WO2004095047A1 - Uniform magnetic field generation device and nuclear magnetic resonance device using the same - Google Patents

Uniform magnetic field generation device and nuclear magnetic resonance device using the same Download PDF

Info

Publication number
WO2004095047A1
WO2004095047A1 PCT/JP2004/005978 JP2004005978W WO2004095047A1 WO 2004095047 A1 WO2004095047 A1 WO 2004095047A1 JP 2004005978 W JP2004005978 W JP 2004005978W WO 2004095047 A1 WO2004095047 A1 WO 2004095047A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
superconducting
coil group
uniform magnetic
shim coil
Prior art date
Application number
PCT/JP2004/005978
Other languages
French (fr)
Japanese (ja)
Inventor
Kohji Maki
Tsuyoshi Wakuda
Tomomi Kikuta
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO2004095047A1 publication Critical patent/WO2004095047A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3875Compensation of inhomogeneities using correction coil assemblies, e.g. active shimming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor

Definitions

  • the present invention relates to a uniform magnetic field generator and a nuclear magnetic resonance (NMR) apparatus using the same.
  • NMR nuclear magnetic resonance
  • NMR systems generally use superconducting main coils 1 to 3 that generate a magnetic field in the measurement space and superconducting coils that correct the non-uniformity of the magnetic field generated by the superconducting main coils 1 to 3.
  • the shim coil groups 4a to 4f, and the superconducting main coil groups 1 to 3 and the superconducting shim coil groups 4a to 4: f include a normal temperature shim coil group 5 for more precisely correcting the generated substantially uniform magnetic field.
  • the superconducting shim coil groups 4 a to 4 f constitute an electric circuit separated from the superconducting main coil groups 1 to 3, and the value of the current flowing through the superconducting shim coil group 5 is the value of the current flowing through the superconducting main coil groups 1 to 3. It can be determined independently of the value. Note that, in the schematic cross-sectional view of FIG. 7, the display of the winding frames that support each coil is omitted.
  • the superconducting main coil groups 1 to 3 are composed of a plurality of coils having a common central axis.
  • a port for inserting a test tube 6 containing a sample and a probe 7 penetrates near the central axis of the superconducting main coil groups 1 to 3 as shown in FIG.
  • the probe 7 is inserted from below.
  • the probe 7 is provided with an NMR signal detection antenna 8.
  • the detection antenna 8 responds to the magnetic field (in the direction parallel to the central axis) generated by the superconducting main coil groups 1 to 3. . ⁇
  • the superconducting shim coil groups 4a to 4f are all installed outside the superconducting main coil groups 1 to 3. Therefore, the magnetic field required by the superconducting shim coil groups 4a to 4f is less than 8 Tesla, even for the NMR apparatus which achieves the highest central magnetic field of 22 Tesla at present. Therefore, an NbTi superconducting wire with a low upper critical magnetic field (a magnetic field at which the critical current density becomes zero) can be used.
  • the above conventional technology has the following problems. Because the measurement space is far from the superconducting shim coil groups 4a to 4: f, there is an upper limit to the magnitude of the magnetic field that the superconducting shim coil groups 4a to 4f can generate in the measurement space. In particular, it is not possible to efficiently generate a magnetic field component that is proportional to the higher order (4th order or higher) of the axial coordinates. Therefore, the superconducting shim coil groups 4 a to 4 ⁇ ⁇ ⁇ may lack the magnetic field correction capability.
  • the first case in which the superconducting shim coils 4a to 4f group lacks the ability to correct the magnetic field is that the superconducting main coil groups 1 to 3 and the superconducting shim coil groups 4a to 4f This is a case where the axial length is shortened. When the axial length of the superconducting main coil groups 1 to 3 is reduced, the irregular magnetic field generally increases, so that the requirements for the superconducting shim coil groups 4a to 4f become strict.
  • the superconducting shim coil groups 4a to 4f lack the ability to correct the magnetic field.
  • the second case in which the superconducting shim coil groups 4a to 4f lacks the magnetic field correction capability is to split the superconducting main coil groups 1 to 3 in the axial direction so that a highly sensitive solenoid-type detection antenna can be used Insert the test tube containing the sample into the measurement space through the gap.
  • This is a case where the apparatus configuration is as follows (hereinafter referred to as a split type).
  • an irregular magnetic field proportional to the higher order of the axial coordinates is generated more than before.
  • the fourth-order component of the axial coordinate reaches about 25 times the conventional value
  • the 6th-order component reaches about 50 times the conventional value.
  • These higher-order magnetic field components cannot be generated by the superconducting shim coil groups 4a to 4f installed outside the superconducting main coil groups 1 to 3.
  • the room-temperature shim coil group 5 can generate a higher-order magnetic field component, but the magnetic field correction ability is generally small due to the upper limit of the current that can be passed, and the above-described irregular magnetic field cannot be corrected.
  • an object of the present invention is to provide a uniform magnetic field generator including a superconducting shim coil group having a high ability to correct a high-order magnetic field in the axial direction. Disclosure of the invention
  • a uniform magnetic field generation device includes a superconducting main coil group for generating a magnetic field in a measurement space, and a superconducting shim coil group for correcting the non-uniformity of the magnetic field, and has a radial position corresponding to the superconducting main coil group. At least one coil of the superconducting shim coil group is provided between the measurement space and an axial position different from each coil constituting the superconducting main coil group.
  • the correction coil (corresponding to the superconducting shim coil in the present specification) is larger than the main magnet coil (corresponding to the superconducting main coil in the present specification).
  • the correction coil is installed at the same axial position as the main magnet coil, which is different from the present invention.
  • At least one coil of the superconducting shim coil group is operated in a high magnetic field of 8 Tesla or more.
  • At least one coil of the superconducting shim coil group is made of a superconducting wire having an upper critical magnetic field of 14 Tesla or more. It is, for example, an Nb3Sn superconducting wire. Further, in the uniform magnetic field generator of the present invention, the superconducting shim coil group includes a plurality of coils having different distances from a central axis.
  • the superconducting shim coil group generates a magnetic field component that is fourth-order proportional to the axial coordinate within a range of 10 mm from the center of the measurement space by 0.1 Gauss or more.
  • the superconducting shim coil group generates a magnetic field component of 0.006 gauss proportional to the sixth order of the axial coordinate within a range of 10 mm from the center of the measurement space. Has the ability to generate more.
  • At least one coil of the superconducting shim coil group simultaneously generates a plurality of orders of magnetic field components.
  • a plurality of orders of magnetic field components are corrected simultaneously by independently controlling the value of the current supplied to each coil of the superconducting shim coil group.
  • the superconducting main coil group includes a first superconducting main coil group and a second superconducting main coil group opposed to each other via an axial gap.
  • FIG. 1 is a schematic cross-sectional view of the uniform magnetic field generator according to the first embodiment.
  • FIG. 2 is a schematic sectional view of a uniform magnetic field generator according to the second embodiment.
  • FIG. 3 is a schematic sectional view of a uniform magnetic field generator according to the third embodiment.
  • FIG. 4 is a schematic sectional view of a uniform magnetic field generator according to the fourth embodiment.
  • FIG. 5 is a schematic sectional view of a uniform magnetic field generator according to a fifth embodiment.
  • FIG. 6 is a perspective view of a conventional uniform magnetic field generator.
  • FIG. 7 is a schematic sectional view of a conventional uniform magnetic field generator. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic sectional view of a uniform magnetic field generator according to the present embodiment.
  • the NMR system uses superconducting shim coils to correct the non-uniformity of the magnetic field generated by the superconducting main coils 1-3 and superconducting main coils 1-3 to generate a magnetic field in the measurement space in order to achieve high uniformity of the magnetic field.
  • the superconducting main coil groups 1 to 3 and the superconducting shim coil groups 4 a to 4 f include a normal temperature shim coil group 5 for more precisely correcting the generated substantially uniform magnetic field.
  • the superconducting shim coil groups 4a to 4 ⁇ constitute an electric circuit separated from the superconducting main coil groups 1 to 3, and the current flowing through the superconducting shim coil group 5 flows through the superconducting main coil groups 1 to 3. It can be determined independently of the current value.
  • the illustration of the bobbin supporting each coil is omitted.
  • the superconducting main coil groups 1 to 3 are composed of a plurality of coils having a common central axis.
  • the superconducting main coil groups 1 to 3 extend in the direction of the central axis, and the distances between the coils 1 to 3 and the central axis are different.
  • Ports for inserting the test tube 6 containing the sample and the probe 7 penetrate the vicinity of the central axis of the superconducting main coil groups 1 to 3, the test tube 6 from above and the probe 7 from below. , Respectively inserted.
  • the probe 7 is provided with an NMR signal detection antenna 8.
  • the detection antenna 8 needs to have sensitivity to a magnetic field in a direction perpendicular to a magnetic field (a direction parallel to the central axis) generated by the superconducting main coil groups 1 to 3, and a conventional saddle type Or a birdcage-type detection antenna is used.
  • the superconducting shim coil groups 4 a to 4 f are all installed outside the superconducting main coil groups 1 to 3 and are located at approximately the same distance from the central axis. Therefore, the magnetic field required by the superconducting shim coil groups 4a to 4f is the highest central magnetic field of 22 Tesla at present. ⁇
  • an NbTi superconducting wire having a low upper critical magnetic field (a magnetic field at which the critical current density becomes zero) can be used.
  • the device of this embodiment is shorter in the axial direction.
  • the superconducting shim coil groups 4a to 4 consist of the superconducting main coil groups 1 to 3 and the room temperature shim coil group in addition to the first superconducting shim coil groups 4a to 4f installed outside the superconducting main coil groups 1 to 3.
  • the second superconducting shim coil groups 9a to 9d are installed.
  • the second superconducting shim coil groups 9a to 9d are located at approximately the same distance from the central axis.
  • the second superconducting shim coil groups 9a to 9d are required to function in a magnetic field of 8 Tesla or more. Therefore, the coils constituting the second superconducting shim coil groups 9a to 9d are made of a superconducting wire having an upper critical magnetic field of 14 Tesla or more, for example, an Nb3Sn superconducting wire.
  • FIG. 2 is a schematic sectional view of the uniform magnetic field generator according to the present embodiment.
  • the bobbin supporting each coil is not shown. Parts with the same reference numerals as those in Fig. 1 mean the same parts.
  • the superconducting main coil groups 1 to 3 and the room temperature shim coil group 5 in addition to the first superconducting shim coil groups 4 a to 4 d installed outside the superconducting main coil groups 1 to 3, the superconducting main coil groups 1 to 3 and the room temperature shim coil group 5
  • a second superconducting shim coil group 9a to 9d, and a third superconducting shim coil group 10a to 10d are provided.
  • the coils constituting the second and third superconducting shim coil groups 9a to 9d and 10a to 10d are made of, for example, Nb3Sn superconducting wires.
  • the distance from the central axis is different between the second superconducting shim coil groups 9a to 9d and the third superconducting shim coil groups 10a to 10d.
  • a magnetic field component of a desired order can be efficiently generated.
  • at least one of the superconducting shim coil groups 9a to 9d and 10a to 10d simultaneously generates magnetic field components of multiple orders, and independently controls the current value applied to each coil. Then, multiple order magnetic field components can be corrected simultaneously.
  • FIG. 3 is a schematic sectional view of the uniform magnetic field generator according to the present embodiment. As in FIG. 2, the bobbin supporting each coil is not shown. The same reference numerals as those in FIG. 2 indicate the same parts.
  • superconducting shim coil groups 9 a to 9 d and 10 a to 10 d are provided between superconducting main coil groups 1 to 3 and room temperature shim coil group 5.
  • FIG. 4 is a schematic sectional view of the uniform magnetic field generator according to the present embodiment. As in FIG. 3, the bobbin supporting each coil is not shown. The same reference numerals as those in FIG. 3 indicate the same parts.
  • the superconducting main coil group of the present embodiment is a so-called split type in which a first superconducting main coil group 1 a to 3 a and a second superconducting main coil group 1 b to 3 b are opposed via a gap. . Accordingly, the normal temperature shim coil groups 5a and 5b are also bisected in the axial direction.
  • the first superconducting shim coil groups 4a to 4d and the superconducting main coil groups 1a to 3a and lb to 3b A second superconducting shim coil group 9a to 9d and a third superconducting shim coil group 10a to 10d are provided between the normal temperature shim coil groups 5a and 5b, respectively.
  • the coils constituting the second and third superconducting shim coil groups 9a to 9d and 10a to 10d are made of, for example, Nb3Sn superconducting wires. Further, by supplying a current to a plurality of superconducting shim coils having different distances from the central axis, a magnetic field component of a desired order can be efficiently generated. Furthermore, at least one coil of the superconducting shim coil groups 9a to 9d and 10a to 10d simultaneously generates magnetic fields of a plurality of orders, and the current value supplied to each coil can be controlled independently. If this is the case, multiple orders of magnetic field components can be corrected simultaneously.
  • FIG. 5 is a schematic sectional view of the uniform magnetic field generator according to the present embodiment. As in FIG. 4, the bobbin supporting each coil is not shown. The same reference numerals as those in FIG. 1 indicate the same parts.
  • the apparatus of Example 4 shown in FIG. 4 was placed horizontally, and the test tube 6 containing the sample was placed in the first superconducting main coil group 1 a to 3 a and the second superconducting main coil group. Insert through the gap between 1b and 3b.
  • the probe 7 is inserted from a port provided near the central axis of the superconducting main coil groups 1a to 3a and lb to 3b.
  • the probe 7 is provided with a highly sensitive solenoid type detection antenna 11. Others are the same as in Example 4, and the normal temperature shim coil groups 5a and 5b are divided into two in the axial direction.
  • the first superconducting shim coil groups 4a-4d, the superconducting main coil groups 1a-3a, lb-3b and room temperature shim coils A second superconducting shim coil group 9a to 9d and a third superconducting shim coil group 10a to 10d are provided between the groups 5a and 5b, respectively.
  • the coils constituting the second and third superconducting shim coil groups 9a to 9d and 10a to 10d are made of, for example, Nb3Sn superconducting wires. Also, by supplying a current to a plurality of superconducting shim coils 5a and 5b having different distances from the central axis, a magnetic field component of a desired order can be efficiently generated.
  • At least one coil of the superconducting shim coil group simultaneously generates a plurality of orders of magnetic field components and independently controls a current value supplied to each coil, a plurality of orders of magnetic field components can be corrected simultaneously.
  • a uniform magnetic field generator having a superconducting shim coil group having a high ability to correct a high-order magnetic field in the axial direction can be obtained, and can be applied to an NMR apparatus.

Abstract

A uniform magnetic field generation device includes a super-conductive main coil group for generating a magnetic field in a measurement space and a super-conductive shim coil group for correcting the non-uniformity of the magnetic field. At least one coil of the super-conductive shim coil group is positioned in radial direction between the super-conductive main coil group and the measurement space and in the axial direction different from each coil constituting the super-conductive main coil group.

Description

明細書 均一磁場発生装置およびそれを用いた核磁気共鳴装置 技術分野  Description Uniform magnetic field generator and nuclear magnetic resonance apparatus using the same
本発明は均一磁場発生装置およびそれを用いた核磁気共鳴 (NMR) 装置に闋 する。 背景技術  The present invention relates to a uniform magnetic field generator and a nuclear magnetic resonance (NMR) apparatus using the same. Background art
図 6および図 7は、 それぞれ従来の NM R装置を示す斜視図および模式断面図 である。 図 6においては、 内部構造が分かるように 1 / 4だけ切り欠いている。 NMR装置は、 一般に、 磁場の高い均一度を実現するために、 計測空間に磁場を 発生する超電導メインコイル群 1 ~ 3、 超電導メインコイル群 1〜 3が発生する 磁場の不均一を補正する超電導シムコイル群 4 a〜4 f、 および、 超電導メイン コイル群 1〜3と超電導シムコイル群 4 a ~ 4 :fが、 発生する略均一な磁場をさ らに精密に補正する常温シムコイル群 5を備える。  6 and 7 are a perspective view and a schematic cross-sectional view, respectively, showing a conventional NMR device. In FIG. 6, it is cut out by 1/4 so that the internal structure can be seen. In order to achieve high uniformity of the magnetic field, NMR systems generally use superconducting main coils 1 to 3 that generate a magnetic field in the measurement space and superconducting coils that correct the non-uniformity of the magnetic field generated by the superconducting main coils 1 to 3. The shim coil groups 4a to 4f, and the superconducting main coil groups 1 to 3 and the superconducting shim coil groups 4a to 4: f include a normal temperature shim coil group 5 for more precisely correcting the generated substantially uniform magnetic field.
超電導シムコイル群 4 a〜4 f は、 超電導メインコイル群 1〜3から分離した 電気回路を構成しており、 超電導シムコイル群 5を流れる電流の値は、 超電導メ インコイル群 1〜3を流れる電流の値とは独立に決定できる。 なお、 図 7の模式 断面図においては、 各コイルを支持する卷枠の表示を省略している。  The superconducting shim coil groups 4 a to 4 f constitute an electric circuit separated from the superconducting main coil groups 1 to 3, and the value of the current flowing through the superconducting shim coil group 5 is the value of the current flowing through the superconducting main coil groups 1 to 3. It can be determined independently of the value. Note that, in the schematic cross-sectional view of FIG. 7, the display of the winding frames that support each coil is omitted.
超電導メインコイル群 1〜 3は、 共通の中心軸を持つ複数のコイルから構成さ れる。 この超電導メインコイル群 1〜3の中心軸付近には、 図 7に示すように試 料を入れた試験管 6およびプローブ 7を揷入するためのポートが貫通しており、 試験管 6は上方から、 プローブ 7は下方から、 それぞれ挿入される。  The superconducting main coil groups 1 to 3 are composed of a plurality of coils having a common central axis. A port for inserting a test tube 6 containing a sample and a probe 7 penetrates near the central axis of the superconducting main coil groups 1 to 3 as shown in FIG. The probe 7 is inserted from below.
プローブ 7には NM R信号の検出アンテナ 8が備えられている。 検出アンテナ 8は、 超電導メインコイル群 1〜 3が発生する磁場 (中心軸と平行な方向) に対 . ^ The probe 7 is provided with an NMR signal detection antenna 8. The detection antenna 8 responds to the magnetic field (in the direction parallel to the central axis) generated by the superconducting main coil groups 1 to 3. . ^
2 して垂直な方向の磁場に、 感度を有している必要があり、 鞍型または鳥籠型の検 出アンテナが用いられている。  In addition, it must be sensitive to the magnetic field in the vertical direction, and saddle-type or birdcage-type detection antennas are used.
図 6および図 7に示すように、 従来の NMR装置においては、 超電導シムコィ ル群 4 a〜4 f は、 全て超電導メインコイル群 1〜3の外側に設置されている。 従って、 超電導シムコイル群 4 a〜4 fが必要とする磁場は、 2 2テスラと云う 現時点での最高中心磁場を達成している NMR装置であっても、 8テスラ以下に とどまる。 そのため上部臨界磁場 (臨界電流密度がゼロになる磁場) の低い、 N b T i超電導線材を使うことができる。  As shown in FIGS. 6 and 7, in the conventional NMR apparatus, the superconducting shim coil groups 4a to 4f are all installed outside the superconducting main coil groups 1 to 3. Therefore, the magnetic field required by the superconducting shim coil groups 4a to 4f is less than 8 Tesla, even for the NMR apparatus which achieves the highest central magnetic field of 22 Tesla at present. Therefore, an NbTi superconducting wire with a low upper critical magnetic field (a magnetic field at which the critical current density becomes zero) can be used.
しかしながら、 上記の従来技術においては、 次のような問題があった。 それは 計測空間と超電導シムコイル群 4 a〜4: fが離れているため、 超電導シムコイル 群 4 a〜4 fが計測空間に発生できる磁場の大きさには上限があることである。 特に、 軸方向座標の高次 (4次以上) に比例する磁場成分を、 効率的に発生させ ることはできない。 従って、 超電導シムコイル群 4 a〜4 ίの磁場補正能力が不 足する場合がある。  However, the above conventional technology has the following problems. Because the measurement space is far from the superconducting shim coil groups 4a to 4: f, there is an upper limit to the magnitude of the magnetic field that the superconducting shim coil groups 4a to 4f can generate in the measurement space. In particular, it is not possible to efficiently generate a magnetic field component that is proportional to the higher order (4th order or higher) of the axial coordinates. Therefore, the superconducting shim coil groups 4 a to 4 が あ る may lack the magnetic field correction capability.
超電導シムコイル 4 a〜4 f群の磁場補正能力が不足する第一の事例は、 NM R装置の設置性を高めるために、 超電導メインコイル群 1〜 3および超電導シム コイル群 4 a〜4 f の軸方向長さを短くした場合である。 超電導メインコイル群 1〜3の軸方向長さを短くすると、 一般に不整磁場が増えるので、 超電導シムコ ィル群 4 a ~ 4 fへの要求が厳しくなる。  The first case in which the superconducting shim coils 4a to 4f group lacks the ability to correct the magnetic field is that the superconducting main coil groups 1 to 3 and the superconducting shim coil groups 4a to 4f This is a case where the axial length is shortened. When the axial length of the superconducting main coil groups 1 to 3 is reduced, the irregular magnetic field generally increases, so that the requirements for the superconducting shim coil groups 4a to 4f become strict.
また、 超電導シムコイル群 4 a〜4 f の軸方向長さを短くすると、 効率的に磁 場を発生できる位置に所望の電流を配置できなくなるので、 磁場補正能力が低下 する。 以上の理由が重なることによって、 超電導シムコイル群 4 a〜4 f の磁場 補正能力が不足する。  Also, if the axial length of the superconducting shim coil groups 4a to 4f is shortened, a desired current cannot be arranged at a position where a magnetic field can be generated efficiently, so that the magnetic field correction ability is reduced. Due to the above reason, the superconducting shim coil groups 4a to 4f lack the ability to correct the magnetic field.
超電導シムコイル群 4 a〜4 f の磁場補正能力が不足する第二の事例は、 高感 度のソレノイド型検出アンテナを使用可能とするために、 超電導メインコイル群 1〜 3を軸方向に分割し、 その間隙から試料を入れた試験管を計測空間に挿入す る装置構成 (以後スプリット型と称する) にした場合である。 The second case in which the superconducting shim coil groups 4a to 4f lacks the magnetic field correction capability is to split the superconducting main coil groups 1 to 3 in the axial direction so that a highly sensitive solenoid-type detection antenna can be used Insert the test tube containing the sample into the measurement space through the gap. This is a case where the apparatus configuration is as follows (hereinafter referred to as a split type).
その場合、 軸方向座標の高次に比例する不整磁場が従来よりも多く発生する。 例えば、 軸方向座標の 4次成分は、 従来の約 2 5倍、 6次成分は従来の約 5 0倍 に達する。 これらの高次の磁場成分は、 超電導メインコイル群 1〜3の外側に設 置した超電導シムコイル群 4 a〜4 fでは発生できない。 なお、 常温シムコイル 群 5は高次の磁場成分を発生できるが、 通電できる電流の値の上限から磁場補正 能力は一般に小さく、 上記の不整磁場の補正はできない。  In that case, an irregular magnetic field proportional to the higher order of the axial coordinates is generated more than before. For example, the fourth-order component of the axial coordinate reaches about 25 times the conventional value, and the 6th-order component reaches about 50 times the conventional value. These higher-order magnetic field components cannot be generated by the superconducting shim coil groups 4a to 4f installed outside the superconducting main coil groups 1 to 3. The room-temperature shim coil group 5 can generate a higher-order magnetic field component, but the magnetic field correction ability is generally small due to the upper limit of the current that can be passed, and the above-described irregular magnetic field cannot be corrected.
したがって、 本発明の目的は、 軸方向座標の高次の磁場に対する補正能力が高 い超電導シムコイル群を備えた均一磁場発生装置を提供することである。 発明の開示  Accordingly, an object of the present invention is to provide a uniform magnetic field generator including a superconducting shim coil group having a high ability to correct a high-order magnetic field in the axial direction. Disclosure of the invention
本発明の均一磁場発生装置は、 計測空間に磁場を発生する超電導メインコイル 群と、 前記磁場の不均一を補正するための超電導シムコイル群とを備え、 半径方 向位置が前記超電導メインコイル群と前記計測空間との間で、 かつ、 前記超電導 メインコイル群を構成する各コイルとは異なる軸方向位置に、 前記超電導シムコ ィル群の少なくとも 1つのコィルが設置されている。  A uniform magnetic field generation device according to the present invention includes a superconducting main coil group for generating a magnetic field in a measurement space, and a superconducting shim coil group for correcting the non-uniformity of the magnetic field, and has a radial position corresponding to the superconducting main coil group. At least one coil of the superconducting shim coil group is provided between the measurement space and an axial position different from each coil constituting the superconducting main coil group.
なお、 特開平 1 1— 1 9 5 5 2 7号公報によれば、 補正コイル (本願明細書で の超電導シムコイルに相当) が主磁石コイル (本願明細書での超電導メインコィ ルに相当) よりも、 中心軸に近づいて位置している超電導磁石が開示されている が、 そこでは補正コイルを主磁石コイルと同じ軸方向位置に設置しており、 本発 明とは異なる。  According to Japanese Patent Application Laid-Open No. H11-1955527, the correction coil (corresponding to the superconducting shim coil in the present specification) is larger than the main magnet coil (corresponding to the superconducting main coil in the present specification). Although a superconducting magnet positioned close to the central axis is disclosed, the correction coil is installed at the same axial position as the main magnet coil, which is different from the present invention.
また、 本発明の均一磁場発生装置においては、 前記超電導シムコイル群の少な くとも 1つのコイルを、 8テスラ以上の高磁場中で機能させる。  In the uniform magnetic field generator of the present invention, at least one coil of the superconducting shim coil group is operated in a high magnetic field of 8 Tesla or more.
また、 本発明の均一磁場発生装置においては、 前記超電導シムコイル群の少な くとも 1つのコイルが、 1 4テスラ以上の上部臨界磁場を持つ超電導線材からな る。 それは例えば、 N b 3 S n超電導線材などである。 また、 本発明の均一磁場発生装置においては、 前記超電導シムコイル群には、 中心軸からの距離の異なる複数のコイルが含まれる。 In the uniform magnetic field generator of the present invention, at least one coil of the superconducting shim coil group is made of a superconducting wire having an upper critical magnetic field of 14 Tesla or more. It is, for example, an Nb3Sn superconducting wire. Further, in the uniform magnetic field generator of the present invention, the superconducting shim coil group includes a plurality of coils having different distances from a central axis.
また、 本発明の均一磁場発生装置においては、 前記超電導シムコイル群が前記 計測空間の中心から 1 0 mmの範囲内に、 軸方向座標の 4次に比例する磁場成分 を 0 . 0 1ガウス以上発生させる能力を有する。  Further, in the uniform magnetic field generating apparatus of the present invention, the superconducting shim coil group generates a magnetic field component that is fourth-order proportional to the axial coordinate within a range of 10 mm from the center of the measurement space by 0.1 Gauss or more. Have the ability to
また、 本発明の均一磁場発生装置においては、 前記超電導シムコイル群が前記 計測空間の中心から 1 0 mmの範囲内に、 軸方向座標の 6次に比例する磁場成分 を 0 . 0 0 0 1ガウス以上発生させる能力を有する。  Further, in the uniform magnetic field generating device of the present invention, the superconducting shim coil group generates a magnetic field component of 0.006 gauss proportional to the sixth order of the axial coordinate within a range of 10 mm from the center of the measurement space. Has the ability to generate more.
また、 本発明の均一磁場発生装置においては、 前記超電導シムコイル群の少な くとも 1つのコイルが、 複数の次数の磁場成分を同時に発生する。  Further, in the uniform magnetic field generator of the present invention, at least one coil of the superconducting shim coil group simultaneously generates a plurality of orders of magnetic field components.
また、 本発明の均一磁場発生装置においては、 前記超電導シムコイル群の各コ ィルに通電する電流値を独立制御することによって、 複数の次数の磁場成分を同 時に補正する。  Further, in the uniform magnetic field generation device of the present invention, a plurality of orders of magnetic field components are corrected simultaneously by independently controlling the value of the current supplied to each coil of the superconducting shim coil group.
さらにまた、 本発明の均一磁場発生装置においては、 前記超電導メインコイル 群が、 軸方向の間隙を介して対向する第一の超電導メインコイル群と第二の超電 導メインコイル群とからなる。 図面の簡単な説明  Still further, in the uniform magnetic field generating device of the present invention, the superconducting main coil group includes a first superconducting main coil group and a second superconducting main coil group opposed to each other via an axial gap. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1による均一磁場発生装置の模式断面図である。  FIG. 1 is a schematic cross-sectional view of the uniform magnetic field generator according to the first embodiment.
図 2は、 実施例 2による均一磁場発生装置の模式断面図である。  FIG. 2 is a schematic sectional view of a uniform magnetic field generator according to the second embodiment.
図 3は、 実施例 3による均一磁場発生装置の模式断面図である。  FIG. 3 is a schematic sectional view of a uniform magnetic field generator according to the third embodiment.
図 4は、 実施例 4による均一磁場発生装置の模式断面図である。  FIG. 4 is a schematic sectional view of a uniform magnetic field generator according to the fourth embodiment.
図 5は、 実施例 5による均一磁場発生装置の模式断面図である。  FIG. 5 is a schematic sectional view of a uniform magnetic field generator according to a fifth embodiment.
図 6は、 従来技術による均一磁場発生装置の斜視図である。  FIG. 6 is a perspective view of a conventional uniform magnetic field generator.
図 7は、 従来技術による均一磁場発生装置の模式断面図である。 発明を実施するための最良の形態 FIG. 7 is a schematic sectional view of a conventional uniform magnetic field generator. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態について図面を用いて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
〔実施例 1〕  (Example 1)
図 1は、 本実施例による均一磁場発生装置の模式断面図である。 NMR装置は 磁場の高い均一度を実現するために、 計測空間に磁場を発生する超電導メインコ ィル群 1〜 3、 超電導メインコイル群 1〜 3が発生する磁場の不均一を補正する 超電導シムコイル群 4 a〜4 f、 および、 超電導メインコイル群 1〜3と超電導 シムコイル群 4 a〜4 fが、 発生する略均一な磁場をさらに精密に補正する常温 シムコイル群 5を備える。  FIG. 1 is a schematic sectional view of a uniform magnetic field generator according to the present embodiment. The NMR system uses superconducting shim coils to correct the non-uniformity of the magnetic field generated by the superconducting main coils 1-3 and superconducting main coils 1-3 to generate a magnetic field in the measurement space in order to achieve high uniformity of the magnetic field. The superconducting main coil groups 1 to 3 and the superconducting shim coil groups 4 a to 4 f include a normal temperature shim coil group 5 for more precisely correcting the generated substantially uniform magnetic field.
超電導シムコイル群 4 a〜4 ίは、 超電導メインコイル群 1〜3から分離した 電気回路を構成しており、 超電導シムコイル群 5を流れる電流値は、 超電導メイ ンコ'ィル群 1〜 3を流れる電流値とは独立に決定できる。 なお、 各コイルを支持 する巻枠の表示を省略している。  The superconducting shim coil groups 4a to 4ί constitute an electric circuit separated from the superconducting main coil groups 1 to 3, and the current flowing through the superconducting shim coil group 5 flows through the superconducting main coil groups 1 to 3. It can be determined independently of the current value. The illustration of the bobbin supporting each coil is omitted.
超電導メインコイル群 1〜 3は、 共通の中心軸を持つ複数のコイルから構成さ れる。 超電導メインコイル群 1〜3は、 中心軸の方向に延びており、 それぞれの コイル 1〜 3と中心軸との距離は異なる位置に配置されている。 この超電導メイ ンコイル群 1〜 3の中心軸付近には、 試料を入れた試験管 6およびプローブ 7を 揷入するためのポートが貫通しており、 試験管 6は上方から、 プローブ 7は下方 から、 それぞれ挿入される。  The superconducting main coil groups 1 to 3 are composed of a plurality of coils having a common central axis. The superconducting main coil groups 1 to 3 extend in the direction of the central axis, and the distances between the coils 1 to 3 and the central axis are different. Ports for inserting the test tube 6 containing the sample and the probe 7 penetrate the vicinity of the central axis of the superconducting main coil groups 1 to 3, the test tube 6 from above and the probe 7 from below. , Respectively inserted.
プローブ 7には NM R信号の検出アンテナ 8が備えられている。 検出アンテナ 8は、 超電導メインコイル群 1〜 3が発生する磁場 (中心軸と平行な方向) に対 して垂直な方向の磁場に、 感度を有している必要があり、 従来は、 鞍型または鳥 籠型の検出アンテナが用いられている。  The probe 7 is provided with an NMR signal detection antenna 8. The detection antenna 8 needs to have sensitivity to a magnetic field in a direction perpendicular to a magnetic field (a direction parallel to the central axis) generated by the superconducting main coil groups 1 to 3, and a conventional saddle type Or a birdcage-type detection antenna is used.
超電導シムコイル群 4 a〜4 f は、 全て超電導メインコイル群 1〜 3の外側に 設置され、 中心軸からほぼ同じ距離に位置している。 従って、 超電導シムコイル 群 4 a〜4 fが必要とする磁場は、 2 2テスラと云う現時点での最高中心磁場を ― The superconducting shim coil groups 4 a to 4 f are all installed outside the superconducting main coil groups 1 to 3 and are located at approximately the same distance from the central axis. Therefore, the magnetic field required by the superconducting shim coil groups 4a to 4f is the highest central magnetic field of 22 Tesla at present. ―
6  6
達成している NMR装置であっても、 8テスラ以下にとどまる。 そのため上部臨 界磁場 (臨界電流密度がゼロになる磁場) の低い、 N b T i超電導線材を使うこ とができる。 Even with the NMR equipment that has been achieved, it remains below 8 Tesla. Therefore, an NbTi superconducting wire having a low upper critical magnetic field (a magnetic field at which the critical current density becomes zero) can be used.
図 7に示した従来の装置に比べて、 本実施例の装置は、 軸方向に短くなつてい る。 その代わり超電導シムコイル群 4 a〜4 は、 超電導メインコイル群 1〜3 の外側に設置された第一の超電導シムコイル群 4 a〜4 f に加えて、 超電導メイ ンコイル群 1〜3と 常温シムコイル群 5の間に、 第二の超電導シムコイル群 9 a〜9 dが設置されている。 第二の超電導シムコイル群 9 a〜9 dは、 中心軸か らほぼ同じ距離に位置している。  Compared to the conventional device shown in FIG. 7, the device of this embodiment is shorter in the axial direction. Instead, the superconducting shim coil groups 4a to 4 consist of the superconducting main coil groups 1 to 3 and the room temperature shim coil group in addition to the first superconducting shim coil groups 4a to 4f installed outside the superconducting main coil groups 1 to 3. Between 5, the second superconducting shim coil groups 9a to 9d are installed. The second superconducting shim coil groups 9a to 9d are located at approximately the same distance from the central axis.
本装置を 6 0 0 MH z以上の NMR装置として用いるとすると、 第二の超電導 シムコイル群 9 a〜9 dは、 8テスラ以上の磁場中で機能することが要求される。 そのため第二の超電導シムコイル群 9 a〜9 dを構成するコイルは、 上部臨界磁 場が 1 4テスラ以上の超電導線材、 例えば N b 3 S n超電導線材で作製する。  Assuming that this apparatus is used as an NMR apparatus at 600 MHz or more, the second superconducting shim coil groups 9a to 9d are required to function in a magnetic field of 8 Tesla or more. Therefore, the coils constituting the second superconducting shim coil groups 9a to 9d are made of a superconducting wire having an upper critical magnetic field of 14 Tesla or more, for example, an Nb3Sn superconducting wire.
〔実施例 2〕  (Example 2)
図 2は、本実施例による均一磁場発生装置の模式断面図である。図 1と同様に、 各コイルを支持する巻枠は表示していない。 図 1と同じ符号の部品は同じ部品を 意味する。 本実施例においては、 超電導メインコイル群 1〜3の外側に設置され た第一の超電導シムコィル群 4 a〜 4 dに加えて、 超電導メインコイル群 1〜 3 と、 常温シムコイル群 5との間に、 第二の超電導シムコイル群 9 a〜9 d、 およ ぴ、 第三の超電導シムコイル群 1 0 a〜l 0 dが設置されている。 実施例 1と同 様に、 第二および第三の超電導シムコイル群 9 a〜9 d、 1 0 a〜1 0 dを構成 するコイルは、 例えば N b 3 S n超電導線材からなる。  FIG. 2 is a schematic sectional view of the uniform magnetic field generator according to the present embodiment. As in FIG. 1, the bobbin supporting each coil is not shown. Parts with the same reference numerals as those in Fig. 1 mean the same parts. In the present embodiment, in addition to the first superconducting shim coil groups 4 a to 4 d installed outside the superconducting main coil groups 1 to 3, the superconducting main coil groups 1 to 3 and the room temperature shim coil group 5 In addition, a second superconducting shim coil group 9a to 9d, and a third superconducting shim coil group 10a to 10d are provided. As in the first embodiment, the coils constituting the second and third superconducting shim coil groups 9a to 9d and 10a to 10d are made of, for example, Nb3Sn superconducting wires.
また、 第二の超電導シムコイル群 9 a〜9 dと第三の超電導シムコイル 1 0 a 〜1 0 d群とでは、 中心軸からの距離が異なる。 中心軸からの距離が異なる複数 の超電導シムコイルに通電することにより、 所望の次数の磁場成分を効率良く発 生させることができる。 さらに、 超電導シムコイル群 9 a〜9 d、 1 0 a〜l 0 dの少なくとも 1づの コイルが、 複数の次数の磁場成分を同時に発生するようにし、 各コイルに通電す る電流値を独立制御すれば、 複数の次数の磁場成分を同時に補正できる。 The distance from the central axis is different between the second superconducting shim coil groups 9a to 9d and the third superconducting shim coil groups 10a to 10d. By energizing a plurality of superconducting shim coils at different distances from the central axis, a magnetic field component of a desired order can be efficiently generated. In addition, at least one of the superconducting shim coil groups 9a to 9d and 10a to 10d simultaneously generates magnetic field components of multiple orders, and independently controls the current value applied to each coil. Then, multiple order magnetic field components can be corrected simultaneously.
〔実施例 3〕  (Example 3)
図 3は、 本実施例による均一磁場発生装置の模式断面図である。 図 2と同様に、 各コイルを支持する巻枠は表示していない。 図 2と同じ符号は、 同じ部品を意味 する。 本実施例においては、 超電導メインコイル群 1〜 3と常温シムコイル群 5 との間に、 超電導シムコイル群 9 a〜9 dおよび 1 0 a〜l 0 dが設置されてい る。  FIG. 3 is a schematic sectional view of the uniform magnetic field generator according to the present embodiment. As in FIG. 2, the bobbin supporting each coil is not shown. The same reference numerals as those in FIG. 2 indicate the same parts. In this embodiment, superconducting shim coil groups 9 a to 9 d and 10 a to 10 d are provided between superconducting main coil groups 1 to 3 and room temperature shim coil group 5.
一方、 超電導メインコイル群 1〜3の外側には、 超電導シムコイル群が設置さ れていない。 それにより超電導シムコイル群の磁場補正能力は低下するが、 もし 能力不足に陥らないのであれば、 本実施例のような構成にすることにより、 装置 の一層の小型化が実現できる。  On the other hand, there is no superconducting shim coil group outside the superconducting main coil groups 1-3. As a result, the magnetic field correction capability of the superconducting shim coil group is reduced. However, if the capability does not fall short, a further reduction in the size of the device can be realized by adopting the configuration as in the present embodiment.
〔実施例 4〕  (Example 4)
図 4は、 本実施例による均一磁場発生装置の模式断面図である。 図 3と同様に、 各コイルを支持する巻枠は表示していない。 図 3と同じ符号は、 同じ部品を意味 する。 本実施例の超電導メインコイル群は、 第一の超電導メインコイル群 1 a〜 3 aと第二の超電導メインコイル群 1 b〜 3 bとが間隙を介して対向した、 いわ ゆるスプリツト型である。 それに合わせて常温シムコイル群 5 aおよび 5 bも軸 方向に二分割されている。  FIG. 4 is a schematic sectional view of the uniform magnetic field generator according to the present embodiment. As in FIG. 3, the bobbin supporting each coil is not shown. The same reference numerals as those in FIG. 3 indicate the same parts. The superconducting main coil group of the present embodiment is a so-called split type in which a first superconducting main coil group 1 a to 3 a and a second superconducting main coil group 1 b to 3 b are opposed via a gap. . Accordingly, the normal temperature shim coil groups 5a and 5b are also bisected in the axial direction.
また、 超電導メインコイル群 1 a〜3 a、 l b〜3 bの外側には、 第一の超電 導シムコイル群 4 a〜4 d、 超電導メインコイル群 1 a〜3 a、 l b〜3 bと常 温シムコイル群 5 a、 5 bの間には、 第二の超電導シムコイル群 9 a〜9 dおよ び第三の超電導シムコイル群 1 0 a〜l 0 dがそれぞれ設置されている。  Outside the superconducting main coil groups 1a to 3a and lb to 3b, the first superconducting shim coil groups 4a to 4d and the superconducting main coil groups 1a to 3a and lb to 3b A second superconducting shim coil group 9a to 9d and a third superconducting shim coil group 10a to 10d are provided between the normal temperature shim coil groups 5a and 5b, respectively.
実施例 2と同様に、 第二および第三の超電導シムコイル群 9 a〜9 d、 1 0 a 〜1 0 dを構成するコイルは、 例えば N b 3 S n超電導線材からなる。 また、 中心軸からの距離が異なる複数の超電導シムコイルに通電することによ り、 所望の次数の磁場成分を効率良く発生させることができる。 さらに、 超電導 シムコイル群 9 a〜9 d、 1 0 a〜l 0 dの少なくとも 1つのコイルが、 複数の 次数の磁場成分を同時に発生するようにし、 各コイルに通電する電流値を独立制 御すれば、 複数の次数の磁場成分を同時に補正できる。 As in the second embodiment, the coils constituting the second and third superconducting shim coil groups 9a to 9d and 10a to 10d are made of, for example, Nb3Sn superconducting wires. Further, by supplying a current to a plurality of superconducting shim coils having different distances from the central axis, a magnetic field component of a desired order can be efficiently generated. Furthermore, at least one coil of the superconducting shim coil groups 9a to 9d and 10a to 10d simultaneously generates magnetic fields of a plurality of orders, and the current value supplied to each coil can be controlled independently. If this is the case, multiple orders of magnetic field components can be corrected simultaneously.
〔実施例 5〕  (Example 5)
図 5は、 本実施例による均一磁場発生装置の模式断面図である。 図 4と同様に、 各コイルを支持する卷枠は表示していない。 図 1と同じ符号は、 同じ部品を意味 する。 本実施例においては、 図 4で示した実施例 4の装置を横置きにし、 試料を 入れた試験管 6を第一の超電導メインコイル群 1 a〜 3 aと、 第二の超電導メイ ンコイル群 1 b〜3 bとの間隙から揷入する。  FIG. 5 is a schematic sectional view of the uniform magnetic field generator according to the present embodiment. As in FIG. 4, the bobbin supporting each coil is not shown. The same reference numerals as those in FIG. 1 indicate the same parts. In this example, the apparatus of Example 4 shown in FIG. 4 was placed horizontally, and the test tube 6 containing the sample was placed in the first superconducting main coil group 1 a to 3 a and the second superconducting main coil group. Insert through the gap between 1b and 3b.
一方、 プローブ 7は、 超電導メインコイル群 1 a〜3 a、 l b〜3 bの中心軸 付近に設けたポートから挿入する。 プローブ 7には、 高感度のソレノイド型検出 アンテナ 1 1が取り付けられている。 その他は実施例 4と同様で、 常温シムコィ ル群 5 aおよび 5 bは、 軸方向に二分割されている。  On the other hand, the probe 7 is inserted from a port provided near the central axis of the superconducting main coil groups 1a to 3a and lb to 3b. The probe 7 is provided with a highly sensitive solenoid type detection antenna 11. Others are the same as in Example 4, and the normal temperature shim coil groups 5a and 5b are divided into two in the axial direction.
また、 超電導メインコイル群 1 a〜3 a、 1 b〜 3 bの外側には第一の超電導 シムコイル群 4 a〜4 d、 超電導メインコイル群 1 a〜3 a、 l b〜3 bと常温 シムコイル群 5 a、 5 bとの間には第二の超電導シムコイル群 9 a〜9 d、 およ び、 第三の超電導シムコイル群 1 0 a〜l 0 dがそれぞれ設置されている。  Also, outside the superconducting main coil groups 1a-3a and 1b-3b, the first superconducting shim coil groups 4a-4d, the superconducting main coil groups 1a-3a, lb-3b and room temperature shim coils A second superconducting shim coil group 9a to 9d and a third superconducting shim coil group 10a to 10d are provided between the groups 5a and 5b, respectively.
第二および第三の超電導シムコイル群 9 a〜 9 d、 1 0 a〜1 0 dを構成する コイルは、 例えば N b 3 S n超電導線材からなる。 また、 中心軸からの距離が異な る複数の超電導シムコイル 5 a、 5 bに通電することにより、 所望の次数の磁場 成分を効率良く発生させることができる。  The coils constituting the second and third superconducting shim coil groups 9a to 9d and 10a to 10d are made of, for example, Nb3Sn superconducting wires. Also, by supplying a current to a plurality of superconducting shim coils 5a and 5b having different distances from the central axis, a magnetic field component of a desired order can be efficiently generated.
さらに、 超電導シムコイル群の少なくとも 1つのコィルが、 複数の次数の磁場 成分を同時に発生するようにし、 各コイルに通電する電流値を独立制御すれば、 複数の次数の磁場成分を同時に補正できる。 産業上の利用可能性 Furthermore, if at least one coil of the superconducting shim coil group simultaneously generates a plurality of orders of magnetic field components and independently controls a current value supplied to each coil, a plurality of orders of magnetic field components can be corrected simultaneously. Industrial applicability
以上説明したように、 本発明によれば、 軸方向座標の高次の磁場に対する補正 能力が高い、 超電導シムコイル群を備えた均一磁場発生装置が得られ、 それを N MR装置へ適用できる。  As described above, according to the present invention, a uniform magnetic field generator having a superconducting shim coil group having a high ability to correct a high-order magnetic field in the axial direction can be obtained, and can be applied to an NMR apparatus.

Claims

請求の範囲 The scope of the claims
1 . 計測空間に磁場を発生する超電導メインコイル群と、 前記磁場の不均一 を補正するための超電導シムコイル群とを備えた均一磁場発生装置において、 半 径方向位置が前記超電導メインコイル群と前記計測空間との間で、 かつ 前記超 電導メインコイル群を構成する各コイルとは異なる軸方向位置に、 前記超電導シ ムコイル群の少なくとも 1つのコイルを設置することを特徴とする均一磁場発生 装置。  1. In a uniform magnetic field generator including a superconducting main coil group for generating a magnetic field in a measurement space and a superconducting shim coil group for correcting the non-uniformity of the magnetic field, a radial position is the same as that of the superconducting main coil group. A uniform magnetic field generator, wherein at least one coil of the superconducting shim coil group is installed at a position in an axial direction different from a coil constituting the superconducting main coil group with respect to a measurement space.
2 . 前記超電導シムコイル群の少なくとも 1つのコイルを、 8テスラ以上の 高磁場中で機能させる請求項 1に記載の均一磁場発生装置。  2. The uniform magnetic field generator according to claim 1, wherein at least one coil of the superconducting shim coil group is operated in a high magnetic field of 8 Tesla or more.
3 . 前記超電導シムコイル群の少なくとも 1つのコイルが、 1 4テスラ以上 の上部臨界磁場を持つ超電導線材からなる請求項 1に記載の均一磁場発生装置。  3. The uniform magnetic field generator according to claim 1, wherein at least one coil of the superconducting shim coil group is made of a superconducting wire having an upper critical magnetic field of 14 Tesla or more.
4. 前記超電導シムコイル群の少なくとも 1つのコイルが N b 3 S n超電導線 材からなる請求項 1に記載の均一磁場発生装置。  4. The uniform magnetic field generator according to claim 1, wherein at least one coil of the superconducting shim coil group is made of an Nb3Sn superconducting wire.
5 . 計測空間に磁場を発生する超電導メインコイル群と、 前記磁場の不均一 を補正するための超電導シムコイル群とを備えた均一磁場発生装置において、 前 記超電導シムコイル群には中心軸からの距離の異なる複数のコイルが含まれるこ とを特徴とする均一磁場発生装置。  5. In a uniform magnetic field generator including a superconducting main coil group for generating a magnetic field in the measurement space and a superconducting shim coil group for correcting the non-uniformity of the magnetic field, the superconducting shim coil group is at a distance from a central axis. A uniform magnetic field generator comprising a plurality of coils of different types.
6 . 計測空間に磁場を発生する超電導メインコイル群と、 前記磁場の不均一 を補正するための超電導シムコイル群とを備える均一磁場発生装置において、 前記超電導シムコイル群が前記計測空間の中心から 1 O mmの範囲内に、 軸方 向座標の 4次に比例する磁場成分を 0 . 0 1ガウス以上発生させる能力を有する ことを特徴とする均一磁場発生装置。  6. A uniform magnetic field generator including a superconducting main coil group for generating a magnetic field in the measurement space and a superconducting shim coil group for correcting the non-uniformity of the magnetic field, wherein the superconducting shim coil group is 1 O from the center of the measurement space. A uniform magnetic field generator having a capability of generating a magnetic field component of at least 0.01 Gauss in the range of mm, which is fourth-order proportional to the axial coordinate.
7 . 計測空間に磁場を発生する超電導メインコイル群と、 前記磁場の不均一 を補正するための超電導シムコイル群とを備える均一磁場発生装置において、 前記超電導シムコイル群が前記計測空間の中心から 1 0 mmの範囲内に、 軸方 向座標の 6次に比例する磁場成分を 0 . 0 0 0 1ガウス以上発生させる能力を有 することを特徴とする均一磁場発生装置。 7. A uniform magnetic field generator including a superconducting main coil group for generating a magnetic field in a measurement space and a superconducting shim coil group for correcting the non-uniformity of the magnetic field, wherein the superconducting shim coil group is located at a distance from the center of the measurement space. Within the range of mm, it has the ability to generate a magnetic field component of 0.06 Gauss or more that is proportional to the 6th order of the axial coordinate. A uniform magnetic field generator.
8 . 前記超電導シムコイル群の少なくとも 1つのコイルが、 複数の次数の磁 場成分を同時に発生する請求項 1記載の均一磁場発生装置。  8. The uniform magnetic field generator according to claim 1, wherein at least one coil of the superconducting shim coil group simultaneously generates a plurality of orders of magnetic field components.
9 . 前記超電導シムコイル群の各コイルに通電する電流値を独立制御するこ とで、 複数の次数の磁場成分を同時に補正する請求項 8に記載の均一磁場発生装 置。  9. The uniform magnetic field generating apparatus according to claim 8, wherein a plurality of orders of magnetic field components are corrected simultaneously by independently controlling a current value to be supplied to each coil of the superconducting shim coil group.
1 0 . 前記超電導メインコイル群が、 軸方向の間隙を介して対向する第一の 超電導メインコイル群と第二の超電導メインコイル群とからなる請求項 1記載の 均一磁場発生装置。  10. The uniform magnetic field generator according to claim 1, wherein the superconducting main coil group comprises a first superconducting main coil group and a second superconducting main coil group that face each other with an axial gap therebetween.
1 1 請求項 1に記載の均一磁場発生装置を用いたことを特徴とする核磁気共 鳴装置。  11. 1 A nuclear magnetic resonance apparatus using the uniform magnetic field generation apparatus according to claim 1.
PCT/JP2004/005978 2003-04-24 2004-04-26 Uniform magnetic field generation device and nuclear magnetic resonance device using the same WO2004095047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003120237A JP2004325251A (en) 2003-04-24 2003-04-24 Uniform magnetic field generation device and nuclear magnetic resonance device using it
JP2003-120237 2003-04-24

Publications (1)

Publication Number Publication Date
WO2004095047A1 true WO2004095047A1 (en) 2004-11-04

Family

ID=33308127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005978 WO2004095047A1 (en) 2003-04-24 2004-04-26 Uniform magnetic field generation device and nuclear magnetic resonance device using the same

Country Status (2)

Country Link
JP (1) JP2004325251A (en)
WO (1) WO2004095047A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830146B2 (en) 2006-02-15 2010-11-09 Hitachi, Ltd. NMR solenoidal coil for RF field homogeneity

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8254522B2 (en) 2008-05-14 2012-08-28 Konica Minolta Medical & Graphic Inc. Dynamic image capturing control apparatus and dynamic image capturing system
JP6138600B2 (en) * 2013-06-12 2017-05-31 ジャパンスーパーコンダクタテクノロジー株式会社 Magnetic field generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231645A (en) * 1986-01-29 1987-10-12 フオスフオ−エナジエテイツクス・インコ−ポレイテツド Homogenous magnetic field forming apparatus for nmr, nmr spectroscopic apparatus and method
JPH02246928A (en) * 1989-03-20 1990-10-02 Toshiba Corp Magnetic field generator
JPH08273923A (en) * 1995-03-30 1996-10-18 Hitachi Ltd Superconducting magnet device for nmr analyzer and its operating method
JP2001099904A (en) * 1999-08-27 2001-04-13 Bruker Ag Active shield superconductive magnet system with z2 shim
WO2001031358A1 (en) * 1999-10-26 2001-05-03 Oxford Magnet Technology Limited Magnet with improved access
JP2001264402A (en) * 2000-03-17 2001-09-26 National Institute For Materials Science High magnetic field and high homogeneous superconducting magnet device
WO2002049513A1 (en) * 2000-12-05 2002-06-27 Hitachi, Ltd. Low-leakage magnetic-field magnet and shield coil assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771055A (en) * 1972-03-17 1973-11-06 Varian Associates Double nuclear magnetic resonance coil
JPH04168386A (en) * 1990-10-31 1992-06-16 Shimadzu Corp Sim coil for magnetic field correction and its fabrication
JPH07240310A (en) * 1994-03-01 1995-09-12 Mitsubishi Electric Corp Superconducting magnet for nuclear magnetic resonance analyzer
GB0007018D0 (en) * 2000-03-22 2000-05-10 Akguen Ali Magnetic resonance imaging apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231645A (en) * 1986-01-29 1987-10-12 フオスフオ−エナジエテイツクス・インコ−ポレイテツド Homogenous magnetic field forming apparatus for nmr, nmr spectroscopic apparatus and method
JPH02246928A (en) * 1989-03-20 1990-10-02 Toshiba Corp Magnetic field generator
JPH08273923A (en) * 1995-03-30 1996-10-18 Hitachi Ltd Superconducting magnet device for nmr analyzer and its operating method
JP2001099904A (en) * 1999-08-27 2001-04-13 Bruker Ag Active shield superconductive magnet system with z2 shim
WO2001031358A1 (en) * 1999-10-26 2001-05-03 Oxford Magnet Technology Limited Magnet with improved access
JP2001264402A (en) * 2000-03-17 2001-09-26 National Institute For Materials Science High magnetic field and high homogeneous superconducting magnet device
WO2002049513A1 (en) * 2000-12-05 2002-06-27 Hitachi, Ltd. Low-leakage magnetic-field magnet and shield coil assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830146B2 (en) 2006-02-15 2010-11-09 Hitachi, Ltd. NMR solenoidal coil for RF field homogeneity
US8040136B2 (en) 2006-02-15 2011-10-18 Hitachi, Ltd. NMR solenoidal coil for RF field homogeneity

Also Published As

Publication number Publication date
JP2004325251A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US3569823A (en) Nuclear magnetic resonance apparatus
EP0187691B1 (en) Improvements relating to magnets
US4794338A (en) Balanced self-shielded gradient coils
EP2138859B1 (en) Temperature System with Magnetic Field Suppression
US7330031B2 (en) Matrix shim system with grouped coils
US7295012B1 (en) Methods and apparatus for MRI shim elements
US7157912B2 (en) Apparatus for generating homogeneous magnetic field
US7135948B2 (en) Dipole shim coil for external field adjustment of a shielded superconducting magnet
US20070146107A1 (en) Magnetic field generating apparatus for magnetic resonance imaging
EP1866661A1 (en) Minimum energy shim coils for magnetic resonance
US20100308840A1 (en) Method and device to detect failure of a magnetic resonance gradient coil by monitoring a supply cable thereof
JPH0779942A (en) Magnetic resonance imager
JP3083475B2 (en) Correction magnetic field generator
EP0400922A1 (en) Magnetic field generating apparatus
EP0154996B1 (en) Magnetic resonance imaging apparatus using shim coil correction
WO2004095047A1 (en) Uniform magnetic field generation device and nuclear magnetic resonance device using the same
CN111009374B (en) Nuclear magnetic resonance superconducting magnet with compact coil structure
US5521571A (en) Open MRI magnet with uniform imaging volume
JPH0744105B2 (en) electromagnet
JP2002143126A (en) Magnet device and magnetic resonance imaging equipment
JP2002102205A (en) Magnetic resonace imaging apparatus
JP3842945B2 (en) Shim device for nuclear magnetic resonance equipment
US8134433B2 (en) Superconducting magnet apparatus
US6429655B1 (en) MR apparatus provided with a gradient coil system
WO2004095046A1 (en) Nuclear magnetic resonance analyzer and magnet for nuclear magnetic resonance apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase