WO2005005040A1 - Heat exchanger and reactor comprising said type of heat exchanger - Google Patents

Heat exchanger and reactor comprising said type of heat exchanger Download PDF

Info

Publication number
WO2005005040A1
WO2005005040A1 PCT/EP2004/007310 EP2004007310W WO2005005040A1 WO 2005005040 A1 WO2005005040 A1 WO 2005005040A1 EP 2004007310 W EP2004007310 W EP 2004007310W WO 2005005040 A1 WO2005005040 A1 WO 2005005040A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat exchanger
exchange elements
reactor
heat
Prior art date
Application number
PCT/EP2004/007310
Other languages
German (de)
French (fr)
Inventor
Julius Jeisy
Gottfried LÜTHY
Original Assignee
Dsm Ip Assets B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dsm Ip Assets B.V. filed Critical Dsm Ip Assets B.V.
Priority to DE202004021361U priority Critical patent/DE202004021361U1/en
Priority to DE112004001184T priority patent/DE112004001184D2/en
Publication of WO2005005040A1 publication Critical patent/WO2005005040A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1669Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having an annular shape; the conduits being assembled around a central distribution tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/93Heating or cooling systems arranged inside the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • C07C46/06Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring
    • C07C46/08Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring with molecular oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/98Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • B01J2219/00081Tubes

Definitions

  • the invention relates to a heat exchanger according to the preamble of the independent claim and a reactor with such a heat exchanger.
  • Such heat exchangers are used, for example, in oxidation reactor vessels such as are used in the synthesis of vitamin E in the form of ⁇ -tocopherol or ⁇ -tocopherol acetate, for example in the intermediate stage of the oxidation of trimethylphenol to triethylquinone.
  • This oxidation can take place in a solvent such as diethylene glycol monomethyl ether in the presence of a suitable catalyst such as copper chloride.
  • the (exothermic) oxidation takes place, for example, at a temperature of about 60-105 ° C. and a pressure of, for example, about 1.3 ⁇ 10 5 Pa.
  • the reactor vessel is pressure-resistant up to a pressure of 40 x 10 5 Pa for safety reasons.
  • the reactor should be corrosion-resistant and, if possible, inert.
  • a high concentration of oxygen in the solution is desirable to avoid the formation of by-products such as copper oxalate. To do this, it must be possible to supply oxygen in sufficient quantities at all times.
  • a large exchange surface between the solution and the oxygen atmosphere is advantageous.
  • reactors have been proposed in which the heat exchanger comprises a spiral half-pipe coil which is attached to the outside of the container wall.
  • the container is easy to clean, but good heat dissipation is only fairly inadequate due to the rather massive wall thickness of the reactor container (for example 50 mm), which is required to ensure sufficient pressure resistance.
  • two cylindrical spirals (each similar to the shape of a helical spring) extending coaxially in the longitudinal direction of the container have been proposed as heat exchangers, of which at least the outer spiral is arranged relatively close to the inner wall of the container.
  • good heat transfer to the heat exchanger here the spirals
  • the spirals is only possible if the flow rate is high and the pipes are subject to turbulent flow.
  • the object of the following invention is therefore to propose a heat exchanger which has a high mechanical resistance, in particular a high pressure resistance, and whose heat exchange surface is as large as possible.
  • poorly mixed zones in the reactor vessel, in particular in the edge area, should be prevented.
  • the object is achieved by a heat exchanger as characterized by the independent claim.
  • Advantageous configurations of the heat exchanger according to the invention result from the paint the dependent claims.
  • the heat exchange elements of the heat exchanger according to the invention comprise a plurality of, for example four, tubes arranged in the direction of the longitudinal axis of the heat exchange element, for example vertically.
  • the tubes of a single heat exchange element are connected at one end, for example the lower ends, to a first header and at their other ends, for example the upper ends, to a second header.
  • Such a heat exchanger is characterized by a high mechanical resistance that
  • the heat exchange surface is large and a swirl is created right into the edge areas of the reactor vessel, which ensures that the reagents are thoroughly mixed.
  • the first collector of a heat exchange element can be connected to the supply line and the second to the discharge line, so that a heat exchange medium flows through the heat exchange elements during operation.
  • the straight flow through the heat exchange elements with the heat exchange medium allows high flow rates and thus a better exchange of heat.
  • the vertical flow from bottom to top is advantageous in that, when a liquid is used as the heat exchange medium during operation, no air can be present in the tubes, which results in a better exchange of heat.
  • All of the first collectors of the heat exchange elements can have a first common manifold and all of the second collectors can have a second common Bus line connected.
  • the manifolds can run similarly to the path along which the heat exchange elements are arranged, for example circular, and are in turn connected to the supply and discharge lines.
  • Such manifolds have the advantage that not all heat exchange elements or their collectors have to be connected individually to the supply or discharge line, which simplifies the construction of the heat exchanger, and that the flow conditions in the heat exchange elements are constant over the entire heat exchanger.
  • a displacement body can be arranged in each case in the tubes of the heat exchange elements.
  • it serves to provide as much contact area as possible between e.g. to create a cooling medium as a heat exchange medium and a medium to be cooled per unit volume of cooling medium and thus to increase the efficiency of the heat exchange.
  • it serves to increase the flow velocity in the heat exchange elements while the line pressure in the supply and discharge lines remains constant, and thus to improve the cooling capacity of the heat exchanger, because the heated cooling medium is quickly removed and new cold cooling medium immediately flows through the pipes again.
  • the heat exchanger according to the invention can either be coated with a corrosion-resistant, in particular inert, material, for example titanium, or consist of such a material. This prevents the heat exchanger from being damaged by the reaction and prevents additional undesirable by-products from being formed.
  • a reactor in particular an oxidation reactor, with a reactor vessel in which a heat exchanger, which is specified in more detail above, is arranged.
  • Such reactors are particularly suitable - as mentioned at the beginning - for the synthesis of vitamin E and there especially for the intermediate stage of the oxidation of trimethylphenol to trimethylquinone.
  • FIG. 1 shows a reactor vessel with an embodiment of a heat exchanger according to the invention
  • FIG. 2 is a plan view of the open reactor vessel from FIG. 1,
  • FIG. 3 shows a view of an individual heat exchange element of the exemplary embodiment of the heat exchanger according to the invention from FIG. 1,
  • Fig. 4 is a bottom view of the first manifold of the embodiment, the heat exchanger according to the invention from Fig. 1, and
  • FIG. 5 shows a section through a single tube of a heat exchange element according to FIG. 3, in which a displacement body is arranged.
  • the heat exchanger comprises a plurality of heat exchange elements 2 arranged in a circle around the longitudinal axis 10 of the reactor vessel 1 (see also FIG. 2), two header lines 30 and 31 connecting the heat exchange elements 2, a plurality of supply lines 4 and a plurality of discharge lines 5.
  • the heat exchange elements 2 are vertical in the edge region of the Reactor vessel 1 arranged. Industrial cooling water can be used as the heat exchange medium
  • Feed lines 4 are conveyed via a lower, first collecting line 30 into the first collectors 21 and from there into the tubes 20 of the heat exchange elements 2. It flows vertically from bottom to top through the tubes 20 and thereby absorbs heat from the solution via the tube wall 201 (FIG. 5).
  • the heated industrial cooling water flows through the second header 22 via an upper, second header 31 into the discharge lines 5 and is transported out of the reactor vessel 1.
  • 2 shows a plan view of the opened reactor vessel 1.
  • the thirty heat exchange elements 2 shown here by way of example are arranged at an angle ⁇ of approximately forty-five degrees to the circumferential direction.
  • Fig. 2 also shows that the heat exchange elements 2 here from a total of four supply lines 4 are fed with cooling water and this cooling water is discharged again from the heat exchange elements 2 via four discharge lines 5.
  • FIG. 3 shows an individual heat exchange element 2. It comprises a lower, here horizontally arranged, first collector 21, which is connected to the feed lines 4 (FIG. 1) via the first collecting line 30.
  • first collector 21 which is connected to the feed lines 4 (FIG. 1) via the first collecting line 30.
  • second collector 22 which is likewise arranged horizontally here.
  • This second collector 22 is connected to the discharge lines 5 via the second collecting line 31.
  • FIG. 4 shows the first, here circularly formed, collecting line 30, as it is connected to the heat exchange elements 2 and the supply lines 4 (FIG. 1).
  • the cooling water is conveyed into the first collecting line 30 via four feed connections 32.
  • the first manifold 30 is used to connect the four feed lines 4 (FIG. 1) to the thirty heat exchange elements 2 (FIG. 3) via the connecting lines 33 and to supply them with cooling water uniformly.
  • the second collecting line 31 can also be transported away of the cooling water from the heat exchange elements 2 (Fig. 3) are arranged.
  • FIG. 5 shows a single tube 20 of a heat exchange element 2 (FIG. 3).
  • a displacement body 200 is arranged in the center of the tube.
  • the cooling water flowing through the tube 20 is guided along the tube wall 201 through the displacement body. This increases the contact area between cooling water and tube wall 201 per unit volume of cooling water in comparison to a tube 20 without a displacement body 200.
  • the displacement body 200 is arranged in the center of the tube. The cooling water flowing through the tube 20 is guided along the tube wall 201 through the displacement body. This increases the contact area between cooling water and tube wall 201 per unit volume of cooling water in comparison to a tube 20 without a displacement body 200.
  • Displacement body 200 With the line pressure remaining the same, the flow velocity in the pipe 20, which leads to the cooling water heating up less. Thus there is a higher temperature gradient between the cooling water and the solution and the cooling efficiency is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The invention relates to a heat exchanger for a reactor container (1) comprising a supply line (4) and a discharge line (5) for a heat exchange medium, and several heat exchange elements (2) which are connected to the supply line (4) and to the discharge line (5). The heat exchange elements (2) are arranged along a flat circular-shaped path. The individual heat exchange elements (2) are arranged in such a manner that they form a sharp angle (a) of 10° to 70° with the circular path. The longitudinal axes extend in a perpendicular manner on the plane of the circular-shaped path. The individual heat exchange elements (2) comprise several tubes (20) which are arranged in the direction of the longitudinal axes of the heat exchange elements (2). One end thereof is connected to a first common collector (21) and the other end thereof is connected to a second common collector (22).

Description

Wärmetauscher und Reaktor mit einem derartigen WärmetauscherHeat exchanger and reactor with such a heat exchanger
Die Erfindung betrifft einen Wärmetauscher gemäss dem Oberbegriff des unabhängigen Patentanspruchs sowie einen Reaktor mit einem derartigen Wärmetauscher.The invention relates to a heat exchanger according to the preamble of the independent claim and a reactor with such a heat exchanger.
Solche Wärmetauscher werden beispielsweise in Oxida- tionsreaktorbehältern eingesetzt, wie sie bei der Synthese von Vitamin E in Form von α-Tocopherol bzw. α-Tocopherol- acetat zum Einsatz kommen, so z.B. in der Zwischenstufe der Oxidation von Trimethylphenol zu Tri ethylchinon. Diese Oxidation kann in einem Lösungsmittel wie Diethylenglykol- monomethylether in Anwesenheit eines geeigneten Katalysators wie z.B. Kupferchlorid erfolgen. Die (exotherme) Oxidation erfolgt beispielsweise bei einer Temperatur von etwa 60-105 °C und einem Druck von beispielsweise etwa 1.3 x 105 Pa.Such heat exchangers are used, for example, in oxidation reactor vessels such as are used in the synthesis of vitamin E in the form of α-tocopherol or α-tocopherol acetate, for example in the intermediate stage of the oxidation of trimethylphenol to triethylquinone. This oxidation can take place in a solvent such as diethylene glycol monomethyl ether in the presence of a suitable catalyst such as copper chloride. The (exothermic) oxidation takes place, for example, at a temperature of about 60-105 ° C. and a pressure of, for example, about 1.3 × 10 5 Pa.
Für einen effizienten und sicheren Prozess sind dabei mehrere Aspekte von Bedeutung. So wird z.B. gefordert, dass der Reaktorbehälter aus Sicherheitsgründen bis zu einem Druck von 40 x 105 Pa druckfest ist. Ferner sollte der Reaktor korrosionsresistent und nach Möglichkeit inert ausgebildet sein. Eine hohe Sauerstoffkonzentration in der Lösung ist wünschenswert, um die Bildung von Nebenprodukten wie beispielsweise Kupferoxalat zu vermeiden. Dazu muss ständig in ausreichender Menge Sauerstoff zugeführt werden können. Um Sauerstoff aus der Sauerstoffatmosphäre im Behälter gut in die Lösung überführen zu können, ist eine grosse Austauschfläche zwischen Lösung und Sauerstoffatmosphäre von Vorteil.Several aspects are important for an efficient and safe process. For example, it is required that the reactor vessel is pressure-resistant up to a pressure of 40 x 10 5 Pa for safety reasons. Furthermore, the reactor should be corrosion-resistant and, if possible, inert. A high concentration of oxygen in the solution is desirable to avoid the formation of by-products such as copper oxalate. To do this, it must be possible to supply oxygen in sufficient quantities at all times. In order to be able to transfer oxygen from the oxygen atmosphere in the container well into the solution, a large exchange surface between the solution and the oxygen atmosphere is advantageous.
Wegen der starken Exothermie der Reaktion ist eine gute Wärmeabfuhr von besonderer Bedeutung. Zu diesem Zweck werden Wärmetauscher eingesetzt, welche die Reaktionswärme schnell und zuverlässig abführen sollen. Hierzu sind in der Vergangenheit schon verschiedene konstruktive Ansätze vorge- schlagen worden.Because of the strong exothermic nature of the reaction is a good one Heat dissipation of particular importance. For this purpose, heat exchangers are used, which should remove the heat of reaction quickly and reliably. Various constructive approaches have already been proposed for this in the past.
So sind beispielsweise Reaktoren vorgeschlagen worden, bei denen der Wärmetauscher eine spiralförmige Halbrohrschlange umfasst, welche aussen auf der Behälterwand angebracht ist. Bei dieser Lösung ist zwar der Behälter gut zu reinigen, allerdings ist eine gute Wärmeabfuhr aufgrund der recht massiven Wandstärke der Reaktorbehälter (z.B. 50 mm) , die erforderlich ist, um eine ausreichende Druckresistenz zu gewährleisten, nur ziemlich unzureichend möglich. Bei einem anderen Vorschlag sind innerhalb des Behälters zwei koaxial in Längsrichtung des Behälters sich erstreckende zylindrische Spiralen (jeweils ähnlich der Gestalt einer Schraubenfeder) als Wärmetauscher vorgeschlagen worden, von denen zumindest die äussere Spirale relativ nahe zur Behälterinnenwand angeordnet ist. Ein guter Wärmeübergang zum Wärmetauscher (hier den Spiralen) ist jedoch nur dann gegeben, wenn auch die Strömungsgeschwindigkeit hoch ist und die Rohre turbulent umströmt werden. Dies ist zumindest bei der äusseren der beiden Spiralen nicht mehr so gut gewähr- leistet, ausserdem erfolgt in diesem Bereich auch keine gute Durchmischung mehr, weshalb es dort in einem unerwünschten Ausmass zur Ablagerung von Nebenprodukten kommen kann (siehe oben) , die sich wiederum negativ auf die Wärmeabfuhr auswirken. In der EP-A-1, 172, 138 ist schliesslich ein weiterer konstruktiver Ansatz für einen solchen Reaktor und den dazugehörigen Wärmetauscher vorgeschlagen worden, bei welchem im Innern des Reaktorbehälters entlang einer kreisförmigen Bahn grossflächige Wärmetauschplatten angeordnet sind. Die Platten stehen jeweils in einem Winkel zur Umfangsrichtung der kreisförmigen Bahn, der vorzugsweise zwischen 30° und 55° beträgt. Die Platten dienen dabei nicht nur der Wärmeabfuhr, sondern sie brechen auch die Strömung am Rande des Reaktorbehälters, was die Durchmischung im Behälterinnern begünstigt. Dennoch kann sich im Randbereich, also im Bereich zwischen den Platten und dem Reaktorbehälter, eine nicht so gut durchmischte Schicht bilden, in der es zu vermehrter Ablagerung von Nebenprodukten (siehe oben) kommen kann. Ausserdem sind solche grossflächigen Wärmetauschplatten nur begrenzt mechanisch belastbar und können, insbesondere bei einem Betrieb unter hohem Druck und beim Auftreten von Resonanzschwingungen, Risse bekommen, wodurch die Funktion des Reaktors bzw. des Wärmetauschers erheblich beeinträchtigt sein kann.For example, reactors have been proposed in which the heat exchanger comprises a spiral half-pipe coil which is attached to the outside of the container wall. With this solution, the container is easy to clean, but good heat dissipation is only fairly inadequate due to the rather massive wall thickness of the reactor container (for example 50 mm), which is required to ensure sufficient pressure resistance. In another proposal, two cylindrical spirals (each similar to the shape of a helical spring) extending coaxially in the longitudinal direction of the container have been proposed as heat exchangers, of which at least the outer spiral is arranged relatively close to the inner wall of the container. However, good heat transfer to the heat exchanger (here the spirals) is only possible if the flow rate is high and the pipes are subject to turbulent flow. At least in the case of the outer of the two spirals, this is no longer guaranteed so well, and there is also no thorough mixing in this area, which is why undesirable amounts of by-products can accumulate there (see above), which in turn can be negative affect heat dissipation. Finally, in EP-A-1, 172, 138 a further constructive approach for such a reactor and the associated heat exchanger has been proposed, in which large-area heat exchange plates are arranged along the circular path inside the reactor vessel. The plates are each at an angle to the circumferential direction of the circular path, which is preferably between 30 ° and 55 °. The plates not only serve to dissipate heat, they also break the flow at the edge of the reactor vessel, which promotes mixing in the interior of the vessel. Nevertheless, a layer that is not so well mixed can form in the edge region, that is to say in the region between the plates and the reactor vessel, in which there can be increased deposition of by-products (see above). In addition, such large-area heat exchange plates can only be subjected to mechanical loads to a limited extent and, particularly when operated under high pressure and when resonance vibrations occur, can develop cracks, as a result of which the function of the reactor or the heat exchanger can be considerably impaired.
Die Aufgabe der nachfolgenden Erfindung ist es daher, einen Wärmetauscher vorzuschlagen, der eine hohe mechanische Beständigkeit, insbesondere eine hohe Druckfestigkeit, aufweist und dessen Wärmeaustauschfläche möglichst gross ist. Ausserdem sollen schlecht durchmischte Zonen im Reaktorbehälter, insbesondere im Randbereich, verhindert werden.The object of the following invention is therefore to propose a heat exchanger which has a high mechanical resistance, in particular a high pressure resistance, and whose heat exchange surface is as large as possible. In addition, poorly mixed zones in the reactor vessel, in particular in the edge area, should be prevented.
Die Aufgabe wird erfindungsgemäss durch einen Wärmetauscher gelöst, wie er durch den unabhängigen Patentanspruch charakterisiert ist. Vorteilhafte Ausgestaltungen des er- findungsgemässen Wärmetauschers ergeben sich aus den Merk- malen der abhängigen Patentansprüche.According to the invention, the object is achieved by a heat exchanger as characterized by the independent claim. Advantageous configurations of the heat exchanger according to the invention result from the paint the dependent claims.
Insbesondere umfassen die Wärmetauschelemente des er- findungsgemässen Wärmetauschers mehrere, beispielsweise vier, in Richtung der Längsachse des Wärmetauschelements, bei- spielsweise vertikal, angeordnete Rohre. Die Rohre eines einzelnen Wärmetauschelements sind an ihren einen, beispielsweise den unteren Enden, mit einem ersten Sammler verbunden und an ihren anderen, beispielsweise den oberen Enden, mit einem zweiten Sammler. Ein solcher Wärmetauscher zeichnet sich durch eine hohe mechanische Beständigkeit aus, dieIn particular, the heat exchange elements of the heat exchanger according to the invention comprise a plurality of, for example four, tubes arranged in the direction of the longitudinal axis of the heat exchange element, for example vertically. The tubes of a single heat exchange element are connected at one end, for example the lower ends, to a first header and at their other ends, for example the upper ends, to a second header. Such a heat exchanger is characterized by a high mechanical resistance that
Wärmetauschfläche ist gross gestaltet und es wird eine Ver- wirbelung bis in die Randbereiche des Reaktorbehälters erzeugt, die für eine gute Durchmischung der Reagenzien sorgt. Der erste Sammler eines Wärmetauschelements kann mit der Zuführleitung und der zweite mit der Abführleitung verbunden sein, sodass die Wärmetauschelemente in Betrieb von einem Wärmetauschmedium durchströmt werden. Das gradlinige Durchströmen der Wärmetauschelemente mit dem Wärmetausch- medium erlaubt dabei hohe Strömungsgeschwindigkeiten und somit einen besseren Austausch von Wärme. Insbesondere ist das vertikale Durchströmen vorzugsweise von unten nach oben insofern vorteilhaft, als auf diese Weise bei Verwendung einer Flüssigkeit als Wärmetauschmedium im Betrieb keine Luft in den Rohren vorhanden sein kann, was einen besseren Austausch von Wärme zur Folge hat.The heat exchange surface is large and a swirl is created right into the edge areas of the reactor vessel, which ensures that the reagents are thoroughly mixed. The first collector of a heat exchange element can be connected to the supply line and the second to the discharge line, so that a heat exchange medium flows through the heat exchange elements during operation. The straight flow through the heat exchange elements with the heat exchange medium allows high flow rates and thus a better exchange of heat. In particular, the vertical flow from bottom to top is advantageous in that, when a liquid is used as the heat exchange medium during operation, no air can be present in the tubes, which results in a better exchange of heat.
Sämtliche ersten Sammler der Wärmetauschelemente können dabei mit einer ersten gemeinsamen Sammelleitung und sämtliche zweiten Sammler mit einer zweiten gemeinsamen Sammelleitung verbunden sein. Die Sammelleitungen können dabei ähnlich verlaufen wie die Bahn, entlang welcher die Wärmetauschelemente angeordnet sind, beispielsweise kreisförmig, und sind ihrerseits mit der Zu- bzw. Abführleitung verbunden. Solche Sammelleitungen haben den Vorteil, dass nicht alle Wärmetauschelemente bzw. deren Sammler einzeln an die Zu- bzw. Abführleitung angeschlossen werden müssen, was die Konstruktion des Wärmetauschers vereinfacht, und dass die Strömungsverhältnisse in den Wärmetauschelementen über den ganzen Wärmetauscher konstant sind.All of the first collectors of the heat exchange elements can have a first common manifold and all of the second collectors can have a second common Bus line connected. The manifolds can run similarly to the path along which the heat exchange elements are arranged, for example circular, and are in turn connected to the supply and discharge lines. Such manifolds have the advantage that not all heat exchange elements or their collectors have to be connected individually to the supply or discharge line, which simplifies the construction of the heat exchanger, and that the flow conditions in the heat exchange elements are constant over the entire heat exchanger.
In den Rohren der Wärmetauschelemente kann jeweils ein Verdrängungskörper angeordnet sein. Er dient einerseits dazu, möglichst viel Kontaktfläche zwischen z.B. einem Kühlmedium als Wärmetauschmedium und einem zu kühlenden Medium pro Volumeneinheit Kühlmedium zu schaffen und damit die Effizienz des Wärmetauschs zu erhöhen. Andererseits dient er dazu, bei gleichbleibendem Leitungsdruck in den Zu- bzw. Abführleitungen die Strömungsgeschwindigkeit in den Wärmetauschelementen zu vergrössern und damit die Kühlleistung des Wärmetauschers zu verbessern, weil das erwärmte Kühlmedium rasch abgeführt wird und sofort wieder neues kaltes Kühlmedium durch die Rohre strömt.A displacement body can be arranged in each case in the tubes of the heat exchange elements. On the one hand, it serves to provide as much contact area as possible between e.g. to create a cooling medium as a heat exchange medium and a medium to be cooled per unit volume of cooling medium and thus to increase the efficiency of the heat exchange. On the other hand, it serves to increase the flow velocity in the heat exchange elements while the line pressure in the supply and discharge lines remains constant, and thus to improve the cooling capacity of the heat exchanger, because the heated cooling medium is quickly removed and new cold cooling medium immediately flows through the pipes again.
Der erfindungsgemässe Wärmetauscher kann entweder mit einem korrosionsresistenten, insbesondere inert, ausgebildeten Material, beispielsweise Titan, ummantelt sein oder aus einem solchen Material bestehen. Damit wird verhindert, dass der Wärmetauscher durch die Reaktion beschädigt wird, und dass zusätzliche unerwünschte Nebenprodukte entstehen. Ein weiterer Aspekt der Erfindung betrifft einen Reaktor, insbesondere einen Oxidationsreaktor, mit einem Reaktorbehälter, in welchem ein vorstehend näher spezifizierter Wärmetauscher angeordnet ist. Solche Reaktoren eignen sich insbesondere - wie eingangs erwähnt - für die Synthese von Vitamin E und dort speziell für die Zwischenstufe der Oxidation von Trimethylphenol zu Trimethylchinon.The heat exchanger according to the invention can either be coated with a corrosion-resistant, in particular inert, material, for example titanium, or consist of such a material. This prevents the heat exchanger from being damaged by the reaction and prevents additional undesirable by-products from being formed. Another aspect of the invention relates to a reactor, in particular an oxidation reactor, with a reactor vessel in which a heat exchanger, which is specified in more detail above, is arranged. Such reactors are particularly suitable - as mentioned at the beginning - for the synthesis of vitamin E and there especially for the intermediate stage of the oxidation of trimethylphenol to trimethylquinone.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Aus- führungsbeispiels der Erfindung mit Hilfe der schematischen Zeichnung. Es zeigen:Further advantageous refinements of the invention result from the following description of an exemplary embodiment of the invention with the aid of the schematic drawing. Show it:
Fig. 1 einen Reaktorbehälter mit einem Ausführungsbeispiel eines erfindungsgemässen Wärmetauschers,1 shows a reactor vessel with an embodiment of a heat exchanger according to the invention,
Fig. 2 eine Aufsicht auf den geöffneten Reaktorbehälter aus Fig. 1,2 is a plan view of the open reactor vessel from FIG. 1,
Fig. 3 eine Ansicht eines einzelnen Wärmetauschelements des Ausführungsbeispiels des erfindungsgemässen Wärmetauschers aus Fig. 1,3 shows a view of an individual heat exchange element of the exemplary embodiment of the heat exchanger according to the invention from FIG. 1,
Fig. 4 Eine Ansicht von unten an die erste Sammelleitung des Ausführungsbeispiels , des erfindungsgemässen Wärmetauschers aus Fig. 1, undFig. 4 is a bottom view of the first manifold of the embodiment, the heat exchanger according to the invention from Fig. 1, and
Fig. 5 einen Schnitt durch ein einzelnes Rohr eines Wärmetauschelements gemäss Fig. 3, in welchem ein Verdrängungskörper angeordnet ist.5 shows a section through a single tube of a heat exchange element according to FIG. 3, in which a displacement body is arranged.
In Fig. 1 ist ein Ausführungsbeispiel eines Reaktorbehälters 1 mit einem erfindungsgemässen Wärmetauscher darge- stellt, wie er beispielsweise bei der exotherm ablaufenden Oxidation von Trimethylphenol zu Trimethylchinon in einer Lösung eingesetzt werden kann. Der Wärmetauscher umfasst mehrere kreisförmig um die Längsachse 10 des Reaktorbehälters 1 angeordnete Wärmetauschelemente 2 (siehe auch Fig. 2), zwei die Wärmetauschelemente 2 verbindende Sammelleitungen 30 bzw. 31, mehrere Zuführleitungen 4 und mehrere Abführleitungen 5. Die Wärmetauschelemente 2 sind vertikal im Randbereich des Reaktorbehälters 1 angeordnet. Als Wärmetauschmedium kann Industriekühlwasser verwendet werden, welches durch die1 shows an exemplary embodiment of a reactor vessel 1 with a heat exchanger according to the invention. represents how it can be used for example in the exothermic oxidation of trimethylphenol to trimethylquinone in a solution. The heat exchanger comprises a plurality of heat exchange elements 2 arranged in a circle around the longitudinal axis 10 of the reactor vessel 1 (see also FIG. 2), two header lines 30 and 31 connecting the heat exchange elements 2, a plurality of supply lines 4 and a plurality of discharge lines 5. The heat exchange elements 2 are vertical in the edge region of the Reactor vessel 1 arranged. Industrial cooling water can be used as the heat exchange medium
Zuführleitungen 4 über eine untere, erste Sammelleitung 30 in die ersten Sammler 21 und von dort in die Rohre 20 der Wärmetauschelemente 2 gefördert wird. Es strömt von unten nach oben vertikal durch die Rohre 20 und nimmt dabei über die Rohrwand 201 (Fig. 5) Wärme aus der Lösung auf. Das aufgewärmte Industriekühlwasser strömt durch die zweiten Sammler 22 über eine obere, zweite Sammelleitung 31 in die Abführleitungen 5 und wird aus dem Reaktorbehälter 1 abtransportiert. Fig. 2 zeigt eine Aufsicht auf den geöffneten Reaktorbehälter 1. Die hier beispielhaft gezeigten dreissig Wärmetauschelemente 2 sind in einem Winkel α von etwa fünfundvierzig Grad zur Umfangrichtung angeordnet. Dadurch übernehmen die Wärmetauschelemente 2 zusätzlich zu ihrer Haupt- funktion, dem Kühlen, eine wichtige Rolle beim Durchmischen der Lösung mit dem in den Reaktor geförderten Sauerstoff, indem die durch einen Rührer erzeugte Strömung im Randbereich des Reaktorbehälters 1 gebrochen wird. Dadurch entstehen zusätzliche Verwirbelungen, was eine gesamthaft verbesserte Durchmischung zur Folge hat. Fig. 2 zeigt auch, dass die Wärmetauschelemente 2 hier von insgesamt vier Zuführleitungen 4 mit Kühlwasser gespeist werden und dieses Kühlwasser über vier Abführleitungen 5 wieder aus den Wärmetauschelementen 2 abgeführt wird.Feed lines 4 are conveyed via a lower, first collecting line 30 into the first collectors 21 and from there into the tubes 20 of the heat exchange elements 2. It flows vertically from bottom to top through the tubes 20 and thereby absorbs heat from the solution via the tube wall 201 (FIG. 5). The heated industrial cooling water flows through the second header 22 via an upper, second header 31 into the discharge lines 5 and is transported out of the reactor vessel 1. 2 shows a plan view of the opened reactor vessel 1. The thirty heat exchange elements 2 shown here by way of example are arranged at an angle α of approximately forty-five degrees to the circumferential direction. As a result, in addition to their main function, cooling, the heat exchange elements 2 play an important role in mixing the solution with the oxygen conveyed into the reactor by breaking the flow generated by a stirrer in the edge region of the reactor vessel 1. This creates additional turbulence, which results in an overall improved mixing. Fig. 2 also shows that the heat exchange elements 2 here from a total of four supply lines 4 are fed with cooling water and this cooling water is discharged again from the heat exchange elements 2 via four discharge lines 5.
Fig. 3 zeigt ein einzelnes Wärmetauschelement 2. Es um- fasst einen unteren, hier horizontal angeordneten, ersten Sammler 21, der über die erste Sammelleitung 30 mit den Zuführleitungen 4 (Fig. 1) verbunden ist. Von diesem ersten Sammler 21 gehen vier vertikal ausgerichtete Rohre 20 ab, die durch einen, hier ebenfalls horizontal angeordneten, zweiten Sammler 22 abgeschlossen sind. Dieser zweite Sammler 22 ist über die zweite Sammelleitung 31 mit den Abführleitungen 5 verbunden. Mit einem solchen Wärmetauschelement 2 wird, zusätzlich zu der bei der Beschreibung von Fig. 2 erläuterten Strömungsbrechung des gesamten Wärmetauschelements 2, an den Rohren 20 die radiale Strömung der Lösung im Reaktorbehälter 1 weiter verwirbelt. Das führt zu einer nochmals verbesserten Durchmischung im Reaktorbehälter 1, insbesondere in den Zonen nahe des Behälterrandes, wo die Strömung ansonsten weniger verwirbelt und damit die Durchmischung schlechter ist als im Zentrum des Reaktorbehälters 1.3 shows an individual heat exchange element 2. It comprises a lower, here horizontally arranged, first collector 21, which is connected to the feed lines 4 (FIG. 1) via the first collecting line 30. Four vertically aligned pipes 20 extend from this first collector 21 and are closed off by a second collector 22, which is likewise arranged horizontally here. This second collector 22 is connected to the discharge lines 5 via the second collecting line 31. With such a heat exchange element 2, in addition to the flow refraction of the entire heat exchange element 2 explained in the description of FIG. 2, the radial flow of the solution in the reactor container 1 is further swirled on the tubes 20. This leads to a further improved mixing in the reactor vessel 1, in particular in the zones near the edge of the vessel, where the flow is otherwise less turbulent and the mixing is worse than in the center of the reactor vessel 1.
Fig. 4 zeigt die erste, hier kreisförmige ausgebildete, Sammelleitung 30, wie sie mit den Wärmetauschelementen 2 und den Zuführleitungen 4 (Fig. 1) verbunden ist. Das Kühlwasser wird über vier Zuführverbindungen 32 in die erste Sammel- leitung 30 befördert. Die erste Sammelleitung 30 dient dazu, die vier Zuführleitungen 4 (Fig. 1) über die Anschlussleitungen 33 mit den dreissig Wärmtauschelementen 2 (Fig. 3) zu verbinden und gleichmässig mit Kühlwasser zu versorgen. Entsprechend der in Fig. 4 gezeigten ersten Sammelleitung 30 kann auch die zweite Sammelleitung 31 zum Abtransportieren des Kühlwassers aus den Wärmetauschelementen 2 (Fig. 3) angeordnet werden.FIG. 4 shows the first, here circularly formed, collecting line 30, as it is connected to the heat exchange elements 2 and the supply lines 4 (FIG. 1). The cooling water is conveyed into the first collecting line 30 via four feed connections 32. The first manifold 30 is used to connect the four feed lines 4 (FIG. 1) to the thirty heat exchange elements 2 (FIG. 3) via the connecting lines 33 and to supply them with cooling water uniformly. In accordance with the first collecting line 30 shown in FIG. 4, the second collecting line 31 can also be transported away of the cooling water from the heat exchange elements 2 (Fig. 3) are arranged.
In Fig. 5 ist ein einzelnes Rohr 20 eines Wärmetauschelements 2 (Fig. 3) dargestellt. Im Zentrum des Rohres ist ein Verdrängungskörper 200 angeordnet. Durch den Verdrängungskörper wird das durch das Rohr 20 strömende Kühlwasser an der Rohrwand 201 entlang geleitet. Dadurch ver- grössert sich die Kontaktfläche zwischen Kühlwasser und Rohrwand 201 pro Volumeneinheit Kühlwasser im Vergleich zu einem Rohr 20 ohne Verdrängungskörper 200. Zusätzlich erhöht der5 shows a single tube 20 of a heat exchange element 2 (FIG. 3). A displacement body 200 is arranged in the center of the tube. The cooling water flowing through the tube 20 is guided along the tube wall 201 through the displacement body. This increases the contact area between cooling water and tube wall 201 per unit volume of cooling water in comparison to a tube 20 without a displacement body 200. In addition, the
Verdrängungskörper 200 bei gleichbleibendem Leitungsdruck die Strömungsgeschwindigkeit im Rohr 20, was dazu führt, dass sich das Kühlwasser weniger erwärmt. Somit besteht ein höherer Temperaturgradient zwischen Kühlwasser und Lösung und die Kühleffizienz wird erhöht. Displacement body 200, with the line pressure remaining the same, the flow velocity in the pipe 20, which leads to the cooling water heating up less. Thus there is a higher temperature gradient between the cooling water and the solution and the cooling efficiency is increased.

Claims

Patentansprüche claims
1. Wärmetauscher für einen Reaktorbehälter (1), mit einer Zu- (4) und einer Abführleitung (5) für ein Wärmetauschmedium, sowie mit mehreren mit der Zu- (4) und Abführ- leitung (5) verbundenen Wärmetauschelementen (2), die entlang einer eben umlaufenden, insbesondere kreisförmigen, Bahn angeordnet sind, wobei die einzelnen Wärmetauschelemente (2) so angeordnet sind, dass sie mit der umlaufenden Bahn einen spitzen Winkel (α) im Bereich von 10° - 70°, vorzugsweise 20° - 60° und insbesondere etwa 45° einschliessen, und ihre Längsachsen senkrecht zur Ebene der umlaufenden Bahn verlaufen, dadurch gekennzeichnet, dass die einzelnen Wärmetauschelemente (2) mehrere in Richtung der Längsachse der einzelnen Wärmetauschelemente (2) angeordnete Rohre (20) umfassen, deren einen Enden mit einem ersten gemeinsamen Sammler (21) und deren anderen Enden mit einem zweiten gemeinsamen Sammler (22) verbunden sind.1. heat exchanger for a reactor vessel (1), with an inlet (4) and an outlet line (5) for a heat exchange medium, and with several heat exchange elements (2) connected to the inlet (4) and outlet line (5), which are arranged along a plane, in particular circular, path, the individual heat exchange elements (2) being arranged in such a way that they form an acute angle (α) with the circulating path in the range of 10 ° -70 °, preferably 20 ° -60 ° and in particular include approximately 45 °, and their longitudinal axes are perpendicular to the plane of the orbiting path, characterized in that the individual heat exchange elements (2) comprise a plurality of tubes (20) arranged in the direction of the longitudinal axis of the individual heat exchange elements (2), one end of which with a first common collector (21) and the other ends of which are connected with a second common collector (22).
2. Wärmetauscher nach Anspruch 1, bei welchem die Wärmetauschelemente (2) im Betrieb vom Wärmetauschmedium durchströmt werden, und zwar vorzugsweise von unten nach oben, indem die Zuführleitung (4) mit dem ersten gemeinsamen Sammler (21) und die Abführleitung (5) mit dem zweiten gemeinsamen Sammler (22) der Wärmetauschelemente (2) verbunden ist.2. Heat exchanger according to claim 1, wherein the heat exchange elements (2) are flowed through during operation of the heat exchange medium, preferably from bottom to top, by the supply line (4) with the first common collector (21) and the discharge line (5) the second common collector (22) of the heat exchange elements (2) is connected.
3. Wärmetauscher nach einem der vorangehenden Ansprüche, bei welchem sämtliche ersten Sammler (21) mit einer ersten Sammelleitung (30) und sämtliche zweiten Sammler (22) it einer zweiten Sammelleitung (31) verbunden sind, die ihrerseits mit den Zu- (4) bzw. Abführleitungen (5) verbunden sind.3. Heat exchanger according to one of the preceding claims, in which all first collectors (21) with a first manifold (30) and all second collectors (22) it is connected to a second manifold (31), which in turn is connected to the supply (4) and discharge lines (5).
4. Wärmetauscher nach einem der vorangehenden An- sprüche, bei welchem in den Rohren (20) der Wärmetauschelemente (2) jeweils ein Verdrängungskörper (200) angeordnet ist.4. Heat exchanger according to one of the preceding claims, in which a displacement body (200) is arranged in each case in the tubes (20) of the heat exchange elements (2).
5. Wärmetauscher nach einem der vorangehenden Ansprüche, welcher korrosionsresistent, insbesondere inert, ausgebildet ist.5. Heat exchanger according to one of the preceding claims, which is corrosion-resistant, in particular inert.
6. Reaktor, insbesondere für Gas-Flüssigkeits- Reaktionen, mit einem Reaktorbehälter (1) , in welchem ein Wärmetauscher nach einem der vorangehenden Ansprüche angeordnet ist. 6. Reactor, in particular for gas-liquid reactions, with a reactor vessel (1) in which a heat exchanger is arranged according to one of the preceding claims.
PCT/EP2004/007310 2003-07-14 2004-07-05 Heat exchanger and reactor comprising said type of heat exchanger WO2005005040A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE202004021361U DE202004021361U1 (en) 2003-07-14 2004-07-05 Heat exchanger and reactor with such a heat exchanger
DE112004001184T DE112004001184D2 (en) 2003-07-14 2004-07-05 Heat exchanger and reactor with such a heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03405534 2003-07-14
EP03405534.3 2003-07-14

Publications (1)

Publication Number Publication Date
WO2005005040A1 true WO2005005040A1 (en) 2005-01-20

Family

ID=34043025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/007310 WO2005005040A1 (en) 2003-07-14 2004-07-05 Heat exchanger and reactor comprising said type of heat exchanger

Country Status (4)

Country Link
CN (1) CN1822899A (en)
CH (1) CH696802A5 (en)
DE (2) DE202004021361U1 (en)
WO (1) WO2005005040A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042274A1 (en) * 2007-09-26 2009-04-02 General Electric Company Radiant coolers and methods for assembling same
EP2246109A1 (en) * 2009-04-29 2010-11-03 Methanol Casale S.A. Isothermal tube reactor
JP2011503514A (en) * 2007-11-16 2011-01-27 ゼネラル・エレクトリック・カンパニイ Syngas cooler platen manufacturing method and syngas cooler platen
US20110186278A1 (en) * 2008-09-23 2011-08-04 Methanol Casale S.A. Heat exchanger with radially arranged elements for isothermal chemical reactors
DE102007012112C5 (en) * 2007-03-13 2016-08-18 Loritus Gmbh Apparatus and method for hydrothermal carbonization of biomass
JP2017507015A (en) * 2014-01-02 2017-03-16 ハンワ ケミカル コーポレイション Batch reactor with baffle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102641713B (en) * 2012-04-18 2014-03-19 南京斯迈柯特种金属装备股份有限公司 Straight pipe heat exchange type efficient polymerization reactor
DE102014009237A1 (en) * 2014-06-24 2015-12-24 Weylchem Wiesbaden Gmbh Process for obtaining vitamin E, sterols and / or terpenes from oily or fatty mixtures of biological origin
FI20145759A (en) * 2014-09-02 2016-03-03 Outotec Finland Oy Autoclave and heat transfer element
CN109482120A (en) * 2018-12-14 2019-03-19 南通三圣石墨设备科技股份有限公司 Graphite heat exchanger and method built in a kind of novel reaction kettle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2753388A1 (en) * 1976-12-01 1978-07-13 Biogal Gyogyszergyar LARGE VOLUME FERMENTATION EQUIPMENT
US4670397A (en) * 1986-02-05 1987-06-02 Phillips Petroleum Company Fermentation apparatus
EP0316910A1 (en) * 1987-11-17 1989-05-24 Phillips Petroleum Company Heat exchange apparatus
EP1031373A2 (en) * 1999-02-27 2000-08-30 Metallgesellschaft Aktiengesellschaft Reactor and process for catalytic conversion of gaseous mixtures
WO2002026370A1 (en) * 2000-09-26 2002-04-04 Shell Internationale Research Maatschappij B.V. Rod-shaped inserts in reactor tubes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2753388A1 (en) * 1976-12-01 1978-07-13 Biogal Gyogyszergyar LARGE VOLUME FERMENTATION EQUIPMENT
US4670397A (en) * 1986-02-05 1987-06-02 Phillips Petroleum Company Fermentation apparatus
EP0316910A1 (en) * 1987-11-17 1989-05-24 Phillips Petroleum Company Heat exchange apparatus
EP1031373A2 (en) * 1999-02-27 2000-08-30 Metallgesellschaft Aktiengesellschaft Reactor and process for catalytic conversion of gaseous mixtures
WO2002026370A1 (en) * 2000-09-26 2002-04-04 Shell Internationale Research Maatschappij B.V. Rod-shaped inserts in reactor tubes

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012112C5 (en) * 2007-03-13 2016-08-18 Loritus Gmbh Apparatus and method for hydrothermal carbonization of biomass
WO2009042274A1 (en) * 2007-09-26 2009-04-02 General Electric Company Radiant coolers and methods for assembling same
US8376034B2 (en) 2007-09-26 2013-02-19 General Electric Company Radiant coolers and methods for assembling same
JP2011503514A (en) * 2007-11-16 2011-01-27 ゼネラル・エレクトリック・カンパニイ Syngas cooler platen manufacturing method and syngas cooler platen
US20110186278A1 (en) * 2008-09-23 2011-08-04 Methanol Casale S.A. Heat exchanger with radially arranged elements for isothermal chemical reactors
US8460614B2 (en) * 2008-09-23 2013-06-11 Methanol Casale S.A. Heat exchanger with radially arranged elements for isothermal chemical reactors
EP2246109A1 (en) * 2009-04-29 2010-11-03 Methanol Casale S.A. Isothermal tube reactor
WO2010124916A1 (en) * 2009-04-29 2010-11-04 Methanol Casale Sa Isothermal tube reactor
US8673232B2 (en) 2009-04-29 2014-03-18 Methanol Casale Sa Isothermal tube reactor
JP2017507015A (en) * 2014-01-02 2017-03-16 ハンワ ケミカル コーポレイション Batch reactor with baffle
EP3090800A4 (en) * 2014-01-02 2017-08-02 Hanwha Chemical Corporation Batch reactor with baffle

Also Published As

Publication number Publication date
DE112004001184D2 (en) 2006-04-20
CN1822899A (en) 2006-08-23
DE202004021361U1 (en) 2007-11-22
CH696802A5 (en) 2007-12-14

Similar Documents

Publication Publication Date Title
DE60205645T2 (en) HEAT EXCHANGER FOR ISOTHERMIC CHEMICAL REACTOR
EP1580511B1 (en) Device for maintaining temperature of bulk material
EP0963247B1 (en) Reactor for the catalytic reaction of reaction media, in particular gaseous reaction media
EP2379217B1 (en) Reactor and method for producing phosgene
EP0396650A1 (en) Device for carrying out catalytic reactions.
EP2379216A1 (en) Reactor and method for producing phosgene
EP3585509B1 (en) Heat exchanger and reactor
DE60023394T2 (en) heat exchangers
WO2005005040A1 (en) Heat exchanger and reactor comprising said type of heat exchanger
DD283678A5 (en) HEAT EXCHANGE DEVICE AND A HEAT EXCHANGE METHOD
DE102009021661A1 (en) Fluidized bed heat exchanger
WO2005063375A1 (en) Method for producing formaldehyde
DE60220886T2 (en) METHOD FOR CARRYING OUT CHEMICAL REACTIONS UNDER PSEUDO-ISOTHERMIC CONDITIONS
EP2329211B1 (en) Installation for removing heat from flowing water
DE69106565T2 (en) Method and means for cleaning the walls from a heat exchanger.
DE19851109B4 (en) Reactor for carrying out catalytic reactions with strong heat of reaction
DE102012023527B4 (en) Shell and tube reactor
DE3026954A1 (en) HEAT AND FABRIC EXCHANGER
DE60224068T2 (en) METHOD AND REACTOR FOR IMPLEMENTING CHEMICAL REACTIONS UNDER PSEUDOISOTHERMS CONDITIONS
WO2014127964A1 (en) Heat exchanger
WO2010149751A1 (en) Converter for carrying out exothermic catalytic reactions
DE10134330C1 (en) Humidifier for heating radiator has spiral cross tubes with multiple inlets and distribute tubes
DE102008019083A1 (en) Buffer storage unit for a central heating system comprises a boiler having an inner chamber divided into boiler sections arranged vertically above each other using a separating or wall element with a reduced flow
DE2441302B2 (en) Polymerization reactor with finned tube cooler and axial mixer
DD300656A5 (en) heat exchangers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480020342.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
REF Corresponds to

Ref document number: 112004001184

Country of ref document: DE

Date of ref document: 20060420

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004001184

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

122 Ep: pct application non-entry in european phase