WO2004092794A1 - 光ファイバ - Google Patents

光ファイバ Download PDF

Info

Publication number
WO2004092794A1
WO2004092794A1 PCT/JP2004/005195 JP2004005195W WO2004092794A1 WO 2004092794 A1 WO2004092794 A1 WO 2004092794A1 JP 2004005195 W JP2004005195 W JP 2004005195W WO 2004092794 A1 WO2004092794 A1 WO 2004092794A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
wavelength
refractive index
cladding layer
bending
Prior art date
Application number
PCT/JP2004/005195
Other languages
English (en)
French (fr)
Inventor
Shoichiro Matsuo
Kuniharu Himeno
Koichi Harada
Masataka Ikeda
Original Assignee
Fujikura Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd. filed Critical Fujikura Ltd.
Priority to JP2005504472A priority Critical patent/JP3853833B2/ja
Priority to EP04726886A priority patent/EP1657575A4/en
Publication of WO2004092794A1 publication Critical patent/WO2004092794A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03672Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03688Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 5 or more layers

Definitions

  • the present invention relates to an optical fiber having excellent bending characteristics.
  • Japanese Patent Publication No. 2618400 describes an optical fiber in which a clad layer is provided on the periphery of a central core, and a refractive index groove having a low refractive index is provided in the clad layer.
  • an optical fiber having such a configuration can be expected to have effects such as a reduction in dispersion slope and a reduction in bending loss, but in order to achieve such effects, it is necessary to increase the radius of the core to a refractive index groove.
  • the radius of the inner edge and a 2 is that it is desirable to a value of 1.5 to 3.5 in the range of a Bruno aj.
  • WDM Wide Length Division Multiplexing
  • optical fiber introduction Fiber To The Home
  • characteristics different from those of the transmission optical fiber are required. That is, when an optical fiber is routed in a building or a house, there is a possibility that an extremely small bend such as a bend diameter of 3 Omm ⁇ or 2 ⁇ may be formed. Also, when storing extra length, it is very important that no increase in loss occurs even if winding with a small bending diameter. . In other words, the ability to withstand small bending is a very important characteristic for an optical fiber for FTTH. It is also important to have good connectivity with the optical fiber laid between the base station and the building or house (often a normal 1.3 / zm band single mode fiber). In addition, low cost is required for such applications.
  • single-mode fibers and multi-mode fibers for the ordinary 1.3 m band have been generally used as optical fibers for wiring in offices and homes.
  • optical fibers generally allow a lower limit of the bending diameter of only about 6 ⁇ , and it was necessary to pay close attention to avoid bending beyond the allowable range when routing.
  • optical fibers for wiring in buildings and houses be able to cope with even smaller bending diameters.
  • optical fibers compatible with small bending diameters but they had problems such as high connection loss with conventional optical fibers and high manufacturing costs.
  • a photonic crystal fiber is an optical fiber with a structure in which a hole is provided near the center of the optical fiber, and can be expected to have characteristics that are not present in an optical fiber with a conventional structure. It is inferior at present.
  • Kiomura be strong against bending.
  • the efficiency of connection and storage operations can be increased, as long as optical fibers with meta-mura are used for smaller bending.
  • Rukoto can be increased, as long as optical fibers with meta-mura are used for smaller bending.
  • Rukoto can be performed while communication is being performed on a fiber other than the work target fiber. Even in such a case, if an optical fiber with a small bending loss is used, it is possible to work without affecting the line (live line) where communication is being performed due to unexpected contact or the like. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and provides an optical fiber that has low loss due to bending, has good connectivity with general transmission optical fibers, and can be manufactured at low cost. With the goal.
  • the present invention provides a core disposed at a center, a first cladding layer disposed on the periphery of the core, and a first cladding layer disposed on a periphery of the first cladding layer.
  • An optical fiber comprising: a second cladding layer; and a third cladding layer disposed on a periphery of the second cladding layer, wherein the maximum refractive index of the core is each of the first to third cladding layers. maximum one greater than the index of refraction and the maximum refractive index of the second cladding layer, the smaller than any of the maximum refractive index of the first and third cladding layer, and have a radius of said core a first when the radius of the outer edge of the cladding layer and a 2, a 2 / a, and the value is 2.5 or more 4.5 or less, the relative refractive index difference of the core when the refractive index of the third cladding with respect
  • the present invention provides an optical fiber having a ratio of 0.20 or more and 0.70% or less.
  • the optical fiber according to the present invention preferably has a power-off wavelength of 126 nm or less.
  • the refractive index volume V of the second cladding layer represented by the following formula (1) is 25% ⁇ ⁇ m 2 or more.
  • the refractive index volume V of the second cladding layer is 50% ⁇ wm 2 or more.
  • r radius
  • ⁇ ⁇ (r) relative refractive index difference at radius r (reference is the maximum refractive index of the third cladding layer)
  • a 2 radius of the outer edge of the first cladding layer
  • a 3 radius of the outer edge of the second cladding layer.
  • the relative refractive index difference of the first cladding layer with respect to the maximum refractive index of the third cladding layer is not less than 0.10% and not more than 0.05%.
  • a single-peak optical fiber having a single-peak type refractive index distribution without a second cladding layer and having a common power-off wavelength is wound around a mandrel having a diameter of 15 mm ten times.
  • the value of the increase in bending loss at the wavelength of 1550 nmn is 1, an optical fiber with a bending loss ratio of 0.55 or less, expressed as the ratio of the value of the measured bending loss increase, can be realized. .
  • a value of a bending loss at a wavelength of 155 Onm when wound at a bending diameter of 2 Omm is 0.05 dB or less per turn.
  • the present invention it is possible to realize an optical fiber in which the value of the bending loss at a wavelength of 165 Onm when wound at a bending diameter of 2 Omm is 0.05 dB or less per turn.
  • optical fiber having a mode field diameter of 8.3 ⁇ or more at a wavelength of 1550 nm.
  • the present invention it is possible to realize an optical fiber in which the value of the bending loss at a wavelength of 155 Onm when wound with a bending diameter of 15 mm is 0.05 dB or less per turn.
  • the present invention it is possible to realize an optical fiber in which the value of the bending loss at a wavelength of 165 Onm when wound with a bending diameter of 15 mm is 0.05 dB or less per turn. Cut.
  • optical fiber having a mode field diameter of 7.8 ⁇ or more at a wavelength of 1550 nm can be obtained.
  • the value of the mode field diameter (MFD) at 1550 nm of a unimodal optical fiber having a unimodal refractive index distribution without a second cladding layer and having a common power-off wavelength is set to 1 Then, an optical fiber having a ratio of MFD values of 0.98 or more measured in the same manner can be realized.
  • an optical fiber having a mode field diameter of 7.3 ⁇ or more at a wavelength of 1310 nm can be realized.
  • an optical fiber having a mode field diameter of 6.8 ⁇ m or more at a wavelength of 1310 nm can be realized.
  • a value of a bending loss at a wavelength of 1650 nm when wound with a bending diameter of 10 mm is 0.05 dB or less per turn.
  • an optical fiber having a mode field diameter of 7.3 ⁇ m or more at a wavelength of 1550 nm can be realized.
  • an optical fiber having a mode field diameter of 6.3 nm or more at a wavelength of 1310 nm can be obtained.
  • the mode field diameter at a wavelength of 1310 nm is 7.9 ⁇ m or more, and the value of the bending loss at a wavelength of 155 O nm when wound at a bending diameter of 2 Omm is 1 per turn.
  • An optical fiber of less than dB can be realized.
  • an optical fiber in which the value of the bending loss at a wavelength of 1550 nm when wound with a bending diameter of 2 Omm is 0.5 dB or less per turn.
  • An optical fiber having a wavelength of not less than nm and not more than 1324 nm can be obtained.
  • ADVANTAGE OF THE INVENTION According to this invention, the loss by bending is small and an optical fiber with favorable connectivity with the general transmission optical fiber can be obtained at low cost.
  • FIG. 1 is a graph showing a refractive index distribution in one embodiment of the optical fiber of the present invention.
  • FIG. 2 is a graph showing the relationship between the position of the second cladding layer and the MFD in Test Example 1.
  • FIG. 3 is a graph showing the relationship between the position of the second cladding layer and the bending loss in Test Example 1.
  • FIG. 4 is a graph showing a refractive index distribution in an example according to the present invention.
  • FIG. 5 is a graph showing a refractive index distribution in an example according to the present invention.
  • FIG. 6 is a graph showing a refractive index distribution in an example according to the present invention.
  • FIG. 7 is a graph showing a refractive index distribution in an example according to the present invention.
  • FIG. 1 shows a refractive index distribution in one embodiment of the optical fiber of the present invention.
  • a core 1 having a radius a and a maximum refractive index ni is provided.
  • a first cladding layer 2 of the maximum refractive index n 2 is provided, first in the adjacencies of the peripheral surface of the cladding layer 2, the radius a 3 of the outer edge, up to the second cladding layer 3 having a refractive index n 3 is provided.
  • the radius a 4 of the outer edge constituting the outermost layer of the optical fiber, the radius a 4 of the outer edge, the third cladding layer 4 of the maximum refractive index n 4 is provided.
  • the largest refraction of I mean the rate.
  • Ri constant der refractive index between a n from a, the refractive index becomes the maximum refractive index.
  • FIGS. 4 to 7 described later when a refractive index distribution is obtained in each layer, the maximum refractive index defined by the above method is used.
  • the maximum refractive index ⁇ of the core 1 is determined by any one of the maximum refractive indexes ⁇ 2 , ⁇ 3 and ⁇ 4 of the first to third cladding layers 2, 3 and 4. is large, the second maximum refractive index eta 3 of the cladding layer 3, the maximum refractive index eta 2 of the first and third cladding layer 2, 4 is designed to be smaller than any of eta 4.
  • the refractive index distribution of the optical fiber is formed by adding a dopant such as germanium or fluorine.
  • a dopant such as germanium or fluorine.
  • VAD Vapor-phase Axial Deposition
  • CVD Chemical Vapor Deposition
  • the refractive index in the first cladding layer 2 is substantially constant in the radial direction, and the refractive index distribution has a substantially perfect step shape.
  • the refractive index distribution of the optical fiber of the present invention does not necessarily have to be a perfect step shape. If the refractive index does not have a step shape, use the diameter of each layer defined by the following formula. Thus, the effect of the present invention can be obtained in the same manner as in the case of the step shape.
  • the radius ai of the core 1 is the relative refractive index difference
  • the relative refractive index difference in the core 1 is It is defined as the distance from the position that decreases to 1/10 of the center to the center.
  • the radii a 2 and a 3 of the outer edges of the first cladding layer 2 and the second cladding layer 3 are the differential values of the diameter distribution ⁇ (r) of the relative refractive index difference, ⁇ ⁇ (r) / dr (r).
  • the radius is defined as the distance from the position where the extremum takes the extreme value to the center.
  • step conversion a step-like refractive index distribution having equivalent characteristics (hereinafter, also referred to as step conversion).
  • step conversion a step-like refractive index distribution having equivalent characteristics
  • the present invention even if the actual refractive index distribution does not have a step shape, if the refractive index distribution calculated by such step conversion satisfies the predetermined refractive index relationship according to the present invention, the present invention The desired effect can be obtained.
  • the relative refractive index difference of the equivalent step profile converted into steps based on the above procedure is also shown.
  • the relative refractive index difference (unit: .mu.) Of each layer is based on the maximum refractive index n of the third cladding layer 4, and is represented by the following equation (2).
  • i is an integer of 1 to 3
  • ni is the maximum refractive index of each layer.
  • the relative refractive index difference of the core 1 is If the value is increased, bending loss can be reduced, but MFD tends to be reduced. Also, when becomes smaller, a larger MFD can be obtained, but the bending loss becomes worse.
  • a feature of the present invention is that the provision of the second cladding layer 3 provides an optical fiber having excellent bending characteristics even in an MFD comparable to that of a single-peak type.
  • the value of ⁇ i is not particularly limited, but is preferably in the range of 0.20 to 0.70%, more preferably in the range of 0.25 to 0.65%. As a result, an optical fiber having excellent connection characteristics with ordinary SMF and bending characteristics can be obtained.
  • the relative refractive index difference delta 2 of the first cladding layer 2 is 0. 0 5% or less, and more preferably 0. 0 0% or less. Further, it is preferably at least 0.10%.
  • the design range of the relative refractive index difference ⁇ 3 of the second cladding layer 3 is defined by the refractive index volume V as described later.
  • the outer diameter of the third outer edge of the cladding layer 4 (twice a 4), i.e., the outer diameter of the optical Faiba one Generally 125 m.
  • the outer diameter can be in the same range as that of a general optical fiber, but is not limited to the above range.
  • the cutoff wavelength can be controlled by the radius a of the core 1, if the cutoff wavelength is made shorter in such a manner, the bending loss tends to increase. Therefore, the radius a a of the core 1 is appropriately selected according to the required MFD, cut-off wavelength, and bending loss, together with the relative refractive index difference of the core 1.
  • the ratio of the radius of the outer edge of the first cladding layer 2 to the radius of the core 1 (a 2 / a represents the position of the second cladding layer 3. In the present invention, this value is 2.5 or more, preferably 3.0.
  • the mode field diameter (ModeFieldDiameter) is increased as shown in FIGS. However, in this specification, it may be referred to as MFD.) It is possible to improve the bending loss characteristics while minimizing the fluctuation of the bending loss.
  • Optical fibers can be used for communications over a wide wavelength range from 1300 nm to 1600 nm.
  • the optical fiber for the 300 nm band is specified in the ITU-T as G.652.
  • the lower limit wavelength of the 1300 nm band is generally assumed to be 1260 nm, and G.652 also specifies a cutoff wavelength of 1260 nm or less.
  • the optical fiber of the present invention also has a cutoff wavelength of 1260 nm or less in order to realize single mode transmission in a wide range from 1300 nm to 1600 nm.
  • the cutoff wavelength has a trade-off relationship with the optical characteristics such as the MFD and bending loss, and the refractive index distribution is set according to the desired characteristics.
  • the bending loss ratio was correlated with the value of a 2 Za i and the value of V. Specifically, the bending loss ratio tends to decrease as V increases, and the relationship between V and bending loss is determined by the value of a 2 / a, that is, the position of the low refractive index layer.
  • the refractive index volume (V) of the second cladding layer represented by the above formula (1) is 25% ⁇ m 2 or more. More preferably, it is at least 50% ⁇ ⁇ m 2 .
  • the value of V is preferably 110% . ⁇ 2 or less.
  • the loss due to bending can be effectively reduced by providing the second cladding layer.
  • the optical fiber was wound 10 times around a mandrel having a diameter of 2 Omm (2 ⁇ , sometimes abbreviated as 20 ⁇ hereinafter).
  • the value of the increase in bending loss (measurement wavelength: 155 O nm, the same applies hereinafter) is adjusted so that the same cutoff wavelength can be obtained with a single-peak type refractive index distribution without the second cladding layer 3.
  • the ratio of the increase in bending loss of the optical fiber according to the present invention is wavelength 15. At 50 nm, it can be reduced to 0.4 or less, preferably 0.15 or less.
  • the bending loss ratio which is generated by winding 10 times around a mandrel having a diameter of 15 mm (15 ⁇ , sometimes abbreviated as 15 ° hereinafter), is 0.1 mm at a wavelength of 150 nm.
  • the value of the bending loss at a wavelength of 1550 nm when wound with a bending diameter of 2 Omm is It can be reduced to 0.05 dB or less per turn.
  • the value of the bending loss per turn can be calculated, for example, by dividing the value of the bending loss that occurs when the winding is wound 10 times around a mandrel of a predetermined diameter by 10.
  • bending at a wavelength of 1650 nm when wound with a bending diameter of 2 Omm Loss values can be reduced to less than 0.05 dB per turn.
  • the value of bending loss at 150 nm can be reduced to 0.05 dB or less per turn.
  • wavelength 15 when wound with a bending diameter of 15 mm to 0.05 dB or less per turn. Further, according to the present invention, it is possible to realize an optical fiber having a large mode field diameter while suppressing the loss due to bending as described above. Specifically, wavelength 15
  • an optical fiber having a mode field diameter of 6.8 ⁇ m or more at a wavelength of 1310 nm can be obtained.
  • the value of bending loss at a wavelength of 150 nm when wound with a bending diameter of 10 mm can be reduced to 0.05 dB or less per turn.
  • the value of the bending loss at 1650 nm can be reduced to 0.05 dB or less per turn.
  • an optical fiber having a large mode field diameter while suppressing the loss due to bending as described above. Specifically, it is possible to obtain an optical fiber having a mode field diameter of 7.3 m or more at a wavelength of 1550 nm. Further, specifically, it is possible to obtain an optical fiber having a mode field diameter of 6.3 ⁇ or more at a wavelength of 1310 nm.
  • the mode field diameter at a wavelength of 1310 nm is 7.9 ⁇ or more, and the value of the bending loss at a wavelength of 1550 nm when wound at a bending diameter of 2 Omm is 1 dB or less per turn. Can be reduced.
  • an optical fiber having a zero dispersion wavelength of 1300 nm or more and 1324 nm or less it is possible to obtain an optical fiber having a zero dispersion wavelength of 1300 nm or more and 1324 nm or less.
  • the 1550-nm wavelength band is a wavelength band widely used for communication together with the 1310-nm wavelength band, and in these wavelength bands, the characteristic that the bending loss is small as well as the transmission loss is important.
  • the characteristic that the bending loss is small as well as the transmission loss is important.
  • the fiber when the fiber is stored in the connector near the wall near the wall, there is a possibility that the fiber may be bent or wound with a small diameter and may be minutely bent. For this reason, bending characteristics at small bending diameters such as a bending diameter of 2 Omm and a bending diameter of 15 mm are important.
  • a wavelength band up to 1650 nm is assumed for line monitoring, and having a small bending loss at 1650 nm is an important characteristic.
  • the optical fiber of the present invention provided with the second cladding layer 3 is characterized in that the bending loss is greatly reduced as compared with the single-peak type while suppressing the reduction in MFD.
  • the MFD of the optical fiber of the present invention at a wavelength of 1550 nm is Ml
  • a single peak type refractive index distribution without the second cladding layer 3 is configured to obtain the same power-off wavelength with a single peak type.
  • the MFD of the peak type optical fiber at 1550 nm is M2
  • the value of Ml / M2 can achieve 0.98 or more.
  • the optical fiber of the present invention realizes the above various features by providing the second cladding layer 3.
  • a non-zero dispersion shifted fiber (NZ-DSF) developed for WDM communications required a complex core refraction distribution, whereas the optical fiber of the present invention required a core refraction. Since the characteristics can be improved without changing the rate distribution, there is an advantage that manufacturing can be performed at a relatively low cost.
  • NZ-DSF non-zero dispersion shifted fiber
  • cutoff wavelength in the following test examples and examples is measured by a method conforming to ITU-TG.650.Definitions and test methods to linear, deterministic attributes of single-mode fiber and cable. You. In the following test examples and examples, the cutoff wavelength refers to a 2 m fiber cutoff unless otherwise specified.
  • the first cladding layer 2 relative refractive index ⁇ ⁇ 2 0%
  • the second cladding layer 3 of the relative refractive index difference ⁇ 3 - 0. 20%
  • Ratio of the thickness of the second cladding layer 3 to the core radius (a 3 —a 2 ) / a x 3.0, optical fiber outer diameter: 125 ⁇ m
  • An optical fiber was manufactured by designing the cut-off wavelength to be 1250 nm.
  • the change in MFD and the change in bending loss when the value of a 2 / a was changed were investigated.
  • the measurement wavelength of MFD and bending loss was 1550 nm.
  • the measurement of the bending loss was evaluated by an increase in loss when an optical fiber having a predetermined length was wound 10 times around a mandrel having a diameter of 20 mm. That is, when the power of the light emitted from the optical fiber before winding on the mandrel is P 1 (unit: dBm), and the power of the emitted light when wound is P 2 (unit: dBm), P 1 —P 2 (dB) was taken as the bending loss.
  • P 1 —P 2 (dB) was taken as the bending loss.
  • the dashed line in the figure indicates the value of the MFD bending loss of a single-peak optical fiber constructed so that the same power-off wavelength can be obtained with a single-peak refractive index distribution without the second cladding layer 3. Are respectively shown.
  • An optical fiber is manufactured by setting each parameter as shown in Table 1 below, and the cutoff wavelength, effective core area (A eif ), MFD, chromatic dispersion, dispersion slope, and zero dispersion wavelength are each known by a known method. It was measured.
  • Dentedions and test methods for linear, deterministic attributes of single-mode fiber and cable 5.3.1 ci.
  • a method of measuring the cutoff wavelength from the power loss when a small-diameter bend is given to a fiber (bending method) is often used.
  • the prototype optical fiber had high bending loss in the higher-order mode, and it was difficult to measure the cut-off accurately using the above bending method. For this reason, the measurement was performed using a method of evaluating the power based on the transmission power through the multimode fiber (multi-mode reference method).
  • the bending loss was measured in the same manner as in Test Example 1 above.
  • the measurement wavelength was 1550 nm and 1650 nm.
  • the diameter of the mandrel was 20 mm, 15 mm, and 10 mm.
  • the number of bending times was increased as needed to obtain a bending loss that could ensure measurement accuracy, and then converted to bending loss per 10 turns.
  • the table also shows the loss increase per unit length (bending loss increase, unit: dBZm). For example, if the bending loss (P 1-P 2 (dB)) when winding 10 turns around a 20 mm mandrel is PX, the loss increase per unit length Py is given by the following formula. .
  • Sample Nos. 1, 5, 9, 12, 21, 28, 35 and 38 are the second clad This is a single-peak optical fiber having no layer 3.
  • the bending loss ratio of Sample Nos. 2 to 4 is the bending loss of Sample Nos. 2 to 4 when the bending loss of 10 turns is 1, assuming that the bending loss of Sample No. 1 after 10 turns is 1. It is the ratio of the values.
  • the bending loss ratios of Sample Nos. 6 to 8 are values based on Sample No. 5
  • the bending loss ratios of Sample Nos. 10 and 11 are values based on Sample No. 9.
  • the bending loss ratio of samples No. 13 to 20 is a value based on sample No. 12, and the bending loss ratio of samples No. 22 to 27 is based on sample No. 21.
  • the bending loss ratio of Sample Nos. 29 to 34 is a value based on Sample No. 28, and the bending loss ratio of Samples No. 36 and 37 is Sample No. 35.
  • the bending loss ratios of Sample Nos. 39 and 40 are values based on Sample No. 38.
  • Samples Nos. 16, 18, 24 to 27, and 32 had large V values, and the cutoff wavelength could not be reduced to the same extent as the reference sample. Therefore, the bending loss ratio may not be described for these samples. Further, under some measurement conditions of Sample Nos. 35 and 38, the bending loss was too large to be evaluated. Therefore, the bending loss ratio may not be described in some of Sample Nos. 36, 37, 39, and 40. Tables 2 to 4 show the measurement results.
  • the bending loss can be reduced when the low refractive index layer is provided.
  • the effect of reducing the bending loss can be easily understood by looking at the bending loss ratio parameter comparing the bending loss with and without the low refractive index layer. For example, when looking at the bending loss of 1 550 nm and 2 Omm ⁇ , in the samples No. 21, 28, 35, and 38 without the low refractive index layer, the bending exceeding 0.5 dB per 10 turns Loss. In particular, sample Nos. 35 and 38 have bending losses exceeding 10 dB. However, Sample Nos. 22, 23, 29 to 34, 36, 37, 39, and 40 all have a bending loss ratio of 0.4 or less. In sample Nos.
  • the bending loss was less than 0.5 dB per 10 turns.
  • Sample Nos. 1, 5, 9, and 12 even with a structure without a low-refractive-index layer, it is possible to design 0.5 mm or less for 20 mm ⁇ and 10 turns.
  • the MFD at 1310 nm is less than 7.5 m, and the connection loss with the SMF is worse than the design using the low-refractive-index layer of the present invention. It is not preferable to do so.
  • Nos. 29, 33, 34, 36, and 37 have bending losses of more than 1 dB for 20 mm ⁇ 10 turns, but the standard Nos. 28 and 35 have no bending loss.
  • the loss was reduced by 5 dB or more, and the bending loss was about several dB.
  • These samples have MFD, cut-off wavelength, and zero-dispersion wavelength based on the single-mode optical fiber specified in ITU-TG.652, and have the effect of greatly suppressing the increase in the aperture due to bending. It has the effect of suppressing an increase in loss due to bending that occurs when laying ordinary line cables.
  • the samples No. 16, 18 and 24 to 27 and 32 with the refractive index volume V of 1 10% ⁇ um 2 or more show very small bending loss, but the cutoff wavelength becomes very long.
  • single mode transmission at 1260 nm or less which is the object of the present invention, cannot be realized.
  • An optical fiber with such a low-refractive-index layer can be designed with almost no loss while maintaining MFD even at a smaller diameter of 15 mm ⁇ .
  • sample Nos. 13 to 15, 17, 19, and 20 have a bending loss of less than 0.1 dB at 15 ⁇ at 1550 nm and 10 turns.
  • the MFD at 1310 nm is also about 7.3 ⁇ m. Even with a single-peak type without a low refractive index layer, the bending loss at 15 ⁇ , 10 turns can be reduced to 0.1 dB or less at 1550 nm by using the structures of Nos. 1, 5 and 9. It is.
  • the MFD at 1310 nm is less than 6.9 m, which indicates that the connection characteristic with the SMF is worse than that of the fiber of the present invention having equivalent bending characteristics.
  • FIG. 4 shows the refractive index distribution of the optical fiber in this embodiment.
  • the area shown by (a) in the figure was generated by the VAD method. Then, after stretching the core material obtained by the VAD method, it was externally attached to create a region (b). Further, after stretching this base material, it was externally attached again to form a region (c). In the formation of the region (b), a refractive index lower than the silica level was obtained by introducing SiF 4 gas during the vitrification process and performing F addition.
  • FIG. 4 shows the results of measuring the refractive index distribution of the base material obtained by the above-described process using a preform analyzer (trade name: MODEL 2600, manufactured by Photon Kinetics I York Technology). As can be seen from this figure, the refractive index distribution of the optical fiber of the present embodiment is not a perfect step type, but the effects of the present invention can be obtained.
  • the parameters of the optical fiber of this example were as follows.
  • Optical fiber outer diameter 1 2 5 ⁇ ⁇
  • the transmission loss at the wavelength of 150 nm, the cutoff wavelength, the MFD, the chromatic dispersion, the dispersion slope, the zero dispersion wavelength, and the bending loss were measured.
  • Table 5 shows the results.
  • the splice loss was measured when fusion spliced with a normal 1.3 m band single mode optical fiber, which was specified as 0.652 as per 1 11 At 50 nm, it was 0.18 dB, which was a level without any problem.
  • the power cut-off wavelength was measured on a 2 m optical fiber by a measurement method in accordance with ITU-TG.650. 6 Definitions and test methods for linear, deterministic attriDutes of single-mode fiber and cable.
  • Example 1 an optical fiber in which the refractive index distribution of the optical fiber was changed to a single-peak type without the second clad layer 3 was produced.
  • the core preform up to the region (a) used in Example 1 was externally attached only to the region (c) without externally attaching the region (b) to manufacture an optical fiber preform. did. At this time, the thickness of the region (c) was adjusted so that the power-off wavelength became almost the same as that of the first embodiment.
  • FIG. 5 shows the refractive index distribution of the optical fiber in this embodiment.
  • the optical fiber of this embodiment was manufactured by the same procedure as in the first embodiment.
  • Figure 5 shows the results of measuring the refractive index distribution of the base material using a preform analyzer.
  • the refractive index distribution of the optical fiber of the present embodiment is not a perfect step type, but the effects of the present invention can be obtained.
  • the parameters of the optical fiber of this embodiment are as follows.
  • the first cladding layer 2 of radius a 2 1 1. 48 ⁇ m
  • the second cladding layer 3 of radius a 3 16. 45 ⁇ ⁇
  • Ratio of the radius of the first cladding layer 2 to the radius of the core 1 a 2 / a! 3.37
  • Optical fiber outer diameter 125 ⁇
  • the relative refractive index difference delta 2 of the first cladding shows an 0.02%
  • the relative refractive index difference delta 3 of the second cladding became one 0.4%.
  • the transmission loss at a wavelength of 1550 nm, the cutoff wavelength, the MFD, the chromatic dispersion, the dispersion slope, and the zero-dispersion wavelength are the same as in the first embodiment.
  • And bending loss were measured. Table 6 shows the results.
  • the connection loss was measured in the same manner as in Example 1. At 1550 nm, the loss was 0.05 dB, which was a problematic level.
  • the core preform up to the region (a) used in the first embodiment is externally attached only to the region (c) without externally attaching the region (b), thereby producing an optical fiber preform. did.
  • the thickness of the region (c) was adjusted so that the cutoff wavelength became almost the same as that of the second embodiment.
  • FIG. 6 shows the refractive index distribution of the optical fiber in the present embodiment.
  • the area indicated by (a) in the figure was generated by the MCVD method.
  • (B) in the figure is the starting quartz tube in the CVD method.
  • the core material obtained by the MCVD method was externally attached to create region (c).
  • Figure 6 shows the refractive index of the base material. It is the result of measuring the distribution with a preform analyzer. As can be seen from this figure, even in the present embodiment, the refractive index distribution of the optical fiber is not completely stepped, but the effects of the present invention can be obtained.
  • the parameters of the optical fiber of this example were as follows.
  • the first cladding layer 2 of radius a 2 10. 30 ⁇ m
  • Ratio of the radius of the first cladding layer 2 to the radius of the core 1 a 2 / ai 3 ⁇ 30, Optical fiber outer diameter: 125 ⁇ m,
  • Refractive index volume of second cladding layer 3 (V) 42.0%-Aim 2
  • the relative refractive index difference delta 2 of the first cladding layer may include one 0.07%
  • the relative refractive second cladding The rate difference ⁇ 3 was -0.25%.
  • the transmission loss, cutoff wavelength, MFD, chromatic dispersion, dispersion slope, zero dispersion wavelength, and bending loss at a wavelength of 1550 nm were measured in the same manner as in Example 1 above. The results are shown in Table 7 below.
  • connection loss was measured in the same manner as in Example 1. As a result, it was 0.29 dB at 155 Onm.
  • Example 3 an optical fiber in which the refractive index distribution of the optical fiber was changed to a single-peak type without the second clad layer 3 was produced.
  • Example 3 in the process of the MCVD method for synthesizing the region (a), a fluorine-based gas was used to synthesize a layer having a low refractive index corresponding to the second clad.
  • a core base material was prepared by synthesizing a layer having a refractive index substantially equal to that of silica without using this fluorine-based gas.
  • the optical fiber preform was manufactured by externally attaching the region (c) to the core preform. At this time, the thickness of the region (c) was adjusted so that the cutoff wavelength was almost the same as that of the third embodiment.
  • FIG. 7 shows the refractive index distribution of the optical fiber in the present embodiment.
  • the area shown by (a) in the figure was generated by the VAD method. Then, after stretching the core material obtained by the VAD method, it was externally attached to create region (b). Further, after stretching this base material, it was externally attached again to form a region (c).
  • region (a) was created, the refractive index lower than the quartz level was obtained by adding CF 4 gas to the inner cladding synthesis parner.
  • region (b) was generated, a refractive index lower than the silica level was obtained by introducing SiF 4 gas during the vitrification process and adding F.
  • Figure 7 shows the results of measuring the refractive index distribution of the base material using a preform analyzer. As can be seen from this figure, even in the present embodiment, the distribution of the optical fibers is not completely stepped, but the effects of the present invention can be obtained.
  • the parameters of the optical fiber of this example were as follows.
  • the first cladding layer 2 of radius a 2 1 0. 3 7 ⁇ ⁇
  • the second cladding layer 3 of radius a 3 1 6. 6 2 um
  • Optical fiber outer diameter 80 ⁇ Refractive index volume (V) of second cladding layer 3 : 42.2% ⁇ ⁇ m 2
  • the relative refractive index difference between the core 1 is converted step with the core diameter 3 i, 0. 5 6% , the relative refractive index difference delta 2 of the first cladding layer, 10.0 9 percent, the second clad layer relative refractive index ⁇ delta 3 of the 10. 25% and Natsuta.
  • the cut-off wavelength, transmission loss, MFD, chromatic dispersion, dispersion slope, zero dispersion wavelength, and bending loss of the optical fiber of this example were measured in the same manner as in Example 1.
  • Table 8 shows the results. The measurement wavelength of each characteristic is shown in the table.
  • the fiber cutoff wavelength of 2 m was 1.30 °, which was slightly longer than 1.26 im. ITU-TG.
  • connection loss was measured in the same manner as in Example 1 and found to be 0.4 dB at 1550 nm.
  • Example 4 an optical fiber in which the refractive index distribution of the optical fiber was changed to a structure without the second clad layer 3 was produced.
  • the region (c) was externally attached without externally attaching the region (b), and the optical fiber preform was manufactured. Did. That is, the first cladding layer remains below the silica level. At this time, the thickness of the region (c) was adjusted so that the cut-off wavelength was almost the same as that in Example 4 above.
  • the present invention relates to an optical fiber excellent in bending characteristics. ADVANTAGE OF THE INVENTION According to this invention, the loss by bending is small and an optical fiber with favorable connection with the general transmission optical fiber can be obtained at low cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

中心に配置されたコア(1)と、前記コア(1)の周上に配置された第1クラッド層(2)と、前記第1クラッド層(2)の周上に配置された第2クラッド層(3)と、前記第2クラッド層(3)の周上に配置された第3クラッド層(4)と、を備えた光ファイバであって、前記コアの最大屈折率は、前記第1クラッド層、第2クラッド層、および第3クラッド層の各最大屈折率のいずれよりも大きく、前記第2クラッド層の最大屈折率は、前記第1クラッド層および第3クラッド層の各最大屈折率のいずれよりも小さく、かつ前記コアの半径をa1、前記第1クラッド層の外縁の半径をa2とするとき、a2/a1の値が2.5以上4.5以下であり、前記第3クラッドの屈折率を基準としたときの前記コアの比屈折率差が0.20以上0.70%以下である。

Description

明 細 書 光: 技術分野
本発明は、 曲げ特性に優れた光ファイバに関する。
本願は、 2003年 4月 11日に出願された特願 2003— 107760号、 2003年 7月 18日に出願された特願 2003-1 99270号、 及び 200 4年 1月 27日に出願された特願 2004-18514号に対し優先権を主張し 、 それらの内容をここに援用する。 背景技術
日本国特許公報 2618400号には、 中心コアの周上にクラッド層が設け られており、 該クラッド層には屈折率が低い屈折率溝が設けられた光ファイバが 記載されている。 また、 かかる構成の光ファイバは、 分散スロープの低減、 曲げ 損失の減少等の効果が期待できることが示唆されているが、 このような効果をも たらすには、 コアの半径を aい 屈折率溝の内縁の半径を a 2とするとき、 aノ a jの値を 1. 5〜3. 5の範囲とすることが望ましいとされている。
従来より、 幹線、 長距離系の伝送容量拡大を目的として WDM (Wave Length Division Multiplexing) を用いた伝送システムおよび光ファィバの開発が活発に 進められてきた。 WDM伝送用の光フアイバには、 非線形効果の抑制や分散制御 といった特性が要求されてきた。 近年では、 メ トロと呼ばれる数百 km程度のス パンのシステム向けに分散スロープを低減した光ファイバや O Hによるロス増が ほとんどない光ファイバなどが提案されている。
ところで、オフィスゃ家庭への光ファィパ導入(FTTH; Fiber To The Home ) を考えた場合には、 それらの伝送用光ファイバとは異なった特性が要求される 。 すなわち、 ビルや住宅内に光ファイバを引き回す際には、 曲げ直径が 3 Omm φや 2 Οπιιηψといった非常に小さな曲げが入る可能性がある。 また余長を収納 する際には、 小さな曲げ径で巻いてもロス増が生じないことが非常に重要になる 。 つまり、 小さな曲げに耐え得ることが、 FTTH向けの光ファイバとして非常 に重要な特性となる。 また、 基地局からビルや住宅までの間に布設される光ファ ィパ (多くは、 通常の 1. 3 /zm帯用シングルモードファイバ) との接続性が良 いことも重要である。 さらに、 このような用途においては、 低コストであること が要求される。
オフィスや家庭内に配線される光ファイバとしては、 従来、 通常の 1. 3 ; m 帯用のシングルモードファイバやマルチモードファイバが一般的に用いられてい た。
しかしながら、 これらの光ファイバは一般的に曲げ径の下限が 6 Οπιπιφ程度 しか許容されておらず、 引き回しの際には許容範囲を超えた曲げが入らないよう に細心の注意が必要であった。
最近では、 1. 3 im帯用シングルモードファイバ (以下、 SMFと略記する ことも ¾)るノ の国際規格である I TU - T (International Telecommunication Union - Telecom Standardization) の G. 652に準処する範囲で、 MFD (モ ードフィールド径) を小さくすることによって、 許容曲げ径を 3 Omm ψにまで 小さくできるようにした光ファイバが開発されている。
しかしながら、 ビル内や住宅内における配線用の光ファイバは、 さらに小さな 曲げ径に対応できることが望ましい。 これまでにも、 小さな曲げ径に対応した光 フアイバは報告されているが、 従来の光ファイバとの接続損失が大きいことや、 製造コストが高くなる等の問題を抱えていた。
また、 電子情報通信学会技術研究報告 O FT 2002— 81では、 宅内、 ビル 内配線にフォトニック結晶ファイバを用いる検討が報告されている。 フォトニッ ク結晶ファイバは、 光ファイバの中心付近に空孔が設けられた構造の光ファイバ であり、 従来構造の光ファイバにない特性が期待できるが、 製造性の点でまだ従 来型に対して劣るのが現状である。
また、 従来のケーブル用光ファイバについても、 曲げに対して而村生が強いこと が望ましい。 例えば、 ケーブル同士を接続するクロージャ内での引き回しにおい ては、 より小さい曲げに対して而村生を持った光ファイバが用いられていれば、 接 続、 収納作業の効率を上げることが出来ると共に、 クロージャの小型化を実現す ることが出来る。 また、 配 i 作業においては、 被作業ファイバ以外において通信 が行われている状態で作業が行われることもある。 このような場合においても、 小さな曲げ損失をもつ光ファイバを用いれば、 不意の接触などにより、 通信が行 われている線路 (活線) に影響を与えることなく作業を行うことが可能である。 発明の開示
本発明は前記事情に鑑みてなされたもので、 曲げによる損失が少なくて、 一 般的な伝送用光ファイバとの接続性が良好であり、 低コストで製造できる光ファ ィバを提供することを目的とする。
前記課題を解決するために、 本発明は、 中心に配置されたコアと、 前記コアの 周上に配置された第 1クラッド層と、 前記第 1クラッド層の周上に配置された第
2クラッド層と、 前記第 2クラッド層の周上に配置された第 3クラッド層と、 を 備えた光ファイバであって、 前記コアの最大屈折率は、 前記第 1〜第 3クラッド 層の各最大屈折率のいずれよりも大きく、 前記第 2クラッド層の最大屈折率は、 前記第 1および第 3クラッド層の各最大屈折率のいずれよりも小さく、 かつ前記 コアの半径を aい前記第 1クラッド層の外縁の半径を a 2とするとき、 a 2/ a , の値が 2 . 5以上 4 . 5以下であり、 第 3クラッドの屈折率を基準としたときの コアの比屈折率差が 0 . 2 0以上 0 . 7 0 %以下である光ファイバを提供する。 本発明の光ファイバは、 力 Vトオフ波長が 1 2 6 0 n m以下であることが好ま しい。
また、 下記数式 ( 1 ) で表される第 2クラッド層の屈折率体積 Vが 2 5 % · μ m 2以上であることが好ましい。
該第 2クラッド層の屈折率体積 Vが 5 0 % · w m 2以上であることがより好ま しい。 .
Figure imgf000005_0001
上記数式 (1 ) において
r :半径、 Δη (r) :半径 rにおける比屈折率差 (基準は第 3クラッド層の最大屈折率)、 a 2:第 1クラッド層の外縁の半径、
a 3:第 2クラッド層の外縁の半径である。
本発明の光ファイバは、 第 3クラッド層の最大屈折率を基準としたときの第 1 クラッド層の比屈折率差が一 0. 10 %以上 0. 05 %以下であることが好まし い。
本発明によれば、 第 2クラッド層を設けない単峰型の屈折率分布を有しかつ力 ットオフ波長が共通する単峰型光ファイバを直径 2 Ommのマンドレルに 10回 卷回させたときに生じる波長 1 550 nmnでの曲げ損失増加の値を 1とすると き、 同様にして測定される曲げ損失増加の値の比で表される曲げ損比が 0. 4以 下である光フアイバが得られる。
本発明によれば、 第 2クラッド層を設けない単峰型の屈折率分布を有しかつ力 ットオフ波長が共通する単峰型光ファイバを直径 1 5 mmのマンドレルに 10回 卷回させたときに生じる波長 1550 n m nでの曲げ損失増加の値を 1とすると き、 同様にして測定される曲げ損失増加の値の比で表される曲げ損比が 0. 55 以下である光ファイバを実現できる。
本発明によれば、 曲げ直径 2 Ommで巻回したときの波長 1 55 Onmにおけ る曲げ損失の値が、 1ターン当たり 0. 05 d B以下である光ファイバを実現で きる。
本発明によれば、 曲げ直径 2 Ommで卷回したときの波長 165 Onmにおけ る曲げ損失の値が、 1ターン当たり 0. 05 d B以下である光ファイバを実現で きる。
さらに、 波長 1 550 nmにおけるモードフィールド径が 8. 3 μπι以上であ る光ファイバを得ることが可能である。
本発明によれば、 曲げ直径 15 mmで卷回したときの波長 155 Onmにおけ る曲げ損失の値が、 1ターン当たり 0. 05 d B以下である光ファイバを実現で きる。
本発明によれば、 曲げ直径 15 mmで卷回したときの波長 165 Onmにおけ る曲げ損失の値が、 1ターン当たり 0. 05 d B以下である光ファイバを実現で ぎる。
さらに、 波長 1550 nmにおけるモードフィールド径が 7. 8 μπι以上であ る光ファイバを得ることができる。
本発明によれば、 第 2クラッド層を設けない単峰型の屈折率分布を有しかつ力 ットオフ波長が共通する単峰型光ファイバの 1550 nmにおけるモードフィ一 ルド径 (MFD) の値を 1とするとき、 同様にして測定した MFDの値の比が 0 . 98以上である光ファイバを実現.できる。
本発明によれば、 波長 1 310 nmにおけるモードフィールド径が 7. 3 μπι 以上である光ファイバを実現できる。
本発明によれば、 波長 1 310 nmにおけるモードフィールド径が 6. 8 μ m 以上である光ファイバを実現できる。
さらに、 曲げ直径 10 mmで巻回したときの波長 155 Q n mにおける曲げ損 失の値が、 1ターン当たり 0. 05 d B以下である光ファイバを得ることができ る。
本発明によれば、 曲げ直径 10 mmで卷回したときの波長 1650n mにおけ る曲げ損失の値が、 1ターン当たり 0. 05 d B以下である光ファイバを実現で きる。
本発明によれば、 波長 1 550 n mにおけるモードフィールド径が 7. 3 ,u m 以上である光フアイバを実現できる。
さらに、 波長 1 310 nmにおけるモードフィールド径が 6. 3 n m以上であ る光ファイバを得ることができる。
本発明によれば、 波長 1 310 nmにおけるモードフィールド径が 7. 9 μ m 以上であり、 曲げ直径 2 Ommで卷いたときと波長 1 55 O nmにおける曲げ損 失の値が、 1ターンあたり 1 d B以下である光ファイバを実現できる。
本発明によれば、 曲げ直径 2 Ommで卷いたときの波長 1 550 nmにおける 曲げ損失の値が、 1ターンあたり 0. 5 d B以下である光ファイバを実現できる さらに、 零分散波長が 1 300 nm以上 1324 n m以下である光ファイバを 得ることができる。 本発明によれば、 曲げによる損失が少なくて、 一般的な伝送用光ファイバとの 接続性が良好な光ファイバを、 低コストで得ることができる。 図面の簡単な説明
図 1は、 本発明の光ファイバの一実施形態における屈折率分布を示すグラフで める。
図 2は、 試験例 1における第 2クラッド層の位置と M F Dとの関係を示すグラ フである。
図 3は、 試験例 1における第 2クラッド層の位置と曲げ損失との関係を示すグ ラフである。
図 4は、 本発明に係る実施例における屈折率分布を示すグラフである。
図 5は、 本発明に係る実施例における屈折率分布を示すグラフである。
図 6は、 本発明に係る実施例における屈折率分布を示すグラフである。
図 7は、 本発明に係る実施例における屈折率分布を示すグラフである。 発明を実施するための最良の形態 .
以下、 図面を参照しつつ、 本発明の好適な実施例について説明する。 ただし、 本発明は以下の各実施例に限定されるものではなく、 例えばこれら実施例の構成 要素同士を適宜 IEみ合わせてもよい。
以下、 本発明を詳しく説明する。 図 1は、 本発明の光ファイバの一実施形態に おける屈折率分布を示したものである。
本実施形態の光ファイバの中心には、 半径 aい 最大屈折率 n iのコア 1が設け られている。 コア 1の周上には、 外縁の半径 a 2、 最大屈折率 n 2の第 1クラッド 層 2が設けられており、 該第 1クラッド層 2の周上には、 外縁の半径 a 3、 最大 屈折率 n 3の第 2クラッド層 3が設けられている。 そして、 該第 2クラッド層 3 の周上には、 光ファイバの最外層をなす、 外縁の半径 a 4、 最大屈折率 n 4の第 3 クラッド層 4が設けられている。
本明細書において、 最大屈折率とは、 ある層の外縁の半径を a n、 その層の一 つ内側の層の外縁の半径を a n—,としたとき、 a n_い a n間での最も大きな屈折 率をさす。 ここで、 nは 1以上の整数であり、 a。== 0 ( ^ m) である。 図 1に 示したようなステップ状の屈折率分布では、 a から a n間で屈折率が一定であ り、 その屈折率が最大屈折率となる。 しかしながら、 後述の図 4〜7に示される ように、 各層内で屈折率分布を取る場合は、 上記の方法で定義される最大屈折率 を用いる。
本発明の光ファイバにあっては、 コア 1の最大屈折率 η ιは、 第 1〜第 3クラ ッド層 2, 3, 4の各最大屈折率 η 2, η 3, η 4のいずれよりも大きく、 前記第 2クラッド層 3の最大屈折率 η 3は、 第 1および第 3クラッド層 2 , 4の各最大 屈折率 η 2, η 4のいずれよりも小さく設計される。
光ファイバの屈折率分布は、 ゲルマニウムやフッ素等のドーパントを添加する ことにより形成される。 光ファイバの製造に用いられている V A D (Vapor - phase Axial Deposition) や C V D (Chemical Vapor Deposition) と ヽっ 7こプロ セスにおいては、 ドーパントの拡散などの影響により各層の境界が曖昧な屈折率 分布をとることもある。
図 1に示す光ファイバにおいては、 第 1クラッド層 2における屈折率が径方向 にほぼ一定であり、 屈折率分布はほぼ完全なステツプ形状になっている。 本発明 の光ファイバの屈折率分布は、 必ずしも完全なステツプ状になっている必要はな く、 屈折率がステップ状になっていない場合は、 以下の式で定義される各層の径 を用いることにより、 ステツプ状の場合と同様に本発明の効果を得ることができ る。 まず、 コア 1の半径 a iは、 比屈折率差が、 コア 1内における比屈折率差の
Figure imgf000009_0001
の 1 / 1 0まで減少する位置から中心までの距離と定義する。 また、 第 1クラッド層 2、 第 2クラッド層 3の各外縁の半径 a 2、 a 3は、 比屈折率差の径 分布 Δ ( r ) の微分値、 ά Δ (r) / d r ( rは半径を表す。) が極値を取る位置か ら中心までの距離として定義する。
このような方法で定義した半径を用いて、 等価な特性をもつステップ状の屈折 率分布を算出すること (以下、 ステップ換算ということもある。) が可能である。 本発明では、 実際の屈折率分布がステップ状になっていなくても、 このようなス テツプ換算により算出された屈折率分布が、 本発明にかかる所定の屈折率の関係 を満たせば、 本発明の所期の効果を得ることができる。 本明細書中の実施例の中 では、 上記の手順を踏まえてステツプ換算した等価ステツププロフアイルの比屈 折率差をあわせて示す。
本明細書において、 各層の比屈折率差 (単位:。ん) は第 3クラッド層 4の最 大屈折率 n を基準としており、 下記数式 (2 ) で表される。
Figure imgf000010_0001
η '4
(式中、 iは 1〜3の整数であり、 n iは前記各層の最大屈折率である。) 図 1に示したようにコアが 1層からなる場合、 コア 1の比屈折率差厶 を大きく すると、 曲げ損失をより小さくできる反面、 MF Dが小さくなる傾向がある。 ま た、 が小さくなると、 より大きな MF Dが得られる反面、 曲げ損失は悪ィヒする 。 本発明の特徴は、 第 2クラッド層 3を設けることにより単峰型と同程度の MF Dにおいても曲げ特性の優れた光フアイバを得ることにある。本発明において Δ i の値は特に限定されるものではないが、 を 0 . 2 0〜0 . 7 0 %の範囲、 より 好ましくは、 0 . 2 5〜0 . 6 5 %の範囲にすることにより、 通常の S MFとの 接続特性および曲げ特性に優れた光フアイバを得ることができる。
また、 第 1クラッド層 2の比屈折率差 Δ2は、 0 . 0 5 %以下、 より好ましくは 0 . 0 0 %以下であることが好ましい。 また、 一 0 . 1 0 %以上であることが好 ましい。
Δ2が大きくなると、 カツトオフ波長が長くなり、 1 2 6 0 n m以下のカツトォ フ波長を実現することが不可能になる。 一方、 第 1クラッド層 2の比屈折率差 Δ2 が小さくなりすぎると、 第 1クラッド層 2によるフィ一ルドの閉じ込めが強くな り、 曲げ損失低減の点では好ましいが、 MF Dを拡大して接続性を良くするとい う点では障害となる。 このため所望のカットオフ波長、 良好な曲げ損失、 および 所望の M F Dを同時に達成できる範囲で Δ2を設計するのが好ましい。一般的には 、 Δ2を _ 0 . 1 0 %以上にすると所望の効果を得ることができる。
また、 第 2クラッド層 3の比屈折率差 Δ3は、 後述のように屈折率体積 Vにより その設計範囲が規定される。
第 3クラッド層 4の外縁の外径 ( a 4の 2倍)、 すなわち光ファィバの外径は一 般的に 125 mである。 近年では、 小型の光部品用として 80 m程度の外径 のものも商品化されている。 本発明においても一般的な光フアイパと同様な範囲 の外径を取りうるが、 上記範囲に制限されるものではない。
また、 コア 1の半径 a によってカツトオフ波長を制御することが可能である が、 そのようにしてカットオフ波長をより短くすると、 曲げ損失が大きくなる傾 向がある。 したがってコア 1の半径 a aはコア 1の比屈折率差 と合わせて、 要 求される MFD、 カツトオフ波長、 曲げ損に応じて適切に選択される。
コア 1の半径に対する第 1クラッド層 2の外縁の半径の比 ( a 2/ a は、 第 2クラッド層 3の位置を表す。 本発明では、 この値が 2. 5以上、 好ましくは 3 . 0以上とされる。 a 2Z aェの値が上記範囲となる位置に第 2クラッド層 3を設 けることにより、 後記で詳述する図 2〜3に示されるように、 モードフィールド 径 (ModeFieldDiameter、 本明細書では MFDということもある。) の変動を小 さく抑えつつ、 曲げ損失特性を改善することができる。
a 2/a は、 かなり大きくしても曲げ損の低減効果が期待される。 しかしなが ら、 a 2Z a iが大きくなると Δ2の変化による光学特性、特にカツトオフ波長の変 化が顕著となり製造性が悪化する。 また、 a 2Z a が大きくなると、 第 2クラッ ド層 3を設けたことによる効果が低減し、 シンダルモード伝送が困難になる。 こ のため、 a 2/a iは 4. 5以下である。
第 2クラッド層 3の外縁の半径 a 3についても、比屈折率差 Δと同様に後述の屈 折率体積 Vにより規定される。
光ファイバは、 1 300 nm帯から 1 600 n m帯にわたる広い波長帯が通信 に利用可能である。 1 300 nm帯用の光ファイバとしては、 I TU - Tにおい て G. 652として規定されている。 1300 nm帯の下限波長としては、 12 60 nmが一般的に想定されており、 G. 652でも 1260 n m以下のカット オフ波長が規定されている。 本発明の光ファイバでも、 1300 nm帯から 16 00 nm帯にわたる広い領域におけるシングルモード伝送を実現するために、 1 260 nm以下のカットオフ波長を持つことが望ましい。 カットオフ波長は、 M FDや曲げ損失といった光学特性とトレードオフの関係にあり、 所望の特性に応 じて、 屈折率分布が設定される。 また、 曲げ損比は、 a 2Za iの値および前記 Vの値と相関関係にあることがわ かった。 具体的には、 Vが大きくなると曲げ損比が小さくなる傾向があり、 Vと 曲げ損失との関係は a 2/aェの値、 つまり低屈折率層の位置により決まる。 本発 明において、 より優れた曲げ損失特性を達成するには、 上記数式 (1) で表され る第 2クラッド層の屈折率体積 (V) が 2 5% · m2以上であることが好まし く、 5 0% · μ m2以上であることがより好ましい。 また、 1 2 6 0 nm以上で のシングルモード伝送を考慮に入れた場合、 前記 Vの値が 1 1 0% . μπι2以下 であることが好ましい。
本発明によれば、 第 2クラッド層を設けたことにより曲げによる損失を効果的 に低減させることができる。
例えば、 後記に詳述する表 1〜4に示されているように、 光ファイバを直径 2 Omm (2 Οηιηιφ、 以下 20 φと略記することもある。) のマンドレルに 1 0回 卷回させたときに生じる曲げ損失増加の値 (測定波長 1 5 5 O nm、 以下同様。 ) については、 第 2クラッド層 3を設けない単峰型の屈折率分布で、 同じカット オフ波長が得られるように構成された単峰型光ファイバにおける上記曲げ損失増 加の値を 1とするとき、 本発明にかかる光ファイバの曲げ損失増加の比 (本明細 書において、 曲げ損比という。) を波長 1 5 50 nmにおいて 0. 4以下、 好まし くは 0. 1 5以下に低減させることができる。
また、 本発明によれば、 曲げによる損失がより小さい光ファイバを得ることが できる。 具体的には、 直径 1 5 mm (1 5πιπιφ、 以下 1 5 ψと略記することも ある。)のマンドレルに 1 0回巻いたときに生じる前記曲げ損比を、波長 1 5 50 nmにおいて 0. 5 5以下、 好ましくは 0. 2 5以下に低減させることができる また、 本発明の光ファイバによれば、 曲げ直径 2 Ommで巻回したときの波長 1 5 50 nmにおける曲げ損失の値を、 1ターン当たり 0. 0 5 d B以下に低減 させることができる。 ここで、 該 1ターン当たりの曲げ損失の値は、 例えば、 所 定直径のマンドレルに 1 0回卷いたときに生じる曲げ損失の値を 1 0で除して算 出することができる。
さらには、 曲げ直径 2 Ommで卷回したときの波長 1 6 50 nmにおける曲げ 損失の値を、 1ターン当たり 0. 0 5 d B以下に低減させることも可能である。 また、 本発明によれば、 曲げによる損失をこのように低く抑えつつ、 モードフ ィールド径が大きい光ファイバを実現することができる。 具体的には、 波長 1 5 5 0 nmにおけるモードフィールド径が 8. 3 w m以上である光ファイバを得る ことが可能である。
また、 本発明の光ファイバによれば、 曲げ直径 1 5 mmで卷回したときの波長
1 5 5 0 nmにおける曲げ損失の値を、 1ターン当たり 0. 0 5 d B以下に低減 させることができる。
さらには、 曲げ直径 1 5 mmで卷回したときの波長 1 6 5 O nmにおける曲げ 損失の値を、 1ターン当たり 0. 0 5 d B以下に低減させることも可能である。 また、 本発明によれば、 曲げによる損失をこのように低く抑えつつ、 モードフ ィールド径が大きい光ファイバを実現することができる。 具体的には、 波長 1 5
5 0 n mにおけるモードフィールド径が 7. 8 μ m以上である光ファイバを得る ことが可能である。
また、 本発明によれば、 曲げによる損失をこのように低く抑えつつ、 モードフ ィールド径が大きい光ファイバを実現することができる。 具体的には、 波長 1 3
1 0 nmにおけるモードフィールド径が 7. 3 μ m以上である光ファイバを得る ことが可能である。
また、 具体的には、 波長 1 3 1 0 n mにおけるモードフィールド径が 6. 8 μ m以上である光ファイバを得ることが可能である。
さらには、 曲げ直径 1 0 mmで巻回したときの波長 1 5 5 0 n mにおける曲げ 損失の値を、 1ターン当たり 0. 0 5 d B以下に低減させることも可能である。 また、 本発明の光ファイバによれば、 曲げ直径 1 Ommで卷回したときの波長
1 6 5 0 nmにおける曲げ損失の値を、 1ターン当たり 0. 0 5 d B以下に低減 させることができる。
また、 本発明によれば、 曲げによる損失をこのように低く抑えつつ、 モードフ ィールド径が大きい光ファイバを実現することができる。 具体的には、 波長 1 5 5 0 nmにおけるモードフィールド径が 7. 3 m以上である光ファイバを得る ことが可能である。 さらに、 具体的には、 波長 1310 nmにおけるモードフィールド径が 6. 3 μπι以上である光ファイバを得ることが可能である。
また、 本発明によれば、 波長 1310 nmにおけるモードフィールド径が 7. 9 μιη以上であり、 曲げ直径 2 Ommで卷いたときの波長 1550 nmにおける 曲げ損失の値を、 1ターンあたり 1 dB以下に低減させることができる。
また、 本発明によれば、 零分散波長が 1300 nm以上 1 324 nm以下であ る光ファイバを得ることが可能である。
ここで、 波長 1 550 nm帯は、 波長 1310 n m帯とともに広く通信に用い られている波長帯であり、 これらの波長帯においては、 伝送損失とともにその曲 げ損失が小さいという特性が重要である。 特に宅内配線などの用途においては、 壁際の引き回しゃ壁際でのコネクタへのフアイバ収納において、 小さレヽ径で曲げ られたり卷回されたりするなどして微小な曲げが入る可能性がある。 このため、 曲げ直径 2 Ommや曲げ直径 15 mmといった小さな曲げ径での曲げ特性は重要 である。 また、 線路監視としては 1650 nmまでの波長帯が想定されており、 1 650 nmにおいても小さな曲げ損失を持つことは重要な特性となる。
また、 第 2クラッド層 3を設けた本発明の光ファイバは、 MFDの低減を抑え たうえで単峰型に較べて曲げ損失が大きく低減されるという特徴をもつ。 具体的 には、 本発明の光ファイバの波長 1 550 nmにおける MFDを Mlとし、 第 2 クラッド層 3を設けない単峰型の屈折率分布で同じ力ットオフ波長が得られるよ うに構成された単峰型光ファィバの 1 550 nmにおける MFDを M2とすると き、 Ml/M2の値が0. 98以上を達成することができる。
さらに、 本発明の光ファイバは、 第 2クラッド層 3を設けることにより、 上述 の種々の特徴を実現している。 例えば WDM通信用に開発されたノンゼロ分散シ フトフアイパ (NZ - DSF : Non - Zero Dispersion Shifted Fiber) が複雑な コアの屈折分布が必要であつたのに対し、 本発明の光ファイバでは、 コアの屈折 率分布を変更することなく、 特性の改善が可能であるので、 比較的低コストでの 製造が可能であるという利点を有する。
(実施例)
以下、 具体的な実施例を示して本発明の効果を明らかにする。 なお、 以下の試験例および実施例における 「カットオフ波長」 の値は、 I TU - T G. 650. Definitions and test methods tor linear, deterministic attributes of single - mode fiber and cable に準拠する方法で測定される。 以下 の試験例おょぴ実施例において、 カットオフ波長とは、 特に明記しない限り 2m ファイバカツトオフをさす。
(試験例 1 )
コア 1の比屈折率差八 : 0. 52%、
第 1クラッド層 2の比屈折率^ Δ2 : 0 %、
第 2クラッド層 3の比屈折率差 Δ3 :— 0. 20%、
第 2クラッド層 3の厚さとコアの半径との比 (a 3—a 2) /a x=3. 0、 光ファイバ外径: 125 μ m
カツトオフ波長: 1250 nmとなるように設計して光ファイバを作製した。 a 2/a の値を変化させたときの MFDの変化および曲げ損失の変化を調べ た。 MFDおよび曲げ損失の測定波長は 1 550 nmとした。
曲げ損失の測定は、 所定の長さの光ファイバを直径 20mmのマンドレルに 1 0回卷いたときのロス増により評価した。 すなわち、 マンドレルに卷く前の光フ アイパから出射される光のパワーを P 1 (単位: dBm) とし、 卷いた時の出射 光のパワーを P 2 (単位: dBm) としたとき、 P 1—P 2 (d B) を曲げ損失 とした。 その結果を図 2および図 3に示す。
図中の破線は、 第 2クラッド層 3を設けない単峰型の屈折率分布で同じ力ット オフ波長が得られるように構成された単峰型光ファイバの MFDおょぴ曲げ損失 の値をそれぞれ示している。
図 3の結果より、 第 2クラッド層 3を設けたことにより、 単峰型光ファイバに 比べて曲げ特性が大幅に改善されていることがわかる。 また、 a 2Za iの値が増 加するにしたがって曲げ損失は徐々に増大する傾向があることがわかる。
また図 2の結果より、 as/a aの値が 3. 0より小さい領域では MF Dが単峰 型に比べて急激に小さくなることがわかる。 I TU - T G.652のような MF Dが大きな光ファイバとの接続損失を小さく維持するためには、 M F Dの減少を 抑えることが必要となる。 a 2/a iを 2. 5以上にすれば、 単峰型に対して 98 %以上の MF Dを確保することができ、 問題のない接続特性を維持すること 可 能である。
これらの結果により、 a2/a iの値を 2. 5倍以上、 好ましくは 3. 0倍以上 にすることにより、 大きな MFDと小さな曲げ損失を実現することが可能である と認められる。
(試験例 2)
下記表 1に示すように各パラメータを設定して光ファィパを作製し、 カットォ フ波長、 有効コア断面積 (Ae i f)、 MFD, 波長分散、 分散スロープ、 および零 分散波長をそれぞれ周知の手法で測定した。
なお、 カットオフ波長の測定については、 I TU - T G.650.1
Dennitions and test methods for linear, deterministic attributes of single - mode fiber and cable, 5.3.1 ci載の Transmitted Power Technique を用レヽて行 つた。 通常は、 ransmitted Power Technique の中でも、 ファイバに小径の曲げ を与えたときのパワー損失からカツトオフ波長を測定する方法 (曲げ法) が用い られる事が多い。 しかしながら、 今回試作した光ファィパについては、 高次モー ドの曲げ損失も強く、 上記曲げ法では正確なカツトオフの測定が困難であった。 このため、 マルチモードファイバを透過したときのパワーを基準として評価する 方法 (マ.ルチモードリファレンス法) を用いて測定した。
また、 曲げ損失特性として、 上記試験例 1と同様の方法で曲げ損失を測定した 。 測定波長は、 1 550 nmおよび 1650 nmとした。 マンドレルの直径は 2 0mm、 1 5 mm, 10 mmの 3通りとした。 測定される曲げ損失が小さい場合 は、 適時曲げ回数 (巻回数) を増やし、 測定精度が確保できる曲げ損失を得た上 で、 卷回数 10回あたりの曲げ損失に換算した。 なお、 表には単位長さあたりの ロス増 (曲げ損失増加量、 単位: dBZm) も併せて記載している。 例えば、 2 0 mm ψマンドレルに 10回卷回した時の曲げ損失(前記 P 1— P 2 (d B)) を P Xとすると、 単位長さあたりのロス増 P yは以下の式で与えられる。
P X (単位: d B/m) =Py/ ( πΧ θ . 02x10)
また、 屈折率体積 (V) は、 前記数式 (1) により算出した。
サンプル No. 1, 5, 9, 12, 21, 28, 35, 38は、 第 2クラッド 層 3を有しない単峰型光ファイバである。
サンプル N o. 2〜 4の曲げ損比はサンプル N o. 1の 10回卷回時の曲げ損 失を 1としたときの、 サンプル No. 2〜4の 10回卷回時の曲げ損失の値の比 である。 同様に、 サンプル No. 6〜8の曲げ損比は、 サンプル N o. 5を基準 とした値であり、 サンプル No. 10, 1 1の曲げ損比は、 サンプル No. 9を 基準とした値であり、 サンプル N o. 1 3〜 20の曲げ損比はサンプル N o . 1 2を基準にした値であり、 サンプル N o. 22〜 27の曲げ損比は、 サンプル N o. 21を基準にした値であり、 サンプル N o. 29〜34の曲げ損比は、 サン プル N o. 28を基準とした値であり、 サンプル N o. 36, 37の曲げ損比は 、 サンプル No. 35を基準とした値であり、 サンプル No. 39, 40の曲げ 損比は、 サンプル N o. 38を基準とした値である。
なお、 サンプル No. 16, 18, 24〜27, 32は、 Vの値が大きく、 力 ットオフ波長を基準のサンプルと同程度に小さくすることができなかった。 従つ て、 これらのサンプルについては、 曲げ損比を記載していない場合がある。 また 、 サンプル No. 35, 38の一部の測定条件では、 曲げ損があまりにも大きく 評価が不能であった。 このため、 サンプル No. 36, 37, 39, 40の一部 には、 曲げ損比が記載されていない事がある。 測定結果を表 2〜4に示す。
Figure imgf000018_0001
91
S6TS00/l700Zdf/X3d t6 60請 OAV
Figure imgf000019_0001
Ll
S6lS00/l700Zdf/X3d t6 60請 OAV 表 3
Figure imgf000020_0001
表 4
Figure imgf000021_0001
表 1〜4の結果より、 低屈折率層を設けた場合は、 曲げ損失を低減することが 可能になることが分かる。 曲げ損失低減の効果としては、 低屈折率層の有無で曲 げ損失を比較した曲げ損比パラメータを見るとわかりやすい。 例えば、 1 550 nm、 2 Omm φの曲げ損失で見てみると、 低屈折率層を持たないサンプル N o . 21, 28, 35, 38では、 10回卷き当たり 0. 5 dBを越える曲げ損失 となっている。 特にサンプル No. 35, 38では、 10 dBを超える曲げ損失 が発生している。 しかしながら、 サンプル No. 22, 23, 29〜34, 36 , 37, 39, 40はいずれも 0. 4以下の曲げ損比が得られている。 サンプル No. 22, 23, 30, 31では、 10回巻き当たり 0. 5 dBを下回る曲げ 損失となっている。 サンプル No. 1, 5, 9, 12で示したように、 低屈折率 層を設けない構造でも 20 mm φ、 10回巻きにおいて 0. 5 dB以下の設計を 行うことは可能である。 しかしながら、 これらの低屈折率層を持たない構造では 、 1 310 nmにおいて 7. 5 mを下回る MF Dとなり、 SMFとの接続損失 は、 本発明の低屈折率層を用いた設計に比べて悪化するという点が好ましくない 。 また、 No. 29, 33, 34, 36, 37は、 20mm< 10回卷きにお ける曲げ損失が 1 dBを超える値となっているが、 基準となる No. 28, 35 に対しては、 5 dB以上の損失低減を実現し、 数 d B程度の曲げ損失となってい る。 これらのサンプルは、 I TU - T G . 652に規定されているシングルモ ード光ファイバに準拠する MFD、 カツトオフ波長、 零分散波長を有した上で、 曲げによる口ス増を大きく抑制するという効果を有しており、 通常の線路用ケー ブル敷設時に生じる曲げによるロス増を抑制するという効果を有している。 一方、 屈折率体積 Vが 1 10% ·; um2以上となるサンプル N o. 16, 1 8 , 24〜27、 32は、 非常に小さな曲げ損失を示すが、 カットオフ波長が非常 に長くなり、 本発明で目的としている 1260 nm以下でのシングルモード伝送 を実現できないことが分かる。
このような低屈折率層を付加した光ファィバでは、 さらに細径の 15 mm φに おいても M F Dを維持した上で、 ほとんどロス増をしな!、設計をすることが可能 である。 たとえば、 サンプル No. 13〜1 5, 1 7, 19, 20は、 1 550 nmにおいて 1 5ηιπιφ、 10回卷き時の曲げ損失は、 0. l dB以下となって おり、 1310 nmにおける MFDも 7. 3 μ m程度である。 低屈折率層を設け ない単峰型でも、 No. 1, 5, 9の構造を用いることにより 15πιπιφ、 10 回卷き時の曲げ損失を 1550 nmにおいて 0. 1 d B以下にすることが可能で ある。 しかしながら、 1310 nmにおける MFDは 6. 9 mを下回る値とな り、 同等な曲げ特性をもつ本発明の構造のファイバに比べて、 SMFとの接続特 性が悪化する事が分かる。
15 mm (Mこおいて非常に小さな曲げ損失が得られているサンプル No. 1, 5, 9においても、 Ι Οπιηιφ ( 10 φと略記することもある。) になると曲げ損 失が発生する。 1 Οηιηιφという非常に小さな曲げ径においても、 低屈折率層を 付カ卩した構造を用いることにより、 曲げ損失を低減することが可能である。 例え ば、 サンプル No. 2〜4, 6〜8は、 それぞれサンプル No. 1, 5とほぼ「司 程度の MFDを示しながら、 1550 nm、 Ι Οπιπιφにおいて 0. 13以下の 曲げ損比が得られている。 また、 サンプル No. 10, 11では、 1310nm における MFDが同程度のサンプル N o. 6〜 8にくらベて更に小さな曲げ損失 が得られている。 これは、 Δ2の比屈折率差を若干負に設定した効果によるものと 考えられる。
(実施例 1 )
図 4に本実施例における光ファィバの屈折率分布を示す。
本実施例の光ファイバは、 図中 (a) で示す領域を VAD法により生成した。 その後、 VAD法により得られたコア材を延伸した後、 外付けを行い領域 (b) を生成した。 さらにこの母材を延伸後、 再度外付けを行い領域 (c) を生成した 。 領域 (b) の生成の際には、 ガラス化の過程で S i F4ガスを導入し、 F添加 を行うことによりシリカレベルより低い屈折率を得た。 図 4は、 上記の工程によ り得られた母材の屈折率分布をプリフォームアナライザ (商品名 : MODEL 2600, Photon Kinetics I York Technology社製)で測定した結果である。この図か ら分かるように本実施例の光フアイバの屈折率分布は完全なステップ型にはなつ ていないが、 本発明の効果を得ることができる。
本実施例の光ファイバの各パラメータは次の通りであった。
コア 1の半径 a!: 3. 09 ,u m 第 1クラッド層 2の半径 a 2: 1 1. 8 3 μ m
第 2クラッド層 3の半径 a 3: 1 6. 9 5
第 1クラッド層 2の半径とコア 1の半径との比 a 2Z a x : 3. 8 3
光ファイバ外径: 1 2 5 μ πι
第 2クラッド層 3の屈折率体積 (V) : 3 6. 8% - μ τη2
なお、 コア 1の比屈折率差厶 を上記コア径& をもってステップ換算すると、 0. 5 0 %、 第 1クラッドの比屈折率差 Δ2は, _ 0. 0 3%、 第 2クラッドの比 屈折率差 Δ 3は、 一 0. 2 5 %となった。
本実施例の光ファイバについて、 波長 1 5 5 O nmにおける伝送損失、 カット オフ波長、 MFD、 波長分散、 分散スロープ、 零分散波長、 および曲げ損失を測 定した。 その結果を表 5に示す。 また、 1丁11 -丁にぉぃて0. 6 5 2として規 定されている通常の 1. 3 m帯用のシングルモード光ファイバと融着接続した 時の接続損失を測定したところ 1 5 5 0 nmにおいて、 0. 1 8 d Bであり問題 のないレベルであつた。
なお力ットオフ波長の測定は、 2 mの光ファイバについて、 I TU - T G . 6 5 0. 丄 Definitions and test methods for linear, deterministic attriDutes of single - mode fiber and cableに準拠する測定方法で行った。
(比較例 1 )
上記実施例 1において、 光ファイバの屈折率分布を、 第 2クラッド層 3を設け ない単峰型に変更した光ファィパを作製した。
すなわち、 上記実施例 1に用いた領域 (a ) までのコア母材に対して、 領域 ( b) の外付けを行わずに領域 ( c) のみの外付けを行い、 光ファイバ母材を製造 した。 この際、 力ットオフ波長が実施例 1と同程度になるように領域 (c) の厚 さを調整した。
得られた光ファイバについて、 上記実施例 1と同様にして各光学特性を測定し た。 その結果を表 5に合わせて示す。 表 5
Figure imgf000025_0001
(実施例 2)
図 5に本実施例における光ファィバの屈折率分布を示す。 本実施例の光フアイ バは上記実施例 1と同じ手順で製造した。 図 5は、 母材の屈折率分布をプリフォ ームアナライザで測定した結果である。 この図から分かるように本実施例の光フ ァィパの屈折率分布は完全なステップ型にはなっていないが、 本発明の効果を得 ることができる。
本実施例の光ファィバの各パラメータは次の通りであった。
コア 1の举径 a : 3. 40
第 1クラッド層 2の半径 a 2 : 1 1. 48 μ m
第 2クラッド層 3の半径 a 3 : 16. 45 μηι
第 1クラッド層 2の半径とコア 1の半径との比 a 2/a! : 3. 37 光ファイバ外径: 125 μπι
第 2クラッド層 3の屈折率体積 (V) : 55. 8% - μ χΆ2
なお、 コア 1の比屈折率差八 を上記コア径& をもってステップ換算すると、
0. 40 %、 第 1クラッドの比屈折率差 Δ2は、 一 0. 02%、 第 2クラッドの比 屈折率差 Δ3は、 一0. 4%となった。
本実施例の光ファイバについて、 上記実施例 1と同様に波長 1 550 nmにお ける伝送損失、 カットオフ波長、 MFD、 波長分散、 分散スロープ、 零分散波長 、 および曲げ損失を測定した。 その結果を表 6に示す。 また、 実施例 1と同様に 接続損失を測定したところ 1550 nmにおいて、 0. 05 dBであり問題のな ぃレべノレであった。
(比較例 2)
上記実施例 2において、 光ファイバの屈折率分布を、 第 2クラッド層 3を設け ない単峰型に変更した光ファイバを作製した。
すなわち、 上記実施例 1に用いた領域 (a) までのコア母材に対して、 領域 ( b) の外付けを行わずに領域 (c) のみの外付けを行い、 光ファイバ母材を製造 した。 この際、 カットオフ波長が実施例 2と同程度になるように領域 (c) の厚 さを調整した。
得られた光ファイバについて、 上記実施例 2と同様にして各光学特性を測定し た。 その結果を表 6に合わせて示す。 表 Ό
Figure imgf000026_0001
(実施例 3)
図 6に本実施例における光ファイバの屈折率分布を示す。
本実施例の光ファイバは、 図中 (a) で示す領域を MCVD法により生成した 。 図中 (b) は、 CVD法における出発石英管である。 MCVD法により得られ たコア材に対して外付けを行い、 領域 (c) を生成した。 図 6は、 母材の屈折率 分布をプリフォームアナライザで測定した結果である。 この図から分かるように 本実施例においても光ファイバの屈折率分布は完全なステップ型にはなっていな いが、 本発明の効果を得ることができる。
本実施例の光ファイバの各パラメータは次の通りであった。
コア 1の半径 a! : 3. 1 2
第 1クラッド層 2の半径 a 2: 10. 30 μ m、
第 2クラッド層 3の半径 a 3 : 16. 62 μπι、
第 1クラッド層 2の半径とコア 1の半径との比 a 2/a i = 3· 30、 光ファイバ外径: 125 μ m、
. 第 2クラッド層 3の屈折率体積 (V) : 42. 0% - Ai m2
なお、 コア 1の比屈折率差 を上記コア径 aュをもってステップ換算すると、 0. 52 %、 第 1クラッド層の比屈折率差 Δ2は、 一 0. 07%、 第 2クラッドの 比屈折率差 Δ3は、 -0. 25%となつた。
本実施例の光ファイバについて、 上記実施例 1と同様にして波長 1 550 n m における伝送損失、 カツトオフ波長、 MFD、 波長分散、 分散スロープ、 零分散 波長、 および曲げ損失を測定した。 その結果を下記表 7に示す。
また、 実施例 1と同様にして接続損失を測定したところ、 1 55 Onmにおい て 0. 29 d Bであった。
(比較例 3)
上記実施例 3において、 光ファイバの屈折率分布を、 第 2クラッド層 3を設け ない単峰型に変更した光ファィバを作製した。
すなわち、 上記実施例 3においては、 領域 (a) を合成する MCVD法のプロ セスにおいて、 第 2クラッドに相当する屈折率が低い層を合成するためにフッ素 系のガスを用いたが、 本比較例ではこのフッ素系ガスを用いずにシリカとほぼ同 程度の屈折率の層を合成してコア母材を準備した。 次いで、 このコア母材に対し て領域 (c) の外付けを行って光ファイバ母材を製造した。 この際、 カットオフ 波長が実施例 3と同程度となるように領域 (c) の厚さを調整した。
得られた光ファイバについて、 上記実施例 3と同様にして各光学特性を測定し た。 その結果を表 7に合わせて示す。 表 7
Figure imgf000028_0001
(実施例 4)
図 7に本実施例における光ファイバの屈折率分布を示す。
本実施例の光ファイバは、 図中 (a) で示す領域を V AD法により生成した。 その後、 VAD法により得られたコア材を延伸した後、 外付けを行い領域 (b) を生成した。 さらにこの母材を延伸後、 再度外付けを行い領域 ( c) を生成した 。 領域 (a ) の生成時には、 内側クラッド合成用のパーナに対して、 C F4ガス を加えることにより、 石英レベルよりも低い屈折率を得た。 また、 領域 (b) 生 成の際には、 ガラス化の過程で S i F4ガスを導入し、 F添加を行うことにより シリカレベルよりも低い屈折率を得た。 図 7は、 母材の屈折率分布をプリフォー ムアナライザにより測定した結果である。 この図から分かるように、 本実施例に おいても、 光ファイバの分布は完全なステップ型にはなっていないが、 本発明の 効果を得ることが出来る。
本実施例の光ファイバの各パラメータは以下の通りであった。
コア 1の半径 a 1 : 3. 1 5 μτη
第 1クラッド層 2の半径 a 2: 1 0. 3 7 μ πι
第 2クラッド層 3の半径 a 3: 1 6. 6 2 u m
第 1クラッド層 2の半径とコア 1の半径の比 a 2Z a i : 3. 30
光ファイバ外径: 80 μιη 第 2クラッド層 3の屈折率体積 (V) : 4 2 . 2 % · μ m2
なお、 コア 1の比屈折率差 を上記コア径3 iをもってステップ換算すると、 0 . 5 6 %、 第 1クラッド層の比屈折率差 Δ2は、 一 0 . 0 9 %、 第 2クラッド層 の比屈折率^ Δ3は、 一 0 . 2 5 %となつた。
本実施例の光ファイバについて、 前記実施例 1と同様にしてカツトオフ波長、 伝送損失、 MF D、 波長分散、 分散スロープ、 零分散波長および曲げ損失を測定 した。 その結果を表 8に示す。 それぞれの特性の測定波長は、 表中に記した。 本実施例において、 2 mのファイバカットオフ波長は 1 . 3 0 ∞であり、 1 . 2 6 i mよりもやや長めであった。 I T U - T G . 6 5 0 . 1 Definitions and test methods for linear, deterministic attrioutes oi single - moae fiber and cable, 5.3.4 Alternative test method for the cut - off wavelength (lcc) of the cabled fiberに基づいて、 2 2 mのファイバを用いてケーブルカツトオフ波長 の評価を行ったところ、 本実施例のファイバは 1 . 2 3 μ mであり、 使用上問題 のないことが確認された。
また、 本実施例 1と同様にして接続損失を測定したところ、 1 5 5 0 n mにお いて、 0 . 4 d Bであった。
(比較例 4 )
上記実施例 4において、 光フアイバの屈折率分布を、 第 2クラッド層 3を設け ない構造に変更した光ファィバを作製した。
すなわち、 上記実施例 4に用いた領域 ( a ) までのコア母材に対して、 領域 ( b ) の外付けを行わずに領域 ( c ) のみの外付けを行い、 光ファイバ母材の製造 をした。 つまり、 第 1クラッド層は、 シリカレベルよりも低い値のままである。 この際、 カットオフ波長が上記実施例 4と同程度になるように領域 (c ) の厚さ を調整した。
得られた光ファイバについて、 上記実施例 4と同様にして各光学特性を測定し た。 その結果を表 8に合わせて示す。 表 8
Figure imgf000030_0001
産業上の利用の可能性
本発明は、 曲げ特性に俊れた光プアィバに関する。 本発明によれば、 曲げによ る損失が少なくて、 一般的な伝送用光ファィバとの接続性が良好な光フアイバを 、 低コストで得ることができる。

Claims

請求の範囲
1. 中心に配置されたコアと、 前記コアの周上に配置された第 1クラッド層と 、 前記第 1クラッド層の周上に配置された第 2クラッド層と、 前記第 2クラッド 層の周上に配置された第 3クラッド層と、 を備えた光ファイバであって、 前記コアの最大屈折率は、 前記第 1クラッド層、 第 2クラッド層、 および第 3 クラッド層の各最大屈折率のいずれよりも大きく、 前記第 2クラッド層の最大屈 折率は、 前記第 1クラッド層および第 3クラッド層の各最大屈折率のいずれより も小さく、 かつ
前記コアの半径を aい 前記第 1クラッド層の外縁の半径を a 2とするとき、 a 2/a の値が 2. 5以上 4. 5以下であり、
前記第 3クラッドの屈折率を基準としたときの前記コアの比屈折率差が 0. 2 0以上 0. 70%以下である。
2. 請求項 1記載の光ファイバであって、 カットオフ波長が 1260 nm以下 である。
3. 請求項 1記載の光ファイバであって、 下記数式 (1) で表される前記第 2 クラッド層の屈折率体積 Vが 25 % · μ m 2以上である :
Figure imgf000031_0001
上記数式 (1) において
r :半径、
Δη (r) :半径 rにおける比屈折率差 (基準は第 3クラッド層の最大屈折率)、 a 2:第 1クラッド層の外縁の半径、
a 3:第 2クラッド層の外縁の半径である。
4. 請求項 3記載の光ファイバであって、 前記第 2クラッド層の屈折率体積 V 力 50% · μπι2以上である。
5. 請求項 1記載の光ファイバであって、 前記第 3クラッド層の最大屈折率を 基準としたときの、 前記第 1クラッド層の比屈折率差が一 0. 10%以上 0. 0 5%以下である。
6. 請求項 1記載の光ファイバであって、 第 2クラッド層を有さない単峰型の 屈折率分布を有しかつカツトオフ波長が共通する単峰型光ファイバを直径 2 Om mのマンドレルに 10回卷回させたときに生じる波長 1 550 nmでの曲げ損失 増加の値を 1とするとき、 同様にして測定される曲げ損失増加の値の比で表され る曲げ損比が 0. 4以下である。
7. 請求項 1記載の光ファイバであって、 第 2クラッド層を有さない単峰型の 屈折率分布を有しかつ力ットオフ波長が共通する単峰型光ファイバを直径 1 5m mのマンドレルに 10回卷回させたときに生じる波長 1 550 nmでの曲げ損失 増加の値を 1とするとき、 同様にして測定される曲げ損失増加の値の比で表され る曲げ損比が 0. 55以下である。
8. 請求項 1記載の光ファイバであって、 曲げ直径 2 Ommで卷回したときの 波長 1 550 nmにおける曲げ損失の値が、 1ターン当たり 0. 05 dB以下で める。
9. 請求項 8記載の光ファイバであって、 曲げ直径 2 Ommで卷回したときの 波長 1650 nmにおける曲げ損失の値が、 1ターン当たり 0. 05 dB以下で ある。
10. 請求項 8記載の光ファイバであって、 波長 1 550 nmにおけるモード フィールド径が 8. 3 μπι以上である。
1 1. 請求項 8記載の光ファイバであって、 曲げ直径 1 5 mmで巻回したとき の波長 1 550 nmにおける曲げ損失の値が、 1ターン当たり 0. 05 dB以下 である。 ■
12. 請求項 1 1記載の光ファイバであって、 曲げ直径 15 mmで卷回したと きの波長 1650 nmにおける曲げ損失の値が、 1ターン当たり 0. 05 dB以 下である。
1 3. 請求項 1 1記載の光ファイバであって、 波長 1 550 nmにおけるモー ドフィールド径が 7. 8 μιη以上である。
14. 請求項 1記載の光ファイバであって、 第 2クラッド層を有さない単峰型 の屈折率分布を有しかつ力ッ 1、オフ波長が共通する単峰型光ファィバの 1550 n mにおけるモードフィールド径 (MFD) の値を 1とするとき、 同様にして測 定した MF Dの値の比が 0. 98以上である。
1 5. 請求項 8記載の光ファイバであって、 波長 1 310 nmにおけるモード フィールド径が 7. 3 μχα以上である。
16. 請求項 11記載の光ファイバであって、 波長 1 31 O nmにおけるモ一 ドフィールド径が 6. 8 μπι以上である。
1 7. 請求項 1 1記載の光ファイバであって、 曲げ直径 1 Ommで卷回したと きの波長 1 550 nmにおける曲げ損失の値が、 1ターン当たり 0. 05 dB以 下である。
1 8. 請求項 16記載の光ファイバであって、 曲げ直径 1 Ommで巻回したと きの波長 1650 nmにおける曲げ損失の値が、 1ターン当たり 0. 05 dB以 下である。
19. 請求項 16記載の光ファイバであって、 波長 1 550 nmにおけるモー ドフィールド径が 7. 3 m以上である。
20. 請求項 8記載の光ファイバであって、 波長 1 310 nmにおけるモード フィールド径が 6. 3 im以上である。
21. 請求項 1記載の光ファイバであって、 波長 1 310 nmにおけるモード フィールド径が 7. 9 /im以上であり、 曲げ直径 2 Ommで巻いたときの波長 1 550 nmにおける曲げ損失の値が、 1ターンあたり 1 d B以下である。
22. 請求項 1記載の光ファイバであって、 曲げ直径 20 mmで卷いたときと 波長 1550 nmにおける曲げ損失の値が、 1ターンあたり 0. 5 d B以下であ る。
23. 請求項 21記載の光ファイバであって、 零分散波長が 1 300 nm以上 1 324 nm以下である。
PCT/JP2004/005195 2003-04-11 2004-04-12 光ファイバ WO2004092794A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005504472A JP3853833B2 (ja) 2003-04-11 2004-04-12 光ファイバ
EP04726886A EP1657575A4 (en) 2003-04-11 2004-04-12 OPTICAL FIBER

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-107760 2003-04-11
JP2003107760 2003-04-11
JP2003-199270 2003-07-18
JP2003199270 2003-07-18
JP2004-018514 2004-01-27
JP2004018514 2004-01-27

Publications (1)

Publication Number Publication Date
WO2004092794A1 true WO2004092794A1 (ja) 2004-10-28

Family

ID=33303685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005195 WO2004092794A1 (ja) 2003-04-11 2004-04-12 光ファイバ

Country Status (5)

Country Link
US (1) US7164835B2 (ja)
EP (1) EP1657575A4 (ja)
JP (1) JP3853833B2 (ja)
KR (1) KR100820926B1 (ja)
WO (1) WO2004092794A1 (ja)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005111683A1 (en) * 2004-04-29 2005-11-24 Corning Incorporated Low attenuation large effective area optical fiber
JP2007011366A (ja) * 2005-06-29 2007-01-18 Furukawa Electric North America Inc 低損失光ファイバ、およびその製造方法
EP1785754A1 (en) 2005-11-10 2007-05-16 Draka Comteq B.V. Single mode optical fiber with low bending losses
JP2007279739A (ja) * 2006-04-10 2007-10-25 Draka Comteq Bv 単一モード光ファイバ
JP2007298987A (ja) * 2006-05-03 2007-11-15 Draka Comteq Bv 波長分散補償ファイバ
JP2008024584A (ja) * 2006-07-10 2008-02-07 Draka Comteq Bv 内部蒸着プロセスによる光学予備成形物の製造方法およびそれによって得られた予備成形物
US7336877B2 (en) 2004-08-31 2008-02-26 Corning Incorporated Broadband optical fiber
JP2008139887A (ja) * 2006-12-04 2008-06-19 Draka Comteq Bv 光ファイバ
JP2008257250A (ja) * 2007-04-06 2008-10-23 Draka Comteq Bv 大きい実効面積を有する伝送用光ファイバ
WO2009104724A1 (ja) * 2008-02-22 2009-08-27 住友電気工業株式会社 光ファイバおよび光ケーブル
JP2010503019A (ja) * 2006-08-31 2010-01-28 コーニング インコーポレイテッド 低曲げ損失シングルモード光ファイバ
WO2010035397A1 (ja) * 2008-09-26 2010-04-01 三菱電線工業株式会社 光ファイバ及びその製造方法
JP2010176123A (ja) * 2009-01-27 2010-08-12 Draka Comteq Bv 実効面積が増大した単一モード光ファイバ
JP2010243998A (ja) * 2009-03-16 2010-10-28 Furukawa Electric Co Ltd:The 光ファイバ
JP2010271448A (ja) * 2009-05-20 2010-12-02 Shin-Etsu Chemical Co Ltd 光ファイバ
JP2011027945A (ja) * 2009-07-24 2011-02-10 Nippon Telegr & Teleph Corp <Ntt> モード径拡大型空孔付き単一モード光ファイバ
US7889960B2 (en) 2008-05-06 2011-02-15 Draka Comteq B.V. Bend-insensitive single-mode optical fiber
JP2011090050A (ja) * 2009-10-20 2011-05-06 National Institute Of Information & Communication Technology 光エネルギー伝送装置
JP2011170347A (ja) * 2010-02-01 2011-09-01 Draka Comteq Bv 短いカットオフ波長を有するノンゼロ分散シフト光ファイバ
JP2011170348A (ja) * 2010-02-01 2011-09-01 Draka Comteq Bv 大きな実効面積を有するノンゼロ分散シフト光ファイバ
WO2011114795A1 (ja) * 2010-03-16 2011-09-22 古河電気工業株式会社 マルチコア光ファイバおよびその製造方法
JP2011526879A (ja) * 2008-07-07 2011-10-20 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 曲がりにくい光ファイバー、曲がりにくい光ファイバーの形成のための半製品としての石英ガラスチューブ、ファイバーの形成のための方法
US8145027B2 (en) 2007-11-09 2012-03-27 Draka Comteq, B.V. Microbend-resistant optical fiber
KR20120083384A (ko) * 2009-09-11 2012-07-25 코닝 인코포레이티드 낮은 구부림 손실을 갖는 광섬유
WO2013005779A1 (ja) 2011-07-04 2013-01-10 株式会社フジクラ 光ファイバ
WO2013018523A1 (ja) * 2011-08-01 2013-02-07 古河電気工業株式会社 ホーリーファイバ
JP2013178552A (ja) * 2013-04-24 2013-09-09 Shin Etsu Chem Co Ltd 光ファイバ
JP2013235261A (ja) * 2012-04-12 2013-11-21 Shin Etsu Chem Co Ltd 光ファイバ
JP2013242545A (ja) * 2012-04-26 2013-12-05 Shin Etsu Chem Co Ltd 光ファイバ
US8724954B2 (en) 2011-03-23 2014-05-13 Sumitomo Electric Industries, Ltd. Optical fiber, optical fiber cord, and optical fiber cable
US8737793B2 (en) 2010-03-16 2014-05-27 Furukawa Electric Co., Ltd. Multi-core optical fiber and method of manufacturing the same
JP2014222354A (ja) * 2007-05-07 2014-11-27 コーニング インコーポレイテッド 拡大実効面積ファイバ
KR101541850B1 (ko) 2013-08-06 2015-08-05 한국과학기술원 멀티레벨 변조방식용 트렌치형 멀티코어 광섬유 설계 방법
JP2019511751A (ja) * 2016-03-29 2019-04-25 コーニング インコーポレイテッド 低曲げ損失光ファイバ
JP2020064324A (ja) * 2013-04-15 2020-04-23 コーニング インコーポレイテッド 小さい直径の光ファイバ
WO2020162209A1 (ja) * 2019-02-07 2020-08-13 古河電気工業株式会社 光ファイバおよび光ファイバの製造方法
JP2020134884A (ja) * 2019-02-25 2020-08-31 古河電気工業株式会社 光ファイバおよび光ファイバの製造方法
JP2020140080A (ja) * 2019-02-28 2020-09-03 住友電気工業株式会社 光ファイバ
WO2021187179A1 (ja) * 2020-03-17 2021-09-23 古河電気工業株式会社 マルチコアファイバ、マルチコアファイバリボン、マルチコアファイバの製造方法およびマルチコアファイバの処理方法
WO2023032999A1 (ja) * 2021-08-31 2023-03-09 住友電気工業株式会社 光ファイバ
WO2024048118A1 (ja) * 2022-09-02 2024-03-07 住友電気工業株式会社 光ファイバ

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7505660B2 (en) * 2006-06-30 2009-03-17 Corning Incorporated Microstructured transmission optical fiber
US7450807B2 (en) * 2006-08-31 2008-11-11 Corning Incorporated Low bend loss optical fiber with deep depressed ring
US7526169B2 (en) 2006-11-29 2009-04-28 Corning Incorporated Low bend loss quasi-single-mode optical fiber and optical fiber line
EP2115503A2 (en) * 2007-02-28 2009-11-11 Corning Incorporated Optical fiber with large effective area
US20080205839A1 (en) * 2007-02-28 2008-08-28 Scott Robertson Bickham Large effective area high SBS threshold optical fiber
US7492999B2 (en) * 2007-03-12 2009-02-17 The Furukawa Electric Co., Ltd. Optical fiber and optical-fiber transmission line
US8396340B2 (en) 2007-11-19 2013-03-12 Mitsubishi Cable Industries, Ltd. Optical fiber and method for fabricating the same
US20090169163A1 (en) * 2007-12-13 2009-07-02 Abbott Iii John Steele Bend Resistant Multimode Optical Fiber
US7773848B2 (en) * 2008-07-30 2010-08-10 Corning Incorporated Low bend loss single mode optical fiber
JP2010064915A (ja) * 2008-09-09 2010-03-25 Shin-Etsu Chemical Co Ltd 光ファイバ母材の製造方法
JP2010078704A (ja) * 2008-09-24 2010-04-08 Mitsubishi Cable Ind Ltd 光ファイバの接続構造
US7676129B1 (en) 2008-11-18 2010-03-09 Corning Incorporated Bend-insensitive fiber with two-segment core
DK2209029T3 (en) * 2009-01-19 2015-04-13 Sumitomo Electric Industries optical fiber
US8447156B2 (en) * 2009-01-19 2013-05-21 Sumitomo Electric Industries, Ltd. Multi-core optical fiber
US8320724B2 (en) 2009-01-20 2012-11-27 Sumitomo Electric Industries, Ltd. Optical communication system and arrangement converter
FR2941539B1 (fr) * 2009-01-23 2011-02-25 Draka Comteq France Fibre optique monomode
US7689085B1 (en) * 2009-01-30 2010-03-30 Corning Incorporated Large effective area fiber with GE-free core
KR20100091710A (ko) * 2009-02-11 2010-08-19 엘에스전선 주식회사 구부림 손실 특성이 개선된 광섬유 제조 방법 및 이 방법으로 제조된 광섬유
US8520298B2 (en) * 2009-02-26 2013-08-27 Cubic Corporation Tightly coiled amplifying optical fiber with reduced mode distortion
FR2946436B1 (fr) * 2009-06-05 2011-12-09 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
US9014525B2 (en) 2009-09-09 2015-04-21 Draka Comteq, B.V. Trench-assisted multimode optical fiber
FR2957153B1 (fr) * 2010-03-02 2012-08-10 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2966256B1 (fr) 2010-10-18 2012-11-16 Draka Comteq France Fibre optique multimode insensible aux pertes par
US9279935B2 (en) 2010-12-23 2016-03-08 Prysmian S.P.A. Low macrobending loss single-mode optical fibre
DK2655274T3 (da) 2010-12-23 2017-11-27 Prysmian Spa Fremgangsmåde til fremstilling af en præform af glas til optiske fibre
FR2971061B1 (fr) 2011-01-31 2013-02-08 Draka Comteq France Fibre optique a large bande passante et a faibles pertes par courbure
EP2506044A1 (en) * 2011-03-29 2012-10-03 Draka Comteq B.V. Multimode optical fiber
EP2518546B1 (en) 2011-04-27 2018-06-20 Draka Comteq B.V. High-bandwidth, radiation-resistant multimode optical fiber
CN102156323B (zh) * 2011-05-05 2012-06-06 长飞光纤光缆有限公司 一种单模光纤
US8873917B2 (en) 2011-05-20 2014-10-28 Corning Incorporated Low bend loss optical fiber
EP2541292B1 (en) 2011-07-01 2014-10-01 Draka Comteq BV Multimode optical fibre
KR102038955B1 (ko) 2011-08-19 2019-10-31 코닝 인코포레이티드 굽힘 손실이 낮은 광 섬유
US8687932B2 (en) 2011-09-21 2014-04-01 Ofs Fitel, Llc Optimized ultra large area optical fibers
US8718431B2 (en) * 2011-09-21 2014-05-06 Ofs Fitel, Llc Optimized ultra large area optical fibers
US8768129B2 (en) * 2011-09-21 2014-07-01 Ofs Fitel, Llc Optimized ultra large area optical fibers
US9002164B2 (en) 2013-02-28 2015-04-07 Fujikura Ltd. Optical fiber and method of manufacturing the same
US9188736B2 (en) 2013-04-08 2015-11-17 Corning Incorporated Low bend loss optical fiber
JP2015184371A (ja) 2014-03-20 2015-10-22 株式会社フジクラ 偏波保持光ファイバ
US9650281B2 (en) 2014-07-09 2017-05-16 Corning Incorporated Optical fiber with reducing hydrogen sensitivity
US9586853B2 (en) 2014-07-09 2017-03-07 Corning Incorporated Method of making optical fibers in a reducing atmosphere
JP6513796B2 (ja) * 2014-09-16 2019-05-15 コーニング インコーポレイテッド 一工程フッ素トレンチ及びオーバークラッドを有する光ファイバプリフォームの作製方法
CN104749691B (zh) * 2015-04-28 2018-05-01 长飞光纤光缆股份有限公司 一种超低衰耗弯曲不敏感单模光纤
US9988295B2 (en) * 2016-02-15 2018-06-05 FOMS Inc. Fiber optic manufacturing in space
US10550028B2 (en) 2016-02-15 2020-02-04 FOMS Inc. Fiber optic manufacturing in space
US11067744B2 (en) * 2017-11-30 2021-07-20 Corning Incorporated Low bend loss optical fiber with step index core
WO2020014438A1 (en) * 2018-07-12 2020-01-16 Panduit Corp. Single-mode optical fiber having negative chromatic dispersion
WO2020065632A1 (ja) * 2018-09-28 2020-04-02 信越化学工業株式会社 光ファイバ母材
WO2021193260A1 (ja) * 2020-03-27 2021-09-30 古河電気工業株式会社 光ファイバ
CN111897045B (zh) * 2020-09-17 2022-08-02 长飞光纤光缆股份有限公司 一种抗弯曲多芯光纤

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159856A (ja) * 1995-10-04 1997-06-20 Sumitomo Electric Ind Ltd シングルモード光ファイバ及びその製造方法
WO2000031573A1 (fr) * 1998-11-26 2000-06-02 Sumitomo Electric Industries, Ltd. Fibre optique et systeme de transmission optique renfermant celle-ci
JP2001100056A (ja) * 1999-07-27 2001-04-13 Fujikura Ltd 分散シフト光ファイバ
JP2002258092A (ja) * 2001-03-01 2002-09-11 Furukawa Electric Co Ltd:The 光ファイバ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852968A (en) 1986-08-08 1989-08-01 American Telephone And Telegraph Company, At&T Bell Laboratories Optical fiber comprising a refractive index trench
DE3804152A1 (de) * 1988-02-11 1989-08-24 Rheydt Kabelwerk Ag Lichtwellenleiter
RU2206113C2 (ru) 1999-07-27 2003-06-10 Фудзикура Лтд. Оптическое волокно со смещенной дисперсией

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159856A (ja) * 1995-10-04 1997-06-20 Sumitomo Electric Ind Ltd シングルモード光ファイバ及びその製造方法
WO2000031573A1 (fr) * 1998-11-26 2000-06-02 Sumitomo Electric Industries, Ltd. Fibre optique et systeme de transmission optique renfermant celle-ci
JP2001100056A (ja) * 1999-07-27 2001-04-13 Fujikura Ltd 分散シフト光ファイバ
JP2002258092A (ja) * 2001-03-01 2002-09-11 Furukawa Electric Co Ltd:The 光ファイバ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1657575A4 *

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7254305B2 (en) 2004-04-29 2007-08-07 Corning Incorporated Low attenuation large effective area optical fiber
WO2005111683A1 (en) * 2004-04-29 2005-11-24 Corning Incorporated Low attenuation large effective area optical fiber
US7187833B2 (en) 2004-04-29 2007-03-06 Corning Incorporated Low attenuation large effective area optical fiber
JP2007535003A (ja) * 2004-04-29 2007-11-29 コーニング・インコーポレーテッド 低損失有効断面積拡大型光ファイバ
US7336877B2 (en) 2004-08-31 2008-02-26 Corning Incorporated Broadband optical fiber
JP2007011366A (ja) * 2005-06-29 2007-01-18 Furukawa Electric North America Inc 低損失光ファイバ、およびその製造方法
JP2012008592A (ja) * 2005-06-29 2012-01-12 Furukawa Electric North America Inc 低損失光ファイバ、およびその製造方法
EP1785754A1 (en) 2005-11-10 2007-05-16 Draka Comteq B.V. Single mode optical fiber with low bending losses
US7995889B2 (en) 2005-11-10 2011-08-09 Draka Comteq, B.V. Single mode optical fiber
US8837889B2 (en) 2005-11-10 2014-09-16 Draka Comteq, B.V. Single mode optical fiber
KR101273759B1 (ko) * 2005-11-10 2013-06-12 드라카 콤텍 비.브이. 단일 모드 광섬유
JP2007140510A (ja) * 2005-11-10 2007-06-07 Draka Comteq Bv 単一モード光ファイバ
US7899293B2 (en) 2006-04-10 2011-03-01 Draka Comteq, B.V. Single-mode optical fiber
JP2007279739A (ja) * 2006-04-10 2007-10-25 Draka Comteq Bv 単一モード光ファイバ
US8103143B2 (en) 2006-04-10 2012-01-24 Draka Comteq, B.V. Single-mode optical fiber
JP2007298987A (ja) * 2006-05-03 2007-11-15 Draka Comteq Bv 波長分散補償ファイバ
JP2008024584A (ja) * 2006-07-10 2008-02-07 Draka Comteq Bv 内部蒸着プロセスによる光学予備成形物の製造方法およびそれによって得られた予備成形物
JP2010503019A (ja) * 2006-08-31 2010-01-28 コーニング インコーポレイテッド 低曲げ損失シングルモード光ファイバ
US7894698B2 (en) 2006-12-04 2011-02-22 Draka Comteq B.V. Optical fiber
US7555186B2 (en) 2006-12-04 2009-06-30 Draka Comteq B.V. Optical fiber
JP2008139887A (ja) * 2006-12-04 2008-06-19 Draka Comteq Bv 光ファイバ
JP2008257250A (ja) * 2007-04-06 2008-10-23 Draka Comteq Bv 大きい実効面積を有する伝送用光ファイバ
JP2014222354A (ja) * 2007-05-07 2014-11-27 コーニング インコーポレイテッド 拡大実効面積ファイバ
US8145027B2 (en) 2007-11-09 2012-03-27 Draka Comteq, B.V. Microbend-resistant optical fiber
US8385705B2 (en) 2007-11-09 2013-02-26 Draka Comteq, B.V. Microbend-resistant optical fiber
US8081856B2 (en) 2008-02-22 2011-12-20 Sumitomo Electric Industries, Ltd. Optical fiber and optical cable
WO2009104724A1 (ja) * 2008-02-22 2009-08-27 住友電気工業株式会社 光ファイバおよび光ケーブル
JP2014089458A (ja) * 2008-02-22 2014-05-15 Sumitomo Electric Ind Ltd 光ファイバおよび光ケーブル
JP5440183B2 (ja) * 2008-02-22 2014-03-12 住友電気工業株式会社 光ファイバおよび光ケーブル
US8081855B2 (en) 2008-02-22 2011-12-20 Sumitomo Electric Industries, Ltd. Optical fiber and optical cable
US8301001B2 (en) 2008-02-22 2012-10-30 Sumitomo Electric Industries, Ltd. Optical cable and optical transmission system
US8249407B2 (en) 2008-02-22 2012-08-21 Sumitomo Electric Industries, Ltd. Optical fiber and optical cable
US8145025B2 (en) 2008-05-06 2012-03-27 Draka Comteq, B.V. Single-mode optical fiber having reduced bending losses
US8428414B2 (en) 2008-05-06 2013-04-23 Draka Comteq, B.V. Single-mode optical fiber having reduced bending losses
US7889960B2 (en) 2008-05-06 2011-02-15 Draka Comteq B.V. Bend-insensitive single-mode optical fiber
US8131125B2 (en) 2008-05-06 2012-03-06 Draka Comteq, B.V. Bend-insensitive single-mode optical fiber
JP2011526879A (ja) * 2008-07-07 2011-10-20 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 曲がりにくい光ファイバー、曲がりにくい光ファイバーの形成のための半製品としての石英ガラスチューブ、ファイバーの形成のための方法
US8606065B2 (en) 2008-09-26 2013-12-10 Mitsubishi Cable Industries, Ltd. Optical fiber and method for fabricating the same
JP2010102276A (ja) * 2008-09-26 2010-05-06 Mitsubishi Cable Ind Ltd 光ファイバ及びその製造方法
WO2010035397A1 (ja) * 2008-09-26 2010-04-01 三菱電線工業株式会社 光ファイバ及びその製造方法
JP2010176123A (ja) * 2009-01-27 2010-08-12 Draka Comteq Bv 実効面積が増大した単一モード光ファイバ
JP2010243998A (ja) * 2009-03-16 2010-10-28 Furukawa Electric Co Ltd:The 光ファイバ
US8977096B2 (en) 2009-03-16 2015-03-10 Furukawa Electric Co., Ltd. Optical fibers
JP2010271448A (ja) * 2009-05-20 2010-12-02 Shin-Etsu Chemical Co Ltd 光ファイバ
JP2011027945A (ja) * 2009-07-24 2011-02-10 Nippon Telegr & Teleph Corp <Ntt> モード径拡大型空孔付き単一モード光ファイバ
KR20120083384A (ko) * 2009-09-11 2012-07-25 코닝 인코포레이티드 낮은 구부림 손실을 갖는 광섬유
JP2013504785A (ja) * 2009-09-11 2013-02-07 コーニング インコーポレイテッド 低曲げ損失の光ファイバ
KR101721283B1 (ko) 2009-09-11 2017-03-29 코닝 인코포레이티드 낮은 구부림 손실을 갖는 광섬유
JP2011090050A (ja) * 2009-10-20 2011-05-06 National Institute Of Information & Communication Technology 光エネルギー伝送装置
US8983260B2 (en) 2010-02-01 2015-03-17 Draka Comteq, B.V. Non-zero dispersion shifted optical fiber having a large effective area
JP2011170347A (ja) * 2010-02-01 2011-09-01 Draka Comteq Bv 短いカットオフ波長を有するノンゼロ分散シフト光ファイバ
JP2011170348A (ja) * 2010-02-01 2011-09-01 Draka Comteq Bv 大きな実効面積を有するノンゼロ分散シフト光ファイバ
JPWO2011114795A1 (ja) * 2010-03-16 2013-06-27 古河電気工業株式会社 マルチコア光ファイバおよびその製造方法
WO2011114795A1 (ja) * 2010-03-16 2011-09-22 古河電気工業株式会社 マルチコア光ファイバおよびその製造方法
US8737793B2 (en) 2010-03-16 2014-05-27 Furukawa Electric Co., Ltd. Multi-core optical fiber and method of manufacturing the same
US8724954B2 (en) 2011-03-23 2014-05-13 Sumitomo Electric Industries, Ltd. Optical fiber, optical fiber cord, and optical fiber cable
WO2013005779A1 (ja) 2011-07-04 2013-01-10 株式会社フジクラ 光ファイバ
US9057813B2 (en) 2011-07-04 2015-06-16 Fujikura Ltd. Optical fiber
JP2013033106A (ja) * 2011-08-01 2013-02-14 Furukawa Electric Co Ltd:The ホーリーファイバ
WO2013018523A1 (ja) * 2011-08-01 2013-02-07 古河電気工業株式会社 ホーリーファイバ
JP2013235261A (ja) * 2012-04-12 2013-11-21 Shin Etsu Chem Co Ltd 光ファイバ
JP2013242545A (ja) * 2012-04-26 2013-12-05 Shin Etsu Chem Co Ltd 光ファイバ
US11009655B2 (en) 2013-04-15 2021-05-18 Corning Incorporated Low diameter optical fiber
JP7000470B2 (ja) 2013-04-15 2022-01-19 コーニング インコーポレイテッド 小さい直径の光ファイバ
JP2020064324A (ja) * 2013-04-15 2020-04-23 コーニング インコーポレイテッド 小さい直径の光ファイバ
US11009656B2 (en) 2013-04-15 2021-05-18 Corning Incorporated Low diameter optical fiber
US11150403B2 (en) 2013-04-15 2021-10-19 Corning Incorporated Low diameter optical fiber
JP2013178552A (ja) * 2013-04-24 2013-09-09 Shin Etsu Chem Co Ltd 光ファイバ
KR101541850B1 (ko) 2013-08-06 2015-08-05 한국과학기술원 멀티레벨 변조방식용 트렌치형 멀티코어 광섬유 설계 방법
JP2019511751A (ja) * 2016-03-29 2019-04-25 コーニング インコーポレイテッド 低曲げ損失光ファイバ
JP7148407B2 (ja) 2016-03-29 2022-10-05 コーニング インコーポレイテッド 低曲げ損失光ファイバ
WO2020162209A1 (ja) * 2019-02-07 2020-08-13 古河電気工業株式会社 光ファイバおよび光ファイバの製造方法
JP2020129037A (ja) * 2019-02-07 2020-08-27 古河電気工業株式会社 光ファイバおよび光ファイバの製造方法
US11714229B2 (en) 2019-02-07 2023-08-01 Furukawa Electric Co., Ltd. Optical fiber and method of manufacturing optical fiber
JP7019617B2 (ja) 2019-02-07 2022-02-15 古河電気工業株式会社 光ファイバおよび光ファイバの製造方法
JP2020134884A (ja) * 2019-02-25 2020-08-31 古河電気工業株式会社 光ファイバおよび光ファイバの製造方法
JP7060532B2 (ja) 2019-02-25 2022-04-26 古河電気工業株式会社 光ファイバおよび光ファイバの製造方法
WO2020175259A1 (ja) * 2019-02-25 2020-09-03 古河電気工業株式会社 光ファイバおよび光ファイバの製造方法
US11714228B2 (en) 2019-02-25 2023-08-01 Furukawa Electric Co., Ltd. Optical fiber and method of manufacturing optical fiber
JP2020140080A (ja) * 2019-02-28 2020-09-03 住友電気工業株式会社 光ファイバ
WO2021187179A1 (ja) * 2020-03-17 2021-09-23 古河電気工業株式会社 マルチコアファイバ、マルチコアファイバリボン、マルチコアファイバの製造方法およびマルチコアファイバの処理方法
WO2023032999A1 (ja) * 2021-08-31 2023-03-09 住友電気工業株式会社 光ファイバ
WO2024048118A1 (ja) * 2022-09-02 2024-03-07 住友電気工業株式会社 光ファイバ

Also Published As

Publication number Publication date
KR20060009839A (ko) 2006-02-01
JP3853833B2 (ja) 2006-12-06
EP1657575A4 (en) 2008-03-19
EP1657575A1 (en) 2006-05-17
US20060039665A1 (en) 2006-02-23
US7164835B2 (en) 2007-01-16
KR100820926B1 (ko) 2008-04-10
JPWO2004092794A1 (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
WO2004092794A1 (ja) 光ファイバ
JP4833071B2 (ja) シングルモード光ファイバ
US8737793B2 (en) Multi-core optical fiber and method of manufacturing the same
JP5222752B2 (ja) 光ファイバ
US8081854B2 (en) Low bend loss optical fiber
US7899293B2 (en) Single-mode optical fiber
JP5330729B2 (ja) グレーデッドインデックス形マルチモード光ファイバ
WO2011114795A1 (ja) マルチコア光ファイバおよびその製造方法
WO2009104724A1 (ja) 光ファイバおよび光ケーブル
WO2006016572A1 (ja) シングルモード光ファイバ
JP4268115B2 (ja) シングルモード光ファイバ
JP6361101B2 (ja) 光ファイバ
US6904215B2 (en) Low macrobending loss optical fiber
JP5575422B2 (ja) 光ファイバ
RU2755736C1 (ru) Нечувствительное к потерям на изгибах одномодовое волокно с мелкой канавкой и соответствующая оптическая система
KR20180124729A (ko) 광파이버
KR20130041566A (ko) 구부림 손실 강화 광섬유
JP7135207B2 (ja) 光ファイバ
JP4073806B2 (ja) 光ファイバ及び該光ファイバを用いた光伝送路
US9057813B2 (en) Optical fiber
CN100374888C (zh) 光纤
WO2012128250A1 (ja) 光ファイバ、光ファイバコードおよび光ファイバケーブル
WO2020175259A1 (ja) 光ファイバおよび光ファイバの製造方法
CN110824610A (zh) 一种弯曲不敏感单模光纤
KR20190057939A (ko) 낮은 굽힘손실을 갖는 광섬유

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005504472

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048089414

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11244195

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057019332

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2004726886

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004726886

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057019332

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004726886

Country of ref document: EP