WO2005004548A1 - Light emitting element and display device - Google Patents

Light emitting element and display device Download PDF

Info

Publication number
WO2005004548A1
WO2005004548A1 PCT/JP2004/009685 JP2004009685W WO2005004548A1 WO 2005004548 A1 WO2005004548 A1 WO 2005004548A1 JP 2004009685 W JP2004009685 W JP 2004009685W WO 2005004548 A1 WO2005004548 A1 WO 2005004548A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting element
electrode
fine particles
Prior art date
Application number
PCT/JP2004/009685
Other languages
French (fr)
Japanese (ja)
Inventor
Kenya Hori
Masayuki Ono
Kumio Nago
Toshiyuki Aoyama
Kenji Hasegawa
Masaru Odagiri
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/562,792 priority Critical patent/US7737622B2/en
Priority to JP2005511405A priority patent/JP4669786B2/en
Publication of WO2005004548A1 publication Critical patent/WO2005004548A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds

Definitions

  • the present invention relates to a light-emitting inorganic material, a light-emitting element using the light-emitting inorganic material, and a light-emitting device using the light-emitting element.
  • a display device using an electroluminescent (hereinafter referred to as EL) element has been attracting attention together with a liquid crystal panel display, a plasma display, and the like.
  • the EL element includes an inorganic EL element using an inorganic compound for a light emitter and an organic EL element using an organic compound for a light emitter.
  • EL elements have characteristics such as high-speed response, high contrast, and vibration resistance. This EL element can be used under high or low pressure because there is no gas inside.
  • the driving voltage of organic EL devices is low, so that the active matrix method that uses thin film transistors (TFTs) can generate a certain level of gradation when driven by an active matrix method. Is short.
  • the inorganic EL element has features such as a longer life, a wider operating temperature range, and excellent durability compared to the organic EL element.
  • the voltage required for light emission in inorganic EL devices is as high as 200 to 30 OV, it was difficult to drive them by the active matrix method using thin film transistors (TFTs). For this reason, inorganic EL devices have been driven by passive matrix methods.
  • TFTs thin film transistors
  • passive matrix driving a plurality of scan electrodes extending in parallel to the first direction and a plurality of data electrodes extending in parallel in a second direction orthogonal to the first direction are provided.
  • a light-emitting element is sandwiched between the scanning electrode and the data electrode that intersect with each other, and an AC voltage is applied between a pair of the scanning electrode and the data electrode to drive one light-emitting element. Is done.
  • Inorganic phosphors are generally doped with a luminescent material in an insulator crystal. For this reason, when UV light is irradiated, the electron crystal remains in the insulator crystal even when a force electric field that causes light emission is applied. Is difficult to penetrate, and strong repulsion due to electrification. Energy energy is required. Countermeasures are needed to emit light with low-energy electrons.
  • the light emitting layer is mainly composed of ZnS and is doped with Mn, Cr, Tb, Eu, Tm, Yb, etc.
  • the inorganic EL element was driven (emitted) and the emission luminance was improved, but the TFT could not be used because it was not driven by a high voltage of 200 to 300 V. . Disclosure of the invention
  • a light-emitting element When a light-emitting element is used as a high-quality display device such as a television, it is necessary that the light-emitting element be driven at a low voltage at which the TFT can be used.
  • An object of the present invention is to provide a light-emitting element which can be driven at a low voltage, can use a thin film transistor, and has a long life.
  • a light-emitting element includes: a pair of electrodes facing each other;
  • This light-emitting element is an EL element using a light-emitting inorganic material.
  • the light emitting layer of this EL element contains semiconductive phosphor particles, and the surface of the semiconductive phosphor particles is coated with a conductive organic material. Further, it is preferable that the conductive organic material is chemically adsorbed on the surface of the semiconductive phosphor fine particles.
  • the present inventor has proposed that, in the case of a configuration in which a conductive organic material is coated on the surface of the semiconductive phosphor particles, and is preferably chemically adsorbed, the effect of reducing the injection barrier and the charge is reduced. It has been found that the EL element can be driven by voltage and has a long life. Furthermore, it has been found that by providing an electron transporting layer between the light emitting layer and at least one of the pair of electrodes in the EL element, repulsion of charging is reduced and the EL element is driven at a lower voltage. did.
  • This light emitting element may be fixed on a support substrate.
  • a material having high electric insulation is used.
  • a support substrate made of a material having high light transmittance in the visible region is used.
  • the temperature of the support substrate was several hundred in the manufacturing process of the light emitting element. If the temperature reaches C, use a material with a high softening point, excellent heat resistance, and a thermal expansion coefficient similar to that of the film to be laminated. Glass, ceramics, silicon wafers, and the like can be used as such a support substrate.
  • Non-alkali glass may be used so that alkali ions and the like contained in ordinary glass do not affect the light emitting element. Further, the glass surface may be coated with alumina or the like as an ion barrier layer for alkali ions to the light emitting element.
  • the electrode is made of a material with high electrical conductivity and no migration of ions due to an electric field.
  • aluminum, molyptene, tungsten, or the like can be used.
  • the electrode on the light extraction side of the light emitting element may be made of a material having high transparency in the visible region in addition to the performance of the above-described electrode.
  • the electrode mainly includes tin-doped indium oxide (ITO) or the like. Can be used. Note that the light emitting element and / or the display device of the present invention may be driven by direct current, may be driven by alternating current, or may be driven by pulses.
  • the electron-transporting material is a material having a high electron mobility for quickly transporting electrons in the electron-transporting layer.
  • a material that reduces repulsion due to charging may be used. It is preferably stable to If such a material is an organic substance, a material mainly composed of a general conductive organic compound such as aluminum quinoline 1, a oxadiazole derivative, or a general conductive polymer mainly composed of polymethyl methacrylate or the like Material can be used.
  • semiconductive phosphor fine particles are used as the luminous body.
  • Semiconductive phosphor fine particles include sulfides of cadmium, zinc, zk silver, lead, tin, indium, antimony, arsenic, silicon, gallium, anolemmium, bismuth, beryllium, magnesium, calcium, and strontium.
  • Selenide, telluride, nitride phosphide, arsenide, antimonide, carbide, oxide, chloride, bromide, and iodide, sulfur, selenium, tellurium, silicon, and germanium fine particles can be used.
  • fine particles of a compound and a solid solution of these substances can be used.
  • fine particles containing those containing 5% by weight or less of a different element as an activator can be used.
  • a different element for example, manganese, copper, silver, gold, tin, lead, placer
  • At least one element selected from metal elements such as odymium, neodymium, samarium, europium, gadolinium, tenorebium, dysprosium, holmium, erbium, thulium, ytterbium, cesium, titanium, chromium, and aluminum is activated.
  • the activator may be a fluoride such as non-metallic element or Tb F 3 and P r F 3, such as chlorine or iodine, may further be activated two or more top of these at the same time.
  • particularly suitable low-resistance host crystals include oxides or composite oxides containing at least one element selected from the group consisting of Zn, Ga, In, Sn, and Ti. Examples of the phosphor, ZnO: Z n (emission color blue green), (Zn, Mg) 0 : Zn ( blue), ZnGa 2 0 4: Mn
  • the particle size of the semiconductor phosphor fine particles is 1 ⁇ m or less, and the smaller the particle size, the smaller 1 / is preferable because the luminescent center in the fine particle is easily excited.In order to further excite the luminescent center, quantum effect is preferable. In order to take advantage of this, the particle size of the fine particles should be nano-sized. When the particle size is about 100 nm, it is difficult to obtain a sufficient quantum effect, so that a conductive organic material having ⁇ electrons is coated on the surface at the center of the fine particles to reduce the injection barrier and stabilize the fine particles. Preferably, a chemisorbed luminescent material is used. It is preferable that the compound and the solid solution have high light transmittance in a visible light region. Note that a color filter may be added to the configuration of the element in order to obtain a specific color.
  • the conventional inorganic phosphor has a structure in which an emission center exists in an insulating crystal (hereinafter referred to as a host crystal), and light emission is considered to be generated by excitation of the emission center.
  • the host crystal is excited by externally applied energy, but most of the conduction electrons and holes generated in the conduction band and valence band of the host crystal are trapped by impurity centers and lattice defects. It is considered that the emission center is doped as the impurity center or lattice defect.
  • the host crystal it is necessary to select a material with a high efficiency of transmitting the externally processed marking energy to the luminescence center. It is considered that even if the element is constituted by only the light, the power for reducing the luminous efficiency or the light is not emitted. Also, when there are two or more types of luminescent centers or when the concentration of the luminescent centers is high, excitation energy may be transmitted between the luminescent centers. It is thought that when the emission and absorption of each of the two emission centers are equal, the excitation energy is transmitted from one direction to the other by quantum mechanical resonance. The doping amount at the emission center has an optimum value, and the emission intensity decreases at a certain concentration or more.
  • zinc oxide which is a conductor that is also known as a transparent electrode, has a power lattice defect (excess zinc or oxygen excess) and the conductivity of zinc oxide is inversely proportional.
  • zinc oxide is considered to be a semiconductive substance, ie, a semiconductor, because the conductivity of zinc oxide decreases due to lattice defects caused by doping or the like.
  • a semiconductor using a pn junction used for a transistor or the like can be used as the light-emitting body of the present invention for the same reason.
  • an n-type semiconductor region and a center are provided on the surface side of the semiconductive phosphor fine particles.
  • the p-type semiconductor region may be segregated on the side. Also, each semiconductor region may be scattered in fine particles.
  • the surface of the semiconductive phosphor fine particles 7 is coated with a conductive organic material 8 in order to further facilitate the transfer of electron energy. are doing. Further, it is preferable that the conductive organic material 8 and the surface are chemically bonded.
  • the conductive organic material 8 used here was coated, preferably chemically bonded, on the surface of the light emitting element for the purpose of reducing the energy barrier between the electrode of the light emitting element and the light emitting body. As a result of the reduced energy barrier of the luminous body, electron energy is easily transmitted to the luminous body, and the light-emitting element of the present invention can be driven at a low voltage.
  • the energy barrier can be reduced over the surface of the luminous body.
  • the smaller the particle size the more chemically unstable the substance becomes.
  • the conductive organic material 8 also has an effect of protecting the luminous body.
  • a general conductive organic material having a ⁇ electron cloud in its structure may be selected. Further, it is preferable to use an organic material having a high glass transition point whose properties do not change with temperature or the like, and a polymer material or the like can be used as such a material.
  • an organic material having a functional group such as a hydroxyl group, a carbonyl group, a carboxyl group or the like can be used.
  • a method of chemisorption for example, a method of introducing a carboxyl group (-COOH) into a conductive organic material, forming an ester bond with a hydroxyl group (( ⁇ ) on the surface of the semiconductive phosphor fine particles, and immobilizing the same. is there.
  • a thiocanolepoxyl group a dithiophenol group, a sulfo group, a snolefineo group, a sulfeno group, a phosphono group, a phosphine group, a mercapto group, a trimethoxysilyl group, a trichlorosilyl group, an amide group, and an amino group A group or the like can also be used.
  • a coordination bond between a metal element of the semiconductive phosphor fine particles and an element having a lone electron pair such as nitrogen, oxygen, sulfur, and phosphorus of the conductive organic material may be used.
  • the conductive organic material include polyacetylene, polyparaphenylene, polyphenylenevinyl, polyphenylene sulfide, polyphenylene oxide represented by polyphenylene oxide, polypyrrole, polythiophene, polyfuran, and polyselenophene.
  • Heterocyclic polymers such as polystyrene, polyter-mouth phen, ionic polymers such as polyaniline, polyacenes, polyesters, metal phthalocyanines and derivatives, copolymers, and mixtures of these.
  • Can be More preferable examples are poly-bulcarbazolone (PVK), polyethylenedioxythiophene ((EDOT), polystyrenesulfonic acid (PSS), and polymethylphenylsilane.
  • Electron transporting organic materials can be broadly divided into low molecular weight materials and high molecular weight materials.
  • Oxazidi is a low molecular weight material with electron transport properties.
  • polymer materials having electron transport properties include poly [2-methoxy-15- (2-ethylhexynoleoxy) -1-1,4-((1-cyanovinylene) phenylene] (CN-PPV) and the like.
  • Examples thereof include polyquinoxaline, and a polymer in which a molecular structure exhibiting an electron transporting property in a low molecular weight system is incorporated in a molecular chain.
  • the luminescent material obtained by coating the conductive material on the semiconductive phosphor fine particles, preferably by chemisorption, may be dispersed in the material of the transparent conductive matrix.
  • a transparent conductor material the above-described conductive organic material, electron transporting organic material, or the like can be used.
  • a low molecular conductive material such as the above-described electron transporting organic material, or an inorganic conductive or inorganic semiconductive material is dispersed in a conductive or nonconductive polymer to impart conductivity. It may be in the form that was done.
  • the configuration of the light emitting element according to the present invention will be described.
  • a light emitting layer containing semiconductive phosphor fine particles chemically adsorbed is provided between a pair of electrodes facing each other.
  • a light emitting layer containing semiconductive phosphor fine particles chemically adsorbed is provided between a pair of electrodes facing each other.
  • at least one electron transport layer may be provided, and the light emitting layer may be sandwiched between two electron transport layers.
  • the electrode may be formed on a support.
  • the semiconductive phosphor fine particles may be dispersed in a transparent conductor, Matritas.
  • an electron injection layer may be provided between the electron transport layer and the electrode.
  • a display device 30 that performs active matrix driving at a low voltage can be obtained by providing a thin film transistor (TFT) 11 in the structure. Is possible.
  • TFT thin film transistor
  • This light-emitting element is driven by applying an external electric field to the electrode of the light-emitting element, and electrons are sent to the light-emitting body from the applied external electric field via the electrode and the electron transport layer.
  • the energy of the electron transport layer and the semiconductive phosphor particles The chapter P wall is coated with a conductive material on the surface of the semiconductive phosphor particles, and is preferably reduced by the chemisorbed material. Electrons are sent to the microparticles.
  • the emission center in the semiconductive phosphor fine particles is excited by the energy of the transmitted electrons, and emits light when it enters the ground state.
  • the smaller the size of the semiconductive phosphor fine particles the more luminous efficiency can be obtained, but the smaller the particle size, the more unstable the fine particles themselves.
  • Coating or chemisorption on the surface of the fine particles is necessary to keep the small particle size stable, and by coating or chemisorbing with a conductive material, the efficiency can be increased to the emission center in the semiconductive phosphor fine particles. It is possible to transmit energy well.
  • the electron transport layer on the light emitting layer, electrons can be efficiently transmitted to the semiconductive phosphor fine particles. Furthermore, since the light-emitting layer is sandwiched between the electron transport layers, the electron transport layer also functions as a hole stopper layer, so that the transmitted electrons are transmitted to the semiconductive phosphor fine particles without recombination with holes. You.
  • the electron transporting layer As the electron transporting layer, the above-described electron transporting low molecular weight material or the electron transporting high molecular weight material is used. Furthermore, conductive or non-conductive polymer A form in which a child-type electron transporting material or an n-type inorganic semiconductive material is dispersed is also possible.
  • the luminous body is composed of semiconductive phosphor fine particles, and at least a part of the surface of the semiconductive phosphor fine particles is coated with a conductive material, preferably, is chemically adsorbed.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the semiconductive phosphor fine particles having substantially the entire surface covered in the first embodiment of the present invention.
  • FIG. 3 is a perspective view showing an electrode configuration of a light emitting device according to Embodiment 7 of the present invention.
  • FIG. 4 is a schematic plan view showing a display device according to Embodiment 8 of the present invention.
  • FIG. 1 is a schematic view showing an element structure of the light emitting element 10.
  • the light-emitting element 10 includes a light-emitting layer 4 sandwiched between two first and second electron transport layers 3 and 5, and further, the electron transport layers 3 and 5 are sandwiched between two first and second electrodes 2 and 6. Sandwiched between.
  • this light emitting element 10 is composed of a first electrode 2, a first electron transport layer 3, a light emitting layer 4, and a second electron transport layer on a transparent substrate 1 as a support. 5 and the second electrode 6 are sequentially stacked.
  • FIG. 2 is a cross-sectional view of the semiconductive phosphor fine particles contained in the light emitting layer 4 of the light emitting device 10.
  • the semiconductive phosphor fine particles 7 are partially or substantially entirely covered with a conductive organic material 8.
  • the light emitting characteristics of the light emitting element 10 will be described.
  • An electrode is drawn from the Ag electrode (second electrode) 6 and the ITO transparent electrode (first electrode) 2 of this light emitting element, and an external voltage is applied between the Ag electrode 6 and the ITO transparent electrode.
  • a peak luminance can be obtained.
  • zinc oxide having a particle size of 0.2 ⁇ m to 0.5 ⁇ m was used as the semiconductive phosphor fine particles.
  • the surface of the semiconductive phosphor fine particles was coated with polymethyl methacrylate.
  • This light emitting device 10 was manufactured by the following procedure.
  • a non-alkali glass substrate was used as the support 1.
  • the thickness of the substrate 1 was 1.7 mm.
  • An ITO transparent electrode 2 was formed on the support 1 by RF magnetron sputtering using an ITO oxide target as the first electrode 2.
  • a light emitting layer 4 was formed by coating or chemically adsorbing a conductive material on semiconductive phosphor fine particles having a particle size of 1 Atm or less.
  • a second electron transport layer 5 composed of 1,3,5_tris [5- (4-tert-butylphenyl) -1,3,4-oxadiazol-2-yl] benzene is formed. It was formed by a vacuum deposition method.
  • the light emitting device 10 was completed.
  • Embodiment 2 When the first electrode 2 and the second electrode 6 of the first embodiment were connected to the positive and negative electrodes of a DC power supply, respectively, and a DC voltage was applied, bright light emission at 15 V was confirmed. Since the light-emitting element in Embodiment 1 is driven with a low voltage, it is possible to control pixels using a TFT. (Embodiment 2)
  • Embodiment 2 of the present invention A light emitting device according to Embodiment 2 of the present invention will be described.
  • This light-emitting element is the same as the light-emitting element according to Embodiment 1, except that the semiconductive phosphor fine particles 7 are indium oxide doped with youpium.
  • the first electrode 2 and the second electrode 6 of the second embodiment were connected to the positive and negative electrodes of a DC power supply, respectively, and a DC voltage was applied, bright light emission at 18 V was confirmed. Since the light-emitting element in Embodiment 2 is driven with low voltage, it is possible to control pixels using TFT.
  • a light emitting device according to Embodiment 3 of the present invention will be described.
  • This light-emitting element is the same as the light-emitting element according to Embodiment 1, except that the semiconductive phosphor fine particles 7 are silicon oxide tin doped with europium.
  • the first electrode 2 and the second electrode 6 of the third embodiment are connected to the positive electrode and the negative electrode of a DC power source, respectively, and a DC voltage is applied, the brightness becomes 22 V! / Light emission was confirmed. Since the light-emitting element of Embodiment 3 is driven by low voltage, it is possible to control pixels using TFT.
  • a light emitting device according to Embodiment 4 of the present invention will be described.
  • the light emitting device is different from the light emitting device according to Embodiment 1 of implementation, are the same except that the semi-conductive phosphor fine particles 7 is different in that a Z n G a 2 O 4.
  • the first electrode 2 and the second electrode 6 of the fourth embodiment were connected to the positive electrode and the negative electrode of a DC power supply, respectively, and a DC voltage was applied, bright light emission was confirmed at 28 V. Since the light-emitting element in Embodiment 4 is driven with low voltage, it is possible to control pixels using a TFT.
  • Embodiment 5 of the present invention A light emitting device according to Embodiment 5 of the present invention will be described.
  • This light-emitting element is the same as the light-emitting element according to Embodiment 1, except that it does not include the second electron transport layer 5.
  • the first electrode 2 and the second electrode 6 of the fifth embodiment were connected to the positive and negative electrodes of a DC power supply, respectively, and a DC voltage was applied, bright light emission was confirmed at 48 V. Since the light-emitting element in Embodiment 5 is driven with a low voltage, it is possible to control pixels using TFT.
  • Embodiment 6 A light emitting device according to Embodiment 6 of the present invention will be described.
  • This light-emitting element is the same as the light-emitting element according to Embodiment 1, except that it does not have the first electron transport layer 3.
  • the first electrode 2 and the second electrode 6 of the sixth embodiment were connected to the positive electrode and the negative electrode of a DC power source, respectively, and a DC voltage was applied, bright light emission at 58 V was confirmed. Since this light-emitting element is driven by a low voltage, it is possible to control pixels using a TFT.
  • the color of light emitted from the light-emitting element is determined by the semiconductive phosphor fine particles.
  • white light can be extracted by mixing semiconductive phosphor fine particles for two complementary colors or three colors of RGB.
  • a color conversion layer may be further provided in front of the light-emitting layer 4 in the light extraction direction to adjust the color purity of each color, such as a multicolor display, a white display, or a color conversion material in the electron transport layer 3 in the transparent conductor matrix. May be mixed.
  • any color conversion material may be used as long as it emits light using light as an excitation source, and known phosphors, pigments, and dyes can be used regardless of an organic material or an inorganic material.
  • the color conversion material absorbs blue light generated from the light emitting layer, and emits green or red light. These lights are mixed and extracted from the light emitting element, so that white light is obtained.
  • FIG. 3 is a perspective view showing an electrode configuration of the light emitting element 20.
  • This light emitting element 20 further includes a thin film transistor 11 connected to the electrode 2 of the light emitting element 10 shown in FIG.
  • An X electrode 12 and a y electrode 13 are connected to the thin film transistor 11.
  • the thin film transistor 11 since at least a part of the surface of the semiconductive phosphor fine particles 7 is coated with the organic conductive material 8, it can be driven at a low voltage, and the thin film transistor 11 is used. be able to.
  • the thin film transistor 11 can have a memory function.
  • the thin film transistor 11 a low-temperature polysilicon amorphous silicon thin film transistor or the like is used.
  • an organic thin film transistor constituted by a thin film containing an organic material may be used. (Embodiment 8)
  • FIG. 4 is a schematic plan view showing an active matrix type display device including the X electrode 12 and the y electrode 13 of the display device 30 which are orthogonal to each other.
  • This display device 30 is an active matrix display device having a thin film transistor 11.
  • the active matrix display device 30 includes a light emitting element array in which a plurality of light emitting elements 20 each including the thin film transistor 11 shown in FIG. 3 are two-dimensionally arranged, and a first light emitting element array parallel to a surface of the light emitting element array.
  • the thin film transistor 11 of this light emitting element array is connected to the X electrode 12 and the y electrode 13 respectively.
  • the light emitting element specified by the pair of X electrode 12 and y electrode 13 constitutes one pixel.
  • the light emitting layer 4 constituting the light emitting element of each pixel includes the semiconductive phosphor fine particles 7 whose surface is covered with the organic conductive material 8. . This enables low voltage driving, so that the thin film transistor 11 can be used, and the memory effect can be utilized. In addition, since the device is driven at a low voltage, a display device having a long life can be obtained.
  • a display device of a color filter can be obtained by forming the RGB three-color light-emitting layers including the RGB three-color light-emitting elements for each pixel.
  • a color filter may be provided to adjust the color purity.
  • a configuration in which a display device for monochromatic light emission is further provided with a color conversion filter is also possible. For example, by passing blue light from a light emitting element through a color conversion filter, it is converted to green or red to obtain a color display.
  • the light emitting element of Comparative Example 1 will be described.
  • This light-emitting element is the same as the light-emitting element according to Embodiment 1, except that the semiconductive phosphor fine particles are not covered or chemically adsorbed with the conductive organic material.
  • a DC voltage was applied by connecting the first electrode 2 and the second electrode 6 to the positive electrode and the negative electrode, respectively, bright light emission was confirmed at 12 OV.
  • the light-emitting element of Comparative Example 1 uses a TFT because it is driven at high voltage and high voltage. And it is difficult or impossible to control the pixels.
  • the light emitting element of Comparative Example 2 will be described.
  • This light-emitting element has a particle size exceeding 1 m and a particle size of 1 ⁇ ! As compared with the light-emitting element according to Embodiment 1.
  • zinc oxide of ⁇ 1.4 ⁇ m is used.

Abstract

Light emitting element (10) comprising a pair of mutually opposed electrodes (2,6) and, interposed therebetween, luminescent layer (4) containing semiconductive fluorescent microparticles (7) each having at least part of the surface thereof coated with conductive organic material (8). This conductive organic material is preferably attached by chemical adsorption onto the surface of the semiconductive fluorescent microparticles. Further, electron transport layers (3,5) are preferably interposed between the luminescent layer and at least one of the electrodes.

Description

明 細 書  Specification
発光素子及び表示デバイス 技術分野  Light emitting element and display device
本発明は、 発光性無機材料及び該発光性無機材料を用いた発光素子及び該発光 素子を用いた発光デバィスに関する。  The present invention relates to a light-emitting inorganic material, a light-emitting element using the light-emitting inorganic material, and a light-emitting device using the light-emitting element.
背景技術 Background art
フラットパネノレディスプレイとして、 液晶パネノレ、 プラズマディスプレイ等と ともに注目を集めている表示デバイスとして、 エレクト口ルミネッセンス (以下 E Lと称する) 素子を用いた表示デバィスがある。 この E L素子には、 発光体に 無機化合物を使用する無機 E L素子と、 発光体に有機化合物を使用する有機 E L 素子がある。 E L素子は、 高速応答性、 高コントラスト、 耐振性等の特徴を有す る。 この E L素子は、 その内部に気体部が無いため高圧下や低圧下でも使用でき る。 有機 E L素子では、 駆動電圧が低いため薄膜トランジスタ (T F T) を用い たアクティブマトリクス方式での駆動によって一定の階調性を発現することがで きる力 その一方、 素子が湿度等の影響を受けやすく寿命が短い。 また、 無機 E L素子は、 有機 E L素子と比較して、 長寿命で、 使用温度範囲が広く、 耐久性に 優れる等の特徴がある。 その一方、 無機 E L素子では発光に要する電圧が 2 0 0 〜3 0 O Vと高いため、 薄膜トランジスタ (T F T) を使用したアクティブマト リクス方式での駆動は困難であった。 そのため、 無機 E L素子は、 パッシブマト リクス方式で駆動されてきた。 パッシブマトリクス駆動では、 第 1の方向に平行 に延在する複数の走査電極と、 第 1の方向と直交する第 2の方向に平行に延在す る複数のデータ電極とが設けられ、 この互レヽに交差している走査電極とデータ電 極との間に発光素子が挟まれており、 一組の走査電極とデータ電極との間に交流 電圧を印加して一^ 3の発光素子が駆動される。 このパッシブマトリクス駆動では 走査線の数が増加すると、 表示デバイス全体として平均輝度が低下する。 無機努 光体は一般的には絶縁物結晶中に発光材料をドープしたものであり、 そのために UV光を照射した場合には発光を生じる力 電界を印加しても絶縁物結晶中に電 子は浸透しにくく、 また帯電による反発も強いために発光を生じさせるには高工 ネルギー電子が必要となる。 低エネルギー電子で発光させるためには対策が必要 である。 As a flat panel display, a display device using an electroluminescent (hereinafter referred to as EL) element has been attracting attention together with a liquid crystal panel display, a plasma display, and the like. The EL element includes an inorganic EL element using an inorganic compound for a light emitter and an organic EL element using an organic compound for a light emitter. EL elements have characteristics such as high-speed response, high contrast, and vibration resistance. This EL element can be used under high or low pressure because there is no gas inside. The driving voltage of organic EL devices is low, so that the active matrix method that uses thin film transistors (TFTs) can generate a certain level of gradation when driven by an active matrix method. Is short. Further, the inorganic EL element has features such as a longer life, a wider operating temperature range, and excellent durability compared to the organic EL element. On the other hand, since the voltage required for light emission in inorganic EL devices is as high as 200 to 30 OV, it was difficult to drive them by the active matrix method using thin film transistors (TFTs). For this reason, inorganic EL devices have been driven by passive matrix methods. In the passive matrix driving, a plurality of scan electrodes extending in parallel to the first direction and a plurality of data electrodes extending in parallel in a second direction orthogonal to the first direction are provided. A light-emitting element is sandwiched between the scanning electrode and the data electrode that intersect with each other, and an AC voltage is applied between a pair of the scanning electrode and the data electrode to drive one light-emitting element. Is done. In this passive matrix driving, as the number of scanning lines increases, the average luminance of the entire display device decreases. Inorganic phosphors are generally doped with a luminescent material in an insulator crystal. For this reason, when UV light is irradiated, the electron crystal remains in the insulator crystal even when a force electric field that causes light emission is applied. Is difficult to penetrate, and strong repulsion due to electrification. Energy energy is required. Countermeasures are needed to emit light with low-energy electrons.
特公昭 5 4— 8 0 8 0号公報に記載の技術によれば、 発光層に Z n Sを主体と し、 Mn, C r , T b , E u, Tm, Y b等をドープすることによって、 無機 E L素子を駆動 (発光)させ、 発光輝度の向上がはかられたが、 2 0 0〜3 0 0 Vの 高電圧でし力駆動しないため、 T F Tを使用することができなかった。 発明の開示  According to the technique described in Japanese Patent Publication No. 54-80080, the light emitting layer is mainly composed of ZnS and is doped with Mn, Cr, Tb, Eu, Tm, Yb, etc. In this way, the inorganic EL element was driven (emitted) and the emission luminance was improved, but the TFT could not be used because it was not driven by a high voltage of 200 to 300 V. . Disclosure of the invention
発光素子をテレビ等の高品位な表示デバイスとして使用する場合は、 発光素子 が T F Tを使用可能な低電圧で駆動することが必要とされている。  When a light-emitting element is used as a high-quality display device such as a television, it is necessary that the light-emitting element be driven at a low voltage at which the TFT can be used.
本発明の目的は、 低電圧で駆動でき、 薄膜トランジスタを使用できると共に、 長寿命である発光素子を提供することである。  An object of the present invention is to provide a light-emitting element which can be driven at a low voltage, can use a thin film transistor, and has a long life.
本発明に係る発光素子は、 互いに対向する一対の電極と、  A light-emitting element according to the present invention includes: a pair of electrodes facing each other;
前記一対の電極の間に挟まれており、 表面の少なくとも一部を導電性有機材料 で被覆されている半導電性蛍光体微粒子を含む発光層と  A light emitting layer sandwiched between the pair of electrodes, the light emitting layer including semi-conductive phosphor fine particles having at least a portion of a surface thereof coated with a conductive organic material;
を備えることを特徴とする。 It is characterized by having.
この発光素子は発光性無機材料を用いた E L素子である。 この E L素子の発光 層は半導電性蛍光体粒子を含み、 該半導電性蛍光体粒子の表面には、 導電性有機 材料が被覆している。 さらに、 導電性有機材料が半導電性蛍光体微粒子の表面に 化学吸着していることが好ましい。  This light-emitting element is an EL element using a light-emitting inorganic material. The light emitting layer of this EL element contains semiconductive phosphor particles, and the surface of the semiconductive phosphor particles is coated with a conductive organic material. Further, it is preferable that the conductive organic material is chemically adsorbed on the surface of the semiconductive phosphor fine particles.
本発明者は、 今回、 半導電性蛍光体粒子の表面に導電性有機材料が被覆、 好ま しくは化学吸着している構成の場合に、 注入バリァの低減と帯電の低減の効果に より、 低電圧駆動させることができると共に、 長寿命である該 E L素子を得られ ることを知見した。 さらに、 該 E L素子に発光層と一対の電極のうちの少なくと も一方の電極との間に電子輸送層を設けることによって帯電の反発が低減されて、 さらに低電圧にて駆動することを知見した。  The present inventor has proposed that, in the case of a configuration in which a conductive organic material is coated on the surface of the semiconductive phosphor particles, and is preferably chemically adsorbed, the effect of reducing the injection barrier and the charge is reduced. It has been found that the EL element can be driven by voltage and has a long life. Furthermore, it has been found that by providing an electron transporting layer between the light emitting layer and at least one of the pair of electrodes in the EL element, repulsion of charging is reduced and the EL element is driven at a lower voltage. did.
本発明に係る発光素子の各構成部材について説明する。  Each component of the light emitting device according to the present invention will be described.
この発光素子は、 支持体基板上に固定してもよい。 この支持体基板としては、 電気絶縁性が高い材料を用いる。 支持体基板側から発光素子の光を取り出す場合 には、 可視領域での光の透過性が高い材料からなる支持体基板を用いる。 発光素 子の作製工程において支持体基板の温度が数百。 Cに達する場合は、 軟化点が高く 耐熱性に優れ、 熱膨張係数が積層する膜と同程度である材料を用いる。 このよう な支持体基板としてはガラス、 セラミックス、 シリコンウェハなどが使用できる 1 通常のガラスに含まれるアルカリイオン等が発光素子へ影響しないように、 無アルカリガラスを用いてもよい。 また、 ガラス表面に発光素子へのアルカリィ オンのイオンバリア層としてアルミナ等をコートしてもよい。 This light emitting element may be fixed on a support substrate. As the support substrate, a material having high electric insulation is used. When taking out the light of the light emitting element from the support substrate side In this case, a support substrate made of a material having high light transmittance in the visible region is used. The temperature of the support substrate was several hundred in the manufacturing process of the light emitting element. If the temperature reaches C, use a material with a high softening point, excellent heat resistance, and a thermal expansion coefficient similar to that of the film to be laminated. Glass, ceramics, silicon wafers, and the like can be used as such a support substrate. 1 Non-alkali glass may be used so that alkali ions and the like contained in ordinary glass do not affect the light emitting element. Further, the glass surface may be coated with alumina or the like as an ion barrier layer for alkali ions to the light emitting element.
電極には、 電気伝導性が高く、 電界によるイオンのマイグレーションがない材 料を用いる。 この電極としては、 アルミニウム、 モリプテン、 タングステン等を 用いることができる。 発光素子の光を取り出す側の電極は、 上述の電極の性能に 加えて、 可視領域で透明性の高い材料を用いればよく、 当電極として、 錫ドープ 酸化インジウム (I T O) 等を主体とした電極を用いることができる。 なお、 本 発明の発光素子及び/又は表示デバイスは、 直流で駆動しても、 交流で駆動して もよいし、 あるいはパルスで駆動してもよい。  The electrode is made of a material with high electrical conductivity and no migration of ions due to an electric field. As this electrode, aluminum, molyptene, tungsten, or the like can be used. The electrode on the light extraction side of the light emitting element may be made of a material having high transparency in the visible region in addition to the performance of the above-described electrode. The electrode mainly includes tin-doped indium oxide (ITO) or the like. Can be used. Note that the light emitting element and / or the display device of the present invention may be driven by direct current, may be driven by alternating current, or may be driven by pulses.
電子輸送性材料は、 電子輸送層内で電子を素早く輸送する電子移動度が高い材 料であり、 帯電による反発を低減する材料を用いればよく、 発光素子の寿命を長 くする目的で化学的に安定であることが好ましい。 そのような材料は有機物であ るならばアルミキノリネー 1、ゃォキサジァゾール誘導体などの一般的な導電性有 機化合物を主体とする材料ゃポリメチルメタクリレートなどを主体とする一般的 な導電性高分子材料を使用できる。  The electron-transporting material is a material having a high electron mobility for quickly transporting electrons in the electron-transporting layer. A material that reduces repulsion due to charging may be used. It is preferably stable to If such a material is an organic substance, a material mainly composed of a general conductive organic compound such as aluminum quinoline 1, a oxadiazole derivative, or a general conductive polymer mainly composed of polymethyl methacrylate or the like Material can be used.
本発明では、 発光体として、 半導性蛍光体微粒子を用いている。 半導性蛍光体 微粒子としては、 カドミウム、 亜鉛、 zk銀、 鉛、 錫、 インジウム、 アンチモン、 砒素、 珪素、 ガリウム、 ァノレミ-ゥム、 ビスマス、 ベリリウム、 マグネシウム、 カルシウム、 及びス トロンチウムの、 硫化物、 セレン化物、 テルル化物、 窒化物 リン化物、 砒化物、 アンチモン化物、 炭化物、 酸化物、 塩化物、 臭化物、 及びョ ゥ化物、 硫黄、 セレン、 テルル、 珪素、 ゲルマニウムの微粒子を使用することが できる。 また、 これらの物質相互の化合物及び固溶体の微粒子を使用できる。 さ らに上記微粒子に 5重量パーセント以下の異なる元素を賦活剤として含有するも のを含む微粒子が使用できる。 例えば、 マンガン、 銅、 銀、 金、 錫、 鉛、 プラセ オジム、 ネオジゥム、 サマリウム、 ユーロピウム、 ガドリニウム、 テノレビゥム、 ジスプロシウム、 ホルミウム、 エルビウム、 ツリウム、 イッテルビウム、 セシゥ ム、 チタン、 クロム、 アルミニウム等の金属元素から選ばれる少なくとも 1種類 の元素が賦活される。 また、 この賦活剤としては、 塩素やヨウ素のような非金属 元素や Tb F3や P r F3といったフッ化物でもよく、 更にこれらのうち 2種類以 上を同時に賦活してもよい。 また、 特に好適な抵抗の低い母体結晶の例としては、 Zn、 Ga、 I n、 Sn、 T iの群から選ばれる少なくとも 1種類の元素を含む 酸化物又は複合酸化物が挙げられ、 それぞれの蛍光体の例としては、 ZnO: Z n (発光色は青緑) 、 (Zn、 Mg) 0 : Zn (青) 、 ZnGa 204 : Mn In the present invention, semiconductive phosphor fine particles are used as the luminous body. Semiconductive phosphor fine particles include sulfides of cadmium, zinc, zk silver, lead, tin, indium, antimony, arsenic, silicon, gallium, anolemmium, bismuth, beryllium, magnesium, calcium, and strontium. , Selenide, telluride, nitride phosphide, arsenide, antimonide, carbide, oxide, chloride, bromide, and iodide, sulfur, selenium, tellurium, silicon, and germanium fine particles can be used. . Further, fine particles of a compound and a solid solution of these substances can be used. Further, fine particles containing those containing 5% by weight or less of a different element as an activator can be used. For example, manganese, copper, silver, gold, tin, lead, placer At least one element selected from metal elements such as odymium, neodymium, samarium, europium, gadolinium, tenorebium, dysprosium, holmium, erbium, thulium, ytterbium, cesium, titanium, chromium, and aluminum is activated. Further, as the activator may be a fluoride such as non-metallic element or Tb F 3 and P r F 3, such as chlorine or iodine, may further be activated two or more top of these at the same time. Examples of particularly suitable low-resistance host crystals include oxides or composite oxides containing at least one element selected from the group consisting of Zn, Ga, In, Sn, and Ti. examples of the phosphor, ZnO: Z n (emission color blue green), (Zn, Mg) 0 : Zn ( blue), ZnGa 2 0 4: Mn
(緑) 、 I n203 : Eu (赤) 、 S n02: Eu (赤) 、 C a T i O 3: P r (Green), I n 2 0 3: Eu ( red), S n0 2: Eu (red), C a T i O 3 : P r
(赤) 等がある。 さらに、 例えば、 硫化亜鉛のように比較的抵抗の高い母体結晶 と、 前述した Z n 0、 I n2 O 3等の抵抗の低い母体結晶とが混合した微粒子であ つてもよい。 (Red) etc. Further, for example, fine particles in which a host crystal having a relatively high resistance such as zinc sulfide and a host crystal having a low resistance such as Zn 0 and In 2 O 3 described above may be used.
半導体蛍光体微粒子の粒径は 1 μ m以下であり、 小さければ小さ 1/、程、 微粒子 内の発光中心を励起し易くなるので好ましく、 さらに発光中心をより励起し易く するためには量子効果を利用するために微粒子の粒径をナノサイズとすればよ V、。 粒径 100 nm程度の場合、 十分な量子効果を得ることが困難なので、 該微粒子 の中心の表面に注入バリアを低減しまた微粒子を安定化する目的で π電子をもつ 導電性有機材料を被覆、 好ましくは化学吸着させた発光体を用いることが好まし い。 前記化合物及び前記固溶体は可視光領域の光透過性が高いことが好ましい。 なお、 特定の色を得る目的でカラーフィルタを素子の構成に加えてもよい。 The particle size of the semiconductor phosphor fine particles is 1 μm or less, and the smaller the particle size, the smaller 1 / is preferable because the luminescent center in the fine particle is easily excited.In order to further excite the luminescent center, quantum effect is preferable. In order to take advantage of this, the particle size of the fine particles should be nano-sized. When the particle size is about 100 nm, it is difficult to obtain a sufficient quantum effect, so that a conductive organic material having π electrons is coated on the surface at the center of the fine particles to reduce the injection barrier and stabilize the fine particles. Preferably, a chemisorbed luminescent material is used. It is preferable that the compound and the solid solution have high light transmittance in a visible light region. Note that a color filter may be added to the configuration of the element in order to obtain a specific color.
ここで、 本発明の前記微粒子の発光メカニズムについて考察する。 先ず、 従来 の無機発光体について説明する。 従来の無機宪光体は絶縁性の結晶 (以後、 母体 結晶と称する) 中に発光中心が存在する構成となっており、 発光は発光中心の励 起によって生じると考えられる。 母体結晶は外部からの印加エネルギーによって 励起するが、 母体結晶の伝導帯や価電子帯に生じた伝導電子や正孔の多くは不純 物中心や格子欠陥に捕捉される。 発光中心はここでいう不純物中心や格子欠陥と してドープしたものであると考えられる。 よって、 母体結晶は外部からの印加工 ネルギーを発光中心に伝える効率が高い材料を選択する必要があり、 発光中心の みで素子を構成しても発光効率が低くなる力 \ または発光しないと考えられる。 また、 2種類以上の発光中心がある場合や、 発光中心の濃度が高い場合に、 発光 中心間に励起エネルギーの伝達が行われることがある。 2つの発光中心のそれぞ れの発光と吸収が等しいとき、 量子力学的な共鳴によつて一方向から他方へ励起 エネルギーが伝達されると考えられている。 発光中心のドープ量には最適値があ り、 ある濃度以上では発光強度が減少する。 その原因の多くは、 前述の共鳴エネ ルギ一の伝達によって、 発光中心の励起エネルギーが非発光部分に届けられるた めと考えられている。 よって、 従来の絶縁性の母体結晶に発光中心が存在する無 機蛍光体では、 紫外光などの印加エネルギーでは発光するが、 電界印加によって 発光させるためには 2 0 0 V程度の高電圧を与える必要があつたと考えられる。 母体結晶が電界による励起エネルギー (具体的には電子エネルギー) を発光中 心に伝達し易くするために母体結晶に従来よりも導電性のある物質を用いた。 例 えば、 酸化亜鉛は透明電極としても既知の導電体である力 格子欠陥 (亜鉛過剰 部分や酸素過剰部分) が存在する割合と酸化亜鉛の導電性は反比例の関係になる。 母体結晶に酸化亜鉛を用いた場合、 ドープなどで格子欠陥を生じさせることによ つて酸化亜鉛は、 導電性が低下するので、 酸化亜鉛は半導電性物質つまり半導体 とみなされる。 また、 トランジスタなどに使用される p n接合を利用する半導体 も同様の理由で本発明の発光体として用いることができる。 発光体として、 トラ ンジスタなどに使用される p n接合を利用する複数の半導体領域を有する半導電 性蛍光体微粒子を使用する場合は、 半導電性蛍光体微粒子の表面側に n型半導体 領域、 中心側に p型半導体領域が偏析していてもよい。 また、 それぞれの半導体 領域が微粒子の中で散在していてもよレ、。 Here, the light emission mechanism of the fine particles of the present invention will be considered. First, a conventional inorganic light emitting body will be described. The conventional inorganic phosphor has a structure in which an emission center exists in an insulating crystal (hereinafter referred to as a host crystal), and light emission is considered to be generated by excitation of the emission center. The host crystal is excited by externally applied energy, but most of the conduction electrons and holes generated in the conduction band and valence band of the host crystal are trapped by impurity centers and lattice defects. It is considered that the emission center is doped as the impurity center or lattice defect. Therefore, for the host crystal, it is necessary to select a material with a high efficiency of transmitting the externally processed marking energy to the luminescence center. It is considered that even if the element is constituted by only the light, the power for reducing the luminous efficiency or the light is not emitted. Also, when there are two or more types of luminescent centers or when the concentration of the luminescent centers is high, excitation energy may be transmitted between the luminescent centers. It is thought that when the emission and absorption of each of the two emission centers are equal, the excitation energy is transmitted from one direction to the other by quantum mechanical resonance. The doping amount at the emission center has an optimum value, and the emission intensity decreases at a certain concentration or more. It is thought that many of the reasons are due to the above-mentioned transmission of resonance energy that causes the excitation energy of the luminescent center to reach the non-luminescent portion. Therefore, a conventional inorganic phosphor having an emission center in an insulating host crystal emits light with applied energy such as ultraviolet light, but a high voltage of about 200 V is applied to emit light by applying an electric field. It seems necessary. To make it easier for the host crystal to transmit the excitation energy (specifically, electron energy) due to the electric field to the center of light emission, a material that is more conductive than before was used for the host crystal. For example, zinc oxide, which is a conductor that is also known as a transparent electrode, has a power lattice defect (excess zinc or oxygen excess) and the conductivity of zinc oxide is inversely proportional. When zinc oxide is used for the host crystal, zinc oxide is considered to be a semiconductive substance, ie, a semiconductor, because the conductivity of zinc oxide decreases due to lattice defects caused by doping or the like. Further, a semiconductor using a pn junction used for a transistor or the like can be used as the light-emitting body of the present invention for the same reason. When using semiconductive phosphor fine particles having a plurality of semiconductor regions using a pn junction used for a transistor or the like as a light emitter, an n-type semiconductor region and a center are provided on the surface side of the semiconductive phosphor fine particles. The p-type semiconductor region may be segregated on the side. Also, each semiconductor region may be scattered in fine particles.
また、 図 2の半導電性蛍光体微粒子の断面図に示すように、 半導電性蛍光体微 粒子 7の表面は、 さらに電子エネルギーを伝達し易くする目的で、 導電性有機材 料 8で被覆している。 さらに導電性有機材料 8と該表面とが化学結合しているこ とが好ましい。 ここで用いる導電性有機材料 8は、 発光素子の電極と発光体のェ ネルギー障壁を低減する目的で、 該発光体の表面へ被覆、 好ましくは化学結合さ せたのであり、 発光素子の電極と発光体のエネルギー障壁が低減された結果、 発 光体へ電子エネルギーが伝達され易くなり、 本発明の発光素子が低電圧で駆動し たと考える。 該発光体は粒子状であるため、 該発光体表面にわたってエネルギー 障壁を低減することができるし、 一般に粒径が小さい程、 物質は化学的に不安定 になり、 該発光体についても粒径がナノサイズになった場合は、 該発光体が化学 的に不安定になるため、 その場合は導電性有機材料 8が発光体の保護としての効 果も併せ持つ。 In addition, as shown in the cross-sectional view of the semiconductive phosphor fine particles in FIG. 2, the surface of the semiconductive phosphor fine particles 7 is coated with a conductive organic material 8 in order to further facilitate the transfer of electron energy. are doing. Further, it is preferable that the conductive organic material 8 and the surface are chemically bonded. The conductive organic material 8 used here was coated, preferably chemically bonded, on the surface of the light emitting element for the purpose of reducing the energy barrier between the electrode of the light emitting element and the light emitting body. As a result of the reduced energy barrier of the luminous body, electron energy is easily transmitted to the luminous body, and the light-emitting element of the present invention can be driven at a low voltage. Think Since the luminous body is in the form of particles, the energy barrier can be reduced over the surface of the luminous body. In general, the smaller the particle size, the more chemically unstable the substance becomes. When the size becomes nano, the luminous body becomes chemically unstable. In this case, the conductive organic material 8 also has an effect of protecting the luminous body.
導電性有機材料 8としては、 構造内に π電子雲をもつ一般的な導電性有機材料 を選択すればよい。 さらに、 温度などで特性が変化しないガラス転移点が高い有 機材料を用いることが好ましく、 そのような材料としては高分子材料などを使用 できる。 また、 半導電性蛍光体微粒子表面へ化学吸着させる導電性有機材料とし ては、 水酸基、 カルポニル基、 カルボキシル基等の官能基を有する有機材料を用 いることができる。 化学吸着の方法としては、 例えば、 導電性有機材料にカルボ キシル基 (- C O O H) を導入し、 半導電性蛍光体微粒子表面の水酸基 (一 Ο Η) とエステル結合させて、 固定化する方法がある。 また、 カルボキシル基の代 わりに、 チォカノレポキシル基、 ジチォ力ノレボキシノレ基、 スルホ基、 スノレフイノ基、 スルフエノ基、 ホスホノ基、 ホスフィン基、 メルカプト基、 トリメトキシシリル 基、 トリクロロシリル基、 アミド基、 アミノ基等を用いることもできる。 さらに、 半導電性蛍光体微粒子の金属元素と、 導電性有機材料の窒素、 酸素、 硫黄、 リン 等の孤立電子対を有する元素との配位結合であつてあよい。 導電性有機材料に好 適な例としては、 ポリアセチレン系、 ポリパラフエ二レン、 ポリフエエレンビ- レン、 ポリフエ二レンサルファイ ド、 ポリフエ二レンオキサイ ドに代表されるポ リフエ二レン系、 ポリピロール、 ポリチォフェン、 ポリフラン、 ポリセレノフエ ン、 ポリテル口フェンに代表される複素環ポリマ系、 ポリア二リンに代表される イオン性ポリマ系、 ポリアセン系、 ポリエステル系、 金属フタロシアニン系やこ れらの誘導体、 共重合体、 混合体などが挙げられる。 さらに好適な例として、 ポ リ ー Ν—ビュルカルバゾーノレ ( P VK) 、 ポリエチレンジォキシチォフェン ( Ρ E D O T) 、 ポリスチレンスルホン酸 ( P S S ) 、 ポリメチルフエエルシラン As the conductive organic material 8, a general conductive organic material having a π electron cloud in its structure may be selected. Further, it is preferable to use an organic material having a high glass transition point whose properties do not change with temperature or the like, and a polymer material or the like can be used as such a material. As the conductive organic material chemically adsorbed on the surface of the semiconductive phosphor fine particles, an organic material having a functional group such as a hydroxyl group, a carbonyl group, a carboxyl group or the like can be used. As a method of chemisorption, for example, a method of introducing a carboxyl group (-COOH) into a conductive organic material, forming an ester bond with a hydroxyl group ((Η) on the surface of the semiconductive phosphor fine particles, and immobilizing the same. is there. In addition, instead of the carboxyl group, a thiocanolepoxyl group, a dithiophenol group, a sulfo group, a snolefineo group, a sulfeno group, a phosphono group, a phosphine group, a mercapto group, a trimethoxysilyl group, a trichlorosilyl group, an amide group, and an amino group A group or the like can also be used. Further, a coordination bond between a metal element of the semiconductive phosphor fine particles and an element having a lone electron pair such as nitrogen, oxygen, sulfur, and phosphorus of the conductive organic material may be used. Preferable examples of the conductive organic material include polyacetylene, polyparaphenylene, polyphenylenevinyl, polyphenylene sulfide, polyphenylene oxide represented by polyphenylene oxide, polypyrrole, polythiophene, polyfuran, and polyselenophene. Heterocyclic polymers such as polystyrene, polyter-mouth phen, ionic polymers such as polyaniline, polyacenes, polyesters, metal phthalocyanines and derivatives, copolymers, and mixtures of these. Can be More preferable examples are poly-bulcarbazolone (PVK), polyethylenedioxythiophene ((EDOT), polystyrenesulfonic acid (PSS), and polymethylphenylsilane.
( P MP S ) 等が挙げられる。 また、 さらに好適な例として、 電子輸送性の有機 材料を用いてもよい。 電子輸送性有機材料としては、 大きく分けて低分子系材料 と高分子系材料とがある。 電子輸送性を備える低分子系材料としては、 ォキサジ ァゾール誘導体、 トリァゾーノレ誘導体、 スチリルベンゼン誘導体、 シロール誘導 体、 1, 10—フエナント口リン誘導体、 キノリノール系金属錯体、 チォフェン 誘導体、 フルオレン誘導体、 キノン誘導体等やこれらの 2量体、 3量体が挙げら れる。 特に好ましくは、 2— (4ービフエ-ル) 一5— (4— t e r t—プチノレ フエ-ル) - 1 , 3, 4—ォキサジァゾール (PBD) 、 2, 5—ビス (1—ナ フチル) - 1, 3, 4—ォキサジァゾール (BND) 、 2, 5—ビス [1一 (3 —メ トキシ) 一フエニル] - 1 , 3, 4ーォキサジァゾール (BMD) 、 1, 3, 5—トリス [5— (4— t e r t—ブチルフエ二ル) 一 1, 3, 4ーォキサジァ . ゾール一 2—ィル] ベンゼン (TPOB) 、 3― (4ービフエ二ノレ) —4—フエ 二/レー 5— (4— t e r t—ブチノレフエ二ノレ) 一 1, 2, 4一トリァゾーノレ (T(PMPS) and the like. Further, as a more preferable example, an electron transporting organic material may be used. Electron transporting organic materials can be broadly divided into low molecular weight materials and high molecular weight materials. Oxazidi is a low molecular weight material with electron transport properties. Azole derivatives, triazonole derivatives, styrylbenzene derivatives, silole derivatives, 1,10-phenanthroline derivatives, quinolinol-based metal complexes, thiophene derivatives, fluorene derivatives, quinone derivatives, and dimers and trimers thereof. It is. Particularly preferred is 2- (4-biphenyl) -1-5- (4-tert-butylinolefur) -1, 3,4-oxadiazole (PBD), 2,5-bis (1-naphthyl) -1 , 3,4-oxadiazole (BND), 2,5-bis [1- (3-methoxy) -phenyl]-1,3,4-oxadiazole (BMD), 1,3,5-tris [5- (4-tert-butylphenyl) 1-1,3,4-oxazia.zol-2-yl] benzene (TPOB), 3- (4-biphenyl) —4—phenyl / 2-ray 5— ( 4-tert-butynolephenone 1 1,2,4-triazonole (T
AZ) 、 3— (4—ビフエ二,レ) 一 4一 (4—ェチノレフエ二ノレ) -5- (4一 t e r t—ブチルフエニル) 一 1 , 2, 4ートリアゾール (p— E t TAZ) 、 4, 7—ジフエ-ルー 1, 10—フエナント口リン (BPh e n) 、 2, 9—ジメチ ノレ一 4, 7—ジフエ二ノレ一 1, 10—フエナント口リン (BCP) 、 3, 5—ジ メチノレー 3, , 5, ージー t e r t—ブチノレー 4, 4, ージフエノキノン (MBAZ), 3— (4-biphenyl, re) 1-41 (4-ethynolepheny) -5- (4-1tert-butylphenyl) 1-1,2,4-triazole (p—Et TAZ), 4, 7-diphen-luu 1,10-phenanthone phosphorus (BPhen), 2,9-dimethinone 1,7-dipheninone 1,10-phenanthone (BCP), 3,5-dimethinole 3 ,, 5,-tert-butynolee 4, 4, diphenoquinone (MB
DQ) 、 2, 5―ビス [2— (5— t e r t一プチルベンゾキサゾリル) ] —チ ォフェン (BBOT) 、 トリ二トロフルォレノン (TNF) 、 トリス (8—キノ リノラ ト) アルミニウム (A 1 q 3) 、 5, 5, —ビス (ジメシチルボリル) ― 2, 2' ビチォフェン (BMB— 2T) 等があるがこれらに限定されるものでは ない。 また、 電子輸送性を備える高分子系材料としては、 ポリ一 [2—メトキシ 一 5— ( 2一ェチルへキシノレオキシ) 一 1, 4— (1一シァノビニレン) フエ- レン] (CN— PPV) やポリキノキサリン、 または低分子系で電子輸送性を示 す分子構造を分子鎖中に組み込んだポリマ等が挙げられる。 なお、 上記半導電性 蛍光体微粒子に導電性材料を被覆、 好ましくは化学吸着させた発光体を、 透明導 電体マトリクスの材料中へ分散させてもよい。 そのような透明導電体材料として は前述した導電性有機材料や電子輸送性有機材料等を用いることができる。 また、 導電性又は非導電性ポリマ中に、 前述した電子輸送性有機材料のような低分子系 の導電性材料、 若しくは、 無機導電性、 無機半導電性材料を分散して、 導電性を 付与した形態であってもよレ、。 本発明に係る発光素子の構成について説明する。 DQ), 2,5-bis [2- (5-tert-butylbenzoxazolyl)]-thiophene (BBOT), trinitrotrolenone (TNF), tris (8-quinolinolato) aluminum (A1q 3), 5,5, -bis (dimesitylboryl) -2,2'-bithiophene (BMB-2T), but not limited to these. In addition, polymer materials having electron transport properties include poly [2-methoxy-15- (2-ethylhexynoleoxy) -1-1,4-((1-cyanovinylene) phenylene] (CN-PPV) and the like. Examples thereof include polyquinoxaline, and a polymer in which a molecular structure exhibiting an electron transporting property in a low molecular weight system is incorporated in a molecular chain. The luminescent material obtained by coating the conductive material on the semiconductive phosphor fine particles, preferably by chemisorption, may be dispersed in the material of the transparent conductive matrix. As such a transparent conductor material, the above-described conductive organic material, electron transporting organic material, or the like can be used. In addition, a low molecular conductive material such as the above-described electron transporting organic material, or an inorganic conductive or inorganic semiconductive material is dispersed in a conductive or nonconductive polymer to impart conductivity. It may be in the form that was done. The configuration of the light emitting element according to the present invention will be described.
この発光素子は、 図 1に示す通り、 互いに対向する一対の電極の間に、 表面の 少なくとも一部に導電性材料を被覆、 好ましくは化学吸着させた半導電性蛍光体 微粒子を含む発光層を有している。 さらに、 少なくとも 1つの電子輸送層を設け てもよく、 発光層を 2枚の電子輸送層で挟み込んでもよい。 なお、 電極は支持体 上に形成してもよい。 上記半導電性蛍光体微粒子は透明導電体のマトリタス中に 分散してもよい。 また、 電子輸送層と電極との間に電子注入層を設けてもよい。 また、 図 3に示す発光素子 2 0は低電圧にて駆動させることができるので、 薄膜 トランジスタ (T F T) 1 1を構造中に備えることによって低電圧でアクティブ マトリクス駆動する表示デバィス 3 0を得ることが可能である。  In this light emitting device, as shown in FIG. 1, at least a part of the surface is coated with a conductive material, and preferably a light emitting layer containing semiconductive phosphor fine particles chemically adsorbed is provided between a pair of electrodes facing each other. Have. Further, at least one electron transport layer may be provided, and the light emitting layer may be sandwiched between two electron transport layers. Note that the electrode may be formed on a support. The semiconductive phosphor fine particles may be dispersed in a transparent conductor, Matritas. Further, an electron injection layer may be provided between the electron transport layer and the electrode. In addition, since the light-emitting element 20 shown in FIG. 3 can be driven at a low voltage, a display device 30 that performs active matrix driving at a low voltage can be obtained by providing a thin film transistor (TFT) 11 in the structure. Is possible.
次に、 この発光素子において、 十分な発光効率を得るための条件について検討 する。 この発光素子は、 発光素子の電極へ外部電界を印加することによって駆動 され、 印加した外部電界から電極、 電子輸送層を経て電子が発光体へ送られる。 電子輸送層と半導電性蛍光体微粒子のエネルギー P章壁は、 半導電性蛍光体微粒子 表面に導電性材料を被覆、 好ましくは化学吸着した材料により低減されるため、 効率よく半導電性蛍光体微粒子へ電子が送られる。  Next, conditions for obtaining sufficient luminous efficiency in this light emitting element will be examined. This light-emitting element is driven by applying an external electric field to the electrode of the light-emitting element, and electrons are sent to the light-emitting body from the applied external electric field via the electrode and the electron transport layer. The energy of the electron transport layer and the semiconductive phosphor particles The chapter P wall is coated with a conductive material on the surface of the semiconductive phosphor particles, and is preferably reduced by the chemisorbed material. Electrons are sent to the microparticles.
半導電性蛍光体微粒子内の発光中心は、 伝達された電子のエネルギーによって 励起し、 基底状態になるときに発光する。 つまり、 半導電性蛍光体微粒子の大き さが小さくなればなるほど十分な発光効率を得ることができるが、 その一方で粒 径が小さくなればなるほど微粒子自体は不安定になる。 小さな粒径を安定に保つ ためにも微粒子表面への被覆又は化学吸着が必要であり、 導電性材料にて被覆ま たは化学吸着することによって、 半導電性蛍光体微粒子内の発光中心へ効率よく エネルギーを伝達することが可能となる。  The emission center in the semiconductive phosphor fine particles is excited by the energy of the transmitted electrons, and emits light when it enters the ground state. In other words, the smaller the size of the semiconductive phosphor fine particles, the more luminous efficiency can be obtained, but the smaller the particle size, the more unstable the fine particles themselves. Coating or chemisorption on the surface of the fine particles is necessary to keep the small particle size stable, and by coating or chemisorbing with a conductive material, the efficiency can be increased to the emission center in the semiconductive phosphor fine particles. It is possible to transmit energy well.
また、 発光層上に電子輸送層を設けることにより、 電子は効率よく半導電性蛍 光体微粒子へ伝達することが可能となる。 さらに発光層を電子輸送層で挟み込む ことにより、 電子輸送層は正孔ストッパ層としても働くため、 伝達されてきた電 子が正孔と再結合することなく、 半導電性蛍光体微粒子へ伝達される。  Further, by providing an electron transport layer on the light emitting layer, electrons can be efficiently transmitted to the semiconductive phosphor fine particles. Furthermore, since the light-emitting layer is sandwiched between the electron transport layers, the electron transport layer also functions as a hole stopper layer, so that the transmitted electrons are transmitted to the semiconductive phosphor fine particles without recombination with holes. You.
この電子輸送層としては、 前述した電子輸送性低分子系材料、 または電子輸送 性高分子系材料が用いられる。 またさらに、 導電性又は非導電性ポリマに、 低分 子系の電子輸送性材料、 若しくは、 n型の無機半導電性材料を分散させた形態も 同様に可能である。 As the electron transporting layer, the above-described electron transporting low molecular weight material or the electron transporting high molecular weight material is used. Furthermore, conductive or non-conductive polymer A form in which a child-type electron transporting material or an n-type inorganic semiconductive material is dispersed is also possible.
発明の効果 The invention's effect
本発明に係る発光素子によれば、 発光体が半導電性蛍光体微粒子からなり、 該 半導電性蛍光体微粒子の表面の少なくとも一部を導電性材料で被覆、 好ましくは 化学吸着している。 これによつて、 化学的に安定した微粒子による高効率発光に より、 低電圧駆動の発光素子を得ることができた。 , 図面の簡単な説明 本発明の種々の対象、 特徴及び利点は、 添付の図面を参照しつつ以下で説明さ れる好ましい実施の形態により明らかにされるであろう。  According to the light emitting device of the present invention, the luminous body is composed of semiconductive phosphor fine particles, and at least a part of the surface of the semiconductive phosphor fine particles is coated with a conductive material, preferably, is chemically adsorbed. As a result, it was possible to obtain a light-emitting element driven at low voltage by high-efficiency light emission by chemically stable fine particles. BRIEF DESCRIPTION OF THE DRAWINGS Various objects, features and advantages of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.
図 1は、 本発明の実施の形態 1に係る発光素子の構成を示す断面図である。  FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device according to Embodiment 1 of the present invention.
図 2は、 本 明の実施の形態 1における略全表面が被覆された半導電性蛍光体 微粒子の断面図である。  FIG. 2 is a cross-sectional view of the semiconductive phosphor fine particles having substantially the entire surface covered in the first embodiment of the present invention.
図 3は、 本宪明の実施の形態 7に係る発光素子の電極構成を示す斜視図である。 図 4は、 本発明の実施の形態 8に係る表示デバィスを示す平面概略図である。 発明を実施するための最良の形態  FIG. 3 is a perspective view showing an electrode configuration of a light emitting device according to Embodiment 7 of the present invention. FIG. 4 is a schematic plan view showing a display device according to Embodiment 8 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の形態に係る発光素子について添付図面を用いて以下に詳しく説 明する力 本宪明はこれらの実施の形態により限定されるものではない。 なお、 図面において実質的に同一の部材には同一の符号を付している。  DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A light emitting device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the embodiment. In the drawings, substantially the same members are denoted by the same reference numerals.
(実施の形態 1 )  (Embodiment 1)
本発明の実施の形態 1に係る発光素子について、 図 1及び図 2を用いて説明す る。 図 1は、 この発光素子 1 0の素子構造を示す概略図である。 この発光素子 1 0は、 発光体層 4を 2層の第 1及び第 2電子輸送層 3、 5で挟み、 さらに電子輸 送層 3、 5を 2つの第 1及ぴ第 2電極 2、 6の間に挟んでいる。 各層の積層関係 の観点から説明すると、 この発光素子 1 0は、 支持体としての透明基板 1の上に、 第 1電極 2、 第 1電子輸送層 3、 発光体層 4、 第 2電子輸送層 5及び第 2電極 6 が順に積層されている。 また、 発光した光は、 第 1電極 2を支持する透明基板 1 の側から取り出される。 またさらに、 図 2は、 この発光素子 10の発光体層 4内 に含まれる半導電性蛍光体微粒子の断面図である。 この半導電性蛍光体微粒子 7 は、 その表面の一部又は略全面を導電性有機材料 8によって被覆されている。 The light emitting device according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a schematic view showing an element structure of the light emitting element 10. The light-emitting element 10 includes a light-emitting layer 4 sandwiched between two first and second electron transport layers 3 and 5, and further, the electron transport layers 3 and 5 are sandwiched between two first and second electrodes 2 and 6. Sandwiched between. Explaining from the viewpoint of the stacking relation of each layer, this light emitting element 10 is composed of a first electrode 2, a first electron transport layer 3, a light emitting layer 4, and a second electron transport layer on a transparent substrate 1 as a support. 5 and the second electrode 6 are sequentially stacked. The emitted light is transmitted to a transparent substrate 1 supporting the first electrode 2. Taken out of the side. FIG. 2 is a cross-sectional view of the semiconductive phosphor fine particles contained in the light emitting layer 4 of the light emitting device 10. The semiconductive phosphor fine particles 7 are partially or substantially entirely covered with a conductive organic material 8.
次に、 この発光素子 10の発光特性について説明する。 この発光素子の Ag電 極 (第 2電極) 6と、 I T O透明電極 (第 1電極) 2とから電極を引き出して、 この Ag電極 6と I TO透明電極との間に外部電圧を印加することにより、 ピー ク輝度が得られる。 この実施の形態 1では、 半導電性蛍光体微粒子に粒径 0. 2 μ m〜 0. 5 μ mの酸化亜鉛を用いた。 半導電性蛍光体微粒子はポリメチルメタ クリレートによりその表面を被覆した。  Next, the light emitting characteristics of the light emitting element 10 will be described. An electrode is drawn from the Ag electrode (second electrode) 6 and the ITO transparent electrode (first electrode) 2 of this light emitting element, and an external voltage is applied between the Ag electrode 6 and the ITO transparent electrode. As a result, a peak luminance can be obtained. In the first embodiment, zinc oxide having a particle size of 0.2 μm to 0.5 μm was used as the semiconductive phosphor fine particles. The surface of the semiconductive phosphor fine particles was coated with polymethyl methacrylate.
次に、 この発光素子 10の製造方法について説明する。 この発光素子は、 以下 の手順によって作製した。  Next, a method for manufacturing the light emitting device 10 will be described. This light emitting device was manufactured by the following procedure.
(a) 支持体 1として無アルカリガラス基板を用いた。 基板 1の厚みは 1. 7m mでめった。  (a) A non-alkali glass substrate was used as the support 1. The thickness of the substrate 1 was 1.7 mm.
(b) 支持体 1の上に、 第 1電極 2として I TO酸化物ターゲットを用いて RF マグネトロンスパッタリング法により、 I T O透明電極 2を形成した。  (b) An ITO transparent electrode 2 was formed on the support 1 by RF magnetron sputtering using an ITO oxide target as the first electrode 2.
(c) 次に、 I TO透明電極 2の上に第 1電子輸送層 3として 1,3, 5-tris [5- (4 - tert-butylphenyl)-l, 3, 4-oxadiazol_2- yl]benzeneを真空蒸着法によって形成し た。  (c) Next, 1,3,5-tris [5- (4-tert-butylphenyl) -l, 3,4-oxadiazol_2-yl] benzene is formed on the ITO transparent electrode 2 as the first electron transport layer 3. Was formed by a vacuum evaporation method.
(d) 形成された電子輸送層 3の上に、 粒径 1 Atm以下の半導電性蛍光体微粒子 に導電性材料を被覆または化学吸着した発光層 4を塗布法により形成した。  (d) On the formed electron transport layer 3, a light emitting layer 4 was formed by coating or chemically adsorbing a conductive material on semiconductive phosphor fine particles having a particle size of 1 Atm or less.
(e) さらに、 発光層 4の上に、 1,3, 5_tris[5 -(4 - tert - butylphenyl) - 1, 3,4 - oxadiazol- 2- yl]benzeneからなる第 2電子輸送層 5を真空蒸着法により形成した。  (e) Further, on the light emitting layer 4, a second electron transport layer 5 composed of 1,3,5_tris [5- (4-tert-butylphenyl) -1,3,4-oxadiazol-2-yl] benzene is formed. It was formed by a vacuum deposition method.
(f ) 上記電子輸送層 5の上に、 第 2電極として A g電極ペーストをスクリーン 印刷し、 乾燥させ、 第 2電極 6を形成した。  (f) On the electron transport layer 5, an Ag electrode paste was screen-printed as a second electrode and dried to form a second electrode 6.
以上の工程によつて発光素子 10を完成した。  Through the above steps, the light emitting device 10 was completed.
実施の形態 1の第 1電極 2と第 2電極 6をそれぞれ直流電源の正極と負極に接 続して直流電圧を与えると、 15 Vで明るい発光が確認できた。 実施の形態 1の 発光素子は低電圧駆動であるため、 T F Tを用いて画素を制御することが可能で ある。 (実施の形態 2 ) When the first electrode 2 and the second electrode 6 of the first embodiment were connected to the positive and negative electrodes of a DC power supply, respectively, and a DC voltage was applied, bright light emission at 15 V was confirmed. Since the light-emitting element in Embodiment 1 is driven with a low voltage, it is possible to control pixels using a TFT. (Embodiment 2)
本発明の実施の形態 2に係る発光素子について説明する。 この発光素子は、 実 施の形態 1に係る発光素子と比較すると、 半導電性蛍光体微粒子 7がユー口ピウ ムをドープした酸化インジウムであることが相違する以外は同じである。 実施の 形態 2の第 1電極 2と第 2電極 6をそれぞれ直流電源の正極と負極に接続して直 流電圧を与えると、 1 8 Vで明るい発光が確認できた。 実施の形態 2の発光素子 は低電圧駆動であるため、 T F Tを用いて画素を制御することが可能である。  A light emitting device according to Embodiment 2 of the present invention will be described. This light-emitting element is the same as the light-emitting element according to Embodiment 1, except that the semiconductive phosphor fine particles 7 are indium oxide doped with youpium. When the first electrode 2 and the second electrode 6 of the second embodiment were connected to the positive and negative electrodes of a DC power supply, respectively, and a DC voltage was applied, bright light emission at 18 V was confirmed. Since the light-emitting element in Embodiment 2 is driven with low voltage, it is possible to control pixels using TFT.
(実施の形態 3 )  (Embodiment 3)
本発明の実施の形態 3に係る発光素子について説明する。 この発光素子は、 実 施の形態 1に係る発光素子と比較すると、 半導電性蛍光体微粒子 7がユー口ピウ ムをドープした酸ィ匕錫である点で相違する以外は同じである。 実施の形態 3の第 1電極 2と第 2電極 6をそれぞれ直流電源の正極と負極に接続して直流電圧を与 えると、 2 2 Vで明る!/、発光が確認できた。 実施の形態 3の発光素子は低電圧駆 動であるため、 T F Tを用いて画素を制御することが可能である。  A light emitting device according to Embodiment 3 of the present invention will be described. This light-emitting element is the same as the light-emitting element according to Embodiment 1, except that the semiconductive phosphor fine particles 7 are silicon oxide tin doped with europium. When the first electrode 2 and the second electrode 6 of the third embodiment are connected to the positive electrode and the negative electrode of a DC power source, respectively, and a DC voltage is applied, the brightness becomes 22 V! / Light emission was confirmed. Since the light-emitting element of Embodiment 3 is driven by low voltage, it is possible to control pixels using TFT.
(実施の形態 4 )  (Embodiment 4)
本発明の実施の形態 4に係る発光素子について説明する。 この発光素子は、 実 施の形態 1に係る発光素子と比較すると、 半導電性蛍光体微粒子 7が Z n G a 2 O 4である点で相違する以外は同じである。 実施の形態 4の第 1電極 2と第 2電 極 6をそれぞれ直流電源の正極と負極に接続して直流電圧を与えると、 2 8 Vで 明るい発光が確認できた。 実施の形態 4の発光素子は低電圧駆動であるため、 T F Tを用いて画素を制御することが可能である。 A light emitting device according to Embodiment 4 of the present invention will be described. The light emitting device is different from the light emitting device according to Embodiment 1 of implementation, are the same except that the semi-conductive phosphor fine particles 7 is different in that a Z n G a 2 O 4. When the first electrode 2 and the second electrode 6 of the fourth embodiment were connected to the positive electrode and the negative electrode of a DC power supply, respectively, and a DC voltage was applied, bright light emission was confirmed at 28 V. Since the light-emitting element in Embodiment 4 is driven with low voltage, it is possible to control pixels using a TFT.
(実施の形態 5 )  (Embodiment 5)
本発明の実施の形態 5に係る発光素子について説明する。 この発光素子は、 実 施の形態 1に係る発光素子と比較すると、 第 2電子輸送層 5が無い点で相違する 以外は同じである。 実施の形態 5の第 1電極 2と第 2電極 6をそれぞれ直流電源 の正極と負極に接続して直流電圧を与えると、 4 8 Vで明るい発光が確認できた。 実施の形態 5の発光素子は低電圧駆動であるため、 T F Tを用いて画素を制御す ることが可能である。  A light emitting device according to Embodiment 5 of the present invention will be described. This light-emitting element is the same as the light-emitting element according to Embodiment 1, except that it does not include the second electron transport layer 5. When the first electrode 2 and the second electrode 6 of the fifth embodiment were connected to the positive and negative electrodes of a DC power supply, respectively, and a DC voltage was applied, bright light emission was confirmed at 48 V. Since the light-emitting element in Embodiment 5 is driven with a low voltage, it is possible to control pixels using TFT.
(実施の形態 6 ) 本発明の実施の形態 6に係る発光素子について説明する。 この発光素子は、 実 施の形態 1に係る発光素子と比較すると、 第 1電子輸送層 3を有しない点で相違 する以外は同じである。 実施の形態 6の第 1電極 2と第 2電極 6をそれぞれ直流 電源の正極と負極に接続して直流電圧を与えると、 5 8 Vで明るい発光が確認で きた。 この発光素子は低電圧駆動であるため、 T F Tを用いて画素を制御するこ とが可能である。 (Embodiment 6) A light emitting device according to Embodiment 6 of the present invention will be described. This light-emitting element is the same as the light-emitting element according to Embodiment 1, except that it does not have the first electron transport layer 3. When the first electrode 2 and the second electrode 6 of the sixth embodiment were connected to the positive electrode and the negative electrode of a DC power source, respectively, and a DC voltage was applied, bright light emission at 58 V was confirmed. Since this light-emitting element is driven by a low voltage, it is possible to control pixels using a TFT.
なお、 前記実施の形態 1から 6に係る発光素子においては、 発光素子より取り 出される発光の色は、 半導電性蛍光体微粒子によって決定されるが、 2種類以上 半導電性蛍光体微粒子を発光層内に混在させてもよい。 例えば、 補色関係にある 2色分、 若しくは R G B 3色分の半導電性蛍光体微粒子を混在させることによつ て、 白色宪光を取り出すこともできる。 また、 多色表示や白色表示、 各色の色純 度調整のために、 発光層 4の光取り出し方向前方に色変換層をさらに備えたり、 透明導電体マトリクス中ゃ電子輸送層 3に色変換材料を混在させてもよい。 色変 換材料には、 光を励起源として発光するものであればよく、 有機材料、 無機材料 を問わず、 公知の蛍光体、 顔料、 染料を用いることができる。 これにより、 例え ば、 発光層から生じた青色の光を色変換材料が吸収して、 緑色や赤色の発光が生 じ、 これらの光が混合して発光素子から取り出されるため、 白色発光が得られる。 (実施の形態 7 )  In the light-emitting elements according to Embodiments 1 to 6, the color of light emitted from the light-emitting element is determined by the semiconductive phosphor fine particles. You may mix in a layer. For example, white light can be extracted by mixing semiconductive phosphor fine particles for two complementary colors or three colors of RGB. In addition, a color conversion layer may be further provided in front of the light-emitting layer 4 in the light extraction direction to adjust the color purity of each color, such as a multicolor display, a white display, or a color conversion material in the electron transport layer 3 in the transparent conductor matrix. May be mixed. Any color conversion material may be used as long as it emits light using light as an excitation source, and known phosphors, pigments, and dyes can be used regardless of an organic material or an inorganic material. Thus, for example, the color conversion material absorbs blue light generated from the light emitting layer, and emits green or red light. These lights are mixed and extracted from the light emitting element, so that white light is obtained. Can be (Embodiment 7)
本発明の実施の形態 7に係る発光素子 2 0について、 図 3を用いて説明する。 図 3は、 この発光素子 2 0の電極構成を示す斜視図である。 この発光素子 2 0は、 図 1に示した発光素子 1 0の電極 2に接続された薄膜トランジスタ 1 1をさらに 備える。 薄膜トランジスタ 1 1には、 X電極 1 2と y電極 1 3とが接続されてい る。 この発光素子 2 0では、 半導電性蛍光体微粒子 7の表面の少なくとも一部を 有機導電性材料 8で被覆しているので、 低電圧で駆動することができ、 薄膜トラ ンジスタ 1 1を使用することができる。 また、 薄膜トランジスタ 1 1を用いるこ とによつて発光素子 2 0にメモリ機能を持たせることができる。 この薄膜トラン ジスタ 1 1としては、 低温ポリシリコンゃァモルファスシリコン薄膜トランジス タ等が用いられる。 さらに、 有機材料を含む薄膜により構成された有機薄膜トラ ンジスタであってもよい。 (実施の形態 8 ) The light-emitting element 20 according to Embodiment 7 of the present invention will be described with reference to FIG. FIG. 3 is a perspective view showing an electrode configuration of the light emitting element 20. This light emitting element 20 further includes a thin film transistor 11 connected to the electrode 2 of the light emitting element 10 shown in FIG. An X electrode 12 and a y electrode 13 are connected to the thin film transistor 11. In this light emitting element 20, since at least a part of the surface of the semiconductive phosphor fine particles 7 is coated with the organic conductive material 8, it can be driven at a low voltage, and the thin film transistor 11 is used. be able to. Further, by using the thin film transistor 11, the light emitting element 20 can have a memory function. As the thin film transistor 11, a low-temperature polysilicon amorphous silicon thin film transistor or the like is used. Further, an organic thin film transistor constituted by a thin film containing an organic material may be used. (Embodiment 8)
本発明の実施の形態 8に係る表示デバイスについて、 図 4を用いて説明する。 図 4は、 この表示デバイス 3 0の互いに直交する X電極 1 2と y電極 1 3とによ つて構成されるアクティブマトリクス型表示デバイスを示す概略平面図である。 この表示デバイス 3 0は、 薄膜トランジスタ 1 1を有するアクティブマトリクス 型表示デバイスである。 このアクティブマトリクス型表示デバイス 3 0は、 図 3 に示した薄膜トランジスタ 1 1を備えた複数の発光素子 2 0が 2次元配列されて いる発光素子ァレイと、 該発光素子ァレイの面に平行な第 1方向に互いに平行に 延在している複数の X電極 1 2と、 該発光素子アレイの面に平行であって、 第 1 方向に直交する第 2方向に平行に延在している複数の y電極 1 3とを備える。 こ の発光素子アレイの薄膜トランジスタ 1 1は、 X電極 1 2及び y電極 1 3とそれ ぞれ接続されている。 一対の X電極 1 2と y電極 1 3とによって特定される発光 素子が一つの画素となる。 このアクティブマトリクス表示デバイス 3 0によれば、 上述のように、 各画素の発光素子を構成する発光層 4は、 表面を有機導電性材料 8によって被覆している半導電性蛍光体微粒子 7を含む。 これにより、 低電圧駆 動できるので、 薄膜トランジスタ 1 1を使用でき、 メモリ効果を利用できる。 ま た、 低電圧駆動するので、 長寿命の表示デバイスが得られる。  A display device according to Embodiment 8 of the present invention will be described with reference to FIG. FIG. 4 is a schematic plan view showing an active matrix type display device including the X electrode 12 and the y electrode 13 of the display device 30 which are orthogonal to each other. This display device 30 is an active matrix display device having a thin film transistor 11. The active matrix display device 30 includes a light emitting element array in which a plurality of light emitting elements 20 each including the thin film transistor 11 shown in FIG. 3 are two-dimensionally arranged, and a first light emitting element array parallel to a surface of the light emitting element array. A plurality of X electrodes 12 extending parallel to each other in a direction, and a plurality of y electrodes extending parallel to a surface of the light emitting element array and parallel to a second direction orthogonal to the first direction. And electrodes 13. The thin film transistor 11 of this light emitting element array is connected to the X electrode 12 and the y electrode 13 respectively. The light emitting element specified by the pair of X electrode 12 and y electrode 13 constitutes one pixel. According to the active matrix display device 30, as described above, the light emitting layer 4 constituting the light emitting element of each pixel includes the semiconductive phosphor fine particles 7 whose surface is covered with the organic conductive material 8. . This enables low voltage driving, so that the thin film transistor 11 can be used, and the memory effect can be utilized. In addition, since the device is driven at a low voltage, a display device having a long life can be obtained.
なお、 R G B 3色の発光体をそれぞれ含む R G B 3色の発光層を画素毎に色分 けして形成することにより、 力ラーの表示デバィスを得ることができる。 さらに、 色純度を調整するために、 カラーフィルタを備えていてもよい。 また、 別例の力 ラ一表示デバィスとして、 単色発光の表示デバィスに色変換フィルタをさらに備 える構成も可能である。 例えば、 発光素子からの青色光を色変換フィルタを通す ことで、 緑色や赤色に変換してカラー表示を得る。  In addition, a display device of a color filter can be obtained by forming the RGB three-color light-emitting layers including the RGB three-color light-emitting elements for each pixel. Further, a color filter may be provided to adjust the color purity. As another example of a power display device, a configuration in which a display device for monochromatic light emission is further provided with a color conversion filter is also possible. For example, by passing blue light from a light emitting element through a color conversion filter, it is converted to green or red to obtain a color display.
(比較例 1 )  (Comparative Example 1)
比較例 1の発光素子について説明する。 この発光素子は、 実施の形態 1に係る 発光素子と比較すると、 半導電性蛍光体微粒子が導電性有機材料にて被覆または 化学吸着されていない点で相違する以外は同じである。 第 1電極 2と第 2電極 6 をそれぞれ正極と負極に接続して直流電圧を与えると、 1 2 O Vで明るい発光が 確認できた。 し力 し、 比較例 1の発光素子は高電圧,駆動であるため、 T F Tを用 いて画素を制御することが困難または不可能である。 The light emitting element of Comparative Example 1 will be described. This light-emitting element is the same as the light-emitting element according to Embodiment 1, except that the semiconductive phosphor fine particles are not covered or chemically adsorbed with the conductive organic material. When a DC voltage was applied by connecting the first electrode 2 and the second electrode 6 to the positive electrode and the negative electrode, respectively, bright light emission was confirmed at 12 OV. However, the light-emitting element of Comparative Example 1 uses a TFT because it is driven at high voltage and high voltage. And it is difficult or impossible to control the pixels.
(比較例 2 )  (Comparative Example 2)
比較例 2の発光素子について説明する。 この発光素子は、 実施の形態 1に係る 発光素子と比較すると、 粒径が 1 mを超え、 粒径 1 μ π!〜 1 . 4 μ mの酸化亜 鉛を用いた点が相違する以外は同じである。 第 1電極 2と第 2電極 6をそれぞれ 正極と負極に接続して直流電圧を与えると、 1 0 O Vで明るい発光が確認、できた し力 し、 比較例 2の発光素子は高電圧駆動であるため、 T F Tを用いて画素を制 御することが困難または不可能である。 The light emitting element of Comparative Example 2 will be described. This light-emitting element has a particle size exceeding 1 m and a particle size of 1 μπ! As compared with the light-emitting element according to Embodiment 1. The same is true except that zinc oxide of ~ 1.4 µm is used. When a DC voltage was applied by connecting the first electrode 2 and the second electrode 6 to the positive electrode and the negative electrode, respectively, bright light emission was confirmed at 10 OV, and the light-emitting element of Comparative Example 2 was driven by a high voltage. For this reason, it is difficult or impossible to control pixels using TFTs.
上述の通り、 本発明は好ましい実施形態により詳細に説明されているが、 本発 明はこれらに限定されるものではなく、 以下の特許請求の範囲に記載された本発 明の技術的範囲内において多くの好ましい変形例及び修正例が可能であることは 当業者にとって自明なことであろう。  As described above, the present invention has been described in detail with reference to the preferred embodiments. However, the present invention is not limited to these, and is within the technical scope of the present invention described in the following claims. It will be apparent to those skilled in the art that many preferred variations and modifications are possible in.

Claims

請 求 の 範 囲 The scope of the claims
1 . 互いに対向する一対の電極と、 1. a pair of electrodes facing each other,
前記一対の電極の間に挟まれており、 表面の少なくとも一部を導電性有機材料 で被覆されている半導電性蛍光体微粒子を含む発光層と  A light emitting layer sandwiched between the pair of electrodes, the light emitting layer including semi-conductive phosphor fine particles having at least a portion of a surface thereof coated with a conductive organic material;
を備えることを特徴とする発光素子。 A light-emitting element comprising:
2 . 前記導電性有機材料は、 前記半導電性蛍光体微粒子の表面に化学吸着してい ることを特徴とする請求項 1に記載の発光素子。  2. The light emitting device according to claim 1, wherein the conductive organic material is chemically adsorbed on a surface of the semiconductive phosphor fine particles.
3 . 前記半導電性蛍光体微粒子は、 粒径が 1 x m以下であることを特徴とする請 求項 1又は 2に記載の発光素子。  3. The light emitting device according to claim 1, wherein the semiconductive phosphor fine particles have a particle size of 1 × m or less.
4 . 前記半導電性蛍光体微粒子は、 Z n、 G a、 I n、 S n、 T iから選ばれる 少なくとも 1種類の元素を含む酸ィ匕物又は複合酸ィ匕物を含んでいることを特徴と する請求項 1カ ら 3のいずれか一項に記載の発光素子。  4. The semiconductive phosphor fine particles include an oxide or a composite oxide containing at least one element selected from Zn, Ga, In, Sn, and Ti. The light-emitting device according to any one of claims 1 to 3, wherein:
5 . 前記発光層は、 前記半導電性蛍光体微粒子が透明導電体マトリクス中に分散 してなることを特徴とする請求項 1カ ら 4のいずれか一項に記載の発光素子。 5. The light-emitting device according to claim 1, wherein the light-emitting layer is formed by dispersing the semiconductive phosphor fine particles in a transparent conductor matrix.
6 . 前記発光層と少なくとも一方の電極との間にさらに電子輸送層を備えること を特徴とする請求項 1力 ら 5のいずれか一項に記載の発光素子。 6. The light emitting device according to claim 1, further comprising an electron transporting layer between the light emitting layer and at least one electrode.
7. 前記一対の電極のうちの一方の電極に接続された薄膜トランジスタをさらに 備えることを特徴とする請求項 1カゝら 6のいずれか一項に記載の発光素子。  7. The light emitting device according to claim 1, further comprising a thin film transistor connected to one of the pair of electrodes.
8 . 請求項 7に記載の発光素子が 2次元配列されている発光素子アレイと、 前記発光素子ァレイの面に平行な第 1方向に互いに平行に延在している複数の X電極と、 8. A light-emitting element array in which the light-emitting elements according to claim 7 are two-dimensionally arranged, and a plurality of X electrodes extending parallel to each other in a first direction parallel to a surface of the light-emitting element array.
前記発光素子ァレイの面に平行であって、 前記第 1方向に直交する第 2方向に 平行に延在している複数の y電極と  A plurality of y-electrodes extending parallel to a surface of the light-emitting element array and parallel to a second direction orthogonal to the first direction;
を備え、 With
前記発光素子ァレイの前記薄膜トランジスタは、 前記 X電極及び前記 y電極と それぞれ接続されていることを特徴とする表示デバイス。  The display device, wherein the thin film transistor of the light emitting element array is connected to the X electrode and the y electrode, respectively.
PCT/JP2004/009685 2003-07-02 2004-07-01 Light emitting element and display device WO2005004548A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/562,792 US7737622B2 (en) 2003-07-02 2004-07-01 Light emitting element with semiconductive phosphor
JP2005511405A JP4669786B2 (en) 2003-07-02 2004-07-01 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003190406 2003-07-02
JP2003-190406 2003-07-02

Publications (1)

Publication Number Publication Date
WO2005004548A1 true WO2005004548A1 (en) 2005-01-13

Family

ID=33562330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009685 WO2005004548A1 (en) 2003-07-02 2004-07-01 Light emitting element and display device

Country Status (4)

Country Link
US (1) US7737622B2 (en)
JP (1) JP4669786B2 (en)
CN (1) CN1813499A (en)
WO (1) WO2005004548A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340195A (en) * 2004-05-28 2005-12-08 Samsung Electronics Co Ltd Manufacturing method of nano-crystal multilayered thin film and organic/inorganic hybrid electroluminescent element using the same
WO2008013171A1 (en) * 2006-07-25 2008-01-31 Panasonic Corporation Light emitting element and display device
WO2008069174A1 (en) * 2006-12-06 2008-06-12 Panasonic Corporation Surface-emitting device
WO2008102559A1 (en) * 2007-02-23 2008-08-28 Panasonic Corporation Display device
WO2009041594A1 (en) * 2007-09-28 2009-04-02 Dai Nippon Printing Co., Ltd. Electroluminescence element
WO2009057317A1 (en) * 2007-11-01 2009-05-07 Panasonic Corporation Light-emitting device and display device
JP2009099544A (en) * 2007-09-28 2009-05-07 Dainippon Printing Co Ltd Electroluminescence element
JP2010056240A (en) * 2008-08-27 2010-03-11 Asahi Kasei Corp Semiconductor crystal fine particle thin film
JP2010272257A (en) * 2009-05-19 2010-12-02 Sharp Corp Self-light-emitting element, self-light-emitting device, image display device, self-light-emitting element driving method, and manufacturing method for self-light-emitting element
WO2012108532A1 (en) * 2011-02-10 2012-08-16 株式会社ブリヂストン Light-emitting element

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004547A1 (en) * 2003-07-02 2005-01-13 Matsushita Electric Industrial Co., Ltd. Light emitting element and display device
WO2012168858A2 (en) 2011-06-10 2012-12-13 Koninklijke Philips Electronics N.V. Light output device and method of manufacture
TWI692133B (en) * 2014-10-07 2020-04-21 美商Ge照明解決方案公司 Led apparatus employing neodymium-fluorine materials
US10663143B2 (en) 2014-10-08 2020-05-26 Consumer Lighting (U.S.), Llc Materials and optical components for color filtering in a lighting apparatus
JP6981990B2 (en) 2016-03-16 2021-12-17 コンシューマー ライティング (ユー.エス.),エルエルシー LED equipment using neodymium-based materials with various contents of fluorine and oxygen
CN107230494B (en) * 2016-03-23 2020-05-08 中国科学院宁波材料技术与工程研究所 Method for regulating and controlling luminescent property of fluorescent material in solid-state environment and all-solid-state electro-optical writing optical reading storage unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366282A (en) * 1986-09-05 1988-03-24 Res Dev Corp Of Japan Fluorescent substance of ultrafine particle
JPS63318092A (en) * 1987-06-19 1988-12-26 Stanley Electric Co Ltd Structure of el element
JPH08306485A (en) * 1995-05-08 1996-11-22 Res Dev Corp Of Japan Electroluminescence material, its manufacture and light emitting element
JP2002299063A (en) * 2001-04-03 2002-10-11 Japan Science & Technology Corp Electroluminescent element with lead bromide system layered perovskite compound as luminescent layer
JP2003115385A (en) * 2001-10-01 2003-04-18 Japan Science & Technology Corp Solid spontaneous light emitting display equipment and its manufacturing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125748A (en) * 1980-03-08 1981-10-02 Mita Ind Co Ltd Laminated photoreceptor
US5587329A (en) * 1994-08-24 1996-12-24 David Sarnoff Research Center, Inc. Method for fabricating a switching transistor having a capacitive network proximate a drift region
US5990373A (en) * 1996-08-20 1999-11-23 Kansas State University Research Foundation Nanometer sized metal oxide particles for ambient temperature adsorption of toxic chemicals
JP3464599B2 (en) * 1997-10-06 2003-11-10 株式会社 日立ディスプレイズ Liquid crystal display
JPH11135258A (en) * 1997-10-27 1999-05-21 Casio Comput Co Ltd Manufacture of electroluminescent element
JPH11162641A (en) * 1997-11-27 1999-06-18 Matsushita Electric Ind Co Ltd Electroluminescent device
EP0969524A1 (en) * 1998-07-03 2000-01-05 Isis Innovation Limited Light emitter
JP2001076879A (en) 1999-09-07 2001-03-23 Matsushita Electric Ind Co Ltd Organic electroluminescent element
JP2001279240A (en) 2000-03-29 2001-10-10 Toshiba Corp Illuminant particle and light-emitting device
US6846565B2 (en) * 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
JP3987312B2 (en) * 2001-08-31 2007-10-10 株式会社東芝 Semiconductor device manufacturing apparatus and manufacturing method, and semiconductor manufacturing apparatus cleaning method
JP2005502176A (en) * 2001-09-04 2005-01-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent device with quantum dots

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366282A (en) * 1986-09-05 1988-03-24 Res Dev Corp Of Japan Fluorescent substance of ultrafine particle
JPS63318092A (en) * 1987-06-19 1988-12-26 Stanley Electric Co Ltd Structure of el element
JPH08306485A (en) * 1995-05-08 1996-11-22 Res Dev Corp Of Japan Electroluminescence material, its manufacture and light emitting element
JP2002299063A (en) * 2001-04-03 2002-10-11 Japan Science & Technology Corp Electroluminescent element with lead bromide system layered perovskite compound as luminescent layer
JP2003115385A (en) * 2001-10-01 2003-04-18 Japan Science & Technology Corp Solid spontaneous light emitting display equipment and its manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340195A (en) * 2004-05-28 2005-12-08 Samsung Electronics Co Ltd Manufacturing method of nano-crystal multilayered thin film and organic/inorganic hybrid electroluminescent element using the same
US10920134B2 (en) 2004-05-28 2021-02-16 Samsung Electronics Co., Ltd. Method for preparing multilayer of nanocrystals, and organic-inorganic hybrid electroluminescence device comprising multilayer of nanocrystals prepared by the method
US9598634B2 (en) 2004-05-28 2017-03-21 Samsung Electronics Co., Ltd. Method for preparing multilayer of nanocrystals, and organic-inorganic hybrid electroluminescence device comprising multilayer of nanocrystals prepared by the method
US7982388B2 (en) 2006-07-25 2011-07-19 Panasonic Corporation Light emitting element and display device
WO2008013171A1 (en) * 2006-07-25 2008-01-31 Panasonic Corporation Light emitting element and display device
JPWO2008013171A1 (en) * 2006-07-25 2009-12-17 パナソニック株式会社 LIGHT EMITTING ELEMENT AND DISPLAY DEVICE
WO2008069174A1 (en) * 2006-12-06 2008-06-12 Panasonic Corporation Surface-emitting device
WO2008102559A1 (en) * 2007-02-23 2008-08-28 Panasonic Corporation Display device
JP5191476B2 (en) * 2007-02-23 2013-05-08 パナソニック株式会社 Display device
US8110831B2 (en) 2007-02-23 2012-02-07 Panasonic Corporation Display device having a polycrystal phosphor layer sandwiched between the first and second electrodes
WO2009041594A1 (en) * 2007-09-28 2009-04-02 Dai Nippon Printing Co., Ltd. Electroluminescence element
US8563968B2 (en) 2007-09-28 2013-10-22 Dai Nippon Printing Co., Ltd. Electroluminescent device
JP2009099544A (en) * 2007-09-28 2009-05-07 Dainippon Printing Co Ltd Electroluminescence element
JPWO2009057317A1 (en) * 2007-11-01 2011-03-10 パナソニック株式会社 LIGHT EMITTING ELEMENT AND DISPLAY DEVICE
WO2009057317A1 (en) * 2007-11-01 2009-05-07 Panasonic Corporation Light-emitting device and display device
JP2010056240A (en) * 2008-08-27 2010-03-11 Asahi Kasei Corp Semiconductor crystal fine particle thin film
JP2010272257A (en) * 2009-05-19 2010-12-02 Sharp Corp Self-light-emitting element, self-light-emitting device, image display device, self-light-emitting element driving method, and manufacturing method for self-light-emitting element
WO2012108532A1 (en) * 2011-02-10 2012-08-16 株式会社ブリヂストン Light-emitting element

Also Published As

Publication number Publication date
JP4669786B2 (en) 2011-04-13
CN1813499A (en) 2006-08-02
US20060176244A1 (en) 2006-08-10
JPWO2005004548A1 (en) 2006-08-24
US7737622B2 (en) 2010-06-15

Similar Documents

Publication Publication Date Title
US8884511B2 (en) Luminescent materials having nanocrystals exhibiting multi-modal energy level distributions
US5955836A (en) Organic electroluminescent component with exciplex formed from a mixed layer of a mixture of hole transporting and electron transporting organic material
JP4739098B2 (en) Electronic cold light emission device
US6414431B1 (en) Thin film electrode for planar organic light-emitting devices and method for its production
JP4669786B2 (en) Display device
US20060152138A1 (en) Light-emitting element and display device
KR20010023304A (en) Luminescent device
US20100245218A1 (en) Light-emitting device and display device
US20060181197A1 (en) Electroluminescent device and display
JP4669785B2 (en) Light emitting element and display device
JP2007531297A (en) Electroluminescent device interlayer and electroluminescent device
US7906901B2 (en) Organic electroluminescent device and organic electroluminescent display device
TWI262039B (en) Organic electroluminescent element
WO2005004546A1 (en) Electroluminescent device and display
JP2003217861A (en) Electroluminescent element
US20100213450A1 (en) Phosphor element and display device
JPH07166160A (en) Organic thin film el element
JP4315755B2 (en) Organic EL device
JP2009117035A (en) Light-emitting element and display device
JP2014049668A (en) Organic electroluminescent element
JP2009048961A (en) Light-emitting element and display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048183473

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006176244

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10562792

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005511405

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 10562792

Country of ref document: US

122 Ep: pct application non-entry in european phase