WO2004088981A1 - Monitoring system - Google Patents

Monitoring system Download PDF

Info

Publication number
WO2004088981A1
WO2004088981A1 PCT/JP2003/004117 JP0304117W WO2004088981A1 WO 2004088981 A1 WO2004088981 A1 WO 2004088981A1 JP 0304117 W JP0304117 W JP 0304117W WO 2004088981 A1 WO2004088981 A1 WO 2004088981A1
Authority
WO
WIPO (PCT)
Prior art keywords
video
unit
switch
compression
state
Prior art date
Application number
PCT/JP2003/004117
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyotaka Ogawa
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/004117 priority Critical patent/WO2004088981A1/en
Publication of WO2004088981A1 publication Critical patent/WO2004088981A1/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19665Details related to the storage of video surveillance data
    • G08B13/19667Details realated to data compression, encryption or encoding, e.g. resolution modes for reducing data volume to lower transmission bandwidth or memory requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source

Definitions

  • the present invention relates to a monitoring system that compresses and encodes video signals and audio signals from a camera or a microphone using a digital compression method such as MPEG and accumulates them on a recording medium such as a hard disk.
  • a digital compression method such as MPEG
  • a monitoring system which compresses and encodes video and audio signals from a monitor camera and a monitor microphone using a digital compression method such as MPEG and stores the compressed and encoded data on a recording medium such as a hard disk.
  • a digital compression method such as MPEG
  • MPEG digital compression method
  • the amount of generated data will be extremely large. Since there is an upper limit to the amount of information that can be stored on the recording medium of the monitoring system, if the amount of generated data exceeds the recording capacity of the recording medium, part of the generated data cannot be recorded on the recording medium. Occurs. To avoid this problem, the maximum recordable time that can be managed by the surveillance system must be set small.
  • the amount of generated data will decrease, and the maximum recordable time that can be managed by the monitoring system can be set large.
  • the image obtained by decoding the stored data is often unclear, or the sound obtained by decoding the stored data is often unclear.
  • a monitoring camera system is disclosed in Japanese Patent Application Laid-Open No. 2002-262622.
  • This surveillance camera system is The coded video signal and the coded audio signal are multiplexed by a system encoder provided in the system, and the multiplexed video / audio data stream is transmitted via a LAN interface to a recording medium. It has a configuration to store. Disclosure of the invention
  • the present invention has been made in view of the above-described problems, and performs compression encoding with a high compression ratio set for a long time during normal times, and gives priority to image quality when a problem occurs.
  • An object of the present invention is to provide a monitoring system that performs compression encoding set at a low level.
  • a surveillance system includes a video compression unit that compresses and encodes a video signal from a camera to generate an encoded video signal, and a compression and encoding of an audio signal from a microphone.
  • An audio compression unit that generates an audio signal; a multiplexing unit that multiplexes the coded video signal and the coded audio signal to generate multiplexed data; and an abnormality at a monitoring location where the camera and the microphone are provided.
  • a monitoring unit that outputs a signal for detecting presence / absence of the video signal, wherein a compression ratio of the video signal by the video compression unit and a compression of the audio signal by the audio compression unit are determined according to the detection signal.
  • a control unit for changing at least one of the rates is provided.
  • the monitoring system of the present invention in a normal state, it is possible to perform compression encoding with a high compression ratio of a video signal, so that the amount of generated data is reduced and recording is performed for a long time. It is possible. If an error occurs in the monitoring location, compression can be performed with the video signal compression rate lowered, giving priority to image quality.Record images in detail and record intruders clearly. Can be. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a block diagram showing the basic configuration of the monitoring system of the present invention.
  • FIG. 2 is a diagram illustrating a multiplexing process performed by the multiplexing unit in the monitoring system of the present invention.
  • FIG. 3 is a flowchart illustrating an example of a compression ratio switching process performed by the control unit in the monitoring system of FIG.
  • FIG. 4 is a flowchart for explaining another example of the compression ratio switching process executed by the control unit in the monitoring system of FIG.
  • FIG. 5 is a block diagram showing a monitoring system according to one embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION is a block diagram showing a monitoring system according to one embodiment of the present invention.
  • FIG. 1 shows a basic configuration of the monitoring system of the present invention.
  • the monitoring system of the present invention includes a control unit 10, a monitor camera 20, a monitor microphone 21, a sensor 22, an input processing unit 23, and an input processing unit 24. , An input processing unit 25, a detection unit 28, a video compression unit 31, an audio compression unit 32, a switch SW 1, a switch SW 2, a multiplexing unit 33, and a recording unit 40. And
  • the input processing unit 23 is configured by, for example, an NTSSC decoder or an analog / digital (AD) converter.
  • the input processing unit 24 is configured by, for example, an analog / digital (AD) conversion.
  • the input processing unit 25 is configured by, for example, an analog interface circuit.
  • the detection unit 28 receives the output signal from the sensor 22, the video signal from the camera 20, and the audio signal from the microphone 21, and sends a detection signal indicating the presence or absence of an abnormality at the monitoring location to the control unit 10. Output.
  • the video compression unit 31 compression-encodes the video signal from the camera 20 to generate an encoded video signal.
  • the video compression unit 31 is configured by, for example, a video encoder conforming to the MPEG video standard, the JPEG video standard, or the digital video (DV) standard.
  • the audio compression unit 32 compresses and encodes the audio signal from the microphone 21 to generate an encoded audio signal.
  • the audio compression unit 32 is, for example, an audio engine conforming to the MPEG audio standard or the Dolby AC3 standard. It is composed of a coder.
  • the multiplexing unit 33 time-multiplexes the coded video signal from the video compression unit 31 and the coded audio signal from the audio compression unit 32 to form a multiplex that forms one data stream. Generate encrypted data.
  • the switch SW 1 switches the connection state between the video compression unit 31 and the multiplexing unit 33 to an ON state or an OFF state according to a switching signal from the control unit 10.
  • the switch SW 2 switches the connection state between the audio compression unit 32 and the multiplexing unit 33 to an ON state or an OFF state according to a switching signal from the control unit 10.
  • the recording unit 40 is configured by a storage device such as a hard disk.
  • the recording unit 40 records and holds the multiplexed data supplied from the multiplexing unit 33 on a recording medium.
  • the detection unit 28 outputs a detection signal indicating the presence or absence of an abnormality at the monitoring location to the control unit 10.
  • the control unit 10 executes a compression ratio switching process (described later) in accordance with the detection signal output from the detection unit 28, thereby controlling the compression ratio of the video signal by the video compression unit 31 and the audio compression unit 3 At least one of the compression ratios of the audio signal according to 2 is changed according to the presence or absence of an abnormality.
  • control unit 10 controls the video rate (frame rate, bit rate, etc.) and resolution of the video compression unit 31 in the compression ratio switching process.
  • control unit 10 controls, for example, the on / off state of the switch SW1 and the switch SW2.
  • the control unit 10 sets the video signal compression ratio to a high level, so that the video compression Set the video rate of unit 31 to a low level (for example, 3 Hz). Further, the control unit 10 sets the switch SW 1 to the on state and sets the switch SW 2 to the off state, turns on only the connection state between the video compression unit 31 and the multiplexing unit 33, and turns on the audio. The connection state between the compression unit 32 and the multiplexing unit 33 is turned off. In this case, the multiplexing unit 33 generates multiplexed data based on the coded video signal obtained by the compression coding in which the compression ratio of the video signal is set to be high.
  • the control unit 10 sets the compression ratio of the video signal low, The video rate of the video compression unit 31 is set to a high level (for example, 30 Hz). Further, the control unit 10 sets the switch SW1 to the ON state and sets the switch SW2 to the ON state, and sets the connection state between the video compression unit 31 and the multiplexing unit 33, and the audio compression unit 32 and the multiplexing unit 33. The connection state between them is turned on. In this case, the multiplexing unit 33 generates multiplexed data based on the coded video signal obtained by the compression coding in which the compression ratio of the video signal is set low and the coded audio signal. Therefore, images and sounds are recorded in detail.
  • FIG. 2 is a diagram for explaining a multiplexing process performed by the multiplexing unit 33 in the monitoring system shown in FIG.
  • the multiplexing unit 33 includes video data (V-1,..., V-7) constituted by the encoded video signals output from the video compression unit 31 and audio data.
  • the audio data (A_l,... A-3) composed of the coded audio signal output from the compression unit 32 is time-multiplexed and combined into one data stream.
  • the control unit 10 stores the monitoring data by writing the data stream supplied from the multiplexing unit 33 to the recording medium 42 of the recording unit 40 in chronological order. Generally, since this data stream contains time information (time stamp), it can be normally reproduced when it is reproduced without recording if there is no stream.
  • FIG. 5 shows a monitoring system according to one embodiment of the present invention.
  • the CPU 10 In the monitoring system of FIG. 5, in addition to the components of FIG. 1, the CPU 10, the ROM 11, the RAMI 2, the switch 13 (SW3), the timer 14, and the MPEG decoder 15 are interconnected by the bus 18. It is connected. The output of the MPEG decoder 15 is connected to a digital / analog (DA) converter 16 and a digital / analog (DA) converter 17.
  • DA digital / analog
  • DA digital / analog
  • the MPEG decoder 15 has a function of separating and decoding multiplexed data read from the recording unit 40.
  • the MPEG decoder 15 is composed of a video decoder conforming to the MPEG video standard.
  • the decoded video data is output as a video signal by the DA converter 16, and the decoded audio data is output as an audio signal by the DA converter 17.
  • the CPU 10, ROM 11, and RAMI The controller 10 in the configuration of FIG. 1 is configured.
  • the CPU 10 implements the function of the control unit in the monitoring system of the present invention by executing a compression ratio switching process described later in the work area of the RAMI 2 according to a program recorded in the ROM 11 in advance. I do.
  • the switch 13 switches the monitoring state of the monitoring system of FIG. 5 to an on state or an off state according to a switching signal from the CPU 10.
  • the CPU 10 turns the switch 13 on, and when it ends, the switch 13 turns the switch 13 off.
  • the timer 14 supplies time information for managing the standby time to the CPU 10 when the CPU 10 is set in the standby state for a certain time.
  • the video compression unit 31 the audio compression unit 32, the multiplexing unit 33, the switch SW1 and the switch SW2 of FIG. 1 are provided in the MPEG encoder 30.
  • CPU 10 and MPEG encoder 30 are connected by bus 18.
  • the image from the monitor camera 20 is converted into data by an analog / digital (AD) conquest 23.
  • Video data from the AD converter 23 is compression-encoded by the video compression unit 31.
  • the sound from the monitor microphone 21 is converted into data by an analog digital (AD) converter 24.
  • the audio data from the AD converter 24 is compression-encoded by the audio compression unit 32.
  • the functions of the switch SW1, the switch SW2, and the multiplexing unit 33 are the same as those of the switch SW1, the switch SW2, and the multiplexing unit 33 in the configuration of FIG.
  • the detection circuit 26 and the detection circuit 27 constitute the detection unit 28 in the configuration of FIG.
  • the detection circuit 26 and the detection circuit 27 are connected to the CPU 10 via the bus 18.
  • the detection circuit 26 receives the video data from the AD converter 23 and detects a change in the video data. For example, if there is no moving object when the monitoring location is unattended, the difference is small when comparing the size of the input video data of one screen with the video data of the previous frame for each pixel. Therefore, the total for one screen also becomes smaller. Monitoring location The detection circuit 26 uses the fact that the cumulative difference becomes large when an object that acts on the object is reflected by the camera.If the cumulative difference is larger than a certain threshold value, the detection circuit 26 indicates that an abnormality has occurred in the monitoring location. Output signal to CPU 10.
  • the sensor 22 is configured by, for example, a magnet-based switch attached to the opening / closing part of the door or window at the monitoring location. If the window of the monitoring location is opened while the monitoring system is in the monitoring state, the sensor 22 outputs to the CPU 10 a signal indicating that an abnormality has occurred in the monitoring location.
  • the detection circuit 27 receives the audio data from the AD converter 24 and detects a change in the audio data. For example, the detection circuit 27 takes the absolute value of the audio data, finds the mean square value of several tens of samples, and outputs a signal indicating the magnitude of the found mean value to the CPU 10.
  • the monitoring location is unmanned, there is no sound and the average level is low. On the other hand, if any noise is generated at the monitored location, the average level temporarily increases.
  • the CPU 10 determines that an abnormality has occurred in the monitoring location.
  • the recording unit 40 is a storage device such as a hard disk, and includes an IDE interface unit 41 and a recording medium 42.
  • the recording unit 40 is connected to the CPU 10 via the bus 18.
  • the CPU 10 records and holds the multiplexed data in the recording unit 40 by writing the data stream supplied from the multiplexing unit 33 via the IDE interface unit 41 to the recording medium 42 of the recording unit 40 in chronological order.
  • the IDE interface section 41 is connected to the MPEG decoder 15.
  • FIG. 3 is a flowchart illustrating an example of a compression ratio switching process performed by the CPU 10 in the monitoring system of FIG.
  • step S31 the CPU 10 turns on the switch SW1 and turns off the switch SW2 to set the video compression.
  • the CPU 10 turns on the connection state between the video compression unit 31 and the multiplexing unit 33 and turns on the connection state between the audio compression unit 32 and the audio compression unit 32.
  • the connection state between the multiplexing units 33 is set to the off state, and the compression ratio of the video signal by the video compression unit 31 is set to a high level.
  • the multiplexing unit 33 multiplexed data is generated based on the coded video signal obtained by the compression coding in which the compression ratio is set high, so that long-time recording is possible.
  • step S32 the CPU 10 determines whether or not a power at which an abnormality has occurred in the monitoring location is determined according to the detection signal output from the sensor 22, the detection circuit 26, or the detection circuit 27. If the decision result in the step S32 is NO, the CPU 10 repeatedly executes the step S32, and monitors whether there is any abnormality in the monitoring location.
  • step S33 the CPU 10 sets the switch SW1 to the ON state, the switch SW2 to the ON state, and sets the video rate of the video compression unit 31 to the high level (30 Hz). I do.
  • the CPU 10 turns on the connection state between the video compression unit 31 and the multiplexing unit 33 and turns on the connection state between the audio compression unit 32 and the multiplexing unit 33. Then, set the video rate of the video compression unit 31 to a high level (that is, set the compression rate of the video signal to a low level).
  • the multiplexing unit 33 generates multiplexed data based on the coded video signal obtained by the compression coding at a low compression ratio and the coded audio signal, so that detailed image quality and sound quality are prioritized. Images and sounds can be recorded.
  • step S34 the CPU 10 determines whether or not the monitoring system in FIG. 5 has finished the monitoring state according to the output signal of the switch 13 (SW3). If the decision result in the step S34 is NO, the CPU 10 repeatedly executes the step S34 to monitor whether or not the force has ended the monitoring state. When the determination result of step S34 is YES, the compression ratio switching process of FIG. 3 ends.
  • the CPU 10 controls so that the amount of data to be recorded per unit time is suppressed in order to record as long as possible when no abnormality occurs in the monitoring state.
  • the CPU 10 sets the target rate of the video compression unit 31 so that video is compressed three frames per second, and turns on SW1. And the encoded video signal from the video compression unit 31 The number is output to the multiplexing unit 33. Further, the CPU 10 sets the SW 2 to the OFF state so that the encoded audio signal from the audio compression unit 32 is not output to the multiplexing unit 33. Normally, since the video signal from the camera contains 30 frames per second, the amount of video data generated is reduced to one tenth by performing the compression ratio switching process shown in FIG. Also, since no audio data is recorded, the amount of data recorded in the recording unit 34 is greatly reduced.
  • the CPU 10 turns on both the SW 1 and the SW 2 to change the video rate by the video compression unit 31 to the video.
  • the method of switching the video rate between low level and high level was used in order to change the compression ratio by the video compression unit 31 according to the normal / abnormal state of the monitoring location.
  • the monitoring system of the present invention is not limited to the above embodiment.
  • the number of pixels in the frame is thinned out to 1/4 of the normal pixels to reduce the video resolution level and set the video bit rate to a low level.
  • the encoding may be performed, and when an error occurs, a process may be used in which the resolution of the video is set to a high level and the compression encoding is performed with the bit rate of the video set to a low level.
  • FIG. 4 is a flowchart for explaining another example of the compression ratio switching process executed by the control unit in the monitoring system of FIG.
  • step S41 the CPU 10 turns off both the switch SW1 and the switch SW2, and sets the video Set the video rate of the compression unit 31 to a high level (30 Hz).
  • the CPU 10 determines the connection state between the video compression section 31 and the multiplexing section 33 and the connection state between the audio compression section 32 and the multiplexing section 33. Since both are set to the off state, the recording unit 40 does not perform recording using the multiplexed data from the multiplexing unit 33.
  • step S42 the CPU 10 sets the sensor 22, the detection circuit 26, or the detection In accordance with the detection signal output from the circuit 27, it is determined whether or not the force at which an abnormality has occurred in the monitoring location. If the decision result in the step S32 is NO, the CPU 10 repeatedly executes the step S42, and monitors whether there is any abnormality in the monitoring location.
  • step S43 the CPU 10 sets both the switch SW1 and the switch SW2 to the ON state.
  • step S44 the CPU 10 uses the timer 14 to maintain the standby state until a predetermined time has elapsed.
  • step S45 the CPU 10 determines whether an abnormality has occurred in the monitoring location according to the detection signal output from the sensor 22, the detection circuit 26, or the detection circuit 27. Judge again. If the decision result in the step S45 is YES, the CPU 10 repeatedly executes the steps S44 to S45 to confirm the occurrence of an abnormality in the monitoring location.
  • the CPU 10 turns on the connection state between the video compression unit 31 and the multiplexing unit 33 and turns on the connection state between the audio compression unit 32 and the multiplexing unit 33.
  • the state is set, and the video rate by the video compression unit 31 is set to a high level (that is, the compression rate of the video signal is set to a low level).
  • the multiplexing unit 33 generates multiplexed data based on the coded video signal obtained by compression coding with a low compression ratio and the coded audio signal. Recording of images and sounds.
  • step S46 the CPU 10 decides whether or not the monitoring system in FIG. 5 has finished the monitoring state according to the output signal of the switch 13 (SW3).
  • the determination result in step S46 is NO, the CPU 10 repeatedly executes steps S41 to S45 described above.
  • the result of the determination in step S46 is YES, the compression ratio switching process of FIG. 4 ends.
  • the CPU 10 sets both the switch SW1 and the switch SW2 to the OFF state and does not record anything. If an error occurs in the monitoring location, switch SW1 and switch SW2 are both turned off and recording starts. After a predetermined period of time, if there is still a moving object at the monitored location, video and audio recording will be continued. If the abnormal state disappears after the lapse of a predetermined time, the CPU 10 again sets both the switch SW1 and the switch SW2 to the OFF state and does not record anything. According to the compression ratio switching process in FIG.
  • the video rate set by the video compression unit 31 is set so that the video is compressed by 30 frames per second. Therefore, in an abnormal state, it is edible to record detailed images and sounds with priority given to image quality and sound quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A monitoring system includes a video compression unit for compressing/encoding a video signal from a camera and generating an encoded video signal, an audio compression unit for compressing/encoding an audio signal from a microphone and generating an encoded audio signal, a multiplexing unit for multiplexing the encoded video signal and the encoded audio signal to generate multiplexed data, a detection unit for outputting a signal to detect abnormality in the place monitored by the camera and microphone, and a control unit for modifying at least one of the video signal compression ratio defined by the video compression unit and the audio signal compression ratio defined by the audio compression unit.

Description

監視システム 技術分野  Surveillance system technical field
本発明は、 MP E G等のデジタル圧縮方式を用いて、 カメラやマイクからの映 像信号や音声信号を圧縮符号化して、 ハードディスク等の記録媒体に蓄積する監 視システムに関するものである。 背景技  The present invention relates to a monitoring system that compresses and encodes video signals and audio signals from a camera or a microphone using a digital compression method such as MPEG and accumulates them on a recording medium such as a hard disk. Background technique
MP E Gなどのデジタル圧縮方式を用いて、 モニタ力メラとモニタマイクから の映像信号と音声信号を圧縮符号化して、 ハードディスクなどの記録媒体に蓄積 する監視システムが知られている。 一般に、 カメラやマイクを利用する監視シス テムでは、 保守作業を簡素化するために映像データ及び音声データを記録媒体に 長時間記録する必要がある。  A monitoring system is known which compresses and encodes video and audio signals from a monitor camera and a monitor microphone using a digital compression method such as MPEG and stores the compressed and encoded data on a recording medium such as a hard disk. Generally, in a surveillance system using a camera or microphone, it is necessary to record video data and audio data on a recording medium for a long time to simplify maintenance work.
上記の監視システムにおいて、 蓄積データの画質や音質を高めることを優先し て圧縮符号化すると、 発生するデータ量が非常に多くなる。 監視システムの記録 媒体に蓄積できる情報量には上限があるため、 発生データ量が記録媒体の記録容 量を超えてしまう場合には、 発生データ量の一部が記録媒体に記録できないとい う問題が生じる。 この問題を回避するためには、 監視システムにおいて管理でき る記録可能な最大時間を小さく設定しなければならない。  In the above monitoring system, if compression encoding is performed with priority given to enhancing the image quality and sound quality of the stored data, the amount of generated data will be extremely large. Since there is an upper limit to the amount of information that can be stored on the recording medium of the monitoring system, if the amount of generated data exceeds the recording capacity of the recording medium, part of the generated data cannot be recorded on the recording medium. Occurs. To avoid this problem, the maximum recordable time that can be managed by the surveillance system must be set small.
一方、映像信号や音声信号の圧縮率を高めることを優先して圧縮符号化すると、 発生するデータ量が減少するため、 監視システムにおいて管理できる記録可能な 最大時間を大きく設定できる。 しかしながら、 蓄積データを復号化して得られる 画像が不鮮明、 あるいは蓄積データを復号化して得られる音声が不明瞭となる場 合が多い。 とくに、 カメラやマイクを設置した監視箇所の異常が発生している状 態のとき、 蓄積データを複号化して得られる画像や音声が鮮明かつ明瞭であるこ とが望ましい。  On the other hand, if compression encoding is performed with priority given to increasing the compression ratio of video and audio signals, the amount of generated data will decrease, and the maximum recordable time that can be managed by the monitoring system can be set large. However, the image obtained by decoding the stored data is often unclear, or the sound obtained by decoding the stored data is often unclear. In particular, when abnormalities occur in the monitoring location where cameras and microphones are installed, it is desirable that the images and sounds obtained by decoding the stored data be clear and clear.
なお、 本発明に関連する従来技術として、 特開 2 0 0 2— 2 6 2 2 7 2号公報 には、 監視カメラシステムが示されている。 この監視カメラシステムは、 カメラ 内に設けられたシステムェンコーダにおいて符号化ビデオ信号と符号化オーディ ォ信号を多重化して、 その多重化されたビデオ ·オーディオデータのストリーム を LANィンターフェイスを介して送信することにより記録媒体に蓄積する構成 を有する。 発明の開示 As a related art related to the present invention, a monitoring camera system is disclosed in Japanese Patent Application Laid-Open No. 2002-262622. This surveillance camera system is The coded video signal and the coded audio signal are multiplexed by a system encoder provided in the system, and the multiplexed video / audio data stream is transmitted via a LAN interface to a recording medium. It has a configuration to store. Disclosure of the invention
本発明は、 上記の問題点に鑑みてなされたものであって、 通常時には長時間記 録を優先して圧縮率を高く設定した圧縮符号化を行い、 異常時には画質を優先し て圧縮率を低く設定した圧縮符号化を行う監視システムを提供することを目的と する。  The present invention has been made in view of the above-described problems, and performs compression encoding with a high compression ratio set for a long time during normal times, and gives priority to image quality when a problem occurs. An object of the present invention is to provide a monitoring system that performs compression encoding set at a low level.
上記課題を解決するために、 本発明の監視システムは、 カメラからの映像信号 を圧縮符号化して符号化ビデオ信号を生成するビデオ圧縮部と、 マイクからの音 声信号を圧縮符号化して符号化オーディォ信号を生成するオーディォ圧縮部と、 前記符号化ビデオ信号及び前記符号化オーディォ信号を多重化して多重化データ を生成する多重化部と、 前記カメラ及び前記マイクを配設した監視箇所における 異常の有無を検出する信号を出力する検出部とを備える監視システムであって、 前記検出信号に応じて、 前記ビデオ圧縮部による前記映像信号の圧縮率と前記ォ 一ディォ圧縮部による前記音声信号の圧縮率の少なくとも一方を変更する制御部 を備えることを特徴とする。  In order to solve the above-mentioned problems, a surveillance system according to the present invention includes a video compression unit that compresses and encodes a video signal from a camera to generate an encoded video signal, and a compression and encoding of an audio signal from a microphone. An audio compression unit that generates an audio signal; a multiplexing unit that multiplexes the coded video signal and the coded audio signal to generate multiplexed data; and an abnormality at a monitoring location where the camera and the microphone are provided. A monitoring unit that outputs a signal for detecting presence / absence of the video signal, wherein a compression ratio of the video signal by the video compression unit and a compression of the audio signal by the audio compression unit are determined according to the detection signal. A control unit for changing at least one of the rates is provided.
本発明の監視システムによれば、 通常の状態では、 映像信号の圧縮率を高く設 定した圧縮符号ィ匕を行わせることができるので、発生するデータ量を少なくして、 長時間記録をおこなうことが可能である。 監視箇所に異常が発生した場合、 画質 を優先して映像信号の圧縮率を低くした圧縮符号化を行わせることができるので、 画像を詳細に記録して、 侵入者などを鮮明に記録することができる。 図面の簡単な説明  According to the monitoring system of the present invention, in a normal state, it is possible to perform compression encoding with a high compression ratio of a video signal, so that the amount of generated data is reduced and recording is performed for a long time. It is possible. If an error occurs in the monitoring location, compression can be performed with the video signal compression rate lowered, giving priority to image quality.Record images in detail and record intruders clearly. Can be. BRIEF DESCRIPTION OF THE FIGURES
本発明の他の目的、 特徴及び利点については、 添付の図面に基づき下記の発明 の詳細な説明を参照することにより明確となる。  Other objects, features, and advantages of the present invention will become apparent from the following detailed description of the invention with reference to the accompanying drawings.
図 1は、 本発明の監視システムの基本構成を示すプロック図である。 図 2は、 本発明の監視システムにおける多重化部が行う多重化処理を説明する ための図である。 FIG. 1 is a block diagram showing the basic configuration of the monitoring system of the present invention. FIG. 2 is a diagram illustrating a multiplexing process performed by the multiplexing unit in the monitoring system of the present invention.
図 3は、 図 5の監視システムにおける制御部が実行する圧縮率切り換え処理の 一例を説明するためのフロー図である。  FIG. 3 is a flowchart illustrating an example of a compression ratio switching process performed by the control unit in the monitoring system of FIG.
図 4は、 図 5の監視システムにおける制御部が実行する圧縮率切り換え処理の 他の例を説明するためのフロー図である。  FIG. 4 is a flowchart for explaining another example of the compression ratio switching process executed by the control unit in the monitoring system of FIG.
図 5は、 本宪明の一実施例に係る監視システムを示すブロック図である。 発明を実施するための最良の形態  FIG. 5 is a block diagram showing a monitoring system according to one embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の形態を添付の図面を用いて説明する。  Embodiments of the present invention will be described with reference to the accompanying drawings.
図 1は、 本発明の監視システムの基本構成を示す。  FIG. 1 shows a basic configuration of the monitoring system of the present invention.
図 1に示したように、 本発明の監視システムは、 制御部 1 0と、 モニタカメラ 2 0と、 モニタマイク 2 1と、 センサ 2 2と、 入力処理部 2 3と、 入力処理部 2 4と、 入力処理部 2 5と、 検出部 2 8と、 ビデオ圧縮部 3 1と、 オーディォ圧縮 部 3 2と、 スィツチ SW 1と、 スィッチ SW 2と、 多重化部 3 3と、 記録部 4 0 とを含む。  As shown in FIG. 1, the monitoring system of the present invention includes a control unit 10, a monitor camera 20, a monitor microphone 21, a sensor 22, an input processing unit 23, and an input processing unit 24. , An input processing unit 25, a detection unit 28, a video compression unit 31, an audio compression unit 32, a switch SW 1, a switch SW 2, a multiplexing unit 33, and a recording unit 40. And
入力処理部 2 3は、 例えば、 N T S Cデコーダやアナログ ·デジタル (AD) 変 などにより構成される。 入力処理部 2 4は、 例えば、 アナログ 'デジタル (AD) 変 «などにより構成される。 入力処理部 2 5は、 例えば、 アナログ' インターフェイス回路などにより構成される。  The input processing unit 23 is configured by, for example, an NTSSC decoder or an analog / digital (AD) converter. The input processing unit 24 is configured by, for example, an analog / digital (AD) conversion. The input processing unit 25 is configured by, for example, an analog interface circuit.
検出部 2 8は、 センサ 2 2からの出力信号、 カメラ 2 0からの映像信号、 及び マイク 2 1からの音声信号を受取り、 監視箇所における異常の有無を示す検出信 号を制御部 1 0へ出力する。  The detection unit 28 receives the output signal from the sensor 22, the video signal from the camera 20, and the audio signal from the microphone 21, and sends a detection signal indicating the presence or absence of an abnormality at the monitoring location to the control unit 10. Output.
ビデオ圧縮部 3 1は、 カメラ 2 0からの映像信号を圧縮符号化して符号化ビデ ォ信号を生成する。 ビデオ圧縮部 3 1は、 例えば、 MP E Gビデオ規格、 J P E Gビデオ規格、 またはデジタルビデオ (D V) 規格に準拠したビデオエンコーダ により構成される。 オーディオ圧縮部 3 2は、 マイク 2 1からの音声信号を圧縮 符号化して符号化オーディォ信号を生成する。オーディォ圧縮部 3 2は、例えば、 MP E Gオーディオ規格、 またはドルビー A C 3規格に準拠したオーディオェン コーダにより構成される。 The video compression unit 31 compression-encodes the video signal from the camera 20 to generate an encoded video signal. The video compression unit 31 is configured by, for example, a video encoder conforming to the MPEG video standard, the JPEG video standard, or the digital video (DV) standard. The audio compression unit 32 compresses and encodes the audio signal from the microphone 21 to generate an encoded audio signal. The audio compression unit 32 is, for example, an audio engine conforming to the MPEG audio standard or the Dolby AC3 standard. It is composed of a coder.
多重化部 3 3は、 ビデオ圧縮部 3 1カ らの符号化ビデオ信号と、 オーディォ圧 縮部 3 2カらの符号化オーディォ信号とを時間多重して、 1つのデータストリー ムを構成する多重化データを生成する。  The multiplexing unit 33 time-multiplexes the coded video signal from the video compression unit 31 and the coded audio signal from the audio compression unit 32 to form a multiplex that forms one data stream. Generate encrypted data.
スィッチ S W 1は、 制御部 1 0力らの切替え信号に応じてビデオ圧縮部 3 1と 多重化部 3 3間の接続状態をオン状態又はオフ状態に切替える。 スィッチ SW 2 は、 制御部 1 0からの切替え信号に応じてオーディオ圧縮部 3 2と多重化部 3 3 間の接続状態をオン状態又はオフ状態に切替える。  The switch SW 1 switches the connection state between the video compression unit 31 and the multiplexing unit 33 to an ON state or an OFF state according to a switching signal from the control unit 10. The switch SW 2 switches the connection state between the audio compression unit 32 and the multiplexing unit 33 to an ON state or an OFF state according to a switching signal from the control unit 10.
記録部 4 0は、 ハードディスクなどの記憶装置により構成される。 記録部 4 0 は、 多重ィ匕部 3 3から供給される多重化データを記録媒体に記録し保持する。 図 1の監視システムが監視状態にあるとき、 検出部 2 8は、 監視箇所における 異常の有無を示す検出信号を制御部 1 0へ出力する。 制御部 1 0は、 検出部 2 8 から出力される検出信号に応じて圧縮率切り換え処理 (後述する) を実行するこ とにより、 ビデオ圧縮部 3 1による映像信号の圧縮率とオーディォ圧縮部 3 2に よる音声信号の圧縮率の少なくとも一方を異常の有無に応じて変更する。  The recording unit 40 is configured by a storage device such as a hard disk. The recording unit 40 records and holds the multiplexed data supplied from the multiplexing unit 33 on a recording medium. When the monitoring system of FIG. 1 is in the monitoring state, the detection unit 28 outputs a detection signal indicating the presence or absence of an abnormality at the monitoring location to the control unit 10. The control unit 10 executes a compression ratio switching process (described later) in accordance with the detection signal output from the detection unit 28, thereby controlling the compression ratio of the video signal by the video compression unit 31 and the audio compression unit 3 At least one of the compression ratios of the audio signal according to 2 is changed according to the presence or absence of an abnormality.
例えば、 制御部 1 0は、 圧縮率切り換え処理において、 ビデオ圧縮部 3 1の映 像レート (フレームレート、 ビットレート等) や解像度などを制御する。 また、 圧縮率切り換え処理にぉレ、て、 制御部 1 0は、 例えば、 スィッチ SW 1とスイツ チ SW 2のオン/オフ状態を制御する。  For example, the control unit 10 controls the video rate (frame rate, bit rate, etc.) and resolution of the video compression unit 31 in the compression ratio switching process. In addition, in the compression ratio switching process, the control unit 10 controls, for example, the on / off state of the switch SW1 and the switch SW2.
具体的には、 検出部 2 8から出力される検出信号により異常がないと判定され る場合 (通常状態)には、制御部 1 0は、映像信号の圧縮率を高く設定するため、 ビデオ圧縮部 3 1の映像レートを低レベル (例えば、 3 H z )に設定する。また、 制御部 1 0は、 スィッチ SW 1をオン状態に、 スィツチ SW 2をオフ状態に設定 して、 ビデオ圧縮部 3 1と多重化部 3 3間の接続状態のみをオン状態に、 オーデ ィォ圧縮部 3 2と多重化部 3 3間の接続状態をオフ状態とする。 この場合、 多重 ィ匕部 3 3では、 映像信号の圧縮率を高く設定した圧縮符号化で得られた符号化ビ デォ信号に基づレ、て、多重化データが生成されるため、長時間記録が可能である。 一方、 検出部 2 8から出力される検出信号により異常が発生したと判定される 場合 (異常状態) には、 制御部 1 0は、 映像信号の圧縮率を低く設定するため、 ビデオ圧縮部 31の映像レートを高レベル (例えば、 30Hz) に設定する。 ま た、 制御部 10は、 スィッチ SW1をオン状態に、 スィッチ SW2をオン状態に 設定して、 ビデオ圧縮部 31と多重ィ匕部 33間の接続状態と、 オーディオ圧縮部 32と多重化部 33間の接続状態を共にオン状態とする。 この場合、 多重化部 3 3では、 映像信号の圧縮率を低く設定した圧縮符号化で得られた符号化ビデオ信 号と、 符号化オーディオ信号とに基づいて、 多重ィ匕データが生成されるため、 画 像や音声が詳細に記録される。 Specifically, when it is determined from the detection signal output from the detection unit 28 that there is no abnormality (in a normal state), the control unit 10 sets the video signal compression ratio to a high level, so that the video compression Set the video rate of unit 31 to a low level (for example, 3 Hz). Further, the control unit 10 sets the switch SW 1 to the on state and sets the switch SW 2 to the off state, turns on only the connection state between the video compression unit 31 and the multiplexing unit 33, and turns on the audio. The connection state between the compression unit 32 and the multiplexing unit 33 is turned off. In this case, the multiplexing unit 33 generates multiplexed data based on the coded video signal obtained by the compression coding in which the compression ratio of the video signal is set to be high. Time recording is possible. On the other hand, if it is determined that an abnormality has occurred based on the detection signal output from the detection unit 28 (abnormal state), the control unit 10 sets the compression ratio of the video signal low, The video rate of the video compression unit 31 is set to a high level (for example, 30 Hz). Further, the control unit 10 sets the switch SW1 to the ON state and sets the switch SW2 to the ON state, and sets the connection state between the video compression unit 31 and the multiplexing unit 33, and the audio compression unit 32 and the multiplexing unit 33. The connection state between them is turned on. In this case, the multiplexing unit 33 generates multiplexed data based on the coded video signal obtained by the compression coding in which the compression ratio of the video signal is set low and the coded audio signal. Therefore, images and sounds are recorded in detail.
図 2は、 図 1に示した監視システムにおける多重化部 33が行う多重化処理を 説明するための図である。  FIG. 2 is a diagram for explaining a multiplexing process performed by the multiplexing unit 33 in the monitoring system shown in FIG.
図 2に示したように、 多重化部 33は、 ビデオ圧縮部 31から出力される符号 化ビデオ信号によつて構成される映像データ (V— 1,... V-7) と、オーディ ォ圧縮部 32から出力される符号化オーディォ信号によって構成される音声デー タ (A_l,... A— 3) を、 時間多重して 1つのデータストリームにまとめる。 制御部 10は、 多重化部 33から供給されるデータストリームを、 時間順に記録 部 40の記録媒体 42へ書き込むことによって監視データが蓄積される。 一般的 に、このデータストリームには時刻情報(タイムスタンプ)が含まれているため、 ストリ一ムが無ければ記録しなくても、 再生するときは正常に再生できる。 図 5は、 本発明の一実施例に係る監視システムを示す。  As shown in FIG. 2, the multiplexing unit 33 includes video data (V-1,..., V-7) constituted by the encoded video signals output from the video compression unit 31 and audio data. The audio data (A_l,... A-3) composed of the coded audio signal output from the compression unit 32 is time-multiplexed and combined into one data stream. The control unit 10 stores the monitoring data by writing the data stream supplied from the multiplexing unit 33 to the recording medium 42 of the recording unit 40 in chronological order. Generally, since this data stream contains time information (time stamp), it can be normally reproduced when it is reproduced without recording if there is no stream. FIG. 5 shows a monitoring system according to one embodiment of the present invention.
図 5の監視システムでは、 図 1の構成要素に加え、 CPU10と、 ROM11 と、 RAMI 2と、 スィツチ 13 (SW3) と、 タイマー 14と、 MP EGデコ ーダ 15とが、 バス 18によって相互に接続されている。 MP EGデコーダ 15 の出力には、デジタル 'アナログ (DA)変換器 16と、デジタル 'アナログ (D A) 変腿 17が接続される。  In the monitoring system of FIG. 5, in addition to the components of FIG. 1, the CPU 10, the ROM 11, the RAMI 2, the switch 13 (SW3), the timer 14, and the MPEG decoder 15 are interconnected by the bus 18. It is connected. The output of the MPEG decoder 15 is connected to a digital / analog (DA) converter 16 and a digital / analog (DA) converter 17.
MPEGデコーダ 15は、 記録部 40から読み出された多重化データを分離、 復号化する機能を有する。 MP E Gデコーダ 15は、 MPEGビデオ規格に準拠 したビデオデコーダにより構成される。 復号化されたビデオデータは、 DA変換 器 16により映像信号として出力され、 復号化されたオーディォデータは D A変 «17により音声信号として出力される。  The MPEG decoder 15 has a function of separating and decoding multiplexed data read from the recording unit 40. The MPEG decoder 15 is composed of a video decoder conforming to the MPEG video standard. The decoded video data is output as a video signal by the DA converter 16, and the decoded audio data is output as an audio signal by the DA converter 17.
図 5の監視システムにおいて、 CPU10と、 ROM11と、 RAMI 2力 図 1の構成における制御部 10を構成する。 C PU 10は、 ROM 11に予め記 録されたプログラムにしたがって、 後述の圧縮率切り換え処理を RAMI 2の作 業領域において実行することにより'、 本発明の監視システムにおける制御部の機 能を実現する。 In the monitoring system shown in Fig. 5, the CPU 10, ROM 11, and RAMI The controller 10 in the configuration of FIG. 1 is configured. The CPU 10 implements the function of the control unit in the monitoring system of the present invention by executing a compression ratio switching process described later in the work area of the RAMI 2 according to a program recorded in the ROM 11 in advance. I do.
スィッチ 13 (SW3) は、 CPU 10からの切替え信号に応じて、 図 5の監 視システムの監視状態をオン状態又はオフ状態に切替える。 図 5の監視システム の監視状態を開始する場合に、 C P U 10はスィツチ 13をオン状態とし、 終了 する場合に、 スィッチ 13をオフ状態とする。  The switch 13 (SW3) switches the monitoring state of the monitoring system of FIG. 5 to an on state or an off state according to a switching signal from the CPU 10. When the monitoring state of the monitoring system of FIG. 5 is started, the CPU 10 turns the switch 13 on, and when it ends, the switch 13 turns the switch 13 off.
タイマー 14は、 CPU10を一定の時間だけ待機状態に設定する場合に、 そ の待機時間を管理するための時間情報を CPU 10へ供給する。  The timer 14 supplies time information for managing the standby time to the CPU 10 when the CPU 10 is set in the standby state for a certain time.
図 5の監視システムにおレ、て、 図 1のビデオ圧縮部 31、 オーディォ圧縮部 3 2、 多重化部 33、 スィッチ SW1及ぴスィッチ SW2は、 MP EGエンコーダ 30内に設けられている。 CPU 10と MP EGエンコーダ 30はバス 18によ つて接続されている。  In the monitoring system of FIG. 5, the video compression unit 31, the audio compression unit 32, the multiplexing unit 33, the switch SW1 and the switch SW2 of FIG. 1 are provided in the MPEG encoder 30. CPU 10 and MPEG encoder 30 are connected by bus 18.
モニタカメラ 20からの映像は、 アナログ ·デジタル (AD) 変難 23によ つてデータ化される。 AD変 » 23からの映像データは、 ビデオ圧縮部 31に よって圧縮符号化される。 また、 モニタマイク 21からの音声は、 アナログ ·デ ジタル (AD) 変 ¾24よってデータ化される。 AD変 »24からの音声デ ータは、 オーディォ圧縮部 32によつて圧縮符号化される。  The image from the monitor camera 20 is converted into data by an analog / digital (AD) conquest 23. Video data from the AD converter 23 is compression-encoded by the video compression unit 31. The sound from the monitor microphone 21 is converted into data by an analog digital (AD) converter 24. The audio data from the AD converter 24 is compression-encoded by the audio compression unit 32.
図 5の監視システムにおいて、 スィッチ SW1、 スィッチ SW2、 及ぴ多重化 部 33の各機能は、 図 1の構成における、 スィッチ SW1、 スィッチ SW2、 及 ぴ多重化部 33と同一である。  In the monitoring system of FIG. 5, the functions of the switch SW1, the switch SW2, and the multiplexing unit 33 are the same as those of the switch SW1, the switch SW2, and the multiplexing unit 33 in the configuration of FIG.
図 5の監視システムにおいて、 検出回路 26と検出回路 27が図 1の構成にお ける検出部 28を構成する。 検出回路 26と検出回路 27はバス 18を介して C PU10と接続されている。  In the monitoring system of FIG. 5, the detection circuit 26 and the detection circuit 27 constitute the detection unit 28 in the configuration of FIG. The detection circuit 26 and the detection circuit 27 are connected to the CPU 10 via the bus 18.
検出回路 26は、 AD変換器 23からの映像データを受取って、 映像データの 変化を検出する。 例えば、 監視箇所が無人の状態だと動く対象物がないため、 入 力された 1画面の映像データと 1フレーム前の映像データとで画素毎に大きさを 比較すると差分が小さい。 したがって、 1画面分の累計も小さくなる。 監視箇所 で何力働く対象物が映れば、差分の累計が大きくなることを利用して、 検出回路 26は、 差分の累計がある閾値より大きい場合に、 監視箇所に異常が発生したこ とを示す信号を CPU 10へ出力する。 The detection circuit 26 receives the video data from the AD converter 23 and detects a change in the video data. For example, if there is no moving object when the monitoring location is unattended, the difference is small when comparing the size of the input video data of one screen with the video data of the previous frame for each pixel. Therefore, the total for one screen also becomes smaller. Monitoring location The detection circuit 26 uses the fact that the cumulative difference becomes large when an object that acts on the object is reflected by the camera.If the cumulative difference is larger than a certain threshold value, the detection circuit 26 indicates that an abnormality has occurred in the monitoring location. Output signal to CPU 10.
センサ 22は、 例えば、 監視箇所のドアや窓の開閉部に取り付けた、 磁石によ るスィッチ等により構成される。 監視システムが監視状態のとき、 監視箇所のド ァゃ窓が開レ、た場合、 センサ 22は、 監視箇所に異常が発生したことを示す信号 を CPU10へ出力する。  The sensor 22 is configured by, for example, a magnet-based switch attached to the opening / closing part of the door or window at the monitoring location. If the window of the monitoring location is opened while the monitoring system is in the monitoring state, the sensor 22 outputs to the CPU 10 a signal indicating that an abnormality has occurred in the monitoring location.
検出回路 27は、 AD変換器 24からの音声データを受取って、 音声データの 変化を検出する。 例えば、 検出回路 27は、 音声データの絶対値を取り、 数十サ ンプルの 2乗平均値を求め、 その求めた平均値の大きさを示す信号を CPU10 へ出力する。 監視箇所が無人の状態であるときには、 音が無いため平均レベルは 低い。 一方、 監視箇所で何らかの音が発生すれば、 一時的に平均レベルが上昇す る。 監視システムが監視状態のとき、 検出回路 27から出力される検出信号の大 きさがある閾値より大きレ、場合に、 CPU10は、 監視箇所に異常が発生したと 判定する。  The detection circuit 27 receives the audio data from the AD converter 24 and detects a change in the audio data. For example, the detection circuit 27 takes the absolute value of the audio data, finds the mean square value of several tens of samples, and outputs a signal indicating the magnitude of the found mean value to the CPU 10. When the monitoring location is unmanned, there is no sound and the average level is low. On the other hand, if any noise is generated at the monitored location, the average level temporarily increases. When the monitoring system is in the monitoring state, if the magnitude of the detection signal output from the detection circuit 27 is larger than a certain threshold, the CPU 10 determines that an abnormality has occurred in the monitoring location.
記録部 40は、 ハードディスクなどの記憶装置であり、 I D Eィンターフェイ ス部 41と記録媒体 42とを含む。 記録部 40は、 バス 18を介して CPU 10 と接続されている。 CPU10は、 多重化部 33から I DEインターフェイス部 41を介して供給されるデータストリームを、 時間順に記録部 40の記録媒体 4 2へ書き込むことにより、 多重化データを記録部 40に記録し保持する。 また、 I DEインターフェイス部 41は、 MP EGデコーダ 15と接続されている。 図 3は、 図 5の監視システムにおける C PU 10が実行する圧縮率切り換え処 理の一例を説明するためのフロー図である。  The recording unit 40 is a storage device such as a hard disk, and includes an IDE interface unit 41 and a recording medium 42. The recording unit 40 is connected to the CPU 10 via the bus 18. The CPU 10 records and holds the multiplexed data in the recording unit 40 by writing the data stream supplied from the multiplexing unit 33 via the IDE interface unit 41 to the recording medium 42 of the recording unit 40 in chronological order. . Further, the IDE interface section 41 is connected to the MPEG decoder 15. FIG. 3 is a flowchart illustrating an example of a compression ratio switching process performed by the CPU 10 in the monitoring system of FIG.
図 5の監視システムが監視状態にあるとき、 図 3の圧縮率切り換え処理が開始 されると、 ステップ S 31において、 CPU 10は、 スィッチ SW1をオン状態 に、スィツチ SW2をオフ状態に、ビデオ圧縮部 31の映像レートを低レベル(3 Hz) に設定する。  When the compression ratio switching process shown in FIG. 3 is started while the monitoring system shown in FIG. 5 is in the monitoring state, in step S31, the CPU 10 turns on the switch SW1 and turns off the switch SW2 to set the video compression. Set the video rate of section 31 to low level (3 Hz).
したがって、 監視状態の開始時の通常状態において、 CPU 10は、 ビデオ圧 縮部 31と多重化部 33間の接続状態をオン状態に、 オーディオ圧縮部 32と多 重化部 33間の接続状態をオフ状態に設定して、 ビデオ圧縮部 31による映像信 号の圧縮率を高レベルに設定する。 多重化部 33では、 圧縮率を高く設定した圧 縮符号化で得られた符号化ビデオ信号に基づレヽて多重化データが生成されるため、 長時間記録が可能である。 Therefore, in the normal state at the start of the monitoring state, the CPU 10 turns on the connection state between the video compression unit 31 and the multiplexing unit 33 and turns on the connection state between the audio compression unit 32 and the audio compression unit 32. The connection state between the multiplexing units 33 is set to the off state, and the compression ratio of the video signal by the video compression unit 31 is set to a high level. In the multiplexing unit 33, multiplexed data is generated based on the coded video signal obtained by the compression coding in which the compression ratio is set high, so that long-time recording is possible.
ステップ S 32において、 CPU10は、 センサ 22、 検出回路 26、 又は検 出回路 27から出力される検出信号に応じて、 監視箇所に異常が発生した力否か を判定する。 ステップ S 32の判定結果が NOのとき、 CPU10は、 ステップ S 32を繰り返し実行して、 監視箇所における異常の有無を監視する。  In step S32, the CPU 10 determines whether or not a power at which an abnormality has occurred in the monitoring location is determined according to the detection signal output from the sensor 22, the detection circuit 26, or the detection circuit 27. If the decision result in the step S32 is NO, the CPU 10 repeatedly executes the step S32, and monitors whether there is any abnormality in the monitoring location.
ステップ S 32の判定結果が YESのとき、 ステップ S 33において、 CPU 10は、 スィツチ SW1をオン状態に、 スィツチ SW2をオン状態に、 ビデオ圧 縮部 31の映像レートを高レベル (30Hz) に設定する。  If the decision result in the step S32 is YES, in a step S33, the CPU 10 sets the switch SW1 to the ON state, the switch SW2 to the ON state, and sets the video rate of the video compression unit 31 to the high level (30 Hz). I do.
したがって、 監視箇所に異常が発生した場合、 CPU10は、 ビデオ圧縮部 3 1と多重化部 33間の接続状態をオン状態に、 オーディオ圧縮部 32と多重化部 33間の接続状態をオン状態に設定して、 ビデオ圧縮部 31による映像レートを 高レベルに設定する (すなわち、映像信号の圧縮率を低レベルに設定する)。多重 化部 33では、圧縮率を低く設定した圧縮符号化で得られた符号化ビデオ信号と、 符号化オーディォ信号とに基づいて多重化データが生成されるため、 画質や音質 を優先した詳細な画像や音声の記録が可能となる。  Therefore, when an abnormality occurs in the monitoring part, the CPU 10 turns on the connection state between the video compression unit 31 and the multiplexing unit 33 and turns on the connection state between the audio compression unit 32 and the multiplexing unit 33. Then, set the video rate of the video compression unit 31 to a high level (that is, set the compression rate of the video signal to a low level). The multiplexing unit 33 generates multiplexed data based on the coded video signal obtained by the compression coding at a low compression ratio and the coded audio signal, so that detailed image quality and sound quality are prioritized. Images and sounds can be recorded.
ステップ S34において、 C P U 10は、 スィッチ 13 (SW3) の出力信号 に応じて図 5の監視システムが監視状態を終了した力否かを判定する。 ステップ S 34の判定結果が NOのとき、 CPU10はステップ S 34を繰り返し実行し て監視状態が終了した力否かを監視する。 ステップ S 34の判定結果が Y E Sの とき、 図 3の圧縮率切替え処理を終了する。  In step S34, the CPU 10 determines whether or not the monitoring system in FIG. 5 has finished the monitoring state according to the output signal of the switch 13 (SW3). If the decision result in the step S34 is NO, the CPU 10 repeatedly executes the step S34 to monitor whether or not the force has ended the monitoring state. When the determination result of step S34 is YES, the compression ratio switching process of FIG. 3 ends.
図 3の例では、 CPU 10は、 監視状態で異常が発生していない場合、 できる だけ長時間記録をするために、 単位時間当たりに記録するデータの発生量を抑え るように制御する。  In the example of FIG. 3, the CPU 10 controls so that the amount of data to be recorded per unit time is suppressed in order to record as long as possible when no abnormality occurs in the monitoring state.
図 3の圧縮率切替え処理において、 監視開始時の通常状態では、 C PU 10は ビデオ圧縮部 31による 象レートを、 映像が 1秒に 3フレームずつ圧縮される ように設定し、 SW1をオン状態とし、 ビデオ圧縮部 31からの符号化ビデオ信 号を多重ィ匕部 3 3へ出力する。 また、 C P U 1 0は、 SW 2をオフ状態として、 オーディオ圧縮部 3 2からの符号化オーディオ信号が多重化部 3 3へ出力されな いように設定する。 通常、 カメラからの映像信号は 1秒間に 3 0フレームを含む ため、 図 3の圧縮率切替え処理を行うことにより、 発生する映像データの量は 1 0分の 1に削減される。 また、 音声データも記録しないため、 記録部 3 4におい て記録されるデータの量が大幅に削減される。 In the compression ratio switching process shown in Fig. 3, in the normal state at the start of monitoring, the CPU 10 sets the target rate of the video compression unit 31 so that video is compressed three frames per second, and turns on SW1. And the encoded video signal from the video compression unit 31 The number is output to the multiplexing unit 33. Further, the CPU 10 sets the SW 2 to the OFF state so that the encoded audio signal from the audio compression unit 32 is not output to the multiplexing unit 33. Normally, since the video signal from the camera contains 30 frames per second, the amount of video data generated is reduced to one tenth by performing the compression ratio switching process shown in FIG. Also, since no audio data is recorded, the amount of data recorded in the recording unit 34 is greatly reduced.
図 3の圧縮率切替え処理によれば、 監視箇所に異常が発生した場合、 C P U 1 0は、 SW 1及ぴ S W 2を共にオン状態とし、 ビデオ圧縮部 3 1による映像レー トを、 映像を 1秒に 3 0フレーム圧縮するように設定する。 したがって、 異常状 態では、 画質や音質を優先した詳細な画像や音声の記録が可能となる。  According to the compression ratio switching process shown in FIG. 3, when an abnormality occurs in the monitoring location, the CPU 10 turns on both the SW 1 and the SW 2 to change the video rate by the video compression unit 31 to the video. Set to compress 30 frames per second. Therefore, in an abnormal state, it is possible to record a detailed image and sound with priority given to image quality and sound quality.
図 3の実施例では、 監視箇所の通常/異常状態に応じてビデオ圧縮部 3 1によ る圧縮率を変更するために、 映像レートを低レベル/高レベルに切替える方法を 用いたが、 本発明の監視システムは上記実施例に限定されるものではない。 例えば、 監視状態の開始時の通常状態では、 フレームの画素数を通常の 1 / 4 の画素に間引くことにより、 映像の解像度のレベルを低くすると共に、 映像のビ ットレートを低レベルに設定した圧縮符号化を行い、 異常発生時には、 映像の解 像度を高レベルにすると共に、 映像のビットレートを低レベルに設定した圧縮符 号化を行う処理を用いてもよい。  In the embodiment of FIG. 3, the method of switching the video rate between low level and high level was used in order to change the compression ratio by the video compression unit 31 according to the normal / abnormal state of the monitoring location. The monitoring system of the present invention is not limited to the above embodiment. For example, in the normal state at the start of the monitoring state, the number of pixels in the frame is thinned out to 1/4 of the normal pixels to reduce the video resolution level and set the video bit rate to a low level. The encoding may be performed, and when an error occurs, a process may be used in which the resolution of the video is set to a high level and the compression encoding is performed with the bit rate of the video set to a low level.
図 4は、 図 5の監視システムにおける制御部が実行する圧縮率切り換え処理の 他の例を説明するためのフロー図である。  FIG. 4 is a flowchart for explaining another example of the compression ratio switching process executed by the control unit in the monitoring system of FIG.
図 5の監視システムが監視状態にあるとき、 図 4の圧縮率切り換え処理が開始 されると、 ステップ S 4 1において、 C P U 1 0は、 スィッチ SW 1とスィッチ SW 2を共にオフ状態に、ビデオ圧縮部 3 1の映像レートを高レベル ( 3 0 H z ) に設定する。  When the compression ratio switching process of FIG. 4 is started while the monitoring system of FIG. 5 is in the monitoring state, in step S41, the CPU 10 turns off both the switch SW1 and the switch SW2, and sets the video Set the video rate of the compression unit 31 to a high level (30 Hz).
したがって、 監視状態の開始時の通常状態において、 C P U 1 0は、 ビデオ圧 縮部 3 1と多重化部 3 3間の接続状態と、 オーディォ圧縮部 3 2と多重化部 3 3 間の接続状態とを共にオフ状態に設定するため、 記録部 4 0では、 多重化部 3 3 からの多重化データによる記録が行われない。  Therefore, in the normal state at the start of the monitoring state, the CPU 10 determines the connection state between the video compression section 31 and the multiplexing section 33 and the connection state between the audio compression section 32 and the multiplexing section 33. Since both are set to the off state, the recording unit 40 does not perform recording using the multiplexed data from the multiplexing unit 33.
ステップ S 4 2において、 C P U 1 0は、 センサ 2 2、 検出回路 2 6又は検出 回路 27から出力される検出信号に応じて、 監視箇所に異常が発生した力否かを 判定する。 ステップ S 32の判定結果が NOのとき、 CPU 10は、 ステップ S 42を繰り返し実行して、 監視箇所における異常の有無を監視する。 In step S42, the CPU 10 sets the sensor 22, the detection circuit 26, or the detection In accordance with the detection signal output from the circuit 27, it is determined whether or not the force at which an abnormality has occurred in the monitoring location. If the decision result in the step S32 is NO, the CPU 10 repeatedly executes the step S42, and monitors whether there is any abnormality in the monitoring location.
ステップ S 42の判定結果が YESの場合、 ステップ S 43において、 CPU 10は、 スィッチ SW1とスィッチ SW2を共にオン状態に設定する。  If the decision result in the step S42 is YES, in a step S43, the CPU 10 sets both the switch SW1 and the switch SW2 to the ON state.
ステップ S 44において、 CPU 10は、 タイマー 14を用いて所定の時間が 経過するまで待機状態を維持する。  In step S44, the CPU 10 uses the timer 14 to maintain the standby state until a predetermined time has elapsed.
ステップ S 44が完了した後、 ステップ S 45において、 CPU 10は、 セン サ 22、 検出回路 26又は検出回路 27から出力される検出信号に応じて、 監視 箇所に異常が発生しているか否かを再度判定する。 ステップ S 45の判定結果が YESのとき、 CPU10は、ステップ S44— S45を繰り返し実行して、監視 箇所における異常の発生を確認する。  After the completion of step S44, in step S45, the CPU 10 determines whether an abnormality has occurred in the monitoring location according to the detection signal output from the sensor 22, the detection circuit 26, or the detection circuit 27. Judge again. If the decision result in the step S45 is YES, the CPU 10 repeatedly executes the steps S44 to S45 to confirm the occurrence of an abnormality in the monitoring location.
したがって、 監視箇所に異常が発生している間、 CPU 10は、 ビデオ圧縮部 31と多重化部 33間の接続状態をオン状態に、 オーディオ圧縮部 32と多重化 部 33間の接続状態をオン状態に設定して、 ビデオ圧縮部 31による映像レート を高レベルに設定する (すなわち、映像信号の圧縮率を低レベルに設定する)。多 重化部 33では、 圧縮率を低く設定した圧縮符号化で得られた符号化ビデオ信号 と、 符号化オーディオ信号とに基づいて多重化データが生成されるため、 画質や 音質を優先した詳細な画像や音声の記録が可能となる。  Therefore, while an abnormality occurs in the monitoring part, the CPU 10 turns on the connection state between the video compression unit 31 and the multiplexing unit 33 and turns on the connection state between the audio compression unit 32 and the multiplexing unit 33. The state is set, and the video rate by the video compression unit 31 is set to a high level (that is, the compression rate of the video signal is set to a low level). The multiplexing unit 33 generates multiplexed data based on the coded video signal obtained by compression coding with a low compression ratio and the coded audio signal. Recording of images and sounds.
ステップ S 45の判定結果が NOのとき、 ステップ S 46において、 CPU1 0は、 スィッチ 13 (SW3) の出力信号に応じて図 5の監視システムが監視状 態を終了したか否かを判定する。 ステップ S 46の判定結果が N Oのとき、 CP U10は、 上述のステップ S 41— S45を繰り返し実行する。 ステップ S 46 の判定結果が YE Sのとき、 図 4の圧縮率切替え処理を終了する。  If the decision result in the step S45 is NO, in a step S46, the CPU 10 decides whether or not the monitoring system in FIG. 5 has finished the monitoring state according to the output signal of the switch 13 (SW3). When the determination result in step S46 is NO, the CPU 10 repeatedly executes steps S41 to S45 described above. When the result of the determination in step S46 is YES, the compression ratio switching process of FIG. 4 ends.
図 4の例において、 CPU 10は、 監視状態の開合時には、 スィッチ SW1と スィツチ SW2を共にオフ状態に設定して何も記録しない。 監視箇所に異常が発 生した場合に、 スィッチ SW1とスィッチ SW2を共にオフ状態に設定して記録 を開始する。 所定の時間だけ経過した後、 監視箇所にまだ動く対象物などがある 場合には、 映像及び音声の記録を続ける。 所定の時間だけ経過した後、 異常状態が無くなれば、 C P U 1 0は、 再び、 ス イッチ SW 1とスィッチ SW 2を共にオフ状態に設定して、 何も記録しない。 図 4の圧縮率切替え処理によれば、 監視状態の開始時の通常状態において、 ビ デォ圧縮部 3 1と多重化部 3 3間の接続状態と、 オーディオ圧縮部 3 2と多重化 部 3 3間の接続状態とを共にオフ状態に設定するため、 記録部 4 0では、 多重化 部 3 3からの多重化データによる記録が行われない。 したがって、 記録部 3 4に おいて記録されるデータの量が大幅に削減される。 監視箇所に異常が発生した場 合、 スィッチ SW 1及ぴスィッチ SW 2を共にオン状態に設定する。 ビデオ圧縮 部 3 1による映像レートを、映像を 1秒に 3 0フレーム圧縮するように設定する。 したがって、 異常状態では、 画質や音質を優先した詳細な画像や音声の記録が可 食 となる。 In the example of FIG. 4, when the monitoring state is opened, the CPU 10 sets both the switch SW1 and the switch SW2 to the OFF state and does not record anything. If an error occurs in the monitoring location, switch SW1 and switch SW2 are both turned off and recording starts. After a predetermined period of time, if there is still a moving object at the monitored location, video and audio recording will be continued. If the abnormal state disappears after the lapse of a predetermined time, the CPU 10 again sets both the switch SW1 and the switch SW2 to the OFF state and does not record anything. According to the compression ratio switching process in FIG. 4, in the normal state at the start of the monitoring state, the connection state between the video compression unit 31 and the multiplexing unit 33, the audio compression unit 32 and the multiplexing unit 3 Since both the connection states between the three units are set to the off state, the recording unit 40 does not perform recording using the multiplexed data from the multiplexing unit 33. Therefore, the amount of data recorded in the recording unit 34 is greatly reduced. If an error occurs in the monitoring location, set both switch SW1 and switch SW2 to ON. The video rate set by the video compression unit 31 is set so that the video is compressed by 30 frames per second. Therefore, in an abnormal state, it is edible to record detailed images and sounds with priority given to image quality and sound quality.
以上、 本発明を実施例に基づいて説明したが、 本発明は上記実施例に限定され るものではなく、 請求項に記載した範囲内で様々な変形が可能である。  As described above, the present invention has been described based on the embodiments. However, the present invention is not limited to the above embodiments, and various modifications can be made within the scope described in the claims.

Claims

請求の範囲 The scope of the claims
1 · カメラからの映像信号を圧縮符号化して符号化ビデオ信号を生成するビデオ 圧縮部と、 1 · a video compression section for compressing and encoding a video signal from a camera to generate an encoded video signal;
マイクからの音声信号を圧縮符号化して符号ィ匕オーディォ信号を生成するォー ディォ圧縮部と、  An audio compression unit that compresses and encodes an audio signal from a microphone to generate an encoded audio signal;
前記符号化ビデオ信号及び前記符号化オーディォ信号を多重化して多重化デー タを生成する多重化部と、  A multiplexing unit that multiplexes the coded video signal and the coded audio signal to generate multiplexed data;
前記力メラ及び前記マイクを配設した監視箇所における異常の有無を検出する 信号を出力する検出部とを備える監視システムであって、  A detection unit that outputs a signal for detecting the presence or absence of an abnormality at a monitoring location where the force mellar and the microphone are provided,
前記検出信号に応じて、 前記ビデオ圧縮部による前記映像信号の圧縮率と前記 オーディオ圧縮部による前記音声信号の圧縮率の少なくとも一方を変更する制御 部を備えることを特徴とする監視システム。 .  A monitoring system, comprising: a control unit that changes at least one of a compression ratio of the video signal by the video compression unit and a compression ratio of the audio signal by the audio compression unit in accordance with the detection signal. .
2. 前記制御部は、 前記監視箇所に異常が発生していない場合に、 前記ビデオ圧 縮部による前記映像信号の圧縮率を第 1の所定値に設定し、 前記監視箇所に異常 が発生した場合に、 前記ビデオ圧縮部による前記映像信号の圧縮率を、 前記第 1 の所定値より低い、 第 2の所定値に設定することを特徴とする請求項 1記載の監 視システム。 2. The control unit sets a compression ratio of the video signal by the video compression unit to a first predetermined value when no abnormality has occurred in the monitoring location, and an abnormality has occurred in the monitoring location. 2. The monitoring system according to claim 1, wherein a compression rate of the video signal by the video compression unit is set to a second predetermined value lower than the first predetermined value.
3 . 前記制御部は、 前記監視箇所に異常が発生した場合に、 前記ビデオ圧縮部の 映像レートを通常時より高く設定することを特徴とする請求項 1記載の監視シス テム。 3. The surveillance system according to claim 1, wherein the control unit sets a video rate of the video compression unit to be higher than usual when an abnormality occurs in the monitoring location.
4. 前記制御部は、 前記監視箇所に異常が発生していない場合に、 前記オーディ ォ圧縮部と前記多重化部間の接続状態をオフ状態に設定し、 前記監視箇所に異常 が発生した場合に、 前記オーディオ圧縮部と前記多重化部間の接続状態をオン状 態に設定することを特徴とする請求項 1記載の監視システム。 4. The control unit sets a connection state between the audio compression unit and the multiplexing unit to an off state when no abnormality occurs in the monitoring part, and when an abnormality occurs in the monitoring part. 2. The monitoring system according to claim 1, wherein a connection state between the audio compression unit and the multiplexing unit is set to an ON state.
5 . 前記監視システムは、 前記ビデオ圧縮部と前記多重化部間の接続状態を切替 える第 1のスィツチと、 前記オーディオ圧縮部と前記多重化部間の接続状態を切 替える第 2のスィツチとを備えることを特徴とする請求項 1記載の監視システム。 5. The monitoring system includes a first switch for switching a connection state between the video compression unit and the multiplexing unit, and a second switch for switching a connection state between the audio compression unit and the multiplexing unit. The monitoring system according to claim 1, further comprising:
6 . 前記制御部は、 前記監視箇所に異常が発生した場合に、 前記第 1のスィッチ 及び前記第 2のスィツチを共にオン状態に設定することを特徴とする請求項 5記 载の監視システム。 6. The monitoring system according to claim 5, wherein the control unit sets both the first switch and the second switch to an ON state when an abnormality occurs in the monitoring location.
7 . 前記制御部は、 前記監視箇所に異常が発生していない場合に、 前記第 1のス イッチをオン状態に、 前記第 2のスィツチをオフ状態に設定することを特徴とす る請求項 5記載の監視システム。 7. The control unit sets the first switch to an on state and sets the second switch to an off state when no abnormality occurs in the monitoring part. 5. Monitoring system according to 5.
8 . 前記制御部は、 前記監視箇所に異常が発生していない場合に、 前記第 1のス ィツチ及び前記第 2のスィツチを共にオフ状態に設定し、 前記監視箇所に異常が 発生した場合に、 前記第 1のスィツチ及ぴ前記第 2のスィツチを共にオン状態に 設定することを特徴とする請求項 5記載の監視システム。 8. The control unit sets both the first switch and the second switch to an OFF state when no abnormality has occurred in the monitoring location, and sets an error in the monitoring location when the abnormality has occurred in the monitoring location. 6. The monitoring system according to claim 5, wherein both the first switch and the second switch are set to an ON state.
9 . 映像信号を圧縮符号化して符号化ビデオ信号を生成するビデオ圧縮部と、 音声信号を圧縮符号化して符号化オーディォ信号を生成するオーディォ圧縮部 と、 9. A video compression unit that compresses and encodes a video signal to generate an encoded video signal, and an audio compression unit that compresses and encodes an audio signal to generate an encoded audio signal.
前記符号化ビデオ信号及び前記符号化オーディォ信号を多重化して多重化デー タを生成する多重化部と、  A multiplexing unit that multiplexes the coded video signal and the coded audio signal to generate multiplexed data;
前記ビデオ圧縮部と前記多重化部間の接続状態を切替える第 1のスィツチと、 前記オーディォ圧縮部と前記多重化部間の接続状態を切替える第 2のスィツチ と  A first switch for switching a connection state between the video compression unit and the multiplexing unit, and a second switch for switching a connection state between the audio compression unit and the multiplexing unit.
を備えることを特徴とするエンコーダ回路。  An encoder circuit comprising:
1 0 . 所定の監視箇所に異常が発生した場合に、 前記第 1のスィッチ及び前記第 2のスィツチは共にオン状態になるように制御されることを特徴とする請求項 9 記載のエンコーダ回路。 10. The method according to claim 9, wherein when an abnormality occurs in a predetermined monitoring location, both the first switch and the second switch are controlled to be turned on. The described encoder circuit.
1 1 . 所定の監視箇所に異常が発生していない場合に、 前記第 1のスィッチはォ ン状態に、 前記第 2のスィツチはオフ状態になるように制御されることを特徴と11. When no abnormality has occurred in a predetermined monitoring location, the first switch is controlled to be in an on state, and the second switch is controlled to be in an off state.
) する請求項 9記載のエンコーダ回路。 10. The encoder circuit according to claim 9, wherein:
1 2 . 所定の監視箇所に異常が発生していない に、 前記ビデオ圧縮部による 前記映像信号の圧縮率が第 1の所定値に設定され、 前記監視箇所に異常が発生し た場合に、 前記ビデオ圧縮部による前記映像信号の圧縮率が、 前記第 1の所定値 より低い、 第 2の所定値に設定されるように制御されることを特徴とする請求項 9記載のエンコーダ回路。 12. If no abnormality has occurred in the predetermined monitoring location, the compression rate of the video signal by the video compression unit is set to a first predetermined value, and if an abnormality has occurred in the monitoring location, 10. The encoder circuit according to claim 9, wherein a compression ratio of the video signal by the video compression unit is controlled to be set to a second predetermined value lower than the first predetermined value.
1 3 . 所定の監視箇所に異常が発生した場合に、 前記ビデオ圧縮部の映像レート が通常時より高く設定されよう制御されることを特徴とする請求項 9記載のェン コーダ回路。 13. The encoder circuit according to claim 9, wherein when an abnormality occurs in a predetermined monitoring location, the video rate of the video compression unit is controlled to be set higher than usual.
PCT/JP2003/004117 2003-03-31 2003-03-31 Monitoring system WO2004088981A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/004117 WO2004088981A1 (en) 2003-03-31 2003-03-31 Monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/004117 WO2004088981A1 (en) 2003-03-31 2003-03-31 Monitoring system

Publications (1)

Publication Number Publication Date
WO2004088981A1 true WO2004088981A1 (en) 2004-10-14

Family

ID=33105356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004117 WO2004088981A1 (en) 2003-03-31 2003-03-31 Monitoring system

Country Status (1)

Country Link
WO (1) WO2004088981A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325990A (en) * 1994-06-01 1995-12-12 Toshiba Corp Plant monitor device
JPH08336120A (en) * 1995-06-08 1996-12-17 Hitachi Ltd Method and device for transmission of remote information
JPH09322154A (en) * 1996-05-31 1997-12-12 Sony Corp Monitor video device
JPH1013857A (en) * 1996-06-27 1998-01-16 Sony Corp Video equipment
JP2000013744A (en) * 1998-06-19 2000-01-14 Nec Corp Time lapse recorder provided with abnormality detection function
JP2000050251A (en) * 1998-07-30 2000-02-18 Sekyurion Nijuyon Kk Cash transport truck burglarproof recording system, burglarproof recording method and recording medium
JP2000270347A (en) * 1999-03-17 2000-09-29 Sharp Corp Recorder and monitor system using the recorder
JP2000293937A (en) * 1999-04-06 2000-10-20 Hitachi Ltd Recording and reproducing device
JP2001103423A (en) * 1999-09-29 2001-04-13 Toshiba Corp Time-lapse recorder
JP2001333380A (en) * 2000-05-19 2001-11-30 Fujitsu Ltd Video monitoring-recording device
JP2002262273A (en) * 2001-02-28 2002-09-13 Hitachi Ltd Digital supervisory system and supervisory camera
JP2002290912A (en) * 2001-03-26 2002-10-04 Hitachi Ltd Digital recording and reproducing device
JP2002335492A (en) * 2001-05-08 2002-11-22 Asahi Optical Co Ltd Recording device for crime prevention system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325990A (en) * 1994-06-01 1995-12-12 Toshiba Corp Plant monitor device
JPH08336120A (en) * 1995-06-08 1996-12-17 Hitachi Ltd Method and device for transmission of remote information
JPH09322154A (en) * 1996-05-31 1997-12-12 Sony Corp Monitor video device
JPH1013857A (en) * 1996-06-27 1998-01-16 Sony Corp Video equipment
JP2000013744A (en) * 1998-06-19 2000-01-14 Nec Corp Time lapse recorder provided with abnormality detection function
JP2000050251A (en) * 1998-07-30 2000-02-18 Sekyurion Nijuyon Kk Cash transport truck burglarproof recording system, burglarproof recording method and recording medium
JP2000270347A (en) * 1999-03-17 2000-09-29 Sharp Corp Recorder and monitor system using the recorder
JP2000293937A (en) * 1999-04-06 2000-10-20 Hitachi Ltd Recording and reproducing device
JP2001103423A (en) * 1999-09-29 2001-04-13 Toshiba Corp Time-lapse recorder
JP2001333380A (en) * 2000-05-19 2001-11-30 Fujitsu Ltd Video monitoring-recording device
JP2002262273A (en) * 2001-02-28 2002-09-13 Hitachi Ltd Digital supervisory system and supervisory camera
JP2002290912A (en) * 2001-03-26 2002-10-04 Hitachi Ltd Digital recording and reproducing device
JP2002335492A (en) * 2001-05-08 2002-11-22 Asahi Optical Co Ltd Recording device for crime prevention system

Similar Documents

Publication Publication Date Title
US6608938B2 (en) Image data compression or expansion method and apparatus, and image transmission system and monitoring system using the method and device
US20070189728A1 (en) Method of recording and reproducing surveillance images in DVR
US20080111897A1 (en) Encoding Apparatus, Video Camera
JP2001245294A (en) Moving image reproduction method and moving image reproducing system
JP2007194928A (en) Remote monitoring device and method
US8311103B2 (en) Image recording apparatus for recording image data with display order field
JP4305055B2 (en) Image recording device
JP3592025B2 (en) Captured image recording device
JP4474063B2 (en) Digital surveillance camera system and control device
JP4337541B2 (en) Camera device, monitoring system, and camera device control method
WO2004088981A1 (en) Monitoring system
JP6604616B2 (en) Elevator monitoring device
JPH07231442A (en) Security monitor device
US6885773B2 (en) Method of detecting a fade change in image information based on intra-field dispersion values and intra-field DC levels
JP2001069510A (en) Video motor
JP2009033604A (en) Video signal coding apparatus and method
US6157770A (en) Moving picture data reproduction controlling system and method for reproducing moving picture data having block elements and minimum elements each with headers
JPH09298739A (en) Image extraction device
JP2001028755A (en) Image coder and image coding method
JP2004180345A (en) Photographed image recording apparatus
JP3307367B2 (en) Variable transfer rate coding device
JP3644056B2 (en) Encoding apparatus and encoding method
JP4867872B2 (en) Image processing apparatus, control method for the image processing apparatus, and program
JP3952926B2 (en) Video encoding apparatus and video encoding method
JPWO2008129648A1 (en) Frame rate conversion apparatus, frame rate conversion method, and moving picture encoding apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP