WO2004105941A1 - メタクリル酸製造用触媒の製造方法 - Google Patents

メタクリル酸製造用触媒の製造方法 Download PDF

Info

Publication number
WO2004105941A1
WO2004105941A1 PCT/JP2004/007262 JP2004007262W WO2004105941A1 WO 2004105941 A1 WO2004105941 A1 WO 2004105941A1 JP 2004007262 W JP2004007262 W JP 2004007262W WO 2004105941 A1 WO2004105941 A1 WO 2004105941A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
dried
slurry
insoluble matter
catalyst
Prior art date
Application number
PCT/JP2004/007262
Other languages
English (en)
French (fr)
Inventor
Atsushi Sudo
Yoshimasa Seo
Tatsuhiko Kurakami
Original Assignee
Nippon Kayaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki Kaisha filed Critical Nippon Kayaku Kabushiki Kaisha
Priority to JP2005506492A priority Critical patent/JP4421558B2/ja
Priority to MXPA05012783A priority patent/MXPA05012783A/es
Priority to US10/558,501 priority patent/US20070010394A1/en
Priority to EP04745368A priority patent/EP1629889B1/en
Priority to BRPI0410816-7A priority patent/BRPI0410816A/pt
Publication of WO2004105941A1 publication Critical patent/WO2004105941A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to a method for producing a catalyst having a long life, high activity and high selectivity, for producing methacrylic acid by subjecting methacrolein, isobutyraldehyde or isobutyric acid to gas phase catalytic oxidation.
  • catalysts used for producing methacryloleic acid by gas phase catalytic oxidation of methacrolein, isobutyraldehyde or isobutyric acid. Most of these catalysts are mainly composed of molybdenum and phosphorus and have a structure of a heteropolyacid and / or a salt thereof.
  • the present inventors have previously attempted to improve the low activity, low selectivity, and short life of a conventional methacrolein gas phase catalytic oxidation catalyst, and have studied the addition of various elements to Mo, V, and P, It was discovered that the rain gas phase catalytic oxidation catalyst had a heteropolyacid (salt) structure, was highly active, had high selectivity, and was particularly stable in life.
  • the catalysts described in JP-A-59-24140, JP-B-62-14535 and JP-B-62-30177 are proposed.
  • JP-A-5-31368 and JP-A-8-196908 disclose the use of NH as a component other than Mo, V and P, and the use of ammonia. Ammonia as a source
  • Japanese Patent Application Laid-Open No. 11-226411 discloses that a purified starch is used when granulating a catalytically active component, and the starch is used in a firing step. It describes a method for producing a molded catalyst that improves the pore volume of the catalyst by burning off the catalyst.
  • Advantages of the coated catalyst having the inert carrier as a core are as follows: (i) the effective utilization rate of the catalytically active component can be increased; and (ii) the residence time distribution of the reactants in the catalyst becomes uniform. Selectivity can be improved, and (iii) the removal of heat of reaction is facilitated by the improvement in the thermal conductivity of the catalyst or the dilution effect of the inert carrier. Many examples of application.
  • the method of overcoming the power point is related to the properties of the active catalyst substance, and there is no general-purpose technology, and the present situation is that the catalyst is individually solved.
  • An object of the present invention is to provide a method for producing a catalyst for producing methacrylic acid with high yield and high selectivity by subjecting methacrolein, isobutyraldehyde or isobutyric acid to gas phase catalytic oxidation.
  • the present inventors have attempted to improve the low activity, low selectivity, and short life of a conventional gas phase catalytic oxidation catalyst for methacrolein, isobutyl aldehyde, or isobutyric acid as a method for solving the above problems. , Mo, V, P, Cu, Cs and NH
  • step (b) drying the slurry liquid obtained in step (a) to obtain a dried slurry
  • step (c) step of firing the dried slurry obtained in step (b) to obtain a fired body
  • step (d) filtering a mixture of the calcined body obtained in step (c) and water, and filtering out an aqueous solution and a water-insoluble matter;
  • step (e) a step of drying the water-insoluble matter obtained in step (d) to obtain a water-insoluble matter dry body
  • a method for producing a catalyst for producing methacrylic acid by gas phase catalytic oxidation of methacrolein, isobutyraldehyde or isobutyric acid comprising:
  • step (c) a step of firing the dried body obtained in step (b ') to obtain a fired body
  • step (d) filtering a mixture of the calcined body obtained in step (c) and water, and filtering out an aqueous solution and a water-insoluble matter;
  • step (e) a step of drying the water-insoluble matter obtained in step (d) to obtain a water-insoluble matter dry body
  • a method for producing a catalyst for producing methacrylic acid by gas phase catalytic oxidation of methacrolein, isobutyraldehyde or isobutyric acid comprising:
  • a slurry liquid including both an aqueous solution or aqueous dispersion of these compounds (hereinafter, referred to as a slurry liquid including both), (b) drying the slurry liquid obtained in step (a) to obtain a dried slurry,
  • step (c) step of firing the dried slurry obtained in step (b) to obtain a fired body
  • step (d) filtering a mixture of the calcined body obtained in step (c) and water, and filtering out an aqueous solution and a water-insoluble substance;
  • step (e) drying the water-insoluble matter obtained in step (d) to obtain a water-insoluble matter dry body
  • step (f) step of coating the carrier with the dried water-insoluble matter obtained in step (e) using a binder to obtain a coated molded article;
  • a method for producing a coated catalyst for producing methacrylic acid by gas phase catalytic oxidation of methacrolein, isobutyraldehyde or isobutyric acid comprising:
  • step (c) a step of firing the dried body obtained in step (b ') to obtain a fired body
  • step (d) filtering a mixture of the calcined body obtained in step (c) and water, and filtering out an aqueous solution and a water-insoluble substance;
  • step (e) drying the water-insoluble matter obtained in step (d) to obtain a water-insoluble matter dry body
  • step (f) step of coating the carrier with the dried water-insoluble matter obtained in step (e) using a binder to obtain a coated molded article;
  • a method for producing a coated catalyst for producing methacrylic acid by gas phase catalytic oxidation of methacrolein, isobutyraldehyde or isobutyric acid comprising:
  • step (g) firing the coated molded product obtained in the step (f) under an inert gas atmosphere, an air atmosphere or in the presence of a reducing agent
  • step (g) is a step of firing the coated molded product obtained in the step (f) under an inert gas atmosphere.
  • the compound containing Cs is a cesium weak acid salt or cesium hydroxide, and contains NH.
  • step (a) the compound used as an optional component is Sb, As, Ag, Mg, Zn, Al, B, Ge, Sn, Pb, Ti, Zr, Cr, Re, Bi, W, Fe, 2.
  • the catalyst obtained by the production method of the present invention can produce methacrolein, isobutyl aldehyde or isobutyric acid, and methacrylic acid with high yield and high selectivity, and can be used for a reaction under a high load condition.
  • the industrial value is extremely large because it can be produced.
  • the production method of the present invention provides a sintered product obtained by drying and calcining an aqueous solution containing a compound containing an active ingredient of a catalyst or an aqueous dispersion of the compound (hereinafter, referred to as a slurry liquid including both). Mixing with water, filtering and drying the filtration residue.
  • a first preferred embodiment of the production method of the present invention includes a plurality of compounds each containing one or more of Mo, V, P, Cu, Cs and NH, and if necessary, other elements.
  • the compound containing the active ingredient is also referred to as “active ingredient-containing compound” in some cases
  • active ingredient-containing compound is dissolved and / or dispersed in water to prepare a slurry liquid (step (a)) and dried (step (a)).
  • step (b)) baking (step (c)), the fired body obtained and water are mixed and filtered (step (d)). Characterized in that the filtration residue is dried (step (e)) and used as a catalytically active component
  • the active ingredient-containing compound used for preparing a slurry liquid is preferably a compound which forms a heteropolyacid or a salt thereof by drying (step (b)) or baking (step (c)).
  • the compound include chlorides, sulfates, nitrates, oxides and acetates of active ingredient elements.
  • preferred conjugates include nitrates such as potassium nitrate or cobalt nitrate, oxides such as molybdenum oxide, vanadium pentoxide, antimony trioxide, cerium oxide, zinc oxide and germanium oxide, orthophosphoric acid, Examples thereof include acids (or salts thereof) such as phosphoric acid, boric acid, aluminum phosphate and 12-tandust phosphoric acid.
  • nitrates such as potassium nitrate or cobalt nitrate
  • oxides such as molybdenum oxide, vanadium pentoxide, antimony trioxide, cerium oxide, zinc oxide and germanium oxide
  • orthophosphoric acid examples thereof include acids (or salts thereof) such as phosphoric acid, boric acid, aluminum phosphate and 12-tandust phosphoric acid.
  • acids or salts thereof
  • phosphoric acid boric acid
  • aluminum phosphate aluminum phosphate
  • 12-tandust phosphoric acid such as phosphoric acid, boric acid, aluminum phosphat
  • cesium acetate or cesium hydroxide and cesium weak acid salt as the cesium compound, and to use both ammonium acetate and ammonium hydroxide as the ammonium compound.
  • the compounds containing these active ingredients may be used alone or in combination of two or more.
  • the cesium weak acid salt is not particularly limited as long as it is a salt of cesium and a generally known weak acid. Examples thereof include cesium hydrogen carbonate, cesium carbonate, and cesium acetate, and cesium acetate is preferable.
  • cesium acetate has the ability to use a commercial product as it is.
  • an equivalent amount or more of acetic acid is added to an aqueous solution of a water-soluble salt of cesium such as cesium hydroxide or cesium carbonate to form an aqueous cesium acetate solution. It can also be added. Also, it can be added as it is as an aqueous solution of cesium hydroxide or the like.
  • the active ingredients other than Mo, V, P, Cu, Cs and NH include As, Sb
  • the use ratio of the active ingredient-containing compound is such that the atomic ratio of molybdenum is 10 or more, and vanadium is usually 0.1 or more and 6 or less, preferably 0.3 or more and 2.0 or less, Lin is usually 0.5 or more and 6 or less, preferably 0.7 or more and 2.0 or less, and copper is usually more than 0 and 3 Or less, preferably 0.01 or more and 1 or less, cesium is usually 0.01 or more and 4.0 or less, preferably 0.1 or more and 2.0 or less, and ammonium is usually 0.1 or more and 4.0 or less. Or less, preferably 0.5 or more and 3.0 or less.
  • the type of other active components used as necessary and the proportion of use thereof are appropriately determined according to the conditions of use of the catalyst and the like so as to obtain a catalyst having optimum performance.
  • a slurry of the active ingredient-containing compound is prepared (step (a)).
  • the slurry liquid can be obtained by uniformly mixing each active ingredient-containing compound and water.
  • the slurry liquid preferably contains all necessary active ingredient-containing compounds in the required amount of the catalyst.
  • There is no particular limitation on the order of addition of the active ingredient-containing compound when preparing the slurry solution but a compound containing Mo, V, P and, if necessary, other metal elements is first made into a slurry solution, and then a cesium-containing compound, It is preferable to add the ammonium-containing compound and the copper-containing compound to the slurry liquid.
  • the temperature at which the slurry liquid is prepared is not particularly limited as long as it does not hinder the preparation, but the temperature at which the cesium-containing compound, the ammonium-containing compound, and the copper-containing compound are added is usually 0. — When the temperature is in the range of 35 ° C, preferably 10-30 ° C, the obtained catalyst may have higher activity. Since this tendency becomes remarkable when copper acetate is used as the copper compound, the method of preparing the slurry liquid becomes more efficient as the preferred addition method is employed.
  • the slurry liquid is preferably an aqueous solution.
  • the amount of water used in the slurry liquid is not particularly limited as long as it is a force capable of completely dissolving the entire amount of the compound used or an amount capable of uniformly mixing, but is appropriately determined in consideration of the drying method and drying conditions described below. Is done. Usually, it is about 200 2000 parts by mass with respect to 100 parts by mass of the total amount of the compound for slurry preparation. Although the amount of water is large, too much water increases the energy cost of the drying process and may not be completely dried, so there are many disadvantages such as insufficient drying. ,.
  • the slurry liquid obtained above is dried to obtain a dried slurry (step (b)).
  • the drying method is not particularly limited as long as the slurry liquid can be completely dried. Drying, freeze drying, spray drying, evaporation to dryness and the like. Of these, in the present invention, particularly preferred are spray drying, in which the slurry liquid can be dried into powder or granules in a short period of time, and evaporative drying, in which the slurry liquid is directly dried and simple evaporation is preferred, and evaporative drying. Replying to
  • the drying temperature of the spray drying varies depending on the concentration of the slurry liquid, the liquid sending speed, and the like, but the temperature at the outlet of the dryer is generally 70 to 150 ° C. At this time, it is preferable to dry the obtained slurry so that the average particle size of the slurry is 30 to 700 zm. In the case of evaporation to dryness, a dried slurry is particularly obtained as lumps or large particles. Therefore, the slurry is appropriately pulverized, and preferably pulverized to 700 ⁇ m or less. In the present invention, in the case where the slurry is dried, the pulverized material in this way is also included in the dried slurry.
  • the dried slurry thus obtained is fired, preferably in an air atmosphere, to obtain a fired body (step (c)).
  • the firing temperature is usually 100 to 420 ° C, preferably 250 to 400 ° C, and the firing time is preferably 1 to 20 hours.
  • a fired body is preferably a powder.
  • this fired body is mixed with an appropriate amount of water, preferably 2 to 5 times the mass of the fired body, to elute water-soluble components.
  • the water-soluble component is presumed to be a compound having a heteropolyacid structure. Since the heteropolyacid salt intended by the present invention exists without being dissolved in water, it is filtered off (step (d)). And dried (step (e)).
  • the dried product thus obtained is preferably a powder and can be used as it is as a catalyst for the gas phase catalytic oxidation reaction.
  • a second preferred embodiment of the present invention comprises Mo, V, P, Cs and NH and optionally
  • a slurry is prepared by mixing a plurality of compounds each containing one or more other elements (except for Cu) with water to prepare a slurry (step (a)), and drying the obtained slurry to obtain a slurry containing Cu and The compound is mixed with a solvent, if necessary, and dried as necessary to obtain a dried product (step (b ')), which is then calcined (step (c)) in the next step.
  • the fired body is mixed with water and filtered (step (d)), and the filtration residue is dried (step (e)) and used as a catalytically active component.
  • the dried product thus obtained can be used as it is as a catalyst for a gas phase catalytic oxidation reaction.
  • the step of obtaining the catalytically active component comprises the steps of separately mixing the copper-containing compound with a dried slurry of another active-ingredient-containing compound, except that The type and use ratio of the element-containing compound and other conditions can be performed in the same manner as in the first embodiment.
  • the mixture of the dried slurry and the Cu-containing compound may be a powder mixture, or the Cu-containing compound may be mixed with a solvent, preferably water, and force mixed as a slurry liquid.
  • the amount of water used at this time may be about the same as in the first embodiment. If a solvent such as water is used at the time of preparation, the mixture of the dried slurry and the Cu-containing compound is dried as appropriate to obtain a dried body.
  • the desired catalyst can be obtained through a water mixing step and a filtration residue drying step.
  • the copper compound added later disappears as a free compound through the drying (and baking) step.
  • the dried water-insoluble matter obtained as described above, that is, the catalytically active component is used after being molded into a column, a tablet, a ring, a sphere, or the like in order to reduce the pressure loss of the reaction gas. It's preferable, Of these, it is particularly preferable to coat the inert carrier with a dried water-insoluble substance to obtain a catalyst-coated molded article, because selectivity and removal of reaction heat can be expected.
  • the coating step (step (f)) is preferably a rolling granulation method described below.
  • the carrier in the container is vigorously stirred by repeating rotation and orbital motion by rotating the disk at high speed.
  • a binder and a dried water-insoluble matter and, if necessary, other additives such as a mixture of a molding aid and a strength improving material are added to coat the mixture on a carrier.
  • the method of adding the binder is as follows: (i) add the mixture to the mixture in advance; (ii) add the mixture at the same time as adding the mixture into the fixed container; (iii) add the mixture after adding the mixture into the fixed container; (Iv) adding the mixture before adding it to the fixed container, (V) dividing the mixture and the binder, and (ii) appropriately combining (iv) and adding the whole amount, etc., may be arbitrarily adopted.
  • the addition rate is adjusted by using an auto feeder or the like so that the mixture is not adhered to the wall of the fixed container and the mixture is not aggregated and the predetermined amount is supported on the carrier. Is preferred.
  • the binder is not particularly limited as long as it is at least one selected from the group consisting of water and an organic compound having a boiling point at 150 ° C or less at 1 atm. It is preferable that the temperature is not higher than ° C.
  • binders other than water include alcohols such as methanol, ethanol, propanols and butanols, preferably alcohols having 1 to 4 carbon atoms, ethers such as ethyl ether, butyl ether or dioxane, and esters such as ethyl acetate or butyl acetate.
  • ketones such as acetone and methyl ethyl ketone, and aqueous solutions thereof, and ethanol is particularly preferable.
  • ethanol / water 10/0-1/9 (by mass), preferably 10Z07Z3 (by mass).
  • the amount of the binder to be used is generally 260 parts by mass, preferably 525 parts by mass, per 100 parts by mass of the dried water-insoluble matter.
  • a molding aid such as silica gel, diatomaceous earth, or alumina powder may be used as necessary.
  • the amount of the molding aid used is usually 560 parts by mass per 100 parts by mass of the dried water-insoluble matter.
  • inorganic fibers such as ceramic fibers and whiskers, which are inert with respect to the catalyst component, if necessary, as the strength improving material is useful for improving the mechanical strength of the catalyst.
  • inorganic fibers such as ceramic fibers and whiskers
  • potassium titanate whiskers and basic magnesium carbonate whiskers Fibers that react with the catalyst component are not preferred.
  • the amount of these fibers used is water-insoluble dry matter 1
  • Additives such as the above-mentioned molding aid and strength-improving material are usually added to a granulator together with a carrier, a water-insoluble dried product, a binder, etc. during the coating step and used for coating the carrier. Is done.
  • the carrier is coated with the dried water-insoluble matter, and the coated product obtained at this time usually has a diameter of about 315 mm.
  • the coated catalyst thus obtained can be directly used as a catalyst in a gas phase catalytic oxidation reaction, but calcining (step (g)) is preferable since the catalytic activity may be improved in some cases.
  • the calcination temperature is usually 100 to 450 ° C, preferably 250 to 420 ° C, and the calcination time is preferably 1 to 20 hours.
  • the calcination is usually performed in an air atmosphere, but may be performed in an inert gas atmosphere such as nitrogen, or may be further performed in an air atmosphere as necessary after the calcination in the inert gas atmosphere.
  • the firing may be performed in an atmosphere.
  • the reducing agent is not particularly limited as long as it is preferably a gas at the firing temperature. Examples of the reducing agent include alcohols, aldehydes, ketones, and organic acids having 2 to 5 carbon atoms, and ethanol is particularly preferable. .
  • the catalyst obtained as described above (hereinafter referred to as the catalyst of the present invention) is used for producing methacrylic acid by subjecting methacrolein, isobutylaldehyde or isobutyric acid to gas-phase catalytic oxidation.
  • the water-insoluble dried product obtained through steps (a) to (e), or further through step (f) (preferably further through step (g)) It is used to include both of the obtained coated catalysts.
  • Molecular oxygen or a molecular oxygen-containing gas is used in the gas phase catalytic oxidation reaction.
  • the molar ratio of molecular oxygen to methacrylein is preferably in the range of 0.5-20, particularly preferably in the range of 110.
  • water for the purpose of facilitating the reaction, it is preferable to add water to the raw material gas in a molar ratio of 112 to methacrolein.
  • the raw material gas may contain, in addition to oxygen and, if necessary, water (normally included as water vapor), a gas inert to the reaction such as nitrogen, carbon dioxide gas, or a saturated hydrocarbon.
  • a gas obtained by oxidizing isobutylene, tertiary butanol, and methyl tert-butyl ether may be supplied as it is.
  • the reaction temperature in the gas phase catalytic oxidation reaction is usually 200 400 ° C, preferably 260 360
  • feed rate of source gas is space velocity (SV), usually 100 6000hr—preferably 4
  • the catalytic oxidation reaction can be performed under increased or reduced pressure, but generally, a pressure near the atmospheric pressure is suitable.
  • the solution was cooled to 15-20 ° C and, while stirring, 20.000 g of cesium acetate dissolved in 150 ml of pure water and 24.09 g of drunk acid solution dissolved in 150 ml of pure water were dissolved. Simultaneously, the mixture was gradually added and aged at 15-20 ° C. for 1 hour to obtain a green-blue slurry liquid containing a cesium salt of a heteropolyacid precursor and an ammonium salt.
  • cupric acetate monohydrate dissolved in 240 ml of pure water was further added to the slurry.
  • 64 g was added, and the mixture was further aged at 15-20 ° C for 15 minutes.
  • the slurry liquid was dried by evaporation to dryness in a hot water bath, pulverized in a mortar, classified to 700 ⁇ m or less, and primarily fired at 310 ° C for 5 hours under air flow to obtain fired granules. .
  • the composition of the calcined granules at this time depends on the charge ratio.
  • the separation ratio between the filtration residue and the filtrate was 86.8% by mass of the filtration residue and 13.2% by mass of the filtrate.
  • the atomic ratio of metal elements of the obtained granular catalyst (A) by fluorescent X-ray analysis was Mo V P Cu Sb Cs
  • cupric acetate.monohydrate dissolved in 240 ml of pure water was further added to the slurry.
  • this slurry was dried by evaporation to dryness in a hot water bath, pulverized to 300 to 700 / m and classified to obtain a solidified product for comparison (B).
  • composition of the comparative solidified product (B) was determined by the charge ratio.
  • the obtained comparative solidified product (B) was pulverized and classified to 300 ⁇ ⁇ ⁇ or less, and 365.
  • the obtained coated catalyst for comparison (B) was used for the oxidation reaction of methacrolein in the same manner as in Example 1, and the reaction results were measured in the same manner as in Example 1.
  • the results are shown in Table 2.
  • Ogura and 8.0 g of 300-700 zm quartz sand were mixed together and used for the oxidation reaction under the same reaction conditions as above. The results are shown in Table 2.
  • this slurry liquid was dried by evaporation to dryness in hot water and crushed in a mortar to give 700 ⁇ m Classification was performed as follows to obtain a pulverized product.
  • the composition of the obtained pulverized product is based on the charge ratio.
  • the separation ratio between the filtration residue and the filtrate was 88.4% by mass of the filtration residue and 11.6% by mass of the filtrate.
  • the obtained granular catalyst (C) was pulverized and classified to 300 ⁇ 300 ⁇ or less, and 324.4 g of the granulated catalyst and 47.4 g of a strength improving material (ceramic fiber) were uniformly mixed.
  • a porous alumina carrier (particle size: 3.5 mm) was coated and molded with 318.2 g of a 90% by mass aqueous ethanol solution as a binder.
  • the obtained molded product was subjected to secondary calcination at 310 ° C. for 5 hours under air flow to obtain a target coated catalyst (C).
  • the obtained coated catalyst (C) was used for the oxidation reaction of methacrolein in the same manner as in Example 1, and the reaction results were measured in the same manner as in Example 1. The results are shown in Table 3. Also, 4.0 g of each of the calcined granules (C), the granular catalyst (C), and the solidified material for comparison (C) were mixed with 8.0 g of 300,000 zm quartz sand, and each was oxidized under the same reaction conditions as above. Table 3 shows the results used in the reaction.
  • this slurry was dried by evaporation to dryness in hot water, crushed in a mortar, and classified to 300 ⁇ m or less to obtain a crushed product.
  • the composition of the obtained pulverized product is based on the charge ratio.
  • composition of the catalytically active component (the above-mentioned pulverized product) after calcination is determined by the charge ratio.
  • the coated catalyst (D) was used in the oxidation reaction of methacrolein in the same manner as in Example 1, and the reaction results were measured in the same manner as in Example 1. The results are shown in Table 4.
  • cupric acetate.monohydrate dissolved in 200 ml of pure water was further added to the slurry.
  • the slurry liquid was dried by evaporation to dryness in a hot water bath, pulverized in a mortar, classified to 700 ⁇ m or less, and primarily fired at 310 ° C. for 5 hours in an air stream to obtain fired granules (E ).
  • the composition of the calcined granules (E) is
  • the obtained granular catalyst (E) was pulverized and classified to 300 ⁇ or less.
  • a mixture of 245. Og and 36.2 g of a strength improving material (ceramic fiber) was uniformly mixed to obtain a spherical porous material.
  • a porous alumina carrier (particle size: 3.5 mm) was coated and coated with 244.4 g of a 90% by mass aqueous ethanol solution as a binder.
  • the obtained molded product was divided into two equal parts, and (i) using a box-shaped hot-air sintering furnace under a nitrogen flow (5 LZmin.) And using ethanol (20 gZhr) as a reducing agent at 380 ° C (Secondary firing) to obtain the target coated catalyst (E-1). (Ii) The other side is heated at 380 ° C for 10 hours under a stream of air using a box-shaped hot air firing furnace. Calcination yielded the desired coated catalyst (E-2).
  • the resulting coated catalysts (E-1) and (E-2) were used for methacrolein oxidation reaction in the same manner as in Example 1, and the reaction results were measured in the same manner as in Example 1. Table 5 shows the results.
  • each of the granular catalyst (E) and the comparative solid (E) was mixed with 4.Og and 300-700 / im quartz sand 8.Og, respectively, and used for the oxidation reaction under the same reaction conditions as in Example 1. The results are shown in Table 5.
  • cupric acetate monohydrate dissolved in 200 ml of pure water was further added to the slurry.
  • the obtained pulverized product (F) was pulverized to 300 zm or less and classified as follows, and 334.
  • Og was uniformly mixed with 48.6 g of a strength improving material (ceramic fiber), and 326.6 g of a spherical porous alumina carrier (particle diameter: 3.5 mm) was coated and molded with a 90% by mass aqueous ethanol solution as a binder. Then, the obtained molded product is divided into two equal parts, and (i) using ethanol (20 g / hr) as a reducing agent under a nitrogen flow (5 L / min.) Using a box-shaped hot air firing furnace. At 380 ° C for 10 hours (secondary firing) to obtain the target coated catalyst (F-1). (Ii) On the other side, using a box-shaped hot-air sintering furnace, 380 ° C For 10 hours to obtain the desired coated catalyst (F-2).
  • the obtained coated catalysts (F-1) and (F-2) were used for the oxidation reaction of methacrolein in the same manner as in Example 1, and the reaction results were measured in the same manner as in Example 1.
  • Table 6 shows the results. Table 6 also shows the results obtained by mixing 4.Og of the pulverized material (F) with 8.Og of quartz sand of 300 to 700 / im and using the same under the same reaction conditions as in Example 1 for the oxidation reaction.
  • the slurry liquid was dried by evaporation to dryness in hot water, crushed in a mortar and classified to 700 ⁇ m or less to obtain a crushed product.
  • the composition of the obtained pulverized product is based on the charge ratio.
  • the separation ratio between the filtration residue and the filtrate was 81.8% by mass of the filtration residue and 18.2% by mass of the filtrate.
  • the obtained granular catalyst (G) was pulverized and classified to 300 ⁇ or less, and 259.2 g of the obtained catalyst and 38.4 g of a strength-improving material (ceramic fiber) were uniformly mixed to form a spherical catalyst.
  • the obtained molded product is divided into two equal parts, and (i) using a box-shaped hot air sintering furnace under a nitrogen flow (5 L / min.) Using ethanol (20 g / hr) as a reducing agent At 380 ° C for 10 hours (secondary calcination) to obtain the target coated catalyst (G-1). (Ii) For the other, using a box-shaped hot air calcination furnace at 380 ° C under air flow Secondary firing was performed for 10 hours to obtain the target coated catalyst (G-2).
  • the resulting coated catalysts (G-1) and (G-2) were used for the oxidation reaction of methacrolein in the same manner as in Example 1, and the reaction results were measured in the same manner as in Example 1.
  • Table 7 shows the results.
  • the granular catalyst (G) and the comparative solidified product (G) were each mixed with 4.Og and 300-700 zm of quartz sand 8.Og and used for the oxidation reaction under the same reaction conditions as in Example 1 respectively. The results are shown in Table 7.
  • cupric acetate'monohydrate was added to the pulverized product as a powder to obtain granules for a shaped catalyst containing a copper element.
  • Composition is based on charge ratio
  • the obtained coated catalysts (H-1) and (H-2) were used for the oxidation reaction of methacrolein in the same manner as in Example 1, and the reaction results were measured in the same manner as in Example 1. Table 8 shows the results.
  • a mixture of 350 g of molybdenum trioxide, 17.69 g of vanadium pentoxide, and 32.23 g of 85% by weight orthophosphoric acid was added to 2450 ml of pure water, and the mixture was heated and refluxed at 90-100 ° C for 5 hours. Got. Subsequently, the solution was cooled to 15-20 ° C, and while stirring, 20.41 g of cesium hydroxide monohydrate dissolved in 115 ml of pure water and 39.35 g of ammonium acetate dissolved in 175 ml of pure water were stirred. Simultaneously, the mixture was gradually added, and aged at 15-20 ° C for 1 hour to obtain a yellow-white slurry containing a cesium salt of a heteropolyacid precursor and an ammonium salt.
  • cupric acetate.monohydrate dissolved in 240 ml of pure water was further added to the slurry.
  • the slurry liquid was dried by evaporation to dryness in hot water, pulverized in a mortar, classified to 700 ⁇ m or less, and primarily fired at 310 ° C for 5 hours under air flow to obtain fired granules.
  • the composition of the calcined granules at this time depends on the charge ratio.
  • the separation ratio between the filtration residue and the filtrate was 82.6% by mass of the filtration residue and 17.4% by mass of the filtrate.
  • the obtained granular catalyst (I) was pulverized and classified to 300 ⁇ or less, and 345.0 g of the catalyst and 48.8 g of a strength improving material (ceramic fiber) were uniformly mixed to obtain a spherical porous catalyst.
  • a porous alumina carrier (particle diameter: 3.5 mm) was coated and molded with 320.8 g of a 90 mass% ethanol aqueous solution as a binder.
  • the obtained molded product was bisected, and (i) one of them was pre-baked at 273 ° C. for 3 hours under air flow, and was further subjected to 7 hours at 410 ° C. under nitrogen flow as secondary firing.
  • the obtained coated catalysts 1) and (1-2) were used for the oxidation reaction of methacrolein in the same manner as in Example 1, and the reaction results were measured in the same manner as in Example 1. The result The results are shown in Table 9.
  • the granular catalyst (I) and the comparative solidified product (I) were each mixed with 4.Og and 300-700 / m quartz sand (8 ⁇ Og), and each was subjected to an oxidation reaction under the same reaction conditions as in Example 1. The results used are shown in Table 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明は、メタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相接触酸化してメタクリル酸を高収率、高選択率で製造することのできる触媒の製造方法を提供することを目的とする。  (a)Mo、V、P、Cu、CsまたはNH4のいずれかを含む各化合物を水と混合し、これら化合物の水溶液又は水分散体(以下、両者を含めてスラリー液という)を調製する工程、(b)工程(a)で得られたスラリー液を乾燥しスラリー乾燥体を得る工程、(c)工程(b)で得られたスラリー乾燥体を焼成し焼成体を得る工程、(d)工程(c)で得られた焼成体と水を混合した混合物を濾過し、水溶液と水不溶物を濾別する工程、及び(e)工程(d)で得られた水不溶物を乾燥し、水不溶物乾燥体を得る工程、とからなることを特徴とするメタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相接触酸化してメタクリル酸を製造するための触媒の製造方法。

Description

明 細 書
メタクリル酸製造用触媒の製造方法
技術分野
[0001] 本発明は、メタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相接触酸化して メタクリル酸を製造するための、寿命が長くかつ高活性、高選択性を有する触媒の製 造方法に関する。
背景技術
[0002] メタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相接触酸化してメタクリノレ 酸を製造するために使用される触媒としては数多くの触媒が提案されている。これら 触媒の大部分はモリブデン、リンを主成分とするもので、ヘテロポリ酸及び/又はそ の塩の構造を有するものである。しかしながら、メタクロレイン、イソブチルアルデヒドま たはイソ酪酸の気相接触酸化反応と同様の反応として知られているァクロレインの酸 化によるアクリル酸を製造するために提案されているモリブデン一バナジウム系触媒と 比較すると、反応活性は低ぐ 目的物質への選択性も低ぐ寿命も短いため、提案さ れている触媒は一部工業化されているものの、これら触媒性能の改良が求められて いる。
[0003] 本発明者らは、先に従来のメタクロレイン気相接触酸化触媒の低活性、低選択性、 短寿命の改良を試み、 Mo、 V、 Pに種々の元素を添カ卩したメタクロレイン気相接触酸 化触媒が、ヘテロポリ酸 (塩)構造を有し、高活性、高選択性で特に寿命的に安定し た触媒であることを見出し、特公昭 58-11416号公報、特公昭 59—24140号公報、 特公昭 62-14535号公報、特公昭 62-30177号公報記載の触媒を提案している。
[0004] 近年、原料ガス濃度が高ぐ高温で酸化反応を行う環境下で、更に高活性、高選 択性、長寿命である触媒が求められている。この要求に応える触媒を提供するため 種々の製法が提案され、例えば特開平 5-31368号公報ゃ特開平 8-196908号公 報には Mo、 V、 P以外の成分として NHを使用し、アンモニゥム源としてアンモニア
4
水を使用する成型触媒の製法が提案されている。また、特開平 11-226411号公報 には、触媒活性成分を造粒する際に精製デンプンを使用し、焼成工程で該デンプン を焼失させることで、触媒の細孔容積を向上させる成型触媒の製法が記載されてい る。
[0005] また、工業用触媒として固定床反応器に充填して用いる場合は、触媒層前後での 反応ガスの圧力損失を少なくするために、ある一定の大きさに触媒を成型する事が 必要である。そのため、通常は触媒粉末を柱状物、錠剤、リング状、球状等に成型す るか、活性触媒物質を不活性担体に含浸あるいは被覆させて用いる方法も知られて いる。
[0006] この不活性担体を芯とする被覆触媒の利点としては、 (i)触媒活性成分の有効利用 率を上げることができる、 (ii)反応物質の触媒内での滞留時間分布が均一となり選択 性の向上が期待できる、(iii)触媒の熱伝導率向上あるいは不活性担体の希釈効果 によって反応熱の除去が容易となる、等が挙げられ、従って発熱の大きな選択的酸 化反応への適用の例が多レ、。
[0007] 一方、被覆触媒製造上の技術的困難点としては、(i)被覆層の剥離、ひび割れが 起こり易く機械的強度の強い触媒が得られ難い、(ii)多量に活性触媒物質を担体上 に被覆する事が難しい、 (iii)活性触媒物質に不活性物質が入るために活性の高レ、 触媒を得ることが難しい等を挙げることができる。
[0008] 力かる点を克服する方法は活性触媒物質の性状とも関わり、汎用的な技術はなく 触媒個々に解決するというのが現状である。
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、メタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相接触酸化して メタクリル酸を高収率、高選択的に製造する触媒の製造方法を提供することを目的と する。
課題を解決するための手段
[0010] 本発明者らは、上記問題点を解決する方法として、従来のメタクロレイン、イソプチ ルアルデヒドまたはイソ酪酸用気相接触酸化触媒の低活性、低選択性、短寿命の改 良を試み、 Mo、 V、 P、 Cu、 Cs及び NHを必須成分とする触媒を調製する際、特定
4
の濾過工程を採用した場合に高活性、高選択性で、特に寿命的に安定した高性能 な工業用触媒が得られることを見いだし、本発明を完成させた。すなわち、本発明は
(1) (a) Mo, V、 P、 Cu、 Csまたは NHのずれかを含有する各化合物並びに必要に
4
よりこれら以外の金属元素を含有する化合物を水と混合し、これら化合物の水溶液 又は水分散体 (以下、両者を含めてスラリー液という)を調製する工程、
(b)工程(a)で得られたスラリー液を乾燥しスラリー乾燥体を得る工程、
(c)工程 (b)で得られたスラリー乾燥体を焼成し焼成体を得る工程、
(d)工程(c)で得られた焼成体と水を混合した混合物を濾過し、水溶液と水不溶物を 濾別する工程、及び
(e)工程 (d)で得られた水不溶物を乾燥し水不溶物乾燥体を得る工程、
とからなることを特徴とするメタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相 接触酸化してメタクリル酸を製造するための触媒の製造方法、
(2) (a) Mo, V、 P、 Csまたは NHのいずれかを含有する各化合物並びに必要により
4
これら以外の金属元素(但し Cuを除く)を含有する化合物を水と混合し、これらの化 合物の水溶液又は水分散体(以下、両者を含めてスラリー液という)を調製する工程
(b' )工程(a)で得られたスラリー液を乾燥しスラリー乾燥体を得て、これと Cuを含有 する化合物とを必要により溶媒の存在下に混合し、得られた混合物を必要により乾燥 して乾燥体を得る工程、
(c)工程 (b' )で得られた乾燥体を焼成し焼成体を得る工程、
(d)工程(c)で得られた焼成体と水を混合した混合物を濾過し、水溶液と水不溶物を 濾別する工程、及び
(e)工程 (d)で得られた水不溶物を乾燥し水不溶物乾燥体を得る工程、
とからなることを特徴とするメタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相 接触酸化してメタクリル酸を製造するための触媒の製造方法、
(3) (a) Mo, V、 P、 Cu、 Csまたは NHのいずれかを含有する各化合物並びに必要
4
によりこれら以外の金属元素を含有する化合物を水と混合し、これら化合物の水溶液 又は水分散体 (以下、両者を含めてスラリー液という)を調製する工程、 (b)工程(a)で得られたスラリー液を乾燥しスラリー乾燥体を得る工程、
(c)工程 (b)で得られたスラリー乾燥体を焼成し焼成体を得る工程、
(d)工程(c)で得られた焼成体と水を混合した混合物を濾過し、水溶液と水不溶物を 濾別する工程、
(e)工程 (d)で得られた水不溶物を乾燥し水不溶物乾燥体を得る工程、及び
(f)工程 (e)で得られた水不溶物乾燥体をバインダーを使用して担体に被覆し、被覆 成型物を得る工程、
とからなることを特徴とするメタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相 接触酸化してメタクリル酸を製造するための被覆触媒の製造方法、
(4) (a) Mo, V、 P、 Csまたは NHのいずれかを含有する各化合物並びに必要により
4
これら以外の金属元素 (但し Cuを除く)を含有する化合物を水と混合し、これらの化 合物の水溶液又は水分散体 (以下、両者を含めてスラリー液という)を調製する工程
(b ' )工程(a)で得られたスラリー液を乾燥しスラリー乾燥体を得て、これと Cuを含有 する化合物とを必要により溶媒の存在下に混合し、得られた混合物を必要により乾燥 して乾燥体を得る工程、
(c)工程 (b' )で得られた乾燥体を焼成し焼成体を得る工程、
(d)工程(c)で得られた焼成体と水を混合した混合物を濾過し、水溶液と水不溶物を 濾別する工程、
(e)工程 (d)で得られた水不溶物を乾燥し水不溶物乾燥体を得る工程、及び
(f)工程 (e)で得られた水不溶物乾燥体をバインダーを使用して担体に被覆し、被覆 成型物を得る工程、
とからなることを特徴とするメタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相 接触酸化してメタクリル酸を製造するための被覆触媒の製造方法、
(5)工程 (a) (f)、及び
(g)工程 (f )で得られた被覆成型物を不活性ガス雰囲気下、空気雰囲気下又は還元 剤存在下に焼成する工程、
とからなる上記(3)又は (4)に記載の製造方法、 (6)工程 (g) 、工程 (f )で得られた被覆成型物を不活性ガス雰囲気下に焼成する 工程である上記(5)に記載の製造方法、
(7) Cuを含有する化合物が酢酸銅又は酸化銅である上記(1)一 (6)のいずれ力 4項 に記載の製造方法、
(8) Csを含有する化合物がセシウム弱酸塩又は水酸化セシウムであり、 NHを含有
4 する化合物が酢酸アンモニゥム又は水酸化アンモニゥムである上記(1)一(7)のい ずれか 1項に記載の製造方法、
(9)工程(a)において、任意成分として使用する化合物が Sb、 As、 Ag、 Mg、 Zn、 Al 、 B、 Ge、 Sn、 Pb、 Ti、 Zr、 Cr、 Re、 Bi、 W、 Fe、 Co、 Ni、 Ce、 Th、 K及び Rb力、らな る群から選ばれた 1種以上の元素を含有する化合物である上記(1)一(8)のいずれ 力、 1項に記載の製造方法、
(10)スラリー液が砒素化合物を含有しない上記(1)一 (9)のいずれ力、 1項に記載の 製造方法、及び
(11)バインダーがエタノールを含むバインダーである上記(3)—(10)のいずれか 1 項に記載の製造方法、に関するものである。
発明の効果
[0011] 本発明の製法により得られる触媒は高収率、高選択率でメタクロレイン、イソブチル アルデヒドまたはイソ酪酸力、らメタクリル酸を製造することができ、更に高負荷条件の 反応に使用することができるため工業的価値が極めて大きい。
発明を実施するための最良の形態
[0012] 本発明の製造方法は、触媒の活性成分を含有する化合物を含む水溶液または該 化合物の水分散体 (以下、両者を含めてスラリー液という)を乾燥、焼成し得られた焼 成体を水と混合、濾過し、この濾過残渣を乾燥する工程を含んでなる。
[0013] 本発明の製造方法における第一の好ましい実施態様は、 Mo、 V、 P、 Cu、 Cs及び NH並びに必要によりその他の元素をそれぞれ若しくは複数含有する複数の化合
4
物 (以下、場合によりこれら活性成分を含有する化合物を「活性成分含有化合物」と も言う)を水に溶解及び/又は分散させスラリー液を調製し (工程 (a) )、これを乾燥( 工程 (b) )、焼成(工程 (c) )して得られた焼成体と水を混合してから濾過(工程(d) )し 、この濾過残渣を乾燥して(工程 (e) )触媒活性成分として使用することを特徴とする
[0014] 本発明において、スラリー液調製用に用いられる活性成分含有化合物は、乾燥(ェ 程 (b) )又は焼成(工程 (c) )によりへテロポリ酸又はその塩を形成する化合物が好ま しい。該化合物としては活性成分元素の、塩化物、硫酸塩、硝酸塩、酸化物又は酢 酸塩等が挙げられる。好ましいィ匕合物をより具体的に例示すると硝酸カリウム又は硝 酸コバルト等の硝酸塩、酸化モリブデン、五酸化バナジウム、三酸化アンチモン、酸 化セリウム、酸化亜鉛又は酸化ゲルマニウム等の酸化物、正リン酸、リン酸、硼酸、リ ン酸アルミニウム又は 12タンダストリン酸等の酸(又はその塩)等が挙げられる。また、 銅化合物として酢酸銅(酢酸第一銅、酢酸第二銅、塩基性酢酸銅又は酸化第二銅 等、好ましくは酢酸第二銅)または酸化銅(酸化第一銅、酸化第二銅)を使用すると 好ましい効果を奏する場合がある。また、セシウム化合物として酢酸セシウム又は水 酸化セシウム及びセシウム弱酸塩を、また、アンモニゥム化合物として酢酸アンモニゥ ム又は水酸化アンモニゥムの両者を使用するのが好ましい。これら活性成分を含む 化合物は単独で使用してもよいし、 2種以上を混合して使用してもよい。セシウム弱 酸塩としては、セシウムと一般的に知られている弱酸の塩であれば特に制限はなぐ 例えば炭酸水素セシウム、炭酸セシウム、酢酸セシウム等が挙げられ、酢酸セシウム が好ましい。尚、これらのうち酢酸セシウムは、市販品をそのまま使用することができ る力 例えば水酸化セシウムや炭酸セシウム等のセシウムの水溶性塩の水溶液に等 当量以上の酢酸を添加して酢酸セシウム水溶液として添加することもできる。又水酸 化セシウム等の水溶液そのままで添加することもできる。
[0015] 本発明において、 Mo、 V、 P、 Cu、 Cs及び NH以外の活性成分としては、 As、 Sb
4
、 Ag、 Mg、 Zn、 Al、 B、 Ge、 Sn、 Pb、 Ti、 Zr、 Cr、 Re、 Bi、 W、 Fe、 Co、 Ni、 Ce、 T h、 K、 Rb等からなる群から選ばれる 1種以上が挙げられ、これらのうち As以外の元 素が好ましい。
[0016] 本発明において、活性成分含有化合物の使用割合は、その原子比がモリブデン 1 0に対して、バナジウムが通常 0. 1以上で 6以下、好ましくは 0. 3以上で 2. 0以下、リ ンが通常 0. 5以上で 6以下、好ましくは 0. 7以上で 2. 0以下、銅が通常 0より大きく 3 以下、好ましくは 0. 01以上で 1以下、セシウムが通常 0. 01以上で 4. 0以下、好まし くは 0. 1以上で 2. 0以下、アンモニゥムが通常 0. 1以上で 4. 0以下、好ましくは 0. 5 以上で 3. 0以下である。必要により用いるその他の活性成分の種類及びその使用割 合は、その触媒の使用条件等に合わせて、最適な性能を示す触媒が得られるように 、適宜決定される。
[0017] 本発明の製造方法は以下の手順により行う。
[0018] まず活性成分含有化合物のスラリー液を調製する(工程 (a) )。スラリー液は、各活 性成分含有化合物と水とを均一に混合して得ることができる。該スラリー液は必要な 活性成分含有化合物の全てを、触媒の必要量において含有することが好ましい。ス ラリー液を調製する際の活性成分含有化合物の添加順序に特に制限はないが、 Mo 、 V、 P及び必要により他の金属元素を含有する化合物を先にスラリー液とし、その後 セシウム含有化合物、アンモニゥム含有化合物及び銅含有化合物をスラリー液に添 加するほうが好ましい。
[0019] スラリー液を調製する際の温度は、調製に支障がない範囲であれば特に制限はな いが、セシウム含有化合物、アンモニゥム含有化合物及び銅含有化合物を添加する 際の温度は、通常 0— 35°C、好ましくは 10— 30°C程度の範囲であるほうが、得られ る触媒が高活性になる場合がある。この傾向は銅化合物として酢酸銅を使用した場 合に顕著になるので、スラリー液の調製方法は、前記好ましい添加方法を採用したほ うが効率的になる。
[0020] 本発明においては、スラリー液が水溶液であるのが好ましい。スラリー液における水 の使用量は、用いる化合物の全量を完全に溶解できる力、または均一に混合できる 量であれば特に制限はないが、下記する乾燥方法や乾燥条件等を勘案して適宜決 定される。通常スラリー調製用化合物の合計質量 100質量部に対して、 200 2000 質量部程度である。水の量は多くてもょレ、が、多過ぎると乾燥工程のエネルギーコス トが高くなり、また完全に乾燥できない場合も生ずるなどデメリットが多ぐメリットはあ まりなレ、ので適量が好ましレ、。
[0021] 次レ、で上記で得られたスラリー液を乾燥し、スラリー乾燥体とする(工程 (b) )。乾燥 方法は、スラリー液が完全に乾燥できる方法であれば特に制限はないが、例えばドラ ム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固等が挙げられる。これらのうち本発明におい ては、スラリー液状態から短時間に粉末又は顆粒に乾燥することができる噴霧乾燥 やスラリー液を直接乾燥でき簡便である蒸発乾固が好ましぐ蒸発乾固が特に好まし レ、。
[0022] 噴霧乾燥の乾燥温度はスラリー液の濃度、送液速度等によって異なるが、概ね乾 燥機の出口における温度が 70 150°Cである。また、この際得られるスラリー乾燥体 の平均粒径が 30— 700 z mとなるよう乾燥するのが好ましい。蒸発乾固の場合、特 にスラリー乾燥体が塊状もしくは大きな粒子として得られるので、適宜粉砕、好ましく は 700 μ m以下となるように粉砕して使用する。本発明におレ、てスラリー乾燥体とレヽ つた場合、このように粉砕されたものもスラリー乾燥体に含むものである。
[0023] 次いでこうして得られたスラリー乾燥体を、好ましくは空気雰囲気下で焼成し焼成体 を得る(工程(c) )。この場合の焼成温度は通常 100— 420°C、好ましくは 250— 400 °C、焼成時間は好ましくは 1一 20時間である。かかる焼成体は、粉体であるのが好ま しい。
[0024] 次いでこの焼成体を適度な量、好ましくは焼成体の 2— 5質量倍の水と混合し、水 溶解性の成分を溶出させる。ここで水溶解性の成分はへテロポリ酸構造をとる化合物 と推定され、本発明が目的とするヘテロポリ酸塩は水に溶解せずに存在するので、こ れを濾別して(工程 (d) )、乾燥する(工程 (e) )。こうして得られた乾燥体は、好ましく は粉体であり、そのまま気相接触酸化反応の触媒として使用することができる。
[0025] 次いで、本発明の第二の好ましい実施態様について説明する。
[0026] 本発明の第二の好ましい実施態様は、 Mo、 V、 P、 Cs及び NH並びに必要により
4
その他の元素(但し、 Cuを除く)をそれぞれ若しくは複数含有する複数の化合物を水 と混合しスラリー液を調製し(工程 (a) )、これを乾燥して得られたスラリー乾燥体と Cu 含有化合物とを必要により溶媒の存在下に混合し、これを必要により乾燥して乾燥体 を得て(工程 (b' ) )、次レ、でこれを焼成(工程 (c) )して得られた焼成体と水を混合し てから濾過(工程 (d) )し、この濾過残渣を乾燥して(工程 (e) )触媒活性成分として使 用することを特徴とする。こうして得られた乾燥体は、そのまま気相接触酸化反応の 触媒として使用することができる。 [0027] 本発明の前記第二の実施態様において、触媒活性成分を得る工程は、銅含有化 合物を、他の活性成分含有化合物のスラリー乾燥体と別途混合する工程を経る以外 は、活性元素含有化合物の種類及び使用割合、その他の条件は前記第一の実施 態様と同様にして行うことができる。スラリー乾燥体と Cu含有化合物との混合は、粉 体混合でもよいし、 Cu含有化合物を、溶媒、好ましくは水と混合してスラリー液として 力 混合してもよい。この際の水の使用量は、第一の実施態様における場合と同程 度でよい。スラリー乾燥体と Cu含有化合物との混合物は、その調製時に水等の溶媒 を使用した場合、適宜乾燥し乾燥体とする。次いで、これを第一の実施態様と同様に 焼成し、次いで水混合工程、濾過残渣の乾燥工程を経て目的とする触媒を得ること ができる。なお、この第二の態様において、後から添加した銅化合物は乾燥 (及び焼 成)工程を経ることで遊離化合物としては存在しなくなる。
[0028] 次いで本発明の第三の好ましい実施態様につき説明する。
[0029] 前記のようにして得られた水不溶物乾燥体、つまり触媒活性成分は、反応ガスの圧 力損失を少なくするために、柱状物、錠剤、リング状、球状等に成型し使用するのが 好ましレ、。このうち選択性の向上や反応熱の除去が期待できることから不活性担体を 水不溶物乾燥体で被覆し、触媒被覆成型物とするのが特に好ましい。
[0030] 被覆工程(工程 (f) )は以下に述べる転動造粒法が好ましい。この方法は、例えば 固定容器内の底部に、平らなあるいは凹凸のある円盤を有する装置中で、円盤を高 速で回転することにより、容器内の担体を自転運動と公転運動の繰り返しにより激しく 撹拌させ、ここにバインダーと水不溶物乾燥体並びに必要により他の添加剤、例えば 成型助剤及び強度向上材の混合物等を添加することにより該混合物を担体に被覆 する方法である。バインダーの添加方法は、(i)前記混合物に予め混合しておぐ (ii) 混合物を固定容器内に添加するのと同時に添加、 (iii)混合物を固定容器内に添カロ した後に添加する、(iv)混合物を固定容器内に添加する前に添加する、(V)混合物 とバインダーをそれぞれ分割し、 (ii)一 (iv)を適宜組み合わせて全量添加する等の 方法が任意に採用しうる。このうち、(V)においては、例えば混合物の固定容器壁へ の付着、混合物同士の凝集がなく担体上に所定量が担持されるようオートフィーダ一 等を用いて添加速度を調節して行うのが好ましい。 [0031] バインダーは水及び 1気圧下での沸点が 150°C以下の有機化合物からなる群から 選ばれる少なくとも 1種であれば特に制限はないが、被覆後の乾燥等を考慮すると沸 点 100°C以下のものが好ましい。水以外のバインダーの具体例としては、メタノーノレ、 エタノール、プロパノール類、ブタノール類等のアルコール、好ましくは炭素数 1乃至 4のアルコール、ェチルエーテル、ブチルエーテルまたはジォキサン等のエーテル、 酢酸ェチル又は酢酸ブチル等のエステル、アセトン又はメチルェチルケトン等のケト ン等並びにそれらの水溶液等が挙げられ、特にエタノールが好ましい。バインダーと してエタノールを使用する場合、エタノール/水 = 10/0— 1/9 (質量比)、好ましく は 10Z0 7Z3 (質量比)が好ましい。なお、エタノールと水との混合物を使用する 場合、被覆後の乾燥条件によっては爆発限界を考慮する必要があり、その場合、ェ タノール濃度が 15 40質量%となる範囲が好ましい。これらバインダーの使用量は 、水不溶物乾燥体 100質量部に対して通常 2 60質量部、好ましくは 5 25質量部 である。
[0032] 本発明において用いうる担体の具体例としては、炭化珪素、アルミナ、シリカアルミ ナ、ムライト、アランダム等の直径 1一 15mm、好ましくは 2. 5— 10mmの球形担体等 が挙げられる。これら担体は通常は 10— 70%の空孔率を有するものが用いられる。 担体と被覆される水不溶物乾燥体の割合は通常、水不溶物乾燥体/ (水不溶物乾 燥体 +担体) = 10— 75質量%、好ましくは 15— 60質量%となる量使用する。
[0033] 被覆される水不溶物乾燥体の割合が多レ、場合、得られる被覆触媒の反応活性は 大きくなるが、機械的強度が小さくなる (磨損度が大きくなる)傾向がある。逆に、被覆 される水不溶物乾燥体の割合が少ない場合、機械的強度は大きい(磨損度は小さい )が、反応活性は小さくなる傾向がある。
[0034] 本発明においては、水不溶物乾燥体を担体上に被覆する場合、更に必要によりシ リカゲル、珪藻土、アルミナ粉末等の成型助剤を用いてもよい。成型助剤の使用量は 、水不溶物乾燥体 100質量部に対して通常 5 60質量部である。
[0035] また、更に必要により触媒成分に対して不活性な、セラミックス繊維、ウイスカ一等 の無機繊維を強度向上材として用いる事は、触媒の機械的強度の向上に有用であ る。しかし、チタン酸カリウムゥイスカーや塩基性炭酸マグネシウムゥイスカーの様な 触媒成分と反応する繊維は好ましくない。これら繊維の使用量は、水不溶物乾燥体 1
00質量部に対して通常 1一 30質量部である。
[0036] 上記成型助剤及び強度向上材等の添加剤は、通常被覆工程にぉレ、て、担体、水 不溶物乾燥体、バインダー等と共に造粒機中に添加し、担体の被覆に使用される。
[0037] このようにして水不溶物乾燥体を担体に被覆するが、この際得られる被覆品は通常 直径が 3 15mm程度である。
[0038] こうして得られた被覆触媒はそのまま触媒として気相接触酸化反応に供することが できるが、焼成(工程 (g) )すると触媒活性が向上する場合があり好ましい。この場合 の焼成温度は通常 100— 450°C、好ましくは 250— 420°C、焼成時間は好ましくは 1 一 20時間である。
[0039] なお、焼成は、通常、空気雰囲気下に行われるが、窒素のような不活性ガス雰囲気 下で行ってもよいし、不活性ガス雰囲気下での焼成後に必要に応じて更に空気雰囲 気下で焼成を行ってもよい。また、不活性ガス雰囲気下、好ましくは還元剤の存在下 に焼成を行うと更に活性の高い触媒が得られる場合があり好ましい。還元剤としては 、焼成温度において好ましくは気体となるものであれば特に制限はなぐ CO及び炭 素数が 2— 5のアルコール類、アルデヒド類、ケトン類、有機酸類が挙げられ、特にェ タノールが好ましい。
[0040] 上記のようにして得られた触媒 (以下本発明の触媒という)は、メタクロレイン、イソブ チルアルデヒドまたはイソ酪酸を気相接触酸化してメタクリル酸を製造する際に使用 される。なお、本発明の触媒といった場合、特に断らない限り、工程 (a)—(e)を経て 得られた水不溶物乾燥体、又は更に工程 (f) (好ましくは更に工程 (g) )を経て得られ た被覆触媒の両者を含む意味で使用する。
[0041] 以下、本発明の触媒を使用するのに最も好ましい原料である、メタクロレインを使用 した気相接触酸化反応につき説明する。
[0042] 気相接触酸化反応には分子状酸素又は分子状酸素含有ガスが使用される。メタク ロレインに対する分子状酸素の使用割合は、モル比で 0. 5— 20の範囲が好ましぐ 特に 1一 10の範囲が好ましい。反応を円滑に進行させることを目的として、原料ガス 中に水をメタクロレインに対しモル比で 1一 20の範囲で添加することが好ましい。 [0043] 原料ガスは酸素、必要により水(通常水蒸気として含む)の他に窒素、炭酸ガス、飽 和炭化水素等の反応に不活性なガス等を含んでレ、てもよレ、。
[0044] また、メタクロレインはイソブチレン、第三級ブタノール、及びメチルターシャリーブ チルエーテルを酸化して得られたガスをそのまま供給してもよい。
[0045] 気相接触酸化反応における反応温度は通常 200 400°C、好ましくは 260 360
°C、原料ガスの供給量は空間速度(SV)にして、通常 100 6000hr— 好ましくは 4
00— 3000hr— 1である。
[0046] 本発明による触媒を用いた場合、 SVを上げても反応成績には大きな変化はなぐ 高空間速度にて反応を実施することが可能である。
[0047] また、接触酸化反応は加圧下または減圧下でも可能であるが、一般的には大気圧 付近の圧力が適している。
[0048] (実施例)
以下に本発明を実施例により更に具体的に説明する。
[0049] なおこれらの例中の転化率、選択率及び収率は次の通りに定義される。
'選択率 =生成したメタクリル酸のモル数/反応したメタクロレインのモル数 X 100 '収率 =生成したメタクリル酸のモル数/供給したメタクロレインのモル数 X 100 実施例 1
[0050] 1)触媒の調製
純水 2100mlに三酸ィ匕モリブデン 300gと五酸ィ匕ノ ナジゥム 13. 26g、及び 85質量 %正燐酸 27. 62gを添カ卩し、 90— 100°Cで 5時間加熱還流して赤褐色の透明溶液 を得た。続いて、そこに三酸化アンチモン 12. 15gを添加して、さらに 90— 100°Cで 2時間加熱還流して三酸化アンチモンの溶解した濃紺色の溶液を得た。続いて、こ の溶液を 15— 20°Cに冷却して、撹拌しながら純水 150mlに溶解した酢酸セシウム 2 0. OOgと、純水 150mlに溶角早した醉酸了ンモニクム 24· 09gを同時に徐々に添カロし 、 15— 20°Cで 1時間熟成させてヘテロポリ酸前駆体のセシウム塩とアンモニゥムの塩 を含む緑青色のスラリー液を得た。
[0051] 続いて、さらにそのスラリー液に純水 240mlに溶解した酢酸第二銅 ·一水和物 16. 64gを添加し、さらに 15— 20°Cで 15分熟成させた。
[0052] 続いて、このスラリー液を湯煎による蒸発乾固で乾燥し、乳鉢で粉砕して 700 μ m 以下に分級し、空気流通下において 310°Cで 5時間一次焼成し焼成顆粒を得た。こ の時の焼成顆粒の組成は仕込比で
Mo V P Cu Sb Cs (NH )
10 0. 7 1. 15 0. 4 0. 4 0. 5 4 1. 5
であった。
[0053] 続いて、得られた焼成顆粒 300gを純水 1000mlに分散させ、 40°Cで 1時間撹拌し た。続いてその分散液を濾過し、濾別した緑白色の水不溶物 (濾過残渣)と赤褐色の 濾液を湯煎により別々に蒸発乾固して 300— 700 μ mに粉砕、分級し濾過残渣より 顆粒状触媒 (A)を、また濾液より比較用固化物 (A)を得た。
[0054] この時の濾過残渣と濾液の分離比は濾過残渣 86. 8質量%、濾液 13. 2質量%で あった。得られた顆粒状触媒 (A)の蛍光 X線分析による金属元素の原子比は、 Mo V P Cu Sb Cs
10 0. 5 1. 82 0. 32 0. 41 0. 46
であり、これを X線回折分析することによりヘテロポリ酸の塩であることが、また CHN 分析することにより窒素(即ち NH ;以下同様)を含有することが判明した。
4
[0055] また、得られた比較用固化物 (A)の蛍光 X線による金属元素の原子比は、
Mo V P Cu Sb
10 1. 53 2. 46 1. 14 0. 13
であり、これを X線回折分析することによりヘテロポリ酸を有しない前駆体、また CHN 分析することにより窒素を含まないことが判明した。
[0056] 続いて、得られた顆粒状触媒 (A)を 300 μ m以下に粉砕、分級したもの 176. 8gと 強度向上材 (セラミック繊維) 25. 9gとを均一に混合して、球状多孔質アルミナ担体( 粒径 3. 5mm) 173. 7gに 90質量%エタノール水溶液をバインダーとして被覆成型 した。次いで得られた成型物を空気流通下において 310°Cで 5時間の二次焼成を行 レヽ目的とする被覆触媒 (A)を得た。
[0057] 2)メタクロレインの触媒酸化反応
得られた被覆触媒 (A) 10. 3mlを内径 18. 4mmのステンレス反応管に充填し、原 料ガス組成(モル比) メタクロレイン:酸素:水蒸気:窒素 = 1 : 2 : 4 : 18. 6、空間速度 (SV)
Figure imgf000014_0001
反応浴温度 310°Cで、メタクロレインの酸化反応を実施した。反応 は、最初反応浴温度 310°Cで 3時間反応を続け、次いで反応浴温度を 350°Cに上 げ 15時間反応を続けた。次レヽで反応浴温度を 310°Cに下げて反応成績の測定を行 つた。その結果を表 1に示す。また、上記顆粒状触媒 (A)と比較用固化物 (A)にっき それぞれ 4. Ogと 300— 700 z mの石英砂 8. 0gを混合し、それぞれ上記と同じ反応 条件で酸化反応に使用した結果を表 1にあわせて示す。
ほ 1] 表 1
Figure imgf000015_0001
[0059] (比較例 1)
1)触媒の調製
純水 2100mlに三酸ィ匕モリブデン 300gと五酸ィ匕ノ ナジゥム 13. 26g、及び 85質量 %正燐酸 27. 62gを添加し、 90— 100°Cで 5時間加熱還流して赤褐色の透明溶液 を得た。続いて、そこに三酸化アンチモン 12. 15gを添加して、さらに 90— 100。Cで 2時間加熱還流して三酸化アンチモンの溶解した濃紺色の溶液を得た。続いて、こ の溶液を 15— 20°Cに冷却して、撹拌しながら純水 150mlに溶解した酢酸セシウム 2 0. 00gと、純水 150mlに溶角军した醉酸アンモニクム 24. 09gを同時に徐々に添カロし 、 15— 20°Cで 1時間熟成させてヘテロポリ酸前駆体のセシウム塩とアンモニゥムの塩 を含む緑青色のスラリー液を得た。
[0060] 続いて、さらにそのスラリー液に純水 240mlに溶解した酢酸第二銅.一水和物 16.
64gを添加し、さらに 1時間熟成させた。
[0061] 続いて、このスラリーを湯煎による蒸発乾固で乾燥し、 300— 700 / mに粉碎、分 級し比較用固化物 (B)を得た。
[0062] この時の比較用固化物(B)の組成は仕込比で
Mo V P Cu Sb Cs (NH ) であった。
[0063] 続いて、得られた比較用固化物(B)を 300 μ ΐη以下に粉砕、分級し、このうち 365.
4gを、強度向上材 (セラミック繊維) 52. lgと均一に混合して、球状多孔質アルミナ 担体(粒径 3. 5mm) 349. 8gに 90質量%エタノール水溶液をバインダーとして被覆 成型した。次いで得られた成型物を空気流通下において 310°Cで 5時間焼成して比 較用の被覆触媒 (B)を得た。
[0064] 2)メタクロレインの触媒酸化反応
得られた比較用被覆触媒 (B)にっき実施例 1と同様にして、メタクロレインの酸化反 応に使用し、実施例 1と同様にして反応成績の測定を行った。その結果を表 2に示す また、 ];匕較用固ィ匕物(B) 4. Ogと 300— 700 z mの石英砂 8. 0gを混合し、上記と同 じ反応条件で酸化反応に使用した結果を表 2にあわせて示す。
[0065] [表 2] 表 2
Figure imgf000016_0001
実施例 2
[0066] 1)触媒の調製
純水 2100mlに三酸ィ匕モリブデン 300gと五酸ィ匕ノ ナジゥム 13. 26g、及び 85質量 %正燐酸 27. 62gを添カ卩し、 90— 100°Cで 5時間加熱還流して赤褐色の透明溶液 を得た。続いて、そこに三酸化アンチモン 12. 15gを添加して、さらに 90— 100°Cで 2時間加熱還流して三酸化アンチモンの溶解した濃紺色の溶液を得た。続いて、こ の溶液を 15— 20°Cに冷却して、撹拌しながら純水 150mlに溶解した酢酸セシウム 2 0. 00gと、純水 150m こ溶角军した醉酸アンモニクム 24. 09gを同時に徐々に添カロし 、 15— 20°Cで 1時間熟成させてヘテロポリ酸前駆体のセシウム塩とアンモニゥムの塩 を含む緑青色のスラリー液を得た。
[0067] 続いて、このスラリー液を湯煎による蒸発乾固で乾燥し、乳鉢で粉砕して 700 μ m 以下に分級し粉砕物を得た。得られた粉砕物の組成は、仕込比で
Mo V P Sb Cs (NH )
10 0. 7 1. 15 0. 4 0. 5 4 1. 5
であった。続いてこの粉砕物に酢酸第二銅'一水和物 16. 64gを粉末で添カ卩し、 90 質量%エタノール水溶液 100gを加え、混練して再度湯煎による蒸発乾固で乾燥し、 乳鉢で粉砕して 700 μ m以下に分級し、空気流通下で 310°Cで 5時間一次焼成し焼 成顆粒 (C)を得た。この時の焼成顆粒(C)の組成は仕込比で
Mo V P Cu Sb Cs (NH )
10 0. 7 1. 15 0. 4 0. 4 0. 5 4 1. 5
であり、また、添加した銅は酢酸銅または酸化銅として遊離していないことが X線回折 力 推定された。
[0068] 続いて、得られた焼成顆粒(C) 356gを純水 1317mlに分散させ、 40°Cで 1時間撹 拌した。続いてその分散液を濾過し、濾別した緑白色の水不溶物 (濾過残渣)と赤褐 色の濾液を湯煎により別々に蒸発乾固して 300 700 μ mに粉砕、分級し濾過残渣 より顆粒状触媒 (C)を、また濾液より比較用固化物 (C)を得た。
[0069] この時の濾過残渣と濾液の分離比は濾過残渣 88. 4質量%、濾液 11. 6質量%で あった。
[0070] 続いて、得られた顆粒状触媒(C)を 300 μ ΐη以下に粉砕、分級したもの 324. 4gと 、強度向上材 (セラミック繊維) 47. 4gとを均一に混合して、球状多孔質アルミナ担体 (粒径 3. 5mm) 318. 2gに 90質量%エタノール水溶液をバインダーとして被覆成型 した。次いで得られた成型物を空気流通下において 310°Cで 5時間二次焼成して目 的とする被覆触媒 (C)を得た。
[0071] 2)メタクロレインの触媒酸化反応
得られた被覆触媒 (C)にっき実施例 1と同様にして、メタクロレインの酸化反応に使 用し、実施例 1と同様にして反応成績の測定を行った。その結果を表 3に示す。また 、上記焼成顆粒 (C)、顆粒状触媒 (C)、比較用固化物 (C)それぞれ 4. 0gと 300 7 00 z mの石英砂 8. 0gを混合し、それぞれ上記と同じ反応条件で酸化反応に使用し た結果を表 3にあわせて示す。
[0072] [表 3] 表 3
Figure imgf000018_0001
[0073] (比較例 2)
1)触媒の調製
純水 2100mlに三酸ィ匕モリブデン 300gと五酸ィ匕バナジウム 13· 26g、及び 85質量 %正燐酸 27. 62gを添加し、 90— 100°Cで 5時間加熱還流して赤褐色の透明溶液 を得た。続いて、そこに三酸化アンチモン 12. 15gを添加して、さらに 90— 100°Cで 2時間加熱還流して三酸化アンチモンの溶解した濃紺色の溶液を得た。続いて、こ の溶液を 15— 20°Cに冷却して、撹拌しながら純水 150mlに溶解した酢酸セシウム 2 0. OOgと、純水 150m こ溶角军した醉酸アンモニクム 24. 09gを同時に徐々に添カロし 、 15— 20°Cで 1時間熟成させてヘテロポリ酸前駆体のセシウム塩とアンモニゥムの塩 を含む緑青色のスラリー液を得た。
[0074] 続いて、このスラリーを湯煎による蒸発乾固で乾燥し、乳鉢で粉砕して、 300 μ m以 下に分級し粉砕物を得た。得られた粉砕物の組成は、仕込比で
Mo V P Sb Cs (NH )
10 0. 7 1. 15 0. 4 0. 5 4 1. 5
であった。続いてこの粉砕物に酢酸第二銅'一水和物 16. 64gを粉末で添カ卩し、混 合して混合物を得た。
[0075] 続いて得られた粉碎物 381. 5gと、強度向上材 (セラミック繊維) 53. 8gとを均一に 混合して、球状多孔質アルミナ担体(粒径 3. 5mm) 358. 4gに 90質量%エタノール 水溶液をバインダーとして被覆成型した。次レ、で得られた成型物を空気流通下にお レ、て 310°Cで 5時間焼成して比較用の被覆触媒 (D)を得た。
[0076] なお、焼成後の触媒活性成分 (前記粉砕物)の組成は、仕込比で
Mo V P Cu Sb Cs (NH )
10 0. 7 1. 15 0. 4 0. 4 0. 5 4 1. 5
であり、また、添加した銅は酸化銅または酸化銅として遊離していないことが X線回折 力 推定された。
[0077] 2)メタクロレインの触媒酸化反応
被覆触媒 (D)にっき実施例 1と同様にして、メタクロレインの酸化反応に使用し、実 施例 1と同様にして反応成績の測定を行った。その結果を表 4に示す。
[0078] [表 4] 表 4
Figure imgf000019_0001
実施例 3
[0079] 1)触媒の調製
純水 2100mlに三酸ィ匕モリブデン 300gと五酸ィ匕バナジウム 15· 16g、及び 85質量 %正燐酸 27. 62gを添加し、 90— 100°Cで 5時間加熱還流して赤褐色の透明溶液 を得た。続いて、この溶液を 15— 20°Cに冷却して、撹拌しながら純水 100mlに溶解 した水酸化セシウム '一水和物 17. 49gと、純水 100mlに溶解した酢酸アンモニゥム 20. 88gを同時に徐々に添加し、 15— 20°Cで 15分熟成させてヘテロポリ酸前駆体 のセシウム塩とアンモニゥムの塩を含む黄白色のスラリー液を得た。
[0080] 続いて、さらにそのスラリー液に純水 200mlに溶解した酢酸第二銅.一水和物 16.
64gを添加し、さらに 15— 20°Cで 1時間熟成させた。
[0081] 続いて、このスラリー液を湯煎による蒸発乾固で乾燥し、乳鉢で粉砕して 700 μ m 以下に分級して、空気流通下において 310°Cで 5時間一次焼成し焼成顆粒 (E)を得 た。この時の焼成顆粒 (E)の組成は仕込比で
Mo V P Cu Cs (NH )
10 0. 8 1. 15 0. 4 0. 5 4 1. 3
であった。
[0082] 続いて、得られた焼成顆粒 (E) 351. 5gを純水 1300mlに分散させ、 40°Cで 1時間 撹拌した。続いてその分散液を濾過し、濾別した黄白色の水不溶物 (濾過残渣)と赤 褐色の濾液を湯煎により別々に蒸発乾固して 300— 700 μ mに粉碎、分級し濾過残 渣より顆粒状触媒 (E)を、また濾液より比較用固化物 (E)を得た。 [0083] この時の濾過残渣と濾液の分離比は濾過残渣 78. 9質量%、濾液 21. 1質量%で あった。
[0084] 続いて、得られた顆粒状触媒(E)を 300 μ ΐη以下に粉砕、分級したもの 245. Ogと 強度向上材 (セラミック繊維) 36. 2gとを均一に混合して、球状多孔質アルミナ担体( 粒径 3. 5mm) 243. 4gに 90質量%エタノール水溶液をバインダーとして被覆成型 した。次いで得られた成型物を二等分して、(i)一方につき箱形熱風焼成炉を用いて 窒素流通(5LZmin. )下で、還元剤としてエタノール(20gZhr)を使用して、 380 °Cで 10時間焼成 (二次焼成)して目的とする被覆触媒 (E— 1)を得、 (ii)他方につき 箱形熱風焼成炉を用いて、空気流通下において 380°Cで 10時間二次焼成して目的 とする被覆触媒 (E— 2)を得た。
[0085] 2)メタクロレインの触媒酸化反応
得られた被覆触媒 (E— 1)、 (E-2)にっきそれぞれ実施例 1と同様にして、メタクロ レインの酸化反応に使用し、実施例 1と同様にして反応成績の測定を行った。その結 果を表 5に示す。また、顆粒状触媒 (E)と比較用固化物 (E)にっきそれぞれ 4. Ogと 300— 700 /i mの石英砂 8. Ogを混合し、それぞれ実施例 1と同じ反応条件で酸化 反応に使用した結果を表 5にあわせて示す。
[0086] [表 5] 表 5
Figure imgf000020_0001
(比較例 3)
1)触媒の調製
純水 2100mlに三酸ィ匕モリブデン 300gと五酸ィ匕ノ ナジゥム 15. 16g、及び 85質量 %正燐酸 27. 62gを添カ卩し、 90— 100°Cで 5時間加熱還流して赤褐色の透明溶液 を得た。続いて、この溶液を 15— 20°Cに冷却して、撹拌しながら純水 100mlに溶解 した水酸化セシウム ·一水和物 17. 49gと、純水 100mlに溶解した酢酸アンモニゥム 20. 88gを同時に徐々に添加し、 15— 20°Cで 15分熟成させてヘテロポリ酸前駆体 のセシウム塩とアンモニゥムの塩を含む黄白色のスラリー液を得た。
[0088] 続いて、さらにそのスラリー液に純水 200mlに溶解した酢酸第二銅.一水和物 16.
64gを添加し、さらに 1時間熟成させた。
[0089] 続いて、このスラリーを湯煎による蒸発乾固で乾燥し、乳鉢で粉砕して 300— 700 μ mに分級し粉砕物(F)を得た。この時の粉砕物(F)の組成は仕込比で
Mo V P Cu Cs (NH )
10 0. 8 1. 15 0. 4 0. 5 4 1. 3
であった。
[0090] 続いて、得られた粉砕物(F)を 300 z m以下に以下に粉砕、分級し、このうち 334.
Ogを、強度向上材 (セラミック繊維) 48. 6gと均一に混合して、球状多孔質アルミナ 担体(粒径 3. 5mm) 326. 6gに 90質量%エタノール水溶液をバインダーとして被覆 成型した。次いで得られた成型物を二等分して、(i)一方につき箱形熱風焼成炉を 用いて窒素流通(5L/min. )下で、還元剤としてエタノール(20g/hr)を使用して 、 380°Cで 10時間焼成(二次焼成)して目的とする被覆触媒 (F— 1)を得、(ii)他方に つき箱形熱風焼成炉を用いて、空気流通下において 380°Cで 10時間二次焼成して 目的とする被覆触媒 (F— 2)を得た。
[0091] 2)メタクロレインの触媒酸化反応
得られた被覆触媒 (F— 1)、 (F— 2)にっきそれぞれ実施例 1と同様にして、メタクロ レインの酸化反応に使用し、実施例 1と同様にして反応成績の測定を行った。その結 果を表 6に示す。また、粉砕物(F) 4. Ogと 300— 700 /i mの石英砂 8. Ogを混合し、 実施例 1と同じ反応条件で酸化反応に使用した結果を表 6にあわせて示す。
[0092] [表 6] 表 6
ピーク温度 C) 転化率(%) 選択率 (%) 収率 (%) 被覆触媒 (F _ l ) 3 1 7 5 3 . 9 8 5 . 6 4 6 . 1 被覆触媒 (F— 2 ) 3 1 8 6 1 - 2 8 5 . 9 5 2 . 6 粉砕物 (F ) 一 6 9 . 2 8 8 . 5 6 1 . 3 実施例 4
[0093] 1)触媒の調製
純水 2100mlに三酸ィ匕モリブデン 300gと五酸ィ匕ノ ナジゥム 15. 16g、及び 85%正 燐酸 27. 62gを添加し、 90— 100°Cで 5時間加熱還流して赤褐色の透明溶液を得 た。続いて、そこに三酸化アンチモン 1. 52gを添加して、さらに 90— 100°Cで 2時間 加熱還流して三酸化アンチモンの溶解した緑褐色の溶液を得た。続いて、この溶液 を 15— 20°Cに冷却して、撹拌しながら純水 100mlに溶解した水酸化セシウム '一水 禾ロ物 17· 49gと、純水 100mlに溶角早した醉酸アンモユウム 20· 88gを同時に徐々に 添加し、 15— 20°Cで 1時間熟成させてヘテロポリ酸前駆体のセシウム塩とアンモニゥ ムの塩を含む黄褐色のスラリー液を得た。
[0094] 続いて、このスラリー液を湯煎による蒸発乾固で乾燥し、乳鉢で粉砕して 700 μ m 以下に分級し粉砕物を得た。得られた粉砕物の組成は、仕込比で
Mo V P Sb Cs (NH )
10 0. 8 1. 15 0. 05 0. 5 4 1. 3
であった。続いてこの粉砕物に酢酸第二銅'一水和物 16. 64gを粉末で添カ卩し、 90 質量%エタノール水溶液 100gを加え、混練して再度湯煎による蒸発乾固で乾燥し、 乳鉢で粉砕して 700 μ m以下に分級し、空気流通下において 310°Cで 5時間一次 焼成し焼成顆粒 (G)を得た。この時の焼成顆粒 (G)の組成は仕込比で
Mo V P Cu Sb Cs (NH )
10 0. 8 1. 15 0. 4 0. 05 0. 5 4 1. 3
であった。
[0095] 続いて、得られた焼成顆粒(G) 366. 4gを純水 1360mlに分散させ、 40°Cで 1時 間撹拌した。続いてその分散液を濾過し、濾別した黄白色の水不溶物 (濾過残渣)と 赤褐色の濾液を湯煎により別々に蒸発乾固して 300 700 x mに粉砕、分級し、濾 過残渣より顆粒状触媒 (G)を、また濾液より比較用固化物 (G)を得た。
[0096] この時の濾過残渣と濾液の分離比は濾過残渣 81. 8質量%、濾液 18. 2質量%で あった。
[0097] 続いて、得られた顆粒状触媒(G)を 300 μ ΐη以下に粉砕、分級したもの 259. 2gと 、強度向上材 (セラミック繊維) 38. 4gとを均一に混合して、球状多孔質アルミナ担体 (粒径 3· 5mm) 257. 2gに 90質量%エタノール水溶液をバインダーとして被覆成型 した。次いで得られた成型物を二等分して、(i)一方につき箱形熱風焼成炉を用いて 窒素流通(5L/min. )下で、還元剤としてエタノール(20g/hr)を使用して、 380 °Cで 10時間焼成 (二次焼成)して目的とする被覆触媒 (G— 1)を得、(ii)他方につき 箱形熱風焼成炉を用いて、空気流通下において 380°Cで 10時間二次焼成して目的 とする被覆触媒 (G— 2)を得た。
[0098] 2)メタクロレインの触媒酸化反応
得られた被覆触媒 (G— 1)、 (G-2)にっきそれぞれ実施例 1と同様にして、メタクロ レインの酸化反応に使用し、実施例 1と同様にして反応成績の測定を行った。その結 果を表 7に示す。また、顆粒状触媒 (G)と比較用固化物 (G)にっきそれぞれ 4. Ogと 300— 700 z mの石英砂 8. Ogを混合し、それぞれ実施例 1と同じ反応条件で酸化 反応に使用した結果を表 7にあわせて示す。
[0099] [表 7] 表 7
Figure imgf000023_0001
[0100] (比較例 4)
1)触媒の調製
純水 2100mlに三酸ィ匕モリブデン 300gと五酸ィ匕ノ ナジゥム 15. 16g、及び 85質量 %正燐酸 27. 62gを添加し、 90— 100°Cで 5時間加熱還流して赤褐色の透明溶液 を得た。続いて、そこに三酸化アンチモン 1. 52gを添カロして、さらに 90— 100°Cで 2 時間加熱還流して三酸化アンチモンの溶解した緑褐色の溶液を得た。続いて、この 溶液を 15 20°Cに冷却して、撹拌しながら純水 100mlに溶解した水酸化セシウム- 一水禾ロ物 17. 49gと、純水 100mlに溶角军した醉酸アンモニゥム 20. 88gを同時に徐 々に添カ卩し、 15 20°Cで 1時間熟成させてヘテロポリ酸前駆体のセシウム塩とアン モニゥムの塩を含む緑青色のスラリー液を得た。 [0101] 続いて、このスラリーを湯煎による蒸発乾固で乾燥し、乳鉢で粉砕して、 300 / m以 下に分級し粉砕物を得た。得られた粉砕物の組成は、仕込比で
Mo V P Sb Cs (NH )
10 0. 8 1. 15 0. 05 0. 5 4 1. 3
であった。続いてこの粉砕物に酢酸第二銅'一水和物 16. 64gを粉末で添カ卩し、銅 元素を含んだ成型触媒用顆粒とした。組成は仕込比で
Mo V P Cu Sb Cs (NH )
10 0. 8 1. 15 0. 4 0. 05 0. 5 4 1. 3
であった。
[0102] 続いて、得られた粉砕物 361. 0gと、強度向上材 (セラミック繊維) 51. 2gとを均一 に混合して、球状多孔質アルミナ担体 (粒径 3. 5mm) 344. 0gに 90質量%エタノー ル水溶液をバインダーとして被覆成型した。次いで得られた成型物を二等分して、 (i )一方につき箱形熱風焼成炉を用いて窒素流通(5L/min. )下で、還元剤としてェ タノール(20g/hr)を使用して、 380°Cで 10時間焼成(二次焼成)して目的とする被 覆触媒 (H— 1)を得、(ii)他方につき箱形熱風焼成炉を用いて、空気流通下におい て 380°Cで 10時間二次焼成して目的とする被覆触媒 (H— 2)を得た。
[0103] 2)メタクロレインの触媒酸化反応
得られた被覆触媒 (H— 1)、(H— 2)にっきそれぞれ実施例 1と同様にして、メタクロ レインの酸化反応に使用し、実施例 1と同様にして反応成績の測定を行った。その結 果を表 8に示す。
[0104] [表 8] 表 8
Figure imgf000024_0001
実施例 5
1)触媒の調製
純水 2450mlに三酸化モリブデン 350gと五酸化バナジウム 17. 69g、及び 85質量 %正燐酸 32. 23gを添カ卩し、 90— 100°Cで 5時間加熱還流して赤褐色の透明溶液 を得た。続いて、この溶液を 15— 20°Cに冷却して、撹拌しながら純水 115mlに溶解 した水酸化セシウム ·一水和物 20. 41gと、純水 175mlに溶解した酢酸アンモニゥム 39. 35gを同時に徐々に添カロし、 15— 20°Cで 1時間熟成させてヘテロポリ酸前駆体 のセシウム塩とアンモニゥムの塩を含む黄白色のスラリー液を得た。
[0106] 続いて、さらにそのスラリー液に純水 240mlに溶解した酢酸第二銅.一水和物 19.
41gを添カロし、さらに 15— 20。Cで 15分熟成させた。
[0107] 続いて、このスラリー液を湯煎による蒸発乾固で乾燥し、乳鉢で粉砕して 700 μ m 以下に分級して、空気流通下において 310°Cで 5時間一次焼成し焼成顆粒を得た。 この時の焼成顆粒の組成は仕込比で
Mo V P Cu Cs (NH )
10 0. 8 1. 15 0. 4 0. 5 4 2. 1
であった。
[0108] 続いて、得られた焼成顆粒 421. 9gを純水 2220mlに分散させ、 70°Cで 3時間撹 拌した。続いてその分散液を濾過し、濾別した黄白色の水不溶物 (濾過残渣)と赤褐 色の濾液を湯煎により別々に蒸発乾固して 300— 700 μ mに粉碎、分級し濾過残渣 より顆粒状触媒 (I)を、また濾液より比較用固化物 (I)を得た。
[0109] この時の濾過残渣と濾液の分離比は濾過残渣 82. 6質量%、濾液 17. 4質量%で あった。
[0110] 続いて、得られた顆粒状触媒 (I)を 300 μ ΐη以下に粉砕、分級したもの 345. 0gと 強度向上材 (セラミック繊維) 48. 8gとを均一に混合して、球状多孔質アルミナ担体( 粒径 3. 5mm) 327. 8gに 90質量%エタノール水溶液をバインダーとして被覆成型 した。次いで得られた成型物を二等分して、(i)一方につき空気流通下において 273 °Cで 3時間の予備焼成を行い、さらに二次焼成として窒素流通下において 410°Cで 7時間の窒素焼成を行い、さらに続けて 370°Cで 3時間の空気流通下焼成を行い目 的とする被覆触媒 (ト 1)を得た。 (ii)他方につき空気流通下において 383°Cで 5時 間の二次焼成をして目的とする被覆触媒 (I一 2)を得た。
[0111] 2)メタクロレインの触媒酸化反応
得られた被覆触媒 一 1)、 (1-2)にっきそれぞれ実施例 1と同様にして、メタクロレ インの酸化反応に使用し、実施例 1と同様にして反応成績の測定を行った。その結 果を表 9に示す。また、顆粒状触媒 (I)と比較用固化物(I)にっきそれぞれ 4. Ogと 30 0— 700 / mの石英砂 8· Ogを混合し、それぞれ実施例 1と同じ反応条件で酸化反応 に使用した結果を表 9にあわせて示す。
[表 9] 表 9
ピーク温度 C) 転化率(%) 選択率(%) 収率 (%) 被覆触媒 ( I一 1 ) 322 83. 9 86. 8 72. 8 被覆触媒 (I一 2) 323 80. 1 86. 7 69. 4 顆粒状触媒 ( I ) ― 70. 0 87. 7 61. 4 比較用固化物 (I) ― 1 2. 2 73. 7 9. 0

Claims

請求の範囲
[1] (a) Mo, V、 P、 Cu、 Csまたは NHのいずれかを含有する各化合物並びに必要に
4
よりこれら以外の金属元素を含有する化合物を水と混合し、これら化合物の水溶液 又は水分散体 (以下、両者を含めてスラリー液という)を調製する工程、
(b)工程(a)で得られたスラリー液を乾燥しスラリー乾燥体を得る工程、
(c)工程 (b)で得られたスラリー乾燥体を焼成し焼成体を得る工程、
(d)工程(c)で得られた焼成体と水を混合した混合物を濾過し、水溶液と水不溶物を 濾別する工程、及び
(e)工程 (d)で得られた水不溶物を乾燥し水不溶物乾燥体を得る工程、
とからなることを特徴とするメタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相 接触酸化してメタクリル酸を製造するための触媒の製造方法。
[2] (a) Mo、 V、 P、 Csまたは NHのレ、ずれかを含有する各化合物並びに必要によりこ
4
れら以外の金属元素(但し Cuを除く)を含有する化合物を水と混合し、これらの化合 物の水溶液又は水分散体(以下、両者を含めてスラリー液という)を調製する工程、 (b ' )工程(a)で得られたスラリー液を乾燥しスラリー乾燥体を得て、これと Cuを含有 する化合物とを必要により溶媒の存在下に混合し、得られた混合物を必要により乾燥 して乾燥体を得る工程、
(c)工程 (b' )で得られた乾燥体を焼成し焼成体を得る工程、
(d)工程(c)で得られた焼成体と水を混合した混合物を濾過し、水溶液と水不溶物を 濾別する工程、及び
(e)工程 (d)で得られた水不溶物を乾燥し水不溶物乾燥体を得る工程、
とからなることを特徴とするメタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相 接触酸化してメタクリル酸を製造するための触媒の製造方法。
[3] (a) Mo, V、 P、 Cu、 Csまたは NHのいずれかを含有する各化合物並びに必要に
4
よりこれら以外の金属元素を含有する化合物を水と混合し、これら化合物の水溶液 又は水分散体 (以下、両者を含めてスラリー液という)を調製する工程、
(b)工程(a)で得られたスラリー液を乾燥しスラリー乾燥体を得る工程、
(c)工程 (b)で得られたスラリー乾燥体を焼成し焼成体を得る工程、 (d)工程(c)で得られた焼成体と水を混合した混合物を濾過し、水溶液と水不溶物を 濾別する工程、
(e)工程 (d)で得られた水不溶物を乾燥し水不溶物乾燥体を得る工程、及び
(f)工程 (e)で得られた水不溶物乾燥体をバインダーを使用して担体に被覆し、被覆 成型物を得る工程、
とからなることを特徴とするメタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相 接触酸化してメタクリル酸を製造するための被覆触媒の製造方法。
[4] (a) Mo、 V、 P、 Csまたは NHのレ、ずれかを含有する各化合物並びに必要によりこ
4
れら以外の金属元素(但し Cuを除く)を含有する化合物を水と混合し、これらの化合 物の水溶液又は水分散体(以下、両者を含めてスラリー液という)を調製する工程、 (b ' )工程(a)で得られたスラリー液を乾燥しスラリー乾燥体を得て、これと Cuを含有 する化合物とを必要により溶媒の存在下に混合し、得られた混合物を必要により乾燥 して乾燥体を得る工程、
(c)工程 (b' )で得られた乾燥体を焼成し焼成体を得る工程、
(d)工程(c)で得られた焼成体と水を混合した混合物を濾過し、水溶液と水不溶物を 濾別する工程、
(e)工程 (d)で得られた水不溶物を乾燥し水不溶物乾燥体を得る工程、及び
(f)工程 (e)で得られた水不溶物乾燥体をバインダーを使用して担体に被覆し、被覆 成型物を得る工程、
とからなることを特徴とするメタクロレイン、イソブチルアルデヒドまたはイソ酪酸を気相 接触酸化してメタクリル酸を製造するための被覆触媒の製造方法。
[5] 工程 (a) (f)、及び
(g)工程 (f )で得られた被覆成型物を不活性ガス雰囲気下、空気雰囲気下又は還元 剤存在下に焼成する工程、
とからなる請求項 3又は 4に記載の製造方法。
[6] 工程 (g)が、工程 (f )で得られた被覆成型物を不活性ガス雰囲気下に焼成するェ 程である請求項 5に記載の製造方法。
[7] Cuを含有する化合物が酢酸銅又は酸化銅である請求項 1一 6のいずれ力、 1項に記 載の製造方法。
[8] Csを含有する化合物がセシウム弱酸塩又は水酸化セシウムであり、 NHを含有す
4 る化合物が酢酸アンモニゥム又は水酸化アンモニゥムである請求項 1一 7のいずれか 1項に記載の製造方法。
[9] 工程(a)において、任意成分として使用する化合物が Sb、 As、 Ag、 Mg、 Zn、 Al、 B、 Ge、 Sn、 Pb、 Ti、 Zr、 Cr、 Re、 Bi、 W、 Fe、 Co、 Ni、 Ce、 Th、 K及び Rb力、らなる 群から選ばれた 1種以上の元素を含有する化合物である請求項 1一 8のいずれか 1 項に記載の製造方法。
[10] スラリー液が砒素化合物を含有しない請求項 1一 9のいずれ力、 1項に記載の製造方 法。
[11] バインダーがエタノールを含むバインダーである請求項 3— 10のいずれ力、 1項に記 載の製造方法。
PCT/JP2004/007262 2003-05-30 2004-05-27 メタクリル酸製造用触媒の製造方法 WO2004105941A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005506492A JP4421558B2 (ja) 2003-05-30 2004-05-27 メタクリル酸製造用触媒の製造方法
MXPA05012783A MXPA05012783A (es) 2003-05-30 2004-05-27 Metodo de preparacion de catalizador para producir acido metacrilico.
US10/558,501 US20070010394A1 (en) 2003-05-30 2004-05-27 Process for producing catalyst for methacrylic acid production
EP04745368A EP1629889B1 (en) 2003-05-30 2004-05-27 Process for producing catalyst for methacrylic acid production
BRPI0410816-7A BRPI0410816A (pt) 2003-05-30 2004-05-27 método de preparação de catalisador para produção de ácido metacrìlico

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-154000 2003-05-30
JP2003154000 2003-05-30

Publications (1)

Publication Number Publication Date
WO2004105941A1 true WO2004105941A1 (ja) 2004-12-09

Family

ID=33487308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007262 WO2004105941A1 (ja) 2003-05-30 2004-05-27 メタクリル酸製造用触媒の製造方法

Country Status (12)

Country Link
US (1) US20070010394A1 (ja)
EP (1) EP1629889B1 (ja)
JP (1) JP4421558B2 (ja)
KR (1) KR101014356B1 (ja)
CN (1) CN100518935C (ja)
BR (1) BRPI0410816A (ja)
MX (1) MXPA05012783A (ja)
MY (1) MY144127A (ja)
RU (1) RU2351395C2 (ja)
TW (1) TWI365103B (ja)
WO (1) WO2004105941A1 (ja)
ZA (1) ZA200510251B (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514538A (ja) * 2003-12-19 2007-06-07 サウジ ベイシック インダストリーズ コーポレイション オレフィンから不飽和アルデヒドを製造するための混合金属酸化物触媒の製造法
JP2007253033A (ja) * 2006-03-22 2007-10-04 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒およびその製造方法ならびにメタクリル酸の製造方法
JP2008307450A (ja) * 2007-06-13 2008-12-25 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒、その製造方法及びこれを用いたメタクリル酸の製造方法
JP2009502481A (ja) * 2005-07-25 2009-01-29 サウディ ベーシック インダストリーズ コーポレイション メタクロレインを酸化するための触媒およびその製造方法と使用方法
WO2010052909A1 (ja) * 2008-11-06 2010-05-14 日本化薬株式会社 メタクリル酸の製造方法及びメタクリル酸製造用触媒
JP2011224509A (ja) * 2010-04-22 2011-11-10 Mitsubishi Rayon Co Ltd 触媒の製造方法およびメタクリル酸の製造方法
EP1880761A4 (en) * 2005-05-12 2012-04-04 Nippon Kayaku Kk PROCESS FOR PREPARING A CATALYST FOR THE PRODUCTION OF METHACRYLIC ACID
CN104869859A (zh) * 2012-12-21 2015-08-26 耐克创新有限合伙公司 具有闭锁组件的编织的鞋类鞋面
WO2019208715A1 (ja) * 2018-04-26 2019-10-31 三菱ケミカル株式会社 メタクリル酸製造用触媒の製造方法、並びにメタクリル酸及びメタクリル酸エステルの製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY144325A (en) * 2003-02-20 2011-08-29 Nippon Kayaku Kk Catalyst for producing methacrylic acid and preparation method thereof
JP4756890B2 (ja) * 2005-03-29 2011-08-24 日本化薬株式会社 メタクリル酸製造用触媒及びその製造方法
US8178718B2 (en) * 2007-02-05 2012-05-15 Saudi Basic Industries Corporation Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof
JP4900449B2 (ja) * 2009-10-30 2012-03-21 住友化学株式会社 メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法
JP6414343B2 (ja) * 2016-09-14 2018-10-31 三菱ケミカル株式会社 メタクリル酸製造用触媒およびその製造方法、並びにメタクリル酸およびメタクリル酸エステルの製造方法
CN109305899B (zh) * 2017-07-28 2021-09-03 中国石油化工股份有限公司 甘油脱水生产丙烯醛的方法
CN109304193B (zh) * 2017-07-28 2021-11-30 中国石油化工股份有限公司 用于甘油制丙烯醛的催化剂
EP3760608A1 (de) 2019-07-05 2021-01-06 Röhm GmbH Verfahren zur herstellung von alkylmethacrylaten und optional methacrylsäure
EP3889127A1 (en) 2020-04-03 2021-10-06 Röhm GmbH Improved safe method for tandem c-4 oxidation to methacrylic acid
EP3945088A1 (de) 2020-07-30 2022-02-02 Röhm GmbH Vorgehen zur minimierung des aktivitätsverlusts bei im kreislaufbetrieb ausgeführten reaktionsschritten
EP3945086B1 (de) 2020-07-30 2022-10-26 Röhm GmbH C-4 basiertes verfahren zur herstellung von mma unter rückführung und recyclierung von methacrolein
CN114425377B (zh) * 2020-09-24 2023-10-10 中国石油化工股份有限公司 一种邻苯二甲醛催化剂、制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161594A (en) * 1978-06-13 1979-12-21 Mitsubishi Chem Ind Ltd Production of catalyst composition
JPH1143314A (ja) * 1997-07-25 1999-02-16 Mitsubishi Chem Corp 複合酸化物の製造方法
JP2002233760A (ja) * 2000-09-21 2002-08-20 Nippon Kayaku Co Ltd メタクリル酸製造用触媒、被覆触媒及びその製法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000088A (en) * 1974-06-03 1976-12-28 Nippon Kayaku Co., Ltd. Oxidation catalyst for the manufacture of methacrylic acid
JPS55124734A (en) * 1979-03-22 1980-09-26 Nippon Kayaku Co Ltd Preparation of methacrylic acid
US5198579A (en) * 1990-11-14 1993-03-30 Mitsui Toatsu Chemicals, Inc. Catalyst for oxidizing methacrolein and method for preparing methacrylic acid
JPH0531368A (ja) * 1990-11-14 1993-02-09 Mitsui Toatsu Chem Inc メタクリル酸製造用触媒及びメタクリル酸の製造方法
JP3765664B2 (ja) * 1998-02-13 2006-04-12 三井化学株式会社 メタクリル酸製造用触媒及びメタクリル酸の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161594A (en) * 1978-06-13 1979-12-21 Mitsubishi Chem Ind Ltd Production of catalyst composition
JPH1143314A (ja) * 1997-07-25 1999-02-16 Mitsubishi Chem Corp 複合酸化物の製造方法
JP2002233760A (ja) * 2000-09-21 2002-08-20 Nippon Kayaku Co Ltd メタクリル酸製造用触媒、被覆触媒及びその製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1629889A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514538A (ja) * 2003-12-19 2007-06-07 サウジ ベイシック インダストリーズ コーポレイション オレフィンから不飽和アルデヒドを製造するための混合金属酸化物触媒の製造法
KR101223589B1 (ko) * 2005-05-12 2013-01-17 니폰 가야꾸 가부시끼가이샤 메타크릴산 제조용 촉매의 제조방법
TWI394615B (zh) * 2005-05-12 2013-05-01 Nippon Kayaku Kk Production method of catalyst for manufacturing methacrylic acid
EP1880761A4 (en) * 2005-05-12 2012-04-04 Nippon Kayaku Kk PROCESS FOR PREPARING A CATALYST FOR THE PRODUCTION OF METHACRYLIC ACID
EP2540393A1 (en) * 2005-05-12 2013-01-02 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
JP2009502481A (ja) * 2005-07-25 2009-01-29 サウディ ベーシック インダストリーズ コーポレイション メタクロレインを酸化するための触媒およびその製造方法と使用方法
JP2007253033A (ja) * 2006-03-22 2007-10-04 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒およびその製造方法ならびにメタクリル酸の製造方法
JP2008307450A (ja) * 2007-06-13 2008-12-25 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒、その製造方法及びこれを用いたメタクリル酸の製造方法
WO2010052909A1 (ja) * 2008-11-06 2010-05-14 日本化薬株式会社 メタクリル酸の製造方法及びメタクリル酸製造用触媒
JP5574434B2 (ja) * 2008-11-06 2014-08-20 日本化薬株式会社 メタクリル酸の製造方法及びメタクリル酸製造用触媒
JP2011224509A (ja) * 2010-04-22 2011-11-10 Mitsubishi Rayon Co Ltd 触媒の製造方法およびメタクリル酸の製造方法
CN104869859A (zh) * 2012-12-21 2015-08-26 耐克创新有限合伙公司 具有闭锁组件的编织的鞋类鞋面
CN104869859B (zh) * 2012-12-21 2017-03-08 耐克创新有限合伙公司 具有闭锁组件的编织的鞋类鞋面
US10342289B2 (en) 2012-12-21 2019-07-09 Nike, Inc. Woven planar footwear upper
WO2019208715A1 (ja) * 2018-04-26 2019-10-31 三菱ケミカル株式会社 メタクリル酸製造用触媒の製造方法、並びにメタクリル酸及びメタクリル酸エステルの製造方法
CN112004597A (zh) * 2018-04-26 2020-11-27 三菱化学株式会社 甲基丙烯酸制造用催化剂的制造方法、以及甲基丙烯酸和甲基丙烯酸酯的制造方法
JPWO2019208715A1 (ja) * 2018-04-26 2021-05-20 三菱ケミカル株式会社 メタクリル酸製造用触媒の製造方法、並びにメタクリル酸及びメタクリル酸エステルの製造方法
JP7031737B2 (ja) 2018-04-26 2022-03-08 三菱ケミカル株式会社 メタクリル酸製造用触媒の製造方法、並びにメタクリル酸及びメタクリル酸エステルの製造方法

Also Published As

Publication number Publication date
JP4421558B2 (ja) 2010-02-24
MY144127A (en) 2011-08-15
JPWO2004105941A1 (ja) 2006-07-20
BRPI0410816A (pt) 2006-06-27
US20070010394A1 (en) 2007-01-11
CN100518935C (zh) 2009-07-29
KR20060015289A (ko) 2006-02-16
TWI365103B (en) 2012-06-01
EP1629889A4 (en) 2007-10-03
RU2351395C2 (ru) 2009-04-10
RU2005139392A (ru) 2007-06-27
ZA200510251B (en) 2006-10-25
CN1795047A (zh) 2006-06-28
KR101014356B1 (ko) 2011-02-15
TW200510061A (en) 2005-03-16
EP1629889B1 (en) 2012-05-02
MXPA05012783A (es) 2006-02-22
EP1629889A1 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
WO2004105941A1 (ja) メタクリル酸製造用触媒の製造方法
JP5227176B2 (ja) オレフィンの接触気相酸化用の混合酸化物触媒及びそれらの製造方法
JP4756890B2 (ja) メタクリル酸製造用触媒及びその製造方法
JP5192495B2 (ja) 飽和および不飽和アルデヒドの不飽和カルボン酸への酸化のための触媒、およびその製造方法と使用方法
JP4478107B2 (ja) メタクリル酸製造用触媒及びその製法
US6812188B2 (en) Catalyst for methacrylic acid production, coated catalyst, and process for producing the same
WO2006121100A1 (ja) メタクリル酸製造用触媒の製造方法
US20120283088A1 (en) Mixed Oxide Catalysts Made of Hollow Shapes
JP2011152543A (ja) メタクリル酸製造用触媒の製造方法
JP2011078975A (ja) メタクリル酸製造用触媒の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506492

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004745368

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057022309

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/012783

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 20048145518

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 3404/CHENP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005/10251

Country of ref document: ZA

Ref document number: 200510251

Country of ref document: ZA

Ref document number: 2005139392

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2007010394

Country of ref document: US

Ref document number: 10558501

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057022309

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004745368

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0410816

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10558501

Country of ref document: US