WO2005003087A2 - Oxazole derivatives as antibacterial agents - Google Patents

Oxazole derivatives as antibacterial agents Download PDF

Info

Publication number
WO2005003087A2
WO2005003087A2 PCT/IB2004/002131 IB2004002131W WO2005003087A2 WO 2005003087 A2 WO2005003087 A2 WO 2005003087A2 IB 2004002131 W IB2004002131 W IB 2004002131W WO 2005003087 A2 WO2005003087 A2 WO 2005003087A2
Authority
WO
WIPO (PCT)
Prior art keywords
pyridin
formula
piperazin
oxooxazolidin
ylmethyl
Prior art date
Application number
PCT/IB2004/002131
Other languages
French (fr)
Other versions
WO2005003087A3 (en
Inventor
Satya Surya Visweswara Srinivas Akella
Kasinathanan Mathiyazhagan
Matte Mariana Samuel
Shakti Singh Solanki
Vijayan Magesh
Shiv Kumar Agarwal
Original Assignee
Orchid Chemicals And Pharmaceuticals Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orchid Chemicals And Pharmaceuticals Ltd. filed Critical Orchid Chemicals And Pharmaceuticals Ltd.
Publication of WO2005003087A2 publication Critical patent/WO2005003087A2/en
Publication of WO2005003087A3 publication Critical patent/WO2005003087A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Definitions

  • the present invention provides novel compounds of the general formula (I), their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their hydrates, their solvates, their pharmaceutically acceptable salts and pharmaceutically acceptable compositions containing them.
  • the present invention more particularly provides novel oxazolidinone derivatives of the general formula (I).
  • the present invention also provides a process for the preparation of the above said novel oxazolidinone derivatives of the formula (I) their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their hydrates, their solvates, their pharmaceutically acceptable salts, and pharmaceutical compositions containing them.
  • the novel oxazolidinone derivatives of the present invention are useful as antibacterial agents and hence are useful in the treatment of conditions such as nosocomial pneumoniae, community acquired pneumoniae, vancomycin resistance enterococci (VRE) caused by methicillin resistance staphylococcus aureus (MRSA) and penicillin resistance streptococcus pneumoniae.
  • the compounds of the present invention are effective against a number of human or animal pathogens, clinical isolates, including Vancomycin resistant organisms, methicillin resistant organisms.
  • Background of Invention Several oxazolidinone derivatives have been reported in the literature some of which relevant are given here: International publication number 97/09328 discloses and claims compounds of formula
  • R 1 is a hydrogen, (C C 6 )alkyl optionally substituted with one or more OH, CN, or halo or R 1 is -(CH 2 ) h -aryl, -COR 1"1 , COOR 1"2 , -CO-CCH ⁇ h -COR 1"1 , (C r C 6 )alkylsulforiyl, -SO 2 -(CH 2 ) h -aryl or - (CO)j-Het;
  • R 2 is hydrogen, (C C 6 )alkyl, -(CH 2 ) h -aryl or halo;
  • R 3 and R 4 are the same or different and are hydrogen or halo;
  • R 5 is hydrogen, (CrC 12 )alkyl optionally substituted with one or more halo, (C 3 -C 12 )cycloalkyl, ( - C 6 )alkoxy;
  • R 1 is a radical of the formula D-R 2 , -CO-R 3 or -CO-NR 4 R 5 , wherein D is the CO 2 or SO 2 group, R 2 is phenyl or linear or branched alkyl • having up to 7 carbon atoms, R 3 is trifluoromethyl or linear or branched alkyl having up to 6 carbon atoms which is substituted by halogen or trifluoromethyl, and R 4 and R 5 are identical or different and are hydrogen, phenyl or linear or branched alkyl having up to 5 carbon atoms;
  • A is a 6- membered aromatic heterocycle having at least one nitrogen atom and directly bonded via a carbon atom, or a 6-membered bicyclic or tricyclic aromatic radical having at least one nitrogen-containing ring and directly bonded via a carbon atom, or ⁇ -carbolin-3-yl or indolizinyl directly bonded via the 6- membered ring, or a 5-membered aromatic heterocycle having
  • novel oxazolidinone derivatives of the formula (I) may be useful as antibacterial agents and hence are useful in the treatment of conditions such as nosocomial pneumoniae, community acquired pneumoniae, vancomycin resistance enterococci (NRE) caused by methicillin resistance staphylococcus aureus (MRSA) and penicillin resistance streptococcus pneumoniae.
  • the compounds of the present invention are effective against a number of human or animal pathogens, clinical isolates, including Nancomycin resistant organisms, methicillin resistant organisms
  • the present invention relates to novel oxazolidinone derivatives of the formula (I)
  • R 1 represents halogen, azido, nitro, cyano, substituted or unsubstituted group selected from TR 7 , wherein T represents O or S;
  • R 7 represents hydrogen, formyl, substituted or unsubstituted groups selected from (CrC 6 )alkyl, cycloalkyl, aryl, aralkyl, acyl, thioacyl, heterocyclyl, heteroaryl, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl; or R 1 represents N(R 8a R 8b ) where R 8a and R 8b may be same or different and independently represent hydrogen, formyl, substituted or unsubstituted groups selected from (C C 6 )alkyl, aryl, aralkyl,
  • Suitable groups represented by R 2 and R 3 are selected from hydrogen, halogen atom such as fluorine, chlorine, bromine or iodine; hydroxyl, ( - C 6 )alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t- butyl, n-pentyl, isopentyl, hexyl and the like; (CrC 6 )alkoxy group, such as methoxy, ethoxy, n-propoxy, isopropoxy and the like.
  • Suitable groups represented by R 4 and R 5 are selected from hydrogen, cyano, nitro, amino, halogen, hydroxyl, (C 1 -C 6 )alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, hexyl and the like; haloalkyl such as chloromethyl, chloroethyl, trifluoromethyl, trifluoroethyl, dichloromethyl, dichloroethyl and the like; (C 1 -C 6 )alkoxy group, such as methoxy, ethoxy, n-propoxy, isopropoxy and the like; ( - C 6 )alkylthio group such as methylthio, ethylthio, n-propylthio, iso-propylthio and the like; (C 3
  • Suitable groups represented by R 7 are selected from hydrogen, formyl, substituted or unsubstituted linear or branched (C 1 -C 6 )alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, hexyl and the like; (C 3 -C 6 )cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, which may be substituted; aryl group such as phenyl, naphthyl and the like, the aryl group may be substituted; aralkyl group such as phenylmethyl, phenylethyl, naphthylmethyl, naphthylethyl and the like, the aralkyl group may be substituted; acyl group such as
  • Suitable groups represented by R 8a and R 8 are selected from hydrogen, formyl, substituted or unsubstituted linear or branched (C 1 -C 6 )alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, hexyl and the like; aryl group such as phenyl, naphthyl and the like, which may be substituted; aralkyl group such as phenylmethyl, phenylethyl, naphthylmethyl, naphthylethyl and the like, which may be substituted; heteroaryl group such as pyridyl, thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, isooxazolyl, oxadiazolyl, triazolyl
  • Suitable ring systems formed by R 8a and R 8 together are selected from pyridyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, isooxazolyl, oxadiazolyl, triazolyl, thiadiazolyl, tetrazolyl, pyrimidinyl, pyrazinyl, pyridazinyl, piperazinyl, thiazinyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, benzopyrrolyl, benzoxadiazolyl, benzothiadiazolyl and the like.
  • Suitable groups represented by R 9 are selected from substituted or unsubstituted linear or branched (C 1 -C 10 )alkyl group such as methyl, ethyl, n- propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, hexyl and the like; (C 1 -C 1 o)alkoxy group, such as methoxy, ethoxy, n-propoxy, isopropoxy, butoxy and the like, which may be substituted; aryl group such as phenyl, naphthyl and the like, which may be substituted; (C 3 -C 6 )cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, which may be substituted; heteroaryl group such as thienyl, pyridyl,
  • Suitable groups represented by R 10 and R are selected from hydrogen, substituted or unsubstituted linear or branched (C 1 -C 10 )alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, hexyl and the like; aryl group such as phenyl, naphthyl and the like, which may be substituted; (C 3 -C 6 )cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, which may be substituted; alkylcarbonyl group such as methylcarbonyl, ethylcarbonyl, n-propylcarbonyl, iso-propylcarbonyl and the like, which may be substituted; arylcarbonyl group such as pheny
  • Suitable groups represented by R 6 are selected from aryl group such as phenyl, naphthyl and the like, the aryl group may be substituted; aralkyl group such as phenylmethyl, phenylethyl, naphthylmethyl, naphthylethyl and the like, the aralkyl group may be substituted; (C 3 -C 6 )cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, the cycloalkyl group may be substituted; heteroaryl group such as thienyl, pyridyl, thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, isooxazolyl, oxadiazolyl, pyrazolyl, triazolyl, thiadiazolyl, tetrazolyl, pyrimidin
  • the substituents on R 6 are selected from halogen, hydroxy, formyl, nitro, cyano, azido, amino, alkyl, alkylamino, alkylaminocarbonyl, haloalkyl, alkylthio, acylamino, alkoxy, acyl, carboxylic acid or its derivatives such as esters or amides, aryl, heteroaryl, heterocyclyl, substituted aryl, wherein the substituent is selected from nitro, halogen, cyano, hydroxy, amino, alkyl, alkoxy, acyl, and the like; and these substituents are as defined above.
  • Suitable n is an integer of 0 or 1.
  • Suitable n is an integer in the range of 1 to 4, preferably n represents 1 or 2.
  • the substituents on any of the groups represented by R 1 , R 2 , R 3 , R 4 , R 5 , R 8 , R 8b , R 9 R 10 , R 11 are selected from halogen, hydroxy, formyl, nitro, cyano, azido, amino, alkyl, aryl, alkylamino, alkylaminocarbonyl, haloalkyl, alkylthio, acylamino, alkoxy, acyl, cycloalkylcarbonyl, heteroarylcarbonyl, carboxylic acid or its derivatives such as esters or amides and these substituents are as defined above.
  • salts of the present invention include alkali metal like Li, Na, and K, alkaline earth metal like Ca and Mg, salts of organic bases such as diethanolamine, ⁇ -phenylethylamine, benzylamine, piperidine, morpholine, pyridine, hydroxyethylpyrrolidine, hydroxyethylpiperidine, choline and the like, ammonium or substituted ammonium salts, aluminum salts. Salts also include amino acid salts such as glycine, alanine, cystine, cysteine, lysine, arginine, phenylalanine, guanidine etc.
  • Salts may include acid addition salts where appropriate which are, sulphates, nitrates, phosphates, perchlorates, borates, hydrohalides, acetates, tartrates, maleates, citrates, succinates, palmoates, methanesulphonates, tosylates, benzoates, salicylates, hydroxynaphthoates, benzenesulfonates, ascorbates, glycerophosphates, ketoglutarates and the like.
  • Pharmaceutically acceptable solvates may be hydrates or comprising other solvents of crystallization such as alcohols.
  • Representative compounds according to the present invention include:
  • P represents protecting group such as benzyl, benxyloxy carbonyl, tert- butoxycarbonyl, chloroethyl formate, Fmoc and all other symbols are as defined earlier to produce a compound of formula (IN)
  • L represents a leaving group such as mesylate, tosylate or triflate and all other symbols are as defined earlier, ii) converting the compound of formula (IN) to produce a compound of formula (N)
  • R6— (C( Y))p-L (IX) wherein L is a leaving group and all other symbols are as defined earlier to produce a compound of formula (I).
  • the compound of formula (III) may be converted to a compound of formula (IN) using methane sulfonyl chloride, tosyl chloride, trifluoromethane sulfonyl chloride.
  • the reaction may be carried out in the presence of solvents like tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene and the like or a mixture thereof and a base selected from dimethylamino pyridine, triethylamine, pyridine and the like.
  • the reaction may be carried out at a temperature in the range of -10 °C to room temperature.
  • the duration of the reaction may range from 1 to 12 hrs.
  • the conversion of compound of formula (IN) may be carried out in the presence of one or more equivalents of metal azide such as Li ⁇ 3 , NaN 3 or trialkyl silylazide.
  • the reaction may be carried out in the presence of solvent such as THF, acetone, DMF, DMSO and the like or mixtures thereof.
  • the reaction may be carried out in inert atmosphere, which may be maintained using N 2 or Ar.
  • the reaction may be carried out at a temperature in the range of ambient temperature to reflux temperature of the solvent, preferably at a temperature in the range of 60 °C to 120 °C.
  • the reaction time may range
  • the reduction of compound of formula (V) may be carried out in the presence of gaseous hydrogen and a catalyst such as Ru, Pd, Rh, Pt, Ni on solid beads such as charcoal, alumina, asbestos and the like.
  • the reduction may be conducted in the presence of a solvent such as dioxane, acetic acid, ethyl acetate, THF, alcohol such as methanol, ethanol, isopropanol and the like or mixtures thereof.
  • a pressure between atmospheric pressure to 60 psi may be used.
  • the reaction may be carried out at a temperature in the range of 25 to 60 °C, preferably at room temperature.
  • the reaction time ranges from 2 to 48 h.
  • the reduction may also be carried out by employing metal in mineral acids such as Sn/HCl, Fe/HCl, Zn HCl, Zn/CH 3 CO 2 H and the like.
  • Acylation of compound of formula (VI) may be carried out using acylating agents such as anhydrides like acetic anhydride, propionic anhydride, acid chlorides like acetyl chloride, propionyl chloride, thioacids such as thioacetic acid.
  • the reaction may be carried out in the presence of solvents like tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof.
  • the reaction may be carried out in the presence of base selected from dimethylamino pyridine, triethylamine, pyridine and the like.
  • the reaction may be carried out at a temperature in the range of 0 °C to room temperature.
  • the duration of the reaction may range from 2 to 24 hrs.
  • the deprotection of compound of formula (Nil) may be carried out using strong acids such as trifluoroacetic acid, hydrochloric acid, sulfuric acid.
  • the reaction may be carried out in the presence of appropriate solvents like tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o- dichlorobenzene or a mixture thereof.
  • the reaction may be carried out at a temperature in the range of 0 °C to room temperature.
  • the duration of the reaction may range from 1 to 6 hrs.
  • the reaction of compound of formula (NIII) with the compound of formula (IX) may be carried out in the presence of molecular sieves, and reducing agents such as sodium borohydride, triacetoxy sodium borohydride, sodium cyano borohydride, lithium aluminium hydride.
  • the reaction may be carried out in the presence of appropriate solvents like tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof.
  • the reaction may be carried out at room temperature.
  • the duration of the reaction may range from 12 to 24 hrs.
  • a process for the preparation of novel oxazolidinone derivatives of the formula (I) where R 1 represents ⁇ HC( Z)R 9 , wherein Z is S; R 9 represents alkoxy or amino and all other symbols are as defined earlier, which comprises i) converting the compound of formula (VI)
  • the conversion of compound of formula (VI) to produce compound of formula (X) may be carried out using thiophosgene gas in the presence of solvent such as tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof.
  • the reaction may be carried out in the presence of a base selected from dimethylamino pyridine, triethylamine, pyridine and the like.
  • the reaction may be carried out at a temperature in the range of -10 °C to room temperature.
  • the conversion of compound of formula (X) to compound of formula (Nil) may be carried out using solvents such as THF, DCM, alcohol such as methanol, ethanol, propanol and the like.
  • the reaction may be carried out in the presence of a base selected from dimethylamino pyridine, triethylamine, pyridine and the like.
  • the reaction may be carried out at a temperature in the range of 30 °C to reflux temperature.
  • the duration of the reaction may range
  • the deprotection of compound of formula (Nil) may be carried out using strong acids such as trifluoroacetic acid, hydrochloric acid, sulfuric acid.
  • the reaction may be carried out in the presence of appropriate solvents like tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o- dichlorobenzene or a mixture thereof.
  • the reaction may be carried out at a temperature in the range of 0 °C to room temperature.
  • the duration of the reaction may range from 1 to 6 hrs.
  • the reaction of compound of formula (NIII) with the compound of formula (IX) may be carried out in the presence of molecular sieves, and reducing agents such as sodium borohydride, triacetoxy sodium borohydride, sodium cyano borohydride, lithium aluminium hydride.
  • the reaction may be carried out in the presence of appropriate solvents like tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, benzene, xylene, THF, o-dichlorobenzene or a mixture thereof.
  • the reaction may be carried out at room temperature. The duration of the reaction may range from 12 to 24 hrs.
  • reaction temperature may range from 0 °C to room temperature.
  • duration of the reaction may range from 2 to 6 hrs.
  • R 1 represents N(R 8a R 8b ) where R 8a and R 8b represent hydrogen, with R'SO 2 Cl where R' represents (CrC 4 )alkyl, aralkyl or heteroaralkyl group.
  • the reaction of compounds of formula (XII) may be carried out by heating in the presence of base selected from pyridine, friethylamine and the like and solvents such as DMF, DCM, ethyl acetate and the like.
  • the reaction • temperature may range from 0 °C to room temperature.
  • the duration of the reaction may range from 4 to 12 hrs.
  • a process for the preparation of novel oxazolidinone derivatives of the formula (I) where R 1 represents the formula - NHC( Z)R 9 where Y is S,
  • acylation of compound of formula (XIII) may be carried out using acylating agents such as thioacetic acid.
  • the reaction may be carried out in the presence of appropriate solvents like tefrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof
  • the reaction may be carried out at a temperature in the range of 0 °C to room temperature. The duration of the reaction may range from 6 to 12 hrs.
  • the conversion may be carried out using Lawesson's reagent in the presence of base such as triethyl amine, pyridine and the like and solvents such as toluene, DCC, tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof.
  • base such as triethyl amine, pyridine and the like and solvents
  • solvents such as toluene, DCC, tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof.
  • the reaction may be carried out at a temperature in the range of 20 °C to 120 °C.
  • the duration of the reaction may range from 1 to 12 hrs.
  • reaction of compound of formula (Ilia) with compound of formula (Hlb) may be carried out in the presence of BINAP [(R)-2,2' ⁇ Bis(diphenylphosphino)-l,r-binaphthyl] and tris(dibenzylidene acetone)dipalladium(o).
  • BINAP (R)-2,2' ⁇ Bis(diphenylphosphino)-l,r-binaphthyl] and tris(dibenzylidene acetone)dipalladium(o).
  • the reaction may be carried out using inert gases such as N 2 , argon and the like.
  • the reaction may be carried out in the presence of solvents such as toluene, DCC, tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof.
  • solvents such as toluene, DCC, tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof.
  • the reaction is carried out at temperature in the range of 20 to 60 °C.
  • the reduction of compound of formula (IIIc) may be carried out in the presence of gaseous hydrogen and a catalyst such as Ru, Pd, Rh, Pt, Ni on solid beads such as charcoal, alumina, asbestos and the like.
  • the reduction may be conducted in the presence of a solvent such as dioxane, acetic acid, ethyl acetate, THF, alcohol such as methanol, ethanol, isopropanol and the like or mixtures thereof.
  • a solvent such as dioxane, acetic acid, ethyl acetate, THF, alcohol such as methanol, ethanol, isopropanol and the like or mixtures thereof.
  • a pressure between atmospheric pressure to 60 psi may be used.
  • the reaction may be carried out at a temperature in the range of 25 to 60 °C, preferably at room temperature.
  • the reaction time ranges from 2 to 48 h.
  • the reduction may also be carried out by employing metal in mineral acids such as Sn/HCl, Fe HCl, Zn/HCl, Zn/CH 3 CO 2 H and the like.
  • the conversion of compound of formula (Hid) to compound of formula (Ille) may be carried out using benzyloxycarbonyl chloride and sodium bicarbonate, in the presence of solvents such as acetone, DMF, water, THF and the like or mixtures thereof.
  • solvents such as acetone, DMF, water, THF and the like or mixtures thereof.
  • the reaction temperature may range from -20 °C to room temperature.
  • the duration of the reaction may range from 3 to 18 hrs.
  • the cyclization of compound of formula (Ille) may be carried out in the presence of base such as n-butyl lithium, LDA, potassium bis(trimethylsilyl)amide, lithium-bis(trimethylsilyl)amide and the like.
  • the reaction may be carried out in the presence of solvent such as THF, DMF and the like.
  • the reaction is carried out using chiral ester such as R-(-)-glycidyl butyrate.
  • the reaction is carried out at a temperature in the range of -80 °C to -50 °C.
  • the duration of the reaction may range from 2 to 12 hrs. It is appreciated that in any of the above-mentioned reactions, any reactive group in the substrate molecule may be protected according to conventional chemical practice. Suitable protecting groups in any of the above-mentioned reactions are those used conventionally in the art. The methods of formation and removal of such protecting groups are those conventional methods appropriate to the molecule being protected.
  • the pharmaceutically acceptable salts are prepared by reacting the compound of formula (I) with 1 to 4 equivalents of a base such as sodium hydroxide, sodium methoxide, sodium hydride, potassium t-butoxide, calcium hydroxide, magnesium hydroxide and the like, in solvents like ether, tetrahydrofuran, methanol, t-butanol, dioxane, isopropanol, ethanol etc. Mixture of solvents may be used.
  • a base such as sodium hydroxide, sodium methoxide, sodium hydride, potassium t-butoxide, calcium hydroxide, magnesium hydroxide and the like
  • solvents like ether, tetrahydrofuran, methanol, t-butanol, dioxane, isopropanol, ethanol etc. Mixture of solvents may be used.
  • Organic bases such as diethanolamine, ⁇ - phenylethylamine, benzylamine, piperidine, morpholine, pyridine, hydroxyethylpyrrolidine, hydroxyethylpiperidine, choline and the like, ammonium or substituted ammonium salts, aluminum salts.
  • Amino acid such as glycine, alanine, cystine, cysteine, lysine, arginine, phenylalanine, guanidine etc may be used for the preparation of amino acid salts.
  • acid addition salts wherever applicable are prepared by the treatment with acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, p-toluenesulphonic acid, methanesulfonic acid, acetic acid, citric acid, maleic acid, salicylic acid, hydroxynaphthoic acid, ascorbic acid, palmitic acid, succinic acid, benzoic acid, benzenesulfonic acid, tartaric acid and the like in solvents like ethyl acetate, ether, alcohols, acetone, tetrahydrofuran, dioxane etc. Mixture of solvents may also be used.
  • acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, p-toluenesulphonic acid, methanesulfonic acid, acetic acid, citric acid, maleic acid, salicylic acid, hydroxynap
  • stereoisomers of the compounds forming part of this invention may be prepared by using reactants in their single enantiomeric form in the process wherever possible or by conducting the reaction in the presence of reagents or catalysts in their single enantiomer form or by resolving the mixture of stereoisomers by conventional methods.
  • Some of the preferred methods include use of microbial resolution, resolving the diastereomeric salts formed with chiral acids such as mandelic acid, camphorsulfonic acid, tartaric acid, lactic acid, and the like wherever applicable or chiral bases such as brucine, cinchona alkaloids and their derivatives and the like.
  • the compound of formula (I) may be converted to a 1:1 mixture of diastereomeric amides by treating with chiral amines, aminoacids, aminoalcohols derived from aminoacids; conventional reaction conditions may be employed to convert acid into an amide; the diastereomers may be separated either by fractional crystallization or chromatography and the stereoisomers of compound of formula (I) may be prepared by hydrolysing the pure diastereomeric amide.
  • Various polymorphs of compound of general formula (I) forming part of this invention may be prepared by crystallization of compound of formula (I) under different conditions.
  • Polymorphs may also be obtained by heating or melting the compound followed by gradual or fast cooling.
  • the presence of polymorphs may be determined by solid probe nmr spectroscopy, ir spectroscopy, differential scanning calorimetry, powder X-ray diffraction or such other techniques.
  • solvates of the compounds of formula (I) forming part of this invention may be prepared by conventional methods such as dissolving the compounds of formula (I) in solvents such as water, methanol, ethanol, mixture of solvents such as acetone: water, dioxane:water, N,N-dimethylformamide: water and the like, preferably water and recrystallizing by using different crystallization techniques.
  • solvents such as water, methanol, ethanol, mixture of solvents such as acetone: water, dioxane:water, N,N-dimethylformamide: water and the like, preferably water and recrystallizing by using different crystallization techniques.
  • solvents such as water, methanol, ethanol, mixture of solvents such as acetone: water, dioxane:water, N,N-dimethylformamide: water and the like, preferably water and recrystallizing by using different crystallization techniques.
  • the compounds of the present invention are useful for the treatment of microbial infections in humans and other
  • compositions of the present invention may also contain or be co-administered with one or more known drugs selected from other clinically useful antibacterial agents such as ⁇ -lactams or aminoglycosides.
  • drugs selected from other clinically useful antibacterial agents such as ⁇ -lactams or aminoglycosides.
  • drugs selected from other clinically useful antibacterial agents such as ⁇ -lactams or aminoglycosides.
  • penicillins such as oxacillin or flucloxacillin
  • carbapenems such as meropenem or imipenem to broaden the therapeutic effectiveness against, for example, methicillin-resistant staphylococci.
  • Compounds of the formula (I) of the present invention may also contain or be co-administered with bactericidal/permeability-increasing-g protein product (BPI) or efflux pump inhibitors to improve activity against gram negative bacteria and bacteria resistant to antimicrobial agents.
  • BPI bactericidal/permeability-increasing-g protein product
  • the pharmaceutical composition may be in the forms normally employed, such as tablets, capsules, powders, syrups, solutions, suspensions and the like, may contain flavoring agents, sweeteners etc. in suitable solid or liquid carriers or diluents, or in suitable sterile media to form injectable solutions or suspensions.
  • Such compositions typically contain from 1 to 20 %, preferably 1 to 10 % by weight of active compound, the remainder of the composition being pharmaceutically acceptable carriers, diluents or solvents.
  • the present invention is provided by the examples below, which are provided by way of illustration only and should not be considered to limit the scope of the invention.
  • Benzylchloroformate (85.8 g, 0.503597 moles) was added to the reaction mixture at 0 °C dropwise. After complete addition, the reaction mixture was kept at room temperature for 12 hours. Acetone was removed from the reaction mixture and diluted further with ethylacetate (2L). Washed the ethylacetate layer with water and brine solution. Dried over anhydrous sodium sulphate and concentrated to dryness. The crude compound was crystallized using ethylacetate and hexane to yield the title compound (67.4 g, yield 65 %).
  • the compounds of invention showed in vitro antibacterial activity when tested by the Agar Dilution Method as specified in documents published by the National Committee for Clinical Laboratory Standards (NCCLS), USA. Briefly, the compounds of invention were weighed, dissolved in Dimethyl Sulfoxide, serially diluted in the same solvent and then incorporated into molten Mueller Hinton Agar in a petridish before solidification, with each petridish containing a different concentration of a compound.
  • the Bacterial Inoculum was prepared by touching the tops of 3 to 5 well isolated bacterial colonies with the same morphological appearance from an 18 hour old culture with an inoculating loop, transferring the growth to a tube containing 5ml of normal saline and adjusting the turbidity of the saline suspension to 0.5 Macfarland Turbidity Standard equivalent to a bacterial population of 1.5 x 10 8 colony forming units (CFU) per milliliter of suspension.
  • the bacterial inoculum prepared in the above manner was inoculated onto petri dishes containing Mueller Hinton Agar which had earlier been incorporated with different dilutions of the compounds of invention by a
  • Multipoint Inoculator with each inoculum spot containing approximately 1 x 10 4 colony forming units (CFU) of bacteria.
  • CFU colony forming units
  • Nancomycin and Oxacillin and inoculated with Staphylococcus aureus are Nancomycin and Oxacillin and inoculated with Staphylococcus aureus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

The present invention provides novel compounds of the general formula (I), their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their hydrates, their solvates, their pharmaceutically acceptable salts and pharmaceutically acceptable compositions containing them. The present invention more particularly provides novel oxazolidinone derivatives of the general formula (I).

Description

NEW COMPOUNDS AS ANTIBACTERIAL AGENTS
Field of the Invention The present invention provides novel compounds of the general formula (I), their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their hydrates, their solvates, their pharmaceutically acceptable salts and pharmaceutically acceptable compositions containing them. The present invention more particularly provides novel oxazolidinone derivatives of the general formula (I).
Figure imgf000002_0001
The present invention also provides a process for the preparation of the above said novel oxazolidinone derivatives of the formula (I) their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their hydrates, their solvates, their pharmaceutically acceptable salts, and pharmaceutical compositions containing them. The novel oxazolidinone derivatives of the present invention are useful as antibacterial agents and hence are useful in the treatment of conditions such as nosocomial pneumoniae, community acquired pneumoniae, vancomycin resistance enterococci (VRE) caused by methicillin resistance staphylococcus aureus (MRSA) and penicillin resistance streptococcus pneumoniae. The compounds of the present invention are effective against a number of human or animal pathogens, clinical isolates, including Vancomycin resistant organisms, methicillin resistant organisms. Background of Invention Several oxazolidinone derivatives have been reported in the literature some of which relevant are given here: International publication number 97/09328 discloses and claims compounds of formula
Figure imgf000003_0001
in which X is NR1, S(O)g or O; R1 is a hydrogen, (C C6)alkyl optionally substituted with one or more OH, CN, or halo or R1 is -(CH2)h-aryl, -COR1"1, COOR1"2, -CO-CCH^h-COR1"1, (CrC6)alkylsulforiyl, -SO2-(CH2)h-aryl or - (CO)j-Het; R2 is hydrogen, (C C6)alkyl, -(CH2)h-aryl or halo; R3 and R4 are the same or different and are hydrogen or halo; R5 is hydrogen, (CrC12)alkyl optionally substituted with one or more halo, (C3-C12)cycloalkyl, ( - C6)alkoxy; g is 0, 1 or 2; h is 1, 2, 3 or 4; i is 0 or 1; m is 0, 1, 2, 3, 4, or 5; n is 0, 1, 2, 3, 4 or 5. International publication number 97/30995 discloses and claims compounds of formula
Figure imgf000003_0002
wherein T is of the formula / — \ R5-N A— R6^B wherein R1 is chloro, fluoro, (C C4)alkanesulfonyloxy, azido, (CrC4)alkoxy, (C C4)alkylthio, (CrC4)alkylaminocarbonyloxy; or of the formula - NHC(=O)R wherein Rb is hydrogen, (CrC )alkoxy, amino, chloromethyl, dichloromethyl, cyanomethyl, methoxymethyl, acetylmethyl, methylamino, dimethylamino or (Cι-C4)alkyl; or of the formula -NHS(O)n(C C4)alkyl where n is 0, 1 or 2; R2 and R3 are independently hydrogen or fluoro; >A-B- is >CH-CH2; R6 is (C C4)al yl, (CrC4)alkanoylaιιώιo(CrC4)alkyl, hydroxy(C C )alkyl, carboxy, (CrG^alkoxycarbonyl, AR-oxymethyl, AR-thiomethyl (where Ar is as defined in the specification) or independently as defined for R excluding hydrogen; R5 is of the formula R10CO-, R10SO2-, R10CS-, where R10 is AR. US patent No. 5,922,708 discloses and claims compounds of formula (IV)
Figure imgf000004_0001
in which R1 is a radical of the formula D-R2, -CO-R3 or -CO-NR4R5, wherein D is the CO2 or SO2 group, R2 is phenyl or linear or branched alkyl • having up to 7 carbon atoms, R3 is trifluoromethyl or linear or branched alkyl having up to 6 carbon atoms which is substituted by halogen or trifluoromethyl, and R4 and R5 are identical or different and are hydrogen, phenyl or linear or branched alkyl having up to 5 carbon atoms; A is a 6- membered aromatic heterocycle having at least one nitrogen atom and directly bonded via a carbon atom, or a 6-membered bicyclic or tricyclic aromatic radical having at least one nitrogen-containing ring and directly bonded via a carbon atom, or β-carbolin-3-yl or indolizinyl directly bonded via the 6- membered ring, or a 5-membered aromatic heterocycle having up to 3 heteroatoms from the group S, N and/or O and directly bonded via a carbon atom, which heterocycle can additionally have a fused benzene or naphthyl ring, all the rings optionally being substituted in each case by up to 3 identical or different substituents selected from carboxyl, halogen, cyano, mercapto, formyl, trifluoromethyl, nitro, linear or branched alkoxy, alkoxycarbonyl, alkylthio or acyl, each of which has up to 6 carbon atoms, and linear or branched alkyl having up to 6 carbon atoms, which in turn can be substituted by hydroxyl, by linear or branched alkoxy or acyl, each of which has up to 5 carbon atoms, or by a group of the formula -NR R7, wherein R and R7 are identical or different and are hydrogen, cycloalkyl having 3 to 6 carbon atoms, linear or branched alkyl having up to 5 carbon atoms or phenyl, or, together with the nitrogen atom, form a 5- or 6-membered saturated heterocycle optionally having another heteroatom from the group N, S and/or O, which heterocycle in turn can optionally be substituted, also on another nitrogen atom, by linear or branched alkyl or acyl, each of which has up to 3 carbon atoms etc.
Objective of the Invention We have focused our research to identify novel oxazolidinone derivatives, which are effective against resistant organisms. Our sustained efforts have resulted in novel oxazolidinone derivatives of the formula (I). The novel oxazolidinone derivatives of the present invention may be useful as antibacterial agents and hence are useful in the treatment of conditions such as nosocomial pneumoniae, community acquired pneumoniae, vancomycin resistance enterococci (NRE) caused by methicillin resistance staphylococcus aureus (MRSA) and penicillin resistance streptococcus pneumoniae. The compounds of the present invention are effective against a number of human or animal pathogens, clinical isolates, including Nancomycin resistant organisms, methicillin resistant organisms
Summary of the Invention The present invention relates to novel oxazolidinone derivatives of the formula (I)
Figure imgf000005_0001
their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable salts, wherein X and Y represent oxygen or sulfur; R1 represents halogen, azido, nitro, cyano, substituted or unsubstituted group selected from TR7, wherein T represents O or S; R7 represents hydrogen, formyl, substituted or unsubstituted groups selected from (CrC6)alkyl, cycloalkyl, aryl, aralkyl, acyl, thioacyl, heterocyclyl, heteroaryl, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl; or R1 represents N(R8aR8b) where R8a and R8b may be same or different and independently represent hydrogen, formyl, substituted or unsubstituted groups selected from (C C6)alkyl, aryl, aralkyl, heteroaryl, heteroaralkyl or an aminoacid residue which is attached through acid moiety; or R a and R together with nitrogen may represent a mono or bicyclic saturated or unsaturated ring system which may contain one or more heteroatoms selected from O, S or N; or R1 represents the formula -NHC(=Z)R9 wherein Z represents O or S, R9 is hydrogen, substituted or unsubstituted groups selected from (CrC6)alkyl, ( -C^alkoxy, aryl, (C3-C6)cycloalkyl, amino, heteroaryl, heterocyclyl, heteroaralkyl, or R9 represents N(R10Rπ), wherein R10 and R11 may be same or different and represent hydrogen, substituted or unsubstituted groups selected from alkyl, cycloalkyl, aryl, alkylcarbonyl, arylcarbonyl, cycloalkylcarbonyl, heteroaryl, heteroarylcarbonyl and the like; or R1 is of the formula -NHS(O)r(C C4)alkyl, -NHS(O)raralkyl or -NHS(O)rheteroaralkyl, where r is 0 to 2; A and B are different and represent CH or N; R2 and R3 may be same or different and independently represent hydrogen, halogen, hydroxy, alkyl, alkoxy; n is an integer of 0 or 1 ; m is an integer in the range of 1 to 4; D represents CH or N; E represents CH or N; R4 and R5 may be same or different and independently represent hydrogen, cyano, nitro, amino, halogen, hydroxyl, substituted or unsubstituted groups selected from (CrC6)alkyl, haloalkyl, ( -C^alkoxy, ( -C^alkylthio, (C3-C6)cycloalkyl or either of R4or R represent an oxo or thiooxo group; p is an integer of 1; R represents a substituted or unsubstituted groups selected from aryl, cycloaikyl, aralkyl, heteroaryl, heteroaralkyl, heteroaralkenyl, heterocyclyl, heterocycloalkyl, heterocycloalkenyl. Detailed Description of the Invention Suitable groups represented by R1 are selected from halogen, azido, nitro, cyano, substituted or unsubstituted group selected from TR7, N(R8aR8b), -NHC(=Q)R9, -NHS(O)r(CrC4)alkyl, -NHS(O)raralkyl or NHS(O)rheteroaralkyl. Suitable groups represented by R2 and R3 are selected from hydrogen, halogen atom such as fluorine, chlorine, bromine or iodine; hydroxyl, ( - C6)alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t- butyl, n-pentyl, isopentyl, hexyl and the like; (CrC6)alkoxy group, such as methoxy, ethoxy, n-propoxy, isopropoxy and the like. Suitable groups represented by R4 and R5 are selected from hydrogen, cyano, nitro, amino, halogen, hydroxyl, (C1-C6)alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, hexyl and the like; haloalkyl such as chloromethyl, chloroethyl, trifluoromethyl, trifluoroethyl, dichloromethyl, dichloroethyl and the like; (C1-C6)alkoxy group, such as methoxy, ethoxy, n-propoxy, isopropoxy and the like; ( - C6)alkylthio group such as methylthio, ethylthio, n-propylthio, iso-propylthio and the like; (C3-C6)cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like or either of R4 or R5 represent an oxo or thiooxo group. Suitable groups represented by R7 are selected from hydrogen, formyl, substituted or unsubstituted linear or branched (C1-C6)alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, hexyl and the like; (C3-C6)cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, which may be substituted; aryl group such as phenyl, naphthyl and the like, the aryl group may be substituted; aralkyl group such as phenylmethyl, phenylethyl, naphthylmethyl, naphthylethyl and the like, the aralkyl group may be substituted; acyl group such as -C(=O)CH3, -C(=O)C2H5, -C(=O)C3H7, -C(=O)C6H13, benzoyl and the like, the acyl group may be substituted; thioacyl group such as -C(=S)CH3, -C(=S)C2H5, -C(=S)C3H7) -C(=S)C6H13 and the like, the thioacyl group may be substituted; alkylsulfonyl group such as methylsulfonyl, ethylsulfonyl, n- propylsulfonyl, iso-propylsulfonyl and the like, which may be substituted; arylsulfonyl group such as phenylsulfonyl, naphthylsulfonyl and the like, which may , be substituted; aralkylsulfonyl group such as phenylmethylsulfonyl, phenylethylsulfonyl, naphthylmethylsulfonyl, naphthylethylsulfonyl and the like, which may be substituted; heteroaryl group such as thienyl, pyridyl, thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, isooxazolyl, oxadiazolyl, pyrazolyl, triazolyl, thiadiazolyl, tetrazolyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzopyranyl, indolyl, indolinyl, benzimidazolyl, benzoxazolyl, benzopyrazolyl, benzothiazolyl, benzofuranyl, benzoxadiazolyl, benzothiadiazolyl, benzodioxolyl, quinolinyl, dihydroquinolinyl, tetrahydroquinolinyl, isoquinolinyl, dihydroisoquinolinyl, tetrahydroisoquinolinyl, quinazolinyl, quinoxalinyl and the like, which may be substituted; heterocyclyl group such as pyrrolidinyl, morpholinyl, thiomorpholinyl, piperidinyl, piperazinyl, and the like, which may be substituted. Suitable groups represented by R8a and R8 are selected from hydrogen, formyl, substituted or unsubstituted linear or branched (C1-C6)alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, hexyl and the like; aryl group such as phenyl, naphthyl and the like, which may be substituted; aralkyl group such as phenylmethyl, phenylethyl, naphthylmethyl, naphthylethyl and the like, which may be substituted; heteroaryl group such as pyridyl, thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, isooxazolyl, oxadiazolyl, triazolyl, thiadiazolyl, tetrazolyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzopyranyl, benzofuranyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, benzopyrrolyl, benzoxadiazolyl, benzothiadiazolyl and the like, which may be substituted; heteroaralkyl group wherein the heteroaryl moiety is as defined above; an aminoacid residue group selected from glycine, alanine, lysine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, histidine, iso- leucine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine or valine. Suitable ring systems formed by R8a and R8 together are selected from pyridyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, isooxazolyl, oxadiazolyl, triazolyl, thiadiazolyl, tetrazolyl, pyrimidinyl, pyrazinyl, pyridazinyl, piperazinyl, thiazinyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, benzopyrrolyl, benzoxadiazolyl, benzothiadiazolyl and the like. Suitable groups represented by R9 are selected from substituted or unsubstituted linear or branched (C1-C10)alkyl group such as methyl, ethyl, n- propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, hexyl and the like; (C1-C1o)alkoxy group, such as methoxy, ethoxy, n-propoxy, isopropoxy, butoxy and the like, which may be substituted; aryl group such as phenyl, naphthyl and the like, which may be substituted; (C3-C6)cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, which may be substituted; heteroaryl group such as thienyl, pyridyl, thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, isooxazolyl, oxadiazolyl, pyrazolyl, triazolyl, thiadiazolyl, tetrazolyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzopyranyl, indolyl, indolinyl, benzimidazolyl, benzoxazolyl, benzopyrazolyl, benzothiazolyl, benzofuranyl, benzoxadiazolyl, benzothiadiazolyl, benzodioxolyl, quinolinyl, dihydroquinolinyl, tetrahydroquinolinyl, isoquinolinyl, dihydroisoquinolinyl, tetrahydroisoquinolinyl, quinazolinyl, quinoxalinyl and the like; heterocyclyl group such as pyrrolidinyl, morpholinyl, thiomorpholinyl, piperidinyl, piperazinyl and the like; heteroaralkyl wherein the heteroaryl group is as defined above. Suitable groups represented by R10 and R are selected from hydrogen, substituted or unsubstituted linear or branched (C1-C10)alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-pentyl, isopentyl, hexyl and the like; aryl group such as phenyl, naphthyl and the like, which may be substituted; (C3-C6)cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, which may be substituted; alkylcarbonyl group such as methylcarbonyl, ethylcarbonyl, n-propylcarbonyl, iso-propylcarbonyl and the like, which may be substituted; arylcarbonyl group such as phenylcarbonyl or naphthylcarbonyl, which may be substituted; cycloalkylcarbonyl such as cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl, cyclohexylcarbonyl and the like, which may be substituted; heteroaryl group such as thienyl, pyridyl, thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, isooxazolyl, oxadiazolyl, pyrazolyl, triazolyl, thiadiazolyl, tetrazolyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzopyranyl, indolyl, indolinyl, benzimidazolyl, benzoxazolyl, benzopyrazolyl, benzothiazolyl, benzofuranyl, benzoxadiazolyl, benzothiadiazolyl, benzodioxolyl, quinolinyl, dihydroquinolinyl, tetrahydroquinolinyl, isoquinolinyl, dihydroisoquinolinyl, tetrahydroisoquinolinyl, quinazolinyl, quinoxalinyl and the like, which may be substituted; heteroarylcarbonyl, wherein the heteroaryl group is as defined above. Suitable groups represented by R6 are selected from aryl group such as phenyl, naphthyl and the like, the aryl group may be substituted; aralkyl group such as phenylmethyl, phenylethyl, naphthylmethyl, naphthylethyl and the like, the aralkyl group may be substituted; (C3-C6)cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like, the cycloalkyl group may be substituted; heteroaryl group such as thienyl, pyridyl, thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, isooxazolyl, oxadiazolyl, pyrazolyl, triazolyl, thiadiazolyl, tetrazolyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzopyranyl, indolyl, indolinyl, benzimidazolyl, benzoxazolyl, benzopyrazolyl, benzothiazolyl, benzofuranyl, benzoxadiazolyl, benzothiadiazolyl, benzodioxolyl, quinolinyl, diliydroquinolinyl, tetrahydroquinolinyl, isoquinolinyl, dihydroisoquinolinyl, tetrahydroisoquinolinyl, quinazolinyl, quinoxalinyl and the like, the heteroaryl group may be substituted; heterocyclyl group such as pyrrolidinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, oxazolidinyl, piperidinyl, piperazinyl and the like; heteroaralkyl and heterocycloalkyl groups wherein the heteroaryl and heterocyclyl groups are as defined above; hetero(C2- C6)aralkenyl, heterocyclo(C2-C6)alkenyl groups wherein the heteroaryl and heterocyclyl groups are as defined above. The substituents on R6 are selected from halogen, hydroxy, formyl, nitro, cyano, azido, amino, alkyl, alkylamino, alkylaminocarbonyl, haloalkyl, alkylthio, acylamino, alkoxy, acyl, carboxylic acid or its derivatives such as esters or amides, aryl, heteroaryl, heterocyclyl, substituted aryl, wherein the substituent is selected from nitro, halogen, cyano, hydroxy, amino, alkyl, alkoxy, acyl, and the like; and these substituents are as defined above. Suitable n is an integer of 0 or 1. Suitable n is an integer in the range of 1 to 4, preferably n represents 1 or 2. The substituents on any of the groups represented by R1, R2, R3, R4, R5, R8 , R8b, R9 R10, R11 are selected from halogen, hydroxy, formyl, nitro, cyano, azido, amino, alkyl, aryl, alkylamino, alkylaminocarbonyl, haloalkyl, alkylthio, acylamino, alkoxy, acyl, cycloalkylcarbonyl, heteroarylcarbonyl, carboxylic acid or its derivatives such as esters or amides and these substituents are as defined above. Pharmaceutically acceptable salts of the present invention include alkali metal like Li, Na, and K, alkaline earth metal like Ca and Mg, salts of organic bases such as diethanolamine, α-phenylethylamine, benzylamine, piperidine, morpholine, pyridine, hydroxyethylpyrrolidine, hydroxyethylpiperidine, choline and the like, ammonium or substituted ammonium salts, aluminum salts. Salts also include amino acid salts such as glycine, alanine, cystine, cysteine, lysine, arginine, phenylalanine, guanidine etc. Salts may include acid addition salts where appropriate which are, sulphates, nitrates, phosphates, perchlorates, borates, hydrohalides, acetates, tartrates, maleates, citrates, succinates, palmoates, methanesulphonates, tosylates, benzoates, salicylates, hydroxynaphthoates, benzenesulfonates, ascorbates, glycerophosphates, ketoglutarates and the like. Pharmaceutically acceptable solvates may be hydrates or comprising other solvents of crystallization such as alcohols.
Representative compounds according to the present invention include:
(S)-N-[3-[2-[4-(N-5-Nifrofuran-2-ylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(^-N-[3-[2-[4-(N-5-Nitrofuran-2-ylthiocarbonyl)piperazin-l-yl]pyridin-5-yl]-
2-oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-5-Nitrofuran-2-ylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ; (S)-N-[3-[2-[4-(N-5-Nitrofuran-2-ylthiocarbonyl)piperazin- 1 -yl]pyridϊn-5-yl]-
2-oxooxazolidin-5-ylmethyl]thioacetamide ;
(<S)-N-[3-[2-[4-(N-furan-2-ylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-furan-2-ylthiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N- [3 - [2- [4-(N-furan-2-ylcarbonyl)piperazin- 1 -yl]pyridin-5 -yl] -2- oxooxazolidin-5-ylmethyl]acetamide ; (S)-N-[3-[2-[4-(N-furan-2-ylthiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thioacetamide ; (S)-N-[3-[2-[4-(N-5-Nitropyrazol-2-ylthiocarbonyl)piperazin-l-yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethyl]thioacetamide ; (S)-N-[3-[2-[4-(N-5-Nitropyrazol-2-ylthiocarbonyl)piperazin- 1 -yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-(N-5-Nitropyrazol-2-ylthiocarbonyl)piperazin-l-yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-5-Nitropyrazol-2-ylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-pyrazine-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-(N-pyrazine-2-yl-thiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ; (S)-N-[3-[2-[4-(N-pyrazine-2-yl-carbonyl)piperazin- 1 -yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-pyrazine-2-yl-thiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-5-methylpyrazin-2-yl-carbonyl)piperazin-l-yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ;
(5)-N-[3-[2-[4-(N-5-methylpyrazin-2-yl-thiocarbonyl)piperazin-l-yl]pyridin-
5-yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N- [3 - [2- [4-(N-pyrazine-2-yl-carbonyl)piperazin- 1 -yl]pyridin-5 -yl] -2- oxooxazolidin-5-ylmethyl]thioacetamide ; (S)-N-[3-[2-[4-(N-pyrazine-2-yl-thiocarbonyl)piperazin- 1 -yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thioacetamide ;
(S)-N-[3-[2-[4-(N-l-methylpyrrolyl-2-yl-carbonyl)piperazin-l-yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ; (S)-N-[3-[2-[4-(N-pyrrolyl-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-thien-2-yl-thiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ; (S)-N-[3-[2-[4-(N-furan-2-yl-propenoyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-(N-fiιran-2-yl-propenoyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl] thiocarbamate ;
(ι-^-N-[3-[2-[4-(N-5-fluoroindol-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-(N-piperid--rι-l-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(4-(4-acetylρhenyl- 1 -yl)piperazin- 1 -yl-carbonyl)piperazin- 1 - yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ; (S)-N- [3 - [2- [4-(4-(piperidin- 1 -yl)piperidin- 1 -yl-carbonyl)piperazin- 1 - yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(4-(4-nitrophenyl-l-yl)furan-2-yl-carbonyl)piperazin-l- yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-(cyclopropylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(cyclopropylthiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N- [3 - [2- [4-(cyclopropylcarbonyl)piperazin- 1 -yl]pyridin-5 -yl] -2- oxooxazolidin-5-ylmethyl]acetamide ; N' -methyl thiourea ;
(S)-N- [3 - [2- [4-(cyclopropylcarbonyl)piperazin- 1 -yl]pyridin-5-yl] -2- oxooxazolidin-5-ylmethyl]-N'-methyl thiourea ;
(S)-N-[3-[2-[4-(cyclopropylthiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ; (S)-N-[3-[2-[4-(cyclopropylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thioacetamide ;
(S)-N-[3-[2-[4-(cyclopropylthiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thioacetamide ; (S)-N-[3-[2-[4-(N-pyrrolidin-2-yl-carbonyl)piperazin- 1 -yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-(N-pyrrolidin-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ; (S)-N-[3-[2-[4-(N-thiazolidin-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate and
(^-N-[3-[2-[4-(N-quinoxalin-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate.
(5)-N-[3-[2-[4-(N-5-nitrofuran-2-ylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5 -ylmethyl]-(N ' -4-cyanophenyl)thiourea ; (S)-N-[3-[2-[4-(N-Cyclopropyl-2-ylcarbonyl)piperazin- 1 -yl]pyridin-5-yl]-2- oxooxazolidin-5 -ylmethyl] -(N ' -methyl-N' -cy clopropanecarboxamide) thiourea ;
(S)-N-[3-[2-[4-(4-(pyridin-2-yl)piperazin- 1 -yl-carbonyl)piperazin- 1 - yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]acetamide ; (S)-N-[3-[2-[4-(4-(pyridin-2-yl)piperazin-l-yl-thiocarbonyl)piperazin-l- yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]thioacetamide ;
(S)-N-[3-[2-[4-(4-(pyridin-2-yl)piperazin- 1 -yl-carbonyl)piperazin- 1 - yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(4-(pyridin-2-yl)piperazin- 1 -yl-thiocarbonyl)piperazin- 1 - yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-imidazol-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
(5 -N-[3-[2-[4-(N-imidazol-2-yl-thiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thioacetamide ; (S)-N-[3-[2-[4-(N-irnidazol-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate and
(S)-N-[3-[2-[4-(N-imidazol-2-yl-thiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
According to another embodiment of the present invention, there is provided a process for the preparation of novel oxazolidinone derivatives of the formula (I) where R1 represents NHC(=Z)R9, wherein R9 is as defined earlier, n is 1 and all other symbols are as defined earlier, which comprises (i) converting the compound of formula (III)
Figure imgf000016_0001
where P represents protecting group such as benzyl, benxyloxy carbonyl, tert- butoxycarbonyl, chloroethyl formate, Fmoc and all other symbols are as defined earlier to produce a compound of formula (IN)
Figure imgf000016_0002
where L represents a leaving group such as mesylate, tosylate or triflate and all other symbols are as defined earlier, ii) converting the compound of formula (IN) to produce a compound of formula (N)
Figure imgf000016_0003
where all symbols are as defined earlier, iii) reducing the compound of formula (V) to a compound of formula (NI)
Figure imgf000017_0001
where all symbols are as defined earlier, iv) acylating the compound of formula1 (VI) to produce a compound of formula (VII)
Figure imgf000017_0002
where all symbols are as defined earlier, v) deprotecting the compound of formula (VII) to produce a compound formula (VIII),
Figure imgf000017_0003
where all symbols are as defined earlier, vi) reacting the compound of formula (NIII) with a compound of formula
R6— (C(=Y))p-L (IX) wherein L is a leaving group and all other symbols are as defined earlier to produce a compound of formula (I). The compound of formula (III) may be converted to a compound of formula (IN) using methane sulfonyl chloride, tosyl chloride, trifluoromethane sulfonyl chloride. The reaction may be carried out in the presence of solvents like tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene and the like or a mixture thereof and a base selected from dimethylamino pyridine, triethylamine, pyridine and the like. The reaction may be carried out at a temperature in the range of -10 °C to room temperature. The duration of the reaction may range from 1 to 12 hrs. The conversion of compound of formula (IN) may be carried out in the presence of one or more equivalents of metal azide such as LiΝ3, NaN3 or trialkyl silylazide. The reaction may be carried out in the presence of solvent such as THF, acetone, DMF, DMSO and the like or mixtures thereof. The reaction may be carried out in inert atmosphere, which may be maintained using N2 or Ar. The reaction may be carried out at a temperature in the range of ambient temperature to reflux temperature of the solvent, preferably at a temperature in the range of 60 °C to 120 °C. The reaction time may range
Figure imgf000018_0001
The reduction of compound of formula (V) may be carried out in the presence of gaseous hydrogen and a catalyst such as Ru, Pd, Rh, Pt, Ni on solid beads such as charcoal, alumina, asbestos and the like. The reduction may be conducted in the presence of a solvent such as dioxane, acetic acid, ethyl acetate, THF, alcohol such as methanol, ethanol, isopropanol and the like or mixtures thereof. A pressure between atmospheric pressure to 60 psi may be used. The reaction may be carried out at a temperature in the range of 25 to 60 °C, preferably at room temperature. The reaction time ranges from 2 to 48 h. The reduction may also be carried out by employing metal in mineral acids such as Sn/HCl, Fe/HCl, Zn HCl, Zn/CH3CO2H and the like. Acylation of compound of formula (VI) may be carried out using acylating agents such as anhydrides like acetic anhydride, propionic anhydride, acid chlorides like acetyl chloride, propionyl chloride, thioacids such as thioacetic acid. The reaction may be carried out in the presence of solvents like tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof. The reaction may be carried out in the presence of base selected from dimethylamino pyridine, triethylamine, pyridine and the like. The reaction may be carried out at a temperature in the range of 0 °C to room temperature. The duration of the reaction may range from 2 to 24 hrs. The deprotection of compound of formula (Nil) may be carried out using strong acids such as trifluoroacetic acid, hydrochloric acid, sulfuric acid. The reaction may be carried out in the presence of appropriate solvents like tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o- dichlorobenzene or a mixture thereof. The reaction may be carried out at a temperature in the range of 0 °C to room temperature. The duration of the reaction may range from 1 to 6 hrs. The reaction of compound of formula (NIII) with the compound of formula (IX) may be carried out in the presence of molecular sieves, and reducing agents such as sodium borohydride, triacetoxy sodium borohydride, sodium cyano borohydride, lithium aluminium hydride. The reaction may be carried out in the presence of appropriate solvents like tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof. The reaction may be carried out at room temperature. The duration of the reaction may range from 12 to 24 hrs. According to another embodiment of the present invention, there is provided a process for the preparation of novel oxazolidinone derivatives of the formula (I) where R1 represents ΝHC(=Z)R9, wherein Z is S; R9 represents alkoxy or amino and all other symbols are as defined earlier, which comprises i) converting the compound of formula (VI)
Figure imgf000019_0001
to produce a compound of formula (X)
Figure imgf000020_0001
where all symbols are as defined earlier, ii) converting the compound of formula (X) to produce a compound of formula (Nil)
Figure imgf000020_0002
where R1 is as defined above and all other symbols are as defined earlier and iii) deprotecting the compound of formula (Nil) to produce a compound formula (NIII),
Figure imgf000020_0003
where all symbols are as defined earlier and iv) reacting the compound of formula (NIII) with a compound of formula
R6-(C(=Y))p-L (IX) wherein all symbols are as defined earlier and L is a leaving group to produce a compound of formula (I), where R1 represents - ΝHC(=Z)R9. The conversion of compound of formula (VI) to produce compound of formula (X) may be carried out using thiophosgene gas in the presence of solvent such as tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof. The reaction may be carried out in the presence of a base selected from dimethylamino pyridine, triethylamine, pyridine and the like. The reaction may be carried out at a temperature in the range of -10 °C to room temperature. The conversion of compound of formula (X) to compound of formula (Nil) may be carried out using solvents such as THF, DCM, alcohol such as methanol, ethanol, propanol and the like. The reaction may be carried out in the presence of a base selected from dimethylamino pyridine, triethylamine, pyridine and the like. The reaction may be carried out at a temperature in the range of 30 °C to reflux temperature. The duration of the reaction may range
Figure imgf000021_0001
The deprotection of compound of formula (Nil) may be carried out using strong acids such as trifluoroacetic acid, hydrochloric acid, sulfuric acid. The reaction may be carried out in the presence of appropriate solvents like tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o- dichlorobenzene or a mixture thereof. The reaction may be carried out at a temperature in the range of 0 °C to room temperature. The duration of the reaction may range from 1 to 6 hrs. The reaction of compound of formula (NIII) with the compound of formula (IX) may be carried out in the presence of molecular sieves, and reducing agents such as sodium borohydride, triacetoxy sodium borohydride, sodium cyano borohydride, lithium aluminium hydride. The reaction may be carried out in the presence of appropriate solvents like tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, benzene, xylene, THF, o-dichlorobenzene or a mixture thereof. The reaction may be carried out at room temperature. The duration of the reaction may range from 12 to 24 hrs. In yet another embodiment of the present invention, there is provided a process for the preparation of compounds of formula (I) where R1 represents TR7, Ν(R8aR8b), wherein R7, R8a and R8 are as defined earlier which comprises reacting the compound of formula (XI)
Figure imgf000022_0001
where L1 represents a leaving group such as mesylate, tosylate or trifiate with
R7YH or NH(R8aR8b) where all symbols are as defined earlier. The conversion of compounds of formula (XI) to a compound of formula (I) may be carried out by heating in the presence of base selected from
NaH, KH, t-BuOK and the like and solvents such as DMF, THF, DCM, DMA and the like. The reaction temperature may range from 0 °C to room temperature. The duration of the reaction may range from 2 to 6 hrs. In yet another embodiment of the present invention, there is provided a process for the preparation of compounds of formula (I) wherein R1 represents -NHS(O)r(C C4)alkyl, -NHS(O)raralkyl or -NHS(O)rheteroaralkyl group, which comprises reacting the compound of formula (XII)
Figure imgf000022_0002
where all symbols are as defined earlier which represents compounds of formula (I), R1 represents N(R8aR8b) where R8a and R8b represent hydrogen, with R'SO2Cl where R' represents (CrC4)alkyl, aralkyl or heteroaralkyl group. The reaction of compounds of formula (XII) may be carried out by heating in the presence of base selected from pyridine, friethylamine and the like and solvents such as DMF, DCM, ethyl acetate and the like. The reaction temperature may range from 0 °C to room temperature. The duration of the reaction may range from 4 to 12 hrs. According to another embodiment of the present invention, there is provided a process for the preparation of novel oxazolidinone derivatives of the formula (I) where R1 represents the formula - NHC(=Z)R9 where Y is S,
R9 and all other symbols are as defined above, which comprises reacting the compound of formula (XIII)
Figure imgf000023_0001
where all symbols are as defined earlier which represents compound of formula (I) where R1 represents azido with thioacetic acid to produce compound of formula (I) as defined above. The acylation of compound of formula (XIII) may be carried out using acylating agents such as thioacetic acid. The reaction may be carried out in the presence of appropriate solvents like tefrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof The reaction may be carried out at a temperature in the range of 0 °C to room temperature. The duration of the reaction may range from 6 to 12 hrs.
In another embodiment of the present invention, there is provided a process for the conversion of compounds of formula (I) where R1 represents the formula - NHC(=Z)R9; where Z is O, R9 and all other symbols are as defined above to compounds of formula (I) where R1 represents the formula - NHC(=Z)R9; where Z is S, R9 and all other symbols are as defined earlier. The conversion may be carried out using Lawesson's reagent in the presence of base such as triethyl amine, pyridine and the like and solvents such as toluene, DCC, tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof. The reaction may be carried out at a temperature in the range of 20 °C to 120 °C. The duration of the reaction may range from 1 to 12 hrs.
According to another embodiment of the present invention, there is provided a process for the preparation of compounds of formula (III)
Figure imgf000024_0001
where all symbols are as defined earlier, which comprises : i) reacting the compound of formula (Ilia)
Figure imgf000024_0002
where X represents halogen atom and all other symbols are as defined earlier, with compound of formula (Illb)
Figure imgf000024_0003
where P represents protecting group and all other symbols are as defined earlier, to produce compound of formula (IIIc)
Figure imgf000024_0004
ii) reducing the compound of formula (IIIc) to produce a compound of formula (Hid)
Figure imgf000024_0005
wherein all symbols are as defined earlier, iii) converting the compound of formula (Iϊld) to produce compound of formula (Ille)
Figure imgf000025_0001
where all symbols are as defined earlier, iv) cyclizing the compound of formula (Ille) with R-(-)-glycidyl butyrate to produce a compound of formula (III) where all symbols are as defined earlier. The reaction of compound of formula (Ilia) with compound of formula (Hlb) may be carried out in the presence of BINAP [(R)-2,2'~ Bis(diphenylphosphino)-l,r-binaphthyl] and tris(dibenzylidene acetone)dipalladium(o). The reaction may be carried out using inert gases such as N2, argon and the like. The reaction may be carried out in the presence of solvents such as toluene, DCC, tetrahydrofuran, chloroform, dichloromethane, dichloroethane, ethylacetate, o-dichlorobenzene or a mixture thereof. The reaction is carried out at temperature in the range of 20 to 60 °C. The reduction of compound of formula (IIIc) may be carried out in the presence of gaseous hydrogen and a catalyst such as Ru, Pd, Rh, Pt, Ni on solid beads such as charcoal, alumina, asbestos and the like. The reduction may be conducted in the presence of a solvent such as dioxane, acetic acid, ethyl acetate, THF, alcohol such as methanol, ethanol, isopropanol and the like or mixtures thereof. A pressure between atmospheric pressure to 60 psi may be used. The reaction may be carried out at a temperature in the range of 25 to 60 °C, preferably at room temperature. The reaction time ranges from 2 to 48 h. The reduction may also be carried out by employing metal in mineral acids such as Sn/HCl, Fe HCl, Zn/HCl, Zn/CH3CO2H and the like. The conversion of compound of formula (Hid) to compound of formula (Ille) may be carried out using benzyloxycarbonyl chloride and sodium bicarbonate, in the presence of solvents such as acetone, DMF, water, THF and the like or mixtures thereof. The reaction temperature may range from -20 °C to room temperature. The duration of the reaction may range from 3 to 18 hrs. The cyclization of compound of formula (Ille) may be carried out in the presence of base such as n-butyl lithium, LDA, potassium bis(trimethylsilyl)amide, lithium-bis(trimethylsilyl)amide and the like. The reaction may be carried out in the presence of solvent such as THF, DMF and the like. The reaction is carried out using chiral ester such as R-(-)-glycidyl butyrate. The reaction is carried out at a temperature in the range of -80 °C to -50 °C. The duration of the reaction may range from 2 to 12 hrs. It is appreciated that in any of the above-mentioned reactions, any reactive group in the substrate molecule may be protected according to conventional chemical practice. Suitable protecting groups in any of the above-mentioned reactions are those used conventionally in the art. The methods of formation and removal of such protecting groups are those conventional methods appropriate to the molecule being protected.
The pharmaceutically acceptable salts are prepared by reacting the compound of formula (I) with 1 to 4 equivalents of a base such as sodium hydroxide, sodium methoxide, sodium hydride, potassium t-butoxide, calcium hydroxide, magnesium hydroxide and the like, in solvents like ether, tetrahydrofuran, methanol, t-butanol, dioxane, isopropanol, ethanol etc. Mixture of solvents may be used. Organic bases such as diethanolamine, α- phenylethylamine, benzylamine, piperidine, morpholine, pyridine, hydroxyethylpyrrolidine, hydroxyethylpiperidine, choline and the like, ammonium or substituted ammonium salts, aluminum salts. Amino acid such as glycine, alanine, cystine, cysteine, lysine, arginine, phenylalanine, guanidine etc may be used for the preparation of amino acid salts. Alternatively, acid addition salts wherever applicable are prepared by the treatment with acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, p-toluenesulphonic acid, methanesulfonic acid, acetic acid, citric acid, maleic acid, salicylic acid, hydroxynaphthoic acid, ascorbic acid, palmitic acid, succinic acid, benzoic acid, benzenesulfonic acid, tartaric acid and the like in solvents like ethyl acetate, ether, alcohols, acetone, tetrahydrofuran, dioxane etc. Mixture of solvents may also be used. The stereoisomers of the compounds forming part of this invention may be prepared by using reactants in their single enantiomeric form in the process wherever possible or by conducting the reaction in the presence of reagents or catalysts in their single enantiomer form or by resolving the mixture of stereoisomers by conventional methods. Some of the preferred methods include use of microbial resolution, resolving the diastereomeric salts formed with chiral acids such as mandelic acid, camphorsulfonic acid, tartaric acid, lactic acid, and the like wherever applicable or chiral bases such as brucine, cinchona alkaloids and their derivatives and the like. Commonly used methods are compiled by laques et al in "Enantiomers, Racemates and Resolution" (Wiley Interscience, 1981). More specifically the compound of formula (I) may be converted to a 1:1 mixture of diastereomeric amides by treating with chiral amines, aminoacids, aminoalcohols derived from aminoacids; conventional reaction conditions may be employed to convert acid into an amide; the diastereomers may be separated either by fractional crystallization or chromatography and the stereoisomers of compound of formula (I) may be prepared by hydrolysing the pure diastereomeric amide. Various polymorphs of compound of general formula (I) forming part of this invention may be prepared by crystallization of compound of formula (I) under different conditions. For example, using different solvents commonly used or their mixtures for recrystallization; crystallizations at different temperatures; various modes of cooling, ranging from very fast to very slow cooling during crystallizations. Polymorphs may also be obtained by heating or melting the compound followed by gradual or fast cooling. The presence of polymorphs may be determined by solid probe nmr spectroscopy, ir spectroscopy, differential scanning calorimetry, powder X-ray diffraction or such other techniques. Pharmaceutically acceptable solvates of the compounds of formula (I) forming part of this invention may be prepared by conventional methods such as dissolving the compounds of formula (I) in solvents such as water, methanol, ethanol, mixture of solvents such as acetone: water, dioxane:water, N,N-dimethylformamide: water and the like, preferably water and recrystallizing by using different crystallization techniques. The compounds of the present invention are useful for the treatment of microbial infections in humans and other warm blooded animals, under both parenteral and oral administration. In addition to the compounds of formula (I) the pharmaceutical compositions of the present invention may also contain or be co-administered with one or more known drugs selected from other clinically useful antibacterial agents such as β-lactams or aminoglycosides. These may include penicillins such as oxacillin or flucloxacillin and carbapenems such as meropenem or imipenem to broaden the therapeutic effectiveness against, for example, methicillin-resistant staphylococci. Compounds of the formula (I) of the present invention may also contain or be co-administered with bactericidal/permeability-increasing-g protein product (BPI) or efflux pump inhibitors to improve activity against gram negative bacteria and bacteria resistant to antimicrobial agents. The pharmaceutical composition may be in the forms normally employed, such as tablets, capsules, powders, syrups, solutions, suspensions and the like, may contain flavoring agents, sweeteners etc. in suitable solid or liquid carriers or diluents, or in suitable sterile media to form injectable solutions or suspensions. Such compositions typically contain from 1 to 20 %, preferably 1 to 10 % by weight of active compound, the remainder of the composition being pharmaceutically acceptable carriers, diluents or solvents. The present invention is provided by the examples below, which are provided by way of illustration only and should not be considered to limit the scope of the invention.
Preparation 1
Synthesis of (S)-N-3-[2-[4-(N-t-butoxycarbonyl)piperazin-l-yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethyl amine
Figure imgf000029_0001
Step (i)
Preparation of 2-(piperazine-N-t-butoxycarbonyl)-5-nitro pyridine t-Boc-N 2 N — ' H=J BINAP [(R)-2,2'-Bis(diphenylphosphino)-l,r-binaphthyl] (2.5 g, 0.00394088 moles) and tris(dibenzylidene acetone)dipalladium(o) (7.2 g, 0.00788177 moles) were taken in dry toluene (400 ml) and stirred under argon atmosphere at room temperature for 15 minutes. 2-Bromo-5-nitro-pyridine (40 g, 0.197044 moles) was dissolved in toluene (200 ml) and added to the reaction mixture followed by N-t-butoxycarbonyl piperazine (44 g, 0.23645 moles). To this cesium carbonate (90 g, 0.275862 moles) was added at room temperature under argon atmosphere. The reaction mixture was cooled to RT and filtered through celite. Washed the residue thoroughly with ethylacetate. The combined filtrates were washed with water and brine solution. Dried over anhydrous sodium sulphate and concentrated to dryness and purified over silica gel column using dichloroformate and methanol as eluent to yield the ( title compound (42.4 g, yield 70%).
Step (ii)
Preparation of 2-(piperazine-N-t-butoxycarbonyl)-5-amino pyridine / \ t-Boc-N N- -NH, N^
2-(Piperazine-N-t-butoxycarbonyl)-5-nitro pyridine (82 g, 0.266233 moles) was dissolved in 1:1 mixture of methanol and ethylacetate (1L). This solution was cooled to -5° to -10 °C. To this, 8.2 g of 10% palladium carbon was added and hydrogenated the reaction mixture at 45 °C, 60 psi for 3 hours. Filtered the reaction mixture through celite and washed the residue thoroughly with methanol. Concentrated the filtrate to dryness and dried under high vacuum to give the title compound (74 g).
Step (iii) Preparation of 2-(piperazine-N-t-butoxycarbonyl)-5-(benzyIoxycarbonyI) aminopyridine t-Boc-N N→ V-NHCBz Nf N^
To a solution of 2-(piperazine-N-t-butoxycarbonyl)-5-amino pyridine (70 g,
0.251798 moles) dissolved in acetone (700 ml), sodium bicarbonate (42.3 g, 0.503597 moles) dissolved in water (350 ml), was added and cooled to 0 °C.
Benzylchloroformate (85.8 g, 0.503597 moles) was added to the reaction mixture at 0 °C dropwise. After complete addition, the reaction mixture was kept at room temperature for 12 hours. Acetone was removed from the reaction mixture and diluted further with ethylacetate (2L). Washed the ethylacetate layer with water and brine solution. Dried over anhydrous sodium sulphate and concentrated to dryness. The crude compound was crystallized using ethylacetate and hexane to yield the title compound (67.4 g, yield 65 %).
Step (iv) Preparation of (<S)-N-3-[2-[4-(N-t-butoxycarbonyl)piperazin-l-yI]pyridin- 5-yl]-2-oxooxazoIidin-5-yImethanol
Figure imgf000031_0001
A solution of 2-(piperazine-N-t-butoxycarbonyl)-5-(benzyloxycarbonyl) aminopyridine (30 g, 0.0728155 moles) dissolved in dry tetrahydrofuran (600 ml) was cooled to -78 °C. To this n-butyl lithium (23.3 g, 0.3640776 moles, 15% solution in hexane) was added at -78 °C dropwise with out raising the temperature. After complete addition, continued the stirring at —78 °C for 1 hour. Then, (R)-glycidylbutyrate (15.73 g, 0.1092232 moles) was added to the reaction mixture at -78 °C and kept the reaction mixture at -78 °C -> 0 °C -^ RT for 16 hours. Quenched the RM by adding ammonium chloride solution followed by water. The RM was extracted with ethyl acetate (3 x 500 ml), dried over anhydrous sodium sulphate and concentrated to dryness and purified over silica gel, using DCM and methanol as eluent. The pure compound was eluted in 1 to 2% methanol / DCM, to obtained the title compound (16.5 g, yield 60%). Step (v)
Preparation of (S)-N-[3-[2-[4-(N-t-butoxycarbonyl)piperazin-l-yl]pyridin-
5-yl] -2-oxooxazolidin-5-ylmethyI] mesylate
Figure imgf000032_0001
To a solution of (S)-N-3-[2-[4-(N-t-butoxycarbonyl)piperazin-l-yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethanol (10 g, 0.026455 moles) dissolved in DCM (100 ml) cooled to 0 °C, friethylamine (5.66 g, 0.0560846 moles) was added. To this reaction mixture methane sulphonylchloride (5.36 g, 0.046825 moles) was added at 0 °C. The reaction mixture was stirred for 3 hours at room temperature. Diluted the reaction mixture with ethyl acetate (IL) and the ethylacetate layer was washed with sodium bicarbonate, water and brine solution. Dried over anhydrous sodium sulphate and concentrated to dryness to yield the title compound (12 g, yield 100%).
Step (vi)
Preparation of (S)-N-[3-[2-[4-(N-t-butoxycarbonyI)piperazin-l-yI]pyridin- 5-y 1] -2-oxooxazoIidin-5-yImethy I] azide
Figure imgf000032_0002
To a solution of (S)-N-[3-[2-[4-(N-t-butoxycarbonyl)piperazin-l-yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethyl]mesylate (25 g, 0.0548245 moles) dissolved in DMF (300 ml), sodium azide (14.25 g, 0.21929 moles) was added. The reaction mixture was heated at 85-90 °C for 4 hours. Cooled the reaction mixture to RT and water (200 ml) was added and extracted the reaction mixture with ethyl acetate (3 x 300 ml). The ethyl acetate layer was washed with water and brine solution. Dried over anhydrous sodium sulphate and concentrated the solution and dried the mass under high vacuum to give the title compound (22 g, yield 100 %).
Step (vi!) Synthesis of (S)-N-[3-[2-[4-(N-t-butoxycarbonyl)piperazin-l-yl]pyridin-5- yl] -2-oxooxazolidin~5-ylmethy 1] amine
Figure imgf000033_0001
(S)-N-[3-[2-[4-(N-t-butoxycarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]azide (17 g, 0.04218 moles) was taken in methanol (200 ml) and 10% palladium-carbon (1.7 g) was added under N2 atmosphere. Hydrogenated the reaction mixture using par hydrogenation apparatus at 40 °C under 80 psi pressure for 6 hours. Filtered the RM through celite and washed the residue thoroughly with methanol. The filtrate was concentrated to dryness and washed with hexane. Dried the compound under high vacuum to give the title compound (11 g, yield 70%).
Preparation 2
Synthesis of (S)-N-[3-[2-[4-(N-t-butoxycarbonyl)piperazin-l-yl]pyridin-5- yl] -2-oxooxazolidin-5-ylmethyl] acetamide
Figure imgf000033_0002
(S)-N-[3-[2-[4-(N-t-Butoxycarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]amine (5.8 g, 0.0153846 moles) was dissolved in dry DCM (50 ml) and cooled to 0 °C. To this solution pyridine (1.82 g, 0.0230769 moles) and acetic anhydride (6.27 g, 0.06153846 moles) was added at 0 °C. Allowed the RM to stir at RT for 4 hours and poured the RM over ice and extracted with DCM (3 x 100 ml). Washed the organic layer with sodium bicarbonate, water and brine solution. Dried over anhydrous sodium sulphate, and concentrated to dryness. Purified the crude material on silica gel using DCM and CH3OH as eluent to yield the title compound (4.6 g, yield 72%).
Preparation 3
Synthesis of (S)-N-[3-[2-[4-(N-t-butoxycarbonyl)piperazin-l-yI]pyridin-5- yI]-2-oxooxazoIidin-5-ylmethyI]isothiocyanate
Figure imgf000034_0001
(S)-N-[3-[2-[4-(N-t-Butoxycarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]amine (8 g, 0.02122 moles) was dissolved in dry DCM (40 ml) and cooled to 0 °C. Triethyl amine (7.5 g, 0.074271 moles ) was added to the RM at 0 °C. Thiophosgene (2.9 g, 0.0254641 moles) was added to the RM at 0 °C. Stirred the RM at room temperature for 3 hours. Removed the solvent from the reaction mixture over Buchi rotary evaporator and dissolved the mass in ethyl acetate (500 ml). Washed the ethyl acetate layer with sodium bicarbonate, water and brine solution. Dried over anhydrous sodium sulphate and concentrated to dryness. Dried the compound under high vacuum, to give the title compound (8 g, yield 90%).
Preparation 4
Synthesis of (5 -N-[3-[2-[4-(N-t-butoxycarbonyl)piperazin-l-yl]pyridin-5- yl]-2-oxooxazolidin-5-yImethyl]thiocarbamate
Figure imgf000035_0001
A solution of (S)-N-[3-[2-[4-(TSr-t-butoxycarbonyl)piperazin-l-yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethyl]isothiocyanate (8 g, 0.019093 moles) dissolved in methanol (80 ml) was heated to reflux temperature for 6 hours. After completion of the reaction, the solvent was removed and purified the RM over silica gel column using hexane and ethylacetate mixture as eluent to yield the title compound (5.2 g, yield 60%).
Preparation 5 Synthesis of (S)-N-[3-[2-[4-(N-t-butoxycarbonyl)piperazin-l-yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethyl]-N'-methyl thiourea
Figure imgf000035_0002
(S)-N-[3-[2-[4-(N-t-Butoxycarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]isothiocyanate (5 g, 0.011933 moles) was dissolved in dry THF (50 ml). To this solution triethylamine (0.6 g, 0.005966 moles) and methyl amine hydrochloride (1.2 g, 0.017899 moles) were added at room temperature and heated the reaction mixture to reflux temperature for 2 hours. The reaction mixture was cooled to room temperature and diluted with ethylacetate. Washed the ethyl acetate layer with water and brine solution. Dried over anhydrous sodium sulphate and concentrated to dryness. Purified the crude material over silica gel using hexane and ethylacetate mixture as eluent to yield the title compound (3.6 g, yield 68%). Preparation 6
Synthesis of (S)-N-[3-[2-(piperazin-l-yl)pyridin-5-yI]-2-oxooxazolidin-5- ylmethyl] acetamide
Figure imgf000036_0001
(S)-N-[3-[2-[4-(N-t-Butoxycarbonyl)piperazin- 1 -yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide (0.6 g, 0.00143 moles) (obtained according to the procedure given in preparation 2) was taken in dry DCM (10 ml) and cooled to 0 °C. Trifluoroacetic acid (0.978 g, 0.00858 moles) was added to the reaction mixture and stirred the RM at room temperature for 3 hours. Excess sodium bicarbonate was added to the RM and stirred for 15 minutes. Filtered the solid and washed thoroughly with ethyl acetate. The filtrate was concentrated to dryness and dried under vacuum to afford the title compound (0.45 g, yield 100%).
Preparation 7
Synthesis of (S)-N- [3- [2-(piperazin-l-yl)pyridin-5-yI] -2-oxooxazolidin-5- ylmethyl]thiocarbamate
Figure imgf000036_0002
The title compound (1.55 g, yield 100%) was prepared from (S)-N-[3-[2-[4- (N-t-butoxycarbonyl)piperazin- 1 -yl]pyridin-5-yl]-2-oxooxazolidin-5- ylmethyljthiocarbamate (2 g, 0.004434 moles) (obtained according to the procedure given in preparation 4) and trifluoro acetic acid (3.032 g, 0.026604 moles) by following the procedure described in preparation 6. Preparation 8
Synthesis of (S)-N-[3-[2-(piperazin-l-yl)pyridin-5-yl]-2-oxooxazolidin-5- ylmethyl]-N'-methyl thiourea
Figure imgf000037_0001
The title compound (1.55 g, yield 100%) was prepared from (S)-N-[3-[2-[4- (N-t-butoxycarbonyl)piperazin-l-yl]pyridin-5-yl]-2-oxooxazolidin-5- ylmethyl]-N' -methyl thiourea (2 g, 0.004444 moles) (obtained according to the procedure given in preparation 5) and trifluoroacetic acid (3.0399 g, 0.02666 moles) by following the procedure described in preparation 6.
Example 1
Synthesis of (S)-N-[3-[2-[4-(N-5-nitrofuran-2-ylcarbonyI)piperazin-l- yl] py ridin-5-y 1] -2-oxooxazolidin-5-y lmethyl] thiocarb amate
Figure imgf000037_0002
To a solution of (S)-N-[3-[2-(piperazin-l-yl)pyridin-5-yl]-2-oxooxazolidin-5- ylmethyl]thiocarbamate (300 mg, 0.0008547 moles) (obtained from preparation 7) in dry THF (10 ml), 5-nitro-furan-2-carbonylchloride [which was prepared by reacting 5-nitro-2-furoic acid (201 mg, 0.001282 moles) with thionylchloride (5 ml) and triethylamine (388 mg, 0.003846 moles)] was added at 0 °C and stirred at room temperature for 4 hours. The reaction mixture was diluted with ethyl acetate and washed with sodium bicarbonate solution, water and brine. Dried over anhydrous sodium sulphate, concentrated 005 0
37 to dryness and purified the residue over silica gel column using dichloromethane and methanol mixture as eluent to afford the title compound (167 mg, yield 40%), mp : 148-149 °C. 1HNMR (CDC13) δ : 3.66 (s, 4H), 3.84-3.86 (t, 4H), 3.88 (s, 3H), 3.95-3.97 (t, IH), 3.99-4.01 (m, 2H), 4.07-4.09 (t, IH), 4.93 (bs, IH), 6.71-6.73 (d, IH), 7.23-7.25 (t, IH), 7.37-7.38 (d, IH), 7.93-7.95 (d, IH), 7.97-7.98 (bs, IH), 8.15 (s, IH). Mass (M++l) : 491 The following compounds were prepared according to the procedure given in example 1.
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Example 28 Synthesis of (5)-N-[3-[2-[4-(N-5-nitrofuran-2-ylthiocarbonyl)piperazin-l- yϊ]pyridin-5-yl]-2-oxooxazoIidin-5-ylmethyI]thiocarbamate
Figure imgf000048_0001
To a solution of (^-N-[3-[2-[4-(N-5-nifrofuran-2-ylcarbonyl)piperazin-l- yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate obtained from example 1 (100 mg, 0.00020408 moles) in dry toluene (10 ml), Lawessons reagent (90 mg, 0.0002244 mole) was added and heated the contents at 100 °C for 3 hours. The reaction mixture was diluted with ethyl acetate and washed with water and brine solution. Dried over anhydrous sodium sulphate, concentrated to dryness and purified over silica gel using a mixture of chloroform and methanol mixture as eluent to afford the title compound (61 mg, yield 60%). 1HNMR (CDC13) δ : 3.78 (bs, 4H), 3.84-3.88 (t, 4H), 4.01 (s, 3H), 4.07-4.09 (t, 2H), 4.12-4.14 (s, IH), 4.41-4.42 (t, IH), 4.93-4.94 (m, IH), 6.65 (bs, IH, D2O exchangeable), 6.70-6.72 (d, IH), 7.20-7.21 (t, IH), 7.33-7.34 (d, IH), 7.96-7.97 (d, lH), 8.15 (s, IH). Mass (M++l) : 507 The following compounds were prepared according to the procedure given in example 28.
Figure imgf000048_0002
Figure imgf000049_0001
Figure imgf000050_0001
Antimicrobial Testing The compounds of invention showed in vitro antibacterial activity when tested by the Agar Dilution Method as specified in documents published by the National Committee for Clinical Laboratory Standards (NCCLS), USA. Briefly, the compounds of invention were weighed, dissolved in Dimethyl Sulfoxide, serially diluted in the same solvent and then incorporated into molten Mueller Hinton Agar in a petridish before solidification, with each petridish containing a different concentration of a compound. The Bacterial Inoculum was prepared by touching the tops of 3 to 5 well isolated bacterial colonies with the same morphological appearance from an 18 hour old culture with an inoculating loop, transferring the growth to a tube containing 5ml of normal saline and adjusting the turbidity of the saline suspension to 0.5 Macfarland Turbidity Standard equivalent to a bacterial population of 1.5 x 108 colony forming units (CFU) per milliliter of suspension. The bacterial inoculum prepared in the above manner was inoculated onto petri dishes containing Mueller Hinton Agar which had earlier been incorporated with different dilutions of the compounds of invention by a
Multipoint Inoculator with each inoculum spot containing approximately 1 x 104 colony forming units (CFU) of bacteria. The inoculated pefridishes were incubated at 35°Celsius in an ambient atmosphere for 20 hours. Pefridishes containing different concentrations of
Nancomycin and Oxacillin and inoculated with Staphylococcus aureus,
Coagulase Negative Staphylococci and Enterococci were incubated for 24 hours. The petridishes after incubation, were placed on a dark non reflecting surface and the Minimum Inhibitory Concentration (MIC) recorded as the concentration which showed no growth of the inoculated culture. The minimum inhibitory concentrations (μg/ml) were obtained for representative compounds of the invention are given in the table 1 :
S. aureus - Staphylococus aureus Ent. Faecalis - Enterococcus faecalis E. faecium - Enterococcus faecium ATCC — American Type Culture Collection MRO - Microbial Resource Orchid
Table 1
Figure imgf000052_0001
Figure imgf000052_0002
Table 1 (Contd.)
t
Figure imgf000053_0001
Table 1 (Contd.)
Figure imgf000054_0001
Table 1 (Contd.)
KJ
Figure imgf000055_0001

Claims

We claim :
1. A compound of formula (I)
Figure imgf000056_0001
their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable salts, wherein X and Y represent oxygen or sulfur; R1 represents halogen, azido, nitro, cyano, substituted or unsubstituted group selected from TR , wherein T represents O or S; R7 represents hydrogen, formyl, substituted or unsubstituted groups selected from (C1-C6)alkyl, cycloalkyl, aryl, aralkyl, acyl, thioacyl, heterocyclyl, heteroaryl, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl; or R1 / S h Rα SI. represents N(R R ) where R and R may be same or different and independently represent hydrogen, formyl, substituted or unsubstituted groups selected from (CrC6)alkyl, aryl, aralkyl, heteroaryl, heteroaralkyl or an aminoacid residue which is attached through acid moiety; or R8a and R8b together with nitrogen may represent a mono or bicyclic saturated or unsaturated ring system which may contain one or more heteroatoms selected from O, S or N; or R1 represents the formula -NHC(=Z)R9 wherein Z represents O or S, R9 is hydrogen, substituted or unsubstituted groups selected from (Cι-C6)alkyl, ( -C^alkoxy, aryl, (C3-C6)cycloalkyl, amino, heteroaryl, heterocyclyl, heteroaralkyl, or R9 represents N(R10Rn), wherein R10 and R11 may be same or different and represent hydrogen, substituted or unsubstituted groups selected from alkyl, cycloalkyl, aryl, alkylcarbonyl, arylcarbonyl, cycloalkylcarbonyl, heteroaryl, heteroarylcarbonyl and the like; or R1 is of the formula -NHS(O)r(CrC4)alkyl, -NHS(O)raralkyl or -NHS(O)rheteroaralkyl, where r is 0 to 2; A and B are different and represent CH or N; R2 and R3 may be same or different and independently represent hydrogen, halogen, hydroxy, alkyl, alkoxy; n is an integer of 0 or 1; m is an integer in the range of 1 to 4; D represents CH or N; E represents CH or N; R4 and R5 may be same or different and independently represent hydrogen, cyano, nitro, amino, halogen, hydroxyl, substituted or unsubstituted groups selected from ( -Cg^lkyl, haloalkyl, (CrC6)alkoxy, ( -C^alkylthio, (C3-C6)cycloalkyl or either of R4 or R5 represent an oxo or thiooxo group; p is an integer of 1; R6 represents a substituted or unsubstituted groups selected from aryl, cycloalkyl, aralkyl, heteroaryl, heteroaralkyl, heteroaralkenyl, heterocyclyl, heterocycloalkyl, heterocycloalkenyl.
2. The compound as heteroaryl group represented by R6 are substituted or unsubstituted phenyl, naphthyl, phenylmethyl, phenylethyl, naphthylmethyl, naphthylethyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, thienyl, pyridyl, thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, isooxazolyl, oxadiazolyl, pyrazolyl, triazolyl, thiadiazolyl, tetrazolyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzopyranyl, indolyl, indolinyl, benzimidazolyl, benzoxazolyl, benzopyrazolyl, benzothiazolyl, benzofuranyl, benzoxadiazolyl, benzothiadiazolyl, benzodioxolyl, quinolinyl, dihydroquinolinyl, tetrahydroquinolinyl, isoquinolinyl, dihydroisoquinolinyl, tetrahydroisoquinolinyl, quinazolinyl, quinoxalinyl, pyrrolidinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, oxazolidinyl, piperidinyl, piperazinyl, heteroaralkyl, heterocycloalkyl, hetero(C2-C6)aralkenyl, heterocyclo(C2- C6)alkenyl.
3. A compound of formula (I) as claimed in claim 1, which is selected
(S)-N-[3-[2-[4-(N-5-Nitrofuran-2-ylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3 - [2- [4-(N-5-Nitrofuran-2-ylthiocarbonyl)piperazin- 1 -yl]pyridin-5 -yl] - 2-oxooxazolidin-5-ylmethyl]thiocarbamate ; (S)-N-[3-[2-[4-(N-5-Nifrofuran-2-ylcarbonyl)piρerazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-(N-5-Nifrofuran-2-ylthiocarbonyl)piperazin-l-yl]pyridin-5-yl]-
2-oxooxazolidin-5-ylmethyl]thioacetamide ; (S)-N-[3-[2-[4-(N-furan-2-ylcarbonyl)piperazin- 1 -yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-furan-2-ylthiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-fiιran-2-ylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-(^-furan-2-ylthiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thioacetamide ; (S)-N-[3-[2-[4-(N-5-Nitropyrazol-2-ylthiocarbonyl)piperazin-l-yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethyl]thioacetamide ; (S)-N-[3-[2-[4-(N-5-Nitropyrazol-2-ylthiocarbonyl)piperazin- 1 -yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-(N-5-Nifropyrazol-2-ylthiocarbonyl)piperazin-l-yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ;
(5)-N-[3-[2-[4-(N-5-Nitropyrazol-2-ylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-pyrazine-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-(N-pyrazine-2-yl-thiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ; (S)-N-[3-[2-[4-(N-pyrazine-2-yl-carbonyl)piperazin- 1 -yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(»S)-N-[3-[2-[4-(N-pyrazine-2-yl-thiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ; (S)-N-[3-[2-[4-(N-5-methylpyrazm-2-yl-carbonyl)piperazin-l-yl]pyridin-5- yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ;
( )-N-[3-[2-[4-(N-5-methylpyrazin-2-yl-thiocarbonyl)piperazin-l-yl]pyridin-
5-yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ; (S)-N-[3-[2-[4-(N-pyrazine-2-yl-carbonyl)piperazin- 1 -yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thioacetamide ;
(S)-N-[3-[2-[4-(N-pyrazine-2-yl-thiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thioacetamide ;
(^-N-[3-[2-[4-(N-l-methylpyrrolyl-2-yl-carbonyl)piperazin-l-yl]pyridin-5- yl] -2-oxooxazolidin-5 -ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-pyrrolyl-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-thien-2-yl-thiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ; (S)-N-[3-[2-[4-(N-furan-2-yl-propenoyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
(5)-N-[3-[2-[4-(N-furan-2-yl-propenoyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl] thiocarbamate ;
(S)-N-[3-[2-[4-(^-5-fluoroindol-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-(N-piperidin- 1 -yl-carbonyl)piperazin- 1 -yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(4-(4-acetylphenyl- 1 -yl)piperazin- l-yl-carbonyl)piρerazin- 1 - yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ; (S)-N-[3-[2-[4-(4-(piperidin- 1 -yl)piperidin- 1 -yl-carbonyl)piperazin- 1 - yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(4-(4-nitrophenyl- 1 -yl)furan-2-yl-carbonyl)piperazin- 1 - yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]acetamide ; (S)-N-[3-[2-[4-(cyclopropylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(cyclopropylthiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ; (S)-N-[3-[2-[4-(cyclopropylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
N' -methyl thiourea ;
(S)-N-[3 -[2-[4-(cyclopropylcarbonyl)piperazin- 1 -yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]-N'-methyl thiourea ; (S)-N-[3-[2-[4-(cyclopropylthiocarbonyl)piperazin- 1 -yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-(cyclopropylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thioacetamide ;
(S)-N-[3-[2-[4-(cyclopropylthiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thioacetamide ;
(S)-N-[3-[2-[4-(N-pyrrolidin-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-( -pyrrolidin-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ; (S)-N-[3-[2-[4-(N-thiazolidin-2-yl-carbonyl)piperazin- 1 -yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate and
(S)-N-[3-[2-[4-(N-quinoxalin-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate.
(S)-N-[3-[2-[4-(N-5-nitrofuran-2-ylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]-(N'-4-cyanophenyl)thiourea ;
(S)-N-[3-[2-[4-(N-Cyclopropyl-2-ylcarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]-(N'-methyl-N'-cyclopropanecarboxamide) thiourea ; (S)-N-[3-[2-[4-(4-(pyridin-2-yl)piperazin- 1 -yl-carbonyl)piperazin- 1 - yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]acetamide ;
(S)-N-[3-[2-[4-(4-(pyridin-2-yl)piperazin-l-yl-thiocarbonyl)piperazin-l- yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]thioacetamide ; (S)-N-[3-[2-[4-(4-(pyridin-2-yl)piperazin- 1 -yl-carbonyl)piperazin- 1 - yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(4-(pyridin-2-yl)piperazin-l-yl-thiocarbonyl)piperazin-l- yl]pyridin-5-yl]-2-oxooxazolidin-5-ylmethyl]thiocarbamate ;
(S)-N-[3-[2-[4-(N-imidazol-2-yl-carbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]acetamide ;
(5)-N-[3-[2-[4-(N-imidazol-2-yl-thiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thioacetamide ;
(S)-N- [3 - [2- [4-(N-imidazol-2-yl-carbonyl)piperazin- 1 -yl]pyridin-5-yl] -2- oxooxazolidin-5-ylmethyl]thiocarbamate and (5)-N-[3-[2-[4-(N-imidazol-2-yl-thiocarbonyl)piperazin-l-yl]pyridin-5-yl]-2- oxooxazolidin-5-ylmethyl]thiocarbamate ;
4. The compound as claimed in claim 3, wherein the salt is selected from hydrochloride or hydrobromide.
5. A process for the preparation of compound of the formula (I)
Figure imgf000061_0001
their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable salts, wherein X and Y represent oxygen or sulfur; R1 represents halogen, azido, nitro, cyano, substituted or unsubstituted group selected from TR7, wherein T represents O or S; R7 represents hydrogen, formyl, substituted or unsubstituted groups selected from (CrC6)alkyl, cycloalkyl, aryl, aralkyl, acyl, thioacyl, heterocyclyl, heteroaryl, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl; or R1 represents N(R8aR8b) where R8a and R8b may be same or different and independently represent hydrogen, formyl, substituted or unsubstituted groups selected from (CrC6)alkyl, aryl, aralkyl, heteroaryl, heteroaralkyl or an aminoacid residue which is attached through acid moiety; or R8a and R8b together with nitrogen may represent a mono or bicyclic saturated or unsaturated ring system which may contain one or more heteroatoms selected from O, S or N; or R1 represents the formula -NHC(=Z)R9 wherein Z represents O or S, R9 is hydrogen, substituted or unsubstituted groups selected from ( -C^alkyl, (CrC6)alkoxy, aryl, (C -C6)cycloalkyl, amino, heteroaryl, heterocyclyl, heteroaralkyl, or R9 represents N(R10Rπ), wherein R10 and R11 may be same or different and represent hydrogen, substituted or unsubstituted groups selected from alkyl, cycloalkyl, aryl, alkylcarbonyl, arylcarbonyl, cycloalkylcarbonyl, heteroaryl, heteroarylcarbonyl and the like; or R1 is of the formula -NHS(O)r(C C4)alkyl, -NHS(O)raralkyl or -NHS(O)rheteroaralkyl, where r is 0 to 2; A and B are different and represent CH or N; R2 and R3 may be same or different and independently represent hydrogen, halogen, hydroxy, alkyl, alkoxy; n is an integer of 0 or 1; m is an integer in the range of 1 to 4; D represents CH or N; E represents CH or N; R4 and R5 may be same or different and independently represent hydrogen, cyano, nitro, amino, halogen, hydroxyl, substituted or unsubstituted groups selected from (CrC6)alkyl, haloalkyl, (C1-C6)alkoxy, (CrC6)alkylthio, (C3-C6)cycloalkyl or either of R4 or R5 represent an oxo or thiooxo group; p is an integer of 1; R6 represents a substituted or unsubstituted groups selected from aryl, cycloalkyl, aralkyl, heteroaryl, heteroarallcyl, heteroaralkenyl, heterocyclyl, heterocycloalkyl, heterocycloalkenyl, which comprises (i) converting the compound of formula (III)
Figure imgf000063_0001
where P represents protecting and all other symbols are as defined earlier to produce a compound of formula (IN)
Figure imgf000063_0002
where L represents a leaving group and all other symbols are as defined earlier, ii) converting the compound of formula (IN) to produce a compound of formula (N)
Figure imgf000063_0003
where all s) nbols are as defined earlier, iii) reducing the compound of formula (V) to a compound of formula (NI)
Figure imgf000063_0004
where all symbols are as defined earlier, iv) acylating the compound of formula (VI) to produce a compound of formula (Nil)
Figure imgf000063_0005
where all symbols are as defined earlier, v) deprotecting the compound of formula (Nil) to produce a compound formula (NIII),
Figure imgf000064_0001
where all symbols are as defined earlier, vi) reacting the compound of formula (NIII) with a compound of formula
R6— (C(=Y))p- X) wherein L is a leaving group and all other symbols are as defined earlier to produce a compound of formula (I).
6. A process for the preparation of compound of the formula (I)
Figure imgf000064_0002
their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable salts, wherein X and Y represent oxygen or sulfur; R1 represents — ΝHC(=Z)R9 wherein Z represents O or S, R9 is hydrogen, substituted or unsubstituted groups selected from ( - C6)alkyl, (C C6)alkoxy, aryl, (C3-C6)cycloalkyl, amino, heteroaryl, heterocyclyl, heteroaralkyl, or R9 represents N(R10Rπ), wherein R10 and R11 may be same or different and represent hydrogen, substituted or unsubstituted groups selected from alkyl, cycloalkyl, aryl, alkylcarbonyl, arylcarbonyl, cycloalkylcarbonyl, heteroaryl, heteroarylcarbonyl and the like; A and B are different and represent CH or N; R and R may be same or different and independently represent hydrogen, halogen, hydroxy, alkyl, alkoxy; n is an integer of 0 or 1; m is an integer in the range of 1 to 4; D represents CH or N; E represents CH or N; R and R5 may be same or different and independently represent hydrogen, cyano, nitro, amino, halogen, hydroxyl, substituted or unsubstituted groups selected from (C1-C6)alkyl, haloalkyl, (CrC6)alkoxy,
(Cι-C6)alkylthio, (C3-C6)cycloalkyl or either of R4 or R5 represent an oxo or thiooxo group; p is an integer of 1; R6 represents a substituted or unsubstituted groups selected from aryl, cycloalkyl, aralkyl, heteroaryl, heteroaralkyl, heteroaralkenyl, heterocyclyl, heterocycloalkyl, heterocycloalkenyl, which comprises, i) converting the compound of formula (NI)
Figure imgf000065_0001
to produce a compound of formula (X)
Figure imgf000065_0002
where all symbols are as defined earlier, ii) converting the compound of formula (X) to produce a compound of formula (Nil)
Figure imgf000065_0003
where R is as defined above and all other symbols are as defined earlier and iii) deprotecting the compound of formula (Nil) to produce a compound formula (NIII),
Figure imgf000065_0004
where all symbols are as defined earlier and iv) reacting the compound of formula (NIII) with a compound of formula
R6-(C(=Y))p-L (IX) wherein all symbols are as defined earlier and L is a leaving group to produce a compound of formula (I), where R1 represents - ΝHC(=Z)R9.
7. A process for the preparation of compound of the formula (I)
Figure imgf000066_0001
their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable salts, wherein X and Y represent oxygen or sulfur; R1 represents halogen, azido, nitro, cyano, substituted or unsubstituted group selected from TR7, wherein T represents O or S; R7 represents hydrogen, formyl, substituted or unsubstituted groups selected from (CrC6)alkyl, cycloalkyl, aryl, aralkyl, acyl, thioacyl, heterocyclyl, heteroaryl, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl; or R1 represents N(R aR8b) where R8a and R may be same or different and independently represent hydrogen, formyl, substituted or unsubstituted groups selected from
Figure imgf000066_0002
aryl, aralkyl, heteroaryl, heteroaralkyl or an aminoacid residue which is attached through acid moiety; or R8a and R8 together with nitrogen may represent a mono or bicyclic saturated or unsaturated ring system which may contain one or more heteroatoms selected from O, S or N; A and B are different and represent CH or N; R2 and R3 may be same or different and independently represent hydrogen, halogen, hydroxy, alkyl, alkoxy; n is an integer of 0 or 1; m is an integer in the range of 1 to 4; D represents CH or N; E represents CH or N; R4 and R5 may be same or different and independently represent hydrogen, cyano, nitro, amino, halogen, hydroxyl, substituted or unsubstituted groups selected from (C]-C6)alkyl, haloalkyl, (C C6)alkoxy, (C C6)alkylthio, (C3-C6)cycloalkyl or either of R4or R5 represent an oxo or thiooxo group; p is an integer of 1; R6 represents a substituted or unsubstituted groups selected from aryl, cycloalkyl, aralkyl, heteroaryl, heteroaralkyl, heteroaralkenyl, heterocyclyl, heterocycloalkyl, heterocycloalkenyl, which comprises reacting the compound of formula (XI)
Figure imgf000067_0001
where L1 represents a leaving group such as mesylate, tosylate or triflate with R7YH or NH(R8aR8b) where all symbols are as defined earlier.
8. A process for the preparation of compound of the formula (I)
Figure imgf000067_0002
their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymoφhs, their pharmaceutically acceptable salts, wherein X and Y represent oxygen or sulfur; R1 represents -NHS(O)r(CrC4)alkyl, -
NHS(O)rar alkyl or -NHS(O)rheteroaralkyl, where r is 0 to 2; A and B are different and represent CH or N; R2 and R3 may be same or different and independently represent hydrogen, halogen, hydroxy, alkyl, alkoxy; n is an integer of 0 or 1; m is an integer in the range of 1 to 4; D represents CH or N; E represents CH or N; R4 and R5 may be same or different and independently represent hydrogen, cyano, nitro, amino, halogen, hydroxyl, substituted or unsubstituted groups selected from (C C6)alkyl, haloalkyl, (C C6)alkoxy, (Cι-Cg)alkylthio, (C3-C6)cycloalkyl or either of R4 or R5 represent an oxo or thiooxo group; p is an integer of 1; R represents a substituted or unsubstituted groups selected from aryl, cycloalkyl, aralkyl, heteroaryl, heteroaralkyl, heteroaralkenyl, heterocyclyl, heterocycloalkyl, heterocycloalkenyl, which comprises reacting the compound of formula (XII)
Figure imgf000068_0001
where all symbols are as defined earlier which represents compounds of formula (I), R1 represents N(R8aR8b) where R8a and R8b represent hydrogen, with R'SO2Cl where R' represents (CrC4)alkyl, aralkyl or heteroaralkyl group.
9. A process for the preparation of compound of the formula (I)
Figure imgf000068_0002
their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable salts, wherein X and Y represent oxygen or sulfur; R1 represents the formula -NHC(=Z)R9 wherein Z represents S, R is hydrogen, substituted or unsubstituted groups selected from (CrC6)alkyl,
Figure imgf000068_0003
aryl, (C3-C6)cycloalkyl, amino, heteroaryl, heterocyclyl, heteroaralkyl, or R9 represents N(R10Rπ), wherein R10 and R11 may be same or different and represent hydrogen, substituted or unsubstituted groups selected from alkyl, cycloalkyl, aryl, alkylcarbonyl, arylcarbonyl, cycloalkylcarbonyl, heteroaryl, heteroarylcarbonyl and the like; A and B are different and represent CH or N; R2 and R3 may be same or different and independently represent hydrogen, halogen, hydroxy, alkyl, alkoxy; n is an integer of 0 or 1; m is an integer in the range of 1 to 4; D represents CH or N; E represents CH or N; R4 and R5 may be same or different and independently represent hydrogen, cyano, nitro, amino, halogen, hydroxyl, substituted or unsubstituted groups selected from (C C6)alkyl, haloalkyl, (CrC6)alkoxy, (C C6)alkylthio, (C3-C6)cycloalkyl or either of R4 or R5 represent an oxo or thiooxo group; p is an integer of 1; R6 represents a substituted or unsubstituted groups selected from aryl, cycloalkyl, aralkyl, heteroaryl, heteroaralkyl, heteroaralkenyl, heterocyclyl, heterocycloalkyl, heterocycloalkenyl, which comprises, which comprises reacting the compound of formula (XIII)
Figure imgf000069_0001
where all symbols are as defined earlier which represents compound of formula (I) where R1 represents azido with thioacetic acid to produce compound of formula (I) as defined above.
10. A process for the preparation of compound of the formula (I)
Figure imgf000069_0002
where R1 represents the formula - NHC(=Z)R9; where Z is O, R9 and all other symbols are as defined in claim 1 to compounds of formula (I) where R1 represents the formula - NHC(=Z)R9; where Z is S, R9 and all other symbols are as defined in claim 1.
11. A process for the preparation of compound of the formula (III)
Figure imgf000069_0003
their derivatives, their analogs, their tautomeric forms, their stereoisomers, their polymorphs, their pharmaceutically acceptable salts, wherein P represents protecting group, X represents oxygen or sulfur; Y represents O or S; A and B are different and represent CH or N; R2 and R3 may be same or different and independently represent hydrogen, halogen, hydroxy, alkyl, alkoxy; n is an integer of 0 or 1; m is an integer in the range of 1 to 4; D represents CH or N; E represents CH or N; R and R may be same or different and independently represent hydrogen, cyano, nitro, amino, halogen, hydroxyl, substituted or unsubstituted groups selected from ( -C^alkyl, haloalkyl, ( -C^alkoxy, ( -C^alkylthio, (C3-C6)cycloalkyl or either of R4 or R5 represent an oxo or thiooxo group; which comprises : i) reacting the compound of formula (Ilia)
Figure imgf000070_0001
where X represents halogen atom and all other symbols are as defined earlier, with compound of formula (Illb)
Figure imgf000070_0002
where P represents protecting group and all other symbols are as defined earlier, to produce compound of formula (IIIc) (Hlc)
Figure imgf000070_0003
ii) reducing the compound of formula (IIIc) to produce a compound of formula (Hid)
Figure imgf000070_0004
wherein all symbols are as defined earlier, iii) converting the compound of formula (Hid) to produce compound of formula (Ille)
Figure imgf000071_0001
where all symbols are as defined earlier, iv) cyclizing the compound of formula (Ille) with R-(-)-glycidyl butyrate to produce a compound of formula (III) where all symbols are as defined earlier.
12. A pharmaceutical composition, which comprises a compound of formula (I)
Figure imgf000071_0002
as defined in claim 1 and a pharmaceutically acceptable carrier, diluent, excipient or solvate.
13. A pharmaceutical composition as claimed in claim 12, in the form of a tablet, capsule, powder, syrup, solution, aerosol or suspension.
14. A method of treating or preventing an infectious disorder in a human or animal, comprising administering an effective amount of a compound of claim 1 to human or animal in need thereof.
15. A method as claimed in claim 14, wherein the infectious disorder is caused by bacteria.
16. A method of treating or preventing an infectious disorder in a human or animal, comprising administering an effective amount of a compound of claim 3 to human or animal in need thereof.
17. A method as claimed in claim 16, wherein the infectious disorder is caused by bacteria.
18. A method of treating or preventing an infectious disorder in a human or animal, comprising administering a composition as claimed in claim 12 to human or animal in need thereof.
19. A method as claimed in claim 18, wherein the infectious disorder is caused by bacteria.
PCT/IB2004/002131 2003-07-01 2004-06-28 Oxazole derivatives as antibacterial agents WO2005003087A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN539CH2003 2003-07-01
IN539/CHE/2003 2003-07-01

Publications (2)

Publication Number Publication Date
WO2005003087A2 true WO2005003087A2 (en) 2005-01-13
WO2005003087A3 WO2005003087A3 (en) 2005-03-17

Family

ID=33561911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2004/002131 WO2005003087A2 (en) 2003-07-01 2004-06-28 Oxazole derivatives as antibacterial agents

Country Status (1)

Country Link
WO (1) WO2005003087A2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969726B2 (en) * 2003-06-03 2005-11-29 Rib X Pharmaceuticals Inc Biaryl heterocyclic compounds and methods of making and using the same
WO2006034440A3 (en) * 2004-09-20 2006-08-10 Xenon Pharmaceuticals Inc Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors
US7129259B2 (en) 2003-12-17 2006-10-31 Rib-X Pharmaceuticals, Inc. Halogenated biaryl heterocyclic compounds and methods of making and using the same
WO2006130986A1 (en) * 2005-06-09 2006-12-14 Merck Frosst Canada Ltd. Azacyclohexane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase
WO2008029266A1 (en) * 2006-09-08 2008-03-13 Glenmark Pharmaceuticals S.A. Stearoyl coa desaturase inhibitors
WO2009084614A1 (en) * 2007-12-27 2009-07-09 Daiichi Sankyo Company, Limited Imidazole carbonyl compound
US7777036B2 (en) 2004-09-20 2010-08-17 Xenon Pharmaceuticals Inc. Heterocyclic derivatives and their use as therapeutic agents
US7829712B2 (en) 2004-09-20 2010-11-09 Xenon Pharmaceuticals Inc. Pyridazine derivatives for inhibiting human stearoyl-CoA-desaturase
US7919496B2 (en) 2004-09-20 2011-04-05 Xenon Pharmaceuticals Inc. Heterocyclic derivatives for the treatment of diseases mediated by stearoyl-CoA desaturase enzymes
US7951805B2 (en) 2004-09-20 2011-05-31 Xenon Pharmaceuticals Inc. Heterocyclic derivatives and their use as mediators of stearoyl-CoA desaturase
US8026360B2 (en) 2004-09-20 2011-09-27 Xenon Pharmaceuticals Inc. Substituted pyridazines as stearoyl-CoA desaturase inhibitors
US8071603B2 (en) 2004-09-20 2011-12-06 Xenon Pharmaceuticals Inc. Heterocyclic derivatives and their use as stearoyl-CoA desaturase inhibitors
US8324398B2 (en) 2003-06-03 2012-12-04 Rib-X Pharmaceuticals, Inc. Process for the synthesis of biaryl oxazolidinones
US8399660B2 (en) 2005-06-08 2013-03-19 Rib-X Pharmaceuticals, Inc. Process for the synthesis of triazoles
US8541457B2 (en) 2005-06-03 2013-09-24 Xenon Pharmaceuticals Inc. Aminothiazole derivatives as human stearoyl-CoA desaturase inhibitors
US8841306B2 (en) 2008-11-20 2014-09-23 Panacea Biotec Ltd. Antimicrobials
US8906913B2 (en) 2009-06-26 2014-12-09 Panacea Biotec Limited Azabicyclohexanes
WO2018170664A1 (en) * 2017-03-20 2018-09-27 Merck Sharp & Dohme Corp. Oxazolidinone compounds and methods of use thereof as antibacterial agents

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000021960A1 (en) * 1998-10-09 2000-04-20 Astrazeneca Ab Heterocyclyl amino methyloxa zolidinones as antibacterials
WO2002006278A1 (en) * 2000-07-17 2002-01-24 Ranbaxy Laboratories Limited Oxazolidinone derivatives as antimicrobials
WO2004009587A1 (en) * 2002-07-22 2004-01-29 Orchid Chemicals & Pharmaceuticals Ltd Oxazolidinone derivatives as antibacterial agents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000021960A1 (en) * 1998-10-09 2000-04-20 Astrazeneca Ab Heterocyclyl amino methyloxa zolidinones as antibacterials
WO2002006278A1 (en) * 2000-07-17 2002-01-24 Ranbaxy Laboratories Limited Oxazolidinone derivatives as antimicrobials
WO2004009587A1 (en) * 2002-07-22 2004-01-29 Orchid Chemicals & Pharmaceuticals Ltd Oxazolidinone derivatives as antibacterial agents

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705026B2 (en) 2003-06-03 2010-04-27 Rib-X Pharmaceuticals, Inc. Biaryl heterocyclic compounds and methods of making and using the same
US8324398B2 (en) 2003-06-03 2012-12-04 Rib-X Pharmaceuticals, Inc. Process for the synthesis of biaryl oxazolidinones
US6969726B2 (en) * 2003-06-03 2005-11-29 Rib X Pharmaceuticals Inc Biaryl heterocyclic compounds and methods of making and using the same
US7148219B2 (en) 2003-06-03 2006-12-12 Rib-X Pharmaceuticals, Inc. Biaryl heterocyclic compounds and methods of making and using the same
US9550783B2 (en) 2003-06-03 2017-01-24 Melinta Therapeutics, Inc. Biaryl heterocyclic compounds and methods of making and using the same
US8895741B2 (en) 2003-06-03 2014-11-25 Melinta Therapeutics, Inc. Process for the synthesis of biaryl oxazolidinones
US7456206B2 (en) 2003-06-03 2008-11-25 Rib-X Pharmaceuticals, Inc. Biaryl heterocyclic compounds and methods of making and using the same
US7129259B2 (en) 2003-12-17 2006-10-31 Rib-X Pharmaceuticals, Inc. Halogenated biaryl heterocyclic compounds and methods of making and using the same
WO2006034440A3 (en) * 2004-09-20 2006-08-10 Xenon Pharmaceuticals Inc Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors
US7829712B2 (en) 2004-09-20 2010-11-09 Xenon Pharmaceuticals Inc. Pyridazine derivatives for inhibiting human stearoyl-CoA-desaturase
US7777036B2 (en) 2004-09-20 2010-08-17 Xenon Pharmaceuticals Inc. Heterocyclic derivatives and their use as therapeutic agents
EP2266569A2 (en) 2004-09-20 2010-12-29 Xenon Pharmaceuticals Inc. Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors
EP2266569A3 (en) * 2004-09-20 2011-03-09 Xenon Pharmaceuticals Inc. Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors
US7919496B2 (en) 2004-09-20 2011-04-05 Xenon Pharmaceuticals Inc. Heterocyclic derivatives for the treatment of diseases mediated by stearoyl-CoA desaturase enzymes
US7951805B2 (en) 2004-09-20 2011-05-31 Xenon Pharmaceuticals Inc. Heterocyclic derivatives and their use as mediators of stearoyl-CoA desaturase
US8026360B2 (en) 2004-09-20 2011-09-27 Xenon Pharmaceuticals Inc. Substituted pyridazines as stearoyl-CoA desaturase inhibitors
US8071603B2 (en) 2004-09-20 2011-12-06 Xenon Pharmaceuticals Inc. Heterocyclic derivatives and their use as stearoyl-CoA desaturase inhibitors
US7767677B2 (en) 2004-09-20 2010-08-03 Xenon Pharmaceuticals Inc. Heterocyclic derivatives and their use as stearoyl-CoA desaturase inhibitors
US8541457B2 (en) 2005-06-03 2013-09-24 Xenon Pharmaceuticals Inc. Aminothiazole derivatives as human stearoyl-CoA desaturase inhibitors
US8796465B2 (en) 2005-06-08 2014-08-05 Melinta Therapeutics, Inc. Process for the syntheses of triazoles
US8399660B2 (en) 2005-06-08 2013-03-19 Rib-X Pharmaceuticals, Inc. Process for the synthesis of triazoles
US9376400B2 (en) 2005-06-08 2016-06-28 Melinta Therapeutics, Inc. Process for the synthesis of triazoles
WO2006130986A1 (en) * 2005-06-09 2006-12-14 Merck Frosst Canada Ltd. Azacyclohexane derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase
WO2008029266A1 (en) * 2006-09-08 2008-03-13 Glenmark Pharmaceuticals S.A. Stearoyl coa desaturase inhibitors
WO2009084614A1 (en) * 2007-12-27 2009-07-09 Daiichi Sankyo Company, Limited Imidazole carbonyl compound
JP2014196369A (en) * 2007-12-27 2014-10-16 第一三共株式会社 Imidazolecarbonyl compound
US8841306B2 (en) 2008-11-20 2014-09-23 Panacea Biotec Ltd. Antimicrobials
US8906913B2 (en) 2009-06-26 2014-12-09 Panacea Biotec Limited Azabicyclohexanes
WO2018170664A1 (en) * 2017-03-20 2018-09-27 Merck Sharp & Dohme Corp. Oxazolidinone compounds and methods of use thereof as antibacterial agents
US10752621B2 (en) 2017-03-20 2020-08-25 Merck Sharp & Dohme Corp. Oxazolidinone compounds and methods of use thereof as antibacterial agents

Also Published As

Publication number Publication date
WO2005003087A3 (en) 2005-03-17

Similar Documents

Publication Publication Date Title
WO2005003087A2 (en) Oxazole derivatives as antibacterial agents
AU687866B2 (en) Substituted oxazine and thiazine oxazolidinone antimicrobials
WO2004009587A1 (en) Oxazolidinone derivatives as antibacterial agents
US20030065175A1 (en) Novel heterocyclic compounds having antibacterial activity: process for their preparation and pharmaceutical compositions containing them
US7217726B2 (en) Antibacterial agents
SK572004A3 (en) New derivatives of oxazolidinones as antibacterial agents
US6281210B1 (en) Benzoic acid esters of oxazolidinones having a hydroxyacetylpiperazine substituent
EP1181288B1 (en) Bicyclic oxazolidinones as antibacterial agent
WO2003106454A1 (en) 1h-isoquinoline-oxazolidinone derivaties and their use as antibacterial agents
WO2003093247A2 (en) Antibacterial agents
WO2009001192A2 (en) Novel compounds and their use
WO2007004037A1 (en) Oxazolidinone carboxamides containing azetidine and cyclobutane as antibacterial agents
EP1615916A1 (en) Antimicrobial 3.1.0 bicyclohexylphenyl-oxazolidinone derivatives and analogues
US20070167414A1 (en) Novel antibacterial agents
US20040102494A1 (en) Novel heterocyclic compounds having antibacterial activity: process for their preparation and pharmaceutical compositions containing them
WO2004101552A1 (en) Oxazolidinone derivatives as antibacterial agents
WO2003097640A1 (en) Oxazolidinone derivatives as antibacterial agents
WO2004113329A1 (en) Oxazole derivatives as antibacterial agents
WO2007004049A1 (en) Oxazolidinones containing azetidine as antibacterial agents
WO2005090339A1 (en) New antibacterial agents
US20090221655A1 (en) Antibacterial agents
US20100234390A1 (en) Novel compound and their use
WO2007004032A1 (en) Oxazolidiones containing cyclobutane as antibacterial agents
WO2008010070A2 (en) Novel oxazolidinone derivatives
AU2002226669A1 (en) Heterocyclic compounds having antibacterial activity, process for their preparation and pharmaceutical compositions containing them

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase