN104355467A (en) * 2014-11-11 2015-02-18 杭州安耐杰科技有限公司 Circulating cooling water filling purification system
CN104628226A (en) * 2015-01-15 2015-05-20 常州大学 Integrated farm waste treatment system
JP2017064635A (en) * 2015-09-30 2017-04-06 三菱重工環境・化学エンジニアリング株式会社 Nitrogen removing apparatus and method for modifying nitrogen removing apparatus
CN108911155A (en) * 2018-07-17 2018-11-30 江苏省环境科学研究院 A kind of hybrid constructed wetland system and its method for handling low-concentration heavy metal sewage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0137988B2 (en) * 1984-03-06 1989-08-10 Hitachi Plant Eng & Constr Co
JPH04197498A (en) * 1990-11-29 1992-07-17 Meidensha Corp Water purifying treatment
JPH06126299A (en) * 1992-10-16 1994-05-10 Japan Organo Co Ltd Water treating device incorporated with reverse osmosis device
JP2001170682A (en) * 1999-12-14 2001-06-26 Meidensha Corp Waste water treatment method and device for the same
JP2001269688A (en) * 2000-03-27 2001-10-02 Ngk Insulators Ltd Drain cleaning device using floating filter medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0137988B2 (en) * 1984-03-06 1989-08-10 Hitachi Plant Eng & Constr Co
JPH04197498A (en) * 1990-11-29 1992-07-17 Meidensha Corp Water purifying treatment
JPH06126299A (en) * 1992-10-16 1994-05-10 Japan Organo Co Ltd Water treating device incorporated with reverse osmosis device
JP2001170682A (en) * 1999-12-14 2001-06-26 Meidensha Corp Waste water treatment method and device for the same
JP2001269688A (en) * 2000-03-27 2001-10-02 Ngk Insulators Ltd Drain cleaning device using floating filter medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092889A (en) * 2009-12-15 2011-06-15 信刚高新技术有限公司 Method for lake purification and water ecological environmental renovation
CN102092889B (en) * 2009-12-15 2013-03-20 信刚高新技术有限公司 Method for lake purification and water ecological environmental renovation
CN104355467A (en) * 2014-11-11 2015-02-18 杭州安耐杰科技有限公司 Circulating cooling water filling purification system
CN104628226A (en) * 2015-01-15 2015-05-20 常州大学 Integrated farm waste treatment system
CN104628226B (en) * 2015-01-15 2016-06-29 常州大学 Plant's garbage total system
JP2017064635A (en) * 2015-09-30 2017-04-06 三菱重工環境・化学エンジニアリング株式会社 Nitrogen removing apparatus and method for modifying nitrogen removing apparatus
CN108911155A (en) * 2018-07-17 2018-11-30 江苏省环境科学研究院 A kind of hybrid constructed wetland system and its method for handling low-concentration heavy metal sewage

Also Published As

Publication number Publication date
JPWO2005005327A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP2007509740A (en) Apparatus and method for purifying aqueous effluents by oxidation and membrane filtration
JP2014097472A (en) Treatment method and treatment apparatus for organic waste water
CN102838259B (en) Depth treatment method and system of wastewater in industrial park
JP2009254967A (en) Water treatment system
CN104671391A (en) Ozone heterogeneous catalysis oxidization treatment device and technology for hardly degradable organic wastewater
JP2009262122A (en) Apparatus for water treatment
US6365048B1 (en) Method for treatment of organic matter contaminated drinking water
JP3867326B2 (en) Ozone treatment method for activated sludge process water
CN112047562B (en) Ozone catalytic oxidation system, wastewater advanced treatment system comprising ozone catalytic oxidation system and treatment method
JP2008126125A (en) Polluted water treatment apparatus and method
JP4732845B2 (en) Water treatment method and apparatus
JP5259311B2 (en) Water treatment method and water treatment system used therefor
WO2005005327A1 (en) Water purification high-level treatment method and apparatus
JP3575047B2 (en) Wastewater treatment method
JP2002307088A (en) Wastewater treatment apparatus
CN114735888B (en) Ultrasonic synergistic ozone catalytic oxidation treatment device and method
JP2002192181A (en) High-degree treatment method for wastewater by addition of powdery activated carbon
JP3887581B2 (en) Sewage treatment equipment
CN105130131A (en) Treatment system and method of landfill refuse leachate
JP2002192184A (en) Powdery activated carbon-adding membrane separation activated sludge method
JP5061410B2 (en) Ultrapure water production apparatus and ultrapure water production method
KR102059988B1 (en) Membrane water treatment apparatus using micro-bubble
JPH0119959B2 (en)
JP2000153294A (en) Waste water treating method and device therefor
JPH0671273A (en) Ozone contact tank in advance purifying water system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511522

Country of ref document: JP

122 Ep: pct application non-entry in european phase