WO2004083122A1 - チタン酸ビスマス微粒子の製造方法 - Google Patents

チタン酸ビスマス微粒子の製造方法 Download PDF

Info

Publication number
WO2004083122A1
WO2004083122A1 PCT/JP2004/003285 JP2004003285W WO2004083122A1 WO 2004083122 A1 WO2004083122 A1 WO 2004083122A1 JP 2004003285 W JP2004003285 W JP 2004003285W WO 2004083122 A1 WO2004083122 A1 WO 2004083122A1
Authority
WO
WIPO (PCT)
Prior art keywords
bismuth titanate
fine particles
titanate fine
producing
melt
Prior art date
Application number
PCT/JP2004/003285
Other languages
English (en)
French (fr)
Inventor
Yoshihisa Beppu
Kazuo Sunahara
Hiroyuki Tomonaga
Kumiko Takahashi
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2005503665A priority Critical patent/JP4735257B2/ja
Priority to EP04720139A priority patent/EP1604952A4/en
Publication of WO2004083122A1 publication Critical patent/WO2004083122A1/ja
Priority to US11/223,984 priority patent/US7300806B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • Y10S977/776Ceramic powder or flake
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/90Manufacture, treatment, or detection of nanostructure having step or means utilizing mechanical or thermal property, e.g. pressure, heat

Definitions

  • the present invention relates to a method for producing bismuth titanate fine particles having excellent dielectric properties, and particularly to a method for producing bismuth titanate fine particles having high crystallinity and a small particle diameter.
  • Titanate-based ceramics have excellent properties such as insulation, ferroelectricity, piezoelectricity, pyroelectricity, and semiconductivity, and are widely used as components for electronic components such as capacitors, filters, and vibrators. It's being used. These ceramics can be synthesized by a solid-phase reaction method in which raw materials composed of oxides and carbonates are wet-mixed, pulverized, dried, and calcined. However, since the ceramic obtained by the solid-phase reaction method is in a lump or coarse-grained form, a mechanical pulverization operation such as a pole mill method is indispensable. Further, it is a limit to obtain a powder of a micron order or a submicron order by this pulverization operation, and it is not possible to obtain fine particles (nano powder) having a particle size of submicron or less.
  • the synthesis conditions are not easy to set because the synthesis is performed under high-temperature and high-pressure conditions. Hateful. Therefore, it is difficult to control the particle size and particle size distribution of the target product.
  • the ceramic fine particles synthesized by these wet synthesis methods are insufficient in crystallinity in particular because they contain OH groups and the like at the end faces. Therefore, the above method was not applicable as a means of synthesizing ceramic particles having high purity, homogeneity, and high dielectric properties, such as those used as constituent materials of electronic components. It is difficult to obtain substances of the form described above, low productivity and cost, and the equipment becomes large-scale.
  • the gas phase reaction method is rarely used as a means for synthesizing titanate-based ceramic fine particles.
  • USP 4,569,775 discloses that glass is heated at a temperature higher than the glass transition point to precipitate ceramic crystals in a glass matrix, and then the glass is dissolved and removed with a weak acid.
  • a method for producing a magnetoplumbite-type ferrite powder by a glass crystallization method that separates only precipitated crystals is disclosed. This glass crystallization method is effective as a means for synthesizing high-purity ceramic particles when it is possible to completely remove substances other than precipitated crystals, and it is easy to control the shape of the particles. Has features.
  • Bismuth titanate one of the ceramics for electronic components, has excellent characteristics such as high spots, large remanent polarization, and a low rate of temperature change of the resonance frequency. It is expected to be used as a constituent material.
  • the solid phase reaction method is used for the synthesis of bismuth titanate particles.
  • the present invention relates to a method for producing bismuth titanate fine particles having excellent dielectric properties, and particularly to providing bismuth titanate fine particles having high crystallinity and a small particle size, and a method for producing the same.
  • the purpose is to do.
  • the present invention as represented by mol% based on oxides, 81 2 ⁇ 3 23-72%, and obtaining T I_ ⁇ 2 4-64%, and B 2 0 3 melt comprising 6-50% A step of rapidly cooling the melt to an amorphous substance; a step of depositing bismuth titanate crystals from the amorphous substance; and a step of separating the bismuth titanate crystals from the obtained crystallized product.
  • a method for producing bismuth titanate fine particles characterized in that they are included in this order.
  • the material for obtaining a melt comprising B i 2 ⁇ 3, T I_ ⁇ 2 and B 2 0 3, bismuth oxide (B i 2 0 3) or bismuth subcarbonate ((B I_ ⁇ ) 2 C0 3), rutile or Ana evening over peptidase (both T i 0 2), can be used boron oxide (B 2 0 3) or boric acid (H 3 B0 3).
  • bismuth borate, bismuth fluoride, and the like can be added to adjust the melting temperature.
  • the purity of the above-mentioned constituent materials is not particularly limited as long as the desired properties are not deteriorated, but is preferably 99% or more, and more preferably 99.9% or more.
  • the particle size of the above constituent material is not particularly limited as long as it is in a range where a uniform melt can be obtained by melting. Further, it is preferable that the constituent materials are mixed by a dry or wet method using a mixing and pulverizing means such as a pole mill and a planetary mill and then melted.
  • the melting may be performed in an air atmosphere, but is preferably performed while controlling the oxygen partial pressure and the oxygen flow rate.
  • the crucible used for melting is preferably made of alumina, platinum, or platinum containing rhodium, but a refractory can also be used.
  • the resistance heating furnace is preferably an electric furnace provided with a heating element made of metal such as a nichrome alloy or the like, or made of silicon carbide or molybdenum silicate.
  • the high-frequency induction furnace is provided with an induction coil and can control the output.
  • the plasma arc furnace may be any as long as it can use a plasma arc generated by using carbon or the like as an electrode.
  • the melting is preferably performed at 1200 ° C. or higher, and the obtained melt may be stirred.
  • the mixture obtained by mixing the constituent materials may be melted in a powder state, or the preformed mixture may be melted.
  • the preformed mixture can be melted as it is and then rapidly cooled.
  • composition of the melt represented by mol% based on oxides, B i 2 ⁇ 3 23-72%, T 1_Rei 2 4 to 64%, B 2 0 3 is intended to include 6-50%.
  • This composition also corresponds to the chemical composition of the constituent material before melting.
  • the addition ratio of the constituent material may be adjusted.
  • the melt in the above composition range is preferable because it has an appropriate viscosity and an amorphous substance can be obtained by subsequent rapid cooling operation without crystallization of the melt.
  • B i 2 0 3 exceeds or T i 0 2 64% more than 72%, and, B 2 0 3 is melt composition is less than 7% easily crystallized by rapid cooling, amorphous vitrified
  • B i 2 0 3 and 30 to 50% T I_ ⁇ 2 15-30% and B 2 0 3 and a melt containing 15% to 30%, dielectric polarization rather large, a temperature change of the resonant frequency such rates are small, easily obtained B i 4 T i 3 0 12 with excellent properties, and preferred because it can increase the yield.
  • B i 2 0 3 is less than 23%, at T i 0 2 is less than 4%, and the composition B 2 0 3 is greater than 50%, preferably there is a risk that the precipitation amount of bismuth titanate crystal is reduced Absent.
  • a method of obtaining a flake-like amorphous material by dropping the melt between twin rollers rotating at high speed A high-speed rotating drum continuously melts fiber-like amorphous
  • a method of winding up a substance (long fiber) is preferably used.
  • the twin roller and the drum are made of metal or ceramic.
  • a fibrous amorphous material may be obtained by using a spinner that rotates at high speed and has pores on the side walls. With these devices, the melt can be cooled rapidly and effectively to an amorphous material of high purity.
  • the amorphous material is in the form of flakes, its thickness should be 200 or less, more preferably 100 m or less, and if it is fibrous, its diameter should be 50 / m or less, More preferably, rapid cooling is performed so as to be 30 xm or less. It is not preferable to perform rapid cooling to form an amorphous substance having a thickness or diameter larger than that, since the melt is easily crystallized.
  • the step of depositing bismuth titanate crystals from the amorphous material is preferably performed at 500 to 700. Crystals are unlikely to precipitate even if heated continuously for about 24 hours at a temperature lower than 500 ° C, and a crystallized substance including an amorphous substance may be melted at a temperature exceeding 700 ° C. Not preferred. More preferably, it is carried out at 550 to 600 ° C. Since this crystal precipitation process consists of two stages, nucleation and subsequent crystal growth, these two stages may be performed at different temperatures. It should be noted that, as the heating is performed at a higher temperature, the grain size of the precipitated crystals tends to be larger. Therefore, the crystallization temperature may be set according to the desired grain size.
  • the holding time may be set according to the desired grain size.
  • the composition formula of the bismuth titanate crystals obtained by the crystallization B i 8 T i ⁇ 14, B i 4 T i 3 0 12, B i 2 T i 2 0 7 and B i 2 T i 4 ⁇ _Ita Preferably, it is at least one selected from the group consisting of
  • bismuth titanate mainly precipitates as crystals due to crystallization of the amorphous substance.
  • Borate Bismuth (B i 4 B 2 0 9 , B i 3 B 5 0 12, B i B_ ⁇ . Or B i B 3 ⁇ 6) also like to deposit However, in that case, it can be removed simultaneously by the subsequent leaching treatment.
  • the bismuth titanate crystal has a plate shape or a needle shape and an aspect ratio of 2 or more, because the filling rate in the electronic material can be increased.
  • bismuth titanate crystals are separated from the crystallized product containing bismuth titanate crystals obtained as described above. If an acid or water is used, substances other than bismuth titanate crystals can be easily leached and removed from the crystallized product.
  • an acid an inorganic acid such as acetic acid, hydrochloric acid or nitric acid, or an organic acid such as oxalic acid or citric acid can be used.
  • the acid or water may be warmed and used, or ultrasonic irradiation may be used in combination. Although this leaching treatment may dissolve a part of the bismuth titanate crystal, it is rather preferable in that the grain size can be made uniform.
  • the average particle diameter (median diameter) of the barium titanate fine particles is preferably from 5 to 100 nm, particularly preferably from 10 to 200 nm.
  • Bismuth carbonate, rutile and boron oxide were weighed so as to satisfy the ratio shown in Table 1 in each B i C_ ⁇ 3, T I_ ⁇ 2 and B 2 0 3 mol% based display, a small amount of E evening Roh Lumpur was added and mixed and ground in an automatic mortar. Then, it was dried to obtain a raw material powder.
  • the obtained raw material powder was loaded into a platinum loop nozzle with rhodium containing 10% by mass and heated at 135 ° C. for 2 hours in an electric furnace using molybdenum silicate as a heating element. And completely melted.
  • the molten material is dropped while heating the lower end of the nozzle with an electric furnace, and the droplet is rapidly cooled by passing through a twin roller having a diameter of about 15 cm rotating at 300 rpm. I got something.
  • the obtained flake was a transparent amorphous substance.
  • the crystallization temperature was previously determined by differential scanning calorimetry (DSC), and the flakes were heated at a temperature shown in Table 1 by 20 tons: ⁇ 100 ° C higher than this crystallization temperature. The plate was heated for 2 hours to precipitate plate-like bismuth titanate crystals.
  • the flakes after the crystallization treatment were left in a lmo 1ZL acetic acid solution at 70 ° C for 20 hours to leaching soluble substances.
  • the leached solution was centrifuged, the supernatant was discarded, washed with water, further dispersed under high pressure, dried, washed with water and dried to obtain fine particles of bismuth titanate having a particle size of 20 to 150 nm.
  • the mineral phase of the obtained bismuth titanate fine particles was identified using an X-ray diffractometer. The results are shown in Table 1 together with the chemical composition of the melt (mo 1%) and the actual heating temperature (° C).
  • B8T1 B i 8 T I_ ⁇ 14
  • B4T3 B i 4 T i 3 0 12
  • B 2T2 B i 2 T i 2 0 7
  • B 2T4 B i 2 T i 4 Ou).
  • the bismuth titanate fine particles obtained in Examples 1 to 14 were all highly crystalline particles.
  • Example 4 when the particle size distribution of the bismuth titanate fine particles obtained in Example 4 and Example 10 was measured by a dynamic light scattering method, it was found to be a monopeak mode, and the median diameter was 120 nm in Example 4, At 0, the particles were as fine as 140 nm.
  • Example 5 when the shape of Example 5 was observed using a TEM (transmission electron microscope), it showed a plate-like crystal, and both the a-axis and b-axis directions in crystallography were 80 nm. The axial direction was 22 nm. When the aspect ratio was calculated from these, it was 3.6. [Example 15]
  • Bismuth titanate fine particles were obtained in the same manner as in Example 4, except that the flakes were heated at 65.00 for 12 hours to precipitate bismuth titanate crystals.
  • particle size distribution was measured by the same method as in Example 4, it was found to be in the monopeak mode and the median diameter was 150 nm, which was a fine particle having a larger particle size than Example 4.
  • Bismuth titanate fine particles were obtained in the same manner as in Example 8, except that the flakes were heated at 700 ° C. for 24 hours to precipitate bismuth titanate crystals.
  • particle size distribution was measured by the same method as in Example 4, it was found to be in the monopeak mode and the median diameter was 200 nm, which was a fine particle having a larger particle size than Example 4.
  • Bismuth carbonate, rutile and boron oxide, respectively were weighed such that a ratio shown in Table 2 in B i C 0 3, T i 0 2 and B 2 O 3 mol% based on the display, in the same manner as in Example 1
  • crystallization is performed at the temperature shown in Table 2, and leaching is performed in the same manner as in Example 1 to obtain a particle size of 20 to 150 nm.
  • Bismuth titanate fine particles are obtained.
  • Table 2 shows the mineral phase of the obtained bismuth thiocyanate fine particles identified using an X-ray diffractometer.
  • barium titanate fine particles having high crystallinity and a small particle size can be produced. Therefore, the barium titanate fine particles obtained by the present invention can be applied as a constituent material of an electronic component, and the density and weight of the electronic component can be increased.

Abstract

誘電特性に優れ、かつ結晶性の高い、小粒径のチタン酸ビスマス微粒子及びその製造方法を提供することを目的とする。酸化物基準のモル%表示で、Bi2O3を23~72%、TiO2を4~64%、及びB2O3を6~50%含む溶融物を得る工程と、前記溶融物を急速冷却して非晶質物質とする工程と、前記非晶質物質からチタン酸ビスマス結晶を析出させる工程と、得られた結晶化物から前記チタン酸ビスマス結晶を分離する工程と、をこの順に含むことにより、上記課題を解決する。

Description

明細書
チタン酸ビスマス微粒子の製造方法 技術分野
本発明は、 誘電特性に優れたチタン酸ビスマス微粒子の製造方法に関し、 特 に結晶性が高く、 小粒径のチタン酸ビスマス微粒子の製造方法に関する。 背景技術
チタン酸塩系セラミックスは、 絶縁性、 強誘電性、 圧電性、 焦電性、 半導性 等の優れた特性を有することから、 コンデンサー、 フィルター、 振動子等の電 子部品の構成材料として広く利用されている。 これらのセラミックスは、 酸化 物や炭酸塩からなる原料を湿式混合して粉砕、 乾燥、 仮焼する固相反応法によ り合成できる。 ただし、 この固相反応法によって得られるセラミックスは塊状 又は粗粒状であるため、 ポールミル法などによる機械的粉砕操作が必須であり 、 粉砕容器、 粉砕媒体から不純物が混入しやすいという欠点を有する。 また、 この粉砕操作によってはミクロンオーダー又はサブミクロンオーダーの粉末を 得るのが限界であり、 粒径がサブミクロン以下の微粒子 (ナノパウダー) を得 ることはできない。
より高純度で均質な、 小粒径のセラミックス微粒子を得る方法として、 噴霧 熱分解法、 共沈法、 ゾルーゲル法、 アルコキシド法、 シユウ酸塩法、 水熱合成 法といった湿式合成法が提案されている。 しかし、 噴霧熱分解法、 共沈法、 ゾ ルーゲル法、 アルコキシド法、 シユウ酸塩法を採用した場合でも、 ナノパウダ 一を得るためには機械的粉砕操作が必須であり、 固相反応法と同様に粉砕容器 、 粉碎媒体からの不純物の混入が問題になる。 そのため、 セラミックス微粒子 の合成にこれらの方法を適用できる場合は限られている。
粉砕工程を必要としない方法である水熱合成法では、 高温高圧条件で合成を 行うために、 合成条件の設定が容易ではなく、 また、 合成の終了時点を判断し にくい。 そのため、 目的生成物の粒径及び粒径分布の制御が困難である。 さらに、 これらの湿式合成法によって合成されたセラミックス微粒子は、 特 に端面に O H基等を含むため、 結晶性の点で不充分である。 したがって、 電子 部品の構成材料として用いられるような、 高純度で均質な、 高い誘電特性を有 するセラミックス微粒子の合成手段としては、 上記の方法は適用できなかった なお、 気相反応法では粒子状の形態の物質を得がたく、 生産性が低くコスト がかかるうえ、 装置が大掛かりなものとなる。 そのため、 チタン酸塩系セラミ ックス微粒子の合成手段としては、 気相反応法はほとんど用いられない。 一方、 U S P 4 , 5 6 9 , 7 7 5号公報には、 ガラスをガラス転移点以上の 温度で加熱処理してガラスマトリックス中にセラミックス結晶を析出させた後 、 ガラスを弱酸で溶解除去して析出結晶のみを分離するガラス結晶化法による マグネトプランバイト型フェライト粉末の製造方法が開示されている。 このガ ラス結晶化法は、 析出結晶以外の物質を完全に除去することが可能な場合には 、 高純度のセラミックス粒子の合成手段として有効であり、 かつ、 粒子の形状 制御が容易であるという特徴を有する。
電子部品用セラミックスの 1つであるチタン酸ビスマスは、 キユリ一点が高 い、 大きな残留分極を有する、 共振周波数の温度変化率が低いなど優れた特性 を有するため、 次世代の半導体用メモリ一などの構成材料として期待されてい る。 現在、 チタン酸ビスマス粒子の合成には固相反応法が用いられているが、 最近では、 より結晶性が高く、 小粒径で誘電特性に優れたチタン酸ビスマス微 粒子の製造方法を提供することが求められている。 発明の開示
そこで、 本発明は、 上記従来技術の有する課題に鑑み、 誘電特性に優れたチ タン酸ビスマス微粒子の製造方法に関し、 特に結晶性が高く、 小粒径のチタン 酸ビスマス微粒子及びその製造方法を提供することを目的とする。 本発明は、 酸化物基準のモル%表示で、 8123を23〜72%、 T i〇2 を 4〜64%、 及び B203を 6〜50%含む溶融物を得る工程と、 前記溶融物 を急速冷却して非晶質物質とする工程と、 前記非晶質物質からチタン酸ビスマ ス結晶を析出させる工程と、 得られた結晶化物から前記チタン酸ビスマス結晶 を分離する工程と、 をこの順に含むことを特徴とするチタン酸ビスマス微粒子 の製造方法を提供する。 発明を実施するための最良の形態
本発明において、 B i 23、 T i〇2及び B203を含む溶融物を得るための 構成材料としては、 酸化ビスマス (B i 203) 又は炭酸ビスマス ( (B i〇) 2C03) 、 ルチル又はアナ夕ーゼ (いずれも T i 02) 、 酸化ホウ素 (B203 ) 又はホウ酸 (H3B03) を用いることができる。 これらの他に、 溶融温度を 調整するために、 ホウ酸ビスマス、 フッ化ビスマスなどを添加することができ る。
所望の特性を低下させない範囲であれば、 上記の構成材料の純度は特に限定 されないが、 99%以上が好ましく、 より好ましくは純度 99. 9%以上のも のを用いるとよい。 また、 溶融して均一な溶融物が得られる範囲であれば、 上 記構成材料の粒度も特に限定されない。 また、 上記構成材料は、 ポールミル、 遊星ミルなどの混合 ·粉砕手段を用いて、 乾式又は湿式で混合してから溶融す ると好ましい。
溶融は、 大気雰囲気で行ってもよいが、 酸素分圧や酸素流量を制御しながら 行うことが好ましい。 また、 溶融に用いるルツポ (坩堝) はアルミナ製、 白金 製、 又はロジウムを含む白金製であると好ましいが、 耐火物を用いることもで きる。 また、 溶融を抵抗加熱炉、 高周波誘導炉又はプラズマアーク炉を用いて 行うと好ましい。 抵抗加熱炉は、 ニクロム合金等の金属製、 炭化ケィ素質又は ケィ化モリブデン製等の発熱体を備えた電気炉であると好ましい。 高周波誘導 炉は、 誘導コイルを備えており、 出力を制御できるものであればよく、 また、 プラズマアーク炉は、 カーボンなどを電極とし、 これによつて発生するプラズ マアークを利用できるものであればよい。 溶融は 1200°C以上で行うことが 好ましく、 また、 得られた溶融物は撹拌してもよい。
なお、 構成材料を混合した混合物は粉体状態で溶融してもよいし、 あらかじ め成型した混合物を溶融してもよい。 プラズマアーク炉を利用する場合には、 あらかじめ成型した混合物をそのまま溶融し、 さらに急速冷却することもでき る。
溶融物の組成は、 酸化物基準のモル%表示で、 B i 23を 23〜72%、 T 1〇2を4〜64%、 B203を 6〜50 %含むものとする。 この組成は溶融前 の構成材料の化学組成とも対応している。 なお、 溶融操作中に構成材料の揮発 等が生じて、 所望の組成の溶融物が得られない場合には、 構成材料の添加割合 を調整すればよい。
上記の組成域の溶融物は適度な粘性を有するうえ、 続く急速冷却操作により 溶融物が結晶化することなく非晶質物質を得ることができるため好ましい。 B i 203が 72%を超えるか又は T i 02が 64%を超え、 かつ、 B203が 7% 未満の組成の溶融物は急速冷却により結晶化しやすく、 ガラス化して非晶質物 質とすることが困難になるため、 目的の特性を有するチタン酸ビスマス微粒子 を得がたくなり好ましくない。 さらには、 B i 203を 30〜50%、 T i〇2 を 15〜30%、 B203を 15〜30%含む溶融物とすると、 誘電分極が大き く、 共振周波数の温度変化率が小さいなど、 優れた特性を有する B i 4T i 30 12が得られやすくなり、 かつ、 その収率を高くできるため好ましい。 B i 203 が 23%未満、 T i 02が 4%未満で、 かつ、 B203が 50 %を超える組成で は、 チタン酸ビスマス結晶の析出量が少なくなるおそれがあるため好ましくな い。
次に、 得られた溶融物を急速冷却して非晶質物質とする工程には、 高速で回 転する双ローラーの間に溶融物を滴下してフレーク状の非晶質物質を得る方法 や、 高速で回転するドラムにより、 溶融物から連続的にファイバー状の非晶質 物質 (長繊維) を巻き取る方法が好適に用いられる。 ここで、 双ローラー及び ドラムとしては金属製又はセラミックス製のものを用いる。 また、 高速で回転 し、 側壁に細孔を設けたスピナ一を用いてファイバー状の非晶質物質 (短繊維 ) を得てもよい。 これらの装置を用いれば、 溶融物を効果的に急速冷却して高 純度の非晶質物質にできる。
非晶質物質がフレーク状の塲合には、 その厚さが 200 以下、 より好ま しくは 100 m以下となるように、 また、 繊維状の場合には、 その直径が 5 0/ m以下、 より好ましくは 30 xm以下となるように急速冷却することが好 ましい。 これ以上の厚さ又は直径の非晶質物質が形成するように急速冷却する と、 溶融物が結晶化しやすくなるため好ましくない。
非晶質物質からチタン酸ビスマス結晶を析出させる工程は、 500〜700 で行うことが好ましい。 500°C未満で 24.時間程度、 連続して加熱を行つ ても結晶が析出しにくく、 また、 700 を超えると、 非晶質物質を含む結晶 化物質が融解するおそれがあるためいずれも好ましくない。 さらに好ましくは 、 550〜600°Cで行う。 この結晶析出工程は、 核生成、 それに続く結晶成 長の 2段階からなるため、 この 2段階をそれぞれ異なる温度で行つてもよい。 なお、 加熱を高温で行うほど、 析出する結晶の粒径が大きくなる傾向があるの で、 所望の粒径に応じて結晶化温度を設定すればよい。
結晶化にあたっては、 上記の温度範囲に 4時間〜 48時間保つと、 チタン酸 ビスマスを充分に結晶化できるため好ましい。 その際、 保持時間が長くなるほ ど、 析出する結晶の粒径が大きくなる傾向があるので、 所望の粒径に応じて保 持時間を設定すればよい。
ここで、 結晶化により得られるチタン酸ビスマス結晶の組成式は B i 8T i 〇14、 B i 4T i 3012、 B i 2T i 207及び B i 2T i 4〇Ηからなる群より 選ばれる 1種以上であると好ましい。 本発明においては、 非晶質物質の結晶化 により、 結晶として主にチタン酸ビスマスが析出する。 ホウ酸ビスマス (B i 4B209、 B i 3B5012、 B i B〇。又は B i B36) などが析出することも あるが、 その場合には続く溶脱処理によって同時に除去できる。 なお、 チタン 酸ビスマス結晶の形状が板状又は針状であり、 かつ、 アスペクト比が 2以上で あると、 電子材料中の充填率を高くできるため好ましい。
次に、 上記によって得られたチタン酸ビスマス結晶を含む結晶化物から、 チ タン酸ビスマス結晶を分離する。 酸又は水を用いれば、 結晶化物からチタン酸 ビスマス結晶以外の物質を容易に溶脱除去できる。 酸としては、 酢酸、 塩酸、 硝酸等の無機酸や、 シユウ酸、 クェン酸等の有機酸を用いることができる。 ま た、 反応を促進するために、 酸又は水を温めて用いてもよく、 また、 超音波照 射を併用してもよい。 この溶脱処理により、 チタン酸ビスマス結晶の一部が溶 解する場合もあるが、 粒径を均一化できる点ではむしろ好ましい。
溶脱処理後、 必要に応じて純水による洗浄を行い、 チタン酸ビスマス微粒子 を得る。 該チタン酸バリウム微粒子の平均粒径 (メディアン径) は 5〜1 0 0 0 n mであると好ましく、 1 0〜2 0 0 nmであると特に好ましい。
以下、 本発明を実施例により具体的に説明するが、 本発明はこれらにより限 定されるものではない。
[例 1〜1 4 ]
炭酸ビスマス、 ルチル及び酸化ホウ素を、 それぞれ B i C〇3、 T i〇2及び B 203基準のモル%表示で表 1に示す割合となるように秤量し、 少量のェ夕ノ ールを添加して自動乳鉢で混合 ·粉砕した。 その後、 乾燥させて原料粉末を得 た。
得られた原料粉末を、 ロジウムを 1 0質量%含む白金製の、 ノズル付きのル ッポに装填し、 ケィ化モリブデンを発熱体とした電気炉で 1 3 5 0 °Cで 2時間 加熱して完全溶融させた。
次に、 ノズルの下端部を電気炉で加熱しながら溶融物を滴下させ、 3 0 0 r p mで回転する直径約 1 5 c mの双ローラーを通すことにより液滴を急速冷却 し、 フレーク状の固形物を得た。 得られたフレークは透明な非晶質物質であつ た。 マイクロメーターでフレークの厚さを測定したところ、 8 0〜1 5 0 m であった。
得られたフレークの一部を用い、 あらかじめ示差走査熱量測定 (DSC) に て結晶化温度を求めておき、 この結晶化温度より 20t:〜 100°C高い、 表 1 に示す温度でフレークを 12時間加熱して板状のチタン酸ビスマス結晶を析出 させた。
次に、 結晶化処理後のフレークを 70°Cの lmo 1ZL酢酸溶液中に 20時 間放置して可溶性物質を溶脱した。 溶脱した液を遠心分離し、 上澄みを捨てて 水洗し、 さらに高圧分散させ、 乾燥させ、 さらに水洗、 乾燥を経て粒径 20〜 150 nmのチタン酸ビスマス微粒子を得た。
得られたチタン酸ビスマス微粒子の鉱物相を、 X線回折装置を用いて同定し た。 結果を溶融物の化学組成 (mo 1 %) 、 実際の加熱温度 (°C) とともに表 1に示す。 なお、 表 1において、 B8T1 (B i 8T i〇14) 、 B4T3 (B i 4T i 3012) 、 B 2T2 (B i 2T i 207) 及び B 2T4 (B i 2T i 4Ou ) とする。
1 ]
Figure imgf000009_0001
X線回折の結果、 例 1〜1 4において得られたチタン酸ビスマス微粒子はい ずれも結晶性の高い粒子であった。
次に、 例 4及び例 1 0において得られたチタン酸ビスマス微粒子の粒度分布 を動的光散乱法により測定したところ、 モノピークモードであり、 メディアン 径が例 4では 1 2 0 n m、 例 1 0では 1 4 0 n mと、 非常に細かい微粒子であ つた。
さらに、 例 5について T EM (透過型電子顕微鏡) を用いて形状を観察した ところ、 板状結晶を呈しており、 結晶学上の a軸及び b軸方向がいずれも 8 0 nmであり、 c軸方向が 2 2 n mであった。 これらよりアスペクト比を算出す ると 3 . 6であった。 [例 1 5 ]
6 5 0ででフレークを 1 2時間加熱してチタン酸ビスマス結晶を析出させた 以外は例 4と同様にして、 チタン酸ビスマス微粒子を得た。 例 4と同じ方法で 粒度分布を測定したところ、 モノピークモードであり、 メディアン径は 1 5 0 n mと、 例 4と比較して粒径の大きい微粒子であった。
[例 1 6 ]
7 0 0 °Cでフレークを 2 4時間加熱してチタン酸ビスマス結晶を析出させた 以外は例 8と同様にして、 チタン酸ビスマス微粒子を得た。 例 4と同じ方法で 粒度分布を測定したところ、 モノピークモードであり、 メディアン径は 2 0 0 n mと、 例 4と比較して粒径の大きい微粒子であった。
[例 1 7〜 2 7 ]
炭酸ビスマス、 ルチル及び酸化ホウ素を、 それぞれ B i C 03、 T i 02及び B 2 O 3基準のモル%表示で表 2に示す割合となるように秤量し、 例 1と同様に して混合 ·粉碎操作、 溶融操作、 急速冷却操作を行った後、 表 2に示す温度で 結晶化操作を行い、 例 1と同様にして溶脱操作を行うと、 粒径 2 0〜1 5 0 n mのチタン酸ビスマス微粒子が得られる。 得られるチ夕ン酸ビスマス微粒子の 鉱物相を X線回折装置を用いて同定すると、 表 2に示すようになる。
[表 2 ]
Figure imgf000011_0001
[例 2 8 2 9 (比較例) ]
炭酸ビスマス、 ルチル及び酸化ホウ素を、 それぞれ B i C〇3 T i〇2及び B 203基準のモル%表示で表 3に示す割合となるように秤量し、 例 1と同様に して混合 ·粉砕操作、 溶融操作、 急速冷却操作を行ったところ、 不透明な固形 物が生成し、 非晶質物質は得られなかった。 - [例 3 0 (比較例) ]
炭酸ビスマス、 ルチル及び酸化ホウ素を、 それぞれ B i C 03 T i 02及び B 23基準のモル%表示で表 3に示す割合となるように秤量し、 混合 ·粉砕操 作、 溶融操作を行ったところ、 完全に溶融しなかったため溶融を中止した。 [¾ 3 ]
Figure imgf000012_0001
産業上の利用の可能性
本発明によれば、 結晶性が高く、 小粒径のチタン酸バリウム微粒子を製造で きる。 そのため、 本発明によって得られたチタン酸バリウム微粒子は電子部品 の構成材料として適用でき、 該電子部品を高密度化、 軽量化できる。

Claims

請求の範囲
1. 酸化物基準のモル%表示で、 B i 203を 23〜72%、 1^ 02を4〜
64%、 及び B203を 6〜50%含む溶融物を得る工程と、 前記溶融物を急速 冷却して非晶質物質とする工程と、 前記非晶質物質からチタン酸ビスマス結晶 を析出させる工程と、 得られた結晶化物から前記チタン酸ビスマス結晶を分離 する工程と、 をこの順に含むことを特徴とするチタン酸ビスマス微粒子の製造 方法。
2. 前記溶融物を急速冷却してフレーク状又は繊維状の非晶質物質を得る請 求項 1に記載のチタン酸ビスマス微粒子の製造方法。
3. 前記非晶質物質からチタン酸ビスマス結晶を析出させる工程を 500〜
700°Cで行う請求項 1又は 2に記載のチタン酸ビスマス微粒子の製造方法。
4. 前記チタン酸ビスマス結晶の組成式が B i 8T i 014、 B i4T i 312 、 B i 2T i 207及び B i 2T i iからなる群より選ばれる 1種以上である 請求項 1〜 3のいずれか 1項に記載のチタン酸ビスマス微粒子の製造方法。
5. 前記チタン酸ビスマス結晶の形状が板状又は針状である請求項 1〜 4の いずれか 1項に記載のチタン酸ビスマス微粒子の製造方法。
6. 前記チタン酸ビスマス結晶を分離する工程を酸又は水を用いて行う請求 項 1〜 5のいずれか 1項に記載のチタン酸ビスマス微粒子の製造方法。
7. 前記チタン酸ビスマス微粒子の平均粒径が 5〜 1000 nmである請求 項 1〜 6のいずれか 1項に記載のチタン酸ビスマス微粒子の製造方法。
8. B i 8T i〇14、 B i4T i 312、 B i 2 T i 2 O 7及び B i 2 T i 40丄ェ からなる群より選ばれる 1種以上の組成式を有し、 平均粒径が 5〜100 On mであり、 かつ、 アスペクト比が 2以上であることを特徴とするチタン酸ビス マス微粒子。
PCT/JP2004/003285 2003-03-20 2004-03-12 チタン酸ビスマス微粒子の製造方法 WO2004083122A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005503665A JP4735257B2 (ja) 2003-03-20 2004-03-12 チタン酸ビスマス微粒子の製造方法
EP04720139A EP1604952A4 (en) 2003-03-20 2004-03-12 PROCESS FOR PRODUCING FINE PARTICLES OF BISMUTH TITANATE
US11/223,984 US7300806B2 (en) 2003-03-20 2005-09-13 Process for producing fine particles of bismuth titanate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-078134 2003-03-20
JP2003078134 2003-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/223,984 Continuation US7300806B2 (en) 2003-03-20 2005-09-13 Process for producing fine particles of bismuth titanate

Publications (1)

Publication Number Publication Date
WO2004083122A1 true WO2004083122A1 (ja) 2004-09-30

Family

ID=33027968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003285 WO2004083122A1 (ja) 2003-03-20 2004-03-12 チタン酸ビスマス微粒子の製造方法

Country Status (6)

Country Link
US (1) US7300806B2 (ja)
EP (1) EP1604952A4 (ja)
JP (1) JP4735257B2 (ja)
KR (1) KR101074311B1 (ja)
TW (1) TWI275568B (ja)
WO (1) WO2004083122A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007008799A (ja) * 2005-06-01 2007-01-18 Asahi Glass Co Ltd 希土類元素ドープCeO2微粒子の製造方法
EP1818312A1 (en) * 2004-11-08 2007-08-15 Asahi Glass Company, Limited METHOD FOR PRODUCING CeO2 FINE PARTICLES AND POLISHING SLURRY CONTAINING SUCH FINE PARTICLES

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623737B2 (en) * 2006-03-31 2014-01-07 Intel Corporation Sol-gel and mask patterning for thin-film capacitor fabrication, thin-film capacitors fabricated thereby, and systems containing same
US9646828B2 (en) * 2008-04-02 2017-05-09 Sunlight Photonics Inc. Reacted particle deposition (RPD) method for forming a compound semi-conductor thin-film
US7842534B2 (en) 2008-04-02 2010-11-30 Sunlight Photonics Inc. Method for forming a compound semi-conductor thin-film
US20110064674A1 (en) * 2008-05-21 2011-03-17 Carnegie Mellon University Luminescent multimodal nanoparticle probe system and method of manufacture thereof
US20100098854A1 (en) 2008-10-17 2010-04-22 Sunlight Photonics Inc. Pressure controlled droplet spraying (pcds) method for forming particles of compound materials from melts
KR101901067B1 (ko) 2017-07-06 2018-09-20 고려대학교 산학협력단 판상 페로브스카이트 구조물의 제조 방법
CN114773645B (zh) * 2022-05-07 2023-12-01 广州大学 一种介电柔性薄膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033216A (ja) * 1983-07-30 1985-02-20 Taiyo Yuden Co Ltd 針状チタン酸鉛焼成粉体の製造法
JPS6186423A (ja) * 1984-10-04 1986-05-01 Mitsubishi Mining & Cement Co Ltd ビスマス複酸化物の製造方法
JPS63100930A (ja) * 1986-10-16 1988-05-06 Tatsuro Kuratomi 無機物薄帯の急冷製造法および急冷製造装置
JPH07202295A (ja) * 1993-12-28 1995-08-04 Sharp Corp 強誘電体結晶薄膜被覆基板、その製造方法及び強誘電体結晶薄膜被覆基板を用いた強誘電体薄膜デバイス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015577B2 (ja) 1980-05-27 1985-04-20 株式会社東芝 磁気記録用磁性粉の製造方法
DE3584240D1 (de) * 1984-12-29 1991-10-31 Sony Corp Verfahren zur herstellung von feinen wismuttitanatpulvern.
JPS61158824A (ja) * 1984-12-29 1986-07-18 Sony Corp チタン酸ビスマス微粒子の製法
JPH0651569B2 (ja) * 1986-01-30 1994-07-06 ソニー株式会社 Bi▲下2▼Ti▲下2▼O▲下7▼微粒子の製造方法
US6008163A (en) * 1994-11-14 1999-12-28 Purdue Research Foundation Process for slip casting textured tubular structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033216A (ja) * 1983-07-30 1985-02-20 Taiyo Yuden Co Ltd 針状チタン酸鉛焼成粉体の製造法
JPS6186423A (ja) * 1984-10-04 1986-05-01 Mitsubishi Mining & Cement Co Ltd ビスマス複酸化物の製造方法
JPS63100930A (ja) * 1986-10-16 1988-05-06 Tatsuro Kuratomi 無機物薄帯の急冷製造法および急冷製造装置
JPH07202295A (ja) * 1993-12-28 1995-08-04 Sharp Corp 強誘電体結晶薄膜被覆基板、その製造方法及び強誘電体結晶薄膜被覆基板を用いた強誘電体薄膜デバイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1818312A1 (en) * 2004-11-08 2007-08-15 Asahi Glass Company, Limited METHOD FOR PRODUCING CeO2 FINE PARTICLES AND POLISHING SLURRY CONTAINING SUCH FINE PARTICLES
EP1818312A4 (en) * 2004-11-08 2010-09-08 Asahi Glass Co Ltd PROCESS FOR PREPARING FINE CEO2 PARTICLES AND POLISHER SUSPENSION CONTAINING SUCH FINE PARTICLES
JP2007008799A (ja) * 2005-06-01 2007-01-18 Asahi Glass Co Ltd 希土類元素ドープCeO2微粒子の製造方法

Also Published As

Publication number Publication date
US20060008928A1 (en) 2006-01-12
JPWO2004083122A1 (ja) 2006-06-22
KR20050107574A (ko) 2005-11-14
KR101074311B1 (ko) 2011-10-17
EP1604952A1 (en) 2005-12-14
TWI275568B (en) 2007-03-11
TW200420501A (en) 2004-10-16
US7300806B2 (en) 2007-11-27
EP1604952A4 (en) 2008-05-14
JP4735257B2 (ja) 2011-07-27

Similar Documents

Publication Publication Date Title
US7300806B2 (en) Process for producing fine particles of bismuth titanate
Xue et al. Molten-salt synthesis of BaTiO3 powders and their atomic-scale structural characterization
WO2007078914A1 (en) Composite articles and methods of making the same
CN103796956B (zh) 草酸氧钛钡的制造方法和钛酸钡的制造方法
JP4929855B2 (ja) セリア−ジルコニア固溶体微粒子の製造方法
JP2013087151A (ja) 赤外線吸収粒子とその製造方法
Xue et al. Functional ceramics of nanocrystallinity by mechanical activation
JP4752194B2 (ja) チタン酸バリウム微粒子の製造方法
JP2010285334A (ja) 複合酸化物微粒子の製造方法
US7994090B2 (en) Process for producing fine particles of solid solution
JP2004331492A (ja) チタン酸ジルコン酸鉛微粒子の製造方法
JP4590874B2 (ja) ソフトフェライト微粒子の製造方法
JP5531595B2 (ja) ニオブ酸化合物微粒子の製造方法
JP4946128B2 (ja) ニオブ酸ビスマス系微粒子の製造方法
JP5407834B2 (ja) タンタル酸化合物微粒子の製造方法
JP4945982B2 (ja) 希土類元素ドープCeO2微粒子の製造方法
JP4961985B2 (ja) ジルコニア微粒子の製造方法
JP5434508B2 (ja) チタン酸化合物粒子の製造方法及びチタン酸化合物粒子
JP2005213110A (ja) コバルト−アルミナスピネル微粒子の製造方法
Kong et al. Anisotropic mullitization in CuO-doped oxide mixture activated by high-energy ball milling
KR101905713B1 (ko) 티탄산칼륨 및 이의 제조방법
RU2422390C1 (ru) Способ получения волоконно-текстурированной стеклокерамики
US20120175558A1 (en) Nano-porous precursors for opto-ceramics via novel reactive dissolution
JP2005247630A (ja) フッ素ドープito微粒子の製造方法
JP4431946B2 (ja) 単結晶セラミックス粒子の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503665

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057013265

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004720139

Country of ref document: EP

Ref document number: 11223984

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057013265

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004720139

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11223984

Country of ref document: US