WO2004088005A1 - HIGH-DENSITY COLUMNAR ZnO CRYSTAL FILM AND PROCESS FOR PRODUCING THE SAME - Google Patents

HIGH-DENSITY COLUMNAR ZnO CRYSTAL FILM AND PROCESS FOR PRODUCING THE SAME Download PDF

Info

Publication number
WO2004088005A1
WO2004088005A1 PCT/JP2004/003903 JP2004003903W WO2004088005A1 WO 2004088005 A1 WO2004088005 A1 WO 2004088005A1 JP 2004003903 W JP2004003903 W JP 2004003903W WO 2004088005 A1 WO2004088005 A1 WO 2004088005A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
density
zno crystal
zno
crystal
Prior art date
Application number
PCT/JP2004/003903
Other languages
French (fr)
Japanese (ja)
Inventor
Shingo Hirano
Makoto Kuwahara
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Publication of WO2004088005A1 publication Critical patent/WO2004088005A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/005Epitaxial layer growth

Definitions

  • the present invention is expected to be used and applied to photonic crystals, transparent conductive films, solar cells, micro-ultraviolet lasers, piezoelectrics, gas sensors, etc.
  • the present invention relates to a highly coated surface obtained by immersing a substrate in an aqueous solution of dumbbell ions at a temperature of 100 ° C. or less and growing ZnO crystals on the substrate in a self-organizing manner.
  • the present invention relates to an O-crystal device and a manufacturing method thereof.
  • the present invention relates to a nO crystal film body, a method for manufacturing the same, a high-density columnar ZnO crystal device transparent and visible in the ultraviolet region formed by patterning the crystal thin film with high precision on a substrate, and a method for manufacturing the same.
  • a zinc oxide thin film is obtained by a vapor deposition method such as molecular beam epitaxy (MBE) or metal organic chemical vapor deposition (MOC VD), or a zinc oxide sol obtained by hydrolyzing a zinc compound.
  • MBE molecular beam epitaxy
  • MOC VD metal organic chemical vapor deposition
  • a method of coating the substrate in a hydroxide sol solution by digging or spin coating, or immersing the substrate in a zinc conjugate solution, pulling it up, drying it, and thermally decomposing it is known.
  • vapor-phase epitaxy using MBE, MOC VD, etc. can provide very controlled and high-quality thin films, but requires expensive and special equipment such as high vacuum equipment.
  • the method of diving in a sol solution is excellent in that it is relatively easy to operate and can be implemented at low cost, but it is possible to control the thickness of the sol solution, and it is generated. It is difficult to obtain a crystal with high orientation.Therefore, there is a limit to obtaining high-quality crystals with high orientation and film thickness. could not respond. Also, in the case of using the thermal decomposition method, it is not possible to form a thin film uniformly and at a high density on a large-area substrate at a time, which requires a series of steps from immersion to drying and thermal decomposition.
  • Non-Patent Document 1 The formation of a thin film of ZnO crystals on the substrate (Non-Patent Document 1), or an aqueous solution of zinc sulfate having a concentration approximately twice as high as the above concentration (zinc concentration; Temperature; 60 ° C), immersing the substrate in which the ZnO seed crystal is formed in advance in this aqueous solution, and reacting to form a coating film of the ZnO crystal on the substrate.
  • Non-Patent Document 2 has been reported. Furthermore, it has been reported that a ZnO crystal film is formed on a glass substrate by immersing the glass substrate in an aqueous zinc nitrate solution (Non-Patent Document 3).
  • Non-patent Documents 4) Non-patent document 1;
  • Non-patent document 2
  • Non-patent document 3
  • Non-patent document 4
  • the present inventors have conducted extensive research to solve the above problems, and as a result, the state of the ZnO crystals obtained by formation and deposition greatly depends on the zinc ion concentration in the starting aqueous solution in which the substrate is immersed.
  • concentration in the above-mentioned literature, columnar ZnO crystals are uniformly formed on the entire surface of the substrate with a high covering area density, and the c-axis
  • the present invention has been made based on these findings and successes, and the configuration thereof is as described below. It consists of
  • a method for producing a high-density columnar ZnO crystal film characterized by adjusting the zinc ion concentration in the starting aqueous solution so as to obtain a high-density columnar ZnO crystal film having a fine microstructure.
  • the growth and growth of the ZnO crystal film by the contact reaction between the starting aqueous solution and the substrate is performed under the temperature conditions in which the temperature of the aqueous solution is set in a temperature range of room temperature to 100 ° C, preferably 50 ° C to 90 ° C.
  • the method for producing a high-density columnar ZnO crystal film according to any one of the above (4) to (8) which is performed under the following conditions.
  • the method for producing a high-density columnar ZnO crystal film The method for producing a high-density columnar ZnO crystal film according to any one of the above (4) to (9), wherein the crystal is transparent in a visible ultraviolet region.
  • a resist pattern having a predetermined pattern is brought into contact with the device fabrication substrate and immersed in an aqueous solution containing zinc ions, the c-axis is oriented perpendicular to the substrate, and a fine microstructure is formed. Characterized in that the high-density columnar Z ⁇ crystal thus formed is self-organized into a predetermined pattern by the patterning means of the resist type ⁇ , and the high-density high orientation obtained by patterning is provided. How to make a ZnO crystal device.
  • the step of forming the crystal into a predetermined pattern is characterized in that an integrated resist in which a ⁇ pattern is integrally formed on a device design substrate is used, thereby obtaining a crystal formed with a pattern.
  • the step of forming the crystal into a predetermined pattern is performed by using a separation type ⁇ type that can be used repeatedly, and immersing it in an aqueous solution containing zinc ions while in contact with a device fabrication substrate, thereby forming a pattern.
  • a separation type ⁇ type that can be used repeatedly, and immersing it in an aqueous solution containing zinc ions while in contact with a device fabrication substrate, thereby forming a pattern.
  • the zinc ion-containing aqueous solution used when the substrate is immersed to form a pattern is formed with a zinc ion concentration of 0.07 to 0.3 mol, preferably 0.08 to 0.3 mol.
  • the requirement described in (1) above stipulates that the present invention is a columnar Z ⁇ crystal thin film having a high-density microstructure, compared to a coarse microstructure thin film formed from an aqueous solution according to a conventional method.
  • the structure has a fine structure with high density and high orientation, so it fully expresses the original properties of ZnO crystal which could not be achieved by the conventional method of coarse fine structure. And the achievement of precise fine patterning of ZnO thin film, and it is expected to contribute greatly to its use and progress.
  • the matter described in (4) prescribes and discloses the method for producing the film according to (1) or (3), whereby the film can be produced with good reproducibility. It is a thing.
  • the configurations described in the following (5) to (10) further technically limit the production method described in the above (4), that is, disclose an embodiment of the production method.
  • (11) to (18) are intended to utilize the high-density columnar ZnO crystal film according to (1) to (10) and the method for producing the same for various devices and their production.
  • the invention provides a process that can easily fabricate devices at extremely low temperatures without processing at high temperatures and without using expensive equipment, based on the conventional device fabrication technology. It is.
  • a material that could not be used as a substrate material due to a wall at a processing temperature in the past can be used according to the present invention, and its technical and economic significance is extremely large, and will have a great influence on device design in the future. I am convinced that it will contribute not only to the development of industry but also to society in general. Further, needless to say, various types can be used as the type for performing the above process. More specifically, (i) a resist is spin-coated on a substrate, irradiated with a pattern, irradiated with light, X-rays or an electron beam, and then developed to form a resist having a high-precision pattern on the substrate.
  • the inorganic material from which the prototype described in (V) is obtained or the solid material from the metallic material include inorganic and metallic materials such as Si02 and silicon, and the ultra-fine processing technology includes a mechanical micro mechanical device. Examples include mechanical micro-polishing, anodic cutting and polishing, dry etching, etching, and the like, or a combination thereof.
  • the present invention is to provide a simple synthesis method at an ultra-low temperature as a temperature for forming a crystal at a temperature of 100 ° C. or less of a Z ⁇ film having excellent crystallinity and a fine microstructure. Breakthrough.
  • the crystallinity of ZnO produced by this method is comparable to that of a film synthesized by a gas phase synthesis method that requires expensive vacuum equipment. Therefore, this synthesis method provides a more advantageous synthesis means than the gas phase method, and is expected to have a wide range of industrial applications in terms of cost and environmental load.
  • the ZnO film is expected to be used as a transparent electrode film, but the present invention provides a transparent ZnO film by generating ZnO crystals with good orientation at a high density. large.
  • the present invention combines high-quality ZnO films in an extremely soft environment by combining soft synthesis means of 100 ° C or lower in an aqueous solution with lithography technology reported so far. It is clear that it is possible to putter with high precision and high resolution in a self-organizing manner, and its significance is extremely large. This is expected to be applied to a wide range of fields such as nano-periodic ZnO columnar single-crystal structures, photo-Yuck crystals, ultraviolet laser oscillation devices, transparent electronic circuits, micro-piezoelectric materials, and micro sensors. It is expected to contribute greatly to the development of various technical fields in the future. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 (a) is a surface SEM image of the ZnO crystal film obtained in Example 1
  • FIG. 1 (b) is a cross-sectional SEM image of the ZnO crystal film obtained in Example 1.
  • Figure 2 shows the XRD pattern of the ZnO crystal film obtained in Example 1.
  • FIG. 3 (a) is a SEM image of the surface of the porous template prepared in Example 2
  • FIG. 3 (b) is an SEM image of the resist ⁇ prepared in Example 2
  • FIG. 3 (c) is Example 2
  • the SEM image of the ZnO crystal pillar fabricated in Example 2 is the SEM image of the ZnO crystal pillar fabricated in Example 2.
  • FIG. 4 is a view showing an XRD pattern of the ZnO crystal prepared in Example 2.
  • FIG. 5 is a transmission spectrum of a ZnO crystal film formed on a silica glass substrate in Example 3.
  • FIG. 6 is an SEM image of an oriented photonic crystal formed by a continuous ZnO layer having fine lattice air holes formed in Example 4.
  • FIG. 7 (a) is a SEM image of the ZnO crystal pattern obtained in the type III of FIG. 7 (a)
  • FIG. 7 (b) is a SEM image of the character pattern prepared in Example 5
  • FIG. Cross-sectional SEM image of Fig. (B) is a SEM image of the ZnO crystal pattern obtained in the type III of FIG. 7 (a)
  • FIG. 7 (b) is a SEM image of the character pattern prepared in Example 5
  • FIG. Cross-sectional SEM image of Fig. (B) is a SEM image of the ZnO crystal pattern obtained in the type III of FIG. 7 (a)
  • FIG. 7 (b) is a SEM image of the character pattern prepared in Example 5
  • FIG. 8 is an SEM image showing the relationship between the heating rate, the aqueous solution concentration, and the obtained tissue described in Example 6.
  • FIG. 9 is a diagram showing a pattern forming process using the separation type III (PDMS stamp III) shown in Example 7.
  • FIG. 10 is an SEM image showing a ZnO crystal pattern obtained by the separation type III (PDM S stamp type II) of Example 7.
  • Fig. 11 (a) shows an SEM image of the conventional ZnO crystal device pattern
  • Fig. 11 (b) shows an enlarged SEM image of Fig. 11 (a)
  • Fig. 11 (c) shows the same conventional fluorescence function as Fig. 11 (a).
  • Cassor dolescence, (d) is an enlarged SEM image of (c).
  • the zinc ion concentration can be set low when trying to generate a ZnO crystal film for a small area, but it can be increased when trying to generate a large area substrate. It is important to set Of course, there is no reason to restrict the material used for the substrate, but there are some types in which Z ⁇ crystals are easy to form, and some types are difficult to generate.Therefore, these factors are experimentally confirmed in advance.
  • the substrate material include Si substrates disclosed in the examples, and materials that are easily lattice-matched, such as ZnO, sapphires, and GaN, are preferable.
  • an amorphous material such as glass-plastic can also be used as the substrate.
  • the fact that the ZnO crystal film of the present invention is transparent in the visible ultraviolet region (wavelength of about 380 nm or more) means that this material can be applied to, for example, a transparent conductor.
  • ZnO crystal films with submicron-period fine-patterned jungles generally have a higher optical response in the visible region than photonic crystals used in the infrared region, which are being studied in Si and others.
  • the application as a new photonic crystal is achieved.
  • various devices, especially silicon semiconductor Increasing the degree of integration and modularization by forming them together with other elements on a board is also considered to be one of the very important applications, and therefore, forming the ZnO film on a silicon substrate This has an important meaning that goes beyond simply the means of film formation.
  • a silica glass substrate and a Si substrate are selected and used, but their significance includes the purpose, and integration and modularization in various device designs are considered. It is.
  • the selection conditions for the substrate material are freed from the conventional temperature constraint of at least withstanding high temperatures.
  • a polymer film can be used.
  • the crystal formation reaction proceeds.
  • the reaction temperature is, the force that range the formation reaction by the liquid temperature at 5 0 than the proceeds good, it may be carried out in a wide and low temperature regions 1 0 0 ° C or less under room temperature.
  • the reaction rate depends on the concentration and the temperature.
  • concentration is high (for example, a concentration exceeding 0.01 M)
  • the concentration of the solution cannot be uniformly defined according to the area as shown above, if this is mentioned again, when a ZnO single crystal is to be formed on a large-area substrate, a high-concentration solution such as 0.
  • the starting aqueous solution is prepared by adding a crystal growth controlling agent in addition to adjusting the zinc concentration to an appropriate concentration range, It is preferable to adjust the temperature to 100 ° C. or lower, preferably 50 ° C. to 90 ° C., and to use a substrate material on which a seed is formed in advance as a substrate material. Together, these conditions produce a higher quality, high density columnar ZnO crystal film.
  • the reaction vessel for performing the process of growing and growing crystals by a solid-liquid contact reaction between the starting aqueous solution and the substrate is not particularly limited, and may be an open reaction vessel or a closed reaction vessel (automatic reaction vessel). Crepe). When an autoclave vessel was used, the pressure was higher than the atmospheric pressure, but there was no problem with the crystal growth itself, and there was no problem with the quality.
  • FIGS. 1 (a) and 1 (b) show SEM images of the surface and fracture surface of the obtained ZnO film. As a result, the SEM image clearly showed the high surface area density of ZnO columnar crystals.
  • Fig. 2 shows an X-ray diffraction (XRD) pattern of the ZnO crystal film similarly prepared.
  • FIG. 2 shows that almost no peaks other than 002 of ZnO were observed, indicating that the degree of orientation of the columnar single crystal with respect to the substrate surface was extremely high.
  • the same experiment was conducted by changing the type of the zinc oxide ligature and the substrate to be used, but all the obtained ZnO films had columnar single crystals whose c-axis was oriented perpendicular to the substrate surface.
  • the crystal size can be controlled within the range of diameter: 0,1 ⁇ ! ⁇ , height 0.1 ⁇ 5m. When the film thickness is within 1.5 ⁇ , the columnar single crystal substrate It was confirmed that the coating surface density reached 90-99%.
  • the growth rate in the height direction was about 0.6 ⁇ _ / 1 ⁇ .
  • the zinc ion concentration is set and adjusted to a specific concentration of 0.1 m ⁇ 1 ⁇ 1 is disclosed, but the zinc ion concentration may be varied depending on the area of the substrate material for forming the film.
  • the concentration of 0.7 to 0.3 mo 1 Z 1 is a feasible range in order to generate a target film in the present invention. It is particularly preferably from 0.08 to 0.15 mol / l. It is preferable that the relationship between the concentration and the substrate area be further grasped in advance in practice when the optimum range for repetitive reproducibility is obtained.
  • the seed layer was produced by the following process.
  • the ZnO single crystal film growth method of the present invention can be used in combination with lithography technology to design various devices such as photonic crystals, micro-ultraviolet lasers, solar cells, piezoelectrics, gas sensors, etc. It provides a simple and effective means for high-performance products that exceed the standard.
  • the following examples show that the present invention enables a design with a high-precision pattern, and that it can be applied to a device requiring a complicated pattern design. You. Example 2;
  • FIG. 3 (a) is a diagram observed by SEM. It was observed that the Z ⁇ polycrystal having a porous microstructure reached a thickness of about 80 nm and was deposited over the substrate surface.
  • a commercially available electron beam resist (ZEP520, manufactured by Zeon Corporation) adjusted to a predetermined concentration is spin-coated on a substrate on which the template is uniformly applied on the entire surface, and ZnO A 1.2 m thick resist coating was formed on the substrate via the polycrystalline template.
  • An electron beam lithography apparatus manufactured by ELIONIX Co., Ltd., model name: ELS5700 was used to irradiate a predetermined pattern with an electron beam on the coating film in a very precise manner. That is, a pattern having a structure in which a large number of ultrafine air holes were regularly arranged in a predetermined pattern was drawn, and then developed. As a result, a resist ⁇ having a precise micropattern as intended was formed.
  • Fig. 3 (b) is a SEM observation of the obtained resist mold, and shows an air hole mold in which a large number of fine air holes are regularly formed and arranged on a ZnO polycrystalline template. It was confirmed that the template was exposed at the bottom of the air hole.
  • the container was heated from room temperature and heated, and after the internal aqueous solution reached a predetermined temperature and was kept at that temperature for a predetermined time, the reaction vessel was rapidly cooled with an ice bath to stop the reaction.
  • the resist mold was taken out from the aqueous solution, and the electron beam resist was dissolved to obtain a ZnO periodic structure.
  • the microstructure of the obtained ZnO periodic structure sample was observed and evaluated by SEM.
  • the reaction temperature was 75 ° C
  • the reaction time was 1 hour
  • the reaction was performed.
  • the resist ⁇ air hole pattern was accurately transferred and reflected.
  • Zinc oxide having a pattern of the periodic structure of the fire origin was deposited, and ZnO crystal villas with a maximum height of 1 ⁇ were fabricated in each fine air hole. It has been clarified through experiments that the height can be easily adjusted by appropriately controlling the reaction temperature and time. During this process, the resist did not deteriorate during the chemical bath deposition process and did not adversely affect the product. In FIGS. 3A to 3D, the black lines indicate the length of 500 nm. According to another experiment different from the experiment shown in the above example, it was confirmed that hexagonal ZnO crystals grow on the template used in this example in a direction perpendicular to the substrate surface.
  • a silica glass transparent in the visible ultraviolet region was used and used as a substrate.
  • a porous template was applied in the same manner as in Example 2 above, and a ZnO crystal film was formed thereon using a 0.1 M concentration reaction solution.
  • a high-density columnar ZnO crystal film having almost the same microstructure as the ZnO crystal film formed on the Si substrate shown in Example 1 was deposited on the silica glass substrate. It was formed as a thin film of 1 ⁇ .
  • the transmittance spectrum in the direction perpendicular to the substrate surface was measured. As a result, the switch shown in Fig.
  • the thin film shows high transmittance of over 80% in the wide visible region, and the same transmittance as that of the template thin film with a thickness of 80 nm.
  • 3.3 eV, at which the transmittance rises, almost corresponds to the band gap of ZnO, and it is clear that the oriented thin film is composed of ZnO and has high transparency.
  • a resist ⁇ ⁇ in which cylindrical pillars having a lattice constant of 400 and a radius of 100 ⁇ m are arranged in a grid pattern is integrally formed on a substrate, and this is formed in the same manner as in the second embodiment.
  • ZnO crystals were deposited.
  • FIG. 6 shows the resulting ZnO crystal.
  • the obtained Z ⁇ crystal is obtained as a continuous layer of ZnO, in which air holes indicated by black holes with a lattice constant of 400 nm and a radius of 100 nm are formed in a lattice pattern.
  • a ZnO photonic crystal was fabricated.
  • Example 6 In the same manner as described in Example 2, an integrated resist type (a) having the character pattern shown in FIG. 7 formed on the substrate was produced. This was used to precipitate ZnO crystals under the same conditions as in the example. As a result, transparent ZnO crystal patterns with c-axis orientation shown in (b) to (c) in the figure were obtained. As a result, it was confirmed that device design such as complicated circuit design was sufficiently possible.
  • Example 6
  • Example above In all of the ZnO crystals obtained in Nos. 1 to 4, dense ZnO crystals were formed.
  • the ZnO crystal deposition conditions shown in Example 2 were changed while changing the concentration of the zinc ion-containing aqueous solution and the temperature.
  • FIG. 8 the result shown in FIG. 8 was obtained.
  • (a) is a solution containing zinc ions at a concentration of 0.1 mol and a heating rate of l ° C / min (from room temperature to 80 ° C)
  • (b) is 0.005 m of a solution containing zinc ion.
  • the resist ⁇ used in each of the experiments was performed on the substrate.
  • a pattern was generated by an integrated resist type I formed integrally with the resist, but in this example, a separate type resist type II that can be used repeatedly was produced, and a pattern of an ⁇ crystal was generated on a substrate using the resist type.
  • FIG. 9 shows this procedure and mode. First, a silicon substrate was prepared, a zinc acetate-containing ⁇ precursor solution was coated on the substrate, and heat-treated at 500 ° C to form a porous ZnO polycrystalline seed on the substrate. Generated a template from. This result is already shown in Fig. 3 (a).
  • a commercially available electron beam resist (ZEP 520, manufactured by Nippon Zeon Co., Ltd.) adjusted to a predetermined concentration is spin-coated on a substrate on which the template is uniformly applied on the entire surface, and the ZnO amount is increased.
  • a 1.2 im thick resist coating was formed on the substrate via the crystal template.
  • An electron beam was applied to this coating film in a predetermined pattern with ultra-precision using an electron beam lithography apparatus (manufactured by ELION IX Co., Ltd., model name: ELS5700). That is, a pattern having a structure in which a large number of ultrafine air holes were regularly arranged in a predetermined pattern was drawn, and then developed.
  • a resist ⁇ M having an intended precise fine pattern was formed.
  • a line pattern having a line width of 3 im is drawn.
  • PDMS polymethylsiloxane
  • the resist ⁇ ⁇ ⁇ having a line pattern of 3 A ⁇ m width was sufficiently solidified. Thereafter, the PDMS was carefully removed from the resist type I to give a separated polymer.
  • a ZnO polycrystalline seed was applied on a Si substrate, the stamp ⁇ was brought into contact with the seed, and immersed in a reaction vessel containing a zinc ion-containing aqueous solution.
  • FIG. 10 shows a SEM observation of the obtained line pattern of the oriented ZnO as a result of the reaction at a heating temperature of 75 ° C.
  • Type III can be used in the aqueous solution precipitation method. As a result, it is considered that the road to mass production and shading was opened in pattern formation.
  • Type I which was used for device fabrication
  • Type II was obtained by directly patterning a resist that was spin-coated on a substrate
  • the production of Type III was limited only by such means. It is not.
  • a method of fabricating a mold by pouring a polymer material into the mold of a resist mold is used as a prototype, or selecting a solid material such as a silicon substrate that is highly processable and directly processing the material, for example, dry etching.
  • the ZnO crystal pattern intended in the present invention can employ any method and means.
  • highly oriented oxidized zinc crystals can be extremely precisely controlled on an arbitrary pattern on a substrate to design a device.
  • the pattern Jung means is not limited to the electron beam lithography employed in this embodiment.
  • other lithography and patterning means such as photolithography that irradiates light can be applied.
  • Zinc oxide (ZnO) is known as a material that is visible, transparent, and has a high refractive index.
  • Non-Patent Document 4 proposes ⁇ as an example of patterning a ZnO thin film, which indicates a conventional state of the art.
  • Figures 11 (a) to 11 (d) show the microdevice (force saddle luminescence) produced by this proposal. In these figures, patterns are formed by different lines from thick lines to thin lines.
  • the pattern shown in (a) in FIG. 11 is a diagram (photograph) of a zinc oxide pattern taken by an electron micrograph, in which zinc oxide is patterned and deposited on a white portion. In the figure, (b) shows the pattern of the smallest thin line therein.
  • fine particles of about 200 nm are individually dispersed, and are composed of particles with a high resolution and high orientation, that is, low resolution and coarse precipitate particles. It is shown.
  • (c) shows the force saddle luminescence pattern showing the fluorescence function of the same part as (a)
  • (d) shows the force sodle luminescence pattern of the same part as (b).
  • coarse precipitate particles with low resolution are dispersed and emit fluorescence.
  • a high-density and high-orientation Z ⁇ crystal is formed with a high-precision pattern and a high resolution. It is understood that it is superior to the prior art.
  • the ZnO crystal which is easily oriented perpendicular to the substrate has a dense microstructure, and is densely patterned with high precision by a low-temperature aqueous solution (chemical bath) immersion method. It was clarified that precipitation occurred.
  • a photonic crystal device having a two-dimensional periodic structure by patterning high-quality, ultra-precision, and high-precision zinc oxide crystals.
  • the present invention provides an extremely simple operation of immersing a substrate in an aqueous solution, and furthermore, a columnar ZnO crystal is formed on a substrate surface at a high density, a high orientation, and a self-assembly at a low temperature.
  • the film forming technology by the low-temperature shading bath deposition method of the present invention is incorporated into a depth design requiring a high-precision pattern and functions effectively.
  • This will provide a new method for device design, and is expected to develop a new design philosophy in the future by dedicating device design technology, and its significance is expected to be extremely large. .
  • various devices that require similar high-precision patterns It is thought that the application to and the application to will increase.
  • the ZnO crystal obtained by the present invention has excellent orientation in any of the patterns, and therefore has the largest electrical and optical characteristics as compared with the conventional one having poor orientation. It is expected to exhibit the maximum performance and functions even if it is small.
  • the reaction under extremely mild conditions of 10 ° C. or less which does not depend on high-temperature operation, has a structure in which the c-axis is oriented perpendicular to the substrate and has a dense microstructure. It provides a high-density columnar ZnO crystal film that can be used in transparent electrodes, electronic technology, and other technical fields that use the electrical and optical properties of zinc oxide. It is excellent in both cost and quality, and is expected to be widely used.

Abstract

Conventionally, it has been difficult to, in the precipitation of ZnO crystal on a substrate surface according to an aqueous solution precipitation method, attain high-density crystal formation with high orientation, thereby causing use thereof in device design wherein a fixed level of quality is demanded to be difficult. Thus, it is intended to form a ZnO crystal film which can comply with device design. That is, it is intended to provide a high-density columnar crystal film of dense minute structure with the c-axis perpendicularly uniformly oriented over a 90% or more area of substrate through simple formation from an aqueous solution containing zinc ions. In particular, formation of a high-density highly oriented columnar crystal film on a substrate has successfully been accomplished by regulating the zinc ion concentration of an aqueous solution containing zinc ions to a given level, namely, relatively high concentration of 0.07 to 0.3 mol/l and immersing the substrate in the aqueous solution, and applicability thereof to various device designs has been proven (Fig. 3 (a) to (d)).

Description

高密度柱状 Z n O結晶膜体とその製造方法 技術分野  High density columnar ZnO crystal film and manufacturing method
本発明は、フォトニック結晶、透明導電膜、太陽電池、マイクロ紫外レーザー、 圧電体、 ガスセンサーなどに利用、 応用が期待される、 可視紫外域での高度な透 明性し、 基板に対して高被覆面密度、 高い配向性を有してなる高密度柱状 Z n O 結晶膜体とその製造方法及ぴ該明高密度柱状 Z n O結晶薄膜を基板状に高精度パタ ーンに生成せしめて成る Z n O結晶デバイスとその製造方法に関する。 さらに詳細に述べると、 本発明は、 書 1 0 0 °C以下の亜鈴イオン含有水溶液に基 板を浸漬し、 基板上に自己組織的に Z n O結晶が成長することにより得られる高 被覆面密度、高い配向性を有してなる高密度柱状 Z n O結晶膜体とその製造方法、 及び、 この膜体とその製造方法を利用してなる、 高精度パターンを有した高密度 柱状 Z n O結晶デバイスとその製造方法に関する。 さらに要約して述べると、 いわゆる液相法による新規なプロセスによる、 コス トのかからない極めて簡単なプロセスによる、 高被覆面密度、 高い配向性を有し てなる可視紫外域で透明な高密度柱状 Z n O結晶膜体とその製造方法、 及び、 同 結晶薄膜が基板上に高精度にパターン化されて生成されてなる可視紫外域で透明 な高密度柱状 Z n O結晶デバィスとその製造方法に関する。 背景技術  The present invention is expected to be used and applied to photonic crystals, transparent conductive films, solar cells, micro-ultraviolet lasers, piezoelectrics, gas sensors, etc. A high-density columnar ZnO crystal film having a high covering surface density and a high orientation, a method for producing the same, and a method for forming the bright high-density columnar ZnO crystal thin film on a substrate in a high-precision pattern. And a method of manufacturing the same. More specifically, the present invention relates to a highly coated surface obtained by immersing a substrate in an aqueous solution of dumbbell ions at a temperature of 100 ° C. or less and growing ZnO crystals on the substrate in a self-organizing manner. High-density columnar ZnO crystal film having high density and high orientation and a method for manufacturing the same, and high-density columnar Zn having a high-precision pattern using the film and a method for manufacturing the same The present invention relates to an O-crystal device and a manufacturing method thereof. To summarize further, a new process using the so-called liquid phase method, a highly inexpensive and extremely simple process, and a high-density transparent Z in the visible ultraviolet region with high covering surface density and high orientation The present invention relates to a nO crystal film body, a method for manufacturing the same, a high-density columnar ZnO crystal device transparent and visible in the ultraviolet region formed by patterning the crystal thin film with high precision on a substrate, and a method for manufacturing the same. Background art
酸化亜鉛結晶膜の作製方法は、いわゆる液相法、気相法など多数知られている。 一般に、 酸化亜鉛薄膜を得る方法として、 分子線エピタキシー (MB E)、 有機 金属気相成長法 (MO C VD) などによる気相成長法、 あるいは亜鉛化合物を加 水分解して得られる酸化亜鉛ゾルないしは水酸化物ゾル液中に基板をディッビグ あるいはスピンコートなどによって塗布する方法、 あるいは、 亜鉛ィ匕合物溶液に 基板を浸漬し、 引き上げて乾燥、 加熱分解する等が知られている。 し力 しながら、 MB Eや、 MO C VDなどによる気相成長法では、 莫厚の制御 された高品位な薄膜が得られるが、高真空設備など高価で特殊な装置を必要とし、 またその薄膜作製には長時間を要する等の点でコストや製作効率の点で問題のあ るものであった。 これに対して、 ゾル液中にディッビングする方法は、 比較的操 作も簡単で、 低コストで実施しうるという点では優れているが、 膜厚のコント口 ールを始め、 その生成される結晶に高い配向性を求めることは困難で、 この方?去 により、 配向性や膜厚において品質の高いものを得るには限界があり、 高い品質 が要求されるような場合、例えばデパイス設計等には応えることが出来なかった。 また、 加熱分解法による場合も、 大面積の基板に対して一度に一様に高面積密 度に薄膜を形成することが出来ず、 そのためには浸漬から、 乾燥、 加熱分解にい たる一連の操作を何回も繰り返す必要があり、 作業性のみならず品質の点でも高 いものを期待することは出来ず、 そこには大きな問題があり、 かかる手段によつ て精密な設計を要するデバイス設計に適用することは、 事実上、 困難なことと言 わざるを得なレ、状況にあつた。 一方、 これらの方法とは全く異なる方法が、 近年、 提案、 報告されている。 す なわち、 低濃度の酢酸亜鉛水溶液 (亜鉛濃度; 0. 005mo 1 Z 1、 液温; 9 0°C) に予め ZnO結晶シードを形成させた基板を浸漬し、 所定時間反応させる ことにより、基板上に Z n O結晶の薄膜状被膜が生成されること(非特許文献 1 )、 あるいは、 前記濃度よりも 2倍ほど濃度の高い硫酸亜鉛水溶液 (亜鉛濃度; 0. 0 lmo 1 1、 液温; 60°C) を調製し、 この水溶液に予め Z n Oシード結晶 を形成させてなる基板を浸漬し、 反応させることによつて基板上に Z n O結晶の 被覆膜を形成することが出来る (非特許文献 2) 旨のことが報告されている。 さらに、 硝酸亜鉛水溶液にガラス基板上を浸漬することによって、 ガラス基板 上に ZnO結晶膜を生成させることについても報告されている (非特許文献 3)。 さらにまた、 これら溶液析出法を利用し、 基板上に ZnO結晶を適宜パター二 ング手段と組合せ、 自己組織ィ匕的に析出させて微細デバイスを作製する試みも提 案されている (非特許文献 4) 非特許文献 1 ; There are many known methods for producing a zinc oxide crystal film, such as a so-called liquid phase method and a gas phase method. Generally, a zinc oxide thin film is obtained by a vapor deposition method such as molecular beam epitaxy (MBE) or metal organic chemical vapor deposition (MOC VD), or a zinc oxide sol obtained by hydrolyzing a zinc compound. A method of coating the substrate in a hydroxide sol solution by digging or spin coating, or immersing the substrate in a zinc conjugate solution, pulling it up, drying it, and thermally decomposing it is known. On the other hand, vapor-phase epitaxy using MBE, MOC VD, etc., can provide very controlled and high-quality thin films, but requires expensive and special equipment such as high vacuum equipment. There was a problem in terms of cost and production efficiency in that it took a long time to prepare a thin film. On the other hand, the method of diving in a sol solution is excellent in that it is relatively easy to operate and can be implemented at low cost, but it is possible to control the thickness of the sol solution, and it is generated. It is difficult to obtain a crystal with high orientation.Therefore, there is a limit to obtaining high-quality crystals with high orientation and film thickness. Could not respond. Also, in the case of using the thermal decomposition method, it is not possible to form a thin film uniformly and at a high density on a large-area substrate at a time, which requires a series of steps from immersion to drying and thermal decomposition. It is necessary to repeat the operation many times, and it is not possible to expect high quality not only in terms of workability but also quality, and there is a major problem there, and devices that require precise design by such means Applying it to the design was, in fact, difficult. On the other hand, completely different methods have been proposed and reported in recent years. That is, the substrate on which the ZnO crystal seed was formed in advance was immersed in a low-concentration aqueous solution of zinc acetate (zinc concentration: 0.005mo1Z1, liquid temperature: 90 ° C), and reacted for a predetermined time. The formation of a thin film of ZnO crystals on the substrate (Non-Patent Document 1), or an aqueous solution of zinc sulfate having a concentration approximately twice as high as the above concentration (zinc concentration; Temperature; 60 ° C), immersing the substrate in which the ZnO seed crystal is formed in advance in this aqueous solution, and reacting to form a coating film of the ZnO crystal on the substrate. (Non-Patent Document 2) has been reported. Furthermore, it has been reported that a ZnO crystal film is formed on a glass substrate by immersing the glass substrate in an aqueous zinc nitrate solution (Non-Patent Document 3). Furthermore, an attempt has been proposed to use these solution deposition methods to combine ZnO crystals on a substrate as appropriate with a patterning means, and to deposit them in a self-organizing manner to produce a fine device (Non-patent Documents). 4) Non-patent document 1;
D. S. B o y l e e t a 1 , C h e m. C o mm, 80〜81 、 (200 2).  D.S.Boyleeta1, Chem.Comm, 80-81, (200 2).
非特許文献 2 ;  Non-patent document 2;
S. Yama b i e t a l, J. Ma t e r. Ch em, 12, 3773 -3778 (2002).  S. Yama biet al, J. Mater. Chem, 12, 3773 -3778 (2002).
非特許文献 3 ;  Non-patent document 3;
L. Va y s s i e r e s e t a 1 , J . P h y s . c h em, 105, 3350— 3352, (2001).  L. Vaysssiereseset1, J.Phys.chem, 105, 3350-3352, (2001).
非特許文献 4 ;  Non-patent document 4;
No r i k o. S a i t o e t a 1 , Adv. Ma t e r.  No r i k o. S a i t o e t a 1, Adv. Mat e r.
2002, v o 1 14, No. 6, p. 418〜421 これらの文献に記載された水溶液から Z n O結晶膜が生成する機構については、 該文献にも記載、 言及されておらず、 その生成機構の詳細な解明は現在、 必ずし も定かではなく、 今後の研究に待つところ大であるが、 何れにしても、 水溶液か ら、し力、も、 100°C以下という極めてソフトな生成環境の下で単結晶が生成し、 成長することは極めて注目に値する。 しかしながら、 現在のところ、 これらの文献に記載された手段によって生成さ れてなる Z n O結晶薄膜は、その何れの場合も基板に対して粗な微細構造を有し、 充分に高密度に被覆された状態のものとは言えなかった。 また、 その生成、 析出 する結晶の配向性についても、 結晶軸の揃ったもめを入手することは困難であつ た。 この点は、 本発明者らの実験によっても同様の結果が裏付けられ、 この文献 に記載された条件とプロセスでは高密度 Z n O結晶膜を得るには十分な技術とは 言えず、 すなわち、 極めて不十分であり、 到底完成された技術であるとは言えな いものであった。 すなわち、 これらの文献に開示された方法によって、 低濃度亜鉛イオン水溶液 から出発して高密度 Z n O結晶からなる薄膜を生成、 堆積させようとしても、 そ の得られる薄 H皮覆率はせレ、ぜレ、基板の 8 0 %程度の被覆率しかなく、 しかも結 晶軸は不揃 、で配向性の低レ、ものしか得ることが出来ず、 そのため、 この水溶液 から生成させる酸ィ匕亜鉛単結晶生成技術を以て、 酸化亜鉛単結晶特有の光学的、 電気的性質を十分に発現するよう期待することは、 極めて困難であり、 そこに、 この技術を高度な物性が期待されるような技術、 例えば、 酸化亜鉛単結晶の持つ 電気的、 光学的に優れた特性を利用して各種デバイスを設計しょうとする等に応 用、 展開しょうとするにおいては問題のあるものであった。 本発明は、 この問題を解消しょうとするものである。 すなわち、 前記文献に記 載された先行技術を前提従来技術として、 この従来技術においては、 基板上に生 成する Z n O結晶薄膜は、 被覆面密度が低く、 また結晶の配向性においても不揃 いであり、 デパイス設計に適用しても適合したものを得るという状況にはなかつ たことから、 これらの問題のない高密度 Z n O結晶膜体を得、 あるいはデバイス 設計を可能としょうというものである。 すなわち基板に対して高被覆面密度で、 高い配向性を有する高密度柱状 Z η θ結晶膜体とその製造方法、 及びこの技術を 用いることによって、 高精度パターンを有してなる高密度柱状 Z n O結晶デバィ スとその製造方法を提供しようと言うものである。 発明の開示 2002, vo 1 14, No. 6, p. 418-421 The mechanism of the formation of a ZnO crystal film from the aqueous solution described in these documents is not described or mentioned in the document either. At present, the detailed elucidation of the mechanism is not always clear, and there is much to wait for in future research, but in any case, the extremely soft generation environment from aqueous solution to less than 100 ° C. It is extremely notable that single crystals are formed and grown under However, at present, the ZnO crystal thin film produced by the means described in these documents has a coarse microstructure on the substrate in any case, and is coated at a sufficiently high density. It could not be said that it was done. Also, regarding the orientation of the crystals to be formed and precipitated, it was difficult to obtain rice with uniform crystal axes. This point is confirmed by the experiments of the present inventors, and the same results are confirmed.The conditions and processes described in this document are not sufficient technologies to obtain a high-density ZnO crystal film. It was extremely inadequate and was not a complete technology. In other words, according to the methods disclosed in these documents, even if an attempt is made to produce and deposit a thin film composed of high-density ZnO crystals starting from a low-concentration aqueous zinc ion solution, the resulting thin H skin coverage is increased. It has a coverage of only about 80% of the substrate, and has a non-uniform crystal axis, and has only a low degree of orientation. It is extremely difficult to expect that the optical and electrical properties peculiar to zinc oxide single crystal will be fully exhibited by using the zinc single crystal generation technology. There was a problem in technology, for example, when trying to design and deploy various devices using the excellent electrical and optical properties of zinc oxide single crystals. The present invention seeks to eliminate this problem. In other words, assuming that the prior art described in the above-mentioned document is a prior art, in this prior art, a ZnO crystal thin film formed on a substrate has a low covering surface density and an inferior crystal orientation. Since it is uniform and it has not been in a situation to obtain a suitable one even when applied to the depice design, it is necessary to obtain a high-density ZnO crystal film that does not have these problems or to enable device design It is. That is, a high-density columnar Zηθ crystal film having a high covering surface density and a high orientation with respect to the substrate, a manufacturing method thereof, and a high-density columnar Z having a high-precision pattern by using this technology. It is intended to provide an n O crystal device and its manufacturing method. Disclosure of the invention
そのため、 本発明者らにおいては上記課題を解決すべく銳意研究した結果、 基 板を浸漬する出発水溶液中の亜鉛ィオン濃度により、'生成、 堆積して得られる Z n O結晶の状態が大きく左右されること、 特に、 前示文献に開示された濃度より も相当高い濃度に調製することにより、 柱状 Z n O結晶が基板の全面に均一に且 つ高被覆面密度に生成し、 しかも c軸が基板に対して垂直に配向した均一配向粒 子をぴっしりと隙間なく基板表面に被覆させることが出来ることを見いだし、 こ の知見によるプロセスによって高被覆面密度、 高い配向 I1生を有してなる Z n O柱 状結晶薄膜体を安定に得ることに成功したものである。本発明は、これらの知見、 成功に基づいてなされたものであり、 その構成は、 以下に記載するとおりの事項 からなるものである。 Therefore, the present inventors have conducted extensive research to solve the above problems, and as a result, the state of the ZnO crystals obtained by formation and deposition greatly depends on the zinc ion concentration in the starting aqueous solution in which the substrate is immersed. In particular, by adjusting the concentration to be much higher than the concentration disclosed in the above-mentioned literature, columnar ZnO crystals are uniformly formed on the entire surface of the substrate with a high covering area density, and the c-axis There found that can be coated on Pisshiri to no gap substrate surface uniformly oriented grains child oriented perpendicular to the substrate, high coverage area density by the process according the knowledge of this, has a high orientation I 1 raw Thus, a Zn-O columnar crystal thin film was successfully obtained. The present invention has been made based on these findings and successes, and the configuration thereof is as described below. It consists of
( 1 ) 亜鉛イオンを含有する水溶液に基板を浸漬することによって基板上に得 られ、 c軸が基板に対して垂直に配向し、 緻密な微細構造を有して生成されてな ることを特徴とする高密度柱状 Z n O結晶膜体。 (1) It is obtained on a substrate by immersing the substrate in an aqueous solution containing zinc ions, the c-axis is oriented perpendicular to the substrate, and is formed with a dense microstructure. High-density columnar ZnO crystal film.
( 2 ) 浸漬する基板に対して、 基板面積の 90 %以上の高被覆面密度で膜状に 生成されてなることを特徴とする前記 (1) 記載の高密度柱状 ZnO結晶膜体。 (2) The high-density columnar ZnO crystal film according to (1), which is formed into a film with a high coating surface density of 90% or more of the substrate area with respect to the substrate to be immersed.
(3) 該高密度柱状 ZnO結晶膜体が可視紫外域で透明である前記 (1) 又は (2) 記載の高密度柱状 ZnO結晶膜体。 (3) The high-density columnar ZnO crystal film according to the above (1) or (2), wherein the high-density columnar ZnO crystal film is transparent in a visible ultraviolet region.
( 4 ) 亜鉛ィオンを含む出発水溶液に基板を浸漬することによって、基板上に Z n O結晶薄膜を自己組織的に生成する方法において、 浸漬する基板に対して c軸 が垂直に配向し、 緻密な微細構造の高密度柱状 Z n O結晶膜体が得られるように 該出発水溶液中の亜鉛イオン濃度を調製することを特徴とした、 高密度柱状 Z n O結晶膜体の製造方法。 (4) In a method in which a ZnO crystal thin film is self-assembled on a substrate by immersing the substrate in a starting aqueous solution containing zinc ion, the c-axis is oriented vertically to the immersed substrate, A method for producing a high-density columnar ZnO crystal film, characterized by adjusting the zinc ion concentration in the starting aqueous solution so as to obtain a high-density columnar ZnO crystal film having a fine microstructure.
(5) 該高密度柱状 ZnO結晶膜体を生成させる基板として、 予めシードを形 成した基板を用いることを特徴とする、 前記 (4) 記載の高密度柱状 ZnO結晶 膜体の製造方法。 (5) The method for producing a high-density columnar ZnO crystal film according to (4), wherein a substrate on which a seed is formed in advance is used as a substrate for forming the high-density columnar ZnO crystal film.
( 6 ) 予めシードを形成する基板として可視紫外域で透明な単結晶基板または ガラス基板、 または S i基板を選択した前記 (5) 記載の高密度柱状 ZnO結晶 膜体の製造方法。 ' (6) The method for producing a high-density columnar ZnO crystal film according to the above (5), wherein a single crystal substrate or a glass substrate or a Si substrate transparent in the visible ultraviolet region is selected as a substrate on which the seed is formed in advance. '
(7) 該出発水溶液中の亜鉛イオン濃度が、 浸漬する基板に対して、 ZnO単 結晶薄膜が十分に生成しうる濃度に調整されている、 前記 (4) 記載の高密度柱 状 Z n O結晶膜体の製造方法。 (7) The high-density columnar ZnO according to (4), wherein the zinc ion concentration in the starting aqueous solution is adjusted to a concentration at which a ZnO single crystal thin film can be sufficiently formed with respect to the substrate to be immersed. A method for producing a crystalline film.
(8) 該亜鉛イオン濃度として、 0. 07〜0. 3mo l/l、 より好ましく は 0. 08〜0. 15mo 1ノ1の範囲に調製することを特徴とする、前記(4) 又は (7) 記載の高密度柱状 ZnO結晶膜体の製造方法。 (8) The method according to (4) or (4), wherein the zinc ion concentration is adjusted to a range of from 0.07 to 0.3 mol / l, more preferably from 0.08 to 0.15 mol / l. 7) The method for producing a high-density columnar ZnO crystal film according to the above.
(9) 出発水溶液と基板との接触反応による該 ZnO結晶膜の育成、 成長を、 該水溶液温度を室温〜 100°C、 好ましくは 50°C〜90°Cの温度範囲に設定し た温度条件下で行うことを特徴とする、 前記 (4) ないし (8) の何れか 1項に 記載の高密度柱状 Z n O結晶膜体の製造方法。 該高密度柱状 Z n O結晶膜体の製造方法における高密度柱状 Z n O結 晶が可視紫外域で透明である前記 (4) 乃至 (9) の何れか 1項記載の高密度柱 状 Z n O結晶膜体の製造方法。 (9) The growth and growth of the ZnO crystal film by the contact reaction between the starting aqueous solution and the substrate is performed under the temperature conditions in which the temperature of the aqueous solution is set in a temperature range of room temperature to 100 ° C, preferably 50 ° C to 90 ° C. The method for producing a high-density columnar ZnO crystal film according to any one of the above (4) to (8), which is performed under the following conditions. In the method for producing the high-density columnar ZnO crystal film, The method for producing a high-density columnar ZnO crystal film according to any one of the above (4) to (9), wherein the crystal is transparent in a visible ultraviolet region.
(11) デバイス作製基板を亜鉛イオン含有水溶液に醒と共に浸漬すること によって基板上に ZnO結晶を、 c軸を基板に垂直に、 自己組織的且つ高密度に 生成せしめたことを特徴とする高密度高配向性 Z n O結晶デバイス。 (11) High density characterized by self-organizing and high density generation of ZnO crystal on the substrate by immersing the device fabrication substrate in a zinc ion-containing aqueous solution at the same time, with the c-axis perpendicular to the substrate. Highly oriented ZnO crystal device.
(12) 該高密度高配向性 Z n O結晶デバイスにおける高密度高配向性 Z n O 結晶が可視紫外域で透明である、 前記 (1 1) 記載の高密度高配向性 ZnO結晶 デバイス。 (12) The high-density high-orientation ZnO crystal device according to (11), wherein the high-density high-orientation ZnO crystal in the high-density high-orientation ZnO crystal device is transparent in a visible ultraviolet region.
(13) デバイス作製基板に所定パターンを有するレジスト鎵型を当接して亜 鉛イオンを含有する水溶液に浸漬し、 c軸が基板に対して垂直に配向し、 緻密な 微細構造を有して生成されてなる高密度柱状 Z ηθ結晶を、 該レジスト錶型によ るパターユング手段によつて所定パターンに自己組織的に生成したことを特徴と する、 パターニングが施されてなる高密度高配向性 ZnO結晶デバイスの作製方 法。 (13) A resist pattern having a predetermined pattern is brought into contact with the device fabrication substrate and immersed in an aqueous solution containing zinc ions, the c-axis is oriented perpendicular to the substrate, and a fine microstructure is formed. Characterized in that the high-density columnar Z ηθ crystal thus formed is self-organized into a predetermined pattern by the patterning means of the resist type 、, and the high-density high orientation obtained by patterning is provided. How to make a ZnO crystal device.
(14) 該結晶を所定パターンに形成する工程が、 デバイス設計基板に鎵型が 一体に形成された一体型レジスト^ を用い、 これによつてパターン形成された 結晶を得ることを特徴とする、 前記 (13) 記載の高密度柱状 ZnO結晶デバィ スの作製方法。 (14) The step of forming the crystal into a predetermined pattern is characterized in that an integrated resist in which a 鎵 pattern is integrally formed on a device design substrate is used, thereby obtaining a crystal formed with a pattern. The method for producing a high-density columnar ZnO crystal device according to the above (13).
(15) 該結晶を所定パターンに形成する工程が、 繰り返し使用可能な分離型 铸型を用い、 これをデバイス作製基板に当接して亜鉛イオンを含有する水溶液に 浸漬し、これによつてパターン形成された結晶を得ることを特徴とする、前記( 1 3 ) 記載の高密度柱状 Z n O結晶デバイスの作製方法。 (15) The step of forming the crystal into a predetermined pattern is performed by using a separation type 铸 type that can be used repeatedly, and immersing it in an aqueous solution containing zinc ions while in contact with a device fabrication substrate, thereby forming a pattern. (13) The method for producing a high-density columnar ZnO crystal device according to the above (13), wherein a crystal obtained is obtained.
(16) 該高密度柱状 Z n O結晶パターンを形成する基板には、 パターン形成 前に予め亜鉛イオン含有水溶液を塗布して Z ηθ多結晶からなるテンプレートを 施しておくことを特徴とする、 前記 (13) ないし (15) の何れか 1項に記載 の高密度柱状 Z n O結晶デバイスの作製方法。 (16) The substrate on which the high-density columnar ZnO crystal pattern is to be formed, wherein a zinc ion-containing aqueous solution is applied in advance before pattern formation and a template made of Zηθ polycrystal is applied. (13) The method for producing a high-density columnar ZnO crystal device according to any one of (13) to (15).
(17) 該基板を浸漬し、 パターン形成する際に使用される亜鉛イオン含有水 溶液を、亜鉛イオン濃度 0. 07〜0. 3mo 1ノ1、好ましくは 0. 08〜0.(17) The zinc ion-containing aqueous solution used when the substrate is immersed to form a pattern is formed with a zinc ion concentration of 0.07 to 0.3 mol, preferably 0.08 to 0.3 mol.
15mo 1Z1の範囲に調製したことを特徴とする、 前記 (13) 乃至 (16) の何れか 1項記載の高精度パターンを有してなる高密度柱状 Z n O結晶デパイス の製造方法。 該高密度高配向性 Z n O結晶デバイスの作製方法における高密度高配 向性 ZnO結晶が可視紫外域で透明である、 前記 (13) 乃至 (17) 記載の何 れか 1項記載の高密度高配向性 Z n O結晶デバイスの製造方法。 前記 (1) に記載の要件事項は、 従来法の水溶液から生成する粗な微細構造薄 膜体に対して、 本発明のものは高密度微細構造の柱状 Z ηθ結晶薄膜体であるこ とを規定しているものであり、 これによつて従来法によるものと区別するもので ある。 その構成は、 高密度、 高配向に揃った微細構造を有していることから、 粗 な微細構造の従来法によるものでは奏することが出来なかった Z n O結晶本来の 性質を充分に発現することや、 Z n O薄膜膜の精密な微細パターユングの達成を 可能とするものであり、 その利用、 進展に大きく貢献し、 寄与するものと期待さ れる。 The method for producing a high-density columnar ZnO crystal device having a high-precision pattern according to any one of the above (13) to (16), characterized in that it is prepared in the range of 15mo1Z1. High density and high distribution in the method for manufacturing the high density and high orientation ZnO crystal device. The method for producing a high-density and highly oriented ZnO crystal device according to any one of the above (13) to (17), wherein the directional ZnO crystal is transparent in a visible ultraviolet region. The requirement described in (1) above stipulates that the present invention is a columnar Zηθ crystal thin film having a high-density microstructure, compared to a coarse microstructure thin film formed from an aqueous solution according to a conventional method. This distinguishes it from the conventional method. The structure has a fine structure with high density and high orientation, so it fully expresses the original properties of ZnO crystal which could not be achieved by the conventional method of coarse fine structure. And the achievement of precise fine patterning of ZnO thin film, and it is expected to contribute greatly to its use and progress.
(2) および (3) に記載する要件事項は、 前記 (1) 記載の膜体の態様を、 基板面に対する被覆の程度およぴその†生質である光透過性に基づ 、て規定したも のであり、 従来法によるものに対して、 (1) 同様に区別するものである。 The requirements described in (2) and (3) prescribe the embodiment of the film body described in (1) above on the basis of the degree of coating on the substrate surface and the light transmittance that is the product thereof. It is the same as (1) that is distinguished from the conventional method.
(4) に記載の事項は、 (1) あるいは (3) に記載の膜体の製造方法を規定し、 開示するものであり、 これによつて該膜体を再現性よく製造することが出来るも のである。 続く (5) ないし (10) に記載の各構成は、 前記 (4) 記載の製造 方法をさらに技術的に限定するものであり、 すなわち該製造方法の実施態様を開 示するものである。 , また、 (11) ないし (18) は、 (1) 〜 (10) に係る高密度柱状 ZnO結 晶膜とその製造方法を各種デバイスとその作製に利用しょうというものであり、 この態様によって本発明は、 これまでのデバイス作製技術からすると、 高い温度 にて処理することなく、 また、 高価な機器を使用することなく極めて低い温度に て簡単にデバイスを作製することができるプロセスを提供するものである。 これ までは処理温度上の壁で基板材料として使用し得なかった材料も本発明によって 使用することが可能となり、 その技術的、 経済的意義は極めて大きいし、 今後、 デバイス設計に大きな影響を与え、 産業界の発展のみならず、 社会一般にも大き く寄与するものと確信する。 さらに、 上記プロセスを実施する錶型としては、 各種铸型を使用することがで きることは言うまでもない。 すなわち、 これを具体的に記載すると、 (i) 基体に レジストをスピンコートし、 光、 X線あるいは電子線をパターユング照射し、 次 いで現像して基体上に高精度パターンを有するレジスト铸型を形成したことを特 徴とした、 τΚ溶液析出法によるデバイス作製に使用するレジスト铸型、 (ϋ) 基体 上に高精度パターンを有するレジスト錄型を形成後、 基体からレジスト鍀型を剥 離して分離型錶型とする、 前記 (i) 記載のレジスト铸型、 (iii) 基体としてデバ ィス作製基板を使用し、 基板と铸型とがー体に形成された一体型錶型とする、 前記 (i) 記載のレジスト錄型、 (iv) 該レジスト铸型へ高分子材料を流し込み、 レジスト微細パターンを高分子材料に転写することによって得られる、 水溶液析 出法によるデバイス作製に使用する高分子铸型、 および (V) 無機材料、 金属材 料からなる固体材料を超微細加工してデバイス設計用原型铸型を得、 これに高分 子キャスティング材料を流し込んで得ることを特徴とした、 水溶液析出法による デバイス作製に使用する高分子铸型、 等各種铸型を挙げることができ、 特に制限 はない。 なお、 (V) 記載の原型を得る無機材料、 又は金属材料から固体材料としては、 S i 02、 シリコン等の無機、 金属材料が挙げられ、 超微細加工技術としては、 機械的マイクロ切肖咖ェ、 機械的マイクロ研磨加工、 陽極切削一研磨加工、 ドラ ィエッチング加工、 エッチング加工等、 あるいはこれらの組み合わせが挙げられ る。 発明の効果 The matter described in (4) prescribes and discloses the method for producing the film according to (1) or (3), whereby the film can be produced with good reproducibility. It is a thing. The configurations described in the following (5) to (10) further technically limit the production method described in the above (4), that is, disclose an embodiment of the production method. In addition, (11) to (18) are intended to utilize the high-density columnar ZnO crystal film according to (1) to (10) and the method for producing the same for various devices and their production. The invention provides a process that can easily fabricate devices at extremely low temperatures without processing at high temperatures and without using expensive equipment, based on the conventional device fabrication technology. It is. According to the present invention, a material that could not be used as a substrate material due to a wall at a processing temperature in the past can be used according to the present invention, and its technical and economic significance is extremely large, and will have a great influence on device design in the future. I am convinced that it will contribute not only to the development of industry but also to society in general. Further, needless to say, various types can be used as the type for performing the above process. More specifically, (i) a resist is spin-coated on a substrate, irradiated with a pattern, irradiated with light, X-rays or an electron beam, and then developed to form a resist having a high-precision pattern on the substrate. (铸) After forming a resist mold with a high-precision pattern on the substrate, peel off the resist mold from the substrate. (I) a resist type die as described in (i) above, and (iii) an integrated type die where the substrate and the die are formed in a body using a device fabrication substrate as a substrate. , (Iv) a resist mold described in the above (i), (iv) a polymer material is poured into the resist mold, and a resist fine pattern is transferred to the polymer material. It is characterized in that it is obtained by ultra-fine processing of a molecular material and (V) a solid material composed of an inorganic material and a metal material to obtain a device design prototype I, into which a polymer casting material is poured. Various types such as a type I polymer used for device fabrication by aqueous solution deposition can be mentioned, and there is no particular limitation. Examples of the inorganic material from which the prototype described in (V) is obtained or the solid material from the metallic material include inorganic and metallic materials such as Si02 and silicon, and the ultra-fine processing technology includes a mechanical micro mechanical device. Examples include mechanical micro-polishing, anodic cutting and polishing, dry etching, etching, and the like, or a combination thereof. The invention's effect
本発明は、 優れた結晶性と緻密な微細構造を有する Z ηθ膜の 100°C以下と レヽう結晶作成に係る温度としては超低温での簡便な合成方法を提供するものであ り、 それ自体画期的である。 この方法から作製された ZnOの結晶性は、 高額な 真空系装置を必要とする気相合成法によつて合成された膜に比較しても遜色ない。 従って、 この合成方法は、 気相法に比し有利な合成手段を提供し、 コストや環境 負荷の面から幅広い工業的応用が期待される。 ZnO膜は、 透明電極膜として利 用することが期待されているが、 本発明は、 配向性の良い ZnO結晶を高密度に 生成したことにより、 透明 ZnO膜を与えるものであり、 その意義は大きい。 ま た、 本発明は、 水溶液中、 100°C以下というソフトな合成手段と、 これまで報 告されてきたリソグラフィー技術とを結ぴつけることによって、 高い品質の Zn O膜を極めてソフトな環境で自己組織的に高精度、 高解像度でパターユングし得 ること明らかにしたもので、 その意義は極めて大きい。 これによつて、 ZnO柱 状単結晶のナノ周期構造体、 フォトユック結晶、 紫外レーザー発振デバイス、 透 明電子回路、 微小圧電体、 微小ィ匕学センサなどへの幅広い分野への応用が期待さ れ、 今後、 各種技術分野の発展に大いに貢献し、 寄与するものと期待される。 図面の簡単な説明  The present invention is to provide a simple synthesis method at an ultra-low temperature as a temperature for forming a crystal at a temperature of 100 ° C. or less of a Zηθ film having excellent crystallinity and a fine microstructure. Breakthrough. The crystallinity of ZnO produced by this method is comparable to that of a film synthesized by a gas phase synthesis method that requires expensive vacuum equipment. Therefore, this synthesis method provides a more advantageous synthesis means than the gas phase method, and is expected to have a wide range of industrial applications in terms of cost and environmental load. The ZnO film is expected to be used as a transparent electrode film, but the present invention provides a transparent ZnO film by generating ZnO crystals with good orientation at a high density. large. In addition, the present invention combines high-quality ZnO films in an extremely soft environment by combining soft synthesis means of 100 ° C or lower in an aqueous solution with lithography technology reported so far. It is clear that it is possible to putter with high precision and high resolution in a self-organizing manner, and its significance is extremely large. This is expected to be applied to a wide range of fields such as nano-periodic ZnO columnar single-crystal structures, photo-Yuck crystals, ultraviolet laser oscillation devices, transparent electronic circuits, micro-piezoelectric materials, and micro sensors. It is expected to contribute greatly to the development of various technical fields in the future. BRIEF DESCRIPTION OF THE FIGURES
第 1図 (a) は実施例 1によって得られた ZnO結晶膜の表面 S EM像、 同図 (b) は実施例 1によって得られた Z n O結晶膜の断面 S EM像。  FIG. 1 (a) is a surface SEM image of the ZnO crystal film obtained in Example 1, and FIG. 1 (b) is a cross-sectional SEM image of the ZnO crystal film obtained in Example 1.
第 2図は実施例 1によって得られた ZnO結晶膜の XRDパターン  Figure 2 shows the XRD pattern of the ZnO crystal film obtained in Example 1.
第 3図( a )は実施例 2で作製した多孔質テンプレート表面 S EM像、同図( b ) は実施例 2で作製したレジスト铸型を示す S E M像、 同図 ( c ) は実施例 2で作 製した ZnO結晶 SEM像、 同図 (d) は実施例 2で作製した ZnO結晶ピラー の SEM像。  FIG. 3 (a) is a SEM image of the surface of the porous template prepared in Example 2, FIG. 3 (b) is an SEM image of the resist 铸 prepared in Example 2, and FIG. 3 (c) is Example 2 The SEM image of the ZnO crystal pillar fabricated in Example 2 is the SEM image of the ZnO crystal pillar fabricated in Example 2.
第 4図は実施例 2で作製した Z n O結晶の XRDパターンを示す図。 第 5図は実施例 3でシリカガラス基板上に作製された Z n O結晶膜の透過スぺ ク卜ル。 FIG. 4 is a view showing an XRD pattern of the ZnO crystal prepared in Example 2. FIG. 5 is a transmission spectrum of a ZnO crystal film formed on a silica glass substrate in Example 3.
第 6図は実施例 4で作製された微細な格子状エアホールを内在した Z n O連続 層による配向フォトニック結晶の SEM像。  FIG. 6 is an SEM image of an oriented photonic crystal formed by a continuous ZnO layer having fine lattice air holes formed in Example 4.
第 7図(a)は実施例 5で作製された文字パターン铸型、 同図 (b) は同図 (a) の铸型で得られた ZnO結晶パターンの SEM像、 同図 (c) は同図 (b) の断 面方向 SEM像。  FIG. 7 (a) is a SEM image of the ZnO crystal pattern obtained in the type III of FIG. 7 (a), FIG. 7 (b) is a SEM image of the character pattern prepared in Example 5, and FIG. Cross-sectional SEM image of Fig. (B).
第 8図は実施例 6に記載された昇温速度と水溶液濃度と得られる組織との関係 を示す SEM像。  FIG. 8 is an SEM image showing the relationship between the heating rate, the aqueous solution concentration, and the obtained tissue described in Example 6.
第 9図は実施例 7に示す分離型铸型 (PDMSスタンプ铸型) によるパターン 形成工程図。  FIG. 9 is a diagram showing a pattern forming process using the separation type III (PDMS stamp III) shown in Example 7.
第 10図は実施例 7の分離型铸型 ( P D M Sスタンプ铸型) で得られた Z n O 結晶パターンを示す S EM像。  FIG. 10 is an SEM image showing a ZnO crystal pattern obtained by the separation type III (PDM S stamp type II) of Example 7.
第 1 1図(a)は従来法 ZnO結晶デバイスパターン SEM像、 同図 (b) は同 図 (a) の拡大 SEM像、 同図 (c) は同図 (a) と同じ従来法蛍光機能カソー ドルミネッセンス、 同図 (d) は同図 (c) の拡大 SEM像。 発明を実施するための最良の形態  Fig. 11 (a) shows an SEM image of the conventional ZnO crystal device pattern, Fig. 11 (b) shows an enlarged SEM image of Fig. 11 (a), and Fig. 11 (c) shows the same conventional fluorescence function as Fig. 11 (a). Cassor dolescence, (d) is an enlarged SEM image of (c). BEST MODE FOR CARRYING OUT THE INVENTION
本発明プロセスに必要な反応溶液の調製に当たっては、極力純粋試薬を使用し、 不純物のな ヽものを使用することが好ましレ、。亜鉛ィオン濃度の設定にっレ、ては、 これは必ずしも一律に規定することはできず、 浸漬する基板材料やその面積等に よつて最適範囲は必ずしも一様ではなく少し異にしているものである。すなわち、 面積の小さなものを対象として Z n O結晶膜を生成させようとすると亜鉛ィオン 濃度は低めに設定しても差し支えないが、 大きな面積の基板に対して生成させよ うとすると、 濃度は高めに設定することが肝要である。 勿論、 使用する基板は特 にその材質を制限する理由はないが、 Z ηθ結晶が生成し易いものと、 生成しづ らいものとがあるので、 予めこれらの要因については実験的に確認しておくこと 好ましい。 基板材料として好ましいものを挙げると、 実施例に開示した S i基板を始め、 ZnO、 サフアイャ、 G a Nなどの格子マッチングしやすいものは良好であると いえる。 予め極めて薄い高配向 ZnO薄膜をシード層として用いる場合は、 ガラ スゃプラスチックのような非晶質材料も基板として用いることができることは前 示したとおりである。 その中でも、 この発明の ZnO結晶膜が、 可視紫外域 (波 長約 380 nm以上) で透明であることは、 この材料が、 例えば、 透明導電体な どへ応用できる。 それだけではなく、 サブミクロン周期の微細パターユングを施 した ZnO結晶膜は、 一般的には、 S iなどで研究されている赤外域で用いられ るフォトニック結晶と比較し、 可視域で光学応答を示す新しいフォトニック結晶 としての応用が達成される。 気相成長によるものに比してもその物性は遜色のな いものであることを考えると、 さらに各種デバイス、 とりわけシリコン半導体基 板上に他の素子と共に形成することによって、 集積化度を上げ、 モジュール化を 図ることも、 極めて重要な利用形態の一つと考えられ、 従って、 シリコン基板上 に該 Z n O膜を形成することは、 単に膜生成手段としての意義を超えた重要な意 義を有するものである。 後述する実施例においては、 シリカガラス基板及び S i基板を選定使用してい るが、その意義は如上のねらいを含んでおり、各種デバイス設計における集積化、 モジュール化を考慮し、 これに対応してなるものである。 加えて、 本発明は、 Z η θ結晶析出工程で高温処理を要しないことから、 デバイス設計に際して、 基板 材料の選択条件からは、 少なくとも高温度に耐えるものという従来の温度的制約 条件から解放され、 例えば、 高分子フィルムを使用することも可能とするもので ある。 これによつて今後、 デバイス設計に際し、 高分子フィルムを始めこれまで 使用し得なかつた多様な材料をデパイス設計に用い、 素子化することも可能とす る副次的効果をもたらすものである。 本発明の Z n O結晶を得るのに必要な亜鉛ィオン含有する反応水溶液は、 弱酸 性領域に調整することで結晶生成反応が進行する。 反応温度は、 液温を 5 0 以 上にすることで生成反応が良好に進行する力 その範囲は、 室温から 1 0 0 °C以 下の広い且つ低温領域で実施することができる。 但し、 反応速度は、 濃度、 温度 に依存し、濃度が高い場合(例えば、 0 . 0 1 Mを超える濃度)、室温でも反応は 進行する。 溶液の濃度は、 前示したとおり面積に応じて一律に規定できないが、 これについて再度言及すると、 大面積基板上に Z n O単結晶を形成しょうとする 場合、 高濃度の溶液、 例えば 0. 1 M以上が必要である。 ただし、 基板上の限定 されたパターン上に生成させようとする場合、 そのパターンの大きさと単結晶柱 の直径とが合致すれば、 濃度が低くても問題はなレヽ。 本発明の高密度柱状 Z n O結晶膜体を得るためには、 好ましい実施態様として は、 出発水溶液は亜鉛濃度を適正な濃度範囲に調製することに加え、 結晶成長制 御剤を添加し、 1 0 0 °C以下、 好ましくは 5 0 °C〜 9 0 °Cに調整すること、 使用 する基板材料には予めシードを形成した基板材料を使用することが好ましい。 こ れらの条件が相俟って、 より品質の高い高密度柱状 Z n O結晶膜体が生成する。 その最適条件は、 目的とする設計に応じて異なり、 一様に規定することは困難で あることから、 実施の際にはこれら諸条件を適宜組み合わせた、 最適な条件を把 握しておくことが望ましい。 さらにまた、 出発水溶液と基板との固液接触反応による結晶の育成、 成長プロ セスを実施する反応容器にっレヽては、特に限定されず開放型反応容器でもよいし、 密閉型反応容器 (オートクレープ) でも実施することができる。 オートクレープ 容器を使用した場合、 圧力は大気圧よりも高くなるが、 結晶の成長自体には支障 はなく、 品質的にも問題はなかった。 以下、 本発明を実施例あるいは比較例さらには図面に基づいて具体的に説明す るが、 これらはあくまでも本発明を当業者が容易に理解するための一助として開 示するものであって、 本発明をこの実施例に基づいて限定する趣旨ではない。 実施例 1 ; In preparing the reaction solution necessary for the process of the present invention, it is preferable to use a pure reagent as much as possible and to use one having no impurities. When setting the zinc ion concentration, this cannot always be specified uniformly, and the optimum range is not necessarily uniform but slightly different depending on the substrate material to be immersed and its area. is there. In other words, the zinc ion concentration can be set low when trying to generate a ZnO crystal film for a small area, but it can be increased when trying to generate a large area substrate. It is important to set Of course, there is no reason to restrict the material used for the substrate, but there are some types in which Z ηθ crystals are easy to form, and some types are difficult to generate.Therefore, these factors are experimentally confirmed in advance. It is preferable. Preferred examples of the substrate material include Si substrates disclosed in the examples, and materials that are easily lattice-matched, such as ZnO, sapphires, and GaN, are preferable. As described above, when an extremely thin highly oriented ZnO thin film is used as a seed layer in advance, an amorphous material such as glass-plastic can also be used as the substrate. Among them, the fact that the ZnO crystal film of the present invention is transparent in the visible ultraviolet region (wavelength of about 380 nm or more) means that this material can be applied to, for example, a transparent conductor. In addition, ZnO crystal films with submicron-period fine-patterned jungles generally have a higher optical response in the visible region than photonic crystals used in the infrared region, which are being studied in Si and others. Thus, the application as a new photonic crystal is achieved. Considering that its physical properties are comparable to those obtained by vapor phase growth, various devices, especially silicon semiconductor Increasing the degree of integration and modularization by forming them together with other elements on a board is also considered to be one of the very important applications, and therefore, forming the ZnO film on a silicon substrate This has an important meaning that goes beyond simply the means of film formation. In the examples described later, a silica glass substrate and a Si substrate are selected and used, but their significance includes the purpose, and integration and modularization in various device designs are considered. It is. In addition, since the present invention does not require high-temperature treatment in the Z η θ crystal precipitation step, at the time of device design, the selection conditions for the substrate material are freed from the conventional temperature constraint of at least withstanding high temperatures. For example, a polymer film can be used. As a result, in the future device design, polymer materials and various other materials that could not be used up to now can be used for device design and have the secondary effect of being able to be made into devices. By adjusting the zinc ion-containing reaction aqueous solution necessary for obtaining the ZnO crystal of the present invention to a weakly acidic region, the crystal formation reaction proceeds. The reaction temperature is, the force that range the formation reaction by the liquid temperature at 5 0 than the proceeds good, it may be carried out in a wide and low temperature regions 1 0 0 ° C or less under room temperature. However, the reaction rate depends on the concentration and the temperature. When the concentration is high (for example, a concentration exceeding 0.01 M), the reaction proceeds even at room temperature. Although the concentration of the solution cannot be uniformly defined according to the area as shown above, if this is mentioned again, when a ZnO single crystal is to be formed on a large-area substrate, a high-concentration solution such as 0. 1 M or more is required. However, if it is intended to generate a pattern on a limited pattern on the substrate, if the size of the pattern matches the diameter of the single crystal column, there is no problem even if the concentration is low. In order to obtain the high-density columnar ZnO crystal film of the present invention, in a preferred embodiment, the starting aqueous solution is prepared by adding a crystal growth controlling agent in addition to adjusting the zinc concentration to an appropriate concentration range, It is preferable to adjust the temperature to 100 ° C. or lower, preferably 50 ° C. to 90 ° C., and to use a substrate material on which a seed is formed in advance as a substrate material. Together, these conditions produce a higher quality, high density columnar ZnO crystal film. Since the optimal conditions differ depending on the target design, and it is difficult to specify them uniformly, it is necessary to grasp the optimal conditions by appropriately combining these various conditions during implementation. Is desirable. Further, the reaction vessel for performing the process of growing and growing crystals by a solid-liquid contact reaction between the starting aqueous solution and the substrate is not particularly limited, and may be an open reaction vessel or a closed reaction vessel (automatic reaction vessel). Crepe). When an autoclave vessel was used, the pressure was higher than the atmospheric pressure, but there was no problem with the crystal growth itself, and there was no problem with the quality. Hereinafter, the present invention will be described in detail with reference to Examples or Comparative Examples and drawings, but these are only disclosed to help those skilled in the art to easily understand the present invention. It is not intended to limit the invention based on this embodiment. Example 1;
硝酸亜鉛水溶液 ( 0. lmo 1/1) を調製し、 結晶成長制御剤としてへキサ メチレンテトラミン (HMT ; 0. lmo 1/1) を添加した。 調製した水溶液 をオートクレープに仕込み、 液温を 77°Cに保持し、 この溶液中に、 予め ZnO シード層を形成した S i基板を浸漬した。そのときの圧力は、大気圧を上回る 1. 1気圧程度の圧力であった。 1.5時間そのまま保持して ZnO膜を成長させた。 得られた ZnO膜の表面と破断面を SEM像を図 1 (a)、 (b) に示す。 その 結果、 この SEM像から、 ZnO柱状結晶の被覆面密度の高さがよく分かった。 また、 図 2に、 同じく作製された ZnO結晶膜の X線回折 (XRD) パターンを 示す。 この図 2からは ZnOの 002以外のピークは全くといって良いほど見ら れず、 基板面に対する柱状単結晶の配向度は極めて高いことが分かった。 さらに、 使用する亜鉛ィ匕合物や基板の種類を変えて、 同様の実験を行ったが、 得られた ZnO膜は、 全て、 柱状単結晶は基板面に対して c軸が垂直に配向し、 その結晶サイズは直径 0. :!〜 Ι μηι、 高さ 0. 1〜5 mの範囲で制御可能で あること、 また、 膜厚が 1. 5 μπιの範囲においては、 柱状単結晶の基板被覆面 密度は 90〜99%に達すること等が確認された。 また、 高さ方向の成長速度は 0. 6 μπι_/1ι程度であった。 本実施例においては、 亜鉛イオン濃度を特定の濃 度 0. 1 m ο 1 Ζ 1に設定、 調製した場合を開示したが、 この亜鉛ィオン濃度に ついては、 膜を生成させる基板材料の面積によってもその最適な範囲は異にし、 一律には規定できないが、 本発明で狙いとする膜を生成させるためには、 0· 0 7〜 0. 3 m o 1 Z 1の濃度が実施可能な範囲であり、 特に好ましくは 0. 08 〜0. 15mo l/lである。 この濃度と基板面積との関係は、 実施の際、 さら に反復再現性に最適な範囲を事前に把握しておくが好ましい。 ここに、 シード層は、 以下のプロセスによって作製した。 先ず、 酢酸亜鉛、 2 メトキシエタノール、モノエタノールアミンを用意し、これらをモル比 1 : 10 : 1となるよう秤量した。 室温でこれらの原料を混合し、 前駆体液を得た。 用いた シリカガラス及び S i基板の大きさは、 2 cm角、 厚み 0. 3mmに設定した。 前駆体液は、 S i基板上に 3000 r p mでスビンコ一ティングし、 500°Cで 熱処理して、 ZnOシード膜を得た。 このシード形成方法は、 以下に示す実施例 2以下にお!/ヽても同様適用した。 以上より、 出発水溶液の亜鉛イオン濃度を、 先行技術で開示した亜鉛イオン濃 度よりもかなり高めに設定することにより、 高品質の酸化亜鉛 (ZnO) 柱状結 晶からなる膜を任意の基板上に 100°C以下の温度の水溶液より容易に作製しう ることが実証された。 勿論、 その条件は、 亜鉛イオン濃度以外にも、 結晶調整剤 の種類とその有無、 水溶液の pH、 設定温度、 浸漬時間、 浸漬する基板材料の選 択、 シードの形成条件等いろいろな因子がかかわってくることは当然のことであ るが、 これらの因子を一様に設定した場合、 亜鉛イオンの設定濃度が極めて重要 なファクターであることが分かつた。 本発明の ZnO単結晶膜成長法は、 リソグラフィー技術と併用することにより フォトニック結晶を始め、 マイクロ紫外レーザー、 太陽電池、 圧電体、 ガスセン サ一等、 種々のデバイス設計が可能であること、 従来の水準を超える高機能製品 化に対して簡素で有効な手段を提供するものである。 以下の実施例では、 本発明 によって高精度のパターンを有した設計が可能であること、 これによつて、 複雑 なパターン設計が要求されるデバイスへの応用が可能であることを示すものであ る。 実施例 2 ; An aqueous zinc nitrate solution (0.1 lmo 1/1) was prepared, and hexamethylenetetramine (HMT; 0.1 lmo 1/1) was added as a crystal growth controlling agent. The prepared aqueous solution was charged into an autoclave, the temperature of the solution was maintained at 77 ° C., and a Si substrate on which a ZnO seed layer had been previously formed was immersed in this solution. The pressure at that time was about 1.1 atm above atmospheric pressure. The ZnO film was grown for 1.5 hours. FIGS. 1 (a) and 1 (b) show SEM images of the surface and fracture surface of the obtained ZnO film. As a result, the SEM image clearly showed the high surface area density of ZnO columnar crystals. Fig. 2 shows an X-ray diffraction (XRD) pattern of the ZnO crystal film similarly prepared. FIG. 2 shows that almost no peaks other than 002 of ZnO were observed, indicating that the degree of orientation of the columnar single crystal with respect to the substrate surface was extremely high. Further, the same experiment was conducted by changing the type of the zinc oxide ligature and the substrate to be used, but all the obtained ZnO films had columnar single crystals whose c-axis was oriented perpendicular to the substrate surface. The crystal size can be controlled within the range of diameter: 0,1 ~! Μηι, height 0.1 ~ 5m. When the film thickness is within 1.5μπι, the columnar single crystal substrate It was confirmed that the coating surface density reached 90-99%. The growth rate in the height direction was about 0.6 μπι_ / 1ι. In the present embodiment, the case where the zinc ion concentration is set and adjusted to a specific concentration of 0.1 mο1 調製 1 is disclosed, but the zinc ion concentration may be varied depending on the area of the substrate material for forming the film. Although the optimum range is different and cannot be specified uniformly, the concentration of 0.7 to 0.3 mo 1 Z 1 is a feasible range in order to generate a target film in the present invention. It is particularly preferably from 0.08 to 0.15 mol / l. It is preferable that the relationship between the concentration and the substrate area be further grasped in advance in practice when the optimum range for repetitive reproducibility is obtained. Here, the seed layer was produced by the following process. First, zinc acetate, 2-methoxyethanol, and monoethanolamine were prepared, and these were weighed so as to have a molar ratio of 1: 10: 1. These raw materials were mixed at room temperature to obtain a precursor liquid. The size of the silica glass and Si substrate used was set to 2 cm square and 0.3 mm in thickness. The precursor solution was spin coated on a Si substrate at 3000 rpm and heat-treated at 500 ° C. to obtain a ZnO seed film. This seed formation method is described in Example 2 below. The same applies to / 同 様. From the above, the zinc ion concentration of the starting aqueous solution was adjusted to the zinc ion concentration disclosed in the prior art. By setting the temperature much higher than the temperature, it was demonstrated that a film composed of high-quality columnar crystals of zinc oxide (ZnO) could be easily formed on an arbitrary substrate from an aqueous solution at a temperature of 100 ° C or less. Was. Of course, the conditions depend on various factors other than the zinc ion concentration, such as the type and presence or absence of the crystallization modifier, the pH of the aqueous solution, the set temperature, the immersion time, the selection of the substrate material to be immersed, and the seed formation conditions. Obviously, when these factors were set uniformly, the set concentration of zinc ion was found to be a very important factor. The ZnO single crystal film growth method of the present invention can be used in combination with lithography technology to design various devices such as photonic crystals, micro-ultraviolet lasers, solar cells, piezoelectrics, gas sensors, etc. It provides a simple and effective means for high-performance products that exceed the standard. The following examples show that the present invention enables a design with a high-precision pattern, and that it can be applied to a device requiring a complicated pattern design. You. Example 2;
先ず、 シリコン基板を用意し、 この基板の上に酢酸亜鉛を含有してなる ZnO 前駆体溶液をスビンコ一トし、 500°Cで熱処理して、 基板上に多孔質 Z n O多 結晶シードからなるテンプレートを生成させた。 図 3 (a) は、 SEMにより観 察した図である。 ポーラスな微細構造の Z ηθ多結晶が厚さ約 80 nmに達し、 基板表面を覆って析出している様子が観察された。 次いで、 該テンプレートが全 面に一様に施されてなる基板に、 所定濃度に調整されて市販されている電子線レ ジスト (日本ゼオン (株) 製、 ZEP 520) を、 スピンコートし、 ZnO多結 晶テンプレートを介して、 厚さ 1. 2 mのレジスト塗膜を基板上に形成した。 この塗膜の上に電子線リソグラフィー装置 (EL I ONI X (株)製、型式名: ELS 5700)を用いて電子線を所定パターンに超精密に照射した。すなわち、 超微細エアホールが規則的に所定パターンに多数配列してなる構造のパターンを 描画し、 次いで現像した。 その結果、 ねらい通りの正確な微細パターンを有する レジスト铸型が形成された。 作製された铸型の設計諸元を測定したところ、 高さ 1200 nm、 エアホール半径 r = 100 nm、 格子定数 a、 r/a = 0. 1 7 〜0. 25、 a = 400 nm、 600 nmの 2次元周期のエアホール構造を有し ており、 極めて精密な超微細エアホールパターンからなるレジスト錶型が基板上 に作製された。 図 3 (b) は、 得られたレジスト錄型を SEM観察した図であり、 ZnO多結 晶テンプレート上に微細なエアホールが規則的に多数穿設されて配列したエアホ 一ル型铸型が形成され、 エアホールの底部は、 テンプレートが露出されている様 子が確認された。 次ぎに硝酸亜鉛を採取、 秤量してこれを蒸留水に溶解し、 硝酸亜鉛水溶液 0. lmo 1/1を調製した。 これに結晶成長制御剤としてへキサメチレンテトラミ ン (HMT; 0. lmo 1/1) を添加して、 高密度高配向性 Z n O結晶を得る ための出発処理溶液を調製した。 上記調製した硝酸亜鉛水溶液を密閉型反応容器に仕込み、 この反応容器内の溶 液中に、 前記電子線リソグラフィ一によつて基板上に一体に作製した、 いわゆる —体型エアホール型レジスト铸型を基板と共に浸漬した。 室温から容器を昇 口 熱し、内部の水溶液が所定の温度に到達後、その温度のまま所定時間維持した後、 氷浴で反応容器を急冷して反応を停止させた。 水溶液中よりレジスト铸型を取り 出し、 電子線レジストを溶解し、 Z n O周期構造体を得た。 得られた Z n O周期構造体試料の微細構造を、 S EMにより観察、 評価した。 その結果、反応温度 75°C、 反応時間 1時間、 反応させた結果、 図 3 (c)、 (d) に示すように、 レジスト铸型のエアホールパターンを正確に転写、 反映してなる 27火元周期構造のパターンを有してなる酸ィ匕亜鉛が析出し、 その各微細エアホー ル内には高さ最大で 1 μπιの ZnO結晶ビラ一が作製された。 その高さは、 反応 温度、 時間を適宜制御することにより容易に調製しうることが実験を通じて明ら かとなつた。 その間、 この化学浴析出過程においてレジストが変質し、 生成物に 悪影響を及ぼすようなことはなかった。 なお、 図 3 (a) 〜 (d) において、 黒 表示の線は、 500 nmの長さを示す。 なお、 以上の実施例に示した実験とは別の実験によれば、 本実施例に供したテ ンプレートには、 基板面に垂直方向に 6角形の Z n O結晶が成長することが確認 されているが、 上記円形エアホール铸型を用いた場合、 そのような特徴的な結晶 の外形がほぼ消失し、 円形の外形を有する ZnO結晶が、 析出した。 すなわち、 铸型中で成長した Z n O結晶は、 エアホールの形状を完全に転写した微細構造を 示していることが SE M観察から明らカ となった。 この得られた配向 Z n O周期 構造体は、 X線回折パターン (図 4) 力、らは顕著な c軸配向性を示した、 図 2で 示したと殆ど同様の回折パターンが得られことが確認された。 実施例 3 ; First, a silicon substrate is prepared, a ZnO precursor solution containing zinc acetate is coated on this substrate, and heat-treated at 500 ° C. to form a porous ZnO polycrystalline seed on the substrate. Was generated. Figure 3 (a) is a diagram observed by SEM. It was observed that the Z ηθ polycrystal having a porous microstructure reached a thickness of about 80 nm and was deposited over the substrate surface. Next, a commercially available electron beam resist (ZEP520, manufactured by Zeon Corporation) adjusted to a predetermined concentration is spin-coated on a substrate on which the template is uniformly applied on the entire surface, and ZnO A 1.2 m thick resist coating was formed on the substrate via the polycrystalline template. An electron beam lithography apparatus (manufactured by ELIONIX Co., Ltd., model name: ELS5700) was used to irradiate a predetermined pattern with an electron beam on the coating film in a very precise manner. That is, a pattern having a structure in which a large number of ultrafine air holes were regularly arranged in a predetermined pattern was drawn, and then developed. As a result, a resist 铸 having a precise micropattern as intended was formed. When the design parameters of the fabricated 铸 were measured, the height was 1200 nm, air hole radius r = 100 nm, lattice constant a, r / a = 0.17 to 0.25, a = 400 nm, 600 It has an air hole structure with a two-dimensional periodicity of nm, and a resist 錶 consisting of an extremely precise ultrafine air hole pattern was fabricated on a substrate. Fig. 3 (b) is a SEM observation of the obtained resist mold, and shows an air hole mold in which a large number of fine air holes are regularly formed and arranged on a ZnO polycrystalline template. It was confirmed that the template was exposed at the bottom of the air hole. Next, zinc nitrate was collected, weighed, and dissolved in distilled water to prepare an aqueous solution of zinc nitrate 0.1 lmo 1/1. Hexamethylenetetramine (HMT; 0.1 lmo 1/1) was added as a crystal growth control agent to prepare a starting solution for obtaining high-density and highly oriented ZnO crystals. The aqueous zinc nitrate solution prepared above was charged into a closed-type reaction vessel, and a so-called “body air-hole type resist”, which was integrally formed on a substrate by the electron beam lithography in the solution in the reaction vessel, was prepared. It was immersed together with the substrate. The container was heated from room temperature and heated, and after the internal aqueous solution reached a predetermined temperature and was kept at that temperature for a predetermined time, the reaction vessel was rapidly cooled with an ice bath to stop the reaction. The resist mold was taken out from the aqueous solution, and the electron beam resist was dissolved to obtain a ZnO periodic structure. The microstructure of the obtained ZnO periodic structure sample was observed and evaluated by SEM. As a result, the reaction temperature was 75 ° C, the reaction time was 1 hour, and the reaction was performed. As a result, as shown in Figs. 3 (c) and (d), the resist 铸 air hole pattern was accurately transferred and reflected. Zinc oxide having a pattern of the periodic structure of the fire origin was deposited, and ZnO crystal villas with a maximum height of 1 μπι were fabricated in each fine air hole. It has been clarified through experiments that the height can be easily adjusted by appropriately controlling the reaction temperature and time. During this process, the resist did not deteriorate during the chemical bath deposition process and did not adversely affect the product. In FIGS. 3A to 3D, the black lines indicate the length of 500 nm. According to another experiment different from the experiment shown in the above example, it was confirmed that hexagonal ZnO crystals grow on the template used in this example in a direction perpendicular to the substrate surface. However, when the circular air hole type 上 記 was used, such a characteristic crystal outline almost disappeared, and a ZnO crystal having a circular outline was deposited. In other words, it was evident from SEM observation that the ZnO crystal grown in the 铸 -type had a microstructure in which the shape of the air hole was completely transferred. The obtained oriented ZnO periodic structure showed remarkable c-axis orientation in the X-ray diffraction pattern (Fig. 4). It was found that a diffraction pattern almost similar to that shown in Fig. 2 was obtained. confirmed. Example 3;
次に、 シリコン基板に代え、 可視紫外域で透明なシリカガラスを用いこれを基 板とした。 このシリカガラス基板上に、 多孔質テンプレートを上記実施例 2と同 様の方法で施し、 その上に、 0. 1M濃度の反応溶液を用いて、 ZnO結晶膜を 作製した。 77 °Cで反応させた場合、 実施例 1で示した S i基板上に形成した Z n O結晶膜とほぼ同じ微細構造を有する高密度柱状 Z n O結晶膜がシリカガラス 基板上に厚さ 1 μπιの薄膜で生成した。 この薄膜の光学的性質を調べるため、 基 板面に対し垂直方向の透過率スぺクトルを測定した。 その結果、 図 5に示したス ベクトルが得られた。 この図によると、 薄膜 (実線) は、 広い可視域で 80%以 上の高い透過率を示し、 80 nmの厚みのテンプレート薄膜と同じ程度の透過率 を示している。 透過率が立ち上がる 3. 3 eVは、 ZnOのバンドギャップにほ ぼ対応し、 配向薄膜が ZnOから構成され、 高い透明性を有することが明らかと なった。 実施例 4 ; Next, instead of the silicon substrate, a silica glass transparent in the visible ultraviolet region was used and used as a substrate. On this silica glass substrate, a porous template was applied in the same manner as in Example 2 above, and a ZnO crystal film was formed thereon using a 0.1 M concentration reaction solution. When reacted at 77 ° C, a high-density columnar ZnO crystal film having almost the same microstructure as the ZnO crystal film formed on the Si substrate shown in Example 1 was deposited on the silica glass substrate. It was formed as a thin film of 1 μπι. In order to examine the optical properties of this thin film, the transmittance spectrum in the direction perpendicular to the substrate surface was measured. As a result, the switch shown in Fig. 5 The vector is obtained. According to this figure, the thin film (solid line) shows high transmittance of over 80% in the wide visible region, and the same transmittance as that of the template thin film with a thickness of 80 nm. 3.3 eV, at which the transmittance rises, almost corresponds to the band gap of ZnO, and it is clear that the oriented thin film is composed of ZnO and has high transparency. Example 4;
上記実施例で示したと同様の手法によって、 格子定数: 400、 半径 100η mの円柱状ピラーが格子状に配列してなるレジスト铸型を基板に一体に形成し、 これを実施例 2と同様の条件で Z nO結晶を析出させた。 その結果得られた Z n O結晶を図 6に示す。 得られた Z ηθ結晶は、 Z nO連続層で得られ、その連続層の中に、格子定数: 400 nm、 半径 100 nmの黒い穴で示されたエアーホールが格子状に形成さ れてなる ZnOフォトニック結晶が作製された。 実施例 5 ;  By the same method as described in the above embodiment, a resist な る in which cylindrical pillars having a lattice constant of 400 and a radius of 100ηm are arranged in a grid pattern is integrally formed on a substrate, and this is formed in the same manner as in the second embodiment. Under these conditions, ZnO crystals were deposited. FIG. 6 shows the resulting ZnO crystal. The obtained Z ηθ crystal is obtained as a continuous layer of ZnO, in which air holes indicated by black holes with a lattice constant of 400 nm and a radius of 100 nm are formed in a lattice pattern. A ZnO photonic crystal was fabricated. Example 5;
実施例 2記載した条件と同様の手法で、 基板に図 7に示した文字パターンが形 成された一体型レジスト錄型 (a) を作製した。 これを実施例と同様の条件で Z nO結晶を析出させた。 その結果、 図中 (b) 〜 (c) に示す c軸配向した、 透 明な Z nO結晶パターンが得られた。 これによつて複雑な回路設計等のデバイス 設計が十分可能であることが確認された。 実施例 6 ;  In the same manner as described in Example 2, an integrated resist type (a) having the character pattern shown in FIG. 7 formed on the substrate was produced. This was used to precipitate ZnO crystals under the same conditions as in the example. As a result, transparent ZnO crystal patterns with c-axis orientation shown in (b) to (c) in the figure were obtained. As a result, it was confirmed that device design such as complicated circuit design was sufficiently possible. Example 6;
上記実施例:!〜 4において得られた Z n O結晶は、 何れも緻密な組織の Z n O 結晶が析出形成された。 本実施例では、 テンプレート形成後、 実施例 2で示され た ZnO結晶析出条件を、 亜鉛イオン含有水溶液濃度、 温度条件を変えて実施し た。 その結果は図 8に示す結果が得られた。 図中 (a) は、 亜鉛イオン含有溶液を 0. lmo l濃度、 昇温速度 l°C/m i n (室温から 80°Cまで)、 (b) は、 亜 鉛ィオン含有溶液を 0. 005 m 01濃度、 昇温速度 0. 3 °C/m i n (室温か ら 80°Cまで) に設定して、 ZnO結晶を析出させた結果を SEMにより観察し た各図を示すものである。 これらの図によるとこの実験から、 濃度が高くても、 昇温速度が速いと、 粗な組織になること、 また、 濃度が低いと、 昇温速度が遅く とも、 粗な組織になること、 すなわち、 適正な濃度、 昇温速度が必要であること を示している。 実施例 7 ;  Example above! In all of the ZnO crystals obtained in Nos. 1 to 4, dense ZnO crystals were formed. In this example, after the template was formed, the ZnO crystal deposition conditions shown in Example 2 were changed while changing the concentration of the zinc ion-containing aqueous solution and the temperature. As a result, the result shown in FIG. 8 was obtained. In the figure, (a) is a solution containing zinc ions at a concentration of 0.1 mol and a heating rate of l ° C / min (from room temperature to 80 ° C), and (b) is 0.005 m of a solution containing zinc ion. Each figure shows the results of SEM observation of the results of precipitation of ZnO crystals with the concentration set at 01 and the heating rate set to 0.3 ° C / min (from room temperature to 80 ° C). According to these figures, it is clear from this experiment that even at a high concentration, a high rate of heating raises a coarse structure, and that at a low concentration, a rough structure occurs even at a low rate of heating. In other words, it indicates that an appropriate concentration and heating rate are required. Example 7;
以上実施例 2から 5における実験は、 何れも使用したレジスト铸型は、 基板上 に一体に形成された一体型レジスト錶型によってパターン生成したが、 本実施例 では、 繰り返し使用できる分離型レジスト铸型を作製し、 この を用いて基板 上に ΖηΟ結晶をパターン生成した。 図 9は、 この手順、 態様を示している。 先 ず、 シリコン基板を用意し、 この基板の上に酢酸亜鉛を含有してなる ΖηΟ前駆 体溶液をスビンコ一トし、 500°Cで熱処理して、 基板上に多孔質 Z n O多結晶 シードからテンプレートを生成させた。 この結果は、 すでに図 3 (a) に示したとおりである。 次いで、 該テンプレー トが全面に一様に施されてなる基板に、 所定濃度に調製された市販されている電 子線レジスト (日本ゼオン (株) 製、 ZEP 520) をスピンコートし、 ZnO 多結晶テンプレートを介して、 厚さ 1. 2 imのレジスト塗膜を基板上に形成し た。 この塗膜の上に電子線リソグラフィ装置 (EL I ON I X (株)製、型式名: ELS 5700)を用いて電子線を所定パターンに超精密に照射した。すなわち、 超微細エアホールが規則的に所定パターンに多数配列してなる構造のパターンを 描画し、 次いで現像した。 その結果、 狙い通りの正確な微細パターンを有するレ ジスト^ Mが形成された。 ここでは、 線幅 3 imのラインパターンを描画した。 この 3 A^m幅のラインパターンを有するレジスト錶型中に、 PDMS (ポリジメ チルシロキサン) を流し込み、 十分固化させた。 その後、 慎重にレジスト铸型か ら、 P DM Sを取り外し、 分離型高分子顯とした。 一方、 S i基板上に ZnO多結晶シードを施し、 前記スタンプ錄型を当接し、 亜鉛イオン含有水溶液を入れた反応容器に浸漬した。 铸型空間内に溶液が拡散し た状態で、所定時間加熱して基板上に ZnO結晶を成長させた(図 9 ( b )〜( c ) )。 充分に結晶が成長したところで、 铸型を外し、 基板上にシード層を介してパター ン化された ZnO結晶が得られた (図 9 (d))。 加熱温度を 75 °Cに設定して反応した結果、 得られた配向 Z n Oのラインパタ ーンを SEM観察した図を図 10に示す。 この結果、 ZnO結晶が析出している 領域と、 非析出領域とは明確に区分され、 高い解像度のパターンが形成されたこ とが明らかとなった。 これによつて、 水溶液析出法において、 分離型鎵型を用い ることが可能なことが明らかとなった。 これによつて、 パターン形成に際し、 量 産ィ匕への道が開力れたものと思料される。 上記、 デバイス作製に供した錄型は、 基板上にスピンコーティングしたレジストを直接パターユングして錄型を得てい る例を示したが、 铸型の作製は、 このような手段のみによって限定されるもので はない。 すなわち、 レジスト鏺型を原型としてとしてこれに高分子材料を流し込 んで铸型を作製する方法、 あるいは、 シリコン基板等加工性に富んだ固体材料を 選択し、 これを直接加工し、 例えばドライエッチング等によって加工して原型を 作製し、 これに P DM S等の高分子材料を流し込んでスタンプ型铸型を得る方法 等種々の方法が考えられる。 本発明で意図している Z n O結晶パターンはその何 れの方法、 手段も採用することができることはいうまでもない。 以上の実施例に記載された実験を通じ、 基板上に高配向性酸ィ匕亜鉛結晶を極め て精密に任意のパターンに制御し、 デバイス設計できることが明らかとなった。 勿論、 パターンユング手段は、 この実施例で採用した電子線リソグラフィ一に限 定されるものではない。 例えば、 光を照射するフォトリソグラフィーを始め他の リソグラフィー、 パターニング手段も適用することができる。 酸化亜鉛 ( Z n O) は、 可視で透明で高い屈折率を有する材料として知られて いる。 Z n O薄膜のパターニング例について、 従前の技術水準を示すものとして 非特許文献 4に λる提案がある。 図 1 1 ( a ) 〜 (d ) は、 この提案によって作 製された微細デバイス (力ソードルミネッセンス) である。 これらの図には、 線 の太さが太いものから細いものまで異なる線によるパターンが形成されている。 図 1 1中 (a ) に示すパターンは、 酸化亜鉛パターンを電子顕微鏡写真によつ て撮影した図 (写真) であり、 白い部分に酸ィ匕亜鉛がパターン化され、 析出され ている。 同図中 (b ) は、 その中の最小細線のパターンが示されている。 この後 者の図によると、 2 0 0 n m程度の微細粒子が個々に分散し、 決して高密度、 高 配向とは言えなレ、、 すなわち解像度の低レ、粗な析出粒子で構成されていることが 示されている。 図中 (c ) は、 (a ) と同じ部分の蛍光機能を示す力ソードルミネ ッセンスパターンを示し、 図中 (d ) は、 (b ) と同じ部分の力ソードルミネッセ ンスパターンで (b ) 同様に解像度の低い粗な析出粒子が分散して蛍光を発して いることが示されている。 これに対し、 本発明によるものは、 実施例 1〜6からも明らかなように、 高密 度高配向 Z η θ結晶が高精度パターン、 高解像度で形成されていることが示され ており、 前記従来技術よりも優れていることが理解される。 In the experiments in Examples 2 to 5 described above, the resist 铸 used in each of the experiments was performed on the substrate. In this example, a pattern was generated by an integrated resist type I formed integrally with the resist, but in this example, a separate type resist type II that can be used repeatedly was produced, and a pattern of an {η} crystal was generated on a substrate using the resist type. FIG. 9 shows this procedure and mode. First, a silicon substrate was prepared, a zinc acetate-containing ΖηΟ precursor solution was coated on the substrate, and heat-treated at 500 ° C to form a porous ZnO polycrystalline seed on the substrate. Generated a template from. This result is already shown in Fig. 3 (a). Then, a commercially available electron beam resist (ZEP 520, manufactured by Nippon Zeon Co., Ltd.) adjusted to a predetermined concentration is spin-coated on a substrate on which the template is uniformly applied on the entire surface, and the ZnO amount is increased. A 1.2 im thick resist coating was formed on the substrate via the crystal template. An electron beam was applied to this coating film in a predetermined pattern with ultra-precision using an electron beam lithography apparatus (manufactured by ELION IX Co., Ltd., model name: ELS5700). That is, a pattern having a structure in which a large number of ultrafine air holes were regularly arranged in a predetermined pattern was drawn, and then developed. As a result, a resist ^ M having an intended precise fine pattern was formed. Here, a line pattern having a line width of 3 im is drawn. PDMS (polymethylsiloxane) was poured into the resist 有 す る having a line pattern of 3 A ^ m width, and was sufficiently solidified. Thereafter, the PDMS was carefully removed from the resist type I to give a separated polymer. On the other hand, a ZnO polycrystalline seed was applied on a Si substrate, the stamp 錄 was brought into contact with the seed, and immersed in a reaction vessel containing a zinc ion-containing aqueous solution. With the solution diffused in the 铸 -shaped space, heating was performed for a predetermined time to grow ZnO crystals on the substrate (FIGS. 9 (b) to 9 (c)). When the crystals had grown sufficiently, the 铸 type was removed, and a patterned ZnO crystal was obtained on the substrate via the seed layer (Fig. 9 (d)). FIG. 10 shows a SEM observation of the obtained line pattern of the oriented ZnO as a result of the reaction at a heating temperature of 75 ° C. As a result, it was clarified that the region where the ZnO crystal was precipitated and the non-precipitation region were clearly separated, and that a high-resolution pattern was formed. As a result, it became clear that the separation type III can be used in the aqueous solution precipitation method. As a result, it is considered that the road to mass production and shading was opened in pattern formation. In the above-mentioned Type I, which was used for device fabrication, an example was given in which Type II was obtained by directly patterning a resist that was spin-coated on a substrate, but the production of Type III was limited only by such means. It is not. In other words, a method of fabricating a mold by pouring a polymer material into the mold of a resist mold is used as a prototype, or selecting a solid material such as a silicon substrate that is highly processable and directly processing the material, for example, dry etching. Various methods are conceivable, such as a method in which a prototype is prepared by processing using a method such as that described above, and a polymer material such as PDMS is poured into the prototype to obtain a stamp-type 铸. It goes without saying that the ZnO crystal pattern intended in the present invention can employ any method and means. Through the experiments described in the above examples, it has been clarified that highly oriented oxidized zinc crystals can be extremely precisely controlled on an arbitrary pattern on a substrate to design a device. Of course, the pattern Jung means is not limited to the electron beam lithography employed in this embodiment. For example, other lithography and patterning means such as photolithography that irradiates light can be applied. Zinc oxide (ZnO) is known as a material that is visible, transparent, and has a high refractive index. Non-Patent Document 4 proposes λ as an example of patterning a ZnO thin film, which indicates a conventional state of the art. Figures 11 (a) to 11 (d) show the microdevice (force saddle luminescence) produced by this proposal. In these figures, patterns are formed by different lines from thick lines to thin lines. The pattern shown in (a) in FIG. 11 is a diagram (photograph) of a zinc oxide pattern taken by an electron micrograph, in which zinc oxide is patterned and deposited on a white portion. In the figure, (b) shows the pattern of the smallest thin line therein. According to the latter figure, fine particles of about 200 nm are individually dispersed, and are composed of particles with a high resolution and high orientation, that is, low resolution and coarse precipitate particles. It is shown. In the figure, (c) shows the force saddle luminescence pattern showing the fluorescence function of the same part as (a), and (d) shows the force sodle luminescence pattern of the same part as (b). ) Similarly, it is shown that coarse precipitate particles with low resolution are dispersed and emit fluorescence. On the other hand, according to the present invention, as is clear from Examples 1 to 6, it is shown that a high-density and high-orientation Zηθ crystal is formed with a high-precision pattern and a high resolution. It is understood that it is superior to the prior art.
すなわち、 本発明によって、 低温水溶液 (化学浴) 浸漬法によって、 簡単に基板 に対して垂直に配向し、 緻密な微細構造を有して高密度に Z n O結晶が、 高精度 にパターユングされて、 析出することが明らかとなった。 すなわち、 酸化亜鉛結 晶を高品質、 超精密、 高精度パターユングし、 二次元的周期構造を有するフォト ニック結晶デバィス設計することが可能となり、 成功したものである。 以上述べたように、 本発明は、 基板を水溶液に浸漬するという極めて簡単な操 作により、 しかも低温下で柱状 Z n O結晶が基板面に高密度、 高配向、 自己組織 化的に膜状に生成し得ることを明らかにした。 また、 これをさらに発展させ、 本 発明の低温ィ匕学浴析出法による製膜技術を、 高精度パターンが要求されるデパイ ス設計に取り入れ、 有効に機能することを明らかにした。 これによつてデバイス 設計に新しい手法を提供するもので、 今後デバイス設計技術に一石を投じ、 新し い設計思想によるデバイスの開発がなされるものと期待され、 その意義は極めて 大きいと思料される。 今後は、 同様の高精度パターンが要求される各種デバイス への適用、 応用が増えていくものと考えられる。 本発明によって得られる Z n O結晶は、 何れのパターンにおいても配向性に優 れており、 そのため従来の配向性に劣るものに比し、 その有している電気的、 光 学的特性が最大限に発揮され、 小さくても最大の性能、 機能が奏せられるものと 期待される。 従って、 フォトニックス結晶以外にも、 具体的には、 微小圧電体の 設計を始め、 微小デバイスへの応用、 設計が考えられる。 何れにしても、 低温浸 漬法によつて容易に高精度パターンが得られることが、 確認されたものであるこ と力ら、 デバイス設計においてそれ自体極めて大きな意義が認められることにカロ え、 従来高温処理工程を伴うこと等から、 使用することのできなかった材料につ いても使用することが可能となったことを意味し、 今後新しレ、デパイス設計に結 ぴつき、 その意義は大きいと考えられる。 従来のデバイス設計は、一般的に極めて高価な機器を要し、高度で複雑な操作、 工程によって設計、 作製されており、 いわゆる低温化学浴で簡単に析出するよう なプロセスでは、 高精度の品質とパターン設計を要するデバイス設計には、 これ を採用の限りではなかったことを考慮すると、 本発明のもたらした意義は極めて 大である。 今後デバイス技術に画期的とも言える影響をもたらすものと期待され る。 産業上の利用可能性 That is, according to the present invention, the ZnO crystal which is easily oriented perpendicular to the substrate, has a dense microstructure, and is densely patterned with high precision by a low-temperature aqueous solution (chemical bath) immersion method. It was clarified that precipitation occurred. In other words, it is possible to design a photonic crystal device having a two-dimensional periodic structure by patterning high-quality, ultra-precision, and high-precision zinc oxide crystals. As described above, the present invention provides an extremely simple operation of immersing a substrate in an aqueous solution, and furthermore, a columnar ZnO crystal is formed on a substrate surface at a high density, a high orientation, and a self-assembly at a low temperature. It was clarified that it could be generated. Further, by further developing this, it has been clarified that the film forming technology by the low-temperature shading bath deposition method of the present invention is incorporated into a depth design requiring a high-precision pattern and functions effectively. This will provide a new method for device design, and is expected to develop a new design philosophy in the future by dedicating device design technology, and its significance is expected to be extremely large. . In the future, various devices that require similar high-precision patterns It is thought that the application to and the application to will increase. The ZnO crystal obtained by the present invention has excellent orientation in any of the patterns, and therefore has the largest electrical and optical characteristics as compared with the conventional one having poor orientation. It is expected to exhibit the maximum performance and functions even if it is small. Therefore, in addition to the photonics crystal, specifically, the design and application to micro devices, including the design of micro piezoelectric materials, are conceivable. In any case, it has been confirmed that high-precision patterns can be easily obtained by the low-temperature immersion method. This means that it was possible to use materials that could not be used due to the high temperature treatment process, etc. it is conceivable that. Conventional device design generally requires extremely expensive equipment, and is designed and manufactured by sophisticated and complicated operations and processes.The process that can be easily deposited in a so-called low-temperature chemical bath requires high-precision quality. Considering that this is not limited to device design requiring pattern design and pattern design, the significance brought by the present invention is extremely large. It is expected to have a breakthrough effect on device technology in the future. Industrial applicability
本発明は、 高温操作によらない、 1 0 o°c以下の極めて穏やかな条件下での反 応によって、 c軸が基板に対して垂直に配向し、 緻密な微細構造を有して生成さ れてなる高密度柱状 Z n O結晶膜体を提供するものであるので、透明電極を始め、 電子技術分野を始め、 亜鉛酸化物の電気的、 光学的特性を利用する技術分野にお いて、 コスト面、 品質面共に優れており、 大いに利用されるものと予想される。  According to the present invention, the reaction under extremely mild conditions of 10 ° C. or less, which does not depend on high-temperature operation, has a structure in which the c-axis is oriented perpendicular to the substrate and has a dense microstructure. It provides a high-density columnar ZnO crystal film that can be used in transparent electrodes, electronic technology, and other technical fields that use the electrical and optical properties of zinc oxide. It is excellent in both cost and quality, and is expected to be widely used.

Claims

請 求 の 範 囲 The scope of the claims
1. 亜鉛イオンを含有する水溶液に基板を浸漬することによつて基板上に得 られ、 c軸が基板に対して垂直に配向し、 緻密な微細構造を有して生成されてな ることを特徴とする高密度柱状 Z n O結晶膜体。 1. Obtained on a substrate by immersing the substrate in an aqueous solution containing zinc ions, the c-axis is oriented perpendicular to the substrate, and it must be formed with a dense microstructure. High-density columnar ZnO crystal film.
2. 浸漬する基板に対して、 基板面積の 90 %以上の高被覆面密度で膜状に 生成されてなることを特徴とする請求項 1記載の高密度柱状 Z n O結晶膜体。 2. The high-density columnar ZnO crystal film body according to claim 1, wherein the high-density columnar ZnO crystal film body is formed with a high covering surface density of 90% or more of the substrate area with respect to the substrate to be immersed.
3. 該高密度柱状 Z n O結晶膜体が可視紫外域で透明である請求項 1または 2記載の高密度柱状 Z n O結晶膜体。 3. The high-density columnar ZnO crystal film according to claim 1, wherein the high-density columnar ZnO crystal film is transparent in a visible ultraviolet region.
4. 亜鉛イオンを含む出発水溶液に基板を浸漬することによって、 基板上に Z n O結晶薄膜を自己組織的に生成する方法において、 浸漬する基板に対して c 軸が垂直に配向し、 緻密な微細構造の高密度柱状 Z n O結晶膜体が得られるよう に該出発水溶液中の亜鉛ィオン濃度を調製することを特徴とした、 高密度柱状 Z n O結晶膜体の製造方法。 4. In a method of self-assembly forming a ZnO crystal thin film on a substrate by immersing the substrate in a starting aqueous solution containing zinc ions, the c-axis is oriented vertically to the immersed substrate, A method for producing a high-density columnar ZnO crystal film, characterized by adjusting the concentration of zinc ion in the starting aqueous solution so as to obtain a microstructured high-density columnar ZnO crystal film.
5. 該高密度柱状 Z n O結晶膜体を生成させる基板として、 予めシ一ドを形 成した基板を用レ、ることを特徴とする、 請求項 4記載の高密度柱状 Z n O結晶膜 体の製造方法。 5. The high-density columnar ZnO crystal according to claim 4, wherein a substrate on which a shield is formed in advance is used as the substrate for generating the high-density columnar ZnO crystal film body. Manufacturing method of membrane.
6. 予めシードを形成する基板として可視紫外域で透明な単結晶基板または ガラス基板、 または S i基板を選択した請求項 5記載の高密度柱状 ZnO結晶膜 体の製造方法。 6. The method for producing a high-density columnar ZnO crystal film according to claim 5, wherein a single crystal substrate, a glass substrate, or a Si substrate that is transparent in the visible ultraviolet region is selected as a substrate on which the seed is formed in advance.
7. 該出発水溶液中の亜鉛イオン濃度が、 浸漬する基板に対して、 ZnO単 結晶薄膜が十分に生成しうる濃度に調整されている、 請求項 4記載の高密度柱状 Z n O結晶膜体の製造方法。 7. The high-density columnar ZnO crystal film body according to claim 4, wherein the zinc ion concentration in the starting aqueous solution is adjusted to a concentration at which a ZnO single crystal thin film can be sufficiently formed with respect to the substrate to be immersed. Manufacturing method.
8. 該亜鉛イオン濃度として、 0. 07〜0. Smo lZ より好まし くは 0. 08〜0. 15mo 1 1の範囲に調製することを特徴とする、 請求項 4又は 7記載の高密度柱状 Z ηθ結晶膜体の製造方法。 8. The high density according to claim 4 or 7, characterized in that the zinc ion concentration is adjusted to be in the range of 0.07 to 0.15 SmolZ, more preferably 0.08 to 0.15mo11. A method for producing a columnar Z ηθ crystal film body.
9. 出発水溶液と基板との接触反応による該 ZnO結晶膜の育成、 成長を、 該水溶液温度を室温〜 100 好ましくは 50°C〜 90°Cの温度範囲に設定し た温度条件下で行うことを特徴とする、 請求項 4乃至 8の何れか 1項に記載の高 密度柱状 Z n O結晶膜体の製造方法。 9. The growth and growth of the ZnO crystal film by the contact reaction between the starting aqueous solution and the substrate is performed under a temperature condition in which the temperature of the aqueous solution is set in a range of room temperature to 100, preferably 50 ° C to 90 ° C. The method for producing a high-density columnar ZnO crystal film according to any one of claims 4 to 8, characterized in that:
10. 該高密度柱状 Z n O結晶膜体の製造方法における高密度柱状 Z n O結 晶が可視紫外域で透明である請求項 4乃至 9記載の何れか 1項記載の高密度柱状 Z n O結晶膜体の製造方法。 10. High-density columnar ZnO bonding in the method of manufacturing the high-density columnar ZnO crystal film body The method for producing a high-density columnar ZnO crystal film according to any one of claims 4 to 9, wherein the crystal is transparent in a visible ultraviolet region.
1 1 . デバイス作製基板を亜鉛ィオン含有水溶液に铸型と共に浸漬すること によって基板上に Z η θ結晶を、 c軸を基板に垂直に、 自己組織的且つ高密度に 生成せしめたことを特徴とする高密度高配向性 Z n O結晶デバイス。 ' 1 1. By immersing the device fabrication substrate in a zinc ion-containing aqueous solution together with the 铸 type, Z η θ crystal was formed on the substrate in a self-organizing and high-density manner with the c-axis perpendicular to the substrate. High-density and high-orientation ZnO crystal device. '
1 2. 該高密度高配向性 Z n O結晶デパイスにおける高密度高配向性 Z n O 結晶が可視紫外域で透明である、 請求項 1 1記載の高密度高配向性 Z n O結晶デ パイス。 12. The high-density, high-orientation ZnO crystal device according to claim 11, wherein the high-density, high-orientation ZnO crystal in the high-density, high-orientation ZnO crystal device is transparent in a visible ultraviolet region. .
1 3 . デバイス作製基板に所定パターンを有するレジスト铸型を当接して亜 鉛イオンを含有する水溶液に浸漬し、 c軸が基板に対して垂直に配向し、 緻密な 微細構造を有して生成されてなる高密度柱状 Z n O結晶を、 該レジスト鎊型によ るパターユング手段によって所定パターンに自己組織的に生成したことを特徴と する、 パターニングが施されてなる高密度高配向性 Z η θ結晶デバイスの作製方 法。 13 3. A resist mold having a predetermined pattern is brought into contact with the device fabrication substrate and immersed in an aqueous solution containing zinc ions, the c-axis is oriented perpendicular to the substrate, and a fine microstructure is formed. Characterized in that the high-density columnar ZnO crystal thus formed is self-organized into a predetermined pattern by the patterning means using the resist type, and the high-density high-orientation Z formed by patterning is formed. ηθ Crystal device fabrication method.
1 4 . .該結晶を所定パターンに形成する工程が、 デバイス作製基板に錶型が 一体に形成された一体型レジスト錶型を用い、 これによつてパターン形成された 結晶を得ることを特徴とする、 請求項 1 3記載の高密度柱状 Z n O結晶デパイス の作製方法。 14. The step of forming the crystal into a predetermined pattern is characterized in that an integrated resist 錶 having a 錶 is integrally formed on a device fabrication substrate, and a crystal having a pattern formed thereby is obtained. The method for producing a high-density columnar ZnO crystal depice according to claim 13, wherein
1 5 . 該結晶を所定パターンに形成する工程が、 繰り返し使用可能な分離型 铸型を用い、 これをデバイス作製基板に当接して亜鉛イオンを含有する水溶液に 浸漬し、 これによつてパターン形成された結晶を得ることを特徴とする、 請求項 1 3記載の高密度柱状 Z n O結晶デバイスの作製方法。 15. The process of forming the crystal into a predetermined pattern is performed by using a separate type 铸 type that can be used repeatedly, and immersing it in an aqueous solution containing zinc ions while in contact with a device fabrication substrate, thereby forming a pattern. 14. The method for producing a high-density columnar ZnO crystal device according to claim 13, wherein an obtained crystal is obtained.
1 6 . 該高密度柱状 Z n O結晶パターンを形成する基板には、 パターン形成 前に予め亜鉛ィオン含有水溶液を塗布して Z n O多結晶からなるテンプレートを 施しておくことを特徴とする、 請求項 1 3ないし 1 5記載の何れか 1項に記載の 高密度柱状 Z n O結晶デバイスの作製方法。 16. The substrate on which the high-density columnar ZnO crystal pattern is to be formed is characterized in that a zinc ion-containing aqueous solution is applied in advance and a template made of polycrystalline ZnO is applied before pattern formation. The method for producing a high-density columnar ZnO crystal device according to any one of claims 13 to 15.
1 7 . 該基板を浸漬し、 パターン形成する際に使用される亜鉛イオン含有水 溶液を、亜鉛イオン濃度 0 . 0 7〜0 . 3 m o 1 / 1、好ましくは 0 . 0 8〜0 . 1 5 m o 1 / 1の範囲に調製したことを特徴とする、 請求項 1 3乃至 1 6記載の 何れか 1項記載の高精度パターンを有してなる高密度柱状 Z n O結晶デバイスの 製造方法。 17. The zinc ion-containing aqueous solution used for immersing the substrate to form a pattern is formed to have a zinc ion concentration of 0.07 to 0.3 mo 1/1, preferably 0.08 to 0.1 mo. The method for producing a high-density columnar ZnO crystal device having a high-precision pattern according to any one of claims 13 to 16, characterized in that the device is prepared in a range of 5 mo 1/1. .
1 8 . 該高密度高配向性 Z n O結晶デバイスの作製方法における高密度高配 向性 ZnO結晶が可視紫外域で透明である、 請求項 13乃至 17記載の何れか 1 項記載の高密度高配向性 Z n O結晶デバイスの製造方法。 18. High-density, high-orientation ZnO crystal device 18. The method for producing a high-density and highly oriented ZnO crystal device according to claim 13, wherein the directional ZnO crystal is transparent in a visible ultraviolet region.
PCT/JP2004/003903 2003-03-31 2004-03-23 HIGH-DENSITY COLUMNAR ZnO CRYSTAL FILM AND PROCESS FOR PRODUCING THE SAME WO2004088005A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003096286 2003-03-31
JP2003-096286 2003-03-31
JP2003355400A JP2004315342A (en) 2003-03-31 2003-10-15 HIGH-DENSITY COLUMNAR ZnO CRYSTAL FILM AND PROCESS FOR PRODUCING THE SAME
JP2003-355400 2003-10-15

Publications (1)

Publication Number Publication Date
WO2004088005A1 true WO2004088005A1 (en) 2004-10-14

Family

ID=33134324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003903 WO2004088005A1 (en) 2003-03-31 2004-03-23 HIGH-DENSITY COLUMNAR ZnO CRYSTAL FILM AND PROCESS FOR PRODUCING THE SAME

Country Status (2)

Country Link
JP (1) JP2004315342A (en)
WO (1) WO2004088005A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130647A (en) * 2004-10-29 2006-05-25 Sharp Corp SELECTIVE GROWTH OF ZnO NANOSTRUCTURE USING PATTERNED ATOMIC LAYER DEPOSITION (ALD) ZnO SEED LAYER
JP2007514630A (en) * 2003-11-06 2007-06-07 ナノハイブリッド カンパニー リミテッド Formation method of ZnO nano-array and ZnO nanowall array for UV laser on silicon substrate
WO2007076745A1 (en) * 2005-12-15 2007-07-12 Christian-Albrechts-Universität Zu Kiel Method for producing nanostructures on a substrate

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4698192B2 (en) * 2004-09-28 2011-06-08 富士フイルム株式会社 Method for producing zinc oxide structure
JP2007299953A (en) * 2006-04-28 2007-11-15 Kyocera Corp Semiconductor light emitting element, and its manufacturing method
JP4665175B2 (en) * 2007-01-09 2011-04-06 独立行政法人産業技術総合研究所 High c-axis oriented high specific surface area ZnO crystal free-standing film and method for producing the same
JP4906550B2 (en) * 2007-03-19 2012-03-28 三菱マテリアル株式会社 Zinc oxide functional film production method and zinc oxide functional film obtained by the method
JP2008297168A (en) * 2007-05-31 2008-12-11 National Institute Of Advanced Industrial & Technology ZnO WHISKER FILM AND ITS PREPARATION METHOD
JP5176224B2 (en) * 2007-07-09 2013-04-03 独立行政法人産業技術総合研究所 Zn5 (CO3) 2 (OH) 6 crystal free-standing film and method for manufacturing the same
DE112013002508B4 (en) * 2012-05-16 2020-09-24 Panasonic Intellectual Property Management Co., Ltd. Wavelength converting element, method of manufacturing the same, and LED element and laser light-emitting semiconductor device using the wavelength converting element
JP5672622B2 (en) * 2012-05-22 2015-02-18 パナソニックIpマネジメント株式会社 Wavelength conversion element, manufacturing method thereof, LED element using the wavelength conversion element, and semiconductor laser light emitting device
JP2014027047A (en) * 2012-07-25 2014-02-06 Ricoh Co Ltd Magnetic structure and method for manufacturing the same
JP6425907B2 (en) * 2013-03-25 2018-11-21 日本碍子株式会社 Phosphorus-doped zinc oxide and method for producing the same
JP6385009B2 (en) * 2013-05-31 2018-09-05 日本碍子株式会社 Zinc oxide free-standing substrate and manufacturing method thereof
WO2019044409A1 (en) 2017-08-28 2019-03-07 パナソニックIpマネジメント株式会社 Wavelength conversion member, light source, illumination device, and method for manufacturing wavelength conversion member
WO2019065193A1 (en) 2017-09-28 2019-04-04 パナソニックIpマネジメント株式会社 Wavelength conversion member and light source
WO2020012923A1 (en) 2018-07-12 2020-01-16 パナソニックIpマネジメント株式会社 Light source device, projector, and vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159599A (en) * 1998-04-30 2000-06-13 Asahi Chem Ind Co Ltd Metal oxide structural form and its production
JP2002356400A (en) * 2001-03-22 2002-12-13 Canon Inc Manufacturing method for needle structural zinc oxide body, and battery and photoelectric transducer using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159599A (en) * 1998-04-30 2000-06-13 Asahi Chem Ind Co Ltd Metal oxide structural form and its production
JP2002356400A (en) * 2001-03-22 2002-12-13 Canon Inc Manufacturing method for needle structural zinc oxide body, and battery and photoelectric transducer using it

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SAITO N. ET AL: "Low-temperature fabrication of light-emitting zinc oxide micropatterns using self-assembled monolayers", ADVANCED MATERIALS, vol. 14, no. 6, 18 March 2002 (2002-03-18), pages 418 - 421, XP001129798 *
TIAN Z.R. ET AL: "Biomimetic Arrays of Oriented Helical ZnO Nanorods and Columns", JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 124, no. 44, 6 November 2002 (2002-11-06), pages 12954 - 12955, XP002979790 *
VAYSSIERES L. ET AL: "Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 105, no. 17, 3 May 2001 (2001-05-03), pages 3350 - 3352, XP002979791 *
YAMABI S. ET AL: "Growth conditions for wurtzite zinc oxide films in aqueous solutions", JOURNAL OF MATERIALS CHEMISTRY, vol. 12, no. 12, December 2002 (2002-12-01), pages 3773 - 3778, XP002979789 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514630A (en) * 2003-11-06 2007-06-07 ナノハイブリッド カンパニー リミテッド Formation method of ZnO nano-array and ZnO nanowall array for UV laser on silicon substrate
JP4648907B2 (en) * 2003-11-06 2011-03-09 ナノハイブリッド カンパニー リミテッド Formation method of ZnO nano-array and ZnO nanowall array for UV laser on silicon substrate
JP2006130647A (en) * 2004-10-29 2006-05-25 Sharp Corp SELECTIVE GROWTH OF ZnO NANOSTRUCTURE USING PATTERNED ATOMIC LAYER DEPOSITION (ALD) ZnO SEED LAYER
WO2007076745A1 (en) * 2005-12-15 2007-07-12 Christian-Albrechts-Universität Zu Kiel Method for producing nanostructures on a substrate
US7914850B2 (en) 2005-12-15 2011-03-29 Christian-Albrechts-University, Kiel Method for producing nanostructures on a substrate

Also Published As

Publication number Publication date
JP2004315342A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
WO2004088005A1 (en) HIGH-DENSITY COLUMNAR ZnO CRYSTAL FILM AND PROCESS FOR PRODUCING THE SAME
Sun et al. Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film
US6858079B2 (en) Self-assembled photonic crystals and methods for manufacturing same
KR100790524B1 (en) Preparation method of ZnO nanorods and nanorods made by the same
Consonni et al. Selective area growth of well-ordered ZnO nanowire arrays with controllable polarity
Dai et al. Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments
Zhao et al. Nanofabrication approaches for functional three-dimensional architectures
TW201324586A (en) Method for producing a thin single crystal silicon having large surface area
Park et al. Position-controlled hydrothermal growth of ZnO nanorods on arbitrary substrates with a patterned seed layer via ultraviolet-assisted nanoimprint lithography
Rahm et al. Pulsed-laser deposition and characterization of ZnO nanowires with regular lateral arrangement
Zhang et al. Epitaxial patterning of thin-films: conventional lithographies and beyond
KR100803053B1 (en) Method for fabricating periodic zinc oxide nanorod arrays
US9725825B2 (en) One-dimensional titanium nanostructure and method for fabricating the same
KR101442625B1 (en) Manufacturing method of chalcogenide with 3 dimensional hierarchical structures
KR20100010796A (en) Method for fabricating zinc oxide nanostructure using hologram lithography
US10312081B2 (en) Synthesis of metal oxide surfaces and interfaces with crystallographic control using solid-liquid-vapor etching and vapor-liquid-solid growth
Orlov et al. Influence of process temperature on ZnO nanostructures formation
KR20120039578A (en) Method for fabricating zinc oxide nanostructure using hologram lithography
Tredici et al. A simple two-step solution chemistry method for synthesis of micropatterned ZnO nanorods based on metal-loaded hydrogels
KR20100103231A (en) Method and application for facbrication of calcium carbonate thin film with nano/micro structure
Pyun et al. Synthesis of ZnO nanotubes and nanotube-nanorod hybrid hexagonal networks using a hexagonally close-packed colloidal monolayer template
Song et al. Selective growth of vertical ZnO nanowires with the control of hydrothermal synthesis and nano-imprint technology
Bai et al. Site-specific growth of oriented ZnO nanocrystal arrays
JP5152715B2 (en) Three-dimensional fine processing method and three-dimensional fine structure
KR101068402B1 (en) Complex of ZnO nano-structure on three dimensional structure and synthesis method of the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase