WO2004087596A1 - Optical glass - Google Patents

Optical glass Download PDF

Info

Publication number
WO2004087596A1
WO2004087596A1 PCT/JP2004/004470 JP2004004470W WO2004087596A1 WO 2004087596 A1 WO2004087596 A1 WO 2004087596A1 JP 2004004470 W JP2004004470 W JP 2004004470W WO 2004087596 A1 WO2004087596 A1 WO 2004087596A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
refractive index
content
optical
devitrification
Prior art date
Application number
PCT/JP2004/004470
Other languages
French (fr)
Japanese (ja)
Inventor
Umihiko Mori
Akio Konishi
Yoshinori Tanigami
Original Assignee
Nihon Yamamura Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co., Ltd. filed Critical Nihon Yamamura Glass Co., Ltd.
Priority to JP2005504232A priority Critical patent/JP4563934B2/en
Publication of WO2004087596A1 publication Critical patent/WO2004087596A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Definitions

  • the present invention relates to optical glass. More specifically, the present invention relates to an optical glass having high refractive index, low dispersion optical characteristics, suitable for mold press molding, and excellent in devitrification resistance. Background art
  • Aspheric lenses make it easy to correct aberrations other than chromatic aberrations, and reduce the number of lenses ..
  • the equipment can be compact.
  • aspheric lenses are manufactured by precision mold press molding.
  • the glass preform is heated and softened, and pressure-molded with a mold to obtain an aspheric lens molded product having a desired shape.
  • One method is to cut out from a glass spout or a rod and perform spherical processing.
  • the other is to drop a glass melt from the tip of the nozzle into a spherical glass preform.
  • the optical glass constituting the preform has a low glass yield point (A t) while satisfying desired optical characteristics, devitrification resistance and the like.
  • glass used for aspherical lenses is required to have various optical characteristics depending on the application.
  • a lanthanum borate system As a conventional optical glass which meets the above-mentioned requirements for high refractive index and low dispersion optical characteristics, a lanthanum borate system is typical.
  • Japanese Patent Application Laid-Open Nos. Inventions according to Japanese Patent Application Laid-Open No. 0-22133, Japanese Patent Application Laid-Open No. Hei 8-26765, Japanese Patent Application Laid-Open No. 2002-024433 and the like have been proposed.
  • the conventional lanthanum borate glass disclosed in the above-mentioned JP-A-48-59116 has the advantage that the glass transition temperature (T g) and the glass yield point (A t) are low.
  • T g glass transition temperature
  • a t glass yield point
  • the devitrification resistance is inferior, and there is a problem that the product is apt to be devitrified (cloudy) when formed by precision mold press molding.
  • the above-mentioned dropping method has a problem that a preform cannot be produced.
  • the present invention solves the above-mentioned drawbacks of the conventional optical glass, has a high refractive index and low dispersion optical characteristics, and has a low glass transition temperature (T g) and a low glass deformation point (A t).
  • An object of the present invention is to provide an optical glass which is suitable for press molding, can be molded more easily and at lower cost, and has excellent devitrification resistance. Disclosure of the invention
  • the present inventors have conducted various studies and found that, in an optical glass having a specific glass component composition, the optical glass has a desired high refractive index, low dispersion optical characteristics, and a glass transition temperature. (T g) and glass yield point ( It has been found that a product having a low At) and excellent devitrification resistance can be obtained, and the present invention has been completed.
  • That optical glass of the present invention has a glass composition, in weight%, S i 2: 1 ⁇ 1 0%, B 2 03: 1 6 ⁇ 2 8%, however, S I_ ⁇ 2 + B 2 0 3: 1 8 ⁇ 3 2%, L i 2 O: 0. 5 ⁇ 3%, Z nO: 1 5 ⁇ 3 0%, L a 2 O 3: 2 0 ⁇ 3 5%, Y 2 0 3: 2 ⁇ 1 2 %, Yb 2 ⁇ 3: 0. 0 5 ⁇ 7%, W0 3: is a first feature in that it contains from 4 to 1 to 7%.
  • the refractive index (n d ) of the glass is 1.74 to 1.82, and the Abbe number (V d ) Is 40 to 46, the glass transition temperature (T g) is 535 ° C or less, and the glass deformation point (A t) is 575 ° C or less.
  • optical glass of the present invention then, as a glass composition, in weight%, S i 0 2: 1 ⁇ 9%, B 203: 1 6 ⁇ 2 8%, however, S i O 2 + B 2 O 3: 1 8 ⁇ 3 2%, L i 2 O: 0. 5 ⁇ 3%, Z n O: 1 5 ⁇ 3 0%, L a 2 O 3: 2 0 ⁇ 3 5%, Y 203: 2 ⁇ 1 2% , Y b 2 ⁇ 3: 0.
  • the refractive index (n d ) of the glass is 1 as in the case of the optical glass according to the first feature.
  • n d refractive index
  • Abbe number (v d ) is 40 46
  • glass transition temperature (T g) is less than 535 ° C
  • glass yield point (A t) is less than 575 ° C.
  • G d 2 0 3 that is contained in the condition indicated in the second aspect, it is possible to a high refractive index of the glass, thereby satisfactorily contribute to the low-dispersion properties. Also By including in conditions indicated a N b 2 0 5 In the second aspect, without impairing the devitrification of the glass, can be favorably contribute to the properties of high refractive index.
  • the Z r 0 2 a By including the conditions shown in the second aspect, it is possible to simultaneously refractive index to contribute to the devitrification resistance of glass (n d) large.
  • the optical glass according to the second feature has a high refractive index and low dispersion optical properties, and has a low glass transition temperature (T g) and a glass yield point (A t). It is possible to provide an optical glass which is suitable and can be molded more easily and with lower cost, and also has excellent devitrification resistance.
  • optical glass of the present invention then, as a glass composition, in weight%, S I_ ⁇ 2: 1 ⁇ 9%, B 2 O 3: 1 7 ⁇ 2 7%, however, S i ⁇ 2 + B 2 0 3 : 1 8 ⁇ 3 0%, L i 2 0: ⁇ 3%, Z N_ ⁇ : 1 6 ⁇ 2 9%, L a 2 0 3: 2 0 ⁇ 3 3%, Y 2 0 3: 2 ⁇ : L 0%, Yb 2 O 3 : 0.
  • the refractive index (n d ) of the glass is 1 as in the case of the optical glass according to the second feature. . 74 ⁇ :. L 8 2
  • Abbe number (v d) is 4 0-46
  • the glass transition temperature (Tg) of 5 3 5 ° C or less
  • a glass deformation point (a t) is below 5 7 5 Obviously.
  • lowered glass deformation point (A t) also can be increased refractive index of the glass (n d).
  • T a 2 0 5 to be to contain the third condition shown in features it is possible to increase the glass refractive index of the (n d).
  • the optical glass according to the third feature has a high refractive index and low dispersion optical characteristics, and has a low glass transition temperature (Tg) and a glass yield point (A t), and is therefore suitable for precision mold press molding.
  • Tg glass transition temperature
  • a t glass yield point
  • the optical glass of the present invention it was the glass composition shown therein, the refractive index of glass (n d) 1. 74 ⁇ :. L 8 2, Abbe number (v d) 40 46, glass transition temperature (Tg) below 535 ° C, and It is possible to provide a lanthanum borate-based optical glass having a lath deformation point (A t) of 575 ° C or less.
  • the optical glass of the present invention it is possible to design a compact optical system having high refractive index and low dispersion optical characteristics by one or a small number of lenses by applying the optical glass to an aspheric lens or the like.
  • Equipment can be made smaller and lighter.
  • molding can be performed easily at lower temperatures, and there is less deterioration of the mold, equipment costs and maintenance costs can be sufficiently suppressed, and the devitrification resistance is also excellent. Therefore, a preform with good transparency can be manufactured even by the dropping method, and a high quality lens product can be provided by further molding this preform.
  • S i 0 2 is a 1-1 0%.
  • S i 0 2 is the glass network structure shaped forming component, Ru essential component der to stabilize the glass against devitrification. If it is less than 1%, the devitrification resistance becomes insufficient. On the other hand, if it exceeds 10%, the refractive index (n d ) of the glass decreases, and a desired high refractive index glass cannot be obtained.
  • the content of S i 0 2 is preferably preferably set to 1-9%.
  • the content of S i 0 2 is more preferably preferably set to 1-8%.
  • B 2 0 3 is a glass network structure shaped forming component, Ru essential component der to stabilize the glass against devitrification. If it is less than 16%, the devitrification resistance becomes insufficient, and if it exceeds 28%, the refractive index (n d ) of the glass decreases, and a desired high refractive index glass cannot be obtained.
  • Total S i 0 2 and 8 2 0 3 content is 1 8-3 2%. If the total content is less than 18%, the tendency of the glass to devitrify increases, and it becomes impossible to produce glass stably. On the other hand, if the total content exceeds 32%, the refractive index (n d ) of the glass decreases, and a desired high refractive index glass cannot be obtained.
  • Total content of S i 0 2 and B 2 0 3 is preferably preferably set to 1 8-3 0%.
  • Li 2 ⁇ is a very effective essential component for lowering the glass transition temperature (T g) and the glass yield point (A t). If it is less than 0.5%, the effect is insufficient. On the other hand, if it exceeds 3%, the stability of the glass against devitrification is lowered, which is not preferable.
  • the content of Li 2 O is preferably 1 to 3%.
  • the content of Li 2 O is more preferably 1.5 to 3%.
  • ZnO The content of ZnO is 15 to 30%.
  • Zn ⁇ is an essential component that lowers the glass transition temperature (T g) and the glass yield point (A t) and also contributes to the stability of the glass against devitrification. If it is less than 15%, it is difficult to lower the glass transition temperature (T g) and the glass yield point (A t). On the other hand, if it exceeds 30%, the stability of the glass against devitrification becomes poor.
  • the content of Zn ⁇ is preferably 16 to 29%.
  • the content of Z ⁇ is more preferably 17 to 28%.
  • L a 2 ⁇ 3 The content of L a 2 ⁇ 3 is 2 0-3 5%.
  • L a 2 0 3 a high refractive index, together with contributing to the optical properties of low dispersion, an effective ingredient in order to stabilize the glass against devitrification. If it is less than 20%, the refractive index (n d ) of the glass decreases. As a result, a desired high refractive index glass cannot be obtained. On the other hand, if it exceeds 35%, the tendency of devitrification of the glass increases, which is not preferable.
  • the content of L a 2 0 3 is more preferably preferably set to 2 0-3 2%.
  • Upsilon 2 0 3 also L a 2 0 3 in the same manner as in the high refractive index, contribute to the optical properties of low dispersion. If it is less than 2%, the effect is not sufficient, and if it exceeds 12%, the tendency of devitrification of the glass increases, which is not preferable.
  • the content of Y 2 0 3 is good to preferably a 2-9% is.
  • Yb 2 0 3 The content of Yb 2 0 3 is 0 5-7% 0.1.
  • Yb 2 ⁇ 3 also L a 2 ⁇ 3 similarly to the high refractive index, contribute to the optical properties of low dispersion. If it is less than 0.05%, the contribution to the optical properties of high refractive index and low dispersion is insufficient, and if it exceeds 7%, the tendency to devitrify the glass is undesirably increased.
  • the content of Y b 2 O 3 is preferably preferably set to 0 5-6% 0.1. More preferably, it is set to 0.05 to 5%.
  • WO3 The content of WO3 is 4 to 17%.
  • WO 3 is an essential component for stabilizing glass against devitrification. If it is less than 4%, the devitrification resistance will be insufficient. If it exceeds 17%, the Abbe number ( Vd ) of the glass will decrease, and a glass having a desired high Abbe number will not be obtained.
  • the content of W_ ⁇ 3, and it is preferably 5 to 1 to 6%.
  • the content of W0 3 is more preferably preferably set to 5-1 5%.
  • G d 2 O 3 can be included. In this case, the content should be 0 to 10%.
  • G d 2 ⁇ 3 also L a 2 0 3 in the same manner as in the high refractive index, contribute to the optical properties of low dispersion. If it exceeds 10%, the devitrification tendency of the glass increases, which is not preferable.
  • the content of gd 2 0 3 is preferably preferably set to 0-9%.
  • L a 2 ⁇ 3, Y 2 0 3, Yb 2 0 3, when used in combination with G d 2 ⁇ 3 can be the total amount 2 5 to 42%.
  • L a 2 ⁇ 3, Y 2 0 3, Yb 2 0 3, be used in combination G d 2 O 3 is advantageous in stabilizing the glass against devitrification.
  • the refractive index (n d ) of the glass decreases, and a desired high refractive index glass cannot be obtained. If it exceeds 42%, the stability of the glass against devitrification deteriorates.
  • the total content of L a 2 0 3, Y 2 0 3, Yb 2 0 3, G d 2 O 3 is preferably preferably set to 2 5 to 40%.
  • the N b 2 O 5 may be contained.
  • the content of this N b 2 0 5 is 8% 0.
  • Nb 2 0 5 is to substitute a part of W0 3, to adjust the content thereof to the range described above, the optical performance can be obtained for the purpose without impairing the stability of the glass against devitrification. If it exceeds 8%, the stability of the glass against devitrification is significantly impaired.
  • nb 2 0 5 is preferably preferably set to 0-7%.
  • Z r 0 2 at the same time contribute to the devitrification resistance of the glass, it has the effect of increasing the refractive index of glass (n d). If it exceeds 8%, the stability of the glass against devitrification deteriorates.
  • the content of Z r 0 2 is preferably preferably set to 0-7%.
  • S n 0 2 is that the inclusion of suitable amount in the above range.
  • the content of S n0 2 is preferably preferably set to 0-3%.
  • Mg O can be contained.
  • the content of MgO is 0 to 8%.
  • the optical characteristics can be adjusted by adding MgO in the above content range.
  • the content of MgO is preferably set to 0 to 6%.
  • In 2 ⁇ 3 has the effects of lowering the glass transition temperature (T g) and the glass yield point (A t) and increasing the refractive index (n d ) of the glass.
  • the content exceeds 10%, the content is set to 10% or less in order to reduce the stability of the glass against devitrification and to reduce the Abbe number (v d ) of the glass.
  • the content of I n 2 0 3 is preferably from to 8% 0.
  • T a 2 O 5 can be contained.
  • the content of T a 2 0 5 is a 0-1 0%.
  • T a 2 0 5 has the effect of increasing the refractive index of glass (n d).
  • the upper limit is set to 10% because it has the effect of reducing the Abbe number (V d ) and increasing the glass transition temperature (T g) and the glass yield point (A t).
  • the content of T a 2 0 5 is preferably preferably set to 0-9%.
  • the B 2 0 3 can be used H 3 BO 3, B 2 0 3 , etc., for the other components their oxides, carbonates, the use of nitrate Can be.
  • These raw materials are mixed at a predetermined ratio, and the mixture is put into a melting furnace of 1100 to 1300, melted, clarified, stirred, homogenized, and then poured into a mold. Glass can be manufactured.
  • the glass according to the present invention has a low glass yield point (A t), Preforms made of stainless steel are suitable for precision mold press molding.
  • a preform cut out of a glass block or a rod material and processed into a spherical shape, or a preform formed into a spherical shape by dropping a glass melt from a nozzle can be used.
  • the precision mold press molding is performed by heating and softening a preform and performing pressure molding with a molding die to mold an optical product such as a lens.
  • the properties of the glass in the examples were measured by the following methods.
  • the measurement was carried out with a refractometer (KPR-200, manufactured by Carneux Corp.).
  • a rod-shaped sample with a diameter of 3 to 4 mm and a length of 15 to 20 mm was heated at a rate of 5 ° C / min, and the elongation and temperature of the sample were measured to obtain a thermal expansion curve.
  • glass raw materials oxides, carbonates, nitrates, etc. of the respective components were weighed so as to obtain a glass having the composition shown in Table 1, and the raw materials were mixed well. Melt in a furnace at 130 ° C, sufficiently agitate and homogenize, then lower the temperature to 95-100 ° C, pour it into a mold from that temperature and slowly cool to obtain glass Was.
  • the obtained glass was colorless and homogeneous, and no devitrification was observed.
  • Refractive index of the resulting glass (n d), Abbe number (v d), glass deformation point Table 1 shows (A t) and glass transition temperature (Tg) together with the composition.
  • a glass was obtained in the same manner as in Example 1, except that the composition of the glass was changed. Tables 1 and 2 show the results.
  • the glasses of Examples 2 to 13 and Comparative Examples 1 and 4 were colorless and homogeneous, and no devitrification was observed. However, the glasses of Comparative Examples 2 and 3 were partially whitened and devitrification was observed. In addition, the glasses of Comparative Examples 1 and 4 have high glass transition temperatures (Tg) and high glass yield points (A t), and are not suitable for precision mold press molding.
  • Tg glass transition temperatures
  • a t high glass yield points
  • the refractive index (n d ) of the glass was in the range of 1.757 to 1.808, and the Abbe number (v d ) Is in the range of 40.7 to 45.1, the glass yield point (A t) is in the range of 540 to 571 ° C, and the glass transition temperature (T g) is in the range of 507 to 5 It is in the range of 29 ° C.
  • Comparative Example 1 outside the component range of the present invention, the refractive index (n d ) and Abbe number (v d ) are not bad, but the glass yield point (A t) and the glass transition temperature (Tg) are each 6 The temperature is as high as 29 ° C and 61 ° C, and is not suitable for precision mold press molding. The same applies to Comparative Example 4.
  • the optical glass of the present invention has a high refractive index and low dispersion optical properties, and also has a low glass transition temperature (T g) and a low glass deformation point (A t), so that it is more suitable for precision mold press molding and is easier to mold. And at lower cost As optical devices have been significantly reduced in size and weight, aspherical lenses that can easily correct aberrations other than chromatic aberration, reduce the number of lenses, and make the equipment compact Can be preferably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

An optical glass having a glass composition, in wt %: SiO2: 1 to 10 %, B2O3: 16 to 28 %, with the proviso that SiO2 + B2O3: 18 to 32 %, Li2O: 0.5 to 3 %, ZnO: 15 to 30 %, La2O3: 20 to 35 %, Y2O3: 2 to 12 %, Yb2O3: 0.05 to 7 % and WO3: 4 to 17 %.

Description

明 細 光学ガラス 技術分野  Description Optical glass Technical field
本発明は光学ガラスに関する。 更に詳しくは、 高屈折率で低分散の光 学特性を有し、 モールドプレス成形に適し、 且つ耐失透性に優れた光学 ガラスに関する。 背景技術  The present invention relates to optical glass. More specifically, the present invention relates to an optical glass having high refractive index, low dispersion optical characteristics, suitable for mold press molding, and excellent in devitrification resistance. Background art
近年、 光学機器の小型軽量化が著しく進展している中で、 非球面レン ズが多く用いられるようになってきている。 非球面レンズは色収差以外 の収差の補正が容易であり、 レンズの枚数を少なくし.. 機器をコンパク トにすることができる。  In recent years, as optical devices have been remarkably reduced in size and weight, aspheric lenses have been increasingly used. Aspherical lenses make it easy to correct aberrations other than chromatic aberrations, and reduce the number of lenses .. The equipment can be compact.
この非球面レンズは、 最近では精密モ一ルドプレス成形法で多く製造 されている。 ガラスのプリフォームを加熱軟化させ、 成形型で加圧成形 して所望形状の非球面レンズ成形品を得る。  Recently, many aspheric lenses are manufactured by precision mold press molding. The glass preform is heated and softened, and pressure-molded with a mold to obtain an aspheric lens molded product having a desired shape.
前記プリフォームを得る方法は、 一般に 2種類ある。 その 1つは、 ガ ラスプ口ック或いは棒材等から切り出して球状加工する方法である。 も う 1つは、 ガラス融液をノズル先端から滴下して球状のガラスプリフォ There are generally two methods for obtaining the preform. One method is to cut out from a glass spout or a rod and perform spherical processing. The other is to drop a glass melt from the tip of the nozzle into a spherical glass preform.
—ムを得る方法である。 —This is the way to get
前記精密モールドプレス成形によりガラス成形品を得るためには、 プ リフォームをガラス屈伏点 (A t ) 以上で加圧成形することが必要であ る。 ここで、 プリフォームのガラス屈伏点 (A t ) が高ければ高い程、 使用される金型は高温にさらされ、 金型表面が酸化等により劣化し易く, 低コスト、 大量生産が実現できなくなる。 このため、 プリフォームを構成する光学ガラスは、 所望の光学特性、 耐失透性等を満足しつつ、 ガラス屈伏点 (A t ) を低くすることが望ま れる。 In order to obtain a glass molded product by the precision mold press molding, it is necessary to press-mold the preform at or above the glass yield point (A t). Here, the higher the glass deformation point (A t) of the preform, the higher the temperature of the mold used, and the more easily the mold surface is degraded by oxidation, etc., making it impossible to realize low cost and mass production. . For this reason, it is desired that the optical glass constituting the preform has a low glass yield point (A t) while satisfying desired optical characteristics, devitrification resistance and the like.
一方、 非球面レンズに用いられるガラスは、 その用途に応じて種々の 光学特性を有するものが求められている。 が、 中でも高屈折率で且つ低 分散である光学特性を有するものの要求が高まっている。  On the other hand, glass used for aspherical lenses is required to have various optical characteristics depending on the application. However, among others, there is an increasing demand for those having optical characteristics of high refractive index and low dispersion.
前記のような高屈折率で低分散の光学特性の要求に応える従来の光学 ガラスとしてはホウ酸ランタン系が代表的であり、 例えば特開昭 48 - 5 9 1 1 6号、 特開昭 6 0— 22 1 3 38号、 特開平 8— 26 7 6 5号, 特開 2 0 02— 1 2443号等に係る発明が提案されている。  As a conventional optical glass which meets the above-mentioned requirements for high refractive index and low dispersion optical characteristics, a lanthanum borate system is typical. For example, Japanese Patent Application Laid-Open Nos. Inventions according to Japanese Patent Application Laid-Open No. 0-22133, Japanese Patent Application Laid-Open No. Hei 8-26765, Japanese Patent Application Laid-Open No. 2002-024433 and the like have been proposed.
ところが上記特開昭 48 - 5 9 1 1 6号発明等に示された従来のホウ 酸ランタン系ガラスでは、 ガラス転移温度 (T g) やガラス屈伏点 (A t ) が低いという利点を有する一方、 耐失透性に劣るという問題があり、 精密モールドプレス成形による成形を行うと製品が失透し易くなる (曇 つてしまう) という問題があった。 特に上記の滴下法では、 プリフォ一 ムを製造することができないという問題があった。  However, the conventional lanthanum borate glass disclosed in the above-mentioned JP-A-48-59116 has the advantage that the glass transition temperature (T g) and the glass yield point (A t) are low. However, there is a problem that the devitrification resistance is inferior, and there is a problem that the product is apt to be devitrified (cloudy) when formed by precision mold press molding. In particular, the above-mentioned dropping method has a problem that a preform cannot be produced.
そこで本発明は上記した従来における光学ガラスの欠点を解消し、 高 屈折率で低分散の光学特性を有すると共に、 ガラス転移温度 (T g) や ガラス屈伏点 (A t ) が低く、 従って精密モールドプレス成形に適して 成形がより容易に且つより低コストで行うことができ、 しかも耐失透性 に優れた光学ガラスの提供を課題とする。 発明の開示  Therefore, the present invention solves the above-mentioned drawbacks of the conventional optical glass, has a high refractive index and low dispersion optical characteristics, and has a low glass transition temperature (T g) and a low glass deformation point (A t). An object of the present invention is to provide an optical glass which is suitable for press molding, can be molded more easily and at lower cost, and has excellent devitrification resistance. Disclosure of the invention
上記課題を解決するため、 本発明者は種々鋭意研究を重ねた結果、 特 定のガラス成分の組成を有する光学ガラスにおいて、 所望の高屈折率、 低分散の光学特性を有し、 ガラス転移温度 (T g) 及びガラス屈伏点 ( A t ) が低く、 しかも耐失透性にも優れたものを得ることができること を見出し、 本発明を完成するに至った。 In order to solve the above problems, the present inventors have conducted various studies and found that, in an optical glass having a specific glass component composition, the optical glass has a desired high refractive index, low dispersion optical characteristics, and a glass transition temperature. (T g) and glass yield point ( It has been found that a product having a low At) and excellent devitrification resistance can be obtained, and the present invention has been completed.
即ち本発明の光学ガラスは、 ガラス組成として、 重量%で、 S i 2 : 1〜 1 0 %、 B 203 : 1 6〜 2 8 %、 ただし、 S i〇2 + B 203 : 1 8〜 3 2 %、 L i 2 O : 0. 5〜 3 %、 Z nO : 1 5〜 3 0 %、 L a 2O3 : 2 0〜3 5 %、 Y203 : 2〜 1 2 %、 Yb 23 : 0. 0 5〜 7 %、 W03 : 4〜 1 7 %を含有することを第 1の特徴としている。 That optical glass of the present invention has a glass composition, in weight%, S i 2: 1~ 1 0%, B 2 03: 1 6~ 2 8%, however, S I_〇 2 + B 2 0 3: 1 8~ 3 2%, L i 2 O: 0. 5~ 3%, Z nO: 1 5~ 3 0%, L a 2 O 3: 2 0~3 5%, Y 2 0 3: 2~ 1 2 %, Yb 23: 0. 0 5~ 7%, W0 3: is a first feature in that it contains from 4 to 1 to 7%.
上記第 1の特徴による光学ガラスによれば、 そこに示されたガラス組 成とすることで、 ガラスの屈折率 (nd) が 1. 74〜 1. 8 2、 アツ ベ数 ( V d) が 40〜 46、 ガラス転移温度 (T g) が 5 3 5 °C以下、 及びガラス屈伏点 (A t ) が 5 7 5 °C以下になる。 According to the optical glass according to the first feature, by using the glass composition shown there, the refractive index (n d ) of the glass is 1.74 to 1.82, and the Abbe number (V d ) Is 40 to 46, the glass transition temperature (T g) is 535 ° C or less, and the glass deformation point (A t) is 575 ° C or less.
よって高屈折率で且つ低分散の光学特性を有すると共に、 ガラス転移 温度 (T g) やガラス屈伏点 (A t) が低く、 従って精密モールドブレ ス成形に適して成形がより容易に且つより低コス卜で行え、 しかも耐失 透性にも優れた光学ガラスの提供が可能となる。  Therefore, it has a high refractive index and low dispersion optical properties, and has a low glass transition temperature (T g) and a low glass yield point (A t). It is possible to provide an optical glass which can be performed at low cost and has excellent devitrification resistance.
次に本発明の光学ガラスは、 ガラス組成として、 重量%で、 S i 02 : 1〜 9 %、 B 203 : 1 6〜 2 8 %、 ただし、 S i O 2 + B 2 O 3 : 1 8〜 3 2 %、 L i 2 O : 0. 5〜 3 %、 Z n O : 1 5〜 3 0 %、 L a 2 O 3 : 2 0〜 3 5 %、 Y 203 : 2〜 1 2 %、 Y b 23 : 0. 0 5〜 7 %、 Gd 2O3 : 0〜 1 0 %、 ただし、 L a203 + Y203 + Yb203 + Gd 23 : 2 5〜42 %、 WOa : 4〜 1 7 %、 Nb205 : 0〜8 %、 Z r〇2 : 0 ~ 8 %、 S n O2 : 0〜 5 %を含有することを第 2の特徴 としている。 The optical glass of the present invention then, as a glass composition, in weight%, S i 0 2: 1~ 9%, B 203: 1 6~ 2 8%, however, S i O 2 + B 2 O 3: 1 8~ 3 2%, L i 2 O: 0. 5~ 3%, Z n O: 1 5~ 3 0%, L a 2 O 3: 2 0~ 3 5%, Y 203: 2~ 1 2% , Y b 23: 0. 0 5~ 7%, Gd 2 O 3: 0~ 1 0%, however, L a 2 0 3 + Y 2 0 3 + Yb 2 0 3 + Gd 2 〇 3: 2 5~42%, WO a: 4~ 1 7%, Nb 2 0 5: 0~8%, Z R_〇 2: 0 ~ 8%, S n O 2: 0~ that containing 5% second It is a feature of.
上記第 2の特徴による光学ガラスによれば、 そこに示されたガラス組 成とすることで、 上記第 1の特徴による光学ガラスの場合と同様に、 ガ ラスの屈折率 (nd) が 1. 74〜: L . 8 2、 アッベ数 (vd) が 4 0 〜46、 ガラス転移温度 (T g) が 5 3 5 °C以下、 及びガラス屈伏点 ( A t ) が 5 7 5 °C以下になる。 According to the optical glass according to the second feature, by adopting the glass composition shown therein, the refractive index (n d ) of the glass is 1 as in the case of the optical glass according to the first feature. 74 ~: L. 82, Abbe number (v d ) is 40 46, glass transition temperature (T g) is less than 535 ° C, and glass yield point (A t) is less than 575 ° C.
また第 1の特徴による光学ガラスのガラス組成に対して、  Also, for the glass composition of the optical glass according to the first feature,
G d 203を第 2の特徴において示された条件で含有させることで、 ガラスの高屈折率、 低分散の特性に良好に寄与させることができる。 また N b 205を第 2の特徴において示された条件で含有させること で、 ガラスの失透性を損なわないまま、 高屈折率の特性に良好に寄与さ せることができる。 G d 2 0 3 that is contained in the condition indicated in the second aspect, it is possible to a high refractive index of the glass, thereby satisfactorily contribute to the low-dispersion properties. Also By including in conditions indicated a N b 2 0 5 In the second aspect, without impairing the devitrification of the glass, can be favorably contribute to the properties of high refractive index.
また Z r 02を第 2の特徴において示された条件で含有させることで、 ガラスの耐失透性に寄与すると同時に屈折率 (nd) を大きくすること ができる。 The Z r 0 2 a By including the conditions shown in the second aspect, it is possible to simultaneously refractive index to contribute to the devitrification resistance of glass (n d) large.
更に S n 02を第 2の特徵において示された条件で含有させることで、 高屈折率で且つ低分散の光学特性を調整することができる。 また清澄 ( 脱泡) 剤として働く。 Further By including in conditions indicated the S n 0 2 in the second Toku徵, it is possible to adjust the optical properties of and low dispersion with a high refractive index. Also works as a fining (defoaming) agent.
よって第 2の特徵による光学ガラスによれば、 高屈折率で且つ低分散 の光学特性を有すると共に、 ガラス転移温度 (T g) やガラス屈伏点 ( A t ) が低く、 従って精密モールドプレス成形に適して成形がより容易 に且つより低コス 1、で行え、 しかも耐失透性にも優れた光学ガラスの提 供が可能となる。  Therefore, the optical glass according to the second feature has a high refractive index and low dispersion optical properties, and has a low glass transition temperature (T g) and a glass yield point (A t). It is possible to provide an optical glass which is suitable and can be molded more easily and with lower cost, and also has excellent devitrification resistance.
次に本発明の光学ガラスは、 ガラス組成として、 重量%で、 S i〇 2 : 1〜 9 %、 B 2 O 3 : 1 7〜 2 7 %、 ただし、 S i 〇 2 + B 203 : 1 8〜3 0 %、 L i 20 : 丄〜 3 %、 Z n〇 : 1 6〜2 9 %、 L a 203 : 2 0〜 3 3 %、 Y203 : 2〜 : L 0 %、 Yb 2O3 : 0. 0 5〜6 %、 G d 203 : 0〜 9 %、 ただし、 L a 203 + Y203 + Y b 203 + Gd20 3 : 2 5〜40 %、 W03 : 5〜 1 6 %、 N b 205 : 0〜 7 %、 Z r O 2 : 0〜 7 %、 MgO : 0〜 8 %、 I n 23 : 0〜 1 0 %、 S n O 2 : 0〜 5 %、 T a 2 O 5 : 0〜 1 0 %を含有することを第 3の特徴として いる。 The optical glass of the present invention then, as a glass composition, in weight%, S I_〇 2: 1~ 9%, B 2 O 3: 1 7~ 2 7%, however, S i 〇 2 + B 2 0 3 : 1 8~3 0%, L i 2 0:丄~ 3%, Z N_〇: 1 6~2 9%, L a 2 0 3: 2 0~ 3 3%, Y 2 0 3: 2~: L 0%, Yb 2 O 3 : 0. 0 5~6%, G d 2 03: 0~ 9%, however, L a 2 0 3 + Y 2 0 3 + Y b 2 0 3 + Gd 2 0 3 : 2 5~40%, W0 3: 5~ 1 6%, n b 2 0 5: 0~ 7%, Z r O 2: 0~ 7%, MgO: 0~ 8%, I n 2 〇 3: 0~ 1 0%, S n O 2: 0~ 5%, T a 2 O 5: 0~ have to contain 1 0% as the third feature.
上記第 3の特徴による光学ガラスによれば、 そこに示されたガラス組 成とすることで、 上記第 2の特徴による光学ガラスの場合と同様に、 ガ ラスの屈折率 (n d) が 1. 74〜: L . 8 2、 アッベ数 ( v d) が 4 0 〜46、 ガラス転移温度 (Tg) が 5 3 5 °C以下、 及びガラス屈伏点 ( A t ) が 5 7 5で以下になる。 According to the optical glass according to the third feature, by adopting the glass composition shown therein, the refractive index (n d ) of the glass is 1 as in the case of the optical glass according to the second feature. . 74~:. L 8 2, Abbe number (v d) is 4 0-46, the glass transition temperature (Tg) of 5 3 5 ° C or less, and a glass deformation point (a t) is below 5 7 5 Become.
また第 2の特徴による光学ガラスのガラス組成に対して、  Further, with respect to the glass composition of the optical glass according to the second feature,
全般的に各組成の含有量の範囲をより限定された範囲とすることで、 より良好な屈折率 (nd) 、 アッベ数 (vd) 、 ガラス転移温度 (T g ) 、 及びガラス屈伏点 (A t ) を確実に得ることが可能となる。 In general, by setting the content range of each composition to a more limited range, better refractive index (n d ), Abbe number (v d ), glass transition temperature (T g), and glass yield point (A t) can be reliably obtained.
MgOを第 3の特徴において示された条件で含有させることで、 高屈 折率で且つ低分散の光学特性を調整することができる。  By containing MgO under the conditions described in the third feature, it is possible to adjust the optical characteristics of high refractive index and low dispersion.
また I n 203を第 3の特徴において示された条件で含有させること で、 ガラス屈伏点 (A t ) を低下させ、 またガラスの屈折率 (n d) を 大きくすることができる。 Also By including in conditions indicated the I n 2 0 3 In the third aspect, lowered glass deformation point (A t), also can be increased refractive index of the glass (n d).
更に T a 205を第 3の特徴において示された条件で含有させること で、 ガラスの屈折率 (nd) を大きくすることができる。 Further T a 2 0 5 to be to contain the third condition shown in features, it is possible to increase the glass refractive index of the (n d).
よって第 3の特徴による光学ガラスによれば、 高屈折率で且つ低分散 の光学特性を有すると共に、 ガラス転移温度 (Tg) やガラス屈伏点 ( A t ) が低く、 したがって精密モールドプレス成形に適して成形がより 容易に且つより低コストで行え、 しかも耐失透性にも優れた光学ガラス の提供が可能となる。  Therefore, the optical glass according to the third feature has a high refractive index and low dispersion optical characteristics, and has a low glass transition temperature (Tg) and a glass yield point (A t), and is therefore suitable for precision mold press molding. Thus, it is possible to provide an optical glass which can be formed more easily and at a lower cost and which has excellent devitrification resistance.
以上の本発明の光学ガラスによれば、 そこに示されたガラス組成とし たことで、 ガラスの屈折率 (nd) を 1. 74〜 : L . 8 2、 アッベ数 ( vd) を 40〜46、 ガラス転移温度 (T g) を 5 3 5 °C以下、 及びガ ラス屈伏点 (A t ) を 5 7 5 °C以下のホウ酸ランタン系の光学ガラスを 提供することができる。 According to the optical glass of the present invention described above, it was the glass composition shown therein, the refractive index of glass (n d) 1. 74~:. L 8 2, Abbe number (v d) 40 46, glass transition temperature (Tg) below 535 ° C, and It is possible to provide a lanthanum borate-based optical glass having a lath deformation point (A t) of 575 ° C or less.
よってまた本発明の光学ガラスによれば、 非球面レンズ等に適用して 1枚又は少数のレンズによる高屈折率で且つ低分散の光学特性を有する コンパクトな光学系を設計することができ、 光学機器の小型軽量化が可 能となる。 加えて、 精密モールドプレス成形において、 成形がより低温 で容易に行え、 且つ金型の劣化がより少なく、 設備コスト、 メンテナン スコス卜を十分に抑制することができ、 更に耐失透性にも優れているの で、 滴下法でも透明性の良いプリフォームを製造でき、 このプリフォー ムを更に成形することで高品質のレンズ製品を提供することができる。 発明を実施するための最良の形態  Therefore, according to the optical glass of the present invention, it is possible to design a compact optical system having high refractive index and low dispersion optical characteristics by one or a small number of lenses by applying the optical glass to an aspheric lens or the like. Equipment can be made smaller and lighter. In addition, in precision mold press molding, molding can be performed easily at lower temperatures, and there is less deterioration of the mold, equipment costs and maintenance costs can be sufficiently suppressed, and the devitrification resistance is also excellent. Therefore, a preform with good transparency can be manufactured even by the dropping method, and a high quality lens product can be provided by further molding this preform. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の光学ガラスについて 各成分の含有範囲の限定理由について、 以下に説明する。 なお成分組成は全て重量%で示す。  The reason for limiting the content range of each component in the optical glass of the present invention will be described below. In addition, all component compositions are shown by weight%.
S i 02の含有量は 1〜 1 0 %とする。 S i 02はガラス網目構造形 成成分であり、 ガラスを失透に対して安定させるために必須の成分であ る。 1 %未満では耐失透性が不十分となる。 一方、 1 0 %を超えると、 ガラスの屈折率 (nd) が低下して、 所望の高屈折率ガラスが得られな くなる。 The content of S i 0 2 is a 1-1 0%. S i 0 2 is the glass network structure shaped forming component, Ru essential component der to stabilize the glass against devitrification. If it is less than 1%, the devitrification resistance becomes insufficient. On the other hand, if it exceeds 10%, the refractive index (n d ) of the glass decreases, and a desired high refractive index glass cannot be obtained.
S i 02の含有量は、 好ましくは 1〜9 %とするのがよい。 The content of S i 0 2 is preferably preferably set to 1-9%.
また S i 02の含有量は、 更に好ましくは 1〜 8 %とするのがよい。 The content of S i 0 2 is more preferably preferably set to 1-8%.
B 203の含有量は 1 6〜2 8 %とする。 B 203はガラス網目構造形 成成分であり、 ガラスを失透に対して安定させるために必須の成分であ る。 1 6 %未満では耐失透性が不十分となり、 2 8 %を超えるとガラス の屈折率 (nd) が低下し、 所望の高屈折率ガラスが得られなくなる。 The content of B 2 0 3 is 1 6-2 8%. B 2 0 3 is a glass network structure shaped forming component, Ru essential component der to stabilize the glass against devitrification. If it is less than 16%, the devitrification resistance becomes insufficient, and if it exceeds 28%, the refractive index (n d ) of the glass decreases, and a desired high refractive index glass cannot be obtained.
B23の含有量は、 好ましくは 1 7〜 2 7 %とするのがよい。 また B 2 O 3の含有量は、 更に好ましくは 1 7〜 2 6 %とするのがよ い。 The content of B 23, and it is preferably a 1 7-2 7%. Further, the content of B 2 O 3 is more preferably 17 to 26%.
S i 02と8203の含有量の合計は 1 8〜 3 2 %とする。 合計含有量 が 1 8 %未満ではガラスの失透傾向が強くなり、 ガラスを安定に製造す ることができなくなる。 一方、 合計含有量が 3 2 %を超えるとガラスの 屈折率 (nd) が低下し、 所望の高屈折率ガラスが得られなくなる。 Total S i 0 2 and 8 2 0 3 content is 1 8-3 2%. If the total content is less than 18%, the tendency of the glass to devitrify increases, and it becomes impossible to produce glass stably. On the other hand, if the total content exceeds 32%, the refractive index (n d ) of the glass decreases, and a desired high refractive index glass cannot be obtained.
S i 02と B 203の含有量の合計は、 好ましくは 1 8〜 3 0 %とする のがよい。 Total content of S i 0 2 and B 2 0 3 is preferably preferably set to 1 8-3 0%.
L i 20の含有量は 0. 5〜 3 %とする。 L i 2〇はガラス転移温度 (T g) 及びガラス屈伏点 (A t ) を低下させるために非常に有効な必 須成分である。 0. 5 %未満ではその効果が不十分である。 一方、 3 % を超えると、 ガラスの失透に対する安定性を低下させるので好ましくな い。 The content of L i 2 0 is set to 0.5 to 3%. Li 2 〇 is a very effective essential component for lowering the glass transition temperature (T g) and the glass yield point (A t). If it is less than 0.5%, the effect is insufficient. On the other hand, if it exceeds 3%, the stability of the glass against devitrification is lowered, which is not preferable.
L i 2 Oの含有量は、 好ましくは 1〜 3 %とするのがよい。 The content of Li 2 O is preferably 1 to 3%.
また L i 2 Oの含有量は、 更に好ましくは 1. 5〜 3 %とするのがよ い。 The content of Li 2 O is more preferably 1.5 to 3%.
Z n Oの含有量は 1 5〜 3 0 %とする。 Z n〇はガラス転移温度 (T g) 及びガラス屈伏点 (A t ) を低下させると共に、 ガラスの失透に対 する安定性にも寄与する必須成分である。 1 5 %未満ではガラス転移温 度 (T g) 及びガラス屈伏点 (A t ) を低下させることが難しい。 一方、 3 0 %を超えるとガラスの失透に対する安定性が悪くなる。  The content of ZnO is 15 to 30%. Zn〇 is an essential component that lowers the glass transition temperature (T g) and the glass yield point (A t) and also contributes to the stability of the glass against devitrification. If it is less than 15%, it is difficult to lower the glass transition temperature (T g) and the glass yield point (A t). On the other hand, if it exceeds 30%, the stability of the glass against devitrification becomes poor.
Z n〇の含有量は、 好ましくは 1 6〜 2 9 %とするのがよい。  The content of Zn〇 is preferably 16 to 29%.
また Z ηθの含有量は、 更に好ましくは 1 7〜 2 8 %とするのがよい。  The content of Z ηθ is more preferably 17 to 28%.
L a 23の含有量は 2 0〜 3 5 %とする。 L a 203は高屈折率、 低 分散の光学特性に寄与すると共に、 ガラスを失透に対して安定させるた めに有効な成分である。 2 0 %未満ではガラスの屈折率 (nd) が低下 して、 所望の高屈折率ガラスが得られなくなる。 一方、 3 5 %を超える とガラスの失透傾向が増大して好ましくない。 The content of L a 23 is 2 0-3 5%. L a 2 0 3 a high refractive index, together with contributing to the optical properties of low dispersion, an effective ingredient in order to stabilize the glass against devitrification. If it is less than 20%, the refractive index (n d ) of the glass decreases. As a result, a desired high refractive index glass cannot be obtained. On the other hand, if it exceeds 35%, the tendency of devitrification of the glass increases, which is not preferable.
L a 23の含有量は、 好ましくは 20〜 3 3 %とするのがよい。 また L a 203の含有量は、 更に好ましくは 2 0〜 3 2 %とするのが よい。 The content of L a 23, and it is preferably a 20-3 3%. The content of L a 2 0 3 is more preferably preferably set to 2 0-3 2%.
Y23の含有量は 2〜 1 2 %とする。 Υ203も L a 203と同様に高 屈折率、 低分散の光学特性に寄与する。 2 %未満ではその効果が十分で はなく、 1 2 %を超えるとガラスの失透傾向が増大して好ましくない。 The content of Y 23 and 2-1 2%. Upsilon 2 0 3 also L a 2 0 3 in the same manner as in the high refractive index, contribute to the optical properties of low dispersion. If it is less than 2%, the effect is not sufficient, and if it exceeds 12%, the tendency of devitrification of the glass increases, which is not preferable.
Y203の含有量は、 好ましくは 2〜 9 %とするのがよい。 The content of Y 2 0 3 is good to preferably a 2-9% is.
Yb 203の含有量は 0. 0 5〜 7 %とする。 Yb 23も L a 23と 同様に高屈折率、 低分散の光学特性に寄与する。 0. 0 5 %未満では高 屈折率、 低分散の光学特性に対する寄与が不十分であり、 7 %を超える とガラスの失透傾向が増大して好ましくない。 The content of Yb 2 0 3 is 0 5-7% 0.1. Yb 23 also L a 23 similarly to the high refractive index, contribute to the optical properties of low dispersion. If it is less than 0.05%, the contribution to the optical properties of high refractive index and low dispersion is insufficient, and if it exceeds 7%, the tendency to devitrify the glass is undesirably increased.
Y b 2 O 3の含有量は、 好ましくは 0. 0 5〜 6 %とするのがよい。 またより好ましくは 0. 0 5〜 5 %とするのがよい。 The content of Y b 2 O 3 is preferably preferably set to 0 5-6% 0.1. More preferably, it is set to 0.05 to 5%.
WO 3の含有量は 4〜 1 7 %とする。 WO 3はガラスを失透に対して 安定させるために必須の成分である。 4 %未満では耐失透性が不十分と なり、 1 7 %を超えるとガラスのアッベ数 ( V d) が低下し、 所望の高 アッベ数を有するガラスが得られなくなる。 The content of WO3 is 4 to 17%. WO 3 is an essential component for stabilizing glass against devitrification. If it is less than 4%, the devitrification resistance will be insufficient. If it exceeds 17%, the Abbe number ( Vd ) of the glass will decrease, and a glass having a desired high Abbe number will not be obtained.
W〇3の含有量は、 好ましくは 5 ~ 1 6 %とするのがよい。 The content of W_〇 3, and it is preferably 5 to 1 to 6%.
また W03の含有量は、 更に好ましくは 5〜 1 5 %とするのがよい。 G d 2 O 3を含有させることができる。 この場合、 含有量は 0〜 1 0 %とする。 G d 23も L a 203と同様に高屈折率、 低分散の光学特性 に寄与する。 1 0 %を超えるとガラスの失透傾向が増大して好ましくな い。 The content of W0 3 is more preferably preferably set to 5-1 5%. G d 2 O 3 can be included. In this case, the content should be 0 to 10%. G d 23 also L a 2 0 3 in the same manner as in the high refractive index, contribute to the optical properties of low dispersion. If it exceeds 10%, the devitrification tendency of the glass increases, which is not preferable.
Gd 203の含有量は、 好ましくは 0〜 9 %とするのがよい。 L a 23、 Y 203、 Yb 203、 G d 23を併用して用いる場合は、 その合計含有量を 2 5〜 42 %とすることができる。 The content of gd 2 0 3 is preferably preferably set to 0-9%. L a 23, Y 2 0 3, Yb 2 0 3, when used in combination with G d 23 can be the total amount 2 5 to 42%.
L a 23、 Y203、 Yb203、 G d 2 O 3を併用させることは、 ガラ スを失透に対して安定化させるのに有利である。 この場合、 これらの合 計量が 2 5 %未満の場合はガラスの屈折率 (nd) が低下し、 所望の高 屈折率ガラスが得られなくなる。 また 42 %を超えると、 ガラスの失透 に対する安定性が悪くなる。 L a 2 3, Y 2 0 3, Yb 2 0 3, be used in combination G d 2 O 3 is advantageous in stabilizing the glass against devitrification. In this case, if the total amount is less than 25%, the refractive index (n d ) of the glass decreases, and a desired high refractive index glass cannot be obtained. If it exceeds 42%, the stability of the glass against devitrification deteriorates.
L a 203、 Y 203、 Yb 203、 G d 2 O 3の合計含有量は、 好ましく は 2 5〜 40 %とするのがよい。 The total content of L a 2 0 3, Y 2 0 3, Yb 2 0 3, G d 2 O 3 is preferably preferably set to 2 5 to 40%.
N b 2 O 5を含有させることができる。 この場合 N b 205の含有量は 0〜 8 %とする。 The N b 2 O 5 may be contained. The content of this N b 2 0 5 is 8% 0.
Nb 205は、 W03の一部を置換して、 その含有量を上記のような範 囲に調整すると、 ガラスの失透に対する安定性を損なわないまま目的と する光学性能が得られる。 8 %を超えるとガラスの失透に対する安定性 が著しく損なわれる。 Nb 2 0 5 is to substitute a part of W0 3, to adjust the content thereof to the range described above, the optical performance can be obtained for the purpose without impairing the stability of the glass against devitrification. If it exceeds 8%, the stability of the glass against devitrification is significantly impaired.
Nb 205の含有量は、 好ましくは 0〜 7 %とするのがよい。 The content of nb 2 0 5 is preferably preferably set to 0-7%.
Z r O 2を含有させることができる。 この場合、 Z r〇2の含有量は 0〜 8 %とする。 It may contain Z r O 2. In this case, the content of Z R_〇 2 to 8% 0.
Z r 02はガラスの耐失透性に寄与すると同時に、 ガラスの屈折率 ( nd) を大きくする作用がある。 8 %を超えるとガラスの失透に対する 安定性が悪くなる。 Z r 0 2 at the same time contribute to the devitrification resistance of the glass, it has the effect of increasing the refractive index of glass (n d). If it exceeds 8%, the stability of the glass against devitrification deteriorates.
Z r 02の含有量は、 好ましくは 0〜 7 %とするのがよい。 The content of Z r 0 2 is preferably preferably set to 0-7%.
S n O 2を含有させることができる。 この場合、 S n 02の含有量は 0〜 5 %とする。 It may contain S n O 2. In this case, the content of S n 0 2 is 5% 0.
S n 02は上記の範囲で適量を含有させることで、. ガラスの光学特性 を良好に調整し、 また清澄剤として働く。 S n02の含有量は、 好ましくは 0〜 3 %とするのがよい。 S n 0 2 is that the inclusion of suitable amount in the above range. The optical properties of glass satisfactorily adjusted, also acts as a fining agent. The content of S n0 2 is preferably preferably set to 0-3%.
Mg Oを含有させることができる。 この場合、 MgOの含有量は 0〜 8 %とする。  Mg O can be contained. In this case, the content of MgO is 0 to 8%.
M gOを上記の含有量の範囲で含有させることで、 光学特性を調整す ることができる。  The optical characteristics can be adjusted by adding MgO in the above content range.
MgOの含有量は、 好ましくは 0〜 6 %とするのがよい。  The content of MgO is preferably set to 0 to 6%.
I n 203を含有させることができる。 この場合、 I n23の含有量 は 0〜 1 0 %とする。 Can be contained I n 2 0 3. In this case, the content of I n 23 and 0-1 0%.
I n 23はガラス転移温度 (T g) 及びガラス屈伏点 (A t ) を低 下させ、 またガラスの屈折率 (nd) を大きくする効果がある。 1 0 % を超えるとガラスの失透に対する安定性を低下させ、 且つガラスのアツ ベ数 (vd) を小さくするため、 1 0 %以下の含有量とした。 In 23 has the effects of lowering the glass transition temperature (T g) and the glass yield point (A t) and increasing the refractive index (n d ) of the glass. When the content exceeds 10%, the content is set to 10% or less in order to reduce the stability of the glass against devitrification and to reduce the Abbe number (v d ) of the glass.
I n 203の含有量は、 好ましくは 0〜 8 %とするのがよい。 The content of I n 2 0 3 is preferably from to 8% 0.
T a 2 O 5を含有させることができる。 この場合、 T a 205の含有量 は 0〜 1 0 %とする。 T a 2 O 5 can be contained. In this case, the content of T a 2 0 5 is a 0-1 0%.
T a 205はガラスの屈折率 (nd) を大きくする作用がある。 一方、 アッベ数 (V d) を小さくし、 またガラス転移温度 (T g) 及びガラス 屈伏点 (A t ) を上昇させる作用を有するため、 上限を 1 0 %とした。 T a 2 0 5 has the effect of increasing the refractive index of glass (n d). On the other hand, the upper limit is set to 10% because it has the effect of reducing the Abbe number (V d ) and increasing the glass transition temperature (T g) and the glass yield point (A t).
T a 205の含有量は、 好ましくは 0〜 9 %とするのがよい。 The content of T a 2 0 5 is preferably preferably set to 0-9%.
本発明の光学ガラスに用いる原料として、 B 203については H3 B O 3、 B 203等を用いることができ、 他の成分についてはそれらの酸化物、 炭酸塩、 硝酸塩等を用いることができる。 As a raw material used in the optical glass of the present invention, for the B 2 0 3 can be used H 3 BO 3, B 2 0 3 , etc., for the other components their oxides, carbonates, the use of nitrate Can be.
これらの原料を所定の割合で混合し、 これを 1 1 0 0〜 1 3 0 0 の 溶解炉に投入し、 溶解、 清澄、 攪拌し、 均質化した後、 金型に流し込む 等により、 本発明のガラスを製造することができる。  These raw materials are mixed at a predetermined ratio, and the mixture is put into a melting furnace of 1100 to 1300, melted, clarified, stirred, homogenized, and then poured into a mold. Glass can be manufactured.
本発明によるガラスは、 ガラス屈伏点 (A t ) が低く、 本発明のガラ スからなるプリフォームは、 精密モ一ルドプレス成形するのに適してい る。 The glass according to the present invention has a low glass yield point (A t), Preforms made of stainless steel are suitable for precision mold press molding.
前記プリフォームは、 ガラスブロック又は棒材等から切り出してこれ を球状加工したものや、 ガラス融液をノズルから滴下して球状としたも のを用いることができる。  As the preform, a preform cut out of a glass block or a rod material and processed into a spherical shape, or a preform formed into a spherical shape by dropping a glass melt from a nozzle can be used.
また前記精密モールドプレス成形は、 プリフォームを加熱軟化させ、 成形型で加圧成形して行われ、 レンズ等の光学製品を成形する。 実施例  The precision mold press molding is performed by heating and softening a preform and performing pressure molding with a molding die to mold an optical product such as a lens. Example
次に本発明を実施例により、 更に詳細に説明する。 しかしながら、 本 発明は実施例によつて限定されるものではない。  Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the embodiments.
実施例におけるガラスの特性は、 次の方法で測定した。  The properties of the glass in the examples were measured by the following methods.
(1 ) . 屈折率 (nd) 、 アッベ数 (vd) (1). Refractive index (n d ), Abbe number (v d )
屈折率計 (カルニユー社製、 KPR— 2 0 0 ) にて測定した。  The measurement was carried out with a refractometer (KPR-200, manufactured by Carneux Corp.).
(2) . ガラス転移温度 (Tg) 、 ガラス屈伏点 (A t )  (2). Glass transition temperature (Tg), glass yield point (A t)
直径 3〜4mm、 長さ 1 5〜20 mmの棒状試料を毎分 5 °Cの速度で 昇温加熱し、 試料の伸びと温度を測定して得られた熱膨張曲線から求め た。  A rod-shaped sample with a diameter of 3 to 4 mm and a length of 15 to 20 mm was heated at a rate of 5 ° C / min, and the elongation and temperature of the sample were measured to obtain a thermal expansion curve.
(実施例 1)  (Example 1)
ガラス原料として、 各成分の酸化物、 炭酸塩及び硝酸塩等を用い、 表 1に示す組成のガラスとなるように秤量し、 各原料をよく混合した後、 白金ルツポに入れ、 1 1 0 0〜 1 30 0 °Cの炉内で溶融し、 十分に攪拌 均質化し、 その後 9 5 0〜 1 0 0 0 °Cに温度を下げ、 その温度から金型 に流し込んで徐冷することによりガラスを得た。  As the glass raw materials, oxides, carbonates, nitrates, etc. of the respective components were weighed so as to obtain a glass having the composition shown in Table 1, and the raw materials were mixed well. Melt in a furnace at 130 ° C, sufficiently agitate and homogenize, then lower the temperature to 95-100 ° C, pour it into a mold from that temperature and slowly cool to obtain glass Was.
得られたガラスは、 無色、 均質であり、 失透は認められなかった。 得られたガラスの屈折率 (nd) 、 アッベ数 (vd) 、 ガラス屈伏点 (A t) 、 ガラス転移温度 (Tg) を組成と共に表 1に示す。 The obtained glass was colorless and homogeneous, and no devitrification was observed. Refractive index of the resulting glass (n d), Abbe number (v d), glass deformation point Table 1 shows (A t) and glass transition temperature (Tg) together with the composition.
(実施例 2〜 1 3、 比較例 1〜4)  (Examples 2 to 13, Comparative Examples 1 to 4)
ガラスの組成を変える以外は、 実施例 1と同様にしてガラスを得た。 結果を表 1、 表 2に示す。  A glass was obtained in the same manner as in Example 1, except that the composition of the glass was changed. Tables 1 and 2 show the results.
実施例 2〜 1 3、 及び比較例 1、 4のガラスは、 無色、 均質であり、 失透は認められなかった。 しかし比較例 2、 3のガラスは、 部分的に白 色化し、 失透が認められた。 また比較例 1、 4のガラスはガラス転移温 度 (Tg) 及びガラス屈伏点 (A t ) が高く、 精密モールドプレス成形 に適さない。  The glasses of Examples 2 to 13 and Comparative Examples 1 and 4 were colorless and homogeneous, and no devitrification was observed. However, the glasses of Comparative Examples 2 and 3 were partially whitened and devitrification was observed. In addition, the glasses of Comparative Examples 1 and 4 have high glass transition temperatures (Tg) and high glass yield points (A t), and are not suitable for precision mold press molding.
表 1、 表 2から明らかなように、 実施例 1〜 1 3では、 ガラスの屈折 率 (nd) が 1. 7 5 7〜 1 · 8 0 8の範囲にあり、 且つアッベ数 ( v d) が 40. 7〜 4 5. 1の範囲にあり、 且つガラス屈伏点 (A t ) が 540〜 5 7 1 °Cの範囲にあり、 且つガラス転移温度 (T g) が 5 0 7 〜 5 2 9 °Cの範囲にある。 As is clear from Tables 1 and 2, in Examples 1 to 13, the refractive index (n d ) of the glass was in the range of 1.757 to 1.808, and the Abbe number (v d ) Is in the range of 40.7 to 45.1, the glass yield point (A t) is in the range of 540 to 571 ° C, and the glass transition temperature (T g) is in the range of 507 to 5 It is in the range of 29 ° C.
一方、 本発明の成分範囲外の比較例 1においては、 屈折率 (nd) 、 アッベ数 (vd) は悪くないが、 ガラス屈伏点 (A t ) 及びガラス転移 温度 (Tg) がそれぞれ 6 2 9 °C、 6 0 1 °Cと高温になっており、 精密 モールドプレス成形に適さない。 比較例 4の場合も同様である。 On the other hand, in Comparative Example 1 outside the component range of the present invention, the refractive index (n d ) and Abbe number (v d ) are not bad, but the glass yield point (A t) and the glass transition temperature (Tg) are each 6 The temperature is as high as 29 ° C and 61 ° C, and is not suitable for precision mold press molding. The same applies to Comparative Example 4.
比較例 2、 3は屈折率 (nd) 、 アッベ数 ( vd) 、 ガラス屈伏点 ( A t ) 、 ガラス転移温度 (Tg) ともに悪くないが、 既述したように、 ガラスが部分的に失透する問題が生じた。 産業上の利用の可能性 In Comparative Examples 2 and 3, the refractive index (n d ), Abbe number (v d ), glass yield point (A t), and glass transition temperature (Tg) are not bad, but as described above, the glass partially A problem of devitrification occurred. Industrial potential
本発明の光学ガラスは、 高屈折率で低分散の光学特性を有すると共に、 ガラス転移温度 (T g) やガラス屈伏点 (A t ) が低く、 従って精密モ ールドプレス成形に適して成形がより容易に且つより低コストで行うこ とができ、 光学機器の小型軽量化が著しく進展している中で、 色収差以 外の収差の補正が容易であり、 レンズの枚数を少なくし、 機器をコンパ クトにすることができる非球面レンズに好ましく用いることができる。 The optical glass of the present invention has a high refractive index and low dispersion optical properties, and also has a low glass transition temperature (T g) and a low glass deformation point (A t), so that it is more suitable for precision mold press molding and is easier to mold. And at lower cost As optical devices have been significantly reduced in size and weight, aspherical lenses that can easily correct aberrations other than chromatic aberration, reduce the number of lenses, and make the equipment compact Can be preferably used.
/Jt [ 'J / Jt ['J
1丄 9 Q A リ 7 Q q 1リ2 9 o A1 丄 9 QA re 7 Q q 1 re 2 9 o A
. O.u  . O.u
on n 997 oi Q o o  on n 997 oi Q o o
D 2リ 3 丄 丄 丄 . ムム. i 丄 ·ο ム Δo,ム Oi¾l:. Π u υ·丄 丄. / o 9 Λ 9 o 丄 2リ Δ,Δ 丄. y ム *d D 2 Li 3丄丄丄. Mumu. I丄· ο-time Δo, beam O i ¾l :. Π u υ ·丄丄. / O 9 Λ 9 o丄2 Li Δ, Δ丄. Y-time * d
j 7Lt η丄丄 Π ν_ /1 OA OA f* ώリ,t 1 j 7Lt η 丄 丄 ν ν_ / 1 OA OA f * ώ, t 1
o.丄 o. 丄
Τし d ο 2 πリ 3 99 β 99 Q oo Q oo 1 1 D d ο 2 π 3 3 99 β 99 Q oo Q oo 1 1
4.丄 Z丄. ύ ΔΔ.Ο ムム^ Δ . O, b 4. 丄 Z 丄. Ύ ΔΔ.Ο Mum ^ Δ. O, b
7 Q 7 β 7 Q 7 β
1 2リ 3 .Ό Q K o K a 7 Set 1 2 3 .Ό QK o K a 7
ム o . Ό. / Q A a Q  / Q A a Q
Ό.Ο  Ό.Ο
UrU23 q υ2リ 3 丄. 丄. Π 7 n 7 q Π 7 丄 O 丄. δUrU 2 li 3 q υ 2 li 3丄. 丄. Π 7 n 7 q 丄 7 丄 O 丄. Δ
VVリ 3 " 1 Q Q 1 n Q Q VV 3 "1 Q Q 1 n Q Q
丄 4. ( Q Q Q 丄 4. (Q Q Q
5 丄 丄 o 丄 O.U 丄^:.丄 σ.Ό 5 丄 丄 o 丄 O.U 丄 ^ :. 丄 σ.Ό
- Nb2Os -Nb 2 O s
%  %
ZrQ2 ム Z.O Ζ.οZrQ 2 mu ZO Ζ.ο
MgO 2.0MgO 2.0
I n23 I n 23
Sn02 2.0 Sn0 2 2.0
Ta2Os Ta 2 O s
A1203 A1 2 0 3
屈折率 1.764 1.757 1.772 1.757 1.765 1.761 1.769 1.781 1.762 アッベ数 vd 43.0 45.1 42.9 43.6 43.4 43,5 42.5 41.8 44.2 ガラス屈伏 Refractive index 1.764 1.757 1.772 1.757 1.765 1.761 1.769 1.781 1.762 Abbe number v d 43.0 45.1 42.9 43.6 43.4 43,5 42.5 41.8 44.2 Glass yield
550 560 563 547 540 546 555 544 549 550 560 563 547 540 546 555 544 549
At CO At CO
ガラス  Glass
514 523 522 509 507 508 525 510 514 髓 Tg CO 表 2 514 523 522 509 507 508 525 510 514 medulla Tg CO Table 2
Figure imgf000016_0001
Figure imgf000016_0001

Claims

請求の範囲 The scope of the claims
1. ガラス組成として、 重量%で、 1. As a glass composition,
S i 02 : 1〜; L 0 % S i 0 2 : 1 to; L 0%
B203 : 16〜 28 % B 2 0 3: 16~ 28%
ただし、 S i〇2 + B 203 : 18〜 32% However, S I_〇 2 + B 2 0 3: 18~ 32%
L i 20 : 0. 5〜 3 % L i 20 : 0.5-3%
Z n O : 1 5〜 30 %  ZnO: 15-30%
L a 203 : 20〜 35 % L a 2 0 3: 20~ 35 %
Y2O3 : 2〜丄 2 Y 2 O 3 : 2 to 丄 2
Y b 203 : 0. 05〜 7 % Y b 2 0 3: 0. 05~ 7%
wo3 : 4〜 17 % wo 3 : 4 to 17%
を含有することを特徴とする光学ガラス Optical glass characterized by containing
2. ガラス組成として、 重量%で、  2. As a glass composition,
S i 02 : 1〜 9 %  S i 02: 1 to 9%
B 23 : 1 6〜 28 % B 23 : 16 to 28%
ただし、 S i O 2 + B 23 : 18〜 However, S i O 2 + B 23 : 18 ~
L i 2 O : 0. 5〜 3 %  L i 2 O: 0.5-3%
Z n 0 : 1 5〜 30 %  Zn0: 15-30%
L a 203 : 20〜 35 % L a 2 0 3: 20~ 35 %
Y203 : 2〜 12 % Y 2 0 3: 2~ 12%
Yb203 : 0. 05〜 7 % Yb 2 0 3: 0. 05~ 7 %
Gd203 : 0〜 10 % Gd 2 0 3: 0~ 10%
ただし、 L a 23 + Y 203 + Yb20 2 ^ 3 25〜 42 % wo3 : 4〜 17 % However, L a 23 + Y 2 0 3 + Yb 2 0 2 ^ 3 25 to 42% wo 3 : 4 to 17%
Nb205 : 0〜 8 % Z r 02 0〜 8 % Nb 2 0 5: 0~ 8% Z r 0 2 0-8%
S n O a 0〜 5 %  S n O a 0-5%
を含有することを特徴とする光学ガラス Optical glass characterized by containing
3. ガラス組成として、 重量%で、 3. As a glass composition,
S i O 2 : 1〜 9 %  S i O 2: 1 to 9%
B203 : 1 7〜 2 7 % B 2 0 3: 1 7~ 2 7%
ただし、 S i 02 + B 203 : 1 8 Where S i 0 2 + B 2 0 3 : 1 8
L i 20 : :!〜 3 % L i 20 ::! ~ 3%
Z n 0 : 1 6〜 2 9 %  Zn0: 16 to 29%
L a 203 : 2 0〜 3 3 % L a 2 0 3: 2 0~ 3 3%
Y2O3 : 2〜 1 2 % Y 2 O 3 : 2 to 12%
Yb 203 : 0. 0 5〜 6 % Yb 2 0 3: 0. 0 5~ 6%
G d 203 : 0〜 9 %  Gd203: 0 to 9%
ただし、 L a 203 + Y 203 + Yb 2 2 ^ 3 : 2 5〜 40 % However, L a 2 0 3 + Y 2 0 3 + Yb 2 2 ^ 3: 2 5~ 40%
WO 3 : 5〜 1 6 % WO3: 5 to 16%
N b 205 : 0〜 7 % N b 2 05: 0~ 7%
Z r 02 : 0〜 7 % Z r 0 2: 0~ 7%
Mg 0 : 0〜 8 %  Mg 0: 0-8%
I n 203 : 0〜; L 0 % In 2 0 3 : 0 to; L 0%
S n O 2 : 0〜 5 %  SnO2: 0 to 5%
T a 2OS : 0〜 1 0 % T a 2 O S : 0 to 10%
を含有することを特徴とする光学ガラス。 The optical glass characterized by containing.
PCT/JP2004/004470 2003-03-31 2004-03-29 Optical glass WO2004087596A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005504232A JP4563934B2 (en) 2003-03-31 2004-03-29 Optical glass for precision mold press molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003095063 2003-03-31
JP2003-095063 2003-03-31

Publications (1)

Publication Number Publication Date
WO2004087596A1 true WO2004087596A1 (en) 2004-10-14

Family

ID=33127426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004470 WO2004087596A1 (en) 2003-03-31 2004-03-29 Optical glass

Country Status (2)

Country Link
JP (1) JP4563934B2 (en)
WO (1) WO2004087596A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006118130A1 (en) * 2005-04-27 2006-11-09 Nihon Yamamura Glass Co., Ltd. Optical glass
US7576020B2 (en) 2004-10-12 2009-08-18 Hoya Corporation Optical glass, precision press-molding preform, process for the production of the preform, optical element and process for the production of the optical element
US7704904B2 (en) * 2007-01-24 2010-04-27 Konica Minolta Opto, Inc. Optical glass and optical element
US7827823B2 (en) 2004-11-15 2010-11-09 Hoya Corporation Optical glass, precision press-molding preform, process for producing the preform, optical element and process for producing the element
CN109721241A (en) * 2019-03-18 2019-05-07 成都光明光电股份有限公司 Optical glass, gas preform, optical element and optical instrument
CN109761489A (en) * 2019-03-28 2019-05-17 成都光明光电股份有限公司 Optical glass

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221338A (en) * 1984-04-12 1985-11-06 Ohara Inc Optical glass
JPS62100449A (en) * 1985-10-24 1987-05-09 Ohara Inc Optical glass
JPH0492835A (en) * 1990-08-02 1992-03-25 Sumita Kogaku Glass:Kk Optical glass for precise press
JPH0826766A (en) * 1994-07-07 1996-01-30 Nikon Corp Optical glass
JPH0826765A (en) * 1994-07-07 1996-01-30 Nikon Corp Optical glass
JP2002012443A (en) * 2000-06-27 2002-01-15 Hoya Corp Optical glass and optical product using it
JP2002362938A (en) * 2001-06-06 2002-12-18 Ohara Inc Optical glass
JP2003201143A (en) * 2001-10-24 2003-07-15 Hoya Corp Optical glass, preform for press forming and optical parts
JP2003267748A (en) * 2002-03-18 2003-09-25 Hoya Corp Optical glass for precision press molding, preform for precision press molding and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221338A (en) * 1984-04-12 1985-11-06 Ohara Inc Optical glass
JPS62100449A (en) * 1985-10-24 1987-05-09 Ohara Inc Optical glass
JPH0492835A (en) * 1990-08-02 1992-03-25 Sumita Kogaku Glass:Kk Optical glass for precise press
JPH0826766A (en) * 1994-07-07 1996-01-30 Nikon Corp Optical glass
JPH0826765A (en) * 1994-07-07 1996-01-30 Nikon Corp Optical glass
JP2002012443A (en) * 2000-06-27 2002-01-15 Hoya Corp Optical glass and optical product using it
JP2002362938A (en) * 2001-06-06 2002-12-18 Ohara Inc Optical glass
JP2003201143A (en) * 2001-10-24 2003-07-15 Hoya Corp Optical glass, preform for press forming and optical parts
JP2003267748A (en) * 2002-03-18 2003-09-25 Hoya Corp Optical glass for precision press molding, preform for precision press molding and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576020B2 (en) 2004-10-12 2009-08-18 Hoya Corporation Optical glass, precision press-molding preform, process for the production of the preform, optical element and process for the production of the optical element
US7827823B2 (en) 2004-11-15 2010-11-09 Hoya Corporation Optical glass, precision press-molding preform, process for producing the preform, optical element and process for producing the element
WO2006118130A1 (en) * 2005-04-27 2006-11-09 Nihon Yamamura Glass Co., Ltd. Optical glass
JP2006306648A (en) * 2005-04-27 2006-11-09 Nihon Yamamura Glass Co Ltd Optical glass
JP4560438B2 (en) * 2005-04-27 2010-10-13 日本山村硝子株式会社 Optical glass
US7704904B2 (en) * 2007-01-24 2010-04-27 Konica Minolta Opto, Inc. Optical glass and optical element
CN109721241A (en) * 2019-03-18 2019-05-07 成都光明光电股份有限公司 Optical glass, gas preform, optical element and optical instrument
CN109761489A (en) * 2019-03-28 2019-05-17 成都光明光电股份有限公司 Optical glass

Also Published As

Publication number Publication date
JP4563934B2 (en) 2010-10-20
JPWO2004087596A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
US8785339B2 (en) Optical glass
US7827823B2 (en) Optical glass, precision press-molding preform, process for producing the preform, optical element and process for producing the element
US6977232B2 (en) Optical glass, preform for press molding and optical part
JP3943348B2 (en) Optical glass
JP5358888B2 (en) Optical glass and optical element
US20130210604A1 (en) Optical glass
WO2008050591A1 (en) Optical glass
JP5986938B2 (en) Optical glass, glass material for precision press molding, optical element and manufacturing method thereof
JP5209897B2 (en) Optical glass
EP1510505A1 (en) Precision press-molding glass preform, optical element and processes for the production thereof
JP2007008761A (en) Optical glass and optical element
JP2007145615A (en) Optical glass and optical element
JP2003201143A (en) Optical glass, preform for press forming and optical parts
WO2014129510A1 (en) Optical glass, optical glass blank, glass material for press molding use, optical element, and methods respectively for producing said products
WO2004087596A1 (en) Optical glass
US8298974B2 (en) Optical glass
JP2002211949A (en) Optical glass for press molding, preform material for press molding and optical element using the same
EP2338846B1 (en) Optical glass and optical element
JP7409629B2 (en) Optical glass, preforms for precision press molding, and optical elements
WO2010074211A1 (en) Optical glass
WO2011019016A1 (en) Optical glass
JP2023102688A (en) Optical glass, preform for precision press molding, and optical element
JP6560854B2 (en) Optical glass, optical element and optical glass material
CN113493305A (en) Optical glass
CN110835231A (en) Optical glass, glass preform or optical element prepared from optical glass, and optical instrument

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504232

Country of ref document: JP

122 Ep: pct application non-entry in european phase