WO2004102138A1 - Procede et dispositif permettant de determiner, de maniere polarimetrique par reflexion, la concentration de composants optiquement actifs, dans des milieux - Google Patents

Procede et dispositif permettant de determiner, de maniere polarimetrique par reflexion, la concentration de composants optiquement actifs, dans des milieux Download PDF

Info

Publication number
WO2004102138A1
WO2004102138A1 PCT/EP2004/005108 EP2004005108W WO2004102138A1 WO 2004102138 A1 WO2004102138 A1 WO 2004102138A1 EP 2004005108 W EP2004005108 W EP 2004005108W WO 2004102138 A1 WO2004102138 A1 WO 2004102138A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
measuring
coupling
reflection
light
Prior art date
Application number
PCT/EP2004/005108
Other languages
German (de)
English (en)
Inventor
Sieglinde Borchert
Arndt Brodowski
Joseph Burke
Michael Noss
Kai Zirk
Original Assignee
Ses-Entwicklung Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ses-Entwicklung Gmbh filed Critical Ses-Entwicklung Gmbh
Publication of WO2004102138A1 publication Critical patent/WO2004102138A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means

Definitions

  • the invention relates to a method according to the preamble of claim 1 and a device according to the preamble of claim ⁇ for determining the spatial change in position of the vibration plane of linearly polarized light by means of a single-beam reflection measurement.
  • BESTATIGUNGSKOPIE Standard cuvettes
  • a polarimeter based on a reflection-polarimetric method could be used advantageously as a mobile probe single-beam reflection polarimeter that can be changed in its optical length.
  • a measuring device based on a reflection-polarimetric method could be used as a puncture probe insertable into a tissue (probe single-beam reflection polarimeter) for the continuous determination of the glucose concentration in the clinic - in order to achieve a therapeutic normalization of the glucose metabolism.
  • a measuring device coupled with an insulin pump as a permanent implant, could form a technical "beta cell" that guarantees exact stabilization of the glucose level over months and years, and thus helps prevent the serious consequences of the diabetic disease.
  • DE 198 15 932 describes a reflection-polarimetric method in which the measurement light beam undergoes reflection (reversal of direction) after penetration of the measurement material and thus enables the measurement material to be penetrated again. Furthermore, with the described method there is in principle the possibility of a variable design of the optical path length. In this method, however, a flat extension of the device is essential for the beam deflection, so that no probe single-beam reflection polarimeter can be realized that has the desired properties.
  • DE 195 19 051 A discloses an interesting method in which scattered light emerging from an area of the body irradiated with linearly polarized light is analyzed. This also reverses the direction of the measuring light, so that it is a reflection polarimeter. However, the incoming measuring light beam is reflected back diffusely by the tissue of the human being, so that a directed probe single beam Reflection polarimeter cannot be realized.
  • a method and a device of the type mentioned at the outset are known from DE 198 26 294 CI.
  • the measuring beam is partially reflected on a reflecting surface after passing through the measuring space and the partially reflected beam is divided on a polarization prism. It is also not possible to set up a probe with this.
  • a device for solving the above object is given by the characterizing features of claim 6.
  • Advantageous embodiments of such a device are characterized in claims 7 to 41.
  • the problems outlined are solved by a method in which the coupling and decoupling into a measuring space and the information about the change in the angle of rotation of the plane of oscillation of a polarized measuring beam take place at the same location.
  • This is made possible because the measuring beam of a radiation source undergoes a reversal of direction after penetrating the measuring space at a reflection unit and can thus cross the measuring space again before it hits the coupling and decoupling unit again.
  • the linear polarization state of the light is retained, only the spatial position of the oscillation plane of the light is changed in a suitable manner during the reflection by a phase shift between its orthogonal components.
  • the rotation of the vibration plane generated in the measuring space in the measuring space can add up in the outward and return directions.
  • the (partial) intensities of the measurement beam divided by the polarization-dependent coupling / decoupling unit are recorded, the quotient of the values is formed and the change in the rotation of the vibration plane is determined by means of a previous calibration process.
  • the distance between the coupling / decoupling unit and the reflection unit can also be varied continuously.
  • the reflection unit only has to be positioned in relation to the coupling / decoupling unit in such a way that the reflected beam can reach it again.
  • the method shown thus fulfills all of the above Requirements, in particular the angle signal, because of the formation of the quotient, do not depend on the extinction (turbidity) of the light in the material to be measured.
  • FIG. 1 shows a diagram of the method according to the invention for the reflection-polarimetric determination of the concentration of optically active constituents in a medium
  • FIG. 2 shows a basic representation of the spatial orientation of the oscillation plane of a linearly polarized, returning and returning light beam, depending on the location of the light beam,
  • FIG. 3 shows a schematic illustration of a device for reflection-polarimetric determination of the concentration of optically active constituents in a medium according to a first exemplary embodiment of the present invention
  • FIG. 4 shows a representation corresponding to FIG
  • FIG. 1 shows the procedure for determining the concentration of optically active constituents in a medium.
  • the light from a radiation source 1 is linearly polarized after it has passed through an input and output unit 2.
  • This polarized measuring light beam then penetrates a measuring space 3 filled with an optically active material to be measured, as a result of which the plane of oscillation of the light beam is rotated by an angle ⁇ .
  • the light beam then strikes a reflection unit 4 perpendicularly, which generates both a reversal of direction and a phase shift of 180 ° ( ⁇ ) - between the orthogonal components of the electrical (magnetic) field strength of the linearly polarized light.
  • the light beam can again pass through the measuring space 3, on the other hand, after passing through the measuring space again, the vibration plane undergoes a further rotation by an angle ⁇ , which has the same direction of rotation with respect to the direction of propagation of the beam as that of the incoming beam. This results in a total rotation of 2 ⁇ for the beam going back and forth.
  • the returning beam then hits the coupling-in / coupling-out unit 2 again in order to be divided depending on the polarization.
  • a suitable method of division is, for example, the use of a beam part cube, since certain properties of the part beams that are created are functionally coupled.
  • the measuring beam is divided into a so-called ordinary and an extraordinary partial beam, whose vibration planes are perpendicular to each other, because the electrical (as well as the magnetic) field strength vectors of the incident measuring beam are broken down into their orthogonal components.
  • the intensities of both partial beams have a functional (ie clear) dependence on the position of the vibration plane of the measuring beam.
  • the subsequent quotient formation of the values results in a computational increase in the sensitivity of the quotient signal.
  • the rotation of the oscillation plane can be determined from this quotient signal by means of a calibration curve or its mathematical formulation.
  • Figure 2 shows an example of the spatial orientation of the vibration plane of both the incoming linearly polarized beam before 2-3 and after 3-4 and the returning linearly polarized beam before 4-3 and after 3-2 the entry into and the exit from the measuring space 3.
  • the optically active material to be measured in measuring room 3 is a clockwise rotating medium in the selected example.
  • FIG. 3 shows a schematic representation of a device as it can be used to determine the concentration of optically active components in media.
  • the device has a radiation source 1 (for example a laser diode), the emitted radiation of which is focused by means of a beam guiding unit 1.1 (for example a collimator) in order to then pass through an input and output unit 2.
  • This unit 2 can be composed, for example, of two components, a so-called input 2.1 (for example a polarizing film) and a decoupling part 2.2.
  • the coupling-out part which is located directly next to the coupling-in part, can in turn consist of two components, an analyzer 2.2.1 (for example a polarizing film) and an optically neutral element 2.2.2 (for example a glass plate).
  • Parts 2.2.1 and 2.1 can also be in a single element be realized.
  • the linearly polarized beam leaving the coupling part 2.1 then penetrates a measuring space 3 (for example a flow-through cell) and subsequently meets a reflection unit 4 which consists of a delay element 4.1 and a reflection layer 4.2 (for example a ⁇ / 4 delay plate, the latter of which Back is provided with a reflective layer made of metal).
  • the beam which is reversed in its direction of propagation and changed in its polarization state can in turn penetrate the measuring space 3 in order to reach the coupling-in and coupling-out unit 2.
  • the beam can thus finally be detected by independent photosensitive detectors 2.3 arranged behind the analyzer 2.2.1 and behind the optically neutral element 2.2.2, the output signals of which are compared.
  • the angle between the plane of vibration of the light leaving the measuring space and the preferred direction (transmission direction) of the analyzer should preferably be 45 ° in order to achieve the maximum possible sensitivity, as is known from "simple" polarimetry. This can advantageously be achieved by a suitable choice of the orientation of the reflection unit.
  • FIG. 4 shows a design of the device similar to FIG. 3, but in which the coupling and decoupling unit 2 is composed of two beam splitter cubes (for example a non-polarizing and a polarizing cube) arranged one behind the other and parallel to the direction of propagation of the beam.
  • the coupling and decoupling unit 2 is composed of two beam splitter cubes (for example a non-polarizing and a polarizing cube) arranged one behind the other and parallel to the direction of propagation of the beam.
  • 2.1 and decoupling 2.2 form.
  • this design has some advantages compared to that shown in FIG. 3 and is therefore a preferred variant.
  • the number of components is reduced, on the other hand, the beam going back and forth lies on an optical axis, so that the measuring beam does not Divergence - which would also result in a phase and path length error - must be found in order to hit the analyzers.
  • a very small beam cross section can thus be realized, which enables a miniaturized construction.
  • much larger extinction ratios can be achieved by using beam splitter cubes than, for example, with polarizing foils, which enables a higher angular resolution.
  • the positioning (setting) of a cube is much easier than with a polarizing film.
  • the intensity components of the returning measuring beam reflected by the cubes are detected by photosensitive detectors 2.3 (e.g. photodiodes), and the output signals of the detectors 2.3 are then compared.
  • photosensitive detectors 2.3 e.g. photodiodes
  • Figure 5 shows a design of the device similar to Figure 3, but in which the radiation source 1, the beam guide unit 1.1 and the coupling / decoupling unit 2 together form a transmitter unit 5.
  • the distance between these and the reflection unit 4 can be varied. It is possible to attach the two units 4, 5 independently of one another (e.g. using a reversible adhesive connection) at the measurement location (e.g. glass vessel).
  • Figure ⁇ shows a design of the device similar to Figure 5, but in which the variation of the distance between the units 4, 5 via a displacement in a guide rail arranged parallel to the measurement beam propagation direction
  • the two units 4, 5 can be independent of each other
  • Figures 7 and 8 show a design of the device Similar to FIG. 6, but in which the transmission unit 5 is additionally integrated in a signal processing unit 6 (FIG. 7) or is connected to the signal processing unit 6 via a cable (FIG. 8).
  • the signal processing unit ⁇ contains, depending on the requirement, electronic filters and / or amplifiers, a digital computer unit, a data memory, an energy source, an optical display panel, a wireless transmission unit. A strongly miniaturized construction is given.
  • the radiation source 1 can be a semiconductor laser diode, a semiconductor laser diode with optical fiber cable, a light-emitting diode, a halogen lamp, a high-pressure lamp, a
  • the beam guiding unit 1.1 can have an optical lens or a combination of optical lenses
  • the coupling part 2.1 can have a polarizing film or a polarizing prism
  • the coupling-out part 2.2 can have an analyzer 2.2.1 and an optically neutral element 2.2.2; the analyzer
  • 2.2.1 can have a polarizing film or a polarizing prism; the optically neutral element
  • the measuring room 3 can be variably adjustable in length;
  • the delay element 4.1 of the reflection unit 4 can consist of a delay plate, a Fresnel rhombus or a Babinet compensator and the reflection layer 4.2 of the reflection unit 4 consist of metal or a dielectric layer;
  • the modulator can have a KERR cell, a FARADAY rotator, a modul
  • the devices described can be used in the laboratory as a probe single-beam reflection polarimeter or in chemical or pharmaceutical production processes as a probe polarimeter or as a polarimetric puncture probe for living beings or as a medical implant.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne un procédé permettant de déterminer, de manière polarimétrique par réflexion, la concentration de composants optiquement actifs dans des milieux. Selon l'invention, une lumière polarisée linéairement, qui provient d'une source de rayonnement (1), passe dans une chambre de mesure (3) après avoir traversé une unité d'injection et d'extraction (2), puis son sens de déplacement est inversé par une unité de réflexion modificatrice de phase (4), de sorte que ladite lumière repasse dans la chambre de mesure et atteint à nouveau l'unité d'injection et d'extraction (2), ce qui permet de détecter des intensités (partielles) de la lumière et de les mettre en relation indépendamment de la polarisation.
PCT/EP2004/005108 2003-05-13 2004-05-13 Procede et dispositif permettant de determiner, de maniere polarimetrique par reflexion, la concentration de composants optiquement actifs, dans des milieux WO2004102138A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003121356 DE10321356A1 (de) 2003-05-13 2003-05-13 Verfahren zur reflexions-polarimetrischen Bestimmung der Konzentration optisch aktiver Bestandteile in Medien sowie eine Vorrichtung zur Durchführung dieses Verfahrens
DE10321356.2 2003-05-13

Publications (1)

Publication Number Publication Date
WO2004102138A1 true WO2004102138A1 (fr) 2004-11-25

Family

ID=33440752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/005108 WO2004102138A1 (fr) 2003-05-13 2004-05-13 Procede et dispositif permettant de determiner, de maniere polarimetrique par reflexion, la concentration de composants optiquement actifs, dans des milieux

Country Status (2)

Country Link
DE (1) DE10321356A1 (fr)
WO (1) WO2004102138A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8604423B2 (en) 2010-04-05 2013-12-10 Indiana University Research And Technology Corporation Method for enhancement of mass resolution over a limited mass range for time-of-flight spectrometry

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005020911A1 (de) * 2005-05-04 2006-11-16 Carl Zeiss Meditec Ag Verfahren zur Messung der Änderung des Polarisationszustands von polarisierter optischer Strahlung durch eine optisch aktive Schicht eines Körpers und/oder einer Konzentration eines optisch aktiven Stoffs in der Schicht und Vorrichtung zur Durchführung des Verfahrens
DE102007031284A1 (de) 2007-07-05 2009-01-08 Ses-Entwicklung Gmbh Stoffkonzentrations-Sensor und Herstellverfahren dafür
DE102011087679B3 (de) 2011-12-02 2013-04-18 Schildtec GmbH Meßkammer für einen optisch arbeitenden Sensor zum Bestimmen einer Konzentration eines Stoffes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902134A (en) * 1988-02-03 1990-02-20 Rudolph Research Corporation Optical amplifier and method for amplifying optical polarization state change effects

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1375834A (fr) * 1970-12-09 1974-11-27
US5311283A (en) * 1991-09-05 1994-05-10 The Dow Chemical Company Fiber optic probe and method for detecting optically active materials
DE4317551C2 (de) * 1993-05-26 1997-02-20 Fraunhofer Ges Forschung Anordnung zum Messen der Konzentration von in einer Lösung gelösten optisch aktiven Substanzen
DE19519051B4 (de) * 1995-05-24 2007-05-03 Diabetic Trust Ag Verfahren und Vorrichtung zur polarimetrischen Bestimmung der Blutzuckerkonzentration
DE19815932C2 (de) * 1998-04-09 2000-06-21 Glukomeditech Ag Verfahren zur Miniaturisierung eines Polarimeters zur Analyse niedrig konzentrierter Komponenten im flüssigen Meßgut auf optischer Basis sowie Vorrichtung zu seiner Durchführung
DE19826294C1 (de) * 1998-06-12 2000-02-10 Glukomeditech Ag Polarimetrisches Verfahren zur Bestimmung der (Haupt-)Schwingungsebene polarisierten Lichts auf etwa 0,1m DEG und miniaturisierbare Vorrichtung zu seiner Durchführung
DE19911265C2 (de) * 1999-03-13 2001-12-13 Glukomeditech Ag Vorrichtung zur Messung der Glukosekonzentration proteinhaltiger wässriger Lösungen insbesondere in interstitiellen Gewebsflüssigkeiten,vorzugsweise in implantierbarer mikro-opto-elektronischer Form
DE10020613C2 (de) * 2000-04-27 2002-02-28 Glukomeditech Ag Verfahren zur langzeitstabilen und gut reproduzierbaren polarimetrischen Messung der Konzentrationen der Bestandteile wässriger Lösungen sowie Vorrichtung zur Durchführung dieses Verfahrens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902134A (en) * 1988-02-03 1990-02-20 Rudolph Research Corporation Optical amplifier and method for amplifying optical polarization state change effects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8604423B2 (en) 2010-04-05 2013-12-10 Indiana University Research And Technology Corporation Method for enhancement of mass resolution over a limited mass range for time-of-flight spectrometry

Also Published As

Publication number Publication date
DE10321356A1 (de) 2004-12-23

Similar Documents

Publication Publication Date Title
DE69729444T2 (de) Nicht-invasive messung von optisch-aktiven verbindungen
DE4242232C2 (de) Vorrichtung und Verfahren zur nicht-invasiven Konzentrationsbestimmung polarisierender Stoffe im menschlichen Körper
DE19826294C1 (de) Polarimetrisches Verfahren zur Bestimmung der (Haupt-)Schwingungsebene polarisierten Lichts auf etwa 0,1m DEG und miniaturisierbare Vorrichtung zu seiner Durchführung
EP0030610B1 (fr) Procédé et dispositif de détermination quantitative de substances optiquement actives
DE4231214C2 (de) Photothermischer Sensor
EP0603658A1 (fr) Dispositif destiné à la détermination in-vivo d'une propriété optique du liquide de l'humeur vitrée de l'oeuil
DE2014531A1 (de) Verfahren und Vorrichtung zur Messung der Konzentration suspendierter Festteilchen unter Verwendung von zirku larpolarisiertem Licht
DE112014002748T5 (de) Spektral kodiertes Hoch-Extinktions-Polarisationsmikroskop
DE3344019A1 (de) Anordnung zur optischen messung von stoffkonzentrationen
DE2000931A1 (de) Verfahren und Geraet zur Messung von Bilirubin in Blutserum
DE102007031284A1 (de) Stoffkonzentrations-Sensor und Herstellverfahren dafür
EP1295107B1 (fr) Dispositif permettant l'utilisation combinee et simultanee de plusieurs methodes physiques de mesure pour l'analyse des constituants d'un melange liquide de plusieurs substances
WO2004102138A1 (fr) Procede et dispositif permettant de determiner, de maniere polarimetrique par reflexion, la concentration de composants optiquement actifs, dans des milieux
AT406912B (de) Optische messanordnung zur bestimmung der transmissions- und streustrahlung
EP2703772B1 (fr) Capteur destiné à détecter une bande de marchandise déroulante
DE10030927C1 (de) Refraktometrisches Verfahren zur langzeitstabilen genauen Messung der Konzentrationen gelöster Stoffe sowie eine miniaturisierbare Vorrichtung zu seiner Durchführung
DE2744168C3 (de) Magnetooptisches Spektralphotometer
DE3906119C2 (de) Anordnung zum Messen polarisationsoptischer Gangunterschiede
DE2813317A1 (de) Krebsdiagnosevorrichtung
DE4102990C2 (fr)
DE2737727A1 (de) Vorrichtung zur bestimmung einzelner elemente oder molekuele in gasfoermigen, festen und fluessigen proben
DE2753240A1 (de) Messanordnung zur aufzeichnung der struktur eines gegenstandes, der beschaffenheit einer oberflaeche oder dergleichen
DE10020613C2 (de) Verfahren zur langzeitstabilen und gut reproduzierbaren polarimetrischen Messung der Konzentrationen der Bestandteile wässriger Lösungen sowie Vorrichtung zur Durchführung dieses Verfahrens
DE3435189A1 (de) Vorrichtung zur messung des polarisationszustandes und der wellenlaenge von elektromagnetischer strahlung
DE3028720A1 (de) Geraet zur messung der absorption und/oder streuung von licht

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: FESTSTELLUNG EINES RECHTSVERLUSTS NACH REGEL 69(1) EPUE (EPA FORM 1205A 23.02.2006)

122 Ep: pct application non-entry in european phase