WO2005005019A1 - Honeycomb filter for clarifying exhaust gas and method for manufacture thereof - Google Patents

Honeycomb filter for clarifying exhaust gas and method for manufacture thereof Download PDF

Info

Publication number
WO2005005019A1
WO2005005019A1 PCT/JP2004/010147 JP2004010147W WO2005005019A1 WO 2005005019 A1 WO2005005019 A1 WO 2005005019A1 JP 2004010147 W JP2004010147 W JP 2004010147W WO 2005005019 A1 WO2005005019 A1 WO 2005005019A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
containing compound
honeycomb
honeycomb filter
mixture
Prior art date
Application number
PCT/JP2004/010147
Other languages
French (fr)
Japanese (ja)
Inventor
Tsutomu Fukuda
Masahiro Fukuda
Masaaki Fukuda
Toshinobu Yoko
Masahide Takahashi
Original Assignee
Ohcera Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohcera Co., Ltd. filed Critical Ohcera Co., Ltd.
Priority to CA002528921A priority Critical patent/CA2528921A1/en
Priority to KR1020057022712A priority patent/KR101093467B1/en
Priority to US10/559,337 priority patent/US7575792B2/en
Priority to JP2005511590A priority patent/JP4950492B2/en
Priority to PL04747613T priority patent/PL1645319T3/en
Priority to EP04747613.0A priority patent/EP1645319B1/en
Priority to CN200480018961XA priority patent/CN1816379B/en
Publication of WO2005005019A1 publication Critical patent/WO2005005019A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to an exhaust gas purifying honeycomb file for capturing and removing solid particulates (particulates) mainly containing carbon contained in exhaust gas such as diesel engines, and a method for manufacturing the same.
  • the exhaust gas such as di one Zeruenjin such as an automobile includes a significant concentration of putty Ikyureto composed mainly of carbon (1 5 0 ⁇ 2 5 O mg / Nm 3), environmental problems with such as nitrogen oxides Therefore, it is urgently required to remove this efficiently and economically.
  • various types of fills called DPF (Diesel Particulate Fill) have been proposed to capture and remove solid particulates in such exhaust gas.
  • Japanese Patent Application Laid-Open No. 5-7-3 5 9 1 8 and Japanese Patent Application Laid-Open No. 5-2 1 4 9 2 2 describe that both ends of the honeycomb fill are upstream or downstream of a plurality of flow paths.
  • An exhaust gas filter in which the ends are alternately closed is disclosed.
  • the flue gas to be purified is supplied to the upstream opening of the fill, and the particulates in the flue gas are captured and removed by the bulkhead through the filter bulkhead.
  • the exhaust gas after purification is taken out from the downstream opening.
  • the honeycomb filter material is required to have a high thermal shock resistance as well as a high thermal shock resistance as well as a low thermal expansion coefficient and a high thermal shock resistance. Materials are proposed and used. However, these materials still do not have sufficient characteristics as exhaust gas filters.
  • WO 0 1/0 3 7 9 7 1 proposes aluminum titanate together with carbonized key cordierite.
  • Aluminum titanate has heat resistance at a high temperature exceeding 1700 ° C., a small thermal expansion coefficient, and excellent thermal shock resistance.
  • aluminum titanate usually has a decomposition region in the temperature range of 80 ° C. to 1280 ° C., so that stable use in a fluctuating temperature range including such a temperature range is possible. It has a big problem that it cannot be done.
  • the crystal structure has a large anisotropy, the crystal grain boundaries are likely to be displaced due to thermal stress, so the mechanical strength is not large.
  • the present invention is excellent in heat resistance, has a small coefficient of thermal expansion and thermal shock resistance, does not cause thermal decomposition even under fluctuating high temperatures, and has high mechanical strength, so it can be used stably for a long period of time.
  • an exhaust gas purifying honeycomb filter capable of capturing and removing particulates such as fine carbon contained in exhaust gas of a diesel engine or the like with high efficiency, and a manufacturing method thereof. Disclosure of the invention The present invention has been intensively studied to solve the above-mentioned problems.
  • the Mg-containing compound, the A1-containing compound, and the Ti-containing compound be contained in a specific ratio, or the mixture,
  • Exhaust gas purification honeycomb fill using a sintered body of aluminum magnesium titanate obtained by firing a mixture containing a certain amount of al-rich iron feldspar is superior in heat resistance and small thermal expansion inherent in conventional aluminum titanate ceramics. It has been completed based on the new knowledge that it has a coefficient and a large thermal shock resistance, and has improved thermal decomposition resistance and improved mechanical strength.
  • the present invention mainly has the following gist.
  • a honeycomb filter for removing solid fine particles containing carbon as a main component from combustion exhaust gas wherein the eighticum filter is composed of Mg x A 1 2 (1 _ X) T i (I + X) 0 5
  • the metal component ratio is the same as the metal component ratio of Mg, A1 and Ti, and the Mg-containing compound, A1-containing compound and Ti
  • An exhaust gas purification honeycomb fill characterized by being a sintered aluminum magnesium titanate sintered at 1000 to 1700 ° C from a mixture containing a compound.
  • the material of the honeycomb fill is compositional formula: Mg x A 1 2 (1 _ X) T i (1 + x) 0 5 (where 0 ⁇ ⁇ 1)
  • An exhaust gas purification honeycomb filter characterized by being an aluminum magnesium sintered body.
  • Honeycomb fill has a wall thickness of 0.2 to 0.6 mm ⁇ , a cell density of 15 to 47 cells / cm 2 , a partition wall porosity of 40 to 60%, and a thermal expansion coefficient of 3.0.
  • An exhaust gas purification apparatus comprising the can body equipped with the exhaust gas purification honeycomb filter described in any one of (1) to (3) above.
  • the exhaust gas purification device according to (6) which is used for exhaust gas generation from an automobile equipped with a diesel engine.
  • the honeycomb film of aluminum magnesium titanate sintered body according to the present invention has the original heat resistance and a small coefficient of thermal expansion as described above, and is excellent in thermal shock resistance. Whether it has a high mechanical strength is not necessarily clear, but is presumably due to the following reasons.
  • aluminum titanate magnesium has a characteristic that its generation temperature is lower than that of aluminum titanate.
  • this generation temperature lowers the thermal decomposition reaction rate of aluminum magnesium titanate, which causes thermal decomposition. It is considered that resistance has improved.
  • the thermal decomposition reaction rate is proportional to the product of the decomposition phase nucleation rate and the growth rate, but the decomposition phase nucleation rate increases as the degree of supercooling (difference from the temperature in the equilibrium state) increases.
  • the growth rate of the nucleus depends on the diffusion coefficient of the cation, and therefore increases as the temperature increases (the degree of supercooling decreases).
  • the degree of supercooling is considerably smaller than that of aluminum titanate. As a result, it is considered that the thermal decomposition reaction of aluminum magnesium titanate is suppressed and exhibits excellent thermal decomposition resistance.
  • alkali feldspar when alkali feldspar is added to the mixture that forms aluminum magnesium titanate, there is alkali feldspar that becomes a liquid phase from around the temperature at which aluminum magnesium titanate is formed, so aluminum titanate magnesium Occurs in the liquid phase, forming dense crystals and improving mechanical strength.
  • the Si component contained in the alkali feldspar dissolves in the crystal lattice of aluminum titanate magnesium, but preferentially dissolves in the aluminum titanate crystal system over the magnesium titanate crystal system. This is due to the fact that the octahedron in which the aluminum titanate constitutes the crystal structure is large and the crystallographic anisotropy is remarkable in the pseudo-wurtzite type crystal structure, so that the crystal structure is less than that of magnesium titanate.
  • S i 4+ and M g each 2+ ion radius 0. 5 4 A and 0.8 six, der is, the average ionic radius of the two from 0.7 to become OA, A 1 3
  • the ionic radius of + is approximated to 0.6 8 A, and the occupancy of A 1 by a pair of S i and Mg is considered to be a solid solution state that is not too difficult in terms of energy than substitution of a single S i. It is done.
  • the simultaneous presence of Si and Mg can suppress the diffusion of ions between cations even at high temperatures and form a stable crystal structure, which is considered to provide even better thermal decomposition resistance.
  • FIG. 1 is a perspective view of a part of an example of an exhaust gas purifying honeycomb filter according to the present invention.
  • FIG. 6 Schematic diagram showing the end face of the 820 cam filter of Figure 1.
  • FIG. 3 A schematic diagram of a cross section taken along the line AA of the honeycomb fill shown in Fig. 2.
  • FIG. 4 shows the time-dependent changes in the residual rate of aluminum titanate magnesium for the sintered bodies of Examples 1 and 2 of the present invention and the residual rate ⁇ of aluminum titanate for the sintered body of Comparative Example 3.
  • the composition of Mg x A 1 2 ( 1.X) T i (1 + x) 0 5 (where 0 ⁇ x 1) is represented by aluminum magnesium titanate.
  • Mg-containing compound, mixture containing A1-containing compound and Ti-containing compound containing the same metal component ratio as that of Mg, A1 and Ti A mixture containing 1 to 10 parts by mass of alkali feldspar represented by 100 parts by mass and a composition formula: (NayK) A 1 Si 3 0 8 (where 0 ⁇ y ⁇ l) is prepared.
  • ⁇ 1700 X Sintered aluminum titanate magnesium sintered body can be used.
  • the Mg-containing compound, the A1-containing compound, and the Ti-containing compound used as raw materials can be used without particular limitation as long as they are components capable of synthesizing aluminum magnesium titanate by firing.
  • the Mg-containing compound, the A1-containing compound, and the Ti-containing compound may not be separate compounds, but may be compounds containing two or more metal components. These compounds are usually used as raw materials for various ceramics such as alumina ceramics, titania ceramics, magnesia ceramics, aluminum titanate ceramics, magnesium titanate ceramics, spinel ceramics, aluminum titanate magnesium ceramics, etc. Any of these may be selected as appropriate.
  • Such compounds include oxides such as A 1 2 0 3 , T i0 2 , MgO, MgAl 2 0 4 , Al 2 T i 0 5 , MgT i 2 0 5 , Mg and T i.
  • Composite oxidation containing two or more metal components such as each spinel structure PT / JP2004 / 010147
  • the mixing ratio of the Mg-containing compound, the A1-containing compound, and the Ti-containing compound is the ratio of the metal components contained in these compounds as described above: Mg x A 1 2 (1 _X ) T i ( M ⁇ 5 (wherein 0 ⁇ ⁇ 1, preferably 0.2 ⁇ x ⁇ 0.8)
  • a ratio similar to the metal component ratio of Mg, A 1 and Ti in aluminum magnesium titanate By using a mixture of the above compounds at such a ratio, it has a metal component ratio similar to the metal component ratio in the mixture used as a raw material.
  • Aluminum titanate magnesium can be obtained.
  • Al feldspar is a sintering aid for magnesium aluminum titanate and also serves to add Si component to aluminum magnesium titanate.
  • y satisfies 0 ⁇ y ⁇ l, preferably 0.l ⁇ y ⁇ l, and particularly preferably 0.15 ⁇ y ⁇ 0.85.
  • Alkaline feldspar having a y value in this range has a low melting point and is particularly effective in promoting the sintering of aluminum magnesium titanate.
  • the amount of alkali feldspar used should be about 1 to 10 parts by mass with respect to 100 parts by mass of the total value of each compound of Mg-containing compound, A 1 -containing compound and Ti-containing compound used as raw materials converted to oxides.
  • the amount is preferably about 3 to 5 parts by mass.
  • the total amount in which the mixture in this case is converted into an oxide means that after performing heat treatment for removing moisture and organic substances contained in the mixture, and when pre-sintering is performed, Let it be the mass before main firing after ligation.
  • additives can be added to the mixture containing the Mg-containing compound, the A1-containing compound and the Ti-containing compound, or the mixture obtained by adding alkali feldspar to the mixture, if necessary.
  • the properties of the obtained sintered body can be improved.
  • Other additives include, for example, oxides such as S i 0 2 , Z r0 2 , F e 2 0 3 , MgO, A 1 2 0 3 , T i 0 2 , C a 0, Y 2 0 3 , Mg
  • An oxide having a spinel structure containing One or more of these additives are preferably added in an amount of 15 parts by mass or less with respect to 100 parts by mass of the mixture.
  • the above mixture is thoroughly mixed and pulverized.
  • the mixing and pulverization of the mixture are not particularly limited and are performed according to known methods.
  • a pole mill or a medium stirring mill may be used.
  • the degree of the powder dust of the above mixture is not particularly limited, but the average particle size is preferably 30 m or less, particularly preferably 8 to 15 m or less. This is preferably as small as possible as long as secondary particles are not formed.
  • a molding aid can be added to the mixture.
  • molding aids known ones such as binders, pore-forming agents, mold release agents, antifoaming agents, and peptizers can be used.
  • binder polypinyl alcohol, microwax emulsion, methylcellulose, carboxymethylcellulose and the like are preferable.
  • pore-forming agent activated carbon, coke, polyethylene resin, starch, graphite and the like are preferable.
  • stearic acid emulsion and the like are preferable, as the antifoaming agent, n-octyl alcohol, octylphenoxyethanol and the like are preferable, and as the peptizer, jetylamine, triethylamine and the like are preferable.
  • the amount of the molding aid used is not particularly limited, but in the case of the present invention, the total amount obtained by converting each compound of Mg-containing compound, A1-containing compound and Ti-containing compound used as raw materials as an oxide. It is preferable that each is in the following range in terms of solid matter with respect to 100 parts by mass. That is, the binder is preferably about 0.2 to 0.6 parts by mass, and the pore former is preferably about 40 to 60 parts by mass.
  • the mold release agent is preferably about 0.2 to 0.7 parts by mass, the antifoaming agent is preferably about 0.5 to 1.5 parts by mass, and the peptizer is preferably 0.5 to 1.5 parts by mass. It is preferable to use about part by mass.
  • the mixture to which the above-mentioned forming aid has been added is mixed, kneaded and plasticized so as to be extrudable, and then formed into a honeycomb body by extrusion.
  • a known method can be used as the extrusion method, and the shape of the honeycomb cell may be any of a circle, an ellipse, a rectangle, and a triangle.
  • the overall form of the honeycomb formed body may be either a cylindrical body or a rectangular tube body.
  • the formed honeycomb body is preferably dried and then 1 0 0 0 to 1 7 0 0 04010147
  • Firing is carried out at ° C, preferably 1250-1500 ° C.
  • the firing atmosphere is not particularly limited, and an oxygen-containing atmosphere such as air that is usually employed is preferable.
  • the firing time may be fired until the sintering proceeds sufficiently, and usually about 1 to 20 hours is employed.
  • pre-sintering may be performed by a moderate temperature increase of about 10 to 30 hours, preferably in a temperature range of about 500 to 1000 ° C, if necessary. Can alleviate the stress in the sintered body that causes cracks when aluminum magnesium titanate is formed, and suppress the generation of cracks in the sintered body to obtain a uniform sintered body. be able to.
  • the sintered body thus obtained has the following composition: Mg x A 1 2 (1 _X ) T i ( 1 + x ) 0 5 (where 0 ⁇ ⁇ 1)
  • the Si component contained in the alkali feldspar is aluminum magnesium titanate in which the crystal lattice of aluminum titanate is dissolved.
  • such a sintered body has excellent heat resistance and low thermal expansion coefficient.
  • the sintered body has excellent thermal decomposition resistance and high mechanical strength. Become a unity.
  • the honeycomb film made of this sintered body has a thin wall with a wall thickness of, for example, 0.2 to 0.6 mm, preferably 0.3 to 0.48 mm, and a cell density of, for example, 15 to 47 cells Z cm 2 . It has a ⁇ two-cam structure.
  • the porosity of the partition walls for example 30-7 0%, preferably 40 to 60%, the thermal expansion coefficient, for example 3. 0X 10 - 6 ⁇ "'or less, preferably 1. 5X 10- 6 ⁇ - 1 below
  • This 820-cam filter can be used stably because the thermal decomposition reaction of aluminum magnesium titanate is suppressed even at high temperatures from room temperature to about 1600 ° C.
  • FIG. 1 is a perspective view of an example of an exhaust gas purification honeycomb fill according to the present invention.
  • Fig. 2 is a schematic diagram showing the end face of the honeycomb fill shown in Fig. 1.
  • Fig. 3 shows the honeycomb film shown in Fig. 2. It is a schematic diagram of the cross section in the AA line of Irk.
  • the exhaust gas-purifying honeycomb fill 1 is alternately plugged with plugging materials 4 and 5 at both the upstream and downstream ends of the honeycomb fill consisting of through-holes 3 made up of a number of partition walls 2.
  • plugging materials 4 and 5 at both the upstream and downstream ends of the honeycomb fill consisting of through-holes 3 made up of a number of partition walls 2.
  • the through hole 3 is closed so that the closing materials 4 and 5 are in a lattice shape, and attention is paid to each through hole 3.
  • either the upstream or downstream end is closed by the closing materials 4 and 5.
  • the exhaust gas to be purified is passed through the through holes on the upstream side of the honeycomb body.
  • the Exhaust Gas Purification Yami Camfil Yu is equipped with a suitable holding material, preferably inside the can, and is used to capture and remove solid particulates (patitis liquor) mainly composed of carbon contained in the exhaust gas. Is done.
  • a suitable holding material preferably inside the can, and is used to capture and remove solid particulates (patitis liquor) mainly composed of carbon contained in the exhaust gas. Is done.
  • gas emitted from both the stationary and moving combustion sources can be targeted, but among them, as described above, the diesel engine that has the most stringent characteristics is installed. It is suitably used for purifying exhaust gas from automobiles.
  • the obtained raw material powder was pulverized to an average particle size of 10 / m or less and molded using a vacuum extrusion molding machine (manufactured by Miyazaki Tekko Co., Ltd.) to obtain a honeycomb molded body. After drying this molded body, The honeycomb filter was fired in the atmosphere at 1500 ° C. for 2 hours and then allowed to cool, whereby a honeycomb filter having a square cross section as shown in FIGS. 1 to 3 was obtained.
  • the honeycomb filter had a wall thickness of 0.38 mm, a cell density of 3 1 cells / cm 2 , an outer diameter of the cylinder of 144 mm, and a length of 1552 mm.
  • an alkali feldspar represented by the formula: 0.25 parts by weight of polyvinyl alcohol as a binder, 1 part by weight of jetylamine as a peptizer, 0.5 parts by weight of polypropylene glycol as an antifoaming agent, and As a pore agent, 50 parts by mass of activated carbon having a particle size of 50 to 80 m was added, mixed for 3 hours by a pole mill, and then dried by a dryer at 120 ° C for 12 hours or more to obtain a raw material powder. .
  • Example 1 Using the obtained raw material powder, pulverization, molding, drying, and firing were performed in the same manner as in Example 1 to obtain a honeycomb fill having the same shape as in Example 1.
  • honeycomb fill As the material for the honeycomb fill, commercially available carbide powder (made by Showa Denko KK, trade name: show serum), cordierite powder (2 Mg 0 ⁇ 2 A 1 2 0 3. ⁇ 5 S i 0 2 ), And aluminum titanate powder (A 1 2 0 3 ⁇ T i 0 2 ) were used, and a sintered ceramic body having the same shape as in Example 1 was obtained from each of these materials by the existing method.
  • a honeycomb made of silicon carbide is referred to as Comparative Example 1
  • a honeycomb made of cordierite is set as Comparative Example 2
  • a honeycomb made of aluminum titanate is set as Comparative Example 3.
  • the porosity (%), the thermal expansion coefficient from room temperature to 80 ° C. (XI 0 -3 ⁇ 4- ′), The thermal shock resistance (° C), softening temperature (° C), and compressive strength (MPa) measured by the underwater dropping method were measured and the results are shown in Table 1.
  • the porosity is JISRI 6 3 4, the thermal expansion coefficient is JISRI 6 1 8, the thermal shock resistance is JISR 1 6 4 8, and the softening temperature is J T JP2004 / 010147
  • each of the honeycombs of Examples 1 and 2 and Comparative Examples 1 and 2 has a porosity within a range of 40 to 60% sufficient for mounting and a compressive strength. keeping.
  • the honeycombs of Examples 1 and 2 both have a much smaller thermal expansion coefficient than that of Comparative Example 1, and have a much higher softening temperature than that of Comparative Example 2.
  • the thermal shock resistance it can be seen that the 820 cam sintered bodies of Examples 1 and 2 have extremely higher characteristics than those of Comparative Examples 1 and 2.
  • Samples of vertical 1 O mm X horizontal 1 O mm X length 1 O mm were cut out from the honeycomb filters of Examples 1 and 2 and maintained in a high temperature atmosphere of 1 100 X.
  • a thermal decomposition resistance test was performed by examining the change over time in the residual rate a (%).
  • the residual rate of aluminum magnesium titanate is measured by X-ray diffraction measurement (XR D
  • the strength ratio R 0 of aluminum magnesium titanate to rutile was determined in the same manner for the sintered body before heat treatment at 1 1 0 0. Then, using R and R Q obtained by the above method was determined titanate Arumini ⁇ beam magnesiate ⁇ beam residual ratio monument ⁇ %) from the following equation.
  • the residual rate of aluminum titanate was determined from the X-ray diffraction measurement (XRD) spectrum by the following method.
  • the strength ratio r fl of aluminum titanate to rutile was also determined for the sintered body before heat treatment at 110 ° C. by the same method. Then using the r and r Q obtained by the above method to determine the residual ratio of aluminum titanate beta (%) from the following equation.
  • Example 1 and 2 For each honeycomb-shaped sintered body of Examples 1 and 2 and Comparative Example 3, the residual ratio of each crystal (Examples 1 and 2 is aluminum magnesium titanate, Comparative Example 3 is aluminum titanate) is / 3.
  • the change over time is shown as a graph in FIG.
  • FIG. 4 it can be seen that Examples 1 and 2 maintain a higher residual ratio for a longer time than Comparative Example 3 and have superior thermal decomposition resistance.
  • FIG. Although the residual rate is slightly lower, it can be seen that the residual rate of Example 2 is still maintained at a high level, and the thermal decomposition resistance is further superior to that of Example 1.
  • Examples 3-8
  • Al feldspar represented by the chemical formula: (Na a6 K a4 ) A 1 Si 3 0 8 and 0.25 parts by mass of polyvinyl alcohol as a binder
  • Table 3 also describes the X value in the composition formula: Mg x Al 2 (ix) i (1 + x) 0 5 .
  • the sintered bodies of Examples 3 to 8 each have a porosity within a range of 40 to 60% sufficient for mounting and a compressive strength, and have a small thermal expansion coefficient. It can be seen that it has high thermal shock resistance and high softening temperature.
  • the sintered bodies of each example have excellent thermal decomposition resistance. Industrial applicability
  • the honeycomb fill material comprising an aluminum titanate magnesium sintered body according to the present invention has excellent heat resistance, high thermal decomposition resistance and high mechanical strength while maintaining a small thermal expansion coefficient and thermal shock resistance. And has significantly superior characteristics compared to conventional filter materials.
  • the exhaust gas honeycomb filter of the present invention is suitably used for removing solid fine particles in the exhaust gas from any combustion source of the stationary body and the moving body. Above all, as mentioned above, it is most suitable for the purification of exhaust gas from automobiles equipped with the diesel engine that requires the most stringent characteristics.

Abstract

A honeycomb filter for removing fine solid particles in an exhaust gas, characterized in that the material of the honeycomb filter is an aluminum magnesium titanate sintered compact produced by firing at 1000 to 1700°C a formed product from a mixture containing an Mg-containing compound, an Al-containing compound and a Ti-containing compound at a metal component ratio similar to that of Mg, Al and Ti in an aluminum magnesium titanate represented by the empirical formula: MgxAl2(1-x)Ti(1+x)O5, wherein 0 < x < 1, or a mixture containing 100 parts by mass in terms of oxides of the above-mentioned mixture and 1 to 10 parts by mass of an alkali feldspar represented by the empirical formula: (NayK1-y)AlSi3O8, wherein 0 ≤ y ≤ 1; and a method for manufacturing the honeycomb filter. The honeycomb filter is excellent in the resistance to heat and thermal shock and exhibits high resistance to thermal decomposition and great mechanical strength, and thus can be used with high stability at high and fluctuating temperatures.

Description

明 細 書 排ガス浄化ハニカムフィルタ及びその製造方法 技術分野  Description Exhaust gas purification honeycomb filter and manufacturing method thereof Technical Field
本発明は、 ディ一ゼルエンジンなどの排ガス中に含まれる炭素を主成分とする 固体微粒子 (パティキュレー卜) を捕捉、 除去するための排ガス浄化ハニカムフ ィル夕及びその製造方法に関する。 背景技術  The present invention relates to an exhaust gas purifying honeycomb file for capturing and removing solid particulates (particulates) mainly containing carbon contained in exhaust gas such as diesel engines, and a method for manufacturing the same. Background art
自動車などのディ一ゼルェンジンなどの排ガス中には炭素を主成分とするパテ ィキュレートがかなりの濃度 (1 5 0〜2 5 O m g /Nm3) で含まれており、 窒素酸化物などとともに環境問題の一因となっているため、 これを効率的、 経済 的に除去することが急務とされている。 従来から、 D P F (ディーゼルパティ キュレート フィル夕) などと呼ばれる、 このような排ガス中の固体微粒子を捕 捉、 除去するための各種のフィル夕が提案されている。 The exhaust gas such as di one Zeruenjin such as an automobile includes a significant concentration of putty Ikyureto composed mainly of carbon (1 5 0~2 5 O mg / Nm 3), environmental problems with such as nitrogen oxides Therefore, it is urgently required to remove this efficiently and economically. Conventionally, various types of fills, called DPF (Diesel Particulate Fill), have been proposed to capture and remove solid particulates in such exhaust gas.
例えば、.特開,昭 5 7— 3 5 9 1 8号公報ゃ特開平 5— 2 1 4 9 2 2号公報には、 ハニカムフィル夕の両端部を複数の流路の上流側又は下流側端部で交互に閉塞さ せた排ガスフィルタが開示されている。 この種のハニカムフィル夕では、 浄化す べき燃焼排ガスを、 フィル夕の上流側の開口に供給し、 フィルタの隔壁を通過さ せて 排ガス中のパティキュレートを隔壁により捕捉 除去した後、 フィル夕の 下流側の開口から浄化後の排ガスを取り出す構成を有している。  For example, Japanese Patent Application Laid-Open No. 5-7-3 5 9 1 8 and Japanese Patent Application Laid-Open No. 5-2 1 4 9 2 2 describe that both ends of the honeycomb fill are upstream or downstream of a plurality of flow paths. An exhaust gas filter in which the ends are alternately closed is disclosed. In this type of honeycomb fill, the flue gas to be purified is supplied to the upstream opening of the fill, and the particulates in the flue gas are captured and removed by the bulkhead through the filter bulkhead. The exhaust gas after purification is taken out from the downstream opening.
一方、 上記ハニカムフィルタの材質としては、 高い耐熱性とともに急熱や急冷 の環境下におかれるために、 熱膨張係数が小さく、 かつ大きい耐熱衝撃性が要求 されることから、 炭化ケィ素やコージエライトの材料などが提案、 使用されてい る。 しかしながら、 これらの材料は、 排ガスフィルタとしてなお充分な特性を有 するものではない。  On the other hand, the honeycomb filter material is required to have a high thermal shock resistance as well as a high thermal shock resistance as well as a low thermal expansion coefficient and a high thermal shock resistance. Materials are proposed and used. However, these materials still do not have sufficient characteristics as exhaust gas filters.
すなわち、 排ガスフィル夕では、 捕捉された未燃焼の炭素質の固体微粒子が異 常堆積したときに該炭素が発火して燃焼し、 局所的に 1 4 0 0〜1 5 0 O tに達 する急激な温度上昇が起こる。 このような場合、 炭化ケィ素材料のフィル夕は、 フィル夕の各所に温度分布を生じ、 熱膨張係数が 4. 2 X 1 0— 6K— 1とそれほど 小さくないために、 材質にかかる熱応力や熱衝撃によって亀裂が発生し部分的に 破損を起こす。 一方、 コ一ジエライト材料のフィル夕の場合には、 熱膨張係数が 0 . 6 - 1 . 2 X 1 0—6Κ—1と小さいので熱衝撃による亀裂の問題よりはむしろ、 融点が 1 4 0 0〜1 4 5 0 °Cとそれほど高くないために、 上記炭素の異常燃焼に より部分的に溶損を生じる問題が大きい。 In other words, in the exhaust gas fill, when the trapped unburned carbonaceous solid fine particles are abnormally deposited, the carbon ignites and burns, and reaches 1400 to 1500 Ot locally. A sudden temperature rise occurs. In such a case, because Phil evening carbide Kei material cost results in a temperature distribution throughout the fill evening, the thermal expansion coefficient of 4. 2 X 1 0- 6 K- 1 and not so small, the heat applied to the material Cracks occur due to stress and thermal shock, causing partial damage. On the other hand, in the case of cordierite material, the coefficient of thermal expansion is as small as 0.6-1.2 X 1 0-6Κ- 1 , so the melting point is 1 4 0 rather than the problem of cracking due to thermal shock. Since it is not so high as 0 to 1450 ° C, the problem of partial melting due to abnormal combustion of the carbon is large.
上記のようなフィル夕の破損や溶損により排ガスフィル夕内部に欠陥が生じる と、 フィル夕における炭素の捕集効率が低下するとともに、 フィル夕にかかる排 ガスの圧力が欠陥部に過剰な負荷となり、 更に新たな破損を誘発し、 結果として 排ガスフィル夕全体が機能しなくなる。  If a defect occurs inside the exhaust gas fill due to damage or melting of the fill as described above, the carbon capture efficiency of the fill will be reduced, and the exhaust gas pressure applied to the fill will be excessively loaded on the defective part. As a result, new breakage is induced, and as a result, the entire exhaust gas fill is not functioning.
上記ハニカムフィルタの材料として、 WO 0 1 / 0 3 7 9 7 1号公報には、 炭 化ケィ素ゃコージェライ卜とともに、 チタン酸アルミニウムが提案されている。 チタン酸アルミニウムは、 1 7 0 0 °Cを越える高温での耐熱性と、 小さい熱膨張 係数と優れた耐熱衝撃性を有するものである。 しかし、 一方においては、 チタン 酸アルミニウムは、 通常 8 0 0〜 1 2 8 0 °Cの温度範囲に分解領域を有すること から、 このような温度範囲を含む変動した温度領域での安定した使用ができない という大きな問題点を有する。 更に、 結晶構造の異方性が大きいために結晶粒界 に熱応力によるズレが生じ易いため機械的強度も大きくないという難点があり、 壁厚の薄いセル密度の大きいハニカムの製造や、 また自動車などに搭載され高温 下で機械的振動などの負荷がかかる排ガスフィルタとしての使用には問題を残し ていた。  As a material for the above-mentioned honeycomb filter, WO 0 1/0 3 7 9 7 1 proposes aluminum titanate together with carbonized key cordierite. Aluminum titanate has heat resistance at a high temperature exceeding 1700 ° C., a small thermal expansion coefficient, and excellent thermal shock resistance. However, on the other hand, aluminum titanate usually has a decomposition region in the temperature range of 80 ° C. to 1280 ° C., so that stable use in a fluctuating temperature range including such a temperature range is possible. It has a big problem that it cannot be done. Furthermore, since the crystal structure has a large anisotropy, the crystal grain boundaries are likely to be displaced due to thermal stress, so the mechanical strength is not large. However, there was a problem in using it as an exhaust gas filter that was loaded in a high-temperature environment and subjected to loads such as mechanical vibration at high temperatures.
本発明は、 耐熱性に優れ、 小さい熱膨張係数と耐熱衝撃性も優れ、 かつ変動す る高温下でも熱分解などを起こさず、 また機械的強度も大きいために長期間安定 して使用でき、 ディーゼルエンジンなどの排ガス中に含まれる微粒炭素などのノ° ティキユレ一トを高い効率で捕捉、 除去できる排ガス浄化ハニカムフィルタ及び その製造方法を提供する。 発明の開示 本発明は、 上記課題を解決するために鋭意検討したところ、 Mg含有化合物、 A 1含有化合物及び T i含有化合物を特定の割合で含有する混合物、 又は該混合 物に対して、 好ましくは特定のアル力リ長石を特定量添加した混合物を焼成して 得られるチタン酸アルミニウムマグネシウム焼結体を使用した排ガス浄化ハニカ ムフィル夕は、 従来のチタン酸アルミニウム系セラミクス本来の優れた耐熱性、 小さい熱膨張係数、 及び大きい耐熱衝撃性を有しながら、 かつ熱分解耐性を高め、 機械的強度も改善されるという新規な知見に基づいて完成されたものである。 かかる本発明は、 主に次の要旨を有するものである。 The present invention is excellent in heat resistance, has a small coefficient of thermal expansion and thermal shock resistance, does not cause thermal decomposition even under fluctuating high temperatures, and has high mechanical strength, so it can be used stably for a long period of time. Provided are an exhaust gas purifying honeycomb filter capable of capturing and removing particulates such as fine carbon contained in exhaust gas of a diesel engine or the like with high efficiency, and a manufacturing method thereof. Disclosure of the invention The present invention has been intensively studied to solve the above-mentioned problems. As a result, it is preferable that the Mg-containing compound, the A1-containing compound, and the Ti-containing compound be contained in a specific ratio, or the mixture, Exhaust gas purification honeycomb fill using a sintered body of aluminum magnesium titanate obtained by firing a mixture containing a certain amount of al-rich iron feldspar is superior in heat resistance and small thermal expansion inherent in conventional aluminum titanate ceramics. It has been completed based on the new knowledge that it has a coefficient and a large thermal shock resistance, and has improved thermal decomposition resistance and improved mechanical strength. The present invention mainly has the following gist.
(1) 燃焼排ガスから炭素を主成分とする固体微'粒子を除去するためのハニカム フィルタであって、 該八ニカムフィル夕が、 組成式: MgxA 12(1_X)T i (I+X)05 (1) A honeycomb filter for removing solid fine particles containing carbon as a main component from combustion exhaust gas, wherein the eighticum filter is composed of Mg x A 1 2 (1 _ X) T i (I + X) 0 5
(式中、 0〈xく 1) で表わされるチタン酸アルミニウムマグネシウムにおける M g, A 1及び T iの金属成分比と同様の金属成分比率で、 Mg含有化合物、 A 1 含有化合物及び T i含有化合物を含有する混合物を 1000〜 1700°Cで焼成 したチタン酸アルミニウムマグネシウム焼結体であることを特徵とする排ガス浄 化ハニカムフィル夕。 (In the formula, 0 <x <1) In the magnesium aluminum titanate represented by 0 <x <1>, the metal component ratio is the same as the metal component ratio of Mg, A1 and Ti, and the Mg-containing compound, A1-containing compound and Ti An exhaust gas purification honeycomb fill characterized by being a sintered aluminum magnesium titanate sintered at 1000 to 1700 ° C from a mixture containing a compound.
(2) ハニカムフィル夕の材質が、 組成式: MgxA 12(1_X)T i (1+x)05 (式中、 0 <χ<1) で表わされるチタン酸アルミニウムマグネシウムにおける Mg, A 1及 び T iの金属成分比と同様の金属成分比率で、 Mg含有化合物、 A 1含有化合物 及び T i含有化合物を含む混合物を酸化物換算量として 100質量部と、 組成 式: (NayK,— y) A 1 S ΐ3Οδ (式中、 0≤y≤l) で表わされるアルカリ長石 1〜10質量部とを含有する混合物を 1000〜1700でで焼成したチタン酸 アルミニウムマグネシゥム焼結体であることを特徴とする排ガス浄化ハニカムフ ィルタ。 (2) The material of the honeycomb fill is compositional formula: Mg x A 1 2 (1 _ X) T i (1 + x) 0 5 (where 0 <χ <1) A metal component ratio similar to the metal component ratio of Mg, A 1 and Ti, and 100 parts by mass of a mixture containing the Mg-containing compound, the A 1 -containing compound and the Ti-containing compound as an oxide equivalent, and a composition formula: (Na y K, — y ) A 1 S ΐ 3 δ δ (where 0≤y≤l) and 1-10 parts by mass of alkali feldspar expressed by titanic acid calcined at 1000-1700 An exhaust gas purification honeycomb filter, characterized by being an aluminum magnesium sintered body.
(3) ハニカムフィル夕が、 壁厚 0. 2〜0. 6 mmゝ セル密度 15〜47セル / c m2を有し、 かつ隔壁の気孔率が 40〜 60 %、 熱膨張係数が 3. 0 X 10一6 K一1以下である上記 (1) 又は (2) に記載の排ガス浄化ハニカムフィル夕。(3) Honeycomb fill has a wall thickness of 0.2 to 0.6 mm ゝ, a cell density of 15 to 47 cells / cm 2 , a partition wall porosity of 40 to 60%, and a thermal expansion coefficient of 3.0. The exhaust gas purifying honeycomb filter according to (1) or (2), wherein X 10 16 K 1 or less.
(4) 組成式: MgxAl2MT i (Hx>05 (式中、 0<xく 1) で表わされるチタン 酸アルミニウムマグネシウムにおける Mg, A 1及び T iの金属成分比と同様の 金属成分比率で、 Mg含有化合物、 A 1含有化合物及び T i含有化合物を含む混 合物、 又は該混合物を酸化物換算量として 1 0 0質量部と組成式: (N ayKト y) A 1 S i 308 (式中、 0≤y≤l ) で表わされるアルカリ長石を 1〜 1 0質量 部含有する混合物を調製し、 該混合物に成形助剤を加えて混練して押出成形可能 に可塑ィ匕し、 ハニカムに押出成形後、 1 0 0 0〜1 7 0 0 °Cにて焼成すること を特徴とする排ガス浄化ハニカムフィル夕の製造方法。 (4) Composition formula: Mg x Al 2M T i ( Hx> 0 5 , where 0 <x <1) The same metal as the ratio of Mg, A 1 and Ti in the aluminum magnesium titanate In terms of component ratio, a mixture containing Mg-containing compounds, A1-containing compounds, and Ti-containing compounds 100 parts by mass of the compound or the mixture as an oxide equivalent and an alkali represented by the composition formula: (N a y K to y ) A 1 Si 3 0 8 (where 0≤y≤l) A mixture containing 1 to 10 parts by weight of feldspar is prepared, and a molding aid is added to the mixture and kneaded to plasticize it so that it can be extruded. After extrusion into a honeycomb, 100 to 170 A method for producing an exhaust gas purifying honeycomb fill, characterized by firing at 0 ° C.
( 5 ) 前記混合物に含まれる各成分の平均粒子径が 3 0 xm以下である上記 (4 ) に記載の排ガス浄ィ匕ハニカムフィル夕の製造方法。  (5) The method for producing an exhaust gas purification honeycomb filter according to the above (4), wherein the average particle size of each component contained in the mixture is 30 xm or less.
( 6 ) 上記 ( 1 ) 〜 ( 3 ) のいずれかに記載された排ガス浄化ハニカムフィルタ を缶体内に装備したことを特徴とする排ガス浄化装置。  (6) An exhaust gas purification apparatus comprising the can body equipped with the exhaust gas purification honeycomb filter described in any one of (1) to (3) above.
( 7 ) ディーゼルエンジンを搭載した自動車からの排ガス 化に用いる上記 (6 ) に記載の排ガス浄化装置。 本発明によるチタン酸アルミニウムマグネシウム焼結体のハニカムフィル夕が、 上記のように本来の耐熱性と小さい熱膨張係数を有し、 かつ耐熱衝撃性に優れて いながら、 何故に高い熱分解耐性、 そして大きい機械的強度を有するかについて は、 必ずしも明確でないが、 ほぼ下記の理由によるものと推測される。  (7) The exhaust gas purification device according to (6), which is used for exhaust gas generation from an automobile equipped with a diesel engine. The honeycomb film of aluminum magnesium titanate sintered body according to the present invention has the original heat resistance and a small coefficient of thermal expansion as described above, and is excellent in thermal shock resistance. Whether it has a high mechanical strength is not necessarily clear, but is presumably due to the following reasons.
すなわち、 チタン酸アルミニゥムマグネシゥムは、 チタン酸アルミニウムより もその生成温度が低い特性を有するが、 この生成温度が低いことにより、 チタン 酸アルミニウムマグネシウムの熱分解反応速度は小さくなり、 熱分解耐性が向上 したものと考えられる。 そもそも、 熱分解反応速度は分解相の核の生成速度と成 長速度の積に比例するが 分解相の核の生成速度は過冷却度 (平衡状態の温度か らの差) が大きくなると増加し、 一方、 核の成長速度はカチオンの拡散係数に依 存するため、 温度が高くなる (過冷却度が小さくなる) と増加する。 これらは互 いに相反する因子であるので、 熱分解反応速度はある過冷却度のところで極大に なることを意味する。 ここで、 チタン酸アルミニウムマグネシウムとチタン酸ァ ルミ二ゥムの構成カチオンの同じ温度における拡散係数をほぼ同じと仮定すれば、 平衡分解温度が高いほど、 また過冷却度が大きいほど熱分解反応速度の極大値は 大きくなると考えられる。 チタン酸アルミニウムマグネシウムの生成温度はチタ ン酸アルミニウムより約 1 0 o cも低いので、 熱分解反応速度の極大値を与える JP2004/010147 In other words, aluminum titanate magnesium has a characteristic that its generation temperature is lower than that of aluminum titanate. However, this generation temperature lowers the thermal decomposition reaction rate of aluminum magnesium titanate, which causes thermal decomposition. It is considered that resistance has improved. In the first place, the thermal decomposition reaction rate is proportional to the product of the decomposition phase nucleation rate and the growth rate, but the decomposition phase nucleation rate increases as the degree of supercooling (difference from the temperature in the equilibrium state) increases. On the other hand, the growth rate of the nucleus depends on the diffusion coefficient of the cation, and therefore increases as the temperature increases (the degree of supercooling decreases). Since these are mutually contradictory factors, it means that the thermal decomposition reaction rate reaches a maximum at a certain degree of supercooling. Here, assuming that the diffusion coefficients at the same temperature of the constituent cations of aluminum magnesium titanate and aluminum titanate are almost the same, the higher the equilibrium decomposition temperature and the greater the degree of supercooling, the higher the thermal decomposition reaction rate. The maximum value of is considered to increase. The production temperature of magnesium aluminum titanate is about 10 oc lower than that of aluminum titanate, giving a maximum value for the thermal decomposition reaction rate. JP2004 / 010147
5 過冷却度はチタン酸アルミニウムのそれに比べてかなり小さくなる。 結果として、 チタン酸アルミニゥムマグネシウムの熱分解反応が抑制されて、 優れた熱分解耐 性を示すものと考えられる。 5 The degree of supercooling is considerably smaller than that of aluminum titanate. As a result, it is considered that the thermal decomposition reaction of aluminum magnesium titanate is suppressed and exhibits excellent thermal decomposition resistance.
また、 チタン酸アルミニウムマグネシウムを形成する混合物にアルカリ長石が 添加される場合には、 チタン酸アルミニウムマグネシウムが生成する温度付近か ら液相となるアルカリ長石が存在するために、 チタン酸アルミニウムマグネシゥ ムの生成反応が液相下で起こり、 緻密な結晶が形成され機械的強度が向上する。 そして、 アルカリ長石に含まれる S i成分は、 チタン酸アルミニウムマグネシゥ ムの結晶格子に固溶するが、 チタン酸マグネシウム結晶系よりチタン酸アルミ二 ゥム結晶系に優先的に固溶する。 これは擬ブルツカイト型結晶構造のなかでもチ タン酸アルミ二ゥムが結晶構造を構成する八面体の歪みが大きく、 結晶学的異方 性が著しいために、 チタン酸マグネシウムよりも結晶構造が不安定なためである。 すなわち、 S iは、 チタン酸アルミニウムの結晶格子に優先的に固溶し、 主と して A 1のサイトを占有する。 このとき、 4価の S iは, 本来 3価の電荷バラン スが保たれている A 1のサイトを単独で置換するよりも系内にある 2価の M gと ペアとなって、 S iと M gの両者により! ^一タル 6価となり、 隣接する 2つの A 1 ( I タル 6価) と置換する。 この点については、 各カチオンのイオン半径の 相関からも説明できる。  In addition, when alkali feldspar is added to the mixture that forms aluminum magnesium titanate, there is alkali feldspar that becomes a liquid phase from around the temperature at which aluminum magnesium titanate is formed, so aluminum titanate magnesium Occurs in the liquid phase, forming dense crystals and improving mechanical strength. The Si component contained in the alkali feldspar dissolves in the crystal lattice of aluminum titanate magnesium, but preferentially dissolves in the aluminum titanate crystal system over the magnesium titanate crystal system. This is due to the fact that the octahedron in which the aluminum titanate constitutes the crystal structure is large and the crystallographic anisotropy is remarkable in the pseudo-wurtzite type crystal structure, so that the crystal structure is less than that of magnesium titanate. This is because it is stable. That is, Si is preferentially dissolved in the crystal lattice of aluminum titanate and mainly occupies the A 1 site. At this time, the tetravalent S i is paired with the divalent Mg in the system rather than replacing the A 1 site, which originally maintained the trivalent charge balance, by itself. And both Mg! ^ It becomes hexatal hexavalent, and replaces two adjacent A 1 (I tar hexavalent). This point can also be explained from the correlation of the ionic radii of each cation.
一方、 S i 4+と M g 2+のイオン半径はそれぞれ 0 . 5 4 Aと 0 . 8 6人、 であ り、 両者の平均イオン半径は 0 . 7 O Aとなることから、 A 1 3+のイオン半径の 0 . 6 8 Aと近似したものとなり、 S iと M gのペアによる A 1の占有は S i単 独の置換よりエネルギー的にも無理のない固溶状態であると考えられる。 かくし て、 S iと M gの同時存在によって、 高温下でも各カチオン間のイオンの拡散を 抑制でき、 安定な結晶構造をとるため、 更に優れた熱分解耐性がもたらされるも のと考えられる。 図面の簡単な説明 On the other hand, S i 4+ and M g each 2+ ion radius 0. 5 4 A and 0.8 six, der is, the average ionic radius of the two from 0.7 to become OA, A 1 3 The ionic radius of + is approximated to 0.6 8 A, and the occupancy of A 1 by a pair of S i and Mg is considered to be a solid solution state that is not too difficult in terms of energy than substitution of a single S i. It is done. Thus, the simultaneous presence of Si and Mg can suppress the diffusion of ions between cations even at high temperatures and form a stable crystal structure, which is considered to provide even better thermal decomposition resistance. Brief Description of Drawings
図 1 本発明の排ガス浄化ハニカムフィル夕の一例の一部を切り欠いて示した 斜視図。 P T/JP2004/010147 FIG. 1 is a perspective view of a part of an example of an exhaust gas purifying honeycomb filter according to the present invention. PT / JP2004 / 010147
6 図 2 図 1の八二カムフィルタの端面を示す模式図。 6 Figure 2 Schematic diagram showing the end face of the 820 cam filter of Figure 1.
図 3 図 2のハニカムフィル夕の A— A線における断面の模式図。  Fig. 3 A schematic diagram of a cross section taken along the line AA of the honeycomb fill shown in Fig. 2.
図 4 本発明の実施例 1、 2の各焼結体についてのチタン酸アルミニウムマグ ネシゥムの残存率 及び比較例 3の焼結体についてのチタン酸アルミニウムの 残存率 βの経時変化を示す。  FIG. 4 shows the time-dependent changes in the residual rate of aluminum titanate magnesium for the sintered bodies of Examples 1 and 2 of the present invention and the residual rate β of aluminum titanate for the sintered body of Comparative Example 3.
符号の説明  Explanation of symbols
1 : ハニカムフィルタ 2 : 隔壁  1: Honeycomb filter 2: Bulkhead
3 : 貫通孔 4、 5 : 閉塞材 発明を実施するための最良の形態  3: through-holes 4, 5: blocking material best mode for carrying out the invention
本発明では、 ハニカムフィル夕の材質として、 組成式: MgxA 12(1.X)T i (1+x) 05 (式中、 0く xく 1) で表わされるチタン酸アルミニウムマグネシウムにおけ る Mg, A 1及び T iの金属成分比と同様の金属成分比率で含む、 Mg含有化合 物、 A 1含有化合物及び T i含有化合物を含有する混合物、 又は該混合物を酸化 物換算量として 100質量部と組成式: (NayK ) A 1 S i 308 (式中、 0≤ y≤l) で表わされるアルカリ長石を 1〜10質量部含有する混合物を調製し、 該混合物を 1000〜1700 X:で焼成したチタン酸アルミニウムマグネシゥム 焼結体が使用きれる。 In the present invention, as the material of the honeycomb fill, the composition of Mg x A 1 2 ( 1.X) T i (1 + x) 0 5 (where 0 × x 1) is represented by aluminum magnesium titanate. Mg-containing compound, mixture containing A1-containing compound and Ti-containing compound containing the same metal component ratio as that of Mg, A1 and Ti A mixture containing 1 to 10 parts by mass of alkali feldspar represented by 100 parts by mass and a composition formula: (NayK) A 1 Si 3 0 8 (where 0≤ y≤l) is prepared. ˜1700 X: Sintered aluminum titanate magnesium sintered body can be used.
原料として用いる上記 M g含有化合物、 A 1含有化合物、 及び T i含有化合物 としては、 焼成によりチタン酸アルミニウムマグネシウムを合成できる成分であ れば特に限定なく使用できる。 Mg含有化合物., A 1含有化合物、 及び T i含有 化合物としては、 それぞれ別の化合物でなくてもよく、 2種以上の金属成分を含 む化合物であってもよい。 これらの化合物は、 通常、 アルミナセラミクス、 チタ 二アセラミクス、 マグネシアセラミクス、 チタン酸アルミニウムセラミクス、 チ タン酸マグネシウムセラミクス、 スピネルセラミクス、 チタン酸アルミニウムマ グネシゥムセラミクスなどの各種セラミクスの原料として用いられるもののうち から適宜選択して用いればよい。 このような化合物の具体例としては、 A 1203、 T i02、 MgOなどの酸化物、 MgAl 204、 Al2T i 05、 MgT i 205、 M gと T iを含む各スピネル型構造体などの 2種類以上の金属成分を含む複合酸化 P T/JP2004/010147 The Mg-containing compound, the A1-containing compound, and the Ti-containing compound used as raw materials can be used without particular limitation as long as they are components capable of synthesizing aluminum magnesium titanate by firing. The Mg-containing compound, the A1-containing compound, and the Ti-containing compound may not be separate compounds, but may be compounds containing two or more metal components. These compounds are usually used as raw materials for various ceramics such as alumina ceramics, titania ceramics, magnesia ceramics, aluminum titanate ceramics, magnesium titanate ceramics, spinel ceramics, aluminum titanate magnesium ceramics, etc. Any of these may be selected as appropriate. Specific examples of such compounds include oxides such as A 1 2 0 3 , T i0 2 , MgO, MgAl 2 0 4 , Al 2 T i 0 5 , MgT i 2 0 5 , Mg and T i. Composite oxidation containing two or more metal components such as each spinel structure PT / JP2004 / 010147
物、 A l、 T i及び Mgからなる群から選ばれた 1種又は 2種以上の金属成分を 含む化合物 (炭酸塩、 硝酸塩、 硫酸塩など) などを例示できる。 And compounds containing one or more metal components selected from the group consisting of Al, Ti, and Mg (carbonates, nitrates, sulfates, etc.).
Mg含有化合物、 A 1含有化合物、 及び T i含有化合物の混合割合はこれらの 化合物に含まれる金属成分の比率が、 上記した組成式: MgxA 12(1_X)T i (M5 (式中、 0〈χ〈1であり、 好ましくは 0. 2≤x≤0. 8である) で表わされる チタン酸アルミニウムマグネシウムにおける Mg, A 1及び T iの金属成分比と 同様の比率、 好ましくは実質的に同一の比率となるようにすればよい。 このよう な割合で上記各化合物を混合して用いることによって、 原料として用いた混合物 における金属成分比と同様の金属成分比を有するチタン酸アルミニウムマグネシ ゥムを得ることができる。 The mixing ratio of the Mg-containing compound, the A1-containing compound, and the Ti-containing compound is the ratio of the metal components contained in these compounds as described above: Mg x A 1 2 (1 _X ) T i ( M5 (wherein 0 <χ <1, preferably 0.2≤x≤0.8) A ratio similar to the metal component ratio of Mg, A 1 and Ti in aluminum magnesium titanate By using a mixture of the above compounds at such a ratio, it has a metal component ratio similar to the metal component ratio in the mixture used as a raw material. Aluminum titanate magnesium can be obtained.
本発明のハニカムフィルタを得る場合、 上記した Mg含有化合物、 A 1含有化 合物及び T i含有化合物を含む混合物に対して、 好まし <は添加剤としてアル力 リ長石を加えられる。 アル力リ長石は、 チタン酸アルミニウムマグネシウムの焼 結助剤であるとともに、 チタン酸アルミニウムマグネシウムに S i成分を添加す る役割を兼ねるものであり、 組成式: (NayK,.y) A 1 S i 308で表わされる。 式中、 yは、 0≤y≤lを満足し、 0. l≤y≤lが好ましく、 特に、 0. 15 ≤y≤0. 85であるものが好ましい。 この範囲の y値を有するアルカリ長石は 融点が低く、 チタン酸アルミニウムマグネシウムの焼結促進に特に有効である。 アルカリ長石の使用量は、 原料として用いる、 Mg含有化合物、 A 1含有化合 物及び T i含有化合物の各化合物を酸化物に換算した合計値 100質量部に対し て 1〜10質量部程度とすればよく、 好ましくは 3〜 5質量部程度とするのが好 適である。 この場合の混合物を酸化物として換算した合計量とは、 上記混合物中 に含まれる水分や有機物を除去するための加熱処理を行った後、 また、 仮焼結を 行つた場合には、 仮焼結後の本焼成前の質量とする。 In order to obtain the honeycomb filter of the present invention, it is preferable to add Al feldspar as an additive to the mixture containing the Mg-containing compound, the A1-containing compound and the Ti-containing compound. Al feldspar is a sintering aid for magnesium aluminum titanate and also serves to add Si component to aluminum magnesium titanate. Composition formula: (Na y K ,. y ) A 1 S i 3 0 8 In the formula, y satisfies 0≤y≤l, preferably 0.l≤y≤l, and particularly preferably 0.15≤y≤0.85. Alkaline feldspar having a y value in this range has a low melting point and is particularly effective in promoting the sintering of aluminum magnesium titanate. The amount of alkali feldspar used should be about 1 to 10 parts by mass with respect to 100 parts by mass of the total value of each compound of Mg-containing compound, A 1 -containing compound and Ti-containing compound used as raw materials converted to oxides. The amount is preferably about 3 to 5 parts by mass. The total amount in which the mixture in this case is converted into an oxide means that after performing heat treatment for removing moisture and organic substances contained in the mixture, and when pre-sintering is performed, Let it be the mass before main firing after ligation.
Mg含有化合物、 A 1含有化合物及び T i含有化合物を含有する混合物、 又は 該混合物にアルカリ長石を加えた混合物に対して、 本発明では、 必要に応じて他 の添加剤を加えることができ、 得られる焼結体の性質を改善できる。 他の添加剤 としては、 例えば S i 02、 Z r02, F e203, MgO、 A 123、 T i 02、 C a 0、 Y203などの酸化物や Mgを含むスピネル型構造の酸化物などが挙げられる。 これらの一種又は二種以上の添加剤が上記の混合物 1 0 0質量部に対して好まし くは 1 5質量部以下添加される。 In the present invention, other additives can be added to the mixture containing the Mg-containing compound, the A1-containing compound and the Ti-containing compound, or the mixture obtained by adding alkali feldspar to the mixture, if necessary. The properties of the obtained sintered body can be improved. Other additives include, for example, oxides such as S i 0 2 , Z r0 2 , F e 2 0 3 , MgO, A 1 2 0 3 , T i 0 2 , C a 0, Y 2 0 3 , Mg An oxide having a spinel structure containing One or more of these additives are preferably added in an amount of 15 parts by mass or less with respect to 100 parts by mass of the mixture.
上記の混合物は、 充分に混合し、 粉砕される。 混合物の混合、 粉砕については、 特に限定的でなく既知の方法に従って行われる。 例えば、 ポールミル、 媒体攪拌 ミルなどを用いて行えばよい。 上記混合物の粉碎の程度は、 特に限定的でないが、 平均粒子径が好ましくは 3 0 m以下、 特に好ましくは 8〜 1 5 m以下が好適 である。 これは、 二次粒子が形成されない範囲であればできるだけ小さい方が好 適である。  The above mixture is thoroughly mixed and pulverized. The mixing and pulverization of the mixture are not particularly limited and are performed according to known methods. For example, a pole mill or a medium stirring mill may be used. The degree of the powder dust of the above mixture is not particularly limited, but the average particle size is preferably 30 m or less, particularly preferably 8 to 15 m or less. This is preferably as small as possible as long as secondary particles are not formed.
上記混合物には、 好ましくは、 成形助剤を配合することができる。 成形助剤と しては、 結合剤、 造孔剤、 離型剤、 消泡剤、 及び解こう剤などの既知のものが使 用できる。 結合剤としては、 ポリピニルアルコール、 マイクロワックスェマルジ ヨン、 メチルセルロース、 カルボキシメチルセルロースなどが好ましい。 造孔剤 としては、 活性炭、 コークス、 ポリエチレン樹脂、 でんぷん、 黒鉛などが好まし い。 離型剤としては、 ステアリン酸エマルジョンなどが、 消泡剤としては、 n— ォクチルアルコール、 ォクチルフエノキシエタノールなどが、 解こう剤としては、 ジェチルアミン、 トリェチルァミンなどが好ましい。  Preferably, a molding aid can be added to the mixture. As molding aids, known ones such as binders, pore-forming agents, mold release agents, antifoaming agents, and peptizers can be used. As the binder, polypinyl alcohol, microwax emulsion, methylcellulose, carboxymethylcellulose and the like are preferable. As the pore-forming agent, activated carbon, coke, polyethylene resin, starch, graphite and the like are preferable. As the mold release agent, stearic acid emulsion and the like are preferable, as the antifoaming agent, n-octyl alcohol, octylphenoxyethanol and the like are preferable, and as the peptizer, jetylamine, triethylamine and the like are preferable.
成形助剤の使用量については特に限定的ではないが、 本発明の場合には、 原料 として用いる M g含有化合物、 A 1含有化合物及び T i含有化合物の各化合物を 酸化物として換算した合計量 1 0 0質量部に対して、 いずれも固形物換算でそれ ぞれ以下の範囲とするのが好適である。 すなわち、 結合剤を好ましくは 0 . 2〜 0 . 6質量部程度、 造孔剤を好ましくは 4 0〜 6 0質量部程度.。 離型剤を好まし くは 0 . 2〜0 . 7質量部程度、 消泡剤を好ましくは 0 . 5〜1 . 5質量部程度、 及び解こう剤を好ましくは 0 . 5〜1 . 5質量部程度用いるのが好適である。 上記成形助剤を加えた混合物は混合、 混練して押出し成形可能に可塑化したも のを押出成形によりハニカム体に成形する。 押出成形の方法については既知の方 法が使用でき、 ハニカムのセルの形状は、 円形、 楕円形、 四角形、 三角形のいず れでもよい。 また、 ハニカム成形体の全体の形態は円筒体、 角筒体のいずれでも よい。 成形されたハニカム体は、 好ましくは乾燥し、 次いで 1 0 0 0〜 1 7 0 0 04010147 The amount of the molding aid used is not particularly limited, but in the case of the present invention, the total amount obtained by converting each compound of Mg-containing compound, A1-containing compound and Ti-containing compound used as raw materials as an oxide. It is preferable that each is in the following range in terms of solid matter with respect to 100 parts by mass. That is, the binder is preferably about 0.2 to 0.6 parts by mass, and the pore former is preferably about 40 to 60 parts by mass. The mold release agent is preferably about 0.2 to 0.7 parts by mass, the antifoaming agent is preferably about 0.5 to 1.5 parts by mass, and the peptizer is preferably 0.5 to 1.5 parts by mass. It is preferable to use about part by mass. The mixture to which the above-mentioned forming aid has been added is mixed, kneaded and plasticized so as to be extrudable, and then formed into a honeycomb body by extrusion. A known method can be used as the extrusion method, and the shape of the honeycomb cell may be any of a circle, an ellipse, a rectangle, and a triangle. Further, the overall form of the honeycomb formed body may be either a cylindrical body or a rectangular tube body. The formed honeycomb body is preferably dried and then 1 0 0 0 to 1 7 0 0 04010147
9 9
°C、 好ましくは 1250〜1500°Cにて焼成される。 焼成雰囲気については特 に限定がなく、 通常採用されている空気中などの含酸素雰囲気が好ましい。 焼成 時間は、 焼結が充分に進行するまで焼成すればよく、 通常は 1〜20時間程度が 採用される。 Firing is carried out at ° C, preferably 1250-1500 ° C. The firing atmosphere is not particularly limited, and an oxygen-containing atmosphere such as air that is usually employed is preferable. The firing time may be fired until the sintering proceeds sufficiently, and usually about 1 to 20 hours is employed.
上記焼成の際の昇温速度や降温速度についても特に制限はなく、 得られる焼結 体にクラックなどが入らないような条件を適宜設定すればよい。 例えば、 上記混 合物中に含まれる水分、 結合剤などの成形助剤を充分に除去するために急激に昇 温することなく、 徐々に昇温することが好ましい。 また、 上記した焼成温度に加 熱する前に、 必要に応じて、 好ましくは 500〜1000°C程度の温度範囲にお いて、 10〜30時間程度の穏やかな昇温により仮焼結を行うことによって、 チ タン酸アルミニウムマグネシウムが形成する際におけるクラック発生の原因とな る焼結体内の応力を緩和することができ、 焼結体中のクラックの発生を抑制して 均一な焼結体を得ることができる。  There are no particular restrictions on the rate of temperature rise or temperature drop during the firing, and conditions may be set as appropriate so that cracks do not occur in the obtained sintered body. For example, it is preferable to gradually increase the temperature without rapidly increasing the temperature in order to sufficiently remove moisture, binders and other molding aids contained in the mixture. In addition, before heating to the above-described firing temperature, pre-sintering may be performed by a moderate temperature increase of about 10 to 30 hours, preferably in a temperature range of about 500 to 1000 ° C, if necessary. Can alleviate the stress in the sintered body that causes cracks when aluminum magnesium titanate is formed, and suppress the generation of cracks in the sintered body to obtain a uniform sintered body. be able to.
このようにして得られる焼結体は、 組成式: MgxA 12(1_X)T i (1+x)05 (式中、 0<χ<1) で表わされるチタン酸アルミニウムマグネシウム、 又は、 これを基本 成分として、 アルカリ長石に含まれる S i成分がチタン酸アルミニウムマグネシ ゥムの結晶格子中に固溶したチタン酸アルミニウムマグネシウムとなる。 このよ うな焼結体は、 上記したように、 優れた耐熱性と低熱膨張係数を兼ね備え、 しか も結晶構造が安定化されていることにより、 優れた熱分解耐性と高い機械的強度 を有する焼結体となる。 The sintered body thus obtained has the following composition: Mg x A 1 2 (1 _X ) T i ( 1 + x ) 0 5 (where 0 <χ <1) Or, using this as a basic component, the Si component contained in the alkali feldspar is aluminum magnesium titanate in which the crystal lattice of aluminum titanate is dissolved. As described above, such a sintered body has excellent heat resistance and low thermal expansion coefficient. However, since the crystal structure is stabilized, the sintered body has excellent thermal decomposition resistance and high mechanical strength. Become a unity.
その結果. この焼結体からなるハニカムフィル夕は 壁厚が例えば 0. 2〜0. 6mm、 好ましくは 0. 3〜0. 48 mm、 セル密度が例えば 15〜 47セル Z cm2の薄壁 Λ二カム構造を有する。 そして、 隔壁の気孔率は例えば 30〜7 0%、 好ましくは 40〜 60%、 熱膨張係数は例えば 3. 0X 10 -6Κ"'以下、 好ましくは 1. 5X 10— 6Κ— 1 以下である。 この八二カムフィルタは、 室温か ら 1600°C程度の高温下においてもチタン酸アルミニウムマグネシウムの熱分 解反応が抑制されて安定的に使用できる。 As a result, the honeycomb film made of this sintered body has a thin wall with a wall thickness of, for example, 0.2 to 0.6 mm, preferably 0.3 to 0.48 mm, and a cell density of, for example, 15 to 47 cells Z cm 2 . It has a Λ two-cam structure. The porosity of the partition walls, for example 30-7 0%, preferably 40 to 60%, the thermal expansion coefficient, for example 3. 0X 10 - 6 Κ "'or less, preferably 1. 5X 10- 6 Κ- 1 below This 820-cam filter can be used stably because the thermal decomposition reaction of aluminum magnesium titanate is suppressed even at high temperatures from room temperature to about 1600 ° C.
図 1は、 本発明の排ガス浄化ハニカムフィル夕の一例の斜視図である。 図 2は、 図 1のハニカムフィル夕の端面を示す模式図であり、 図 3は、 図 2のハニカムフ イルクの A— A線における断面の模式図である。 これらの図において、 排ガス浄 化ハニカムフィル夕 1は、 多数の隔壁 2で構成された貫通孔 3からなるハニカム フィル夕の上流側及び下流側の両端部を閉塞材 4、 5で交互に閉塞される。 すな わち、 図 2に示されるように、 上流側又は下流側の端部において、 貫通孔 3を閉 塞材 4、 5が格子状になるように閉塞するとともに、 各貫通孔 3について着目す ると上流側又は下流側のいずれかの端部が閉塞材 4、 5により閉塞される。 この ようなハニカム体に対して、 浄ィヒすべき排ガスを、 ハニカム体の上流側の貫通孔FIG. 1 is a perspective view of an example of an exhaust gas purification honeycomb fill according to the present invention. Fig. 2 is a schematic diagram showing the end face of the honeycomb fill shown in Fig. 1. Fig. 3 shows the honeycomb film shown in Fig. 2. It is a schematic diagram of the cross section in the AA line of Irk. In these figures, the exhaust gas-purifying honeycomb fill 1 is alternately plugged with plugging materials 4 and 5 at both the upstream and downstream ends of the honeycomb fill consisting of through-holes 3 made up of a number of partition walls 2. The In other words, as shown in FIG. 2, at the upstream or downstream end, the through hole 3 is closed so that the closing materials 4 and 5 are in a lattice shape, and attention is paid to each through hole 3. In this case, either the upstream or downstream end is closed by the closing materials 4 and 5. For such a honeycomb body, the exhaust gas to be purified is passed through the through holes on the upstream side of the honeycomb body.
3に供給し、 その隔壁 2を通過させて、 排ガス中のパティキユレ一トを隔壁 2に より捕捉、 除去した後、 下流側の貫通孔 3から浄ィ匕後の排ガスが取り出される。 排ガス浄化八二カムフィル夕は、 適宜の保持材を使用して好ましくは缶体内に 装備され、 排ガス中に含まれる炭素を主成分とする固体微粒子 (パティキユレ一 卜) を捕捉、 除去するために使用される。 排ガスの種類としては、 固定体及び移 動体のいずれの燃焼源などから排出されるガスも対象となしえるが、 なかでも、 上記したように、 最も厳しい特性が要求されるディ一ゼルェンジンを搭載した自 動車からの排ガスの浄化に好適に用いられる。 3 is passed through the partition wall 2, and the particulates in the exhaust gas are captured and removed by the partition wall 2, and then the purified exhaust gas is taken out from the downstream through-hole 3. The Exhaust Gas Purification Yami Camfil Yu is equipped with a suitable holding material, preferably inside the can, and is used to capture and remove solid particulates (patitis liquor) mainly composed of carbon contained in the exhaust gas. Is done. As the types of exhaust gas, gas emitted from both the stationary and moving combustion sources can be targeted, but among them, as described above, the diesel engine that has the most stringent characteristics is installed. It is suitably used for purifying exhaust gas from automobiles.
実施例  Example
以下、 本発明を実施例により具体的に説明する力 本発明はこれらに限定して 解釈されるべきではないことはもちろんである。  Hereinafter, the present invention will be specifically described with reference to examples. Of course, the present invention should not be construed as being limited thereto.
実施例 1  Example 1
易焼結性 α型アルミナを 2 6 . 7質量% ( 2 0モル%) 、 アナ夕ーゼ型酸ィ匕 チタンを 6 2 . 8質量% ( 6 0モル%) , 及び天然鉱物として存在するペリクレ —ス (per iclase) 型の酸化マグネシウムを 1 0 · 5質量% ( 2 0モル%) から なる混合物 1 0 0質量部に対して、 バインダ一としてポリビニルアルコールを 0 . 2 5質量部、 解こう剤としてジェチルァミンを 1質量部、 消泡剤としてボリプロ ピレンダリコール 0 . 5質量部、 更に造孔剤として、 粒子径 5 0〜 8 0 ^ mの活 性炭 5 0質量部を加えてポールミルで 3時間混合後、 1 2 0 °Cの乾燥機中で 1 2 時間以上乾燥させて原料粉末を得た。  Easily sinterable α-type alumina is 26.7% by mass (20 mol%), anatase type titanium oxide 62.8% by mass (60 mol%), and natural mineral With respect to 100 parts by mass of 10 · 5% by mass (20% by mol) of periclase type magnesium oxide, 0.25 parts by mass of polyvinyl alcohol as a binder Pole mill with 1 part by weight of jetylamine as a plaster, 0.5 parts by weight of polypropylene glycol as an antifoaming agent, and 50 parts by weight of activated charcoal with a particle size of 50 to 80 ^ m as a pore-forming agent And mixed for 3 hours, and then dried in a dryer at 120 ° C. for 12 hours or longer to obtain a raw material powder.
得られた原料粉末を平均粒子径 1 0 / m以下に粉砕し、 真空押出し成形機 (宮 崎鉄工社製) を使用して成形しハニカム成形体を得た。 この成形体を乾燥した後、 1 5 0 0 °Cにて 2時間大気中で焼成し、 その後、 放冷することにより図 1〜図 3 に示される断面が四角形のセルを有する全体が円筒形のハニカムフィルタを得た。 該ハニカムフィルタは、 壁厚 0 . 3 8 mm, セル密度 3 1セル/ c m2を有し、 円筒の外径は 1 4 4mm、 長さは 1 5 2 mmであった。 The obtained raw material powder was pulverized to an average particle size of 10 / m or less and molded using a vacuum extrusion molding machine (manufactured by Miyazaki Tekko Co., Ltd.) to obtain a honeycomb molded body. After drying this molded body, The honeycomb filter was fired in the atmosphere at 1500 ° C. for 2 hours and then allowed to cool, whereby a honeycomb filter having a square cross section as shown in FIGS. 1 to 3 was obtained. The honeycomb filter had a wall thickness of 0.38 mm, a cell density of 3 1 cells / cm 2 , an outer diameter of the cylinder of 144 mm, and a length of 1552 mm.
実施例 2  Example 2
易焼結性 α型アルミナを 2 6 . 7質量% ( 2 0モル%) 、 アナターゼ型酸ィ匕 チタンを 6 2 . 8質量% ( 6 0モル%) 、 及び天然鉱物として存在するペリクレ ース (periclase) 型の酸化マグネシウムを 1 0 . 5質量% ( 2 0モル%) から なる混合物 1 0 0質量部に対して、 (N a0.6K0.4) A 1 S i 308で表されるアル カリ長石を 4質量部、 バインダーとしてポリビニルアルコールを 0 . 2 5質量部、 解こう剤としてジェチルアミンを 1質量部、 消泡剤としてポリプロピレングリコ —ル 0 . 5質量部、 更に造孔剤として、 粒子径 5 0〜 8 0 mの活性炭 5 0質量 部を加えてポールミルで 3時間混合後、 1 2 0 °Cの乾燥機で 1 2時間以上乾燥さ せて原料粉末を得た。 Easily sinterable α-type alumina 26.7% by mass (20 mol%), anatase type titanium oxide 62.8% by mass (60 mol%), and pericese present as natural mineral (periclase) type 1 0 magnesium oxide. relative to 5% by weight consists of (2 0 mol%) mixture 1 0 0 parts by weight, (N a 0. 6 K 0. 4) a 1 S i 3 0 8 4 parts by weight of an alkali feldspar represented by the formula: 0.25 parts by weight of polyvinyl alcohol as a binder, 1 part by weight of jetylamine as a peptizer, 0.5 parts by weight of polypropylene glycol as an antifoaming agent, and As a pore agent, 50 parts by mass of activated carbon having a particle size of 50 to 80 m was added, mixed for 3 hours by a pole mill, and then dried by a dryer at 120 ° C for 12 hours or more to obtain a raw material powder. .
得られた原料粉末を使用して、 実施例 1と同様にして粉砕、 成形、 乾燥、 及び 焼成を行うことにより実施例 1と同形状のハニカムフィル夕を得た。  Using the obtained raw material powder, pulverization, molding, drying, and firing were performed in the same manner as in Example 1 to obtain a honeycomb fill having the same shape as in Example 1.
比較例  Comparative example
ハニカムフィル夕の材料として、 市販の炭化ケィ素粉末 (昭和電工社製、 商品 名:ショウセラム) , コージェライト粉末 ( 2 M g 0 · 2 A 1 203. · 5 S i 02) 、 及びチタン酸アルミニゥム粉末 (A 1 203 · T i 02) をそれぞれ使用し、 これら の材料からそれぞれ既存の方法で実施することにより実施例 1と同形状のハニカ ム焼結体を得た。 ここで、 炭化ケィ素製ハニカムを比較例 1、 コージエライト製 ハニカムを比較例 2、 チタン酸アルミニウム製ハニカムを比較例 3とする。 As the material for the honeycomb fill, commercially available carbide powder (made by Showa Denko KK, trade name: show serum), cordierite powder (2 Mg 0 · 2 A 1 2 0 3. · 5 S i 0 2 ), And aluminum titanate powder (A 1 2 0 3 · T i 0 2 ) were used, and a sintered ceramic body having the same shape as in Example 1 was obtained from each of these materials by the existing method. . Here, a honeycomb made of silicon carbide is referred to as Comparative Example 1, a honeycomb made of cordierite is set as Comparative Example 2, and a honeycomb made of aluminum titanate is set as Comparative Example 3.
[ハニカム焼結体についての特性試験]  [Characteristic test on honeycomb sintered body]
上記の実施例 1、 2、 及び比較例 1、 2で得られたハニカム焼結体について、 気孔率 (%) 、 室温から 8 0 0 °Cにおける熱膨張係数 (X I 0 -¾-') 、 水中投 下法による耐熱衝撃抵抗 (°C) 、 軟化温度 (°C) 、 及び圧縮強度 (M P a ) を測 定し、 その結果を表 1に示した。 なお、 気孔率は、 J I S R I 6 3 4、 熱膨張係 数は、 J I S R I 6 1 8 , 耐熱衝撃抵抗は、 J I S R 1 6 4 8、 軟化温度は、 J T JP2004/010147 For the honeycomb sintered bodies obtained in Examples 1 and 2 and Comparative Examples 1 and 2, the porosity (%), the thermal expansion coefficient from room temperature to 80 ° C. (XI 0 -¾- ′), The thermal shock resistance (° C), softening temperature (° C), and compressive strength (MPa) measured by the underwater dropping method were measured and the results are shown in Table 1. The porosity is JISRI 6 3 4, the thermal expansion coefficient is JISRI 6 1 8, the thermal shock resistance is JISR 1 6 4 8, and the softening temperature is J T JP2004 / 010147
12 12
I S R 2 2 0 9、 圧縮強度は、 J I S R 1 6 0 8に準拠する方法で測定した。 な お、 圧縮強度については、 各ハニカム焼結体から、 筒断面の縦、 横のセル数がい ずれも 5セルで長さ方向が 1 5 mmの角筒状の検体を切り出し、 これを (A) 長 さ軸方向 (axial) 、 (B) 垂直方向 (tangent ial) 、 (C) 長さ軸に 4 5度の 斜めの方向 (diagonal) の 3方向から測定した。 I S R 2 2 0 9, compressive strength was measured by a method based on J I S R 1 6 0 8. Regarding the compressive strength, from each honeycomb sintered body, a rectangular tube specimen having a length of 15 mm and a length of 15 mm was cut out from each of the vertical and horizontal cell sections of the cylindrical section. ) Measured from three directions: axial direction (B), (B) vertical direction (tangent ial), (C) diagonal direction of 45 degrees to the longitudinal axis (diagonal).
表 1 table 1
Figure imgf000014_0001
表 1からわかるように、 実施例 1、 2、 及び比較例 1、 2のハニカムは、 いず れも、 実装に充分な 4 0〜6 0 %の範囲内の気孔率と、 圧縮強度とを保持してい る。 しかし、 実施例 1、 2のハニカムは、 いずれも比較例 1のものよりも極めて 小さい熱膨張係数を有し、 また、 比較例 2のものよりも極めて高い軟化温度を有 することがわかる。 更に、 耐熱衝撃抵抗についても、 実施例 1, 2の八二カム焼 結体はいずれも比較例 1、 2のものよりも極めて高い特性を有することがわかる。
Figure imgf000014_0001
As can be seen from Table 1, each of the honeycombs of Examples 1 and 2 and Comparative Examples 1 and 2 has a porosity within a range of 40 to 60% sufficient for mounting and a compressive strength. keeping. However, it can be seen that the honeycombs of Examples 1 and 2 both have a much smaller thermal expansion coefficient than that of Comparative Example 1, and have a much higher softening temperature than that of Comparative Example 2. Further, regarding the thermal shock resistance, it can be seen that the 820 cam sintered bodies of Examples 1 and 2 have extremely higher characteristics than those of Comparative Examples 1 and 2.
[熱分解耐性試験]  [Pyrolysis resistance test]
実施例 1、 2のハニカムフィルタからいずれも縦 1 O mmX横 1 O mmX長さ 1 O mmの試験片を切り出し, 1 1 0 0 Xの高温雰囲気に保持し、 チタン酸アル ミニゥムマグネシウムの残存率 a (%) の経時変化を調べることにより熱分解 耐性試験を行った。  Samples of vertical 1 O mm X horizontal 1 O mm X length 1 O mm were cut out from the honeycomb filters of Examples 1 and 2 and maintained in a high temperature atmosphere of 1 100 X. A thermal decomposition resistance test was performed by examining the change over time in the residual rate a (%).
なお、 チタン酸アルミニウムマグネシウムの残存率は、 X線回折測定 (XR D The residual rate of aluminum magnesium titanate is measured by X-ray diffraction measurement (XR D
) のスペクトルから以下の方法により求めた。 ) Was obtained by the following method.
まず、 チタン酸アルミニウムマグネシウムが熱分解するときに M g A 1 204 (スピネル) と T i 02 (ルチル) を生じるので、 ルチルの (1 1 0 ) 面の回折 ピークの積分強度 ( I画 10)) とチタン酸アルミニゥムマグネシウムの ( 0 2 3) 面の回折ピークの積分強度 (IffiT(Q23)) を用いてチタン酸アルミニウムマグ ネシゥムのルチルに対する強度比 Rを下記式より求めた。 First, when magnesium magnesium titanate is thermally decomposed, Mg A 1 2 0 4 (spinel) and T i 0 2 (rutile) are produced, so the integrated intensity of the diffraction peak on the (1 1 0) plane of rutile (I (Picture 10) ) and (0 2 of aluminum magnesium titanate 3) Using the integrated intensity (I ffiT ( Q23 )) of the diffraction peak of the surface, the intensity ratio R of aluminum titanate magnesium to rutile was calculated from the following equation.
k = I MAT (023) / (丄 AT (023) + I Ti02(110)) k = I MAT (023) / (丄 AT (023) + I Ti02 (110))
更に、 1 1 0 0 における熱処理を行う前の焼結体についても同様の方法でチ タン酸アルミニウムマグネシウムのルチルに対する強度比 R 0を求めた。 次いで、 上記方法で求めた Rと RQを用いて、 下記式よりチタン酸アルミニゥムマグネシ ゥムの残存率ひ {%) を求めた。Further, the strength ratio R 0 of aluminum magnesium titanate to rutile was determined in the same manner for the sintered body before heat treatment at 1 1 0 0. Then, using R and R Q obtained by the above method was determined titanate Arumini © beam magnesiate © beam residual ratio monument {%) from the following equation.
= (R/R0) X 1 00 = (R / R 0 ) X 1 00
また、 比較例 3のハニカムフィル夕から、 縦 1 OmmX横 1 OmmX長さ 1 0 mmの試験片を切り出し、 1 1 00°Cの高温雰囲気に保持し、 チタン酸アルミ二 ゥムの残存率 3 (%) の経時変化を調べ、 実施例 1、 2との比較を行った。  In addition, from the honeycomb film of Comparative Example 3, a test piece having a length of 1 OmmX, a width of 1 OmmX, and a length of 10 mm was cut out and maintained in a high temperature atmosphere of 1100 ° C., and the residual rate of aluminum titanate 3 (%) Was examined over time and compared with Examples 1 and 2.
なお、 チタン酸アルミニウムの残存率は X線回折測定 (XRD) のスペクトル から以下の方法により求めた。  The residual rate of aluminum titanate was determined from the X-ray diffraction measurement (XRD) spectrum by the following method.
まず、 チタン酸アルミ二ゥムが熱分解するときに、 A 1203 (コランダム) と T i 02 (ルチル) を生じるので、 ルチルの (1 1 0) 面の回折ピークの積分強 度 (I TK)2(IU))) とチタン酸アルミニウムの (023) 面の回折ピークの積分強度First, when aluminum titanate is thermally decomposed, A 1 2 0 3 (corundum) and T i 0 2 (rutile) are produced, so the integrated intensity of the diffraction peak on the (1 1 0) plane of rutile (I TK) 2 (IU))) and the integrated intensity of diffraction peaks on the (023) plane of aluminum titanate
(IAT(023)) を用いてチタン酸アルミニウムのルチルに対する強度比 rを下記式よ り求めた。 Using (I AT (023) ), the strength ratio r of aluminum titanate to rutile was determined from the following formula.
Γ = I AT (023) ·,、 I AT (023) + ェ Ti02(110)ノ Γ = I AT (023) ..., I AT (023) + D Ti02 (110)
更に、 1 1 0 o°cにおける熱処理を行う前の焼結体についても同様の方法でチ タン酸アルミニウムのルチルに対する強度比 rflを求めた。 次いで 上記方法で 求めた rと rQを用いて、 下記式よりチタン酸アルミニウムの残存率 β (%) を 求めた。 Further, the strength ratio r fl of aluminum titanate to rutile was also determined for the sintered body before heat treatment at 110 ° C. by the same method. Then using the r and r Q obtained by the above method to determine the residual ratio of aluminum titanate beta (%) from the following equation.
β = (r/r0) X 1 0 0 β = (r / r 0 ) X 1 0 0
実施例 1、 2、 比較例 3の各ハニカム形状の焼結体について、 各結晶 (実施例 1、 2はチタン酸アルミニウムマグネシウム、 比較例 3はチタン酸アルミニゥ ム) の残存率ひ と /3 の経時変化を図 4にグラフとして示す。 図 4から明らかな ように、 実施例 1、 2が比較例 3よりも残存率が長時間に渡って高く維持され、 熱分解耐性に優れることがわかる。 更に、 図 4の 2 0 0時間経過後の実施例 1の 残存率がやや低くなつているが、 実施例 2のものは、 依然、 残存率が高く維持さ れており、 実施例 1よりも熱分解耐性が更に優れていることがわかる。 実施例 3〜8 For each honeycomb-shaped sintered body of Examples 1 and 2 and Comparative Example 3, the residual ratio of each crystal (Examples 1 and 2 is aluminum magnesium titanate, Comparative Example 3 is aluminum titanate) is / 3. The change over time is shown as a graph in FIG. As is clear from FIG. 4, it can be seen that Examples 1 and 2 maintain a higher residual ratio for a longer time than Comparative Example 3 and have superior thermal decomposition resistance. Further, in FIG. Although the residual rate is slightly lower, it can be seen that the residual rate of Example 2 is still maintained at a high level, and the thermal decomposition resistance is further superior to that of Example 1. Examples 3-8
易焼結ひ型アルミナ、 アナタ一ス型酸化チタン及びペリクレース型の酸化マグ ネシゥムを表 2に示す各割合で混合して原料混合物を得た。  Easy-sintered diamond alumina, anatase-type titanium oxide and periclase-type magnesium oxide were mixed in the proportions shown in Table 2 to obtain a raw material mixture.
表 2  Table 2
Figure imgf000016_0001
得られた混合物 100質量部に対して、 化学式: (Naa6Ka4) A 1 S i 308で 表されるアル力リ長石を 4質量部、 バインダ一としてポリビニルアルコールを 0. 25質量部、 解膠剤としてジェチルァミンを 1質量部、 消泡剤としてポリプロピ レングリコールを 0. 5質量部、 更に造孔剤として、 粒子径 50〜80 mの活性炭 50質量部を加えてポールミルで 3時間混合後、 120 °Cの乾燥機で 12時間以 上乾燥させて原料粉末を得た。
Figure imgf000016_0001
For 100 parts by mass of the resulting mixture, 4 parts by mass of Al feldspar represented by the chemical formula: (Na a6 K a4 ) A 1 Si 3 0 8 and 0.25 parts by mass of polyvinyl alcohol as a binder Add 1 part by weight of cetylamine as a deflocculating agent, 0.5 part by weight of polypropylene glycol as an antifoaming agent, and add 50 parts by weight of activated carbon with a particle size of 50 to 80 m as a pore-forming agent and mix for 3 hours in a pole mill. Thereafter, it was dried for 12 hours or more with a 120 ° C. dryer to obtain a raw material powder.
得られた原料粉末を使用して、 実施例 1と同様にして粉碎、 成形 乾燥、 及び 焼成を行うことにより実施例 1と同形状の八二力ムフィル夕を得た。  By using the obtained raw material powder, powdering, molding, drying, and firing were performed in the same manner as in Example 1 to obtain an eight-strength mufil that had the same shape as in Example 1.
実施例 3〜8で得られたハ二力ム焼結体について、 実施例 1と同様にしてその 特性を試験した。 その結果を表 3に示す。 なお、 表 3には、 組成式: MgxA l 2 (i-x) i (1 + x) 05における X値も記載する。 表 3 The characteristics of the double-strength sintered bodies obtained in Examples 3 to 8 were tested in the same manner as in Example 1. The results are shown in Table 3. Table 3 also describes the X value in the composition formula: Mg x Al 2 (ix) i (1 + x) 0 5 . Table 3
Figure imgf000017_0001
表 3から明らかなように、 実施例 3〜 8の焼結体は、 いずれも実装に充分な 4 0〜 6 0 %の範囲内の気孔率と、 圧縮強度とを保持し、 小さい熱膨張係数、 高い 耐熱衝撃性、 高い軟化温度を有することがわかる。
Figure imgf000017_0001
As is clear from Table 3, the sintered bodies of Examples 3 to 8 each have a porosity within a range of 40 to 60% sufficient for mounting and a compressive strength, and have a small thermal expansion coefficient. It can be seen that it has high thermal shock resistance and high softening temperature.
更に、 各ハニカムフィルタについて、 実施例 1、 2と同様の方法によって、 1 1 0 0 °Cの大気中に保持した場合のチタン酸アルミニウムマグネシウムの残存率 a (%) の経時変化を求めた。 各焼結体について、 1 5 0時間経過後、 及び 2 0 0時間経過後におけるチタン酸アルミニウムマグネシウムの残存率 0: (%) を表 4に示す。 表 4には、 実施例 1、 2及び比較例 3の焼結体についての測定結果も 併せて記載する。  Further, for each honeycomb filter, the change over time in the residual rate a (%) of aluminum magnesium titanate when it was kept in the atmosphere at 110 ° C. was determined by the same method as in Examples 1 and 2. Table 4 shows the residual rate 0: (%) of aluminum magnesium titanate after 150 hours and after 20 hours of each sintered body. Table 4 also shows the measurement results for the sintered bodies of Examples 1 and 2 and Comparative Example 3.
表 4  Table 4
Figure imgf000017_0002
表 4から明らかなように、 各実施例の焼結体は、 優れた熱分解耐性を有する。 産業上の利用可能性
Figure imgf000017_0002
As can be seen from Table 4, the sintered bodies of each example have excellent thermal decomposition resistance. Industrial applicability
本発明による、 チタン酸アルミニウムマグネシゥム焼結体からなるハニカムフ ィル夕材料は、 耐熱性に優れ、 小さい熱膨張係数、 耐熱衝撃性を維持しながら、 高い熱分解耐性、 及び大きい機械的強度を有し、 従来のフィルタ材料に比べて著 しく優れた特性を有する。 この結果、 本発明の排ガスハニカムフィルタは、 固定 体及び移動体のいずれの燃焼源からの排出ガス中の固体微粒子を除去するために 好適に使用される。 なかでも、 上記したように、 最も厳しい特性が要求されるデ ィ一ゼルェンジンを搭載した自動車からの排ガスの浄ィ匕に最適である。  The honeycomb fill material comprising an aluminum titanate magnesium sintered body according to the present invention has excellent heat resistance, high thermal decomposition resistance and high mechanical strength while maintaining a small thermal expansion coefficient and thermal shock resistance. And has significantly superior characteristics compared to conventional filter materials. As a result, the exhaust gas honeycomb filter of the present invention is suitably used for removing solid fine particles in the exhaust gas from any combustion source of the stationary body and the moving body. Above all, as mentioned above, it is most suitable for the purification of exhaust gas from automobiles equipped with the diesel engine that requires the most stringent characteristics.

Claims

請求 の範 囲 The scope of the claims
1. 排ガス中の炭素を主成分とする固体微粒子を除去するためのハエカムフィル 夕であって、 該ハニカムフィル夕の材質が、 組成式: MgxA 12(,_Χ)Τ i ί1+χ)05 1. A fly-comb filter for removing solid particulates mainly composed of carbon in exhaust gas, the material of the honeycomb filter is a composition formula: Mg x A 1 2 (, _ Χ) Τ i ί1 + χ ) 0 5
(式中、 0く χく 1) で表わされるチタン酸アルミニウムマグネシウムにおける Μ g, A 1及び T iの金属成分比と同様の金属成分比率で、 Mg含有化合物、 A 1 含有化合物及び T i含有化合物を含有する混合物を 1000〜 1700°Cで焼成 したチタン酸アルミニウムマグネシウム焼結体であることを特徴とする排ガス浄 化ハニカムフィルタ。 In the magnesium aluminum titanate represented by (where 0 χ 1), the metal component ratio is the same as the metal component ratio of Μ g, A 1 and T i, and the Mg-containing compound, A 1 -containing compound, and T i An exhaust gas-purifying honeycomb filter, which is a sintered body of aluminum magnesium titanate obtained by firing a mixture containing a compound at 1000 to 1700 ° C.
2. 八二力ムフィルタの材質が、 組成式: MgxA 12(HdT i (1+x)05 (式中、 0く Xく 1) で表わされるチタン酸アルミニウムマグネシウムにおける Mg, A 1及 び T iの金属成分比と同様の金属成分比率で、 Mg含有化合物、 A 1含有化合物 及び T i含有化合物を含む混合物を酸化物換算量として 100質量部と、 組成 式: (NayK,.y) A 1 S "08 (式中、 0≤y≤l) で表わされるアル力リ長石 1〜10質量部とを含有する混合物を 1000〜1700°Cで焼成したチタン酸 アルミニウムマグネシゥム焼結体であることを特徴とする排ガス浄化ハニカムフ ィル夕。 2. The material of the eight force filter is Mg, A in aluminum magnesium titanate represented by the composition formula: Mg x A 1 2 (Hd T i ( 1 + x ) 0 5 (where 0 0 X 1) 1 and Ti with a metal component ratio similar to the metal component ratio, and 100 parts by mass of the oxide-containing mixture containing Mg-containing compound, A 1-containing compound and Ti-containing compound, and the composition formula: (Na y K ,. y ) A 1 S "0 8 (where 0≤y≤l) Al force feldspar 1-10 parts by weight Aluminum titanate calcined at 1000-1700 ° C An exhaust gas purifying honeycomb film characterized by being a sintered magnesium material.
3. ハニカムフィルタが、 壁厚 0 · 2〜0. 6 mm、 セル密度 15〜 47セル Z c m2を有し、 かつ隔壁の気孔率が 30〜 70 % 熱膨張係数が 3. 0 X 10~6 K一1以下である請求項 1又は 2に記載の排ガス浄化ハニカムフィルタ。 3. The honeycomb filter has a wall thickness of 0 · 2 to 0.6 mm, a cell density of 15 to 47 cells Z cm 2 , and a partition wall porosity of 30 to 70% and a thermal expansion coefficient of 3.0 X 10 to 6 K one 1 less exhaust gas purification honeycomb filter according to claim 1 or 2.
4. 組成式: MgxA 12(1X)T i (1+x>05 (式中、 0く x〈l) で表わされるチタン酸 アルミニゥムマグネシウムにおける M g , A 1及び T iの金厲成分比と同様の金 属成分比率で、 Mg含有化合物、 A 1含有化合物及び T i含有化合物を含む混合 物、 又は該混合物を酸化物換算量で 100質量部と組成式: (NayK^ y) A 1 S i 308 (式中、 0≤y≤l) で表わされるアルカリ長石を 1〜10質量部とを 含有する混合物を調製し、 該混合物に成形助剤を加えて混練して押出成形可能に 可塑化し、 ハニカム体に押出成形後、 1000〜 1700 °Cにて焼成すること を特徴とする排ガス浄化ハニカムフィルタの製造方法。 4. Composition formula: Mg x A 1 2 (1X ) T i ( 1 + x> 0 5 (where 0 and x <l) The metal component ratio is the same as the Ti metal component ratio of Ti, a mixture containing an Mg-containing compound, an A1-containing compound, and a Ti-containing compound, or 100 parts by mass of the mixture in terms of oxide and a composition formula: (Na y K ^ y ) A 1 Si 3 0 8 (where 0≤y≤l) is prepared as a mixture containing 1 to 10 parts by weight of an alkali feldspar, and a molding aid is added to the mixture. And knead to allow extrusion molding A method for producing an exhaust gas-purifying honeycomb filter, characterized by plasticizing, extruding into a honeycomb body, and firing at 1000 to 1700 ° C.
5. 前記混合物に含まれる各成分の平均粒子径が 3 以下である請求項 4に 記載の排ガス浄化ハニカムフィル夕の製造方法。 5. The method for producing an exhaust gas-purifying honeycomb fill according to claim 4, wherein the average particle size of each component contained in the mixture is 3 or less.
6. 請求項 1〜 3のいずれかに記載された排ガス浄化ハニカムフィル夕を缶体内 に装備したことを特徴とする排ガス浄ィ匕装置。 6. An exhaust gas purification apparatus comprising the can body equipped with the exhaust gas purification honeycomb filter according to any one of claims 1 to 3.
7. ディーゼルエンジンを搭載した自動車からの排ガス浄化に用いる請求項 6に 記載の排ガス浄化装置。 7. The exhaust gas purification device according to claim 6, which is used for exhaust gas purification from a vehicle equipped with a diesel engine.
PCT/JP2004/010147 2003-07-11 2004-07-09 Honeycomb filter for clarifying exhaust gas and method for manufacture thereof WO2005005019A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002528921A CA2528921A1 (en) 2003-07-11 2004-07-09 Honeycomb filter for cleaning exhaust gas, and process for its production
KR1020057022712A KR101093467B1 (en) 2003-07-11 2004-07-09 Honeycomb filter for clarifying exhaust gas and method for manufacture thereof
US10/559,337 US7575792B2 (en) 2003-07-11 2004-07-09 Honeycomb filter for clarifying exhaust gas and method for manufacture thereof
JP2005511590A JP4950492B2 (en) 2003-07-11 2004-07-09 Manufacturing method of honeycomb filter for exhaust gas purification
PL04747613T PL1645319T3 (en) 2003-07-11 2004-07-09 Honeycomb filter for clarifying exhaust gas and method for manufacture thereof
EP04747613.0A EP1645319B1 (en) 2003-07-11 2004-07-09 Honeycomb filter for clarifying exhaust gas and method for manufacture thereof
CN200480018961XA CN1816379B (en) 2003-07-11 2004-07-09 Honeycomb filter for clarifying exhaust gas and method for manufacture thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-196119 2003-07-11
JP2003196119 2003-07-11

Publications (1)

Publication Number Publication Date
WO2005005019A1 true WO2005005019A1 (en) 2005-01-20

Family

ID=34055770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010147 WO2005005019A1 (en) 2003-07-11 2004-07-09 Honeycomb filter for clarifying exhaust gas and method for manufacture thereof

Country Status (9)

Country Link
US (1) US7575792B2 (en)
EP (1) EP1645319B1 (en)
JP (1) JP4950492B2 (en)
KR (1) KR101093467B1 (en)
CN (1) CN1816379B (en)
CA (1) CA2528921A1 (en)
PL (1) PL1645319T3 (en)
TW (1) TW200502481A (en)
WO (1) WO2005005019A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105622A (en) * 2005-10-13 2007-04-26 Ohcera Co Ltd Honeycomb filter for cleaning exhaust gas and method for manufacturing the same
WO2009041611A1 (en) 2007-09-28 2009-04-02 Kyocera Corporation Honeycomb structure and purification device using the honeycomb structure
JP2009543755A (en) * 2006-07-14 2009-12-10 コーニング インコーポレイテッド Plugging materials used in the manufacture of wall-flow filters made of aluminum titanate ceramics
JPWO2009122539A1 (en) * 2008-03-31 2011-07-28 イビデン株式会社 Honeycomb structure
WO2011111666A1 (en) * 2010-03-08 2011-09-15 住友化学株式会社 Green compact and method for producing aluminum titanate sintered body.
JP2011526573A (en) * 2008-07-04 2011-10-13 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Particle mixture for producing an aluminum titanate type porous structure
JP2011207744A (en) * 2010-03-08 2011-10-20 Sumitomo Chemical Co Ltd Method for producing porous aluminum magnesium titanate and porous aluminum magnesium titanate
JP2012515649A (en) * 2009-01-21 2012-07-12 コーニング インコーポレイテッド Filtration structure for improving the performance of particulate filters
JP5123483B2 (en) * 2003-08-22 2013-01-23 オーセラ株式会社 Manufacturing method of honeycomb filter for exhaust gas purification

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009918A1 (en) 2003-07-29 2005-02-03 Ohcera Co., Ltd. Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof
JP4609831B2 (en) * 2003-07-29 2011-01-12 オーセラ株式会社 Honeycomb carrier for exhaust gas purification catalyst and manufacturing method thereof
JP5230935B2 (en) * 2004-04-28 2013-07-10 オーセラ株式会社 Aluminum magnesium titanate crystal structure and manufacturing method thereof
US8956436B2 (en) 2006-06-30 2015-02-17 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US10501375B2 (en) 2006-06-30 2019-12-10 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
JP5178715B2 (en) 2006-06-30 2013-04-10 コーニング インコーポレイテッド Cordierite aluminum magnesium titanate composition and ceramic product containing the composition
EP2067589B1 (en) * 2006-09-28 2012-04-11 Hitachi Metals, Ltd. Method and apparatus for manufacturing ceramic honeycomb structure
WO2009076985A1 (en) * 2007-12-17 2009-06-25 Imerys Services Ceramic honeycomb structures
US8383534B2 (en) * 2008-01-21 2013-02-26 Sumitomo Chemical Company, Limited Process for producing aluminum magnesium titanate
JP2011523616A (en) * 2008-05-29 2011-08-18 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Porous structure containing aluminum titanate
FR2931698B1 (en) * 2008-05-29 2011-01-07 Saint Gobain Ct Recherches HONEYCOMB STRUCTURE BASED ON ALUMINUM TITANATE.
FR2933401B1 (en) * 2008-07-04 2010-07-30 Saint Gobain Ct Recherches POROUS STRUCTURE OF ALUMINA TITANATE TYPE
US10526249B2 (en) 2012-11-30 2020-01-07 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US9079799B2 (en) 2012-11-30 2015-07-14 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
WO2022026236A1 (en) * 2020-07-30 2022-02-03 Corning Incorporated Aluminum titanate-feldspar ceramic bodies, batch mixtures, and methods of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134560A (en) * 1980-03-19 1981-10-21 Ngk Insulators Ltd Low expansion ceramics and manufacture
JPH05115721A (en) * 1991-10-24 1993-05-14 Matsushita Electric Ind Co Ltd Exhaust bas filter and production thereof
JPH08290963A (en) * 1995-04-21 1996-11-05 Matsushita Electric Ind Co Ltd Material having low thermal expansion and discharge gas filter using the same
JP2003515023A (en) * 1999-10-15 2003-04-22 コーニング インコーポレイテッド Low aspect ratio diesel exhaust filter

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3366498A (en) * 1965-03-10 1968-01-30 Raymond G Osborne Lab Inc Ceramic bodies and preparation thereof
US3531307A (en) * 1967-02-23 1970-09-29 Intern Pipe & Ceramics Corp Ceramic article and method for producing same
US3930522A (en) * 1973-05-02 1976-01-06 General Refractories Company Structural ceramic article and method of making same
JPS5689844A (en) * 1979-12-25 1981-07-21 Asahi Glass Co Ltd Ceramic honeycomb and its production
JPS573767A (en) * 1980-06-04 1982-01-09 Nippon Toki Kk High temperature-stable high strength aluminium titanate sintered body
US4329162A (en) 1980-07-03 1982-05-11 Corning Glass Works Diesel particulate trap
US4483940A (en) * 1981-11-24 1984-11-20 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for manufacture of honeycomb catalyst
US4483944A (en) * 1983-07-27 1984-11-20 Corning Glass Works Aluminum titanate-mullite ceramic articles
JPS6030656A (en) * 1983-07-29 1985-02-16 Soda Koryo Kk Spices-containing tofu (bean curd)
US4625511A (en) * 1984-08-13 1986-12-02 Arvin Industries, Inc. Exhaust processor
JPS6221756A (en) 1985-07-22 1987-01-30 日本碍子株式会社 Aluminum titanate mullite base ceramic body
JPH01296023A (en) * 1988-05-24 1989-11-29 Nissin Kogyo Kk Method and device for forced draft air conditioning accompanied with radiation heating
US5137789A (en) 1990-12-03 1992-08-11 Caterpillar Inc. Composite ceramic and metal article
JPH05214922A (en) 1992-02-05 1993-08-24 Asahi Glass Co Ltd Particulate trap for diesel engine
JPH05306614A (en) * 1992-04-28 1993-11-19 Matsushita Electric Ind Co Ltd Exhaust gas filter and manufacture thereof
US5565245A (en) * 1993-07-28 1996-10-15 Virginia Tech Intellectual Properties, Inc. Magnesium doped β-aluminum titanate thin film coating
JP3336157B2 (en) * 1995-07-03 2002-10-21 京セラ株式会社 Ceramic filter for dust collection
JPH0929024A (en) * 1995-07-21 1997-02-04 Matsushita Electric Ind Co Ltd Exhaust gas filter
US6171373B1 (en) * 1996-04-23 2001-01-09 Applied Ceramics, Inc. Adsorptive monolith including activated carbon, method for making said monolith, and method for adsorbing chemical agents from fluid streams
JP3712785B2 (en) * 1996-06-03 2005-11-02 松下電器産業株式会社 Exhaust gas filter and exhaust gas purification device
JP3555382B2 (en) * 1997-04-22 2004-08-18 松下電器産業株式会社 Exhaust gas filter, method for producing the same, and diesel engine equipped with the exhaust gas filter
DE69817945D1 (en) * 1997-07-28 2003-10-16 Corning Inc Process for producing cordierite bodies using rapid firing
JP2001037971A (en) 2000-01-01 2001-02-13 Sankyo Kk Gage press for game board of pachinko game machine
JP3600933B2 (en) * 2000-11-08 2004-12-15 オーセラ株式会社 Method for producing aluminum titanate-based sintered body
US6620751B1 (en) 2002-03-14 2003-09-16 Corning Incorporated Strontium feldspar aluminum titanate for high temperature applications
EP1559696B1 (en) 2002-11-01 2016-11-16 Ohcera Co., Ltd. Aluminum magnesium titanate sintered product, method for producing it and its use
WO2005009918A1 (en) * 2003-07-29 2005-02-03 Ohcera Co., Ltd. Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134560A (en) * 1980-03-19 1981-10-21 Ngk Insulators Ltd Low expansion ceramics and manufacture
JPH05115721A (en) * 1991-10-24 1993-05-14 Matsushita Electric Ind Co Ltd Exhaust bas filter and production thereof
JPH08290963A (en) * 1995-04-21 1996-11-05 Matsushita Electric Ind Co Ltd Material having low thermal expansion and discharge gas filter using the same
JP2003515023A (en) * 1999-10-15 2003-04-22 コーニング インコーポレイテッド Low aspect ratio diesel exhaust filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1645319A1 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5123483B2 (en) * 2003-08-22 2013-01-23 オーセラ株式会社 Manufacturing method of honeycomb filter for exhaust gas purification
JP2007105622A (en) * 2005-10-13 2007-04-26 Ohcera Co Ltd Honeycomb filter for cleaning exhaust gas and method for manufacturing the same
JP2012254923A (en) * 2006-07-14 2012-12-27 Corning Inc Plugging material for aluminum titanate ceramic wall flow filter manufacture
JP2009543755A (en) * 2006-07-14 2009-12-10 コーニング インコーポレイテッド Plugging materials used in the manufacture of wall-flow filters made of aluminum titanate ceramics
WO2009041611A1 (en) 2007-09-28 2009-04-02 Kyocera Corporation Honeycomb structure and purification device using the honeycomb structure
JPWO2009041611A1 (en) * 2007-09-28 2011-01-27 京セラ株式会社 Honeycomb structure and purification apparatus using the same
JPWO2009122539A1 (en) * 2008-03-31 2011-07-28 イビデン株式会社 Honeycomb structure
JP2011526573A (en) * 2008-07-04 2011-10-13 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Particle mixture for producing an aluminum titanate type porous structure
JP2012515649A (en) * 2009-01-21 2012-07-12 コーニング インコーポレイテッド Filtration structure for improving the performance of particulate filters
JP2011207750A (en) * 2010-03-08 2011-10-20 Sumitomo Chemical Co Ltd Green molded body, and method for producing aluminum titanate sintered compact
JP2011207744A (en) * 2010-03-08 2011-10-20 Sumitomo Chemical Co Ltd Method for producing porous aluminum magnesium titanate and porous aluminum magnesium titanate
WO2011111666A1 (en) * 2010-03-08 2011-09-15 住友化学株式会社 Green compact and method for producing aluminum titanate sintered body.
US8921249B2 (en) 2010-03-08 2014-12-30 Sumitomo Chemical Company, Limited Method for producing porous aluminum magnesium titanate and porous aluminum magnesium titanate

Also Published As

Publication number Publication date
KR101093467B1 (en) 2011-12-13
JP4950492B2 (en) 2012-06-13
EP1645319A4 (en) 2007-08-22
KR20060030855A (en) 2006-04-11
TW200502481A (en) 2005-01-16
CA2528921A1 (en) 2005-01-20
US7575792B2 (en) 2009-08-18
CN1816379A (en) 2006-08-09
EP1645319A1 (en) 2006-04-12
PL1645319T3 (en) 2013-12-31
CN1816379B (en) 2010-11-24
EP1645319B1 (en) 2013-05-29
US20070059484A1 (en) 2007-03-15
JPWO2005005019A1 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
WO2005005019A1 (en) Honeycomb filter for clarifying exhaust gas and method for manufacture thereof
JP5123483B2 (en) Manufacturing method of honeycomb filter for exhaust gas purification
US7923093B2 (en) High porosity filters for 4-way exhaust gas treatment
JP4495152B2 (en) Honeycomb structure and manufacturing method thereof
US11883802B2 (en) Silicon carbide porous body and method for producing the same
KR101154903B1 (en) Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof
JP5507575B2 (en) High strength / low microcrack ceramic honeycomb and method therefor
JP6654085B2 (en) Porous material, method for producing porous material, and honeycomb structure
JP5527773B2 (en) Honeycomb structure and gas processing apparatus
US10882796B2 (en) Ceramic porous body and method for producing the same, and dust collecting filter
CN113272042B (en) Cordierite-containing ceramic bodies, batch composition mixtures, and methods of making cordierite-containing ceramic bodies
JP3612943B2 (en) Manufacturing method of exhaust gas filter
JP5856793B2 (en) Aluminum titanate honeycomb structure
JP2006096634A (en) Porous ceramic body
JP4609831B2 (en) Honeycomb carrier for exhaust gas purification catalyst and manufacturing method thereof
JP2021535068A (en) Cordierite-Indialite-Pseudobrookite Ceramic Structures, Batch Composition Mixtures, and Methods for Producing Ceramics from These.
JP3603568B2 (en) Exhaust gas filter and manufacturing method thereof
US10974186B2 (en) Ceramic porous body and dust collecting filter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480018961.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2373/KOLNP/2005

Country of ref document: IN

Ref document number: 02373/KOLNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020057022712

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004747613

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007059484

Country of ref document: US

Ref document number: 10559337

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2528921

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005511590

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057022712

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004747613

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10559337

Country of ref document: US