WO2004113998A1 - Optical modulating device - Google Patents

Optical modulating device Download PDF

Info

Publication number
WO2004113998A1
WO2004113998A1 PCT/JP2004/008762 JP2004008762W WO2004113998A1 WO 2004113998 A1 WO2004113998 A1 WO 2004113998A1 JP 2004008762 W JP2004008762 W JP 2004008762W WO 2004113998 A1 WO2004113998 A1 WO 2004113998A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
wavelength
modulator
intensity
Prior art date
Application number
PCT/JP2004/008762
Other languages
French (fr)
Japanese (ja)
Inventor
Masamichi Fujiwara
Junichi Kani
Koji Akimoto
Katsumi Iwatsuki
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to EP04746231A priority Critical patent/EP1635211B1/en
Priority to US10/534,310 priority patent/US7336414B2/en
Priority to JP2005505047A priority patent/JP3850866B2/en
Publication of WO2004113998A1 publication Critical patent/WO2004113998A1/en
Priority to US11/674,576 priority patent/US7474460B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2587Arrangements specific to fibre transmission using a single light source for multiple stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/297Bidirectional amplification
    • H04B10/2971A single amplifier for both directions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/258Distortion or dispersion compensation treating each wavelength or wavelength band separately

Definitions

  • the present invention relates to an optical modulation device used for optical communication, and more particularly to a technique for configuring an optical modulation device configured by combining an optical amplifier such as a semiconductor optical amplifier and an optical intensity modulator.
  • Fig. 1 shows the configuration of a conventional optical modulation circuit.
  • the multi-wavelength light generated from the multi-wavelength light source 101 is wavelength-demultiplexed by the wavelength demultiplexer 103, and then modulated by the respective light intensity modulators 105. It is multiplexed again by 7.
  • the configuration shown in FI G.1 requires two wavelength multiplexers / demultiplexers 103 and 107 with the same absolute value of the transmission center wavelength.
  • An optical modulator comprising a multiplexer / demultiplexer 207, one or a plurality of optical intensity modulators 209, and reflecting mirrors 211 corresponding to the number of optical intensity modulators has been proposed. (See Japanese Patent Application Laid-Open No. 2002-318184).
  • the optical modulation device shown in FIG. 2 input from the input port 203 of the optical input means 201 is performed.
  • the input multi-wavelength light passes through the input / output port 205, is wavelength-demultiplexed by the wavelength demultiplexer 207, is modulated by each light intensity modulator 209, is reflected by the light reflector 211, and is Then, the optical signal is returned to the optical path, is again multiplexed by the wavelength multiplexer 207, and is output from the output port 213 of the input / output means 201.
  • this device configuration since it can be configured with only one wavelength multiplexer / demultiplexer 207, the transmission center wavelength of the wavelength multiplexer / demultiplexer can be easily adjusted, and the device cost can be reduced.
  • the optical power of each wavelength decreases due to the loss of the used optical device such as a wavelength multiplexer / demultiplexer.
  • the loss of the optical fiber transmission line connecting them cannot be ignored. Since a decrease in the power of the WDM signal causes a deterioration in the signal-to-noise ratio (SNR), an optical amplifier such as that shown in 109 of FIG. 1 or 215 of FIG. 2 is used. Need to amplify the power.
  • SNR signal-to-noise ratio
  • FI G.1 and FI G.2 disclose an example of amplifying WDM signal signals collectively by using a wideband optical amplifier that covers the entire wavelength range of multi-wavelength light ( JP-A-2003-18853).
  • a polarization independent optical amplifier that amplifies the light intensity without depending on the polarization of the wavelength-multiplexed modulated light is used.
  • an optical fiber amplifier such as an erbium (Er) -doped fiber amplifier (EDFA) is generally used.
  • EDFAs are optical amplifiers that add erbium ions, Er 3+, to the core of a silica glass optical fiber, and use the stimulated emission of the ions at their unique transitions to amplify the light traveling through the optical fiber.
  • SOA Semkonducior Optical Amplifier
  • An SOA is an optical amplifier that amplifies light traveling through an active layer in a semiconductor by stimulated emission by reducing the end face of the resonator of a semiconductor laser.
  • Each of the above optical amplifiers has a wide gain band of 30 nm or more, but the carrier lifetime at the excitation level differs greatly.
  • the carrier lifetime is m because the gain spread is formed by transitions from multiple discrete excited energy levels. It is as long as s (milliseconds), and the gain spread is not uniform.
  • SOA has a short carrier lifetime of the order of ns (nanoseconds) and can be regarded as having a uniform gain spread.
  • the optical amplifier is operated in a gain saturation region to obtain a high output.
  • an optical fiber amplifier such as an EDFA is generally used as described above.
  • SOA that pumps the semiconductor by injection current, semiconductor laser that outputs pump light, additive optical fiber doped with erbium, etc., and coupler that couples pump light to additive optical fiber. Comparing with EDFA, it can be said that SOA is quite economical in terms of parts count. In particular, SOA is more suitable for amplifying one signal wavelength.
  • ⁇ SOA can be used as a modulator by changing the injection current according to the modulation signal.
  • EA modulator Electro Absorption modulator
  • FIG. 3 shows an example of a configuration of a conventional light modulator that can be used for the light intensity modulator 105 shown in FIG.
  • the device of Conventional Example 1 uses SOA as a modulator
  • the light modulation device 303 is illustrated in a case where the light modulation device 303 is located at a position distant from the light source. Both ends of the SOA modulator 306 are coupled to an input transmission line 301 for inputting an optical signal and an output transmission line 309 for outputting an optical signal.
  • these input / output transmission lines include various optical devices such as optical filters, optical power brass, optical connectors, splices (spUce), and the like, and are not shown in this figure.
  • a wavelength multiplexing / demultiplexing device is inserted between the input / output transmission line 301 and the SOA modulator 306, and these components are all reflection points. Since these reflection points are present at both ends of the optical amplifier section of the SOA, an optical resonator is formed by these reflection points and the SOA, and as a result, the operation of the SOA becomes unstable. It may be possible. In order to prevent this inconvenience, as shown in FIG. 3, optical isolators 305 and 306 that transmit only light in a single direction are inserted at both ends of the SOA. (Conventional example 2)
  • FIG. 4 shows a configuration example of a conventional optical modulation device applied to the optical modulation circuit of FIG. 2 as Conventional Example 2.
  • FIG. 4 shows the configuration of two types of optical modulators 405 and 407.
  • One type of optical modulator 405 amplifies the optical power of continuous light demultiplexed by the wavelength multiplexer / demultiplexer 403 in the bidirectional optical amplifier 409, and outputs the amplified power to the optical intensity modulator 411. After inputting and modulating the intensity with the overnight signal to produce modulated light, the light is reflected by the light reflector 413 and passed again through the light intensity modulator 411 and the bidirectional optical amplifier 409. It is.
  • optical modulator 407 amplifies the optical power of continuous light demultiplexed by the wavelength multiplexer / demultiplexer 403 in the bidirectional optical amplifier 415, and forms an optical circuit. Is input to an optical loop made by using the optical loop, and the optical intensity modulator 419 arranged in the optical loop modulates the intensity with a data signal to produce modulated light. After that, the light passes through the bidirectional optical amplifier 415 again.
  • the light reflector 413 may be a separate product from the light intensity modulator 411, or may be attached to the end face of the light intensity modulator 411. It may be of an integrated configuration.
  • the bidirectional amplifiers 409 and 415 used in the configuration of FI G. 4 provide amplification of one wavelength.
  • SO A is appropriate because it can be done.
  • SOA is used as the bidirectional optical amplifiers 409 and 15
  • competition for gain between continuous light and modulated light in a gain saturation region causes signal degradation. That is, continuous light is modulated by the signal pattern of the modulated light inside the optical amplifiers 409 and 415.
  • the sum of the output power (or the sum of the input power) from the bidirectional optical amplifiers 409 and 15 for continuous light and modulated light is less than a certain output power (or input power). In this case, it is desirable to use it in the unsaturated region where the gain is kept constant.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical modulator including an optical amplifier connected in multiple stages or an optical modulator including the optical amplifier as a bidirectional optical amplifier. It is an object of the present invention to provide an economical optical modulator which achieves a stable amplification function by reducing the influence of reflected light by a device specification design and device configuration in consideration of the influence of reflection passing through the inside of the device.
  • a first aspect of the present invention relates to a bidirectional optical amplifier for a reflection type optical modulator including a bidirectional optical amplifier and a multi-wavelength collective optical modulator combining a plurality of such optical modulators.
  • a polarization rotation unit is inserted into a reflection-type optical modulator including a bidirectional optical amplifier and a multi-wavelength collective optical modulator in which a plurality of such optical modulators are combined.
  • the third aspect of the present invention is to reduce the influence of reflected light by inserting an optical isolator for every other transmission type optical modulator including a semiconductor optical amplifier (SOA) connected in multiple stages. And at the same time achieve a stable amplification function and cost reduction.
  • SOA semiconductor optical amplifier
  • FIG. 1 is a block diagram showing a configuration of a conventional light modulation circuit.
  • FIG. 2 is a block diagram showing a configuration of a conventional reflection type optical modulator.
  • FIG. 3 is a block diagram showing a configuration of a conventional optical modulation device using a semiconductor optical amplifier.
  • FIG. 4 is a block diagram showing a configuration of a conventional optical modulation device using a bidirectional optical amplifier.
  • FIG. 5 is a graph illustrating an unsaturated region of the semiconductor optical amplifier.
  • FIG. 6 is a block diagram showing a configuration conceivable as an optical modulator that realizes high gain amplification by connecting semiconductor optical amplifiers in multiple stages.
  • FIG. 7 is a conceptual diagram showing a state of reflected light when a plurality of semiconductor optical amplifiers are connected in multiple stages.
  • FIG. 8 is a conceptual diagram illustrating the reflected light of the semiconductor optical amplifier.
  • FIG. 9 is a conceptual diagram showing the appearance of reflected light when two semiconductor optical amplifiers are connected in multiple stages.
  • FIG. 10 illustrates the ratio of reflected light to signal light in FIG.
  • 11A-11C are block diagrams each showing a configuration of the optical modulation device according to the first embodiment of the present invention.
  • FIGS. 12A to 12C are block diagrams each showing a configuration of an optical modulation device according to the second embodiment of the present invention.
  • FIG. 13 is a graph illustrating characteristics of the optical modulation device according to the third embodiment of the present invention.
  • FIG. 14 is a block diagram showing a configuration of an optical modulation device according to a fourth embodiment of the present invention.
  • FIG. 15 is a schematic diagram for explaining the direction of the plane of polarization in the fourth embodiment of the present invention.
  • FIG. 16 is a block diagram showing a configuration of an optical modulation device according to a fifth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the influence of the reflected light is increased by inserting an optical isolator for every other transmission type optical modulation device including a semiconductor optical amplifier (SOA) connected in multiple stages.
  • SOA semiconductor optical amplifier
  • FIG. 7 is a diagram illustrating reflected light when a plurality of SOAs are connected in multiple stages.
  • one of the SOAs used in order to function as an optical modulator, one of the SOAs used must be used as an optical intensity modulator or an external modulator needs to be inserted.
  • all SOAs will simply function as optical amplifiers.
  • S n are connected in series by n + 1 optical paths (x 1; x 2 ,..., X n + 1 ) including input and output, and the input and output are
  • the side transmission path 301 and the output side transmission path 309 are connected.
  • the input / output transmission paths 301 and 309 are reflection points.
  • SOA SOA (S ,, S 2 ,..., Si,..., Sn ) has reflection ends at both ends of the element itself, the SOA itself becomes a reflection point.
  • FIG. 8 is a diagram illustrating reflected light of SOA.
  • 3_Rei eighth gain 8 I end face the reflectivity r
  • the reflected light power of the SOA is gi 2 r
  • the end face reflectivity is doubled. This reflection can occur in both directions for each SOA.
  • FI G. 7 the reflection in the same direction as the traveling direction of the signal light
  • Re f (0) and ref (n + 1) are the input-side transmission line reflection and the output-side transmission line reflection, respectively, and the other reflections Re f (i) and ref (i) are the semiconductor light Represents the bidirectional reflection of the amplifier S;
  • Re f (0), Re f (1), and Re f (2) reflect in the same direction as the signal light travels, and re re (1), ref (2), and ref (3) reflect in the opposite direction.
  • Re f (0) and ref (3) are the input-side transmission path reflection and the output-side transmission path reflection, respectively, and are referred to as Re f (1), ref (1), and Re f (2) They are each a reflection of semiconductor optical amplifiers S and S 2.
  • reflection is a problem because reflection in the direction opposite to the traveling direction of the signal light (first reflection) is followed by reflection in the same direction (second reflection), which interferes with the signal light. This is because the signal light power becomes unstable.
  • first reflection reflection in the direction opposite to the traveling direction of the signal light
  • second reflection reflection in the same direction
  • the signal light power becomes unstable.
  • FI G. 9 since the gain of SOA is included, the reflected light is amplified by the gain, and the influence becomes larger.
  • the ratio of the twice reflected light to the signal light is the square of the reflectance at the reflection point.
  • ref (i) is followed by ref (i-2) or ref (i-1)
  • the ratio of the twice reflected light to the signal light is For the order of the square of the reflectivity of a point, it increases by the square of the gain of the passing SOA.
  • n SOAs are connected in multiple stages, Ref (i—2) and Ref (i—3) following ref (i) ), ..., the reflection of Re f (0) is the ratio of the reflection of Re f (i-1) following ref (i).
  • the reflection of Re f (i— 1) following re ⁇ (i) is allowed, and the following Re f (i -2), Re f (i-3),. to prevent reflection of 0), the light path (X ⁇ 2, ⁇ ⁇ , X ;, ⁇ , may be ⁇ the evening light isolator in every respect x n + 1).
  • FIGS. 11A-11C are diagrams illustrating the configuration of the optical modulation device according to the first embodiment of the present invention in which optical isolators are inserted every other optical path as described above.
  • ⁇ it 0 2 is an optical isolator.
  • 1st optical isolator 0 ⁇ input side transmission line and the first SOA Si between said first optical path: is inserted into, the second optical isolator and the second th SOA S 2 and the third It is ⁇ the third optical path x 3 between th SOA S 3.
  • the present embodiment is characterized in that an optical isolator is inserted every other optical path.
  • MOD light intensity modulator
  • the above arrangement relationship between the optical isolator and the light intensity modulator is the same when the number n of S ⁇ A is 2 or when the number n is 4 or more.
  • FIGS. 12A to 12C are diagrams illustrating the configuration of an optical modulation device according to a second embodiment of the present invention. This embodiment corresponds to a modification of the first embodiment, the three constituting the optical amplifier SO AS 1; S 2, S insert the optical intensity modulator M during any arbitrary 3 I do.
  • optical isolator ⁇ _P ⁇ 2 is not ⁇ is inserted constituting the optical intensity modulator M.
  • the first and second S OA S x an example is shown of inserting the optical intensity modulator M in the optical path (optical connecting means) x 2 second between S 2, the third SOA S third and fourth in the optical path x 4 optical intensity modulator M may be ⁇ between the output terminal.
  • the continuous light output from the first S OA S E, second SOA 3 2 twice reflected light of the continuous light at the first 3_Rei eight S E interferes By this time, the light intensity modulator M receives two intensity modulations. Therefore, the ratio of the twice reflected light to the signal light is relatively smaller than the case where the light intensity modulator M is not inserted.
  • FI G. 12 B shows the configuration of inserting the optical intensity modulator M in section optical isolator ⁇ 2 is inserted.
  • the optical intensity modulator M may be inserted in the first optical path.
  • FIG-s. As shown in 12 B- 12 C, the order of connection of the optical isolator evening 0 2 and the optical intensity modulator M is optional.
  • an electro-absorption type light intensity modulator (EA modulator) can be used.
  • EA modulator electro-absorption type light intensity modulator
  • the modulation operation at G (bps) or more is difficult because the SOA is used as the light intensity modulator.
  • Modulation operation up to about 40G (bps) can be supported.
  • the optical modulation device has a device configuration having a bidirectional optical amplifier as shown in FIG. 4 described above, by limiting the numerical value of the gain of the amplifier as described later.
  • This is an apparatus capable of reducing the influence of reflected light on the end face of a bidirectional optical amplifier and achieving a stable amplification function.
  • the numerical limitation of the amplifier gain according to the present invention will be described.
  • reflected light 1 is the modulated light and the other reflected light 2 is the same as the continuous light. Proceed to.
  • This continuous light is intensity-modulated to become modulated light, and the reflected light 2 follows the same path as the continuous light, so that the modulated light is eventually given reflected light 1 and reflected light 2.
  • the modulated light interferes with the same polarization direction components of the reflected light 1 and the reflected light 2, and intensity fluctuation occurs as beat noise.
  • a method for quantitatively showing the influence of the reflected light 1 and the reflected light 2 on the modulated light will be described.
  • the mark ratio of the transmitted signal is 1Z2. (If marks or spaces are continuous in the data signal sequence, it is difficult to extract a cook signal when receiving the signal. Therefore, usually, a scramble in SDH (synchronous digital hierarchy) is used. ), 8G-10B (bel) conversion in gigabit ether, etc., to make the mark ratio almost 1 Z2.)
  • the mark ratio of the transmitted signal is 1 to 2
  • the mark level power of the modulated light output from the optical modulator and the mark level power of the reflected light 2 are 2 g 2 x and 4 g 2 , respectively. x 2 r '.
  • the probability that the modulated light and the reflected light 2 become a mark at the same time is 1Z2, so that the influence of the reflected light 2 is reduced by half. Therefore, the power ratio between the modulated light and the totally reflected light at the time of the modulated light mark is:
  • Equation (2) takes the maximum value at 2 g (3). That is, at this time, the influence of the reflected light can be minimized.
  • the mark-side optical electric field of the modulated light is E Q exp [(a ⁇ + A)], and the mark-side optical electric field of the reflected light 1 is
  • the first term is the modulated light itself, and the second and subsequent terms are noise.
  • the first to sixth terms are the modulated light power, the beat of modulated light and reflected light 1 and the beat of modulated light and reflected light 2 when the modulated light and reflected light are all on the mark side, respectively. (Interference), reflected light 1 power, reflected light 2 power, and the beat (interference) between reflected light 1 and reflected light 2.
  • the fourth and sixth terms can be ignored because the reflected light is smaller than the modulated light.
  • the following is defined as the normalized beat noise part, taking into account the effects of the second and third terms.
  • Beat noise in the case where a plurality of reflection points are involved can be treated as a Gaussian distribution indicating a value represented by equation (7) as a variance. Conversely, if the number of reflection points is small, the beat noise will be overestimated.
  • the reflected light 1 and the reflected light 2 from both end faces of the bidirectional optical amplifiers 409 and 415 are considered as the reflected light.
  • the bidirectional optical amplifiers 409 and 4 In addition to the reflection at the end surface of Fig. 15, there are also input / output end reflections of various optical devices inserted into the system and reflections from optical connectors, and the reflected light from these reflection points is also a bidirectional optical amplifier.
  • the effect cannot be neglected depending on their reflectivity.
  • the end face reflectivity r used in the discussion so far is regarded as the sum of the reflectivities from the reflection points other than the end face reflection, the variance value given by Equation (7) is used. It can be said that the estimation of the effect of the reflected light is appropriate.
  • bidirectional optical amplification When only the reflection from both end faces of the detectors 409 and 415 is dominant, the above estimation may be regarded as the worst design.
  • FIG. 13 shows a calculation result using the above equation (8).
  • the abscissa indicates the modulation unit loss (L) [dB]
  • the ordinate indicates the Q value [dB] on the left and the optical modulator gain [dB] on the right.
  • the optical modulator gain is 2 G— (L-3.0) [dB], which does not consider the 3 dB modulation loss in the modulators (optical intensity modulators) 411 and 419, and the 3 dB modulation loss. Both 2G-L [dB] to be considered are illustrated.
  • the Q value here is the signal-to-noise ratio (SNR) of the modulated light proposed in IEEE Photon. Techno 1. Lett. Vol. 5, no.3, pp. 304-306. ) Is an evaluation parameter that defines
  • the continuous optical power input to the optical modulators 405 and 407 is 6 dBm
  • the bidirectional optical amplifier gain G 10 [dB]
  • the bidirectional optical amplifier noise figure is 7 dB
  • the bidirectional optical amplifier The overall reflectivity was set to 22 dB, and modulated light was received by direct photoelectric conversion without receiving the optical preamplifier.
  • the modulation factor loss L l l. 5 [dB]
  • the Q value takes the maximum value
  • the curve representing the value is symmetric about the value.
  • the ranges of ( ⁇ ), ( ⁇ ), (r)> ( ⁇ ) are as follows, respectively.
  • Area (6) is as described above.
  • the upper limit of L in the regions (H) and ( ⁇ ) indicates that the optical modulation gain is 0 [dB] or more. Further, the value of the modulation section loss L is inevitably determined because the Q value curve is symmetrical as described above.
  • the modulation unit loss L can be adjusted to reflect light with respect to the modulated light while maintaining the gain in an arbitrary range (for example, ( ⁇ ), (a), (6)) between the regions of ( ⁇ ).
  • the light ratio can be kept low.
  • FIG. 14 shows a configuration of an optical modulator according to a fourth embodiment of the present invention.
  • the optical modulator of this embodiment reduces the influence of the reflected light on the end face of the bidirectional optical amplifier by introducing the polarization rotation means, and realizes a stable amplification function.
  • this device consists of a polarization separator 501 that separates the input multi-wavelength light and the output modulated light by different polarization planes, and demultiplexes the multi-wavelength light for each predetermined wavelength.
  • Wavelength multiplexer / demultiplexer 502 a bidirectional optical amplifier 503 that bidirectionally amplifies the power of each demultiplexed single-wavelength light, and a polarization device that bidirectionally rotates the polarization plane of the single-wavelength light.
  • Wave rotating means 504 an optical intensity modulator 505 for bidirectionally modulating the intensity of the single-wavelength light, and a modulated single-wavelength light output from the optical intensity modulator 505 again for a bidirectional optical amplifier.
  • a polarization beam splitter (PBS: Polarization Beam Splitter), which is generally used, may be used as the polarization splitter 501.
  • the output light may be converted into an optical beam or an optical beam.
  • the output may be output from the wavelength multiplexer / demultiplexer 502 via a hologram, and only light having a 90-degree polarization shift from the input light may be extracted using a polarizer.
  • an AWG can be used as the wavelength multiplexer / demultiplexer 502 as the wavelength multiplexer / demultiplexer 502.
  • AWG In the AWG, light incident from a certain input waveguide is output from a different output waveguide according to the wavelength.
  • the AWG is reversible and can combine light of multiple wavelengths into one output waveguide.
  • S ⁇ A can be used as the bidirectional optical amplifier 503.
  • SOA is an optical amplifier that amplifies light that travels through an active layer in a semiconductor by stimulated emission by reducing the end face of the cavity of the semiconductor laser.
  • an optical fiber amplifier such as an erbium-doped fiber amplifier (EDFA) can be considered.
  • EDFA erbium-doped fiber amplifier
  • a polarization rotation means 504 is disposed between the bidirectional optical amplifier 503 and the light intensity modulator 505.
  • the polarization rotation means 504 includes a 1/4 wavelength plate.
  • a Faraday element or the like can be applied.
  • a Faraday mirror in which a reflecting mirror is attached to one output end of the Faraday element may be used.
  • the light intensity modulator 505 for example, a Mach-Zehnder type light intensity modulator, an electro-absorption type light intensity modulator (EA modulator) or the like can be applied, and has a function of modulating the intensity of a single wavelength light with a data signal.
  • EA modulator electro-absorption type light intensity modulator
  • intensity modulation by a modulation signal of the order of 40 G (bps) is possible at a practical level.
  • the light reflector 507 for example, a mirror coated with a metal film, a mirror coated with a dielectric multilayer film, or the like can be used.
  • a diffraction grating for a specific wavelength
  • a fiber Bragg grating for a specific wavelength
  • an optical reflector for a specific wavelength
  • an optical reflector in which a diffraction grating (grating) is directly written in an optical waveguide may be used.
  • One output port of the polarization splitter 501 is optically connected to the input waveguide of the wavelength multiplexer / demultiplexer 502 by a spatial optical system or an optical waveguide.
  • the output waveguide of the wavelength multiplexer / demultiplexer 502 is optically connected to one port of the bidirectional optical amplifier 503 by a spatial optical system or an optical waveguide, respectively.
  • the other port of the bidirectional optical amplifier 503 is optically connected to one port of the polarization rotation means 504 by a spatial optical system or an optical waveguide.
  • the other port of the polarization rotation means 504 is Similarly, it is optically connected to one port of the light intensity modulator 505 by a spatial optical system or an optical waveguide.
  • the other port of the light intensity modulator 505 is also optically connected to the light reflector 507 by a spatial optical system or an optical waveguide.
  • the input of the light intensity modulator 505 and the output of the modulated light are separated by the polarization separator 501, but a 1Z4 wave plate is used as the polarization rotation means 504, for example.
  • the angles of the polarization planes of the input light and the output light are shifted by 90 degrees, so if only a specific polarization of the output light is cut out by the polarization separator 501, the input light and the output light will be different. Can be separated.
  • the multi-wavelength light input from the input waveguide of the wavelength multiplexer / demultiplexer 502 is demultiplexed for each wavelength by the wavelength multiplexer / demultiplexer 502, and one demultiplexed single wavelength light is
  • the corresponding one-way bidirectional optical amplifier 503 is led to amplify its power.
  • the sum of the output power (horizontal axis) from the bidirectional optical amplifier 503 for continuous light and modulated light (or the sum of the input power) is equal to a certain output power (or input power). Power
  • the continuous light (single-wavelength light) whose power has been amplified in each bidirectional optical amplifier 503 is input to the corresponding polarization rotation means 504.
  • the continuous light has its polarization plane rotated by 45 degrees and is input to the light intensity modulator 505, where it is modulated by a modulation signal (data signal). The intensity is modulated.
  • the modulated single-wavelength light is output from the light reflector side port of the light intensity modulator 505, and is input to the light reflector 507.
  • the modulated light reflected by the light reflector 507 passes through the light intensity modulator 505 again, and is input to the polarization rotation means 504.
  • the polarization direction of the modulated light is further rotated by 45 degrees in the polarization rotation means 504, input to the bidirectional optical amplifier 503, and the optical power is amplified again by the bidirectional optical amplifier 503. . Since the output modulated light of the bidirectional optical amplifier 503 has a polarization plane shifted by 90 degrees from the input light, the input light and the output light can be separated by the polarization splitter 501. . Accordingly, the output modulated light output from the bidirectional optical amplifier 503 is multiplexed by the wavelength multiplexer / demultiplexer 502 and then output from the polarization splitter 501. Output to the outside of the device.
  • reflected light 1 and reflected light 2 there are two types of reflected light during bidirectional transmission (reflected light 1 and reflected light 2), and reflected light 1 is in the same direction as modulated light and reflected light 2 is in the same direction as continuous light. move on.
  • This continuous light is intensity-modulated to become modulated light, and the reflected light 2 follows the same path as the continuous light, so that the polarization planes of the reflected lights 1, 2, continuous light, and modulated light are in the same direction as in the conventional example.
  • the reflected light 1 and the reflected light 2 are given to the modulated light, and as a result, the modulated light interferes with the same polarization direction component of the reflected light 1 and the reflected light 2, and intensity fluctuation occurs as beat noise.
  • the polarization rotation means 504 as shown by an arrow surrounded by a circle representing the direction of the polarization plane in FIG.
  • the reflected light 1 and the reflected light 2 are orthogonal to the polarization direction of continuous light or modulated light traveling in the same direction. Since the reflected light 1 has a polarization direction orthogonal to that of the modulated light, it is separated at the output by the polarization splitter 501.
  • the reflected light 2 has a polarization direction orthogonal to the continuous light, and the polarization relationship is maintained even after the intensity is modulated and becomes modulated light. 0 Separated at 1. As a result, intensity fluctuations due to interference of both lights can be eliminated.
  • the output from the polarization rotation unit 504 is reflected by the optical reflector 507, and again the polarization rotation unit 504 to the route to come Modotsu, since the polarization plane of light is the same in both directions, as the light intensity modulator 5 0 5, a single input, such as L i N b O s Mahhatsuengu type optical intensity modulator It is possible to use an optical intensity modulator capable of modulating only the power polarization.
  • FIG. 16 shows the configuration of an optical modulator according to a fifth embodiment of the present invention.
  • the device according to the fifth embodiment has a single polarization only before or after the light intensity modulator 505 of the multi-wavelength collective optical modulator in the above-described fourth embodiment (inserted in this figure).
  • a polarizer 506 that can pass light is inserted.
  • Other configurations are the same as in the fourth embodiment. The detailed description is omitted.
  • the polarization extinction ratio between two orthogonal polarizations is significantly deteriorated.
  • the output from the polarization rotation means 504 is reflected by the optical reflector 507, and returns to the polarization rotation means 504 again on the path. Since the polarization plane of light is the same in both directions, the polarizer 506 can be inserted in the optical path. By introducing the polarizer 506, the deteriorated polarization extinction ratio can be recovered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A reflection optical modulator including a bidirectional optical amplifier, or a multi-wavelength simultaneous optical modulating device composed by combining reflection optical modulators. BY numerically limiting the relation between the gain of the bidirectional optical amplifier and the loss of the optical modulators or by inserting polarization rotating means, the influence of the light reflected at the ends of the bidirectional optical amplifier is lessened, and a stable amplifying function is realized. A transmission optical modulator including semiconductor optical amplifiers (SOAs) connected in multiple stages is also disclosed. Optical isolators are inserted every other SOAs. Thus, the influence of the reflected light is lessened, and a stable amplifying function and reduction of the cost are both realized.

Description

技術分野  Technical field
本発明は、 光通信に利用する光変調装置に関し、特に、 半導体光増幅器のような 光増幅器と光強度変調器とを組み明合わせて構成される光変調装置の構成技術に関 する。  The present invention relates to an optical modulation device used for optical communication, and more particularly to a technique for configuring an optical modulation device configured by combining an optical amplifier such as a semiconductor optical amplifier and an optical intensity modulator.
田 背景技術  Field background technology
従来から、 光短パルスレ一ザ、 あるいは振幅変調/位相変調により生成した複数 の光搬送波を含む多波長光を、 波長多重 (W D M : Wavelength Divis ion Mul t iplexing)信号伝送に用いる方式が検討されてきた。 このような多波長光は、 各サイドモードのスぺクトル間隔がすべて等しく、サイドモードを波長分離して得 られるチャネルはすべて等しい波長間隔になる。 従って、 このような多波長光は、 チャネルごとに個別のレーザを用意してチャネルごとに波長を設定する方法によ る多波長光よりも、 波長配置に関して簡便である。  Conventionally, a method has been studied in which an optical short pulse laser or multi-wavelength light including a plurality of optical carriers generated by amplitude modulation / phase modulation is used for wavelength division multiplexing (WDM) signal transmission. Was. In such multi-wavelength light, the spectral intervals of all the side modes are all equal, and the channels obtained by wavelength-separating the side modes all have the same wavelength interval. Therefore, such multi-wavelength light is simpler in terms of wavelength arrangement than multi-wavelength light in which individual lasers are prepared for each channel and the wavelength is set for each channel.
多波長光を用いた WD M信号伝送システムを実現する上で、光変調回路構成の簡 易化、 および経済化が重要な課題の一つである。 F I G. 1に、 従来の光変調回路 の構成を示す。多波長光源 1 0 1から発生した多波長光は、波長分波器 1 0 3によ り波長分波された後、各々の光強度変調器 1 0 5で変調され、波長合波器 1 0 7に より再度合波される。 F I G. 1に示す構成では、 透過中心波長の絶対値の等しい 2つの波長合分波器 1 0 3、 1 0 7が必要であることから、 F I G. 2に示すよう な、 1つの波長合分波器 2 0 7と、 1つあるいは複数の光強度変調器 2 0 9と、 こ の光強度変調器の個数に等しい反射鏡 2 1 1とで構成した光変調装置が提案され ている (特開 2 0 0 2— 3 1 8 3 7 4号公報参照)。  In realizing a WDM signal transmission system using multi-wavelength light, simplification of the optical modulation circuit configuration and economics are one of the important issues. Fig. 1 shows the configuration of a conventional optical modulation circuit. The multi-wavelength light generated from the multi-wavelength light source 101 is wavelength-demultiplexed by the wavelength demultiplexer 103, and then modulated by the respective light intensity modulators 105. It is multiplexed again by 7. The configuration shown in FI G.1 requires two wavelength multiplexers / demultiplexers 103 and 107 with the same absolute value of the transmission center wavelength. An optical modulator comprising a multiplexer / demultiplexer 207, one or a plurality of optical intensity modulators 209, and reflecting mirrors 211 corresponding to the number of optical intensity modulators has been proposed. (See Japanese Patent Application Laid-Open No. 2002-318184).
F I G. 2に示す光変調装置では、光入力手段 2 0 1の入力ポート 2 0 3から入 力した多波長光は、入出力ポート 205を通って波長分波器 207により波長分波 された後、 各々の光強度変調器 209で変調され、 光反射器 21 1で反射されて、 もとの光路を戻り、再び波長合波器 207により再度合波され、入出力手段 201 の出力ポート 213から出力される。 この装置構成によれば、 1つの波長合分波器 207だけで構成できるので、 波長合分波器の透過中心波長合わせが容易となり、 かつ装置コストの削減が可能となる。 In the optical modulation device shown in FIG. 2, input from the input port 203 of the optical input means 201 is performed. The input multi-wavelength light passes through the input / output port 205, is wavelength-demultiplexed by the wavelength demultiplexer 207, is modulated by each light intensity modulator 209, is reflected by the light reflector 211, and is Then, the optical signal is returned to the optical path, is again multiplexed by the wavelength multiplexer 207, and is output from the output port 213 of the input / output means 201. According to this device configuration, since it can be configured with only one wavelength multiplexer / demultiplexer 207, the transmission center wavelength of the wavelength multiplexer / demultiplexer can be easily adjusted, and the device cost can be reduced.
F I G. 1および F I G. 2のいずれにおいても、 各波長の光パワーは、 波長合 分波器などの使用される光デバイスの損失によって減少する。 また、多波長光源と 光変調器が物理的に離れた位置にあるシステムでは、その間を結合する光ファイバ 伝送路の損失が無視できなくなる。 WDM信号パワーの低下は、 信号対雑音比(S NR: Signal-to- Noise Ratio)の悪化を招くため、 F I G. 1の109、 あるいは F I G. 2の 215に示すような光増幅器を用いてパワーを増幅する必要がある。  In both FIG.1 and FIG.2, the optical power of each wavelength decreases due to the loss of the used optical device such as a wavelength multiplexer / demultiplexer. In a system in which the multi-wavelength light source and the optical modulator are physically separated from each other, the loss of the optical fiber transmission line connecting them cannot be ignored. Since a decrease in the power of the WDM signal causes a deterioration in the signal-to-noise ratio (SNR), an optical amplifier such as that shown in 109 of FIG. 1 or 215 of FIG. 2 is used. Need to amplify the power.
F I G. 1および F I G. 2には、 多波長光の波長域をすベてカバ一する広帯域 の光増幅器を用いて、 WDM信号パヮ一を一括して増幅する例が開示されている (特開 2003— 18853号公報参照)。 この例では、 波長多重された変調光の 偏波に依存せずに、 その光強度を増幅する偏波無依存光増幅器が用いられている。 このような光増幅器には、 エルビウム(E r)添加光ファイバ増幅器(EDFA : Erbium Doped Fiber Ampl i fier)などの光ファイバ増幅器が用いられるのが一般的 である。 EDFAは、 石英ガラス光ファイバのコア部分にエルビウムイオン E r3+ を添加することにより、そのイオンの固有な遷移での誘導放出を用いて、光フアイ バ内を進行する光を増幅させる光増幅器である。一方、光通信に用いられる光増 Φ; 器として、 半導体光増幅器(SOA : Semkonducior Optical Amplifier)が開発さ れている。 SOAは、 半導体レ一ザの共振器端面を低反射化することにより、 半導 体内の活性層を進行する光を誘導放出により増幅させる光増幅器である。 FI G.1 and FI G.2 disclose an example of amplifying WDM signal signals collectively by using a wideband optical amplifier that covers the entire wavelength range of multi-wavelength light ( JP-A-2003-18853). In this example, a polarization independent optical amplifier that amplifies the light intensity without depending on the polarization of the wavelength-multiplexed modulated light is used. As such an optical amplifier, an optical fiber amplifier such as an erbium (Er) -doped fiber amplifier (EDFA) is generally used. EDFAs are optical amplifiers that add erbium ions, Er 3+, to the core of a silica glass optical fiber, and use the stimulated emission of the ions at their unique transitions to amplify the light traveling through the optical fiber. It is. On the other hand, a semiconductor optical amplifier (SOA: Semkonducior Optical Amplifier) has been developed as an optical amplifier used for optical communication. An SOA is an optical amplifier that amplifies light traveling through an active layer in a semiconductor by stimulated emission by reducing the end face of the resonator of a semiconductor laser.
上記のいずれの光増幅器も利得帯域は 30 nm以上と広帯域であるが、励起準位 にあるキャリアの寿命時間が大きく異なる。 EDFAは、複数の離散的な励起エネ ルギー準位からの遷移により利得広がりが形成されるため、キヤリァ寿命時間は m s (ミリ秒) オーダと長く、 利得広がりは不均一となる。 一方、 S O Aは、 キヤリ ァ寿命時間は n s (ナノ秒) オーダと短く、 利得広がりは均一とみなせる。 通常、 光増幅器は、高出力を得るために利得の飽和領域において動作される。利得の飽和 領域において、複数の異なる信号波長を増幅する場合、利得広がりの均一な光増幅 器では、各々の波長が利得の奪い合いを行い、チャネル間のクロストークが生じて 信号波形が劣化する。従って、 WD M信号を一括して増幅する場合には、 上述のよ うに E D F Aなどの光ファイバ増幅器が用いられるのが一般的である。しかしなが ら、半導体を注入電流により励起させる S OAと、励起光を出力する半導体レーザ、 エルビウムなどを添加した添加物光ファイバ、励起光を添加物光ファイバに結合す る結合器から構成される E D F Aとを比較すると、 S OAが部品点数の観点から逢 かに経済的であると言える。 特に、 1信号波長を増幅する場合には S O Aの方が適 している。 Each of the above optical amplifiers has a wide gain band of 30 nm or more, but the carrier lifetime at the excitation level differs greatly. In EDFAs, the carrier lifetime is m because the gain spread is formed by transitions from multiple discrete excited energy levels. It is as long as s (milliseconds), and the gain spread is not uniform. On the other hand, SOA has a short carrier lifetime of the order of ns (nanoseconds) and can be regarded as having a uniform gain spread. Usually, the optical amplifier is operated in a gain saturation region to obtain a high output. When a plurality of different signal wavelengths are amplified in the gain saturation region, in an optical amplifier having a uniform gain spread, each wavelength competes for gain, crosstalk between channels occurs, and the signal waveform deteriorates. Therefore, when amplifying the WDM signal collectively, an optical fiber amplifier such as an EDFA is generally used as described above. However, it is composed of SOA that pumps the semiconductor by injection current, semiconductor laser that outputs pump light, additive optical fiber doped with erbium, etc., and coupler that couples pump light to additive optical fiber. Comparing with EDFA, it can be said that SOA is quite economical in terms of parts count. In particular, SOA is more suitable for amplifying one signal wavelength.
光ファイバ増幅器を用いて" WDM信号を一括して増幅するには、 波長合分波器、 光強度変調器などの光構成部品で生ずる光の損失を補うため、光増幅器の高出力化 が必須である。 しかしながら、 多波長光の波長域をすベてカバーする広帯域、 かつ 高出力の光増幅器は、 たとえ一つでも非常に高価である。従って、 要求される波長 帯域と出力によっては、各波長を S OAによって個別に増幅する構成の方が、光フ アイバ増幅器を用いる構成よりも、より廉価に光変調回路を実現できる場合がある。 さらに S O Aは、 以下のような利点もある。  In order to collectively amplify WDM signals using an optical fiber amplifier, it is necessary to increase the output of the optical amplifier to compensate for the loss of light that occurs in optical components such as a wavelength multiplexer / demultiplexer and an optical intensity modulator. However, a broadband, high-power optical amplifier that covers the entire wavelength range of multi-wavelength light is very expensive, even if at least one. In some cases, a configuration in which wavelengths are individually amplified by SOA can realize an optical modulation circuit at a lower cost than a configuration using an optical fiber amplifier .. SOA also has the following advantages.
· S OAは注入電流を変調信号に応じて変化させることにより、変調器として利用 可能である。  · SOA can be used as a modulator by changing the injection current according to the modulation signal.
• S OAは電界吸収型変調器(E A変調器: Electro Absorpt ion変調器)などと集 積化が可能である。  • SOA can be integrated with an electro-absorption modulator (EA modulator: Electro Absorption modulator).
次に、 S O Aを利用した光変調装置の典型的な構成例について説明する。  Next, a description will be given of a typical configuration example of an optical modulation device using SOA.
(従来例 1 )  (Conventional example 1)
F I G. 1に示す光強度変調器 1 0 5に利用可能な従来の光変調装置の構成例を 従来例 1として F I G. 3に示す。従来例 1の装置は、 S OAを変調器 3 0 6とし て利用し、光変調装置 3 0 3が光源と離れた位置にある場合を想定して図示されて いる。 S O Aの変調器 3 0 6の両端は、 光信号が入力される入力伝送路 3 0 1、 お よび、光信号が出力される出力伝送路 3 0 9に結合される。 しかしながら、 これら 入出力伝送路内には、 図示していないが、光フィルタ、 光力ブラなどの各種光デバ イスや、 光コネクタ、 スプライス (spUce) などが含まれ、 またこの図では省略さ れているが、入出力伝送路 3 0 1と S OAの変調器 3 0 6の間には波長合分波器が 挿入されており、それら構成部品はすべて反射点となる。 これらの反射点が S O A の光増幅部 3 0 6の両端側に存在するわけであるから、これらの反射点と S O Aで 光共振器を成すことになり、その結果 S O Aの動作が不安定になることもあると考 えられる。 この不都合を防ぐためには、 F I G. 3に示すように、 S OAの両端に は単一方向の光のみを透過させる光アイソレー夕 3 0 5、 3 0 6が挿入される。 (従来例 2 ) FIG. 3 shows an example of a configuration of a conventional light modulator that can be used for the light intensity modulator 105 shown in FIG. The device of Conventional Example 1 uses SOA as a modulator The light modulation device 303 is illustrated in a case where the light modulation device 303 is located at a position distant from the light source. Both ends of the SOA modulator 306 are coupled to an input transmission line 301 for inputting an optical signal and an output transmission line 309 for outputting an optical signal. However, although not shown, these input / output transmission lines include various optical devices such as optical filters, optical power brass, optical connectors, splices (spUce), and the like, and are not shown in this figure. However, a wavelength multiplexing / demultiplexing device is inserted between the input / output transmission line 301 and the SOA modulator 306, and these components are all reflection points. Since these reflection points are present at both ends of the optical amplifier section of the SOA, an optical resonator is formed by these reflection points and the SOA, and as a result, the operation of the SOA becomes unstable. It may be possible. In order to prevent this inconvenience, as shown in FIG. 3, optical isolators 305 and 306 that transmit only light in a single direction are inserted at both ends of the SOA. (Conventional example 2)
F I G. 2の光変調回路に適用される従来の光変調装置の構成例を従来例 2とし て F I G. 4に示す。 F I G. 4には 2つのタイプの光変調装置 4 0 5 , 4 0 7の 構成が示されている。一つのタイプの光変調装置 4 0 5は、波長合分波器 4 0 3で 分波された連続光の光パワーを双方向光増幅器 4 0 9において増幅し、光強度変調 器 4 1 1に入力してデ一夕信号により強度変調して変調光とした後、光反射器 4 1 3により反射させて、光強度変調器 4 1 1、双方向光増幅器 4 0 9を再度通過させ る構成である。 もう一つのタイプの光変調装置 4 0 7は、波長合分波器 4 0 3で分 波された連続光の光パワーを双方向光増幅器 4 1 5において増幅し、光サーキユレ 一夕 4 1 7を用いてつくられた光ループに入力して、この光ループ内に配置された 光強度変調器 4 1 9においてデータ信号により強度変調して変調光とした後、光サ ーキユレ一夕 4 1 7を経て、双方向光増幅器 4 1 5を再度通過する構成である。前 者の光変調装置 4 0 5においては、光反射器 4 1 3を、光強度変調器 4 1 1とは別 体の単品としてもよいし、光強度変調器 4 1 1の端面に貼り付けて一体化した構成 のものとしてもよい。  FIG. 4 shows a configuration example of a conventional optical modulation device applied to the optical modulation circuit of FIG. 2 as Conventional Example 2. In FIG. FIG. 4 shows the configuration of two types of optical modulators 405 and 407. One type of optical modulator 405 amplifies the optical power of continuous light demultiplexed by the wavelength multiplexer / demultiplexer 403 in the bidirectional optical amplifier 409, and outputs the amplified power to the optical intensity modulator 411. After inputting and modulating the intensity with the overnight signal to produce modulated light, the light is reflected by the light reflector 413 and passed again through the light intensity modulator 411 and the bidirectional optical amplifier 409. It is. Another type of optical modulator 407 amplifies the optical power of continuous light demultiplexed by the wavelength multiplexer / demultiplexer 403 in the bidirectional optical amplifier 415, and forms an optical circuit. Is input to an optical loop made by using the optical loop, and the optical intensity modulator 419 arranged in the optical loop modulates the intensity with a data signal to produce modulated light. After that, the light passes through the bidirectional optical amplifier 415 again. In the former light modulator 405, the light reflector 413 may be a separate product from the light intensity modulator 411, or may be attached to the end face of the light intensity modulator 411. It may be of an integrated configuration.
F I G. 4の構成で用いられる双方向増幅器 4 0 9、 4 1 5は、 1波長の増幅を 行えればよいので SO Aが適当である。 しかし、 S OAを双方向光増幅器 409、 15として用いると、利得の飽和領域において連続光と変調光の間の利得の奪い 合いが信号劣化を引き起こす。つまり、光増幅器 409, 415の内部において連 続光が変調光の信号パターンにより変調されることになる。 The bidirectional amplifiers 409 and 415 used in the configuration of FI G. 4 provide amplification of one wavelength. SO A is appropriate because it can be done. However, when SOA is used as the bidirectional optical amplifiers 409 and 15, competition for gain between continuous light and modulated light in a gain saturation region causes signal degradation. That is, continuous light is modulated by the signal pattern of the modulated light inside the optical amplifiers 409 and 415.
そのため、 F I G. 5に示すように、 連続光と変調光の双方向光増幅器 409、 15からの出力パワーの和(もしくは入力パワーの和)が、 ある出力パワー(もし くは入力パワー)以下において、 利得が一定に保たれる利得の未飽和領域で使用さ れることが望ましい。  Therefore, as shown in Fig. 5, the sum of the output power (or the sum of the input power) from the bidirectional optical amplifiers 409 and 15 for continuous light and modulated light is less than a certain output power (or input power). In this case, it is desirable to use it in the unsaturated region where the gain is kept constant.
(解決すべき課題)  (task to solve)
F I G. 3で示された従来例 1の構成では、 S OA 306の両端に光アイソレー タ 305, 307を挿入しても、 SO A素子そのものの端面反射の問題が残る。通 常、 SOA306の端面に無反射コートを施すことにより、端面反射率は低減化さ れており、一般にこの端面反射率の値は、伝送路反射の反射率の値などよりも小さ い。 しかしながら、 SOA306の利得が大きいと、 光変調装置 303は共振器と しての効果が大きくなり、 増幅動作が不安定になる。 つまり、 端面反射率の値は、 S OAに許容する利得の大きさを制限することになる。 したがって、 S OAにより 高利得増幅を実現するには、例えば F I G. 6に示すように、 S OAを多段に接続 する必要がある。  In the configuration of Conventional Example 1 shown in FIG. 3, even if the optical isolators 305 and 307 are inserted at both ends of the SOA 306, the problem of the end face reflection of the SOA element itself remains. Normally, the non-reflective coating is applied to the end face of the SOA 306 to reduce the end face reflectivity, and the value of the end face reflectivity is generally smaller than the value of the reflectivity of transmission line reflection. However, if the gain of the SOA 306 is large, the effect of the optical modulator 303 as a resonator becomes large, and the amplification operation becomes unstable. In other words, the value of the end face reflectivity limits the amount of gain allowed for SOA. Therefore, in order to realize high gain amplification by using SOAs, it is necessary to connect SOAs in multiple stages as shown in FIG. 6 for example.
SO Aの多段に接続する構成として、 SOA + EA変調器(EA変調器にっぃて は後述) のカスケ一ド構成を 2段に接続したものが提案されている (参考文献 1 : Ohraan, F.; Bischof f, S.; Tromborg, B.; Mork, J.; Noise properties and cascadabi 1 i ty of SOA-EA regenerators" , Lasers and Electro-Optics Society, 2002. LE0S 2002. The 15th Annual Meeting of the IEEE , Volume: 2 , 2002 Page(s): 895 -896)。 SOAを多段にした場合に、 光反射の影響を最小限にするためには、 F I G. 6に示すように多段に接続したすべての SO Aの入出力端に光アイソレー 夕を挿入すればよいが、 コストの観点から望ましとは言えない。 また、 参考文献 1 では、 光アイソレ一夕の挿入についての記述は一切ない。 また、 F I G. 4に示した従来例 2の構成では、双方向光増幅器(S O A) 4 0 9、 1 5の両端における反射光 1と反射光 2が存在する。双方向光増幅器 4 0 9、 4 1 5の端面は無反射コートにより低反射化されているとはいえ、その端面反射の前 後にその反射光のパワーが増幅されるために、その反射光の値は大きく、その反射 光は信号光と干渉して雑音になる。 なお、 反射光 1、 反射光 2については、 後述の F I G. 8に関する説明で詳しく述べる。 発明の開示 As a configuration for connecting the SOA in multiple stages, a configuration in which a cascade configuration of an SOA + EA modulator (the EA modulator is described later) is connected in two stages has been proposed (Ref. 1: Ohraan, F .; Bischof f, S .; Tromborg, B .; Mork, J .; Noise properties and cascadabi 1 itty of SOA-EA regenerators ", Lasers and Electro-Optics Society, 2002. LE0S 2002. The 15th Annual Meeting of the IEEE, Volume: 2, 2002 Page (s): 895 -896) To minimize the effects of light reflection when using multiple stages of SOA, connect multiple stages as shown in Fig. 6. It is sufficient to insert optical isolators at the input and output ends of all SOAs, but this is not desirable from a cost standpoint.In Reference 1, there is no description of inserting optical isolators. . In the configuration of Conventional Example 2 shown in FIG. 4, reflected light 1 and reflected light 2 exist at both ends of a bidirectional optical amplifier (SOA) 409 and 15. Although the end faces of the bidirectional optical amplifiers 409 and 415 are low-reflected by the non-reflection coating, the power of the reflected light is amplified before and after the end face reflection, so that the reflected light is not reflected. The value is large, and the reflected light interferes with the signal light and becomes noise. The reflected light 1 and the reflected light 2 will be described later in detail with reference to FIG. Disclosure of the invention
本発明は、 上述の課題を解決するためになされたもので、 その目的は、光増幅器 を多段に接続構成した光変調装置、ないしは光増幅器を双方向光増幅器として含む 光変調装置において、光増幅器の内部を通過する反射の影響を考慮したデバイス仕 様設計、 デバイス構成により、 反射光の影響を低減した安定な増幅機能を達成し、 かつ経済的な光変調装置を提供することにある。  SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical modulator including an optical amplifier connected in multiple stages or an optical modulator including the optical amplifier as a bidirectional optical amplifier. It is an object of the present invention to provide an economical optical modulator which achieves a stable amplification function by reducing the influence of reflected light by a device specification design and device configuration in consideration of the influence of reflection passing through the inside of the device.
本発明の第 1の態様 (aspect) は、 双方向光増幅器を含む反射型の光変調器、 お よびこの光変調器を複数組み合わせた多波長一括光調装置に対して、双方向光増幅 器の利得と光変調器の損失の関係を数値限定することにより、双方向光増幅器の端 面における反射光の影響を低減し、 安定した増幅機能を達成する。  A first aspect of the present invention relates to a bidirectional optical amplifier for a reflection type optical modulator including a bidirectional optical amplifier and a multi-wavelength collective optical modulator combining a plurality of such optical modulators. By limiting the relationship between the gain of the optical modulator and the loss of the optical modulator by a numerical value, the effect of the reflected light on the end face of the bidirectional optical amplifier is reduced, and a stable amplification function is achieved.
本発明の第 2の態様は、双方向光増幅器を含む反射型の光変調器、およびこの光 変調器を複数組み合わせた多波長一括光調装置に対して、偏波回転手段の挿入を行 なうことにより、双方向光増幅器の端面における反射光の影響を低減し、安定した 増幅機能を達成する。  According to a second aspect of the present invention, a polarization rotation unit is inserted into a reflection-type optical modulator including a bidirectional optical amplifier and a multi-wavelength collective optical modulator in which a plurality of such optical modulators are combined. As a result, the influence of the reflected light on the end face of the bidirectional optical amplifier is reduced, and a stable amplification function is achieved.
本発明の第 3の態様は、 多段に接続した半導体光増幅器(S O A) を含む透過型 の光変調装置に対して、 1つおきに光アイソレータを揷入することにより、 反射光 の影響を低減することによる安定した増幅機能とコストの低減とを同時に達成す る。 図面の簡単な説明 The third aspect of the present invention is to reduce the influence of reflected light by inserting an optical isolator for every other transmission type optical modulator including a semiconductor optical amplifier (SOA) connected in multiple stages. And at the same time achieve a stable amplification function and cost reduction. BRIEF DESCRIPTION OF THE FIGURES
F I G. 1は従来の光変調回路の構成を示すブロック図である。  FIG. 1 is a block diagram showing a configuration of a conventional light modulation circuit.
F I G. 2は従来の反射型光変調装置の構成を示すブロック図である。  FIG. 2 is a block diagram showing a configuration of a conventional reflection type optical modulator.
F I G. 3は半導体光増幅器を利用した従来の光変調装置の構成を示すブロック 図である。  FIG. 3 is a block diagram showing a configuration of a conventional optical modulation device using a semiconductor optical amplifier.
F I G. 4は双方向光増幅器を利用した従来の光変調装置の構成を示すブロック 図である。  FIG. 4 is a block diagram showing a configuration of a conventional optical modulation device using a bidirectional optical amplifier.
F I G. 5は半導体光増幅器の未飽和領域を説明するグラフである。  FIG. 5 is a graph illustrating an unsaturated region of the semiconductor optical amplifier.
F I G. 6は半導体光増幅器を多段接続して高利得増幅を実現する光変調装置と して考えられる構成を示すブロック図である。  FIG. 6 is a block diagram showing a configuration conceivable as an optical modulator that realizes high gain amplification by connecting semiconductor optical amplifiers in multiple stages.
F I G. 7は複数の半導体光増幅器を多段接続した時の反射光の様子を示す概念 図である。  FIG. 7 is a conceptual diagram showing a state of reflected light when a plurality of semiconductor optical amplifiers are connected in multiple stages.
F I G. 8は半導体光増幅器の反射光を説明する概念図である。  FIG. 8 is a conceptual diagram illustrating the reflected light of the semiconductor optical amplifier.
F I G. 9は 2個の半導体光増幅器を多段接続した時の反射光の様子を示す概念 図である。  FIG. 9 is a conceptual diagram showing the appearance of reflected light when two semiconductor optical amplifiers are connected in multiple stages.
F I G. 1 0は F I G. 9における信号光に対する反射光の割合を説明する図で ある。  FIG. 10 illustrates the ratio of reflected light to signal light in FIG.
F I G s . 1 1 A— 1 1 Cはそれぞれ本発明の第 1の実施形態の光変調装置の構 成を示すブロック図である。  11A-11C are block diagrams each showing a configuration of the optical modulation device according to the first embodiment of the present invention.
F I G S . 1 2 A— 1 2 Cはそれぞれ本発明の第 2の実施形態の光変調装置の構 成を示すブロック図である。  FIGS. 12A to 12C are block diagrams each showing a configuration of an optical modulation device according to the second embodiment of the present invention.
F I G. 1 3は本発明の第 3の実施形態の光変調装置の特性を説明するグラフで ある。  FIG. 13 is a graph illustrating characteristics of the optical modulation device according to the third embodiment of the present invention.
F I G. 1 4は本発明の第 4の実施形態の光変調装置の構成を示すブロック図で ある。  FIG. 14 is a block diagram showing a configuration of an optical modulation device according to a fourth embodiment of the present invention.
F I G. 1 5は本発明の第 4の実施形態における偏波面の方向を説明する模式図 である。 F I G. 16は本発明の第 5の実施形態の光変調装置の構成を示すプロック図で ある。 発明を実施するための最良の形態 FIG. 15 is a schematic diagram for explaining the direction of the plane of polarization in the fourth embodiment of the present invention. FIG. 16 is a block diagram showing a configuration of an optical modulation device according to a fifth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の最良の実施形態を詳細に説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
(第 1の実施形態)  (First Embodiment)
本発明の第 1の実施形態は、 多段に接続した半導体光増幅器(SO A) を含む透 過型の光変調装置に対して、 1つおきに光アイソレータを挿入することにより、 反 射光の影響を低減することによる安定した増幅機能とコストの低減とを同時に実 現するものである。本実施形態の具体的な構成例を説明する前に、その原理を説明 する。  In the first embodiment of the present invention, the influence of the reflected light is increased by inserting an optical isolator for every other transmission type optical modulation device including a semiconductor optical amplifier (SOA) connected in multiple stages. Thus, a stable amplification function and a reduction in cost can be realized at the same time. Before describing a specific configuration example of the present embodiment, its principle will be described.
く S O Aを多段接続した時の反射光〉 Light reflected when multiple SOAs are connected in multiple stages>
F I G. 7は、 複数の S OAを多段接続した時の反射光を説明する図である。 こ の多段接続構成において、光変調装置として機能するためには、使用する SO Aの うちの 1つを光強度変調器として使用するか、もしくは外部変調器を挿入する必要 があるが、 ここでは反射光の説明を簡単化するために、すべての SOAを単に光増 幅器として機能させることとする。  FIG. 7 is a diagram illustrating reflected light when a plurality of SOAs are connected in multiple stages. In this multistage connection configuration, in order to function as an optical modulator, one of the SOAs used must be used as an optical intensity modulator or an external modulator needs to be inserted. To simplify the description of reflected light, all SOAs will simply function as optical amplifiers.
F I G. 7において、 n (>=2) 個の半導体光増幅器 い S 2, ··, S i; In FI G. 7, n (> = 2) pieces of the semiconductor optical amplifier have S 2, ··, S i;
··, Sn) が、 入出力を含む n+ 1個の光パス (x1; x2, ··, ··, xn + 1) により直列に結合され、 その入出力は、 それぞれ、 入力側伝送路 301、 出力側伝 送路 309に接続されている。上述したように入出力伝送路 301, 309は反射 点となる。 また、 SOA (S,, S2, ··, Si, ··, Sn) は素子そのものの両端 に反射端を持っため、 SO A自体が反射点なる。 , S n ) are connected in series by n + 1 optical paths (x 1; x 2 ,..., X n + 1 ) including input and output, and the input and output are The side transmission path 301 and the output side transmission path 309 are connected. As described above, the input / output transmission paths 301 and 309 are reflection points. Also, since SOA (S ,, S 2 ,..., Si,..., Sn ) has reflection ends at both ends of the element itself, the SOA itself becomes a reflection point.
F I G. 8は、 SO Aの反射光を説明する図である。 3〇八の利得8ぃ 端面反 射率 rとすると、光パヮ一 1の光が SO Aに入射された時、 SOAの反射光パワー は g i2 rとなり、 端面反射率が 2倍される。 この反射はそれぞれの SO Aにつ き双方向で起こりうる。 F I G. 7では、 信号光の進行方向と同一方向の反射を入力側から順に、 Re fFIG. 8 is a diagram illustrating reflected light of SOA. When 3_Rei eighth gain 8 I end face the reflectivity r, when the optical Pawa one first light is incident to the SO A, the reflected light power of the SOA is gi 2 r, and the end face reflectivity is doubled. This reflection can occur in both directions for each SOA. In FI G. 7, the reflection in the same direction as the traveling direction of the signal light
(0) , Re f (1), ··, Re f ( i), --Re f (n)、 逆方向の反射を入力側か ら順に、 r e f (1), r e f (2), ··, r e f (i), ·· r e f (n+l)、 とし ている。 Re f (0) および r e f (n+1) は、 それぞれ、 入力側伝送路反射お よび出力側伝送路反射であり、 それ以外の反射 Re f (i), r e f (i) は、 半 導体光増幅器 S;の双方向の反射を表す。 (0), Ref (1), ···, Ref (i), --Ref (n), and reverse reflection in order from the input side, ref (1), ref (2), ··· , ref (i), ··· ref (n + l). Re f (0) and ref (n + 1) are the input-side transmission line reflection and the output-side transmission line reflection, respectively, and the other reflections Re f (i) and ref (i) are the semiconductor light Represents the bidirectional reflection of the amplifier S;
反射光の影響について、簡単のため n= 2の場合について考える。 F I G.9は、 n= 2の場合の反射光を説明する図である。 Re f (0), Re f (1), Re f (2) は信号光の進行方向と同一方向の反射、 r e ί (1), r e f (2), r e f (3) は逆方向の反射を表す。 Re f (0) および r e f (3) は、 それぞれ、 入力側伝 送路反射および出力側伝送路反射であり、 Re f (1), r e f (1) および Re f (2), r e f (2) は、それぞれ、半導体光増幅器 S および S 2の反射である。 一般に反射が問題となるのは、 信号光の進行方向と逆方向の反射 (1回目の反射) に引き続いて、 同一方向の反射(2回目の反射) が起こり、 それが信号光と干渉し て信号光パワーが不安定になることによる。 F I G. 9においては、 SOAの利得 が含まれるため、 反射光はその利得により増幅され、 その影響はより大きくなる。 For simplicity, consider the case of n = 2 for the effect of the reflected light. FI G.9 is a diagram illustrating reflected light when n = 2. Re f (0), Re f (1), and Re f (2) reflect in the same direction as the signal light travels, and re re (1), ref (2), and ref (3) reflect in the opposite direction. Represent. Re f (0) and ref (3) are the input-side transmission path reflection and the output-side transmission path reflection, respectively, and are referred to as Re f (1), ref (1), and Re f (2) They are each a reflection of semiconductor optical amplifiers S and S 2. Generally, reflection is a problem because reflection in the direction opposite to the traveling direction of the signal light (first reflection) is followed by reflection in the same direction (second reflection), which interferes with the signal light. This is because the signal light power becomes unstable. In FI G. 9, since the gain of SOA is included, the reflected light is amplified by the gain, and the influence becomes larger.
F I G. 9における R e f (i) および r e f ( i ) の反射率を、 それぞれ、 R The reflectivity of R e f (i) and r e f (i) in F I G.
(1) および r (i) (但し、 1く = iく =3) とした時の信号光に対する 2回反 射光の割合を説明する図が F I G. 10である。 F I G. 10に示すように、 r e f (i) に引き続いて Re f (i一 1) の反射が起こる場合には、 信号光に対する 2回反射光の割合は、 反射点の反射率の 2乗のオーダであるが、 r e f (i) に引 き続いて Re f (i -2) ないし Re f (i一 3) の反射が起こる場合には、 信号 光に対する 2回反射光の割合は、反射点の反射率の 2乗のオーダに対して、通過す る S OAの利得の 2乗倍だけ大きくなる。 FIG. 10 illustrates the ratio of the twice reflected light to the signal light when (1) and r (i) (where 1 = i = 3). As shown in FI G. 10, when the reflection of Ref (i) is followed by Ref (i-1), the ratio of the twice reflected light to the signal light is the square of the reflectance at the reflection point. However, if ref (i) is followed by ref (i-2) or ref (i-1), the ratio of the twice reflected light to the signal light is For the order of the square of the reflectivity of a point, it increases by the square of the gain of the passing SOA.
F I G. 10は、 n= 2の場合について示しているが、 一般に n個の S OAを多 段接続したときには、 r e f (i)に引き続く Re f (i— 2), Re f (i— 3), ··, Re f (0) の反射は、 r e f (i) に引き続く Re f (i - 1) の反射と比 較して、 それぞれ、 s i— L S卜丄 + S i一 2, ··, S i一丄 + s卜 2 + -' + s丄の利得のFI G.10 shows the case of n = 2. Generally, when n SOAs are connected in multiple stages, Ref (i—2) and Ref (i—3) following ref (i) ), ..., the reflection of Re f (0) is the ratio of the reflection of Re f (i-1) following ref (i). And compare each, si- LS Boku丄+ S i one 2, · ·, + S i Ichi丄+ s Bok 2 - '+ s gain of丄
2乗倍だけ、 信号光に対する反射光の割合のオーダが大きくなる (但し、 l<= i く =n+ 1)。 The order of the ratio of the reflected light to the signal light is increased by the square power (however, l <= i = n + 1).
従って、 r e ί (i) に引き続く Re f ( i— 1) の反射を許容し、 r e f ( i) に引き続く Re f (i -2), Re f ( i - 3), ··, Re f (0) の反射を防ぐに は、 光パス (X Χ2, · ·, X;, ··, xn+1) に対して一つおきに光アイソレー 夕を揷入すればよい。 Therefore, the reflection of Re f (i— 1) following re ί (i) is allowed, and the following Re f (i -2), Re f (i-3),. to prevent reflection of 0), the light path (X Χ 2, · ·, X ;, ··, may be揷入the evening light isolator in every respect x n + 1).
く具体的構成例〉 Specific configuration example>
F I G s . 11 A— 11 Cは、上記のように光パスに対して一つおきに光ァイソ レータを挿入した本発明の第 1の実施形態の光変調装置の構成を説明する図であ る。 ここで、 〇ぃ 02は光アイソレータである。 第 1番目の光アイソレータ 0丄は 入力側伝送路と第 1番目の SOA Si間の第 1番目の光パス: に挿入され、 第 2番目の光アイソレータ は第 2番目の SOA S2と第 3番目の SOA S3 間の第 3番目の光パス x3に揷入されている。 このように、 本実施形態では、 光パ スに対して一つおきに光アイソレ一夕を挿入することを特徴としている。 FIGS. 11A-11C are diagrams illustrating the configuration of the optical modulation device according to the first embodiment of the present invention in which optical isolators are inserted every other optical path as described above. . Here, 〇 it 0 2 is an optical isolator. 1st optical isolator 0丄input side transmission line and the first SOA Si between said first optical path: is inserted into, the second optical isolator and the second th SOA S 2 and the third It is揷入the third optical path x 3 between th SOA S 3. As described above, the present embodiment is characterized in that an optical isolator is inserted every other optical path.
また、本例では、 S 0 Aの個数 n = 3であり、そのうちの任意のいずれか 1つを、 注入電流を送信信号により強度変調することにより光強度変調器(MOD) として 使用している。 すなわち、 F I G. 11 Aでは、 第 3番目の SOA S3を光強度 変調器として使用し、 F I G. 11 Bでは、 第 2番目の SOA S2を光強度変調 器として使用し、 F I G. 11 Cでは、 第 1番目の SOA Siを光強度変調器と して使用している。 In this example, the number n of S 0 A is n = 3, and any one of them is used as a light intensity modulator (MOD) by modulating the intensity of an injection current with a transmission signal. . That is, in FI G. 11 A, the third SOA S 3 is used as an optical intensity modulator, and in FI G. 11 B, the second SOA S 2 is used as an optical intensity modulator. At 11 C, the first SOA Si is used as the light intensity modulator.
光アイソレ一夕と光強度変調器についての上記の配列関係は、 S〇 Aの個数 nが 2の場合や、 4以上になっても同様である。  The above arrangement relationship between the optical isolator and the light intensity modulator is the same when the number n of S〇A is 2 or when the number n is 4 or more.
この実施形態の構成により、連続光を出力する光源と光強度変調器が伝送路を介 して離れた位置にある光通信システムにおいて、伝送路における光パワー損失の補 完と変調動作を同時に達成する装置を実現できる。  According to the configuration of this embodiment, in an optical communication system in which a light source that outputs continuous light and an optical intensity modulator are located at a distance from each other via a transmission line, the correction of the optical power loss in the transmission line and the modulation operation are simultaneously achieved. Device that performs
(第 2の実施形態) F I Gs. 12A-12Cは、本発明の第 2の実施形態の光変調装置の構成を 説明する図である。本実施形態は、 第 1の実施形態の変形例に相当し、光増幅器を 構成する 3個の SO A S1; S2, S 3の任意のいずれかの間に光強度変調器 Mを挿 入する。 (Second embodiment) FIGS. 12A to 12C are diagrams illustrating the configuration of an optical modulation device according to a second embodiment of the present invention. This embodiment corresponds to a modification of the first embodiment, the three constituting the optical amplifier SO AS 1; S 2, S insert the optical intensity modulator M during any arbitrary 3 I do.
F I G. 12 Aは光アイソレータ〇p 〇2が揷入されていない区間に、 光強度 変調器 Mを挿入した構成である。 ここでは第 1と第 2の S OA Sx, S2間の第 2 の光パス (光接続手段) x2に光強度変調器 Mを挿入した例を示しているが、 第 3 の SOA S 3と出力端子との間の第 4の光パス x4に光強度変調器 Mを揷入して もよい。 ただし、 この場合には最終段の SO A S3で増幅された光パワーに対応 できる光強度変調器 Mを用いる必要がある。 FI G. 12 A in section optical isolator 〇_P 〇 2 is not揷入is inserted constituting the optical intensity modulator M. Here, the first and second S OA S x, an example is shown of inserting the optical intensity modulator M in the optical path (optical connecting means) x 2 second between S 2, the third SOA S third and fourth in the optical path x 4 optical intensity modulator M may be揷入between the output terminal. However, in this case, it is necessary to use an optical intensity modulator M that can cope with the optical power amplified by the final SOAS 3 .
F I G. 12 Aの構成では、 第 1の S OA Sェから出力された連続光と、 第 2 の SOA 32と第1の3〇八 Sェにおける連続光の 2回反射光が干渉するまで に、 光強度変調器 Mで 2度の強度変調を受ける。従って、 信号光に対する 2回反射 光の割合は光強度変調器 Mを挿入しない場合に対して相対的に小さくなる。 In the configuration of FI G. 12 A, the continuous light output from the first S OA S E, second SOA 3 2 twice reflected light of the continuous light at the first 3_Rei eight S E interferes By this time, the light intensity modulator M receives two intensity modulations. Therefore, the ratio of the twice reflected light to the signal light is relatively smaller than the case where the light intensity modulator M is not inserted.
F I G. 12 Bは光アイソレータ〇2が挿入されている区間に光強度変調器 Mを 挿入した構成を示す。 ここでは第 2と第 3の S OA S2, S3間の第 3の光パス x 3に光強度変調器 Mを挿入した例を示すが、 入力端子と第 1の SOA Stとの間 の第 1の光パス に光強度変調器 Mを挿入してもよい。 ただし、 後者の場合には 光強度変調器 Mの損失により S OA エへの入力パヮ一が低下し、 SNRが劣化 することを考慮する必要がある。 なお、 F I G s . 12 B— 12 Cに示すように、 光アイソレー夕 02と光強度変調器 Mの接続の順番は任意である。 FI G. 12 B shows the configuration of inserting the optical intensity modulator M in section optical isolator 〇 2 is inserted. Here is an example of inserting the second and third S OA S 2, the third optical path x 3 to the light intensity modulator M between S 3, the input terminal and between the first SOA St An optical intensity modulator M may be inserted in the first optical path. However, in the latter case, it is necessary to consider that the loss of the light intensity modulator M reduces the input power to the SOA and the SNR deteriorates. Incidentally, FIG-s. As shown in 12 B- 12 C, the order of connection of the optical isolator evening 0 2 and the optical intensity modulator M is optional.
本実施形態で用いられる光強度変調器 Mとしては、例えば電界吸収型光強度変調 器(EA変調器) を用いることができる。 前述の第 1の実施形態では SO Aを光強 度変調器としているために G (bp s) 以上の変調動作は困難であつたが、 EA変 調器を光強度変調器として用いる場合には 40G (bp s)程度までの変調動作に 対応することができる。  As the light intensity modulator M used in the present embodiment, for example, an electro-absorption type light intensity modulator (EA modulator) can be used. In the above-described first embodiment, the modulation operation at G (bps) or more is difficult because the SOA is used as the light intensity modulator.However, when the EA modulator is used as the light intensity modulator, Modulation operation up to about 40G (bps) can be supported.
(第 3の実施形態) 本発明の第 3の実施形態の光変調装置は、 前述の F I G. 4に示すような双方向 光増幅器を有する装置構成において、増幅器の利得の数値限定を後述のように行な うことにより、双方向光増幅器の端面における反射光の影響を低減し、安定した増 幅機能を達成することができるようにした装置である。以下に、本発明による増幅 器利得の数値限定について説明する。 (Third embodiment) The optical modulation device according to the third embodiment of the present invention has a device configuration having a bidirectional optical amplifier as shown in FIG. 4 described above, by limiting the numerical value of the gain of the amplifier as described later. This is an apparatus capable of reducing the influence of reflected light on the end face of a bidirectional optical amplifier and achieving a stable amplification function. Hereinafter, the numerical limitation of the amplifier gain according to the present invention will be described.
<反射光の影響を定量化する手法 > <Method to quantify the effect of reflected light>
F I G. 4に示すように、 双方向光増幅器 409, 415の両端からの反射光は 2つ存在し、一方の反射光 1は変調光と、 もう一方の反射光 2は連続光と同一方向 に進む。 この連続光は強度変調されて変調光となり、反射光 2は連続光と同じ経路 を迪るため、 結局、 変調光には反射光 1および反射光 2が付与される。変調光は反 射光 1および反射光 2の同一偏波方向成分と干渉し、ビート雑音として強度揺らぎ が生じる。以下に、反射光 1と反射光 2が変調光に与える影響を定量的に示す手法 について説明する。  As shown in FI G. 4, there are two reflected lights from both ends of the bidirectional optical amplifiers 409 and 415. One reflected light 1 is the modulated light and the other reflected light 2 is the same as the continuous light. Proceed to. This continuous light is intensity-modulated to become modulated light, and the reflected light 2 follows the same path as the continuous light, so that the modulated light is eventually given reflected light 1 and reflected light 2. The modulated light interferes with the same polarization direction components of the reflected light 1 and the reflected light 2, and intensity fluctuation occurs as beat noise. In the following, a method for quantitatively showing the influence of the reflected light 1 and the reflected light 2 on the modulated light will be described.
ここでは、 以下を想定することができる。  Here, the following can be assumed.
· 双方向光増幅器 409, 415の一方の端面で反射された光が再度もう一方の 端面で反射される多重反射光は十分小さいとして無視する。 · The light reflected on one end face of the two-way optical amplifiers 409 and 415 is again ignored on the other end face.
• 送信信号のマ一ク率は 1Z2である。 (データ信号列にマークまたはスペース が連続すると、信号を受信する際にク口ック信号を抽出することが困難になるため、 通常、 SDH (synchronous digital hierarchy;同期ディジタルハイアラーキ一) におけるスクランブル (scramble)、 ギガビットイーサ (giga bit ether) におけ る 8B—10B (bel) 変換などで、 マーク率をほぼ 1 Z 2にする手法が講じられ る。)  • The mark ratio of the transmitted signal is 1Z2. (If marks or spaces are continuous in the data signal sequence, it is difficult to extract a cook signal when receiving the signal. Therefore, usually, a scramble in SDH (synchronous digital hierarchy) is used. ), 8G-10B (bel) conversion in gigabit ether, etc., to make the mark ratio almost 1 Z2.)
双方向光増幅器 409, 415への入力連続光パワー、 双方向光増幅器 409, 415の利得、光強度変調器 411, 419への入力連続光パヮ一に対する変調光 出力パワー差、 双方向光増幅器全体の反射率を、 それぞれ、 1、 g、 x、 r' とす ると、 光変調器出力の変調光パワー、 反射光 1のパワー、 反射光 2のパヮ一は、 そ れぞれ、 g2x、 r'、 g2x2 r ' で表される。 今、 問題となるのは、 変調光と反射光の干渉であるので、 変調光マーク時の反射 光の影響のみを考えればよい。送信信号のマーク率は 1ノ 2であるので、光変調器 出力の変調光のマ一クレベルパワー、 および、 反射光 2のマ一クレベルパワーは、 それぞれ、 2 g2x、 4 g2x2 r ' である。 但し、 光変調器出力において変調光お よび反射光 2が同時にマークとなる確率は 1 Z 2であるので、反射光 2の影響は半 減される。 したがって、 変調光マーク時の変調光と全反射光とのパヮ一比は、 Continuous optical power input to bidirectional optical amplifiers 409 and 415, gain of bidirectional optical amplifiers 409 and 415, modulated optical output power difference with respect to continuous optical power input to optical intensity modulators 411 and 419, overall bidirectional optical amplifier If the reflectivity of the light modulator is 1, g, x, and r ', respectively, the modulated light power of the optical modulator output, the power of the reflected light 1, and the power of the reflected light 2 are g 2 x, r ', g 2 x 2 r'. Now, since the problem is the interference between the modulated light and the reflected light, only the effect of the reflected light at the time of the modulated light mark needs to be considered. Since the mark ratio of the transmitted signal is 1 to 2, the mark level power of the modulated light output from the optical modulator and the mark level power of the reflected light 2 are 2 g 2 x and 4 g 2 , respectively. x 2 r '. However, in the output of the optical modulator, the probability that the modulated light and the reflected light 2 become a mark at the same time is 1Z2, so that the influence of the reflected light 2 is reduced by half. Therefore, the power ratio between the modulated light and the totally reflected light at the time of the modulated light mark is:
S 2g2x S 2g 2 x
(1)  (1)
N (r'+2^2 2r') と記述できる。 さらに、 r ' は光ファイバ結合損を無視すると、 r ' =g2 rなる 関係が成り立つので、 N (r '+ 2 ^ 2 2 r'). Further, if n 'is neglecting the optical fiber coupling loss, the relation r' = g 2 r holds, so
S 2g  S 2g
(2)  (2)
N (g2r + 2gx2r) と書き換えることができる。 式 (2) を Xの関数としてみなすと、 2 g (3) の時に、 式 (2) は最大値をとる。 すなわち、 この時に反射光の影響を最も小さく することができる。 これを対数スケールに書き直し、 伝送路損失 L [dB]、 双方 向増幅器利得 G [dB] を用いると、 It can be rewritten as N (g 2 r + 2gx 2 r). Considering equation (2) as a function of X, equation (2) takes the maximum value at 2 g (3). That is, at this time, the influence of the reflected light can be minimized. By rewriting this to a logarithmic scale and using the transmission line loss L [dB] and the bidirectional amplifier gain G [dB],
L = -101og10( ) = 101og10(^) + ^-101og10(2) = G + 1.5 (4) となる。 またこの時に、 反射光 1と反射光 2のパワーは等しくなる。 L = -101og 10 () = 101og 10 (^) + ^ -101og 10 (2) = G + 1.5 (4). At this time, the powers of the reflected light 1 and the reflected light 2 are equal.
実際には、反射光は変調光と干渉するので、上記はあくまでも SNRを最適化す る上式(4) の導出において有効である。変調光に対する反射光の影響の定量的な 見積もりは以下のように行うことができる。  Actually, the reflected light interferes with the modulated light, so the above is only effective in deriving the above equation (4) to optimize the SNR. A quantitative estimation of the effect of the reflected light on the modulated light can be made as follows.
光変調器出力を、 光サ一キユレ一夕 4 1 7などを介して受信することを考える。 変調光のマーク側光電界を EQexp[(a^ + A)]、 反射光 1のマーク側光電界をSuppose that the output of the optical modulator is received via an optical modulator 417 or the like. The mark-side optical electric field of the modulated light is E Q exp [(a ^ + A)], and the mark-side optical electric field of the reflected light 1 is
E1 exp[z(ft>ct + )]、 反射光 2のマーク側光電界を E2 exp[(o + φ2)]とすると、 受信 前の光電界は、 E 1 exp [z (ft> c t +)], when the mark-side optical field of the reflected light 2 E 2 exp [(o + φ 2)], the received The previous optical field is
E0UT (t) = E0 exp[i'(a>ci +
Figure imgf000016_0001
+ φ2)]
E 0UT (t) = E 0 exp [i '(a> c i +
Figure imgf000016_0001
+ φ 2 )]
( 5 ) で表される。  (5).
受信光電流は、 必要とする係数を一切無視すると、  The received photocurrent, neglecting any required coefficients,
- + exp[i(^0一 )] + 2E0E2 expP(^0 - φ2)] -+ exp [i (^ 0-1 )] + 2E 0 E 2 expP (^ 02 )]
2 ( 6 )  2 (6)
+ Ά1 + Ε2 + Ί.ΕλΕ &χρ[ί(φ1 - φ2 )] + Ά 1 + Ε 2 + Ί.Ε λ Ε & χρ [ί (φ 12 )]
となる。 ここでは、 第 1項が変調光そのものであり、 第 2項以下は雑音である。 第 1項ないし第 6項は、それぞれ、変調光および反射光がすべてマーク側にあるとき の、 変調光パワー、 変調光と反射光 1のピート (干渉)、 変調光と反射光 2のビー ト (干渉)、 反射光 1パワー、 反射光 2パワー、 反射光 1と反射光 2のビート (干 渉) を表す。第 4項ない第 6項は、 反射光は変調光に対して小さいことから無視で きる。 ここでは、 第 2項および第 3項の影響を考慮して、規格化ビートノイズパヮ 一として以下を定義する。 び ( 7 )It becomes. Here, the first term is the modulated light itself, and the second and subsequent terms are noise. The first to sixth terms are the modulated light power, the beat of modulated light and reflected light 1 and the beat of modulated light and reflected light 2 when the modulated light and reflected light are all on the mark side, respectively. (Interference), reflected light 1 power, reflected light 2 power, and the beat (interference) between reflected light 1 and reflected light 2. The fourth and sixth terms can be ignored because the reflected light is smaller than the modulated light. Here, the following is defined as the normalized beat noise part, taking into account the effects of the second and third terms. And (7)
Figure imgf000016_0002
Figure imgf000016_0002
複数の反射点が関与する場合のビートノイズは、 分散値として式(7 ) で表され る値を示すガウス分布として取り扱うことができる。逆に反射点の数が少ない場合 には、 ビートノイズを過剰に見積もることになる。  Beat noise in the case where a plurality of reflection points are involved can be treated as a Gaussian distribution indicating a value represented by equation (7) as a variance. Conversely, if the number of reflection points is small, the beat noise will be overestimated.
ここまでの議論は、反射光として双方向光増幅器 4 0 9 , 4 1 5の両端面からの 反射光 1および反射光 2を考慮したが、実際には、 双方向光増幅器 4 0 9, 4 1 5 の端面反射以外に、系に挿入される各種光デバイスの入出力端反射や、光コネクタ による反射なども存在し、 これらの反射点からの反射光も双方向光増幅器 4 0 9 , 4 1 5の利得を受けることにより、それらの反射率如何によつてはその影響が無視 できなくなる。 このような場合には、 ここまでの議論で用いた端面反射率 rを、 端 面反射以外の反射点からの反射率の合計として捉えれば、 式(7 ) で与えられる分 散値を用いた反射光の影響の見積もりは妥当であると言える。一方、双方向光増幅 器 409, 415の両端面からの反射のみが支配的な場合には、上記見積もりを最 悪設計と見なせばよい。 In the discussion so far, the reflected light 1 and the reflected light 2 from both end faces of the bidirectional optical amplifiers 409 and 415 are considered as the reflected light. However, in practice, the bidirectional optical amplifiers 409 and 4 In addition to the reflection at the end surface of Fig. 15, there are also input / output end reflections of various optical devices inserted into the system and reflections from optical connectors, and the reflected light from these reflection points is also a bidirectional optical amplifier. By receiving a gain of 15, the effect cannot be neglected depending on their reflectivity. In such a case, if the end face reflectivity r used in the discussion so far is regarded as the sum of the reflectivities from the reflection points other than the end face reflection, the variance value given by Equation (7) is used. It can be said that the estimation of the effect of the reflected light is appropriate. Meanwhile, bidirectional optical amplification When only the reflection from both end faces of the detectors 409 and 415 is dominant, the above estimation may be regarded as the worst design.
以上の議論は、 アレイ導波路回折格子 (AWG: Arrayed- Waveguide Grating) のコヒーレントクロス] クの影響を定量的に見積もる手法を示した、 IEEE J. Lightwave Tchnol., vol.14, no. 6, pp.1097-1105, 1996 の論文からの類推によ るものである。但し、 本光変調装置においては、 変調光マーク時において反射光 2 が同じくマークである確率は 1 2であるため、 式 (7) は、
Figure imgf000017_0001
The above discussion has shown a method for quantitatively estimating the effect of coherent crosstalk on an arrayed-waveguide grating (AWG). IEEE J. Lightwave Tchnol., Vol. 14, no. This is based on analogy with the papers of pp.1097-1105, 1996. However, in the present optical modulator, since the probability that the reflected light 2 is also a mark at the time of the modulated light mark is 1 2, the equation (7) becomes
Figure imgf000017_0001
に書き換えられる。 この式の値は、 式 (2) の逆数の 2倍に等しい。 Is rewritten as The value of this equation is equal to twice the reciprocal of equation (2).
ぐ反射光の影響についての計算例 > Calculation example of the effect of reflected light>
F I G. 13は、 上記の式 (8) を用いた計算結果を示す。 同図において、 横軸 は変調部損失 (L) [dB]、 縦軸は左側が Q値 [dB] および右側が光変調装置利 得 [dB] を示す。 光変調装置利得は、 変調部 (光強度変調器) 411, 419に おける 3 dBの変調損失を考慮しない 2 G— (L- 3. 0) [dB], および、 3 d Bの変調損失を考慮する 2 G— L [dB] の両方について図示している。 ここでい う Q値とは、 IEEE Photon. Techno 1. Lett. Vol. 5, no.3, pp.304-306 において 提案されている、 変調光の信号対雑音比(SNR: Signal to Noise Ratio)を規定 する評価パラメータであり、  FIG. 13 shows a calculation result using the above equation (8). In the figure, the abscissa indicates the modulation unit loss (L) [dB], and the ordinate indicates the Q value [dB] on the left and the optical modulator gain [dB] on the right. The optical modulator gain is 2 G— (L-3.0) [dB], which does not consider the 3 dB modulation loss in the modulators (optical intensity modulators) 411 and 419, and the 3 dB modulation loss. Both 2G-L [dB] to be considered are illustrated. The Q value here is the signal-to-noise ratio (SNR) of the modulated light proposed in IEEE Photon. Techno 1. Lett. Vol. 5, no.3, pp. 304-306. ) Is an evaluation parameter that defines
5(1) -5(0)  5 (1) -5 (0)
Q (9) σ、 +ση により定義される。 ここで、 S (1) および S (0) は、 それぞれ、 マ一クおよび スペースの信号レベルを表し、 またび ェおよび σ0は、 それぞれ、 マークおよびス ペースの雑音量を表す。 ここでは、 S (1) =1とすると、 σ =ひ RINであり、 S (0) および σ。は、 ほぼゼロと見なすことができる。 Q (9) Defined by σ, + σ η . Here, S (1) and S (0) represent the signal levels of the mark and the space, respectively, and J and σ 0 represent the noise amount of the mark and the space, respectively. Here, if S (1) = 1, then σ = RIN , S (0) and σ. Can be considered almost zero.
計算では、光変調装置 405, 407への入力連続光パヮ一一 6 dBm、 双方向 光増幅器利得 G= 10 [dB], 双方向光増幅器雑音指数 7 dB、 双方向光増幅器 全体の反射率を一 22 d Bとし、光プリアンプ受信を行わずに直接光電変換して変 調光を受信するものとした。その計算結果である F I G. 1 3に示すように、 変調 部損失 L=l l. 5 [dB]、 つまり、 L = G+ 1. 5 [dB] において Q値は最 大値をとり、 Q値を表す曲線はその値を中心に左右対称となる。図中、 (α)、 (β), (r)> ( δ) の範囲は、 それぞれ、 次の通りとなる。 In the calculations, the continuous optical power input to the optical modulators 405 and 407 is 6 dBm, the bidirectional optical amplifier gain G = 10 [dB], the bidirectional optical amplifier noise figure is 7 dB, and the bidirectional optical amplifier The overall reflectivity was set to 22 dB, and modulated light was received by direct photoelectric conversion without receiving the optical preamplifier. As shown in Fig. 13 which is the calculation result, the modulation factor loss L = l l. 5 [dB], that is, at L = G + 1.5 [dB], the Q value takes the maximum value, The curve representing the value is symmetric about the value. In the figure, the ranges of (α), (β), (r)> (δ) are as follows, respectively.
( ) 0<=L<=2 G+ 3. 0  () 0 <= L <= 2 G + 3.0
光変調器利得 2G— [L— 3. 0] >=0、 かつ、 光変調器利得 2G— [L一 3. 0] =0 (dB) の Q値が保障される光変調部損失領域。  Optical modulator gain loss 2G— [L—3.0]> = 0 and optical modulator gain 2G— [L-3.0] = 0 (dB) Q-factor is guaranteed.
(β) 3. 0<=L<=2 G  (β) 3.0 <= L <= 2 G
光変調器利得 2G— L〉=0、 かつ、 光変調器利得 2G— L=0 (dB) の Q値が保障される光変調部損失領域。  Optical modulator loss area where Q factor of optical modulator gain 2G-L> = 0 and optical modulator gain 2G-L = 0 (dB) is guaranteed.
(T) G-4. 5<=L<=G+ 7. 5  (T) G-4. 5 <= L <= G + 7.5
Q値が最大値に対して 3 dB以内となる領域。  An area where the Q value is within 3 dB of the maximum value.
( 6) L = G+ 1. 5  (6) L = G + 1.5
最大 Q値をとる変調部損失。  Modulator loss with maximum Q value.
( 6) の領域については、 上記の通りである。 また、 (ひ) および (β) の領域 における Lの上限値は、 光変調利得が 0 [dB] 以上であることを示す。 また、 変 調部損失 Lの値は、 Q値曲線が上記のように左右対称であることから必然的に決定 される。  Area (6) is as described above. In addition, the upper limit of L in the regions (H) and (β) indicates that the optical modulation gain is 0 [dB] or more. Further, the value of the modulation section loss L is inevitably determined because the Q value curve is symmetrical as described above.
また、 Q値が最大値に対して 3 dB以内となるのは、 5. 5 [dB] <=L<= 17. 5 [dB], つまり、 (G+ l. 5) ー6 [dB] <=L<= (G+ l. 5) + 6 [dB] の時である。この Lの範囲は Gの値によらない。実際、上記の式(3) に示される Xの値を、上記の式(1)に代入して得られる値の半分(3 dB減)が、 式 (1) に等しいとした時の Xの 2次方程式を解くと、 その解は、
Figure imgf000018_0001
In addition, the reason that the Q value is within 3 dB from the maximum value is 5.5 [dB] <= L <= 17.5 [dB], that is, (G + l. 5) -6 [dB] < = L <= (G + l. 5) + 6 [dB]. This range of L does not depend on the value of G. In fact, when the value of X shown in the above equation (3) is substituted into the above equation (1), half (3 dB reduction) of the value obtained is equal to the equation (1). When solving a quadratic equation, the solution is
Figure imgf000018_0001
である。 さらに、 これを対数スケールに書き直すと、 L = -101og10( ) = + 101og10( ) ( 1 χ ) It is. Furthermore, rewriting this to a logarithmic scale, L = -101og 10 () = + 101og 10 () (1 χ)
Figure imgf000019_0001
Figure imgf000019_0001
≤(G+1.5)±6 となり、 これが (ァ) の領域の上限値および下限値を表す。  ≤ (G + 1.5) ± 6, which represents the upper and lower limits of the area (a).
従って、 変調部損失 Lを.(α) の領域の間の任意の範囲 (例えば、 (β)、 (ァ)、 (6)) において、 光変調装置が利得を保持したまま、 変調光に対する反射光の比 率を低く抑えることができる。 このとき、 F I G. 1 3から明らかなように、 変調 部損失 Lを (δ) の L = G+ 1. 5に近付ける程、 その比率を低くできる。  Therefore, the modulation unit loss L can be adjusted to reflect light with respect to the modulated light while maintaining the gain in an arbitrary range (for example, (β), (a), (6)) between the regions of (α). The light ratio can be kept low. At this time, as is clear from FIG. 13, the ratio can be reduced as the modulation unit loss L approaches L = G + 1.5 of (δ).
(第 4の実施形態)  (Fourth embodiment)
本発明の第 4の実施形態の光変調装置の構成を F I G. 1 4に示す。本実施形態 の光変調装置は、偏波回転手段を揷入することにより、双方向光増幅器の端面にお ける反射光の影響を低減し、 安定した増幅機能を実現するものである。  FIG. 14 shows a configuration of an optical modulator according to a fourth embodiment of the present invention. The optical modulator of this embodiment reduces the influence of the reflected light on the end face of the bidirectional optical amplifier by introducing the polarization rotation means, and realizes a stable amplification function.
F I G. 14に示すように、 本装置は、 入力多波長光と出力変調光とを偏波面の 違で分離する偏波分離器 5 0 1と、多波長光を所定の波長毎に分波する波長合分波 器 5 02と、分波された各単一波長光のパワーを双方向で増幅する双方向光増幅器 5 0 3と、単一波長光の偏波面を双方向で回転させる偏波回転手段 504と、単一 波長光の強度を双方向で変調する光強度変調器 50 5と、光強度変調器 5 0 5から 出力される変調された単一波長光を再び双方向光増幅器 5 0 3に帰還させる光反 射器 50 6とを備える多波長一括光変調装置である。  As shown in FI G.14, this device consists of a polarization separator 501 that separates the input multi-wavelength light and the output modulated light by different polarization planes, and demultiplexes the multi-wavelength light for each predetermined wavelength. Wavelength multiplexer / demultiplexer 502, a bidirectional optical amplifier 503 that bidirectionally amplifies the power of each demultiplexed single-wavelength light, and a polarization device that bidirectionally rotates the polarization plane of the single-wavelength light. Wave rotating means 504, an optical intensity modulator 505 for bidirectionally modulating the intensity of the single-wavelength light, and a modulated single-wavelength light output from the optical intensity modulator 505 again for a bidirectional optical amplifier. This is a multi-wavelength collective optical modulation device including an optical reflector 506 that feeds back to 503.
偏波分離器 5 0 1としては、一般によく使用される偏波ビームスプリツ夕 (PB S : Polarization Beam Splitter) を用いればよいが、 例えば、 出力光を光サ一キ ユレ一夕、 あるいは光力ブラを介して波長合分波器 50 2から出力させ、偏光子を 用いて入力光と 9 0度偏波のずれた光のみを取り出す構成としてもよい。  A polarization beam splitter (PBS: Polarization Beam Splitter), which is generally used, may be used as the polarization splitter 501. For example, the output light may be converted into an optical beam or an optical beam. The output may be output from the wavelength multiplexer / demultiplexer 502 via a hologram, and only light having a 90-degree polarization shift from the input light may be extracted using a polarizer.
波長合分波器 502として、 例えば AWGを用いることができる。 AWGは、 あ る入力導波路から入射された光が、波長に応じて異なる出力導波路から出力される。 また、 AWGは可逆性を有しており、複数の波長光を 1つの出力導波路に合波する こともできる。 双方向光増幅器 5 0 3として、 例えば S〇Aを用いることができる。 S OAは、 半導体レーザの共振器端面を低反射化することにより、半導体内の活性層を進行す る光を、誘導放出により増幅させる光増幅器である。双方向光増幅器 5 0 3として は、 エルビウム添加光ファイバ (E D F A: Erbium Doped Fiber Ampl i f i er) など の光ファイバ増幅器を考えることもできるが、光ファイバ増幅器は、ポンプ光を出 力する半導体レ一ザ、エルビウムなどを添加した添加物光ファイバ、ポンプ光を添 加物光ファイバに結合する結合器から構成されるため、部品点数の観点から S OA よりも高コストになることが予想され、 コスト面からは S〇 Aの方が有利である。 双方向光増幅器 5 0 3と光強度変調器 5 0 5との間には偏波回転手段 5 0 4が 配置されているが、 この偏波回転手段 5 0 4としては、 1ノ4波長板、 あるいはフ ァラデー素子などが適用できる。 また、 ファラデー素子の一方の出力端に反射鏡を 取り付けたファラデーミラ一を用いてもよい。 As the wavelength multiplexer / demultiplexer 502, for example, an AWG can be used. In the AWG, light incident from a certain input waveguide is output from a different output waveguide according to the wavelength. The AWG is reversible and can combine light of multiple wavelengths into one output waveguide. For example, S 光 A can be used as the bidirectional optical amplifier 503. SOA is an optical amplifier that amplifies light that travels through an active layer in a semiconductor by stimulated emission by reducing the end face of the cavity of the semiconductor laser. As the bidirectional optical amplifier 503, an optical fiber amplifier such as an erbium-doped fiber amplifier (EDFA) can be considered. Since it is composed of an additive optical fiber doped with zirconium, erbium, etc., and a coupler that couples pump light to the additive optical fiber, it is expected that the cost will be higher than SOA from the viewpoint of the number of parts. In terms of aspect, S か ら A is more advantageous. A polarization rotation means 504 is disposed between the bidirectional optical amplifier 503 and the light intensity modulator 505. The polarization rotation means 504 includes a 1/4 wavelength plate. Alternatively, a Faraday element or the like can be applied. Further, a Faraday mirror in which a reflecting mirror is attached to one output end of the Faraday element may be used.
光強度変調器 5 0 5としては、例えばマッハツエンダ型光強度変調器、電界吸収 型光強度変調器(E A変調器) などが適用でき、 単一波長光をデータ信号で強度変 調する機能を有する。 これらの光強度変調器によれば、 4 0 G ( b p s ) オーダの 変調信号による強度変調が実用レベルで可能である。  As the light intensity modulator 505, for example, a Mach-Zehnder type light intensity modulator, an electro-absorption type light intensity modulator (EA modulator) or the like can be applied, and has a function of modulating the intensity of a single wavelength light with a data signal. . According to these light intensity modulators, intensity modulation by a modulation signal of the order of 40 G (bps) is possible at a practical level.
光反射器 5 0 7としては、例えば金属膜をコーティングした鏡、誘電体多層膜を コーティングした鏡などが適用できる。 また、 特定の波長に関する反射鏡として、 回折格子やファイバブラッググレーティングなども光反射器として用いることが できる。 また、 ファイバブラッググレーティングの応用例として、 光導波路に直接 回折格子 (グレーティング) を書き込んだ光反射器でもよい。  As the light reflector 507, for example, a mirror coated with a metal film, a mirror coated with a dielectric multilayer film, or the like can be used. In addition, as a reflector for a specific wavelength, a diffraction grating, a fiber Bragg grating, or the like can be used as an optical reflector. As an application example of the fiber Bragg grating, an optical reflector in which a diffraction grating (grating) is directly written in an optical waveguide may be used.
偏波分離器 5 0 1の一つの出力ポートは、空間光学系あるいは光導波路によって 波長合分波器 5 0 2の入力導波路に光学的に接続されている。波長合分波器 5 0 2 の出力導波路は、それぞれ空間光学系あるいは光導波路によって双方向光増幅器 5 0 3の片方のポートに光学的に接続されている。双方向光増幅器 5 0 3のもう一方 のポートは、同じく空間光学系あるいは光導波路によつて偏波回転手段 5 0 4の片 方のポートに光学的に接続されている。偏波回転手段 5 0 4のもう一方のポートは、 同じく空間光学系あるいは光導波路によって光強度変調器 5 0 5の片方のポート に光学的に接続されている。光強度変調器 5 0 5のもう一方のポートは、 同じく空 間光学系あるいは光導波路によって光反射器 5 0 7に光学的に接続されている。 本実施形態では、光強度変調器 5 0 5の入力、および変調光の出力を偏波分離器 5 0 1で切りわけているが、偏波回転手段 5 0 4として例えば 1 Z 4波長板を用い た場合、入力光と出力光の偏波面の角度は 9 0度ずれているので、 出力光の特定の 偏波だけを偏波分離器 5 0 1で切り出せば、 入力光と出力光とは分離できる。 One output port of the polarization splitter 501 is optically connected to the input waveguide of the wavelength multiplexer / demultiplexer 502 by a spatial optical system or an optical waveguide. The output waveguide of the wavelength multiplexer / demultiplexer 502 is optically connected to one port of the bidirectional optical amplifier 503 by a spatial optical system or an optical waveguide, respectively. The other port of the bidirectional optical amplifier 503 is optically connected to one port of the polarization rotation means 504 by a spatial optical system or an optical waveguide. The other port of the polarization rotation means 504 is Similarly, it is optically connected to one port of the light intensity modulator 505 by a spatial optical system or an optical waveguide. The other port of the light intensity modulator 505 is also optically connected to the light reflector 507 by a spatial optical system or an optical waveguide. In the present embodiment, the input of the light intensity modulator 505 and the output of the modulated light are separated by the polarization separator 501, but a 1Z4 wave plate is used as the polarization rotation means 504, for example. When used, the angles of the polarization planes of the input light and the output light are shifted by 90 degrees, so if only a specific polarization of the output light is cut out by the polarization separator 501, the input light and the output light will be different. Can be separated.
波長合分波器 5 0 2の入力導波路から入力された多波長光は、波長合分波器 5 0 2で各波長毎に分波され、分波された一つの単一波長光は、それに対応する一つの 双方向光増幅器 5 0 3に導かれ、 そのパワーを増幅される。  The multi-wavelength light input from the input waveguide of the wavelength multiplexer / demultiplexer 502 is demultiplexed for each wavelength by the wavelength multiplexer / demultiplexer 502, and one demultiplexed single wavelength light is The corresponding one-way bidirectional optical amplifier 503 is led to amplify its power.
双方向光増幅器 5 0 3は、利得の飽和領域において連続光と変調光の間の利得の 奪い合いが信号劣化を引き起こす。 よって、 F I G. 5に示すように、 連続光と変 調光の双方向光増幅器 5 0 3からの出力パワー (横軸) の和 (もしくは入力パワー の和) が、 ある出力パワー (もしくは入力パワー) 以下において利得 (縦軸) がー 定に保たれる利得の未飽和領域で使用されることが望ましい。  In the bidirectional optical amplifier 503, in the gain saturation region, competition for gain between continuous light and modulated light causes signal degradation. Therefore, as shown in Fig. 5, the sum of the output power (horizontal axis) from the bidirectional optical amplifier 503 for continuous light and modulated light (or the sum of the input power) is equal to a certain output power (or input power). Power) In the following, it is desirable to use the gain (vertical axis) in the unsaturated region where the gain is kept constant.
各双方向光増幅器 5 0 3においてパヮ一を増幅された連続光 (単一波長光) は、 それぞれそれに対応する偏波回転手段 5 0 4に入力される。偏波回転手段 5 0 4に おいて、連続光は偏波面が 4 5度回転されて光強度変調器 5 0 5に入力され、光強 度変調器 5 0 5で変調信号(データ信号) により強度変調される。変調された単一 波長光は光強度変調器 5 0 5の光反射器側ポートより出力され、光反射器 5 0 7へ 入力される。光反射器 5 0 7で反射された変調光は、再び光強度変調器 5 0 5を通 過して、 偏波回転手段 5 0 4に入力される。変調光は、 偏波回転手段 5 0 4におい て偏波面がさらに 4 5度回転され、双方向光増幅器 5 0 3に入力されて、双方向光 増幅器 5 0 3で再度光パワーを増幅される。双方向光増幅器 5 0 3の出力変調光は、 その偏波面が入力光と比べて 9 0度ずれているため、偏波分離器 5 0 1により入力 光と出力光とを分離することができる。従って、双方向光増幅器 5 0 3から出た出 力変調光は、波長合分波器 5 0 2で合波されてから、偏波分離器 5 0 1の出力ポ一 トから装置外部に出力される。 The continuous light (single-wavelength light) whose power has been amplified in each bidirectional optical amplifier 503 is input to the corresponding polarization rotation means 504. In the polarization rotation means 504, the continuous light has its polarization plane rotated by 45 degrees and is input to the light intensity modulator 505, where it is modulated by a modulation signal (data signal). The intensity is modulated. The modulated single-wavelength light is output from the light reflector side port of the light intensity modulator 505, and is input to the light reflector 507. The modulated light reflected by the light reflector 507 passes through the light intensity modulator 505 again, and is input to the polarization rotation means 504. The polarization direction of the modulated light is further rotated by 45 degrees in the polarization rotation means 504, input to the bidirectional optical amplifier 503, and the optical power is amplified again by the bidirectional optical amplifier 503. . Since the output modulated light of the bidirectional optical amplifier 503 has a polarization plane shifted by 90 degrees from the input light, the input light and the output light can be separated by the polarization splitter 501. . Accordingly, the output modulated light output from the bidirectional optical amplifier 503 is multiplexed by the wavelength multiplexer / demultiplexer 502 and then output from the polarization splitter 501. Output to the outside of the device.
光増幅器を双方向動作させるには、光増幅器の内部に光アイソレー夕を挿入する ことができないため、光増幅経路の両端からの端面反射の影響を考慮する必要があ る。 F I G. 4に示すように、 この反射光は、 双方向伝送時には 2つ存在し (反射 光 1、 反射光 2 )、 反射光 1は変調光と、 反射光 2は連続光と同一方向に進む。 こ の連続光は強度変調されて変調光となり、反射光 2は連続光と同じ経路を迪るため、 従来例と同様に反射光 1, 2、 連続光、 変調光の偏波面が同じ方向とすれば、 変調 光には反射光 1と反射光 2が付与され、その結果、変調光は反射光 1および反射光 2の同一偏波方向成分と干渉し、ビート雑音として強度揺らぎが生じることになる。 しかしながら、偏波回転手段 5 0 4を有する本実施形態の構成においては、 F I G. 1 5で偏波面の方向を表わす円で囲まれた矢印で示すように、双方向光増幅器 5 0 3の反射光 1および反射光 2は、同一方向に進む連続光もしくは変調光の偏波 方向と直交する。反射光 1は変調光と偏波方向が直交するため、 出力において偏波 分離器 5 0 1において分離される。 また、 反射光 2は連続光と偏波方向が直交し、 以後強度変調されて変調光となつてからもその偏波関係は保持され、反射光 1と同 様に出力において偏波分離器 5 0 1において分離される。その結果、双方の光の干 渉による強度揺らぎを解消することができる。  In order to make the optical amplifier operate bidirectionally, it is not possible to insert an optical isolator inside the optical amplifier, so it is necessary to consider the effects of end face reflection from both ends of the optical amplification path. As shown in FI G. 4, there are two types of reflected light during bidirectional transmission (reflected light 1 and reflected light 2), and reflected light 1 is in the same direction as modulated light and reflected light 2 is in the same direction as continuous light. move on. This continuous light is intensity-modulated to become modulated light, and the reflected light 2 follows the same path as the continuous light, so that the polarization planes of the reflected lights 1, 2, continuous light, and modulated light are in the same direction as in the conventional example. Then, the reflected light 1 and the reflected light 2 are given to the modulated light, and as a result, the modulated light interferes with the same polarization direction component of the reflected light 1 and the reflected light 2, and intensity fluctuation occurs as beat noise. Become. However, in the configuration of the present embodiment having the polarization rotation means 504, as shown by an arrow surrounded by a circle representing the direction of the polarization plane in FIG. The reflected light 1 and the reflected light 2 are orthogonal to the polarization direction of continuous light or modulated light traveling in the same direction. Since the reflected light 1 has a polarization direction orthogonal to that of the modulated light, it is separated at the output by the polarization splitter 501. In addition, the reflected light 2 has a polarization direction orthogonal to the continuous light, and the polarization relationship is maintained even after the intensity is modulated and becomes modulated light. 0 Separated at 1. As a result, intensity fluctuations due to interference of both lights can be eliminated.
また、 本実施形態の構成によれば、 F I G. 1 5で示すように、 偏波回転手段 5 0 4からの出力が光反射器 5 0 7により反射され、再度偏波回転手段 5 0 4に戻つ てくるまでの経路における、光の偏波面が双方向において同一であるため、光強度 変調器 5 0 5として、 L i N b O s マッハツェング型光強度変調器などの単一の入 力偏波に対してのみ変調が可能な光強度変調器を使用することが可能である。 According to the configuration of the present embodiment, as shown in FIG. 15, the output from the polarization rotation unit 504 is reflected by the optical reflector 507, and again the polarization rotation unit 504 to the route to come Modotsu, since the polarization plane of light is the same in both directions, as the light intensity modulator 5 0 5, a single input, such as L i N b O s Mahhatsuengu type optical intensity modulator It is possible to use an optical intensity modulator capable of modulating only the power polarization.
(第 5の実施形態)  (Fifth embodiment)
本発明の第 5の実施形態の光変調装置の構成を F I G. 1 6に示す。本第 5の実 施形態の装置は上述の第 4の実施形態における多波長一括光変調装置の光強度変 調器 5 0 5の前または後に (本図では後に挿入)、 単一偏波のみを通過させること のできる偏光子 5 0 6を挿入している。その他の構成は第 4の実施形態と同様なの でその詳細説明は省略する。 FIG. 16 shows the configuration of an optical modulator according to a fifth embodiment of the present invention. The device according to the fifth embodiment has a single polarization only before or after the light intensity modulator 505 of the multi-wavelength collective optical modulator in the above-described fourth embodiment (inserted in this figure). A polarizer 506 that can pass light is inserted. Other configurations are the same as in the fourth embodiment. The detailed description is omitted.
一般に、光デバイスや光ファイバを複数結合すると、直交する 2つの偏波間の偏 波消光比は著しく劣化する。 F I G. 1 6に示す構成によれば、 偏波回転手段 5 0 4からの出力が光反射器 5 0 7により反射され、再度偏波回転手段 5 0 4に戻って くるまでの経路における、光の偏波面が双方向において同一であるため、光経路内 に偏光子 5 0 6を挿入することができる。 この偏光子 5 0 6の揷入により、劣化し た偏波消光比を回復させることができる。  Generally, when a plurality of optical devices and optical fibers are coupled, the polarization extinction ratio between two orthogonal polarizations is significantly deteriorated. According to the configuration shown in FIG. 16, the output from the polarization rotation means 504 is reflected by the optical reflector 507, and returns to the polarization rotation means 504 again on the path. Since the polarization plane of light is the same in both directions, the polarizer 506 can be inserted in the optical path. By introducing the polarizer 506, the deteriorated polarization extinction ratio can be recovered.
(他の実施形態)  (Other embodiments)
なお、本発明の好適な実施形態を例示して説明したが、本発明の実施形態は上記 例示に限定されるものではなく、 請求の範囲の各請求項に記載の範囲内であれば、 その構成部材等の置換、 変更、 追加、 個数の増減、 形状の変更等の各種変形は、 全 て本発明の実施形態に含まれる。  Although the preferred embodiments of the present invention have been described by way of example, the embodiments of the present invention are not limited to the above-described embodiments, and any embodiment within the scope of the claims may be used. Various modifications such as replacement, change, addition, increase / decrease in the number of components, change in shape, etc., are all included in the embodiments of the present invention.

Claims

請求の範囲 The scope of the claims
1. 単一波長の連続光を双方向に透過させ該単一波長光に利得を与える双方向光 増幅手段と、 1. Bidirectional light amplifying means for transmitting continuous light of a single wavelength in both directions and providing gain to the single wavelength light;
前記双方向光増幅手段で光パワーを増幅された連続光に対してマーク率がほぼ 1 / 2の送信信号で強度変調を施す光強度変調手段と、  Light intensity modulation means for performing intensity modulation with a transmission rate of approximately 1/2 of a mark rate for continuous light whose optical power has been amplified by the bidirectional optical amplification means,
前記光強度変調手段で強度変調された連続光を再び前記光強度変調手段へ、また は直接に前記双方向光増幅手段へ戻す光回帰手段とを具備し、  Light return means for returning the continuous light intensity-modulated by the light intensity modulation means to the light intensity modulation means again, or directly to the bidirectional optical amplification means,
前記双方向光増幅手段の利得 G (dB) に対する前記光強度変調手段への入力連 続光の光パワーと前記光強度変調手段からの出力変調光の光パヮ一との差で定義 される変調部損失 L (dB) の値が、  The modulation defined by the difference between the optical power of the continuous light input to the optical intensity modulator and the optical power of the output modulated light from the optical intensity modulator with respect to the gain G (dB) of the bidirectional optical amplifier. The value of the local loss L (dB) is
0 (dB) から 2G+3. 0 (dB)  0 (dB) to 2G + 3.0 (dB)
の範囲内となるように設定されていることを特徴とする光変調装置。 The light modulation device is set so as to fall within the range.
2. 前記変調部損失 L (dB) の値が、 2. The value of the modulator loss L (dB) is
G+ 1. 5 (dB)  G + 1.5 (dB)
となるように設定されていることを特徴とする請求項 1記載の光変調装置。 2. The light modulation device according to claim 1, wherein the light modulation device is set to be as follows.
3. 前記双方向光増幅手段が利得の未飽和領域において動作されることを特徴と する請求項 1に記載の光変調装置。 3. The optical modulator according to claim 1, wherein the bidirectional optical amplifier is operated in a non-saturation region of gain.
4. 前記双方向光増幅手段が利得の未飽和領域において動作されることを特徴と する請求項 2に記載の光変調装置。 4. The optical modulator according to claim 2, wherein the bidirectional optical amplifier is operated in an unsaturated region of gain.
5. 前記光強度変調手段はその後端に前記光回帰手段を構成する光反射器を備え た反射型の光強度変調器であることを特徴とする請求項 1から 4のいずれかに記 載の光変調装置。 5. The light intensity modulator according to any one of claims 1 to 4, wherein the light intensity modulator is a reflection type light intensity modulator having a light reflector constituting the light return means at a rear end thereof. Light modulation device.
6 . 前記光強度変調手段は光サーキユレ一夕を介して形成される前記光回帰手段 を構成する光ループ内に設けられた透過型の光強度変調器であることを特徴とす る請求項 1から 4のいずれかに記載の光変調装置。 6. The optical intensity modulator according to claim 1, wherein the optical intensity modulator is a transmission type optical intensity modulator provided in an optical loop constituting the optical return means formed through an optical circuit. 5. The optical modulation device according to any one of claims 1 to 4.
7 . 前記光変調装置が多重波長数分設けられ、波長多重された連続光を分波して 単一波長毎に複数の前記光変調装置にそれぞれ入力すると共に、複数の前記光変調 装置から出力された変調光を多重して出力する波長合分波手段をさらに有するこ とを特徴とする請求項 1から 4のいずれかに記載の光変調装置。 7. The optical modulators are provided for the number of multiplexed wavelengths, and the wavelength-multiplexed continuous light is demultiplexed and input to each of the optical modulators for each single wavelength, and output from the optical modulators. 5. The optical modulation device according to claim 1, further comprising wavelength multiplexing / demultiplexing means for multiplexing and outputting the modulated light.
8 . 複数の光搬送波を含む多波長光を構成する単一波長光を双方向に透過させ該 単一波長光に利得を与える双方向光増幅手段と、 8. Bidirectional optical amplifying means for bidirectionally transmitting single-wavelength light constituting multi-wavelength light including a plurality of optical carrier waves and providing gain to the single-wavelength light,
前記双方向光増幅手段で利得を与えられた単一波長光を双方向に透過させ該単 一波長光に変調を施す光強度変調手段と、  Light intensity modulating means for transmitting a single wavelength light gained by the bidirectional optical amplifying means in both directions and modulating the single wavelength light;
前記光強度変調手段を透過した単一波長光を再び該光強度変調手段に回帰させ る光回帰手段とを、前記多波長光を構成する複数の単一波長光のそれぞれに対応し て複数備え、 および  A plurality of light regression means for returning the single-wavelength light transmitted through the light intensity modulation means to the light intensity modulation means again in correspondence with each of the plurality of single-wavelength lights constituting the multi-wavelength light; , and
前記多波長光を単一波長光毎に分波して前記双方向光増幅手段にそれぞれ入力 し、前記双方向光増幅手段から出力する複数の単一波長光を再び合波して出力する 波長合分波手段と、  The multi-wavelength light is demultiplexed for each single-wavelength light and input to the bidirectional optical amplifying means, respectively. Multiplexing / demultiplexing means,
前記双方向光増幅手段と前記光強度変調手段との間にそれぞれ介装されて前記 単一波長光の偏波面を回転させる複数の偏波回転手段と、  A plurality of polarization rotation units interposed between the bidirectional optical amplification unit and the light intensity modulation unit to rotate the polarization plane of the single wavelength light;
入力多波長光を前記波長合分波手段に入力し、前記偏波回転手段で偏波面が回転 されて該波長合分波手段から出力する出力多波長光を前記入力多波長光と分離し て出力する偏波分離手段とを具備することを特徴とする光変調装置。  The input multi-wavelength light is input to the wavelength multiplexing / demultiplexing means, and the output multi-wavelength light output from the wavelength multiplexing / demultiplexing means whose polarization plane is rotated by the polarization rotation means is separated from the input multi-wavelength light. An optical modulation device comprising: a polarization separation unit that outputs the light.
9 . さらに、前記光強度変調手段の前または後に偏光子が介揷されていることを 特徴とする請求項 8に記載の光変調装置。 9. Further, it is required that a polarizer is interposed before or after the light intensity modulating means. 9. The light modulation device according to claim 8, wherein:
10. それぞれ個別の注入電流で反転分布を生成する複数 n個 (n〉=2) の半 導体光増幅器と、 10. A plurality of n (n> = 2) semiconductor optical amplifiers that generate population inversion with individual injection currents,
入力端子と前記複数 n個の半導体光増幅器と出力端子を順次接続する (n + 1 ) 個の光接続手段と、  (N + 1) optical connection means for sequentially connecting an input terminal, the plurality of n semiconductor optical amplifiers, and an output terminal;
前記(n+ 1)個の光接続手段の奇数番または偶数番の位置に順次挿入される光 アイソレー夕と、  An optical isolator that is sequentially inserted into odd-numbered or even-numbered positions of the (n + 1) optical connection means;
連続光に対して強度変調を施す光強度変調手段と  Light intensity modulation means for performing intensity modulation on continuous light;
を具備することを特徴とする光変調装置。  An optical modulation device comprising:
11 · 前記複数 n個の半導体光増幅器の中の 1つの半導体光増幅器を、送信信号 により強度変調された注入電流を印加して前記光強度変調手段にした構成である ことを特徴とする請求項 10に記載の光変調装置。 11.A configuration in which one of the plurality of n semiconductor optical amplifiers serves as the light intensity modulation means by applying an injection current intensity-modulated by a transmission signal. 11. The light modulation device according to 10.
12. 前記(n + 1 )個の光接続手段のいずれか 1箇所に前記光強度変調手段を 揷入した構成であることを特徴とする請求項 10に記載の光変調装置。 12. The light modulation device according to claim 10, wherein the light intensity modulation means is inserted into any one of the (n + 1) light connection means.
13. 前記 (n+ 1) 個の光接続手段のうち、 前記入力端子および前記出力端子 と接続される光接続手段以外のいずれか 1箇所に前記光強度変調手段を挿入した 構成であることを特徴とする請求項 10に記載の光変調装置。 13. The light intensity modulating means is inserted into any one of the (n + 1) optical connecting means other than the optical connecting means connected to the input terminal and the output terminal. 11. The optical modulation device according to claim 10, wherein
14. 前記(n+ 1)個の光接続手段の中で前記光アイソレー夕が挿入されてい ない光接続手段に前記光強度変調手段を挿入した構成であることを特徴とする請 求項 12または 13に記載の光変調装置。 14. The claim 12 or 13, wherein the optical intensity modulating means is inserted into the optical connecting means in which the optical isolator is not inserted among the (n + 1) optical connecting means. 3. The light modulation device according to claim 1.
PCT/JP2004/008762 2003-06-19 2004-06-16 Optical modulating device WO2004113998A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04746231A EP1635211B1 (en) 2003-06-19 2004-06-16 Optical modulation apparatus
US10/534,310 US7336414B2 (en) 2003-06-19 2004-06-16 Optical modulating device
JP2005505047A JP3850866B2 (en) 2003-06-19 2004-06-16 Light modulator
US11/674,576 US7474460B2 (en) 2003-06-19 2007-02-13 Optical modulation apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003174499 2003-06-19
JP2003174491 2003-06-19
JP2003-174499 2003-06-19
JP2003195735 2003-07-11
JP2003-195735 2003-07-11
JP2003-174491 2003-09-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10534310 A-371-Of-International 2004-06-16
US11/674,576 Division US7474460B2 (en) 2003-06-19 2007-02-13 Optical modulation apparatus

Publications (1)

Publication Number Publication Date
WO2004113998A1 true WO2004113998A1 (en) 2004-12-29

Family

ID=33545087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008762 WO2004113998A1 (en) 2003-06-19 2004-06-16 Optical modulating device

Country Status (4)

Country Link
US (2) US7336414B2 (en)
EP (3) EP1635211B1 (en)
JP (1) JP3850866B2 (en)
WO (1) WO2004113998A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032824A (en) * 2016-08-26 2018-03-01 国立大学法人東北大学 Optical pulse signal generating device, laser processing device and bio imaging device
WO2019049952A1 (en) * 2017-09-08 2019-03-14 古河電気工業株式会社 Optical module

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336414B2 (en) 2003-06-19 2008-02-26 Nippon Telegraph And Telephone Corporation Optical modulating device
KR100539928B1 (en) * 2003-08-29 2005-12-28 삼성전자주식회사 Multi-wavelength light source and wavelength division multiplexing system using the same
KR20070108422A (en) * 2006-01-09 2007-11-12 한국전자통신연구원 Rsoa and the operating system based on downstream optical signal reuse method with feed-forward current injection
KR100908239B1 (en) * 2006-12-06 2009-07-20 한국전자통신연구원 Channel Pass / Coupling Optical Module and Channel Pass / Coupling Method in OMD Node Using the Same
US20100008671A1 (en) * 2008-07-08 2010-01-14 Standard Scientific Technologies, Inc. High Density Wave Channel Optical Data Communications
US20100021164A1 (en) * 2008-07-25 2010-01-28 Nortel Networks Limited Wdm pon rf/video broadcast overlay
KR100987793B1 (en) * 2008-10-10 2010-10-13 한국전자통신연구원 Reflective semiconductor optical amplifier and optical signal treating method using the same
GB0819616D0 (en) * 2008-10-25 2008-12-03 Ct For Integrated Photonics Th Wavelenghth division multiplexing transmission eqipment
WO2010099820A1 (en) * 2009-03-04 2010-09-10 Nokia Siemens Networks Oy Method for data processing in an optical network component and optical network component
US8345349B2 (en) * 2009-05-27 2013-01-01 Hewlett-Packard Development Company, L.P. Compact optical resonators
US8655176B2 (en) * 2010-01-27 2014-02-18 Telcordia Technologies, Inc. System and methods for converting a temporally short and spectrally broad optical pulse into a train of spectrally narrow optical pulses
EP2372936A1 (en) * 2010-03-29 2011-10-05 Alcatel Lucent Photonic integrated transmitter
US8755693B2 (en) * 2011-05-16 2014-06-17 Eastern Optx, Inc. Bi-directional, compact, multi-path and free space channel replicator
WO2012149780A1 (en) * 2011-09-29 2012-11-08 华为技术有限公司 Method, system, and apparatus for transmitting data information by using optical signals
EP2575276B1 (en) * 2011-09-30 2016-08-10 Alcatel Lucent Integrated node architecture for optical packet rings
US9025241B2 (en) * 2011-10-14 2015-05-05 Kotura, Inc. Gain medium providing laser and amplifier functionality to optical device
WO2014090278A1 (en) * 2012-12-10 2014-06-19 Telefonaktiebolaget L M Ericsson (Publ) Power control in bidirectional wdm optical link
EP2936626A4 (en) * 2012-12-21 2016-08-17 David Welford Systems and methods for narrowing a wavelength emission of light
JP2016524722A (en) 2013-05-14 2016-08-18 コリアント・アドヴァンスド・テクノロジー・エルエルシー Super-responsive phase shifter for depletion mode silicon modulator
JP2016171156A (en) * 2015-03-12 2016-09-23 ソニー株式会社 Optical amplification device and light source device
US10971861B2 (en) * 2017-02-24 2021-04-06 Michael S. Gzybowski Polarized electrical plug and adaptor with modular orientation verification
US11082143B2 (en) * 2017-11-21 2021-08-03 Cable Television Laboratories, Inc. Systems and methods for full duplex coherent optics
US10917175B2 (en) 2017-11-21 2021-02-09 Cable Television Laboratories, Inc. Systems and methods for full duplex coherent optics
US10735097B2 (en) * 2017-11-21 2020-08-04 Cable Television Laboratories, Inc Systems and methods for full duplex coherent optics
US10892829B2 (en) * 2017-11-21 2021-01-12 Cable Television Laboratories, Inc Systems and methods for full duplex coherent optics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657148A (en) 1996-05-07 1997-08-12 Lucent Technologies Inc. Apparatus and method for a single-port modulator having amplification
JP2002318374A (en) * 2001-04-20 2002-10-31 Nippon Telegr & Teleph Corp <Ntt> Multi-wavelength batch optical modulating device
CA2389974A1 (en) * 2001-06-13 2002-12-13 Nippon Telegraph And Telephone Corporation Multi-wavelength optical modulation circuit and wavelength-division multiplexed optical signal transmitter

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173597A (en) 1996-12-06 1998-06-26 Nec Corp Optical equalizer
JPH1146030A (en) 1997-05-29 1999-02-16 Nec Corp Optical signal relaying and amplifying apparatus and optical level regulator
US6134250A (en) * 1998-05-14 2000-10-17 Lucent Technologies Inc. Wavelength-selectable fiber ring laser
SE513096C2 (en) * 1998-10-02 2000-07-10 Ericsson Telefon Ab L M Method and apparatus for channel equalization of wavelength multiplexed optical systems
JP2002111634A (en) * 2000-09-29 2002-04-12 Kddi Submarine Cable Systems Inc Optical transmission apparatus
US7019893B2 (en) * 2001-02-12 2006-03-28 Metrophotonics Inc. Optical dynamic gain amplifier
JP3732804B2 (en) 2001-06-13 2006-01-11 日本電信電話株式会社 Multi-wavelength optical modulation circuit and wavelength-multiplexed optical signal transmitter
JP2003018853A (en) 2001-06-28 2003-01-17 Fuji Electric Co Ltd Common mode current reduction method
US6522462B2 (en) * 2001-06-29 2003-02-18 Super Light Wave Corp. All optical logic using cross-phase modulation amplifiers and mach-zehnder interferometers with phase-shift devices
KR100396510B1 (en) * 2001-09-11 2003-09-02 삼성전자주식회사 Dispersion-compensated optical fiber amplifier
US7336414B2 (en) 2003-06-19 2008-02-26 Nippon Telegraph And Telephone Corporation Optical modulating device
US7123407B2 (en) * 2005-01-20 2006-10-17 Korea Institute Of Science And Technology Apparatus and method for realizing all-optical NOR logic device using gain saturation characteristics of a semiconductor optical amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657148A (en) 1996-05-07 1997-08-12 Lucent Technologies Inc. Apparatus and method for a single-port modulator having amplification
JP2002318374A (en) * 2001-04-20 2002-10-31 Nippon Telegr & Teleph Corp <Ntt> Multi-wavelength batch optical modulating device
CA2389974A1 (en) * 2001-06-13 2002-12-13 Nippon Telegraph And Telephone Corporation Multi-wavelength optical modulation circuit and wavelength-division multiplexed optical signal transmitter
EP1267510A2 (en) 2001-06-13 2002-12-18 Nippon Telegraph and Telephone Corporation Multi-wavelength optical modulation circuit and wavelength-division multiplexed optical signal transmitter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. BORELLA ET AL., PROCEEDINGS OF THE IEEE, vol. 85, no. 8, 1997, pages 1274 - 1307

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032824A (en) * 2016-08-26 2018-03-01 国立大学法人東北大学 Optical pulse signal generating device, laser processing device and bio imaging device
WO2019049952A1 (en) * 2017-09-08 2019-03-14 古河電気工業株式会社 Optical module
JPWO2019049952A1 (en) * 2017-09-08 2020-10-22 古河電気工業株式会社 Optical module
JP7353975B2 (en) 2017-09-08 2023-10-02 古河電気工業株式会社 optical module

Also Published As

Publication number Publication date
EP2253991B1 (en) 2012-03-14
EP1635211A4 (en) 2010-02-24
US20070127113A1 (en) 2007-06-07
JP3850866B2 (en) 2006-11-29
EP1635211A1 (en) 2006-03-15
EP2253992A2 (en) 2010-11-24
US7336414B2 (en) 2008-02-26
EP2253992A3 (en) 2010-12-22
JPWO2004113998A1 (en) 2006-07-20
EP2253991A2 (en) 2010-11-24
EP1635211B1 (en) 2011-08-17
US20060024066A1 (en) 2006-02-02
EP2253991A3 (en) 2010-12-22
US7474460B2 (en) 2009-01-06
EP2253992B1 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP3850866B2 (en) Light modulator
JP3438770B2 (en) Optical digital playback device
US8781324B2 (en) Optical receiver integrated on a substrate
KR101059310B1 (en) Method and apparatus for integrating laser sources and detectors for passive optical networks
US8606107B2 (en) Colorless dense wavelength division multiplexing transmitters
PL180797B1 (en) Optical fibre based telecommunication system and method of transmitting signals so as to reduce optical noises associated with four-wave mixing as well as optical amplifier therefor
Talli et al. Rayleigh noise mitigation in long-reach hybrid DWDM-TDM PONs
JPWO2002035665A1 (en) Optical transmitter, optical repeater, optical receiver, and optical transmission method
JP4537351B2 (en) Light modulator
JP7097212B2 (en) Optical parametric amplifiers, optical amplification systems, wavelength transducers and optical communication systems
JP2007329482A (en) Two-stage erbium amplifier to flatten gain
JP6220314B2 (en) Optical amplifier
JP3553857B2 (en) Wavelength conversion circuit
US9172467B2 (en) Raman pump circuit
Zhao et al. A novel bidirectional add/drop module using waveguide grating routers and wavelength channel matched fiber gratings
WO2008141442A1 (en) Transmitter and receiver for optical communication systems
JPH1154842A (en) Light source for optical integrated type optical communication
JP7438472B2 (en) Optical modules and optical communication systems
CN100555027C (en) Optic modulating device
US11689287B2 (en) Optical communications module link extender including ethernet and PON amplification
Urban et al. Coherent crosstalk-suppression in WDM access networks employing reflective semiconductor optical amplifiers
JP2006163423A (en) Wavelength converter for generating wavelength tunable laser optical source in itself
JP3219034B2 (en) Optical add / drop device and optical gate switch
Fu et al. Novel grating-in-etalon WDM device and a proof-of-concept demonstration of a 1/spl times/40 WDM in LiNbO/sub 3
JP2001085787A (en) Wavelength-variable type light transmitter/receiver

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005505047

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006024066

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10534310

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004746231

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004801430X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 10534310

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004746231

Country of ref document: EP