WO2004113169A1 - Vorrichtung und verfahren zur überwachung der sauerstoffkonzentration in einem flugzeugtank - Google Patents

Vorrichtung und verfahren zur überwachung der sauerstoffkonzentration in einem flugzeugtank Download PDF

Info

Publication number
WO2004113169A1
WO2004113169A1 PCT/EP2004/051062 EP2004051062W WO2004113169A1 WO 2004113169 A1 WO2004113169 A1 WO 2004113169A1 EP 2004051062 W EP2004051062 W EP 2004051062W WO 2004113169 A1 WO2004113169 A1 WO 2004113169A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
laser
oxygen
absorption
measuring section
Prior art date
Application number
PCT/EP2004/051062
Other languages
English (en)
French (fr)
Inventor
Gilles Chabanis
Maximilian Fleischer
Philippe Mangon
Hans Meixner
Rainer Strzoda
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP04741756A priority Critical patent/EP1633627A1/de
Priority to US10/559,261 priority patent/US7456969B2/en
Publication of WO2004113169A1 publication Critical patent/WO2004113169A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/32Safety measures not otherwise provided for, e.g. preventing explosive conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Definitions

  • the invention relates to a device and a method for detecting and monitoring the oxygen concentration in an aircraft tank using laser spectroscopy, for which an absorption measurement section is implemented in a measurement gas volume within an aircraft tank.
  • the known method of laser spectroscopy monitors the ignition limits of gas mixtures in the aircraft tank, the target gas of the measurement being oxygen.
  • the tanks are filled with this air until the lower ignition limit is undershot. Depending on the operating conditions, this is 11.5 to 12 vol.% Oxygen.
  • the literature reference [2] is relevant in this regard.
  • the oxygen concentration is used to check the effectiveness of this measure tion in the tanks.
  • the difficulty with the measurement lies in the fact that there are several tanks in larger aircraft and these are each divided in order to prevent an uncontrolled fuel flow. This creates many individual gas-filled cavities that are homogeneous. Difficult to flush with inert gas. This results in the need to measure the oxygen content in several places.
  • a sensor in this area should have a life expectancy of well over 10 years. A long-term stable calibration of the concentration is also necessary. The process must be able to check itself to rule out erroneous measurements.
  • the operating temperature should be in the range of -55 ° C to + 85 ° C.
  • the sensor needs air Withstand pressure fluctuations in the range of 250 to 1100 mbar.
  • the air humidity in the measuring range is between 0 and 100% relative air humidity.
  • the electrochemical cells used in the tests have some serious disadvantages for the planned application. There are, for example, limited lifetimes of approx. 2 years, which necessitates cost-intensive replacement at regular intervals. Since moisture is required for the function of the electrochemical cell, the cell can dry out quickly when operating in dry air, as is desired in an airplane. This leads to a shortening of the lifespan. In addition, operation at low temperatures is not possible because the electrolyte freezes out.
  • Paramagnetic methods use a complex mechanical measuring system with a balance that is susceptible to vibrations and accelerations, such as those that occur in aircraft.
  • the object of the invention is to provide a device and a method with which the formation of ignitable mixtures within an aircraft tank can be determined.
  • the invention is based on the knowledge that laser absorption spectroscopy meets the requirements for a sensor for detecting oxygen in an aircraft tank as a whole.
  • Laser absorption spectroscopy is used in the visible and in the infrared wavelength range.
  • individual, respectively selected absorption lines of the oxygen molecules in the range between 758 and 766 nm are evaluated.
  • Laser absorption spectroscopy is a known method. Lasers or laser diodes are used that emit monochrome in the static operating state. The tunability of the wavelength is exploited, for example by varying the operating temperature. In this way, a wavelength interval can be covered, which is substituted for a selected absorption line in the spectrum of the target gas, here oxygen.
  • the laser light shines through a specifically positioned gas absorption path in which the oxygen is located if it exists in the tank. In the presence of oxygen, a wavelength-dependent weakening of the transmitted light will occur. The weakening always correlates with the concentration of the gas to be measured.
  • a photodetector records the spectrum, which is processed in subsequent signal processing electronics and evaluated on a processor using appropriate software. Usable for evaluation Methods in laser spectroscopy are either the direct absorption measurement, a derivative method or high-frequency modulation methods such as the heterodyne method as described in references [4] and [5].
  • the absorption measurement section is positioned on the tank of an aircraft in such a way that all components of the sensor connected to electrical lines are placed outside the tank or outside the tank wall. In the interior of the
  • Tanks only protrude into a holder with a reflecting element at the end.
  • the entire arrangement is attached in the upper region of a tank, in particular at a raised point where, for example, the tank has a bulge.
  • This positioning is associated with the fact that measurements are carried out in the gas phase.
  • the oxygen sensor should not be flushed with fuel or should be able to measure as quickly as possible in a gas volume in which gases accumulate within an aircraft tank.
  • the transmitting and receiving elements as well as usually a temperature sensor are located outside the tank wall, a feed-through opening in the tank wall is closed with a window that is transparent to the light wavelengths used in operation, and the holder and reflector extend into the tank, so that an absorption measurement section is shown inside the tank.
  • the reflector can advantageously be a retroreflector. Further advantages are achieved by means of a concave mirror.
  • the ignitable mixtures are monitored by the detection of oxygen with the additional measurement of the oxygen concentration.
  • a lower ignition limit of a mixture of oxygen and the possible vapors of the fuel is usually monitored by measuring the oxygen concentration. Exemplary embodiments are described below with the aid of schematic figures which do not restrict the invention.
  • FIG. 1 shows an embodiment of the oxygen monitor attached to the top of an aircraft tank
  • FIG. 2 shows an alternative embodiment of the oxygen monitor, which is attached in the tank wall by means of a single-hole assembly with thread and seal.
  • Figure 1 shows an embodiment of a measuring probe attached in the upper part of the aircraft tank.
  • the laser and photo detector are located outside the tank interior. Only the optical laser beam passes through a window 3 into the interior of the tank 1, where the oxygen absorption is to be measured in a measuring gas volume.
  • This design prevents the need for additional electrical lines to be routed into the tank, which generally pose a potential explosion risk.
  • a concave mirror reflects the light and focuses it on the photodetector, the photodiode 7.
  • the reflector 5 can also be shown as a simply diffusely reflecting surface, although collecting optics in the beam path for processing the received signal is necessary.
  • Figure 2 shows an alternative embodiment relative to Figure 1.
  • the advantage of this arrangement is the simple assembly.
  • the monitor is screwed into a threaded hole in the tank wall.
  • the sensor is attached to the highest point of the tank, so that the probability that fuel gets into the beam path is low. As long as fuel does not permanently block the beam path, spectral measurement will be possible. Because the acquisition of a spectrum only takes a few milliseconds.
  • Spectra that are partially or completely affected by fuel in the beam path of the absorption measurement section can easily differentiated from undisturbed spectra and thus filtered out for the measurement.
  • the method has a high dynamic range for the optical received signal, see literature [6], fogging of the window 3 or the reflector 5 can also be tolerated within wide limits.
  • the spectral measurement always provides the entire absorption line, in particular also the areas in which little or no absorption occurs, such as an area next to an absorption line, the measurement background is known and a wavelength-independent change in the transmissions of the measuring cell does not interfere with the concentration measurement ,
  • the concentration of the gas is proportional to the ratio of the minimum transmission in the center of the absorption line to the transmission next to the line.
  • the narrow spectral line width of the laser emission which is typically less than 1% of the half-width of the absorption line, allows the inclusion of a
  • the measured spectrum can be compared directly with a calculated spectrum with knowledge of the molecular parameters such as the crossover frequency, integrated line width, pressure distribution coefficient and energy of the initial state as well as length of the absorption path, temperature and pressure.
  • the only free parameter is the gas concentration. So no device parameters are included in the calculation. This makes the method a reference method and is therefore predestined for the intended application, in which the long-term stability of the concentration calibration is essential.
  • the parameters of the laser diode that go into the measurement are the curvature of the laser characteristic and the correlation between the laser current and the emission wavelength.
  • the curvature of the laser characteristic is assumed to be parabolic. An on The change in curvature is taken into account in the evaluation and therefore does not influence the measurement result.
  • the change in the correlation between laser current and emission wavelength can be recalibrated at any time by measuring the oxygen spectrum at different temperatures.
  • oxygen absorption can always be identified without any doubt. This enables the system to check itself. As long as the absorption is measured, it is ensured that the laser wavelength is correct and that the complete evaluation electronics and software work correctly. If no oxygen is expected in the measuring cell, a reference path can be created by beam splitting, in which a reference cell with oxygen is attached. A photo detector in the reference branch then records the spectrum. The evaluation is carried out as in the present case. No moving parts are required. This means that there is no mechanical wear and tear and no influence from vibrations and accelerations.
  • the process of laser spectroscopy for the detection of oxygen fulfills the requirements for use on egg aircraft tank. Certain features stand out.
  • the feature of self-checking is very important, so that it can be determined automatically at any time whether the current measurement is correct or not. This is based on the fact that a predetermined so-called signature, that is to say an absorption spectrum of the oxygen line, must be present at all times and has sufficient features for unambiguous identification of the measurement gas spectrum.
  • FIG. 1 shows in detail a tank 1 that has been partially broken open and is surrounded by a tank wall 2.
  • the parts of the absorption measurement section placed within the tank volume, the reflector 5 and a holder (not shown) can be clearly separated from the components of the absorption measurement section positioned outside the tank volume, which have an electrical power supply.
  • the window 3 becomes part of the tank wall 2.
  • Sensor electronics 4, which is also externally attached and is also insulated from the tank, is connected to the absorption measuring section via electrical connections 9.
  • prepared measurement signals can be transmitted to the outside.
  • the sufficient length 11 of the absorption measurement section is approximately 2 ⁇ 5 cm, taking into account the double passage of the light beams.
  • FIG. 2 shows an alternative embodiment of the oxygen monitor with a design that enables the sensor to be installed perpendicular to the tank wall 2.
  • the transmitter is guided perpendicular to the tank wall 2 through it and clamped or screwed in.
  • the reflector 5 together with the electrically connected components of the laser diode 6, the photodiode 7 and the temperature sensor 8, represents the absorption measurement path, the window 3 representing a dividing line between the internal and external components.
  • the window 3 is in turn a replacement for the tank wall 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Vorrichtung zur Überwachung der Sauerstoffkonzentration in einem Flugzeugtank, aufweisend eine Absorptionsmessstrecke mit Laser/Laserdiode (6), Fotodiode (7), Temperatursensor (8) und Reflektor (5) zur Laserspektroskopie an einem Messgasvolumen innerhalb des Tanks, deren stromführende Bauteile ausserhalb des Tankraumes und deren Reflektor (5) innerhalb des Tankraumes im Messgasvolumen positioniert und über ein in der Tankwand (2) befindliches Fenster (3) optisch miteinander gekoppelt sind, wobei die Absorptionsmessstrecke überwiegend im Messgasraum dargestellt ist.

Description

Vorrichtung und Verfahren zur Überwachung der Sauerstoffkon- zentration in einem Flugzeugtank
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Detektion und zur Überwachung der Sauerstoffkonzentration in einem Flugzeugtank unter Einsatz der Laserspektroskopie für die in einem Messgasvolumen innerhalb eines Flugzeugtanks ei- ne Absorptionsmessstrecke realisiert ist. Mit dem bekannten Verfahren der Laserspektroskopie werden Zündgrenzen von Gasgemischen im Flugzeugtank überwacht, wobei das Zielgas der Messung Sauerstoff ist.
In der Luftfahrt sind aus den letzten Jahrzehnten mehrere Flugzeugabstürze bekannt, die nach letzten Erkenntnissen durch Explosionen von Flugzeugtanks verursacht wurden. Ein besonders krasser Vorfall ist der Absturz eines Flugzeuges, bei dem es kurz nach dem Start in New York im Juli 1996 zu einer Explosion kam. Dabei explodierte ein Treibstofftank und führte zum Absturz der Maschine. Die genaue Ursache für die Zündung der Explosion konnte nicht bis ins Detail ermittelt werden. Mach diesem Vorfall hat sich jedoch die Diskussion um eine Prävention solcher Vorfälle wesentlich intensiviert. Die amerikanische Flugfahrtaufsichtsbehörde (FAA) initiierte ein Programm, in dem verschiedene Ansätze zum sicheren Betrieb von Flugzeugtanks untersucht werden. Eine Möglichkeit besteht darin, die Bildung eines zündfähigen Luft/Treibstoff- Gemischtes im Tank durch Erniedrigung des Sauerstoffanteiles zu verhindern. Dies wird beispielsweise in der Literaturstelle [1] beschrieben. Dabei wird an Bord eines Flugzeuges ein System mitgeführt, welches das Stickstoff angereicherte Luft erzeugt. Die Tanks werden mit dieser Luft gefüllt, bis die untere Zündgrenze unterschritten ist. Diese liegt je nach Be- triebsbedingungen bei 11,5 bis 12 Vol.-% Sauerstoff. Diesbezüglich ist die Literaturstelle [2] relevant. Zur Überprüfung der Wirksamkeit dieser Maßnahme ist die Sauerstoffkonzentra tion in den Tanks permanent zu überwachen. Die Schwierigkeit bei der Messung liegt in der Tatsache, dass es in größeren Flugzeugen mehrere Tanks gibt und diese jeweils unterteilt sind, um einen unkontrollierten Treibstofffluss zu verhin- dern. Dadurch entstehen viele einzelne gasgefüllte Hohlräume, die ein homogenes. Spülen mit inertem Gas erschweren. Daraus ergibt sich die Notwendigkeit, den Sauerstoffgehalt an mehreren Stellen zu messen.
Systeme zur Spülung eines Flugzeugtanks mit Stickstoff angereicherter Luft sind bisher nicht routinemäßig im Einsatz. Bei Experimenten mit Flugzeugtanks wurde ein zentraler Sauerstoffmonitor eingesetzt, dem die zu untersuchende Luft aus den einzelnen Tanks über ein Rohrleitungssystem zugeführt werden. Dabei werden die einzelnen Messpunkte sukzessive zyklisch abgefragt. Siehe hierzu die Literaturstelle [3] . Die Messgasförderung erfordert bei diesem System einen erheblichen technischen Aufwand. Da ein zusätzliches Leistungssystem für potentiell explosive Gasgemische benötigt wird, ergibt sich somit eine zusätzliche Gefahrenquelle.
Verfahren zur Messung der Sauerstoffkonzentration sind zahlreich. Die bekanntesten Verfahren stehen in Zusammenhang mit einer elektrochemischen Zelle, Pumpsonden mit Festelektroly- ten (Lambda-Sonde) , Verfahren, die den Paramagnetismus von Sauerstoff als Messeffekt ausnutzen, Fluoreszenz Quenching oder optische -Absorptionsspektroskopie.
Die meisten dieser Verfahren eignen sich für den Einsatz im oder am Flugzeugtank wenig, da hierbei hohe Anforderungen an einen entsprechenden Sensor gestellt werden. Ein Sensor in diesem Bereich sollte beispielsweise eine Lebenserwartung von weit über 10 Jahren aufweisen. Weiterhin ist eine langzeit- stabile Kalibrierung der Konzentration notwendig. Das Verfah- ren muss sich selbst überprüfen können, um fehlerhafte Messungen auszuschließen. Die Betriebstemperatur sollte im Bereich von -55° C bis +85° C liegen. Der Sensor muss Luft druckschwankungen im Bereich von 250 bis 1100 mbar aushalten. Die Luftfeuchte im Messbereich liegt zwischen 0 und 100% relativer Luftfeuchte.
Die bei den Versuchen eingesetzten elektrochemischen Zellen weisen für die geplante Anwendung einige gravierende Nachteile auf. Es ergeben sich beispielsweise begrenzte Lebensdauern von ca. 2 Jahren, was einen kostenintensiven Austausch in regelmäßigen Abständen erforderlich macht. Da für die Funktion der elektrochemischen Zelle Feuchtigkeit benötigt wird, kann die Zelle beim Betrieb in trockener Luft, wie es im Flugzeug angestrebt wird, schnell austrocknen. Dies führt zu einer Verkürzung der Lebensdauer. Daneben ist ein Betrieb bei niedrigen Temperaturen nicht möglich, weil der Elektrolyt aus- friert.
Pumpsonden mit Festelektrolyt scheiden aus, da diese zum Betrieb auf mehrere 100° C aufgeheizt werden müssen und somit eine Zündquelle für das Luft/Kraftstoff-Gemisch darstellen.
Paramagnetische Verfahren nutzen ein aufwändiges mechanisches Messsystem mit einer Waage, die gegenüber Vibrationen und Beschleunigungen, wie sie im Flugzeug auftreten, anfällig ist.
Derzeit werden Anstrengungen unternommen Sensoren nach dem Prinzip des Fluoreszenz Quenching für die angestrebte Anwendung zu entwickeln. Dabei werden kurzwellige Lichtpulse mit einem Lichtwellenleiter in einen Bereich der Faser gebracht, die mit einer speziellen fluoreszierenden Substanz beschichtet ist. Die Fluoreszenzintensität sowie die Abklingzeit der Fluoreszenz hängen von der Sauerstoffkonzentration in der Umgebung ab. Nachteilig bei diesem Verfahren ist die fehlende Möglichkeit der Selbst-Überprüfung. Die Korrelation der Sau- erstoffkonzentration mit der Messgröße hängt von der chemischen Langzeitstabilitat der Fluoreszenzschicht gegenüber allen auftretenden Umwelteinflüssen ab. Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren bereitzustellen, womit die Entstehung von zündfähigen Gemischen innerhalb eines Flugzeugtanks fest- stellbar ist.
Die Lösung dieser Aufgabe geschieht durch die jeweilige Merkmalskombination der Ansprüche 1 bzw. 10. Vorteilhafte Ausgestaltungen können den jeweiligen abhängigen Ansprüchen entnom- men werden.
Der Erfindung liegt die Erkenntnis zugrunde, dass die La-ser- absorptionsSpektroskopie die Anforderungen an einen Sensor zur Detektion von Sauerstoff in einem Flugzeugtank insgesamt erfüllt. Dabei wird die Laserabsorptionsspektroskopie im sichtbaren und im infraroten Wellenlängenbereich eingesetzt. Ausgewertet werden insbesondere einzelne, jeweils ausgewählte Absorptionslinien des Sauerstoffmoleküle im Bereich zwischen 758 bis 766 nm.
Die Laserabsorptionsspektroskopie ist ein an sich bekanntes Verfahren. Eingesetzt werden Laser bzw. Laserdioden, die im statischen Betriebszustand monochrom emittieren. Ausgenützt wird dabei die Wellenlängenabstimmbarkeit, indem beispiels- weise die Betriebstemperatur variiert wird. Damit kann ein Wellenlängenintervall überstrichen werden, welches an die Stelle einer ausgewählten Absorptionslinie im Spektrum des Zielgases, hier Sauerstoff, gesetzt wird. Das Laserlicht durchstrahlt eine gezielt positionierte Gasabsorptionsstre- cke, in der sich der Sauerstoff befindet, falls er in dem Tank existent ist. Bei Anwesenheit von Sauerstoff wird eine wellenlängenabhängige Schwächung des durchgehenden Lichtes auftreten. Die Schwächung korreliert immer mit der Konzentration des zu messenden Gases. Ein Fotodetektor nimmt das Spektrum auf, das in einer nachfolgenden Signalverarbeitungs- elektronik aufbereitet und mit entsprechender Software auf einem Prozessor ausgewertet wird. Zur Auswertung verwendbare Verfahren in der Laserspektroskopie sind entweder die direkte Absorptionsmessung, ein Derivativverfahren oder hochfrequente Modulationsverfahren wie beispielsweise das Heterodyn- Verfahren, wie es in den Literaturstellen [4] und [5] be- schrieben wird.
Die Äbsorptionsmessstrecke wird am Tank eines Flugzeuges derart positioniert, dass sämtliche mit elektrischen Leitungen verbundenen Bauelemente des Sensors außerhalb des Tankes bzw. außerhalb der Tankwand platziert sind. In den Innenraum des
Tanks ragt lediglich eine Halterung mit einem am Ende vorhandenen zurückreflektierenden Element hinein. Die gesamte Anordnung wird im oberen Bereich eines Tanks insbesondere an einer erhabenen Stelle, an der beispielsweise der Tank eine Ausbuchtung aufweist, angebracht. Diese Positionierung ist damit verbunden, dass in der Gasphase gemessen wird. Der Sauerstoffsensor sollte möglichst nicht von Treibstoff umspült werden bzw. möglichst schnell in einem Gasvolumen messen können, in dem sich innerhalb eines Flugzeugtanks Gase ansam- mein. Als Ergebnis sitzen somit die Sende- und Empfangselemente sowie in der Regel auch ein Temperatursensor außerhalb der Tankwand, eine Durchführungsöffnung in der Tankwand ist mit einem für die im Betrieb verwendeten Lichtwellenlängen durchlässigen Fenster abgeschlossen und Halterung und Reflek- tor reichen in den Tank hinein, so dass eine Absorptionsmessstrecke innerhalb des Tankes dargestellt ist. Der Reflektor kann vorteilhafterweise ein Retroreflektor sein. Weitere Vorteile werden mittels eines Hohlspiegels erreicht.
Überwacht werden die zündfähigen Gemische durch die Detektion von Sauerstoff mit der zusätzlichen Messung der Sauerstoffkonzentration. In der Regel wird eine untere Zündgrenze eines Gemisches aus Sauerstoff und den möglichen Dämpfen des Treibstoffes überwacht, indem die Sauerstoffkonzentration gemessen wird. Im Folgenden werden anhand von schematischen, die Erfindung nicht einschränkenden Figuren Ausführungsbeispiele beschrieben.
Figur 1 zeigt ein Ausführungsbeispiel des SauerStoffmonitors, angebracht an der Oberseite eines Flugzeugtanks,
Figur 2 zeigt eine alternative Ausführungsform des Sauer- stoffmonitors, der in der Tankwand mittels einer Ein- lochmontage mit Gewinde und Dichtung angebracht ist.
Figur 1 zeigt ein Ausführungsbeispiel einer Messsonde angebracht im oberen Teil des Flugzeugtanks . Laser und Fotodetektor befinden sich außerhalb des Tankinnenraumes . Nur der op- tische Laserstrahl gelangt durch ein Fenster 3 in das Innere des Tanks 1, wo in einem Messgasvolumen die Sauerstoffabsorption gemessen werden soll. Durch diese Konstruktion wird verhindert, dass zusätzliche elektrische Leitungen in den Tank geführt werden müssen, die grundsätzlich ein potentielles Explosionsrisiko darstellen. In dem Ausführungsbeispiel entsprechend Figur 1 reflektiert ein Hohlspiegel das Licht und fokussiert es auf den Fotodetektor, die Fotodiode 7. Der Reflektor 5 kann auch als einfach diffus spiegelnde Oberfläche dargestellt sein, wobei jedoch eine Sammeloptik im Strahlen- gang zur Aufbereitung des Empfangssignals nötig ist.
Figur 2 zeigt eine alternative Ausführungsform relativ zu Figur 1. Der Vorteil dieser Anordnung liegt in der einfachen Montage . Der Monitor wird in eine Gewindebohrung in der Tank- wand eingeschraubt. Der Sensor wird möglichst an der erhabensten Stelle des Tankes angebracht, so dass die Wahrscheinlichkeit, dass Treibstoffes in den Strahlengang gelangt, gering ist. Solange nicht dauernd Treibstoff den Strahlengang blockiert, wird eine Spektralmessung möglich sein. Denn die Aufnahme eines Spektrums dauert nur wenige Millisekunden.
Spektren, die teilweise oder ganz durch Treibstoff im Strahlengang der Absorptionsmessstrecke beeinträchtigt sind, kön nen leicht von ungestörten Spektren unterschieden und so für die Messung herausgefiltert werden.
Da das Verfahren einen hohen dynamischen Bereich für das op- tische Empfangssignal aufweist, siehe Literaturstelle [6], kann auch ein Beschlagen des Fensters 3 bzw. des Reflektors 5 in weiten Grenzen toleriert werden. Da die spektrale Messung immer die ganze Absorptionslinie liefert, insbesondere auch die Bereiche, in denen keine bzw. geringe Absorption auf- tritt, wie beispielsweise ein Bereich neben einer Absorptionslinie, ist der Messhintergrund bekannt und eine wellenlängenunabhängige Änderung der Transmissionen der Messzelle stört die Konzentrationsmessung nicht. Die Konzentration des Gases ist proportional zum Verhältnis der minimalen Transmis- sion im Zentrum der Absorptionslinie zur Transmission neben der Linie.
Weiterhin erlaubt die schmale spektrale Linienbreite der Laseremission, die typischerweise geringer als 1 % der Halb- wertsbreite der Absorptionslinie ist, die Aufnahme eines
Spektrums ohne spektrale Verbreiterung durch das Messinstrument. Das gemessene Spektrum kann direkt mit einem berechneten Spektrum bei Kenntnis der Molekülparameter wie der Übergangsfrequenz, integrierter Linienstärke, Druckvertei- lungskoeffizienz und Energie des Anfangszustandes sowie Länge des Absorptionsweges, Temperatur und Druck verglichen werden. Der einzige freie Parameter ist dann die Gaskonzentration. Es gehen also in die Berechnung keine Geräteparameter ein. Dadurch wird das Verfahren zu einem Referenzverfahren und ist damit prädestiniert für die angestrebte Anwendung, bei der es wesentlich auf die Langzeitstabilität der Konzentrationskalibrierung ankommt .
Die Parameter der Laserdiode, die in die Messung eingehen, sind die Krümmung der Laserkennlinie und die Korrelation zwischen Laserstrom und der Emissionswellenlänge. Die Krümmung der Laserkennlinie wird als parabolisch angenommen. Eine An derung der Krümmung wird bei der Auswertung berücksichtigt und beeinflusst das Messergebnis daher nicht. Die Änderung der Korrelation zwischen Laserstrom und Emissionswellenlänge kann durch Messung des Sauerstof Spektrums bei verschiedenen Temperaturen jederzeit nachkalibriert werden.
Zur SelbstJustierung ist anzumerken, dass im Normalfall eine kleine Korrektur durchzuführen ist, für den Fall, dass die gemessene Position der Absorptionslinie nicht mit der gespeicherten Position übereinstimmt. In diesem Fall verschiebt man die instrumentelle Wellenlängenskala bis beide Positionen der Absorptionslinien wieder übereinstimmen. Wenn die Diskrepanz größer ist, muss ein größerer Bereich des Spektrums gemessen werden (bei verschiedenen Temperaturen) , in dem mehrere Absorptionslinien auftreten. Aus dem bekannten Intensitätsverhältnis der verschiedenen Linien lasst sich dann das gemessene Spektrum eindeutig dem gespeicherten Spektrum bezüglich der Wellenlängenskala zuordnen.
Solange noch eine Restmenge Sauerstoff im Tank vorhanden ist, kann immer eine Sauerstoffabsorption zweifelsfrei identifiziert werden. Damit kann sich das System selbst überprüfen. Solange die Absorption gemessen wird, ist sichergestellt, dass die Laserwellenlänge stimmt und die komplette Auswerteelektronik und Software korrekt funktioniert. Wenn in der Messzelle kein Sauerstoff zu erwarten ist, kann durch Strahlteilung ein Referenzweg erzeugt werden, in dem eine Referenzzelle mit Sauerstoff angebracht ist. Ein Fotodetektor im Re- ferenzzweig nimmt dann das Spektrum auf. Die Auswertung erfolgt wie im vorliegenden Fall. Es werden keine bewegten Teile benötigt. Somit tritt auch kein mechanischer Verschleiß und keine Beeinflussung durch Vibrationen und Beschleunigungen auf.
Das Verfahren der Laserspektroskopie zur Detektion von Sauerstoff erfüllt insgesamt die Anforderungen zum Einsatz an ei nem Flugzeugtank. Dabei treten bestimmte Merkmale besonders hervor. Sehr wichtig ist das Merkmal der Selbstüberprüfung, so dass zu jedem Zeitpunkt automatisch feststellbar ist, ob die aktuelle Messung korrekt ist oder nicht. Dies begründet sich darauf, dass zu jeder Zeit eine vorbestimmte sogenannte Signatur, also ein Absorptionsspektrum der Sauerstofflinie, vorliegen muss, die genügend Merkmale für eine eindeutige Identifikation des Messgasspektrums aufweist.
Figur 1 zeigt im einzelnen einen Tank 1, der teilweise aufgebrochen ist und von einer Tankwand 2 umrandet ist. Bezogen auf das Messfenster 3 lassen sich die innerhalb des Tankvolumens platzierten Teile der Absorptionsmessstrecke, der Reflektor 5 und eine nicht dargestellte Halterung, klar trennen von den außerhalb des Tankvolumens positionierten Bauteilen der Absorptionsmessstrecke, die eine elektrische Stromversorgung aufweisen. In diesem Fall wird das Fenster 3 zu einem Teil der Tankwand 2. Eine ebenfalls extern angebrachte Sensorelektronik 4, die ebenfalls gegenüber dem Tank isoliert ist, ist über elektrische Verbindungen 9 mit der Absorptionsmessstrecke verbunden. Anhand der Übertragung 10 können auf bereitete Messsignale nach außen hin übertragen werden. Die ausreichende Länge 11 der Absorptionsmessstrecke beträgt ungefähr 2 x 5 cm, wobei der doppelte Durchlauf der Lichtstrah- len berücksichtigt ist.
Figur 2 zeigt eine alternative Ausführungsform des Sauer- stoffmonitors mit einer Bauform, die einen Einbau des Sensors senkrecht zur Tankwand 2 ermöglicht. Dabei wird der Sender senkrecht zur Tankwand 2 durch diese hindurch geführt und festgeklemmt bzw. eingeschraubt. Der Reflektor 5 stellt ebenso wie in Figur 1 zusammen mit den elektrisch angeschlossenen Bauelementen der Laserdiode 6, der Fotodiode 7 und dem Temperatursensor 8 die Absorptionsmessstrecke dar, wobei das Fens- ter 3 eine Trennlinie zwischen innen liegenden und außen liegenden Bauelementen darstellt. Das Fenster 3 ist in diesem Fall wiederum ein Ersatz zur Tankwand 2. Literatur:
[1] FAA Report Nr.: DOT/FAA/AR-01/6, Inerting of a vented aircraft fuel tank test article with nitrogen-enriched air, M. Barns, W. M. Cavage, April 2001
[2] FAA Report Nr. : FAA-RD-71-42, Inerted fuel tank oxygen concentration requirements, S. V. Zinn, Jr., August 1971
[3] FAA Report Nr.: DOT/FAA/AR-01/63, Ground and flight testing of Boeing 737 center wing fuel tank inerted with nitrogen-enriched air, M. Barns, W. M. Cavage, August 2001
[4] IPM-Forschungsberichte 24-4-92, R. Grisar, Quantitative Gasanalyse mit abstimmbaren IR-Diofenlasern, 1992
[5] Patentschrift US 5,625,189, McCaul et al .
[6] Takaya Iseki, Hideo Tai, Kiyoshi Kimura, A portable re- mote methane sensor using a tunable diode laser, Meas . Sei. Technol., 11, 2000, 594-602

Claims

Patentansprüche
1. Vorrichtung zur Überwachung der Sauerstoffkonzentration in einem Flugzeugtank, aufweisend eine Absorptionsmessstrecke mit Laser oder Laserdiode (6) und Fotodiode (7) zur Laserspektroskopie an einem Messgasvolumen innerhalb des Tanks, deren stromführende Bauteile außerhalb des Tankraumes und deren Absorptionsstrecke im wesentlichen innerhalb des Tankraumes, insbesondere in dem Bereich des Tanks, in dem sich früh- zeitig ein Gasvolumen ausbildet, im Messgasvolumen positioniert sind und über mindestens ein in der Tankwand (2) befindliches Fenster (3) optisch miteinander gekoppelt sind.
2. Vorrichtung nach Anspruch 1, bei der Laser oder Laserdiode (6) und Fotodiode (7) gemeinsam an einem Ende der Absorptionsmessstrecke positioniert sind und Messstrahlen am gegenüberliegenden Ende durch einen Reflektor (5) reflektiert werden.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der im Bereich des Lasers oder der Laserdiode (6) ein Temperatursensor (8) zur Temperaturstabilisierung des Lasers oder der Laserdiode (6) vorhanden ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der für die Laserspektroskopie zur Detektion von Sauerstoff Absorptionslinien im Wellenlängenbereich zwischen 758 bis 766 nm ausgewählt sind.
5. Vorrichtung nach einem der Ansprüche 2 bis 4, bei der der Reflektor (5) als Retroreflektor oder als diffus reflektierende Oberfläche ausgebildet ist, wobei direkt vor dem Fotodetektor (7) eine Sammeloptik vorhanden ist.
6. Vorrichtung nach einem der Ansprüche 2 bis 4, bei der der Reflektor (5) als Hohlspiegel ausgebildet ist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Absorptionsmessstrecke zur Laserspektroskopie im oberen Bereich- eines Flugzeugtanks (1) positioniert ist.
8. Vorrichtung nach einem der Ansprüche 2 bis 7, bei der die Äbsorptionsmessstrecke zur Laserspektroskopie in eine senkrechte Durchführung in der Tankwand (2) positioniert und fixiert ist.
9. Vorrichtung nach Anspruch 8, bei der die Äbsorptionsmessstrecke zur Laserspektroskopie in eine Gewindebohrung in der Tankwand (2) eingeschraubt ist.
10. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der zur Darstellung der Absorptionsmessstrecke die Tankwand (2) eine vom wesentlichen Tankvolumen durch eine Drosselstelle getrennte Ausbuchtung oder einen Leitungsanschluss aufweist, wobei die Absorptionsmessstrecke an dem tankabge- wandten Ende der Ausbuchtung oder der Leitung in ein mit dem Tankvolumen in Verbindung stehenden Messgasvolumen dargestellt ist.
11. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der zur Darstellung einer Referenzzelle mit Sauerstoff nach einer Strahlteilung eines Messstrahles ein Referenzweg außerhalb des Tanks (1) vorhanden ist.
12. Verfahren zur Detektion von Sauerstoff in einem Messgasvolumen in Flugzeugtanks (1) unter Einsatz der Laserspektro- skopie, wobei sowohl die Anwesenheit von Sauerstoff als auch dessen Konzentration gemessen wird.
13. Verfahren nach Anspruch 12, wobei die Überwachung von Zündgrenzen zündfähiger Gemische durch die Detektion der Konzentration von Sauerstoff ausgeführt wird.
14. Verfahren nach einem der Ansprüche 11 bis 13, wobei für den Fall, dass ein ausgewählter Teilbereich des Spektrums des Sauerstoffs verglichen wird mit dem Spektrum einer aktuellen Messung, eine SelbstJustierung bezüglich der Linie im Sauerstoffspektrum vorgenommen wird.
PCT/EP2004/051062 2003-06-16 2004-06-08 Vorrichtung und verfahren zur überwachung der sauerstoffkonzentration in einem flugzeugtank WO2004113169A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04741756A EP1633627A1 (de) 2003-06-16 2004-06-08 Vorrichtung und verfahren zur berwachung der sauerstoffkonzentration in einem flugzeugtank
US10/559,261 US7456969B2 (en) 2003-06-16 2004-06-08 Device and method for monitoring the oxygen concentration in an aircraft tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10327060 2003-06-16
DE10327060.4 2003-06-16

Publications (1)

Publication Number Publication Date
WO2004113169A1 true WO2004113169A1 (de) 2004-12-29

Family

ID=33520621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/051062 WO2004113169A1 (de) 2003-06-16 2004-06-08 Vorrichtung und verfahren zur überwachung der sauerstoffkonzentration in einem flugzeugtank

Country Status (3)

Country Link
US (1) US7456969B2 (de)
EP (1) EP1633627A1 (de)
WO (1) WO2004113169A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816464A1 (de) * 2006-02-01 2007-08-08 Siemens Aktiengesellschaft Anordnung zur Konzentrationsessung für Abgaskomponenten im Abgasbereich einer Feuerungsanlage
WO2010081585A1 (de) * 2009-01-13 2010-07-22 Robert Bosch Gmbh Messvorrichtung, anordnung und verfahren zur messung eines gehaltes an mindestens einer komponente in einem flüssigen kraftstoff
CN101680833B (zh) * 2007-05-24 2013-03-27 佐勒技术公司 执行吸收光谱法的方法和用于吸收光谱法的设备
WO2013135232A1 (de) 2012-03-15 2013-09-19 Eads Deutschland Gmbh Vorrichtung zur überwachung der sauerstoffkonzentration in einem flugzeug
US10180393B2 (en) 2016-04-20 2019-01-15 Cascade Technologies Holdings Limited Sample cell
WO2020027675A1 (pt) 2018-07-30 2020-02-06 Instituto Superior Técnico Sensores de oxigénio luminescentes não-metálicos para tanques de combustível de aeronaves
US10724945B2 (en) 2016-04-19 2020-07-28 Cascade Technologies Holdings Limited Laser detection system and method
US11519855B2 (en) 2017-01-19 2022-12-06 Emerson Process Management Limited Close-coupled analyser

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7132661B2 (en) * 2000-08-28 2006-11-07 Spectrasensors, Inc. System and method for detecting water vapor within natural gas
US7679059B2 (en) * 2006-04-19 2010-03-16 Spectrasensors, Inc. Measuring water vapor in hydrocarbons
US7511802B2 (en) 2006-05-26 2009-03-31 Spectrasensors, Inc. Measuring trace components of complex gases using gas chromatography/absorption spectrometry
JP4915781B2 (ja) * 2006-07-05 2012-04-11 株式会社小松製作所 作業機械の燃料性状検出装置
US7508521B2 (en) * 2007-03-14 2009-03-24 Spectrasensors, Inc. Pressure-invariant trace gas detection
PL2140246T3 (pl) * 2007-04-11 2017-01-31 Spectrasensors, Inc. Wykrywanie reaktywnego gazu przy złożonym tle
US8081313B2 (en) * 2007-05-24 2011-12-20 Airbus Operations Limited Method and apparatus for monitoring gas concentration in a fluid
US8086387B2 (en) * 2008-06-18 2011-12-27 The Boeing Company System and method of fuel system optimization
GB0813715D0 (en) * 2008-07-28 2008-09-03 Airbus Uk Ltd A monitor and a method for measuring oxygen concentration
JP5137740B2 (ja) * 2008-08-08 2013-02-06 日立造船株式会社 袋状容器内における酸素濃度の非破壊検査装置
EP2762857B1 (de) * 2012-12-19 2018-05-02 General Electric Company Verfahren und Vorrichtung zur Analyse von aufgelöstem Gas
WO2014191438A1 (en) * 2013-05-27 2014-12-04 Gasporox Ab System and method for determining a concentration of a gas in a container
US20150063408A1 (en) * 2013-09-04 2015-03-05 Decagon Devices, Inc. Gaseous concentration measurement apparatus
GB2528113A (en) * 2014-07-10 2016-01-13 Airbus Operations Ltd Aircraft fuel system
US9874655B2 (en) * 2014-10-31 2018-01-23 Schlumberger Technology Corporation Fluid analyzer using absorption spectroscopy
US10643008B2 (en) 2014-11-11 2020-05-05 Spectrasensors, Inc. Target analyte detection and quantification in sample gases with complex background compositions
US10326980B2 (en) 2016-02-04 2019-06-18 Simmonds Precision Products, Inc. Imaging system for fuel tank analysis
US9921150B2 (en) 2016-02-04 2018-03-20 Simmonds Precision Products, Inc. Imaging system for fuel tank analysis
US10424076B2 (en) 2016-02-04 2019-09-24 Simmonds Precision Products, Inc. Imaging system for fuel tank analysis
FR3054795B1 (fr) * 2016-08-03 2018-07-20 Zodiac Aerotechnics Procede et systeme d'inertage d'un reservoir de carburant
PT109877A (pt) * 2017-01-26 2018-07-26 Inst Superior Tecnico Método ótico para a medição da concentração de oxigénio em sistemas de combustível.
CN107748194A (zh) * 2017-09-08 2018-03-02 中国飞行试验研究院 基于电化学原理的飞机燃油箱氧浓度机载测试***及方法
US10739257B2 (en) * 2018-10-02 2020-08-11 Axetris Ag Method and system for the relative referencing of a target gas in an optical measuring system for laser spectroscopy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047639A (en) * 1989-12-22 1991-09-10 Wong Jacob Y Concentration detector
EP0874233A2 (de) * 1997-04-23 1998-10-28 Siemens Aktiengesellschaft Verfahren zur selektiven Detektion von Gasen und Gassensor zu dessen Durchführung
EP0984267A1 (de) * 1998-08-31 2000-03-08 John Tulip Gasdetektor mit Referenzzelle
US6136267A (en) * 1998-05-26 2000-10-24 Bergman Consulting Engineers Fuel ignition arrester system and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4934816A (en) * 1988-05-18 1990-06-19 Southwest Sciences, Incorporated Laser absorption detection enhancing apparatus and method
US5317156A (en) * 1992-01-29 1994-05-31 Sri International Diagnostic tests using near-infrared laser absorption spectroscopy
US5625189A (en) * 1993-04-16 1997-04-29 Bruce W. McCaul Gas spectroscopy
US5572031A (en) * 1994-11-23 1996-11-05 Sri International Pressure- and temperature-compensating oxygen sensor
US5650845A (en) * 1995-05-18 1997-07-22 Aerodyne Research Optical oxygen concentration monitor
US5963336A (en) * 1995-10-10 1999-10-05 American Air Liquide Inc. Chamber effluent monitoring system and semiconductor processing system comprising absorption spectroscopy measurement system, and methods of use
GB0303639D0 (en) * 2003-02-18 2003-03-19 Rolls Royce Plc A method and apparatus for determining the mass flow through an engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047639A (en) * 1989-12-22 1991-09-10 Wong Jacob Y Concentration detector
EP0874233A2 (de) * 1997-04-23 1998-10-28 Siemens Aktiengesellschaft Verfahren zur selektiven Detektion von Gasen und Gassensor zu dessen Durchführung
US6136267A (en) * 1998-05-26 2000-10-24 Bergman Consulting Engineers Fuel ignition arrester system and method
EP0984267A1 (de) * 1998-08-31 2000-03-08 John Tulip Gasdetektor mit Referenzzelle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816464A1 (de) * 2006-02-01 2007-08-08 Siemens Aktiengesellschaft Anordnung zur Konzentrationsessung für Abgaskomponenten im Abgasbereich einer Feuerungsanlage
DE102006004605A1 (de) * 2006-02-01 2007-08-09 Siemens Ag Anordnung zur Konzentrationsessung für Abgaskomponenten im Abgasbereich einer Feuerungsanlage
DE102006004605B4 (de) * 2006-02-01 2008-10-02 Siemens Ag Anordnung zur Konzentrationsmessung für Abgaskomponenten im Abgasbereich einer Feuerungsanlage
CN101680833B (zh) * 2007-05-24 2013-03-27 佐勒技术公司 执行吸收光谱法的方法和用于吸收光谱法的设备
WO2010081585A1 (de) * 2009-01-13 2010-07-22 Robert Bosch Gmbh Messvorrichtung, anordnung und verfahren zur messung eines gehaltes an mindestens einer komponente in einem flüssigen kraftstoff
WO2013135232A1 (de) 2012-03-15 2013-09-19 Eads Deutschland Gmbh Vorrichtung zur überwachung der sauerstoffkonzentration in einem flugzeug
DE102012005058A1 (de) 2012-03-15 2013-09-19 Eads Deutschland Gmbh Vorrichtung zur Überwachung der Sauerstoffkonzentration in einem Flugzeugtank
DE102012005058B4 (de) * 2012-03-15 2014-08-07 Eads Deutschland Gmbh Vorrichtung zur Überwachung der Sauerstoffkonzentration in einem Flugzeugtank
US10724945B2 (en) 2016-04-19 2020-07-28 Cascade Technologies Holdings Limited Laser detection system and method
US10180393B2 (en) 2016-04-20 2019-01-15 Cascade Technologies Holdings Limited Sample cell
US11519855B2 (en) 2017-01-19 2022-12-06 Emerson Process Management Limited Close-coupled analyser
WO2020027675A1 (pt) 2018-07-30 2020-02-06 Instituto Superior Técnico Sensores de oxigénio luminescentes não-metálicos para tanques de combustível de aeronaves

Also Published As

Publication number Publication date
US7456969B2 (en) 2008-11-25
US20060163483A1 (en) 2006-07-27
EP1633627A1 (de) 2006-03-15

Similar Documents

Publication Publication Date Title
EP1633627A1 (de) Vorrichtung und verfahren zur berwachung der sauerstoffkonzentration in einem flugzeugtank
EP2307876B1 (de) Verfahren zur laserspektroskopischen detektion von gasen
EP1183520B1 (de) Gassensoranordnung
EP2240760B1 (de) Nichtdispersiver infrarot-gasanalysator
DE102012100794B3 (de) Vorrichtung und Verfahren zum Erfassen von Kontaminationen in einem Hydrauliksystem
DE102007010805B3 (de) Verfahren und Vorrichtung zur Bestimmung der Harnstoffkonzerntration in einer Lösung
DE4231214C2 (de) Photothermischer Sensor
WO1995002230A1 (de) Mittel zur rauchsimulation für streulichtrauchmelder, verfahren zum abgleich von deren rauchempfindlichkeit und verwendung des mittels
EP1183523A1 (de) Analysegerät
DE19900129A1 (de) Gasqualitätsbestimmung
EP1764609B1 (de) Gasmessgerät
EP2482057B1 (de) Gasanalysator zur Messung des Quecksilbergehalts eines Gases und dessen Kalibrierungsverfahren
EP3623799A2 (de) Vorrichtung und verfahren zur messung der räumlichen verteilung der konzentration von verbindungen und deren mischungen in einer flüssigkeit und/oder zur bestimmung des flüssigkeitspegels
DE102016108267B4 (de) Vorrichtung und Verfahren zum Ermitteln einer Konzentration von wenigstens einer Gaskomponente eines Gasgemischs
DE102005045538B3 (de) Vorrichtung und Verfahren zur Bestimmung des Brechungsindex eines Fluids
DE102014104043B4 (de) Multireflexionszellenanordnung
DE3116344A1 (de) Verfahren zum erhoehen der messgenauigkeit eines gasanalysators
EP1062498B1 (de) Optischer sensor
DE10308409A1 (de) Verfahren zur Messung der Konzentration oder des Konzentrationsverhältnisses von Gaskomponenten mit potentiellen Anwendungen in der Atemtest-Analyse
DE102004028023B4 (de) Sensoreinheit zur Erfassung eines Fluids, insbesondere zur Erfassung von Erdgas, Kohlenwasserstoffen, Kohlendioxid oder dgl. in Umgebungsluft
EP3816609B1 (de) Vorrichtung und verfahren zur ferndetektion eines zielgases
DE19932354B4 (de) Verfahren und Vorrichtung zum Fernnachweis von Kohlenwasserstoffen im untergrund- oder bodennahen Bereich der Atmosphäre
DE4138242C2 (de) Vorrichtung zur gasanalytischen Brandkontrolle
DE102004042483B4 (de) Vorrichtung und Verfahren zur Bestimmung des Sauerstoffpartialdrucks in Brennstofftanks, insbesondere von Luft- und Raumfahrzeugen, sowie Verwendung der Vorrichtung
DE19731241C2 (de) Vorrichtung und Verfahren zur Bestimmung von Fluidkomponenten und Verfahren zur Herstellung der Vorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004741756

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006163483

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10559261

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004741756

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 10559261

Country of ref document: US