WO2004082650A1 - Formkörper zur behandlung keratinischer fasern - Google Patents

Formkörper zur behandlung keratinischer fasern Download PDF

Info

Publication number
WO2004082650A1
WO2004082650A1 PCT/EP2004/002575 EP2004002575W WO2004082650A1 WO 2004082650 A1 WO2004082650 A1 WO 2004082650A1 EP 2004002575 W EP2004002575 W EP 2004002575W WO 2004082650 A1 WO2004082650 A1 WO 2004082650A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
preferred
alkyl
acids
alcohol
Prior art date
Application number
PCT/EP2004/002575
Other languages
English (en)
French (fr)
Inventor
Erik Schulze Zur Wiesche
Detlef Hollenberg
Michael Dreja
Ullrich Bernecker
Britta Bossmann
Manuela Ehlert
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to EP04719956A priority Critical patent/EP1603522A1/de
Publication of WO2004082650A1 publication Critical patent/WO2004082650A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0216Solid or semisolid forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/732Starch; Amylose; Amylopectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring

Definitions

  • the present invention relates to molded articles which contain, in addition to a cosmetically acceptable carrier, at least one polymer, at least one dissolution accelerator, also called disintegrants, and at least one cosmetic active ingredient, and a method for treating keratinous fibers with these tablets.
  • These setting agents which are typically polymeric compounds, can be incorporated into conventional hair conditioning or conditioning agents. In many cases, however, it is advantageous to apply them in the form of special agents such as hair fixatives or hair sprays.
  • aqueous-based agents have replaced volatile organic compound-based agents.
  • the problem was the lower volatility of water compared to the alcohols, which is reflected in longer drying times on the hair.
  • this conversion is also often associated with the disadvantage that when applying the desired amount of polymer to the hair water inevitably gets in such amounts on the hair that the drying times are unacceptably long.
  • These problems also result in large variations in the dosage of the agent by the consumer.
  • Another consumer demand for an ecological alternative to hair care products with a firming effect in the form of foams or sprays is also met with agents based on predominantly water as a solvent in insufficient extent.
  • hair waxes contain as a shaping component usually vegetable, animal or mineral waxes and are offered as solid formulations, usually in crucibles. For use, these products are first rubbed by hand and then spread on the hair. These hair waxes based on natural raw materials, a good hold of the hair causes at the same time strong gloss. Nevertheless, the hair waxes on the market can not completely satisfy the wishes of the users in terms of ease of application and easier distribution on the hair. So here is the accurate, simple and consistently reproducible dosing a problem. It was therefore still the task of developing easily manageable, precisely metered amounts of strengthening Haa ⁇ flegemitteln.
  • the disadvantage of too long drying times due to excessive amounts of water in the formulation does not occur if a small and constant amount of water or another physiologically compatible solvent is used.
  • Small and always consistent amounts of water or other physiologically acceptable solvent can be used if the hair treatment agent itself is present as a solid molded body.
  • the hair treatment agent as a solid molded body containing a) at least one polymer, b) at least one dissolution accelerator and c) at least one cosmetic active ingredient, the problem could be solved in an excellent manner.
  • the polymer (G) according to the invention may be both a consolidating and / or film-forming polymer and a polymer having conditioning properties. It may also be advantageous in a preferred embodiment to formulate at least one setting and at least one film-forming, setting polymer.
  • polymers are meant both natural and synthetic polymers which may be anionic, cationic, amphoteric or nonionic.
  • Cationic polymers (G1) are polymers which have a group in the main and / or side chain which may be "temporary” or “permanent” cationic.
  • “permanently cationic” refers to those polymers which have a cationic group, irrespective of the pH of the agent. These are usually polymers containing a quaternary nitrogen atom, for example in the form of an ammonium group.
  • Preferred cationic groups are quaternary ammonium groups.
  • those polymers in which the quaternary ammonium group via a Cl-4 hydrocarbon group to one of acrylic acid, methacrylic acid or derivatives of which are built-up polymer backbone have been found to be particularly suitable.
  • R 1 is -H or -CH 3
  • R 2 , R 3 and R 4 are independently selected from C 1-4 -alkyl, -alkenyl or -hydroxyalkyl groups
  • m 1, 2, 3 or 4
  • n is a natural number
  • X is a physiologically acceptable organic or inorganic anion
  • copolymers consisting essentially of the monomer units listed in formula (GI-I) and nonionic monomer units are particularly preferred cationic polymers preferably, for which at least one of the following conditions applies:
  • R 1 is a methyl group
  • R 2 , R 3 and R 4 are methyl groups
  • m has the value 2.
  • Suitable physiologically tolerated counterions X " are, for example, halide ions, sulfate ions, phosphate ions, methosulfate ions and organic ions such as lactate, citrate, tartrate and acetate ions, preference being given to halide ions, in particular chloride.
  • a particularly suitable homopolymer is, if desired, crosslinked, poly (methacryloyloxyethyltrimethylammonium chloride) with the INCI name Polyquaternium-37.
  • the crosslinking can be carried out with the aid of poly olefinically unsaturated compounds, for example divinylbenzene, tetraallyloxyethane, methylenebisacrylamide, diallyl ether, polyallylpolyglyceryl ether, or aUylethem of sugars Sugar derivatives such as erythritol, pentaerythritol, arabitol, mannitol, sorbitol, sucrose or glucose. Methylenebisacrylamide is a preferred crosslinking agent.
  • the homopolymer is preferably used in the form of a nonaqueous polymer dispersion which should not have a polymer content of less than 30% by weight.
  • Such polymer dispersions are (under the names Salcare ® SC 95 about 50% polymer content, additional components: mineral oil (INCI name: Mineral Oil) and tridecyl polyoxypropylene pylene-polyoxyethylene-ether (INCI name: PPG-l-Trideceth- 6)), and Salcare ® SC 96 (about 50% polymer content, additional components: a mixture of diesters of Propylengly- KOL with a mixture of caprylic and capric acid (INCI name: Propylene Gly- col Dicaprylate / Dicaprate) and tridecyl-polyoxypropylene Polyoxyethylene ether (INCI name: PPG-l-Trideceth-6)) commercially available.
  • Copolymers containing monomer units according to formula (Gl-I) as non-ionic monomer preferably acrylamide, methacrylamide, acrylic acid C 1-4 alkyl ester and methacrylic acid-C ⁇ -4 -alkyl.
  • the acrylamide is particularly preferred.
  • These copolymers can also be crosslinked, as described above in the case of the homopolymers.
  • a copolymer preferred according to the invention is the crosslinked acrylamide-methacryloyloxyethyltrimethylammonium chloride copolymer.
  • Such copolymers in which the monomers are present in a weight ratio of about 20:80, are commercially available as approximately 50% non-aqueous polymer dispersion 92 under the name Salcare ® SC.
  • - cationic alkyl polyglycosides according to DE-PS 44 13 686, cationized honey, for example the commercial product Honeyquat ® 50, cationic guar derivatives, in particular the products sold under the trade names Cosme- dia ® guar and Jaguar ®, - polysiloxanes with quaternary groups, such as the commercially available products Q2-7224 (manufacturer: Dow Corning; a stabilized Trimethylsilylamo- dimethicone), Dow Corning ® 929 Emulsion (containing a hydroxylamino-modi fied silicone, which is also known as amodimethicone is called), SM-2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® quat 3270 and 3272 (manufacturer: Th. Goldschmidt), diquaternary polydimethylsiloxanes, quaternium-80)
  • Q2-7224
  • Such compounds are sold under the names Gafquat ® 734 and Gafquat ® 755 commercially,
  • Vinylpyrrolidone Vinylimidazoliurnmethochlorid copolymers such as those offered under the names Luviquat.RTM ® FC 370, FC 550, FC 905 and HM 552,
  • Can be used as cationic polymers are sold under the names Polyquaternium-24 (commercial product z. B. Quatrisoft ® LM 200), known polymers.
  • Gaffix ® VC 713 manufactured by ISP:
  • the copolymers of vinylpyrrolidone such as the commercial products Copolymer 845 (ISP manufacturer) are Gafquat ® ASCP 1011, Gafquat ® HS 110, Luviquat ® 8155 and Luviquat ® MS 370 available are.
  • cationic polymers are the so-called "temporary cationic" polymers. These polymers usually contain an amino group which, when agreed pH values as quaternary ammonium group and thus present cationic.
  • temporary cationic polymers usually contain an amino group which, when agreed pH values as quaternary ammonium group and thus present cationic.
  • chitosan and its derivatives are preferred as Hydagen CMF ®, Hydagen HCMF ®, Kytamer ® PC and Chitolam ® NB / 101 are freely available commercially, for example under the trade names.
  • preferred cationic polymers are cationic cellulose derivatives and chitosan and its derivatives, in particular the commercial products Polymer ® JR 400, Hydagen ® HCMF and Kytamer ® PC, cationic guar derivatives, cationic honey derivatives, in particular the commercial product Honeyquat ® 50, cationic Alkylpolyglycodside according to DE-PS 44 13 686 and polymers of the type Polyquaternium-37.
  • cationized protein hydrolyzates are to be counted among the cationic polymers, wherein the underlying protein hydrolyzate from the animal, for example from collagen, milk or keratin, from the plant, for example from wheat, corn, rice, potatoes, soy or almonds, marine life forms, for example from fish collagen or algae, or biologically derived protein hydrolysates.
  • the protein hydrolyzates on which the cationic derivatives according to the invention are based can be obtained from the corresponding proteins by chemical, in particular alkaline or acid hydrolysis, by enzymatic hydrolysis and / or a combination of both types of hydrolysis.
  • cationic protein hydrolyzates are to be understood as meaning quaternized amino acids and mixtures thereof.
  • the quaternization of the protein hydrolyzates or amino acids is often carried out using quaternary ammonium salts such as N, N-dimethyl-N- (n-alkyl) -N- (2-hydroxy-3-chloro-n-propyl) ammonium halides.
  • the cationic protein hydrolysates may also be further derivatized.
  • the cationic protein hydrolysates and derivatives according to the invention those mentioned under the JJSfCI designations in the International Cosmetic Ingredient Dictionary and Handbook "(seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17 th Street, NW, Suite 300, Washington, DC 20036-4702) above and commercially available products mentioned: Cocodimomum Hydroxypropyl Hydrolyzed Collagen, Hydrolyzed Cocodimopnium hydroxypropyl Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Silk, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydroly
  • the anionic polymers (G2) which can support the action of the active ingredient (A) according to the invention are anionic polymers which contain carboxylate and / or sulfonate groups.
  • anionic monomers from which such polymers may consist are acrylic acid, methacrylic acid, crotonic acid, maleic anhydride and 2-acrylamido-2-methylpropanesulfonic acid.
  • the acidic groups may be wholly or partly present as sodium, potassium, ammonium, mono- or triethanolammonium salt.
  • Preferred monomers are 2-acrylamido-2-methylpropanesulfonic acid and acrylic acid.
  • Anionic polymers which contain 2-acrylamido-2-methylpropanesulfonic acid as the sole or co-monomer can be found to be particularly effective, it being possible for all or some of the sulfonic acid group to be present as sodium, potassium, ammonium, mono- or triethanolammonium salt ,
  • homopolymer of 2-acrylamido-2-methylpropanesulfonic acid for example, under the name Rheothik ® ! 1-80 is commercially available.
  • copolymers of at least one anionic monomer and at least one nonionic monomer are preferable to use copolymers of at least one anionic monomer and at least one nonionic monomer.
  • anionic monomers reference is made to the substances listed above.
  • Preferred nonionic monomers are acrylamide, methacrylamide, acrylic esters, methacrylic esters, vinylpyrrolidone, vinyl ethers and vinyl esters.
  • Preferred anionic copolymers are acrylic acid-acrylamide copolymers and in particular polyacrylamide copolymers with sulfonic acid-containing monomers.
  • a particularly preferred anionic copolymer consists of 70 to 55 mole percent acrylamide and 30 to 45 mole percent 2-acrylamido-2-methylpropanesulfonic acid, wherein the sulfonic acid group wholly or partly present as sodium, potassium, ammonium, mono- or triethanolammonium salt.
  • This copolymer can also be crosslinked, with crosslinking agents preferably polyolefinically unsaturated compounds such as Tetraallyl- oxyethan, allylsucrose, allylpentaerythritol and methylene-bisacrylamide are used.
  • Such a polymer is contained in the commercial product Se ⁇ igel ® 305 from SEPPIC.
  • the use of this compound, which in addition to the polymer component contains a hydrocarbon mixture (C 13 -C 14 isoparaffin) and a nonionic emulsifier (laureth-7), has proved to be particularly advantageous within the scope of the teaching according to the invention.
  • Simulgel ® 600 as a compound with isohexadecane and polysorbate-80 Natriumacryloyldimethyltaurat copolymers have proven to be particularly effective according to the invention.
  • anionic homopolymers are uncrosslinked and crosslinked polyacrylic acids. Allyl ethers of pentaerythritol, sucrose and propylene may be preferred crosslinking agents. Such compounds are for example available under the trademark Carbopol ® commercially.
  • Copolymers of maleic anhydride and methyl vinyl ether, especially those with crosslinks, are also color-retaining polymers.
  • a with 1,9-decadiene crosslinked maleic acid-methyl vinyl ether copolymer is commercially available under the name Stabileze® ® QM.
  • anionic polymers are u. a .:
  • Vinyl acetate / crotonic acid copolymers such as those sold under the names Resyn ® (National Starch), Luviset ® (BASF) and Gafset ® (GAF) are commercially available.
  • Vinylpyrrolidone / vinyl acrylate copolymers obtainable for example under the trade name Luviflex ® (BASF).
  • a preferred polymer is the VBM-35 (BASF) under the name Luviflex ® available vinylpyrrolidone / acrylate terpolymers.
  • Acrylic acid / ethyl acrylate / N-tert-butylacrylamide Te ⁇ olymere for example, sold under the name Ultrahold ® strong (BASF).
  • amphoteric polymers (G3) can be used as polymers to increase the activity of the active ingredient (A) according to the invention.
  • amphoteric polymers includes both those polymers which contain in the molecule both free amino groups and free -COOH or SO 3 H groups and are capable of forming internal salts, as well as zwitterionic polymers which in the molecule have quaternary ammonium groups and -COO contain " - or -SO " groups, and summarized those polymers containing -COOH or SO 3 H groups and quaternary ammonium groups.
  • amphopolymer suitable is the acrylic resin commercially available as Amphomer ®, ethyl methacrylate, a copolymer of tert-butylamino, N- (1,1,3,3-tetramethylbutyl) -acrylamide and two or more monomers from the group Acrylic acid, methacrylic acid and their simple esters.
  • amphoteric polymers which can be used according to the invention are the compounds mentioned in British Patent Application 2,104,091, European Patent Application 47,714, European Offenlegungsschrift 217,274, European Offenlegungsschrift 283,817 and German Offenlegungsschrift 28 17 369.
  • Further suitable zwitterionic polymers are Methacroylethylbetain / methacrylate copolymers, which are commercially available under the name Amersette ® (AMERCHOL).
  • R and R are independently of one another hydrogen or a methyl group and R 3 , R 4 and R 5 are each independently alkyl groups having 1 to 4 carbon atoms, Z is an NH group or an oxygen atom, n is an integer from 2 to 5 and
  • (-) A is the anion of an organic or inorganic acid
  • the agents according to the invention may contain nonionic polymers (G4).
  • Suitable nonionic polymers are, for example:
  • Vinylpyrrolidone / vinyl ester copolymers as sold, for example, under the trademark Luviskol ® (BASF).
  • Luviskol ® VA 64 and Luviskol ® VA. 73, each vinylpyrrolidone A ⁇ inyl acetate copolymers, are also preferred nonionic polymers.
  • Cellulose ethers such as hydroxypropyl cellulose, hydroxyethyl cellulose and methyl hydroxypropylcellulose, as sold for example under the trademark Culminal® ® and Benecel ® (AQUALON).
  • Culminal® ® and Benecel ® AQUALON
  • Siloxanes These siloxanes can be both water-soluble and water-insoluble. Both volatile and nonvolatile siloxanes are suitable, nonvolatile siloxanes being understood as meaning those compounds whose boiling point is above 200 ° C. under normal pressure.
  • Preferred siloxanes are polydialkylsiloxanes, such as, for example, polydimethylsiloxane, polyalkylarylsiloxanes, such as, for example, polyphenylmethylsiloxane, ethoxylated polydialkylsiloxanes and polydialkylsiloxanes which contain amine and / or hydroxyl groups.
  • the preparations used contain a plurality of, in particular two different polymers of the same charge and / or in each case an ionic and an amphoteric and / or nonionic polymer.
  • the polymers (G) are contained in the agents used according to the invention preferably in amounts of 0.05 to 10 wt .-%, based on the total agent. Amounts of 0.1 to 5, in particular from 0.1 to 3 wt .-%, are particularly preferred.
  • the molded article according to the invention also contains at least one dissolution accelerator.
  • dissolution accelerator includes gas-evolving components, preformed and trapped gases, disintegrants, and mixtures thereof.
  • dissolution accelerator, mold dissipator, disintegrants or disintegrants are meant substances which are added to tablets to accelerate their disintegration upon contact with water or other solvents. Overviews can be found, for example, in J. Pharm. Sci. 61 (1972), Römpp Chemilexikon, 9th edition, Volume 6, page 4440 and Voigt "textbook of pharmaceutical technology” (6th edition, 1987, pp. 182-184).
  • gas-evolving components are used as the dissolution accelerator. Upon contact with water, these components react with each other to form gases in-situ, which create a pressure in the tablet which disintegrates the tablet into smaller particles.
  • suitable acids Preference is given to mono-, di- or trihydric acids having a pK a value of 1.0 to 6.9.
  • Preferred acids are citric, malic, maleic, malonic, itaconic, tartaric, oxalic, glutaric, glutamic, lactic, fumaric, glycolic and mixtures thereof. Particularly preferred is citric acid.
  • citric acid in particulate form, the particles having a diameter of below 100 ⁇ m, in particular smaller than 700 ⁇ m, very particularly preferably smaller than 400 ⁇ m.
  • suitable acids are the homopolymers or copolymers of acrylic acid, maleic acid, methacrylic acid or itaconic acid having a molecular weight of 2,000 to 200,000. Particularly preferred are homopolymers of acrylic acid and copolymers of acrylic acid and maleic acid.
  • preferred bases are alkali metal silicates, carbonates, bicarbonates and mixtures thereof. Metasilicates, bicarbonates and carbonates are particularly preferred, bicarbonates are most preferred.
  • particulate bicarbonates having a particle diameter of less than 100 ⁇ m, in particular less than 700 ⁇ m, very particularly preferably less than 400 ⁇ m.
  • Sodium or potassium salts of the above bases are particularly preferred.
  • These gas-evolving components are preferably present in the inventive dyeing composition in an amount of at least 10% by weight, in particular of at least 20% by weight.
  • the gas is preformed or trapped so that upon onset of dissolution of the molded article, gas evolution begins and further dissolution is accelerated.
  • suitable gases are air, carbon dioxide, N 2 O, oxygen and / or other non-toxic, non-combustible gases.
  • disintegration aids so-called molded body disintegrating agents, are incorporated into the molded bodies as dissolution accelerators in order to shorten the disintegration times.
  • Swelling disintegration aids are, for example, synthetic polymers such as polyvinylpyrrolidone (PVP) or natural polymers or modified natural substances such as cellulose and starch and their derivatives, alginates or casein derivatives.
  • PVP polyvinylpyrrolidone
  • Preferred disintegrating agents used in the present invention disintegrating agents based on cellulose, so that preferred molded body such disintegrating agent based on cellulose in amounts of 0.5 to 50 wt .-%, preferably 3 to 30 wt .-%, based on the entire molded body contain.
  • Pure cellulose has the formal gross composition (C ⁇ HioOs) ,, and is formally a ⁇ -l, 4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrating agents which can be used in the context of the present invention are also cellulose derivatives obtainable by polymer-analogous reactions of cellulose.
  • Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • Celluloses in which the hydroxy groups have been replaced by functional groups which are not bound by an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethyl cellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used as the sole cellulosic disintegrating agent but are used in admixture with cellulose.
  • the content of these mixtures of cellulose derivatives is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrating agent. It is particularly preferred to use cellulose-based disintegrating agent which is free of
  • the cellulose used as a disintegration aid can not be used in finely divided form, but converted into a coarser form, for example granulated or compacted, before admixing with the premixes to be used.
  • the particle sizes of such disintegrating agents are usually above 200 .mu.m, preferably at least 90 wt .-% between 300 and 1600 .mu.m and in particular at least 90 wt .-% between 400 and 1200 microns.
  • the disintegration auxiliaries according to the invention are available commercially for example under the name of Arbocel ® from Rettenmaier.
  • a preferred disintegration assistants for example, Arbocel ® TF-30-HG.
  • microcrystalline cellulose is preferably used as a cellulose-based disintegrant or as a component of this component.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which attack and completely dissolve only the amorphous regions (about 30% of the total cellulose mass) of the celluloses, but leave the crystalline regions (about 70%) intact.
  • a Subsequent deaggregation of the resulting by the hydrolysis micro-fine celluloses provides the microcrystalline celluloses, the primary particle sizes of about 5 microns and, for example, are compactable into granules with an average particle size of 200 microns.
  • Suitable microcrystalline cellulose is available commercially for example under the trade name Avicel ®.
  • disintegrants which may be present within the meaning of the invention, e.g. Kollidon, alginic acid and their alkali metal salts, amorphous or partially crystalline layered silicates (bentonites), polyacrylates, polyethylene glycols are described, for example, in the publications WO 98/40462 (Rettenmaier), WO 98/55583 and WO 98/55590 (Unilever) and WO 98/40463, DE 19709991 and DE 19710254 (Henkel). The teaching of these documents is expressly incorporated by reference.
  • the disintegration agents obtainable by the process according to the invention can be present homogeneously distributed macroscopically viewed in the molded body, but microscopically they form zones of increased concentration due to production.
  • the accelerated dissolution of the molded body according to the invention can also be achieved by pre-granulation of the further constituents of the molded body.
  • these contain, in addition to the Ausf insectssbevanter a mixture of starch and at least one saccharide.
  • a mixture of starch and at least one saccharide is preferred.
  • Said mixture is preferably present in a weight ratio of starch and the saccharides used from 10: 1 to 1:10, more preferably from 1: 1 to 1:10, most preferably from 1: 4 to 1: 7 in the molded article before.
  • the disaccharides used are preferably selected from lactose, maltose, sucrose, trehalose, turanose, gentiobiose, melibiose and cellobiose. Particular preference is given to using lactose, maltose and sucrose and very particularly preferably lactose in the shaped articles according to the invention.
  • the starch-disaccharide mixture is in the molded article in an amount of 5 to 60 wt.%, Preferably from 20 to 40 wt.% Based on the mass of the entire molded body contained.
  • Another essential component of the molded body according to the invention may be builders.
  • Typical examples of builders which are useful as optional components are zeolites, water glasses, layered silicates, phosphates and polycarboxylates.
  • the finely crystalline, synthetic and bound water-containing zeolite frequently used as detergent builder is preferably zeolite A and / or P.
  • zeolite P for example, zeolite MAP (R) (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P as well as Y.
  • zeolite A and zeolite X which (as VEGOBOND AX ® commercial product of Condea Augusta SpA ) is commercially available.
  • the zeolite can be used as a spray-dried powder or else as undried, still moist, stabilized suspension of its preparation.
  • the zeolite may contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3 wt .-%, based on zeolite, of ethoxylated Ci 2 -C ⁇ 8 fatty alcohols having 2 to 5 ethylene oxide groups , C 12 -C 1 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Suitable substitutes or partial substitutes for phosphates and zeolites are crystalline, layered sodium silicates of the general formula NaMSi x O 2x + 1 , yH 2 ⁇ , where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European Patent Application EP 0164514 A1.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3.
  • Further suitable phyllosilicates are known, for example, from patent applications DE 2334899 A1, EP 0026529 A1 and DE 3526405 A1. Its usability is not limited to any particular composition or structural formula. However, preference is given here to smectites, in particular benzonites. Suitable layered silicates which belong to the group of water-swellable smectites are, for example, those of the general formulas
  • the phyllosilicates may contain hydrogen, alkali, alkaline earth metal ions, in particular Na + and Ca 2+ , due to their ion-exchanging properties.
  • the amount of water of hydration is usually in the range of 8 to 20 wt .-% and is dependent on the swelling state or on the type of processing.
  • Useful layered silicates are known, for example, from US Pat. No. 3,966,629, US Pat. No. 4,062,647, EP 0026529 A1 and EP 0028432 A1.
  • phyllosilicates are used, which are largely free of calcium ions and strong coloring iron ions due to an alkali treatment.
  • the preferred builder substances also include amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8, and in particular from 1: 2 to 1: 2, 6, which are delay-delayed.
  • the dissolution delay over conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compacting / densification or by overdrying.
  • the term "amo ⁇ h” is also understood to mean “roentgeno".
  • the silicates are not sharp in X-ray diffraction experiments X-ray reflections, as they are typical for crystalline substances, but at best one or more maxima of the scattered X-radiation, which have a width of several degrees of the diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be integrated in such a way that the products have microcrystalline areas of size 10 to a few hundred nm, with values of up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • phosphates As builder substances, if such an application should not be avoided for ecological reasons.
  • Particularly suitable are the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates.
  • Their content is generally not more than 25 wt .-%, preferably not more than 20 wt .-%, each based on the finished agent.
  • tripolyphosphates even in small amounts up to a maximum of 10% by weight, based on the finished agent, in combination with other builder substances lead to a synergistic improvement in the secondary washing power.
  • Useful organic builders which are suitable as co-builders are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is for ecological reasons not to complain about, as well as mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof. The acids themselves can also be used.
  • the acids in addition to their building
  • the effect typically also the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes. Preference is given to hydrolysis products having average molecular weights in the range from 400 to 500,000.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a customary measure for the reducing effect of a polysaccharide compared to dextrose, which has a DE of 100.
  • DE dextrose equivalent
  • maltodextrins with a DE of between 3 and 20 and dry glucose syrups with a DE of between 20 and 37 and also so-called yellow dextrins and white dextrins with relatively high molecular weights in the range from 2,000 to 30,000.
  • a preferred dextrin is described in British patent application GB 9419091 A1 , The oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • co-builders are oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate. Also particularly preferred in this context are glycerol disuccinates and glycerol trisuccinates, as they are for example, in US Pat. Nos. 4,524,009, 4,639,325, European Patent Application EP 0150930 Al and Japanese Patent Application JP 93/339896.
  • Useful organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which have at least 4 carbon atoms and at least one hydroxyl group and also at most contain two acid groups. Such co-builders are described, for example, in International Patent Application WO 95/20029.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those having a relative molecular weight of 800 to 150,000 (based on acid and measured in each case against polystyrenesulfonic acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their molecular weight relative to free acids is generally from 5,000 to 200,000, preferably from 10,000 to 120,000 and in particular from 50,000 to 100,000 (in each case measured against polystyrene sulfonic acid).
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution, with 20 to 55% by weight aqueous solutions being preferred.
  • Granular polymers are usually added later to one or more basic granules.
  • biodegradable polymers of more than two different monomer units for example those which according to DE 4300772 Al as salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or according to DE 4221381 C2 as the monomers salts of Acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives.
  • Further preferred copolymers are those which are described in German patent applications DE 4303320 A1 and DE 4417734 A1 and preferably have as monomers acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • Other preferred builders include polymeric aminodicarboxylic acids, their salts or their precursors. Particular preference is given to polyaspartic acids or their salts and derivatives.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups, for example as described in European patent application EP 0280223 A1.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • the third component of the combination according to the invention is a cosmetic active ingredient.
  • the selection of the active ingredient in question depends on the desired effect, which is to be achieved with the molded body.
  • the active substance groups described below are preferably selected according to the invention.
  • the first group of active ingredients are fatty substances (D).
  • Fatty substances are to be understood as meaning fatty acids, fatty alcohols, natural and synthetic waxes, which can be in solid form as well as liquid in aqueous dispersion, and natural and synthetic cosmetic oil components.
  • fatty acids As fatty acids (DI) it is possible to use linear and / or branched, saturated and / or unsaturated fatty acids having 6 to 30 carbon atoms. Preference is given to fatty acids having 10 to 22 carbon atoms. Among these could be mentioned, for example, isostearic as the commercial products Emersol ® 871 and Emersol ® 875, and isopalmitic acids such as the commercial product Edenor ® IP 95, and all other products sold under the trade names Edenor ® (Cognis) fatty acids.
  • DI fatty acids
  • fatty acids are caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, Palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures, for example in the pressure splitting of natural fats and oils, in the oxidation of aldehydes from the Roelen's oxo synthesis or the dimerization of unsaturated fatty acids.
  • Particularly preferred are usually the fatty acid cuttings obtainable from coconut oil or palm oil; In particular, the use of stearic acid is usually preferred.
  • the amount used is 0.1 - 15 wt.%, Based on the total mean.
  • the amount is preferably 0.5-10% by weight, with amounts of 1-5% by weight being particularly advantageous.
  • fatty alcohols (D2) it is possible to use saturated, mono- or polyunsaturated, branched or unbranched fatty alcohols with C 6 -C 3 u- , preferably C 10 -C 22 -and very particularly preferably C 12 -C 22 -carbon atoms.
  • Decanols, octanols, dodecadienol, decadienol, oleyl alcohol, eruca alcohol, ricinoleic alcohol, stearyl alcohol, isostearyl alcohol, cetyl alcohol, lauryl alcohol, myristyl alcohol, arachidyl alcohol, caprylic alcohol, capric alcohol, linoleyl alcohol, linolenyl alcohol and behenyl alcohol are, for example, decanol, octanolol, dodecadienol, decadienol , as well as their Guerbet alcohols, this list should have exemplary and non-limiting character.
  • the fatty alcohols are derived from preferably natural fatty acids, which can usually be based on recovery from the esters of fatty acids by reduction.
  • those fatty alcohol cuts which are produced by reducing naturally occurring triglycerides such as beef tallow, palm oil, peanut oil, rapeseed oil, cottonseed oil, soybean oil, sunflower oil and linseed oil or fatty acid esters formed from their transesterification products with corresponding alcohols, and thus represent a mixture of different fatty alcohols.
  • Such substances are, for example, under the names Stenol ® such as Stenol ® 1618 or Lanette ® such as Lanette ® O or Lorol ®, for example, Lorol ® C8, Lorol C14 ®, Lorol C18 ®, ® Lorol C8-18, HD Ocenol ®, Crodacol ® such as Crodacol CS ®, ® Novol, Eutanol ® G, Guerbitol ® 16, Guerbitol ® 16 or Isocarb ® 24 available for purchase 18, Guerbitol ® 20, Isofol ® 12, Isofol ® 16, Isofol ® 24, Isofol ® 36, Isocarb 12 ®, ® Isocarb.
  • Stenol ® such as Stenol ® 1618 or Lanette ® such as Lanette ® O or Lorol ®
  • Lorol ® C8 Lorol C8-18
  • wool wax alcohols as are commercially available, for example under the names of Corona ®, White Swan ®, Coronet ® or Fluilan ® can be used according to the invention.
  • the fatty alcohols are used in amounts of from 0.1 to 30% by weight, based on the total preparation, preferably in amounts of from 0.1 to 20% by weight.
  • waxes As natural or synthetic waxes (D3) it is possible according to the invention to use solid paraffins or isoparaffins, carnauba waxes, beeswaxes, candelilla waxes, ozokerites, ceresin, spermaceti, sunflower wax, fruit waxes such as, for example, apple wax or citrus wax, microwaxes of PE or PP.
  • Such waxes are available, for example, from Kahl & Co., Trittau.
  • the amount used is 0.1-50% by weight, based on the total agent, preferably 0.1
  • oils examples include sunflower oil, olive oil, soybean oil, rapeseed oil, almond oil, jojoba oil, orange oil, wheat germ oil, peach kernel oil and the liquid portions of coconut oil. Also suitable, however, are other triglyceride oils such as the liquid portions of beef tallow as well as synthetic triglyceride oils.
  • the compounds are available as commercial products l, 3-di- (2-ethyl-hexyl) -cyclohexane (Cetiol ® S), and di-n-octyl ether (Cetiol ® OE) may be preferred.
  • - Ester oils Ester oils are to be understood as meaning the esters of C 6 - C 30 fatty acids with C 2 - C 30 fatty alcohols. The monoesters of the fatty acids with alcohols having 2 to 24 carbon atoms are preferred.
  • fatty acid components used in the esters are caproic, caprylic, 2-ethylhexanoic, capric, lauric, isotridecanoic, myristic, palmitic, palmitoleic, stearic, isostearic, oleic, elaidic, petroselic, linoleic, linolenic Behenic acid and erucic acid and their technical mixtures which are obtained, for example, in the pressure splitting of natural fats and oils, in the oxidation of aldehydes from Roelen's oxo synthesis or the dimerization of unsaturated fatty acids.
  • fatty alcohol components in the ester oils are isopropyl alcohol, caproic alcohol, capryl alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, Gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures, for example, in the high-pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from the Roelen oxo synthesis and as a monomer fraction in the dimerization of unsaturated fatty alcohols incurred.
  • Isopropymiyristat (Rilanit ® IPM), isononanoic acid-Cl6-18 alkyl ester (Cetiol ® SN), 2-Ethylhexyl ⁇ almitat (Cegesoft ® 24), stearic acid-2-ethylhexyl ester (Cetiol ® 868), cetyl oleate, caprylate glycerol triesters, coconut fatty alcohol caprate / caprylate (Cetiol ® LC), n-butyl stearate, oleyl erucate (Cetiol ® J 600), isopropyl palmitate (Rilanit ® IPP), oleyl Oleate (Cetiol ®), lauric acid hexyl ester (Cetiol ® A), di-n -butyladipat (Cetio
  • Dicarboxylic acid esters such as di-n-butyl adipate, di (2-ethylhexyl) adipate, di- (2-ethylhexyl) succinate and di-isotridecyl acelate
  • diol esters such as ethylene glycol dioleate, ethylene glycol diisotridecanoate, propylene glycol di (2 ethylhexanoate), propylene glycol di-isostearate, propylene glycol di-pelargonate, butanediol di-isostearate, neopentyl glycol dicaprylate, - symmetrical, asymmetrical or cyclic esters of carbonic acid with fatty alcohols, for example described in DE-OS 197 56 454, glycerol carbonate or dicaprylyl carbonate (Cetiol ® CC),
  • the partial glycerides preferably follow the formula (D4-I),
  • R 1 , R 2 and R 3 are each independently hydrogen or a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22, preferably 12 to 18, carbon atoms, with the proviso that at least one of these groups represents a Acyl radical and at least one of these groups is hydrogen.
  • the sum (m + n + q) is 0 or numbers from 1 to 100, preferably 0 or 5 to 25.
  • R is an acyl radical and R and R are hydrogen and the sum (m + n + q ) is 0.
  • Typical examples are mono- and / or diglycerides based on caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, Linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures.
  • oleic acid monoglycerides are used.
  • the amount of natural and synthetic cosmetic oils used in the compositions according to the invention is usually from 0.1 to 30% by weight, based on the total composition, preferably from 0.1 to 20% by weight, and in particular from 0.1 to 15 wt .-%.
  • the total amount of oil and fat components in the compositions according to the invention is usually 0.5-75% by weight, based on the total agent. Quantities of 0.5
  • the agents used according to the invention comprise surfactants.
  • surfactants is understood as meaning surface-active substances which form adsorption layers on top and boundary surfaces or which can aggregate in volume phases to give micelle colloids or lyotropic mesophases.
  • anionic surfactants consisting of a hydrophobic radical and a negatively charged hydrophilic head group
  • amphoteric surfactants which carry both a negative and a compensating positive charge
  • cationic surfactants which, in addition to a hydrophobic radical, have a positively charged hydrophilic group
  • nonionic surfactants which have no charges but strong dipole moments and are highly hydrated in aqueous solution.
  • Suitable anionic surfactants (E1) in formulations according to the invention are all anionic surface-active substances suitable for use on the human body. These are characterized by a water-solubilizing, anionic group such as. Example, a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group having about 8 to 30 carbon atoms. In addition, glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups may be present in the molecule. Examples of suitable anionic surfactants are, in each case in the form of the sodium, potassium and ammonium as well as the mono-, di- and trialkanolammonium salts having 2 to 4 C atoms in the alkanol group,
  • Alkyl group having 8 to 30 C atoms and x 0 or 1 to 16,
  • Sulfosuccinic acid mono- and dialkyl esters having 8 to 24 C atoms in the alkyl group and sulfosuccinic acid monoalkyl polyoxyethyl esters having 8 to 24 C atoms in the alkyl group and 1 to 6 oxyethyl groups,
  • Alpha-sulfofatty acid methyl esters of fatty acids having 8 to 30 C atoms are alpha-sulfofatty acids having 8 to 30 C atoms
  • Alkyl sulfates and alkyl polyglycol ether sulfates of the formula RO (CH 2 -CH 2 O) x -OSO 3 H, in which R is a preferably linear alkyl group having 8 to 30 C atoms and x 0 or 1 to 12,
  • Esters of tartaric acid and citric acid with alcohols which are adducts of about 2-15 molecules of ethylene oxide and / or propylene oxide with fatty alcohols containing 8 to 22 carbon atoms,
  • R 1 is preferably an aliphatic hydrocarbon radical having 8 to 30 carbon atoms
  • R 2 is hydrogen, a radical (CH 2 CH 2 O) n R 1 or X, n is from 1 to 10 and X is hydrogen, an alkali metal radical or alkaline earth metal or NR 3 R 4 R 5 R 6 , where R 3 to R 6 independently of one another represent hydrogen or a C 1 to C 4 hydrocarbon radical,
  • Typical examples of monoglyceride (ether) sulfates suitable for the purposes of the invention are the reaction products of lauric acid monoglyceride, coconut fatty acid monoglyceride, palmitic acid monoglyceride, stearic acid monoglyceride, oleic acid monoglyceride and tallow fatty acid monoglyceride and their ethylene oxide adducts with sulfur trioxide or chlorosulfonic acid in the form of their sodium salts.
  • monoglyceride sulfates of the formula (III-III) are used in which R 8 CO is a linear acyl radical having 8 to 18 carbon atoms, as described, for example, in EP-B1 0 561 825, EP-B1 0 561 999, DE -Al 42 04 700 or by AKBiswas et al. in J.Am.Oil. Chem. Soc. 37, 171 (1960) and FUAhmed in J.Am.Oil.Chem.Soc. 67, 8 (1990),
  • Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acids having 10 to 18 C atoms in the alkyl group and up to 12 glycol ether groups in the molecule, sulfobemstem acid mono- and dialkyl esters having 8 to 18 C atoms in the alkyl group and sulfosuccinic acid monoalkylpolyoxyethylester with 8 to 18 carbon atoms in the alkyl group and 1 to 6 oxyethyl groups, Monoglycerdisulfate, alkyl and Alkenylethe
  • Zwitterionic surfactants are those surface-active compounds which carry in the molecule at least one quaternary ammonium group and at least one -COO ⁇ or -SO 3 H group.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as N-alkyl-N, N-dimethylammonium glycinates, for example cocoalkyl dimethylammonium glycollate, N-acylaminopropyl N, N-dimethylammonium glycinates, for example cocoacylaminopropyl dimethylammonium glycinate, and 2-alkyl 3-carboxymethyl-3-hydroxyethylimidazolines having in each case 8 to 18 carbon atoms in the alkyl or acyl group, and also the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • a preferred zwitterionic surfactant is the fatty acid amide derivative known by the INCI name Cocamidopropy
  • Ampholytic surfactants (E3) are understood as meaning those surface-active compounds which contain, in addition to a C 8 -C 2 -alkyl or -acyl group in the molecule, at least one free amino group and at least one -COOH or -SO 3 H group and for the formation of internal Salts are capable.
  • suitable ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and C 12 -C 8 -acylsarcosine.
  • Nonionic surfactants (E4) contain, for example, a polyol group, a polyalkylene glycol ether group or a combination of polypropylene glycol and polyglycol ether groups as the hydrophilic group. Such compounds are, for example
  • Adducts of 5 to 60 moles of ethylene oxide with castor oil and hydrogenated castor oil Adducts of 5 to 60 moles of ethylene oxide with castor oil and hydrogenated castor oil
  • R ! CO is a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22 carbon atoms
  • R 2 is hydrogen or methyl
  • R 3 is a linear or branched alkyl radical having 1 to 4 carbon atoms and w is a number from 1 to 20,
  • Sorbitan fatty acid esters and adducts of ethylene oxide with sorbitan fatty acid esters such as the polysorbates, Sugar fatty acid esters and addition products of ethylene oxide with sugar fatty acid esters,
  • Adducts of ethylene oxide with fatty acid alkanolamides and fatty amine Adducts of ethylene oxide with fatty acid alkanolamides and fatty amine
  • R 4 is an alkyl or alkenyl radical having 4 to 22 carbon atoms
  • G is a sugar radical having 5 or 6 carbon atoms
  • p is a number from 1 to 10.
  • the alkyl and alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • the index number p in the general formula (E4-JJ) indicates the degree of oligomerization (DP), ie the distribution of mono- and oligoglycosides, and represents a number between 1 and 10.
  • the value p for a certain alkyloligoglycoside is an analytically determined arithmetical variable, which usually represents a fractional number. Preference is given to using alkyl and / or alkenyl oligoglycosides having an average degree of oligomerization p of from 1.1 to 3.0. From an application point of view, those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4 are preferred.
  • the alkyl or alkenyl radical R 4 can be derived from primary alcohols having 4 to 11, preferably 8 to 10 carbon atoms. Typical examples are butanol, caproic alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, as used, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R 15 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14 carbon atoms.
  • Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol, and technical mixtures thereof which can be obtained as described above.
  • R 5 is CO for an aliphatic acyl radical having 6 to 22 carbon atoms
  • R 6 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms
  • [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 12 carbon atoms and 3 to 10 hydroxyl groups stands.
  • the fatty acid N-alkyl polyhydroxyalkylamides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride. With regard to the processes for their preparation, reference may be made to US Pat. Nos.
  • the fatty acid N-alkyl polyhydroxyalkylamides are derived from reducing sugars having 5 or 6 carbon atoms. atoms, in particular from glucose.
  • the preferred fatty acid N-alkylpolyhydroxyalkylamides are therefore fatty acid N-alkylglucamides as represented by the formula (E4-IV):
  • Glucamides of the formula (E4-IV) in which R represents hydrogen or an alkyl group and R 7 CO for the acyl radical of caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid are preferably used as the fatty acid N-alkylpolyhydroxyalkylamides , Isostearic, oleic, elaidic, petroselic, linoleic, linolenic, arachidic, gadoleic, behenic or erucic acid or their technical mixtures.
  • fatty acid N-alkylglucamides of the formula (E4-IV) which are obtained by reductive amination of glucose with methylamine and subsequent acylation with lauric acid or C 12/14 coconut fatty acid or a corresponding derivative.
  • the polyhydroxyalkylamides can also be derived from maltose and palatinose.
  • the preferred nonionic surfactants are the alkylene oxide addition products of saturated linear fatty alcohols and fatty acids having in each case 2 to 30 moles of ethylene oxide per mole of fatty alcohol or fatty acid. Preparations having excellent properties are also obtained if they contain fatty acid esters of ethoxylated glycerol as nonionic surfactants.
  • the alkyl radical R contains 6 to 22 carbon atoms and may be both linear and branched. Preference is given to primary linear and methyl-branched in the 2-position aliphatic radicals.
  • Such alkyl radicals are, for example, 1-octyl, 1-decyl, 1-lauryl, 1-myristyl, 1-cetyl and 1-stearyl. Particularly preferred are 1-octyl, 1-decyl, 1-lauryl, 1-myristyl.
  • oxo alcohols When so-called "oxo alcohols” are used as starting materials, compounds with an odd number of carbon atoms in the alkyl chain predominate.
  • very particularly preferred nonionic surfactants are the sugar surfactants. These may preferably be present in the agents used according to the invention in amounts of from 0.1 to 20% by weight, based on the total agent. Amounts of 0.5-15% by weight are preferred, and most preferred are amounts of 0.5-7.5% by weight.
  • the compounds used as surfactant with alkyl groups may each be uniform substances. However, it is generally preferred to use native vegetable or animal raw materials in the production of these substances, so that substance mixtures having different alkyl chain lengths depending on the respective raw material are obtained.
  • both products with a "normal” homolog distribution and those with a narrow homolog distribution can be used.
  • "normal” homolog distribution are meant mixtures of homologs obtained in the reaction of fatty alcohol and alkylene oxide using alkali metals, alkali metal hydroxides or alkali metal alcoholates as catalysts.
  • narrow homolog distributions are obtained when, for example, hydrotaleite, alkaline earth metal salts of ether carboxylic acids, alkaline earth metal oxides, hydroxides or alcoholates are used as catalysts. The use of products with narrow homolog distribution may be preferred.
  • the surfactants (E) are used in amounts of 0.1-45% by weight, preferably 0.5-30% by weight and very particularly preferably 0.5-25% by weight, based on the total agent used according to the invention ,
  • cationic surfactants are, in particular, tetraalkylammonium compounds, amidoamines or else esterquats.
  • Preferred quaternary ammonium compounds are Ammonium halides, in particular chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, for example cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, lauryldimethylammonium chloride, lauryldimethylbenzylammonium chloride, tricetylmethylammonium chloride, hydroxyethyl hydroxycetyl dimmonium chlorides and those listed under the INCI names Quatemium-27 and Quaternium-83 known imidazolium compounds.
  • the long alkyl chains of the above-mentione are, in particular, tetraalkylammonium compounds,
  • Esterquats are known substances which contain both at least one ester function and at least one quaternary ammonium group as a structural element.
  • R 15 and R 16 are each independently hydrogen or R 14 CO
  • R 15 is an alkyl radical having 1 to 4 carbon atoms or a (CH 2 CH 2 ⁇ ) m4 H Group
  • ml, m2 and m3 in total is 0 or numbers from 1 to 12
  • m4 is numbers from 1 to 12
  • Y is halide, alkylsulfate or alkyl phosphate.
  • esterquats which can be used in the context of the invention are products based on caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, elaidic acid, arachidic acid, behenic acid and erucic acid and their technical mixtures, such as for example, in the pressure splitting of natural fats and oils incurred.
  • the fatty acids and triethanolamine can be used in a molar ratio of from 1.1: 1 to 3: 1.
  • an employment ratio of 1.2: 1 to 2.2: 1, preferably 1.5: 1 to 1.9: 1 has proven to be particularly advantageous.
  • the preferred esterquats are technical mixtures of mono-, di- and triesters with an average degree of esterification of 1.5 to 1.9 and are derived from technical C 16 / ⁇ 8 - tallow or palm oil fatty acid (iodine 0 to 40) from ,
  • quaternized fatty acid triethanolamine ester salts of the formula (E5-I) have proved particularly advantageous, in which R 14 is CO for an acyl radical having 16 to 18 carbon atoms, R 15 is R 15 CO, R 16 is hydrogen, R 17 is a methyl group , ml, m2 and m3 are 0 and Y is methylsulfate.
  • quaternized ester salts of fatty acids with diethanolalkylamines of the formula (E5-JJ) are furthermore suitable as ester quats.
  • R 18 CO for an acyl radical having 6 to 22 carbon atoms
  • R 19 is hydrogen or R 18 CO
  • R 20 and R 21 are independently alkyl radicals having 1 to 4 carbon atoms, m5 and m6 in total for 0 or numbers from 1 to 12 and Y again represents halide, alkyl sulfate or alkyl phosphate.
  • R 22 CO for an acyl radical having 6 to 22 carbon atoms
  • R 23 is hydrogen or R 22 CO
  • R 24 , R 25 and R 26 are independently alkyl radicals having 1 to 4 carbon atoms, m7 and m8 in total for 0 or numbers from 1 to 12 and X again stands for halide, alkyl sulfate or alkyl phosphate.
  • esterquats are substances in which the ester is replaced by an amide bond and which are preferably based on diethylenetriamine of the formula (E5-IV),
  • R 27 is CO for an acyl radical having 6 to 22 carbon atoms
  • R 28 is hydrogen or R 27 CO
  • R 29 and R 30 are independently alkyl radicals having 1 to 4 carbon atoms
  • Y is again halide, alkyl sulfate or alkyl phosphate.
  • Amidesterquats are available for example under the brand Incroquat® (Croda) in the market.
  • Preferred ester quats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
  • Such products will be For example, under the trademarks Stepantex ® , Dehyquart ® and Armocare ® distributed.
  • the alkylamidoamines are usually prepared by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
  • An inventively particularly suitable compound from this group of substances under the name Tegoamid ® S 18 commercial stearamidopropyl dimethylamine is.
  • the cationic surfactants (E5) are preferably contained in the agents according to the invention in amounts of from 0.05 to 10% by weight, based on the total agent.
  • Amounts of 0.1 to 5 wt .-% are particularly preferred.
  • Anionic, nonionic, zwitterionic and / or amphoteric surfactants and mixtures thereof may be preferred according to the invention.
  • the effect of the combination according to the invention by emulsifiers (F) can be increased.
  • Emulsifiers effect at the phase interface the formation of water- or oil-stable Adso ⁇ tions Anlagenen which protect the dispersed droplets against coalescence and thus stabilize the emulsion.
  • Emulsifiers are therefore constructed like surfactants from a hydrophobic and a hydrophilic part of the molecule. Hydrophilic emulsifiers preferably form O / W emulsions and hydrophobic emulsifiers preferably form W / O emulsions.
  • An emulsion is a droplet-like distribution (dispersion) of a liquid in another liquid under the expense of energy to create stabilizing phase interfaces by means of surfactants.
  • the selection of these emulsifying surfactants or emulsifiers depends on the substances to be dispersed and the respective outer phase and the fineness of the emulsion. Further definitions and properties of emulsifiers can be found i ⁇ "H.-D.Dörfler, Grenz perennial- and Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994".
  • Emulsifiers which can be used according to the invention are, for example
  • - Roorangs consist of 4 to 30 moles of ethylene oxide and / or 0 to 5 moles of propylene oxide to linear fatty alcohols having 8 to 22 carbon atoms, to fatty acids having 12 to 22 carbon atoms and to alkylphenols having 8 to 15 carbon atoms in the alkyl group,
  • Glucosides mixtures of alkyl (oligo) and fatty alcohols for example, the commercially available product Han del Montano '68, -
  • Adducts of 5 to 60 moles of ethylene oxide with castor oil and hydrogenated castor oil Adducts of 5 to 60 moles of ethylene oxide with castor oil and hydrogenated castor oil
  • Sterols are understood to mean a group of steroids which have a hydroxyl group on C-atom 3 of the steroid skeleton and are isolated both from animal tissue (zoosterols) and from vegetable fats (phytosterols). Examples of zoosterols are cholesterol and lanosterol. Examples of suitable phytosterols are ergosterol, stigmasterol and sitosterol. Mushrooms and yeasts are also used to isolate sterols, the so-called mycosterols.
  • glucose phospholipids e.g. as lecithins or phosphatidylcholines from e.g. Egg yolk or plant seeds (e.g., soybeans) are understood.
  • Fatty acid esters of sugars and sugar alcohols such as sorbitol
  • polyglycerols and polyglycerol derivatives such as polyglycerol poly-12-hy- droxystearat (Dehymuls ® PGPH commercial product) - Linear and branched fatty acids with 8 to 30 C atoms and their Na, K, ammonium, Ca, Mg and Zn salts.
  • the agents according to the invention preferably contain the emulsifiers in amounts of 0.1-25% by weight, in particular 0.5-15% by weight, based on the total agent.
  • compositions according to the invention may preferably contain at least one nonionic emulsifier having an HLB value of 8 to 18, according to the methods described in Römpp-Lexikori Chemie (Hrg. J. Falbe, M.Regitz), 10th edition, Georg Thieme Verlag Stuttgart, New York, (1997), page 1764, listed definitions.
  • Nonionic emulsifiers having an HLB value of 10 to 15 may be particularly preferred according to the invention.
  • protein hydrolysates and / or amino acids and their derivatives may be present in the preparations used according to the invention.
  • Protein hydrolysates are product mixtures obtained by acid, alkaline or enzymatically catalyzed degradation of proteins (proteins).
  • protein hydrolyzates also means total hydrolyzates as well as individual amino acids and their derivatives as well as mixtures of different amino acids.
  • polymers made up of amino acids and amino acid derivatives are understood by the term protein hydrolyzates. The latter include, for example, polyalanine, polyasparagine, polyserine, etc.
  • compositions which can be used according to the invention are L-alanyl-L-proline, polyglycine, glycyl-L-glutamine or D / L-methionine-S-methylsulfonium chloride.
  • ⁇ -amino acids and their derivatives such as ⁇ -alanine, anthranilic acid or hippuric acid can also be used.
  • the molecular weight of the protein hydrolysates which can be used according to the invention is between 75, the molecular weight for glycine, and 200,000, preferably the molecular weight is 75 to 50,000 and very particularly preferably 75 to 20,000 daltons.
  • protein hydrolysates of both vegetable and animal or marine or synthetic origin can be used.
  • Animal protein hydrolysates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolysates, which may also be present in the form of salts.
  • Such products are, for example, under the trademarks Dehylän ® (Cognis), Promois® ® (Interorgana) Collapuron ® (Cognis), Nutrilan® ® (Cognis), Gelita-Sol ® (German Gelatinefabriken Stoess & Co), Lexein ® (Inolex) and kerasol tm ® (Croda) sold.
  • protein hydrolysates of plant origin eg. Soybean, almond, pea, potato and wheat protein hydrolysates.
  • Such products are, for example, under the trademarks Gluadin ® (Cognis), diamine ® (Diamalt) ® (Inolex), Hydrosoy ® (Croda), hydro Lupine ® (Croda), hydro Sesame ® (Croda), Hydro tritium ® (Croda) and Crotein ® (Croda) available.
  • protein hydrolysates Although the use of the protein hydrolysates is preferred as such, amino acid mixtures otherwise obtained may be used in their place, if appropriate. Also possible is the use of derivatives of protein hydrolysates, for example in the form of their fatty acid condensation products. Such products are sold, for example, under the names Lamepon® ® (Cognis), Lexein ® (Inolex), Crolastin ® (Croda) or crotein ® (Croda).
  • the protein hydrolysates or their derivatives are preferably contained in the agents used according to the invention in amounts of from 0.1 to 10% by weight, based on the total agent. Amounts of 0.1 to 5 wt .-% are particularly preferred.
  • the effect of the active compounds (A) by UV filter (I) can be increased.
  • the UV filters to be used according to the invention are not subject to any general restrictions with regard to their structure and their physical properties. On the contrary, all UV filters which can be used in the cosmetics sector, whose absorption maximum in the UVA (315-400 nm), are suitable UVB (280-315nm) - or in the UVC ( ⁇ 280 nm) range. UV filters with an absorption maximum in the UVB range, in particular in the range from about 280 to about 300 nm, are particularly preferred.
  • the UV filters used according to the invention can be selected, for example, from substituted benzophenones, p-aminobenzoic acid esters, diphenylacrylic acid esters, cinnamic acid esters, salicylic acid esters, benzimidazoles and o-aminobenzoic acid esters.
  • UV filters which can be used according to the invention are 4-aminobenzoic acid, N, N, N-trimethyl-4- (2-oxobrom-3-ylidenemethyl) aniline-methyl sulfate, 3,3,5-trimethyl-cyclohexylsilicylate (homosalates), 2-hydroxy-4-methoxy-benzophenone (benzophenone-3; Uvinul ® M 40, Uvasorb MET ®, ® Neo Heliopan BB, Eusolex ® 4360), 2-phenylbenzimidazole-5-sulfonic acid and their potassium, sodium and triethanolamine (Phenylbenzimidazole Sulfonic Acid; Parsol ® HS; Neo Heliopan Hydro ®), 3.3 6 - (l, 4-phenylenedimethylene) bis (7,7-dimethyl-2-oxo-bicyclo [2.2.1] hept- l-yl-methane-sulfonic acid) and its salts, l- (4
  • water-insoluble are to be understood as meaning those UV filters which dissolve in water at 20 ° C. to not more than 1% by weight, in particular not more than 0.1% by weight. Furthermore, these compounds should be dissolved in common cosmetic oil components at room temperature. at least 0.1, in particular at least 1 wt .-% be soluble). The use of water-insoluble UV filters may therefore be preferred according to the invention.
  • UV filters which have a cationic grappe, in particular a quaternary ammonium clump.
  • UV filters have the general structure U - Q.
  • the structural part U stands for a UV-absorbing group.
  • this grappe can be derived from the known UV filters which can be used in the cosmetics sector, in which a grappe, generally a hydrogen atom, of the UV filter is protected by a cationic group Q, in particular having a quaternary amino function. is replaced.
  • Structural parts U which are derived from cinnamic acid amide or from N, N-dimethylaminobenzoic acid amide, are preferred according to the invention.
  • the structural parts U can in principle be chosen so that the Abso ⁇ tionsmaximum the UV filter can be both in the UVA (315-400 nm) -, as well as in the UVB (280-315nm) - or in the UVC ( ⁇ 280 nm) range. UV filters with an absorption maximum in the UVB range, in particular in the range from about 280 to about 300 nm, are particularly preferred.
  • the structure part U also as a function of structural part Q, is preferably chosen such that the molar extinction coefficient of the UV filter at the absorption maximum lies above 15,000, in particular above 20,000.
  • the structural part Q preferably contains a quaternary ammonium grape as cationic grapple.
  • This quaternary Ammoniumgrappe can in principle be connected directly to the structural part U, so that the structural part U represents one of the four substituents of the positively charged nitrogen atom.
  • one of the four substituents on the positively charged nitrogen atom is a group, especially an alkylene group of 2 to 6 carbon atoms, which functions as a compound between the structural portion U and the positively charged nitrogen atom.
  • the grappe Q has the general structure - (CH 2 ) ⁇ -N + R 1 R 2 R 3 X " , where x is an integer from 1 to 4, R and R independently of one another are C 1-4 Alkyl groups, R 3 is a C ⁇ . 22 - Alkyl distr or a Benzylgrappe and X "is a physiologically acceptable anion.
  • x preferably represents the number 3
  • R 1 and R 2 each represent a methylgrappe and R 3 represents either a methyl group or a saturated or unsaturated, linear or branched hydrocarbon chain having 8 to 22, in particular 10 to 18, carbon atoms.
  • Physiologically acceptable anions are, for example, inorganic anions such as halides, in particular chloride, bromide and fluoride, sulfate ions and phosphate ions and organic anions such as lactate, citrate, acetate, tartrate, methosulfate and tosylate.
  • inorganic anions such as halides, in particular chloride, bromide and fluoride, sulfate ions and phosphate ions and organic anions such as lactate, citrate, acetate, tartrate, methosulfate and tosylate.
  • UV filters with cationic groups the commercially available compounds cinnamic acid-trimethylammonium chloride are (Incro- quat ® UV-283) and dodecyl tosylate (Escalol ® HP 610).
  • the teaching of the invention also includes the use of a combination of several UV filters.
  • the combination tion of at least one water-insoluble UV filter with at least one UV filter with a cationic group preferred.
  • the UV filters (I) are usually contained in the compositions according to the invention in amounts of 0.1-5% by weight, based on the total agent. Levels of 0.4-2.5 wt .-% are preferred.
  • the effect of the combination according to the invention can be further increased by a 2-pyrrolidinone-5-carboxylic acid and its derivatives (J).
  • Another object of the invention is therefore the use of the active ingredient in combination with derivatives of 2-pyrrolidinone-5-carboxylic acid.
  • Preference is given to the sodium, potassium, calcium, magnesium or ammonium salts in which the ammonium ion carries, in addition to hydrogen, one to three C 1 -C -alkyl groups.
  • the sodium salt is most preferred.
  • the amounts used in the inventive compositions are 0.05 to 10 wt.%, Based on the total agent, particularly preferably 0.1 to 5, and in particular 0.1 to 3 wt.%.
  • vitamins, pro-vitamins and vitamin precursors are preferred, which are usually assigned to groups A, B, C, E, F and H.
  • vitamin A includes retinol (vitamin A ⁇ ) and 3,4-didehydro (vitamin A 2).
  • Ss-Carotene is the provitamin of retinool.
  • vitamin A component for example, vitamin A acid and its esters, vitamin A aldehyde and vitamin A alcohol and its esters such as the palmitate and the acetate into consideration.
  • the preparations used according to the invention preferably contain the vitamin A component in amounts of 0.05-1% by weight, based on the total preparation.
  • the vitamin B group or the vitamin B complex include, among others
  • Vitamin B 2 (riboflavin)
  • the compounds nicotinic acid and nicotinamide (niacinamide) are often performed.
  • Preferred according to the invention is the nicotinic acid amide, which is preferably present in the agents according to the invention in amounts of from 0.05 to 1% by weight, based on the total agent.
  • panthenol pantothenic acid, panthenol and pantolactone.
  • Panthenol and / or pantolactone are preferably used in the context of this grapple.
  • Derivatives of panthenol which can be used according to the invention are, in particular, the esters and ethers of panthenol and also cationically derivatized panthenols. Individual representatives are, for example, the panthenol triacetate, the panthenol monoethyl ether and its monoacetate and also the cationic panthenol derivatives disclosed in WO 92/13829.
  • the said compounds of the vitamin B 5 type are preferably contained in the agents used according to the invention in amounts of 0.05-10% by weight, based on the total agent. Amounts of 0.1-5 wt .-% are particularly preferred.
  • Vitamin B 6 pyridoxine and pyridoxamine and pyridoxal
  • Vitamin C (ascorbic acid). Vitamin C is used in the compositions according to the invention preferably in amounts of 0.1 to 3 wt .-%, based on the total agent. Use in the form of palmitic acid ester, glucosides or phosphates may be preferred. The use in combination with tocopherols may also be preferred.
  • Vitamin E tocopherols, especially ⁇ -tocopherol.
  • Tocopherol and its derivatives which include in particular the esters such as the acetate, the nicotinate, the phosphate and the succinate, are preferably present in the agents used according to the invention in amounts of 0.05-1% by weight, based on the total agent ,
  • Vitamin F is usually understood as meaning essential fatty acids, in particular linoleic acid, linolenic acid and arachidonic acid.
  • Vitamin H is the compound (3aS, 4S, 6ai?) - 2-oxohexa-hydrothienol [3,4-d] -imidazole-4-valeric acid, for which, however, the trivial name biotin has become established. Biotin is contained in the agents used according to the invention preferably in amounts of from 0.0001 to 1.0% by weight, in particular in amounts of from 0.001 to 0.01% by weight.
  • the agents used according to the invention preferably contain vitamins, provitamins and vitamin precursors from groups A, B, E and H.
  • Panthenol, pantolactone, pyridoxine and its derivatives as well as nicotinic acid amide and biotin are particularly preferred.
  • extracts are produced by extraction of the whole plant. However, in individual cases it may also be preferred to prepare the extracts exclusively from flowers and / or leaves of the plant.
  • According to the invention are especially the extracts of green tea, oak bark, stinging nettle, witch hazel, hops, henna, chamomile, burdock root, horsetail, white dome, lime blossom, almond, aloe vera, spruce needle, horse chestnut, sandalwood, juniper, coconut, mango, apricot, lime , Wheat, kiwi, melon, orange, grapefruit, sage, Rosemary, birch, mallow, meadowfoam, quenelle, yarrow, thyme, lemon balm, toadstool, coltsfoot, marshmallow, meristem, ginseng and ginger root are preferred.
  • Especially suitable for the use according to the invention are the extracts of green tea, almond, aloe vera, coconut, mango, apricot, lime, wheat, kiwi and melon.
  • alcohols and mixtures thereof can be used as extraction agent for the preparation of said plant extracts water.
  • the alcohols are lower alcohols such as ethanol and isopropanol, but especially polyhydric alcohols such as ethylene glycol and propylene glycol, both as sole extractant and in admixture with water, are preferred.
  • Plant extracts based on water / propylene glycol in a ratio of 1:10 to 10: 1 have proven to be particularly suitable.
  • the plant extracts can be used according to the invention both in pure and in diluted form. If they are used in diluted form, they usually contain about 2 to 80 wt .-% of active substance and as a solvent used in their extraction agent or extractant mixture.
  • compositions according to the invention mixtures of several, especially two, different plant extracts.
  • penetration aids and / or swelling agents are contained. These excipients provide better penetration of active ingredients into the keratin fiber or help to swell the keratin fiber.
  • urea and urea derivatives include, for example, urea and urea derivatives, guanidine and its derivatives, arginine and its derivatives, water glass, imidazole and its derivatives, histidine and its derivatives, benzyl alcohol, glycerol, glycol and glycol ethers, propylene glycol and propylene glycol ethers, for example propylene glycol monoethyl ether, carbonates, bicarbonates, Diols and triols, and especially 1,2-diols and 1,3-diols such as 1,2-propanediol, 1,2-pentanediol, 1,2-hexanediol, 1,2-dodecanediol, 1,3-propanediol, 1 , 6-hexanediol, 1,5-pentanediol, 1,4-butanediol.
  • short-chain carboxylic acids may additionally cooperate in a supportive manner with the combination according to the invention.
  • Short-chain carboxylic acids and derivatives thereof according to the invention are understood to mean carboxylic acids which may be saturated or unsaturated and / or straight-chain or branched or cyclic and / or aromatic and / or heterocyclic and have a molecular weight of less than 750.
  • preference may be given to saturated or unsaturated straight-chain or branched carboxylic acids having a chain length of from 1 to 16 C atoms in the chain, very particular preference being given to those having a chain length of from 1 to 12 C atoms in the chain.
  • the short-chain carboxylic acids according to the invention may have one, two, three or more carboxy groups.
  • Preferred within the meaning of the invention are carboxylic acids having a plurality of carboxy groups, in particular di- and tricarboxylic acids.
  • the carboxy groups may be wholly or partly present as esters, acid anhydride, lactone, amide, imidic acid, lactam, lactim, dicarboximide, carbohydrazide, hydrazone, hydroxam, hydroxime, amidine, amidoxime, nitrile, phosphonic or phosphate ester.
  • the carboxylic acids according to the invention may of course be substituted along the carbon chain or the ring skeleton.
  • the substituents of the carboxylic acids according to the invention include, for example, C 1 -C 8 -alkyl, C 2 -C 8 -alkenyl, aryl, aralkyl and aralkenyl, hydroxymethyl, C 2 -C 8 -hydroxyalkyl, C 2 -C 8 -hydroxyalkenyl, Aminomethyl, C2-C8-aminoalkyl, cyano, formyl, oxo, thioxo, hydroxy, mercapto, amino, carboxy or hninograppen.
  • Preferred substituents are C 1 -C 8 -alkyl-, hydroxymethyl-, Hydroxy, amino and carboxy groups.
  • substituents in ⁇ - position are hydroxy, alkoxy and amino grappenes, where the amino function may optionally be further substituted by alkyl, aryl, aralkyl and / or alkenyl radicals.
  • preferred carboxylic acid derivatives are the phosphonic and phosphate esters.
  • carboxylic acids examples include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, glyceric acid, glyoxylic acid, adipic acid, pimelic acid, suberic acid, sebacic acid, propiolic acid, crotonic acid, isocrotonic acid , Elaidic, maleic, fumaric, muconic, citraconic, mesaconic, camphoric, benzoic, o, m, p-phthalic, naphthoic, toluoic, hydratropic, atropic, cinnamic, isonicotinic, nicotinic, bicarbamic, 4,4'-dicyano-6, 6'-bmicotinic acid, 8-carbamoyloctanoic acid
  • dicarboxylic acids of the general formula (NI) which additionally carry 1 to 3 methyl or ethyl substituents on the cyclohexene ring and dicarboxylic acids formed formally from the dicarboxylic acids according to formula (NI) by addition of a molecule of water to the double bond in the cyclohexene ring.
  • Dicarboxylic acids of the formula (NI) are known in the literature.
  • German Patent 22 50 055 discloses the use of these dicarboxylic acids in liquid soap masses.
  • German Offenlegungsschrift 28 33 291 discloses deodorizing agents which contain zinc or magnesium salts of these dicarboxylic acids.
  • German Patent Application 35 03 618 means for washing and rinsing the hair are known in which by adding these dicarboxylic acids a noticeably improved hair cosmetic effect of the water-soluble ionic polymers contained in the means is obtained.
  • German Patent Application 197 54 053 means for hair treatment are known which have nourishing effects.
  • the dicarboxylic acids of the formula (N-I) can be prepared, for example, by reacting polyunsaturated dicarboxylic acids with unsaturated monocarboxylic acids in the form of a Diels-Alder cyclization reaction.
  • a polyunsaturated fatty acid as the dicarboxylic acid component.
  • Preferred is the linoleic acid obtainable from natural fats and oils.
  • the monocarboxylic acid component in particular, acrylic acid, but also e.g. Methacrylic acid and crotonic acid are preferred.
  • mixtures of isomers are formed in which one component is present in excess. These isomer mixtures can be used according to the invention as well as the pure compounds.
  • those dicarboxylic acids which differ from the compounds according to formula (NI) by 1 to 3 methyl or ethyl substituents on the cyclohexyl ring or formally from these compounds by addition of one molecule of water are also usable according to the invention be formed on the double formation of the cyclohexene ring.
  • the dicarboxylic acid (mixture) which is obtained by reacting linoleic acid with acrylic acid, has proved to be particularly effective according to the invention. It is a mixture of 5- and 6-carboxy-4-hexyl-2-cyclohexene-1-octanoic acid.
  • Such compounds are commercially available under the designations Westvaco Diacid 1550 Westvaco Diacid ® ® 1595 (manufacturer: Westvaco).
  • carboxylic acids of the invention listed above by way of example, their physiologically tolerable salts can also be used according to the invention.
  • examples of such salts are the alkali metal salts, alkaline earth metal salts, zinc salts and ammonium salts, which in the context of the present application also includes the mono-, di- and trimethyl-, -ethyl- and -hydroxyethyl ammonium salts.
  • neutralized acids can very particularly preferably be used with alkaline-reacting amino acids, such as, for example, arginine, lysine, omithine and histidine.
  • hydroxycarboxylic acids and here again in particular the dihydroxy-, trihydroxy- and polyhydroxycarboxylic acids as well as the dihydroxy, trihydroxy and polyhydroxy di-, tri- and polycarboxylic acids together with the active compound (A). It has been found that in addition to the hydroxycarboxylic acids, the hydroxycarboxylic acid esters and the mixtures of hydroxycarboxylic acids and their esters as well as polymeric hydroxycarboxylic acids and their esters can be very particularly preferred.
  • Preferred hydroxycarboxylic acid esters are, for example, full esters of glycolic acid, lactic acid, malic acid, tartaric acid or citric acid.
  • hydroxycarboxylic acid esters are esters of ⁇ -hydroxypropionic acid, tartronic acid, D-gluconic acid, sugar acid, mucic acid or glucuronic acid.
  • Suitable alcohol components of these esters are primary, linear or branched aliphatic alcohols having 8-22 C atoms, ie, for example, fatty alcohols or synthetic fatty alcohols.
  • the esters of C12-C15 fatty alcohols are particularly preferred.
  • Esters of this type are commercially available, eg under the trademark Cosmacol® ® EniChem, Augusta Industriale.
  • Particularly preferred polyhydroxypolycarboxylic acids are polylactic acid and polyuric acid and their esters.
  • a very particularly diverse and interesting cosmetic active substance dummy are polyhydroxy compounds.
  • polyhydroxy compounds as active ingredient with the other components according to the invention may therefore be particularly preferred.
  • polyhydroxy compounds are understood as meaning all substances which fulfill the definition in Rompp's Lexikon der Chemie, Version 2.0 of the CD-ROM edition of 1999, Verlag Georg Thieme. Accordingly, polyhydroxy compounds are organic compounds having at least two hydroxyl groups. In particular, for the purposes of the present invention, this is to be understood as meaning:
  • Polyols having at least two hydroxyl groups and having a carbon chain of from 2 to 30 carbon atoms for example trimethylolpropane
  • monosaccharides having 3 to 8 C atoms such as, for example, trioses, tetroses, pentoses, hexoses, heptoses and octoses, these also being protected in the form of aldoses, ketoses and / or lactoses and protected by customary and the literature known -OH - and -NH - Schutzgrappen, such as the triflate, the trimethylsilyl group or Acylgrappen and also in the form of the methyl ether and as a phosphate ester may be present
  • oligosaccharides having up to 50 monomer units, these also being protected in the form of aldoses, ketoses and / or lactoses and protected by customary and known in the literature -OH and -NH protective grafts such as, for example, the triflate group, the trimethylsilyl group or acylgrappene and furthermore in the form of the methyl ethers and as phosphate esters.
  • Very particularly preferred polyols of the present invention are polyols having 2 to 12 C atoms in the molecular skeleton. These polyols can be straight-chain, branched, cyclic and / or unsaturated. The hydroxyl groups are very particularly preferably terminally adjacent or terminally separated from one another by the remainder of the chain.
  • polystyrene resin examples include polyethylene glycol up to a molecular weight of up to 1000 daltons, neopentyl glycol, partial glycerol ethers having a molecular weight of up to 1000 daltons, 1,2-propanediol, 1,3-propanediol, glycerol, 1,2-butanediol , 1,3-butanediol, 1,4-butanediol, 1,2,3-butanetriol, 1,2,4-butanetriol, pentanediols, for example 1,2-pentanediol, 1,5-pentanediol, hexanediols, 1,2- Hexanediol, 1,6-hexanediol, 1,2,6-hexanetriol, 1,4-cyclohexanediol, 1,2-cyclohexanediol, heptaned
  • polyols according to the invention include sorbitol, inositol, mannitol, tetrite, pentite, hexite, threitol, erythritol, adonite, arabitol, xylitol, dulcitol, erythrose, threose, arabinose, ribose, xylose, lyxose, glucose, galactose, mannose, Allose, altrose, gulose, idose, talose, fructose, sorbose, psicose, tegatose, deoxyribose, glucosamine, galactosamine, rhamnose, digitoxose, thioglucose, sucrose, lactose, trehalose, maltose, cellobiose, melibiose, gestiobiose,
  • the polyols (B) according to the invention are present in the compositions in concentrations of from 0.01% by weight to up to 20% by weight, preferably from 0.05% by weight to 15% by weight and very particularly preferably in amounts of 0, 1% by weight up to 10% by weight.
  • the final preparations may also contain inorganic salts as fillers or leveling agents, such as, for example, sodium sulfate, which is preferably present in amounts of from 0 to 10, in particular from 1 to 5,% by weight, based on the composition.
  • inorganic salts such as, for example, sodium sulfate, which is preferably present in amounts of from 0 to 10, in particular from 1 to 5,% by weight, based on the composition.
  • the consumer may, in the perception of the molded body, in particular caused by a spherical shape of the molded body, optionally in conjunction with aromatic fragrances, the colorant according to the invention with a stimulant such.
  • a stimulant such.
  • the molded body according to the invention therefore contains a bitter substance in order to prevent swallowing or accidental ingestion.
  • Bitter substances which are soluble in water at 20 ° C. to at least 5 g / l are preferred according to the invention.
  • the ionogenic bitter substances have proven to be superior to the nonionic.
  • Ionogenic bitter substances preferably consisting of organic cation (s) and organic anion (s), are therefore preferred for the preparations according to the invention.
  • Quaternary ammonium compounds which contain an aromatic grappe both in the cation and in the anion are outstandingly suitable as bitter substances.
  • One such compound is commercially available for example under the trademark Bitrex ® and with indigenous stin ® available benzyldiethyl ((2,6-Xylylcarbamoyl) methyl) ammonium benzoate. This compound is also known by the name Denatonium Benzoate.
  • the bittering agent is contained in the moldings according to the invention in amounts of 0.0005 to 0.1 wt .-%, based on the molded body. Particular preference is given to amounts of from 0.001 to 0.05% by weight.
  • these preparations may in principle contain all other known to those skilled in such cosmetic products components.
  • nonionic polymers such as vinyl pyrrolidone / vinyl acrylate copolymers, polyvinyl pyrrolidone and vinyl pyrrolidone / vinyl acetate copolymers and polysiloxanes,
  • Thickeners such as agar-agar, guar gum, alginates, xanthan gum, gum arabicum, karaya gum, locust bean gum, linseed gums, dextrans, cellulose derivatives, e.g. As methyl cellulose, hydroxyalkyl cellulose and carboxymethyl cellulose, starch fractions and derivatives such as amylose, amylopectin and dextrins, clays such. As bentonite or fully synthetic hydrocolloids such. For example, polyvinyl alcohol,
  • hair-conditioning compounds such as phospholipids, for example soya lecithin, egg lecithin and cephalins, and silicone oils,
  • dialkyl ethers having a total of from 12 to 36 carbon atoms, in particular 12 to 24 carbon atoms, such as di-n-octyl ether, di-n-decyl ether, di-n-nonyl ether, di-n -undecyl ether and di-n-dodecyl ether, n-hexyl n-octyl ether, n-octyl n-decyl ether, n-decyl n-undecyl ether, n-undecyl n-dodecyl ether and n-hexyl n-undecyl ether and di tert-butyl ether, di-iso-pentyl ether, di-3-ethyl decyl ether, tert-butyl n-octyl ether, is
  • Fatty alcohols in particular linear and / or saturated fatty alcohols having 8 to 30 carbon atoms,
  • fiber-structure-improving active substances in particular mono-, di- and oligosaccharides, such as, for example, glucose, galactose, fructose, fructose and lactose,
  • paraffin oils such as paraffin oils, vegetable oils, eg. Sunflower oil, orange oil, almond oil, wheat germ oil and peach kernel oil as well
  • Phospholipids for example soya lecithin, egg lecithin and cephalins,
  • quaternized amines such as methyl-1-alkylamidoethyl-2-alkylimidazolinium methosulfate, defoamers such as silicones,
  • Anti-dandruff agents such as Piroctone Olamine, Zinc Omadine and Climbazole,
  • Bodying agents such as sugar esters, polyol esters or polyol alkyl ethers,
  • Opacifiers such as latex, styrene / PVP and styrene / acrylamide copolymers
  • Pearlescing agents such as ethylene glycol mono- and distearate and PEG-3-distearate,
  • Propellants such as propane-butane mixtures, N 2 O, dimethyl ether, CO 2 and air,
  • the moldings of the invention may take any geometric shape, such as concave, convex, biconcave, biconvex, cubic, tetragonal, orthorhombic, cylindrical, spherical, cylinder segment, disk-shaped, tetrahedral, dodecahedral, octahedral, conical, pyramidal, ellipsoidal, pentagonal, hexagonal and octagonal prismatic as well as rhombohedral forms. Even completely irregular surfaces such as arrow or Tier ⁇ n, trees, clouds, etc. can be realized.
  • the bar or bar shape, cubes, cuboids and corresponding space elements with flat side surfaces and in particular cylindrical embodiments with circular or oval cross-section and shaped body with spherical geometry are inventively preferred. Molded bodies in the form of spherical geometry are particularly preferred.
  • the cylinder-shaped embodiment detects the presentation form of the tablet up to compact cylinder pieces with a height-to-diameter ratio greater than 1. If the base molded body has corners and edges, these are preferably rounded. As an additional optical differentiation, an embodiment with rounded corners and beveled (“chamfered”) edges is preferred.
  • the portioned compacts can each be designed as separate individual elements which corresponds to the predetermined dosage amount of the cosmetic active ingredients.
  • the formation of the portioned compacts as tablets in cylindrical or cuboidal shape may be appropriate, with a diameter / height ratio in the range of about 0.5: 2 to 2: 0.5 is preferred.
  • Commercial hydraulic presses, Exzente ⁇ ressen or Rundurgi ⁇ ressen are suitable devices, especially for the production of such compacts.
  • the preferred spatial form of the molded body according to the invention has a rectangular base area, wherein the height of the molded body is smaller than the smaller rectangle side of the base area. Rounded corners are preferred in this offer form.
  • Another preferred molded article that can be made has a plate-like or tabular structure with alternating thick long and thin short segments so that individual segments of that "tie" at the desired break locations that constitute the short thin segments are broken and portioned can be used.
  • This principle of the "bar-shaped" shaped body can also be realized in other geometric shapes, for example vertical triangles, which are connected together only on one of their sides alongside one another.
  • molded body Contain the molded body according to the invention at least two cosmetic agents, it may be advantageous in a further AusSteangsform not to ve ⁇ ressen the various components exclusively to a single tablet.
  • tableting molded articles are obtained in this embodiment form, which have a plurality of layers, ie at least two layers. It is also possible that these different layers have different dissolution rates. This can result in advantageous application properties of the molded body. For example, if components are included in the molded articles that interact negatively, it is possible to integrate one component in the faster soluble layer and incorporate the other component into a slower soluble layer so that the components do not already undergo dissolution react with each other.
  • the layer structure of the molded body can be carried out either in a stack, wherein a solution process of the inner layer (s) already takes place at the edges of the molded body when the outer layers are not yet completely dissolved.
  • the stacking axis can be arranged as desired to the tablet axis. The stacking axis can therefore be parallel or perpendicular to the height of the cylinder, for example, in the case of a cylindrical tablet.
  • the inner layer (s) may also be preferred if complete envelopment of the inner layer (s) is achieved by the respectively further outer layer (s), which leads to a prevention of premature dissolution of constituents of the inner layer (FIG. en).
  • Moldings in which the layers are enveloped by the various active substances are preferred. For example, one layer (A) is completely covered by the layer (B) and this in turn is completely enveloped by the layer (C). Likewise, moldings may be preferred in which e.g. the layer (C) is completely covered by the layer (B) and this in turn is completely enveloped by the layer (A).
  • the Kö ⁇ er to be coated for example, be sprayed with aqueous solutions or emulsions, or obtained via the process of melt coating a coating.
  • the (trough) moldings produced according to the invention can be wholly or partially provided with a coating.
  • Processes in which an aftertreatment in the application of a coating layer to the molded body surface (s) in which the filled trough (s) are located or in the application of a coating layer to the entire molded body are preferred according to the invention.
  • After Ve ⁇ ressen the molded body have a high stability.
  • the breaking strength of cylindrical molded bodies can be detected by the measurand of the diametrical breaking load. This is determinable
  • is the diametrical fracture stress (DFS) in Pa
  • P is the force in N which results in the pressure applied to the molded body causing the broke of the molded body
  • D is the molded body diameter in meters and t the height of the molded body.
  • the molded articles of the present invention preferably have a density of
  • 0.3 g / cm 3 to 2.0 g / cm 3 in particular from 0.5 g / cm 3 to 1, lg / cm.
  • the molded body according to the invention may consist of a Forrnkö ⁇ er described with the term "Basisformkö ⁇ er", prepared by known tableting processes, which has a trough.
  • Basisformkö ⁇ er prepared by known tableting processes, which has a trough.
  • the Basisformkö ⁇ er is first prepared and the other v ⁇ reßte part in a further step on or in this Basisformkö ⁇ er or introduced.
  • the resulting product is hereinafter referred to by the generic term "Muldenformkö ⁇ er” or "depression tablet”.
  • the basic molded body according to the invention can in principle assume all realizable spatial forms. Particularly preferred are the spatial forms already mentioned above.
  • the shape of the trough can be chosen freely, wherein according to the invention Formgro ⁇ er are preferred in which at least one trough a concave, convex, cubic, tetragonal, orthorhombische, cylindrical, spherical, cylinder segment, disc-shaped, tetrahedral, dodecahedrale, octahedral, conical, pyramidal, ellipsoidal , five-, seven- and octagonal-prismatic as well as rhombohedral form. Also completely irregular trough forms such as arrow or animal forms, trees, clouds etc. can will be realized. As with the basic moldings, wells with rounded corners and edges or with rounded corners and chamfered edges are preferred.
  • the size of the trough compared to the entire molded body depends on the intended use of the molded body. Depending on whether a smaller or larger amount of active substance should be contained in the second part, the size of the trough may vary. Irrespective of the intended use molded articles are preferred in which the weight ratio of Basisformkö ⁇ er to well filling in the range of 1: 1 to 100: 1, preferably from 2: 1 to 80: 1, more preferably from 3: 1 to 50: 1 and in particular of 4 : 1 to 30: 1.
  • Fom gro ⁇ er are preferred in which the surface of the pressed-depression filling 1 to 25%, preferably 2 to 20%, more preferably 3 to 15% and in particular 4 to 10% of the total surface of the filled Basisformkö ⁇ ers.
  • the trough filling and the Basisformkö ⁇ er are preferably colored visually distinguishable.
  • well tablets have performance advantages on the one hand by different solubilities of the different areas on the other hand, but also by the separate storage of the active ingredients in the different Formgro ⁇ er Suiteen.
  • Moldings in which the pressed-in cavity filling dissolves more slowly than the Basisformkö ⁇ er, according to the invention are preferred.
  • the solubility of the well filling can be selectively varied,
  • the release of certain ingredients from the well fill can lead to benefits in the application process.
  • the molding of the invention is first carried out by the dry mixing of the ingredients, which may be pre-granulated in whole or in part, and subsequent InformML, in particular Ve ⁇ ressen to tablets, which can be used on known methods.
  • the premix is compacted in a so-called die between two punches to a solid compressed. This process, hereinafter referred to as tabletting, is divided into four sections: dosing, compaction (elastic deformation), plastic deformation and ejection.
  • the premix is introduced into the die, wherein the filling amount and thus the weight and the shape of the resulting molded body are determined by the position of the lower punch and the shape of the pressing tool.
  • the constant dosage even at high Formgro ⁇ er Struktur orders is preferably achieved via a volumetric dosing of the premix.
  • the upper punch contacts the pre-mix and continues to descend toward the lower punch.
  • the particles of the premix are pressed closer to each other, with the void volume within the filling between the punches decreasing continuously. From a certain position of the upper punch (and thus from a certain pressure on the premix) begins the plastic deformation, in which the particles flow together and it comes to the formation of the molded body.
  • the premix particles Depending on the physical properties of the premix, a portion of the premix particles is also crushed, and even higher pressures cause sintering of the premix. With increasing press speed, so high throughputs, the phase of the elastic deformation is shortened more and more, so that the resulting molded body can have more or less large cavities.
  • the finished molded body is pushed out of the die by the lower punch and carried away by subsequent transport means. At this time, only the weight of Formgro ⁇ ers is finally determined because the compacts due to physical processes (re-expansion, crystallographic effects, cooling, etc.) can change their shape and size.
  • the tableting is carried out in commercial tablet presses, which can be equipped in principle with single or double punches.
  • the upper punch is used for Drackied
  • the lower punch moves during the pressing on the upper punch, while the upper punch presses down.
  • eccentric tablet presses are preferably used in which the die or punches are attached to an eccentric disc, which in turn is mounted on an axis at a certain rotational speed.
  • the movement of these punches is comparable to the operation of a conventional four-stroke engine.
  • the Ve ⁇ ressung can be done with a respective upper and lower punch, but it can also be attached more stamp on an eccentric disc, the number of die holes is extended accordingly.
  • the throughputs of Exzente ⁇ ressen vary indeed on the type of a few hundred to a maximum of 3000 tablets per hour.
  • rotary tablet presses are selected in which a larger number of dies are arranged in a circle on a so-called die table.
  • the number of matrices varies between 6 and 55 depending on the model, although larger matrices are commercially available.
  • Each die on the die table is assigned an upper and lower punch, in turn, the pressing pressure active only by the Obertial. Lower stamp, but can also be built by both stamps.
  • the die table and the punches move about a common vertical axis, the punches are brought by means of rail-like cam tracks during the circulation in the positions for filling, compression, plastic deformation and ejection.
  • Concentric presses can be provided with two Drik to increase the throughput, with the production of a tablet only a semicircle must be traversed.
  • suitable process control coat and point tablets can be produced in this way, which have a zwiebelschalenartigen structure, wherein in the case of the point tablets, the top of the core or the core layers is not covered and thus remains visible.
  • Even rotary tablet presses can be equipped with single or multiple tools, so that, for example, an outer circle with 50 and an inner circle with 35 holes are used simultaneously for Ve ⁇ ressen.
  • the throughputs of modern rotary tablet presses amount to over one million molded articles per hour.
  • Tableting machines suitable for the purposes of the present invention are obtainable, for example, from Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Farm Instruments Company, Houston, Texas (USA), Hofer GmbH, Weil, Hom & Noack Pharmatechnik GmbH, Worms, TMA Ve ⁇ ackungssysteme GmbH Viersen, KTLIAN, Cologne, KOMAGE, Kell am See, KORSCH Press AG, Berlin, and Ro aco GmbH, Worms.
  • Other providers include Dr. med. Herbert Pete, Vienna (AT), Mapag Maschinenbau AG, Berne (CH), BWI Manesty, Live ⁇ ool (GB), I.
  • the process for producing the molded body is not limited to merely ve ⁇ reßt a particulate premix to a Formgro ⁇ er. Rather, the method can also be extended to the extent that it produces in a conventional manner multilayer molded body by preparing two or more premixes, which are ve ⁇ reßt each other.
  • the first-filled premix is easily vorve ⁇ reßt to get a smooth and parallel to Formgro ⁇ er convinced extending top, and after filling the second premix endve ⁇ reßt the finished molded body.
  • a further pre-compression takes place before the molded body is finished after the last premix has been added.
  • the Ve ⁇ ressung the particulate composition in the trough can be carried out analogously to the preparation of Basisformkö ⁇ er on tablet presses. Preference is given to a procedure in which only the basic molded body is produced with a trough, then filled and then re-pressed. This can be done by ejecting the Basisformkö ⁇ er from a first tablet press, filling and transport in a second tablet press, in which the Endve ⁇ ressung occurs. Alternatively, the Endve ⁇ ressung also by pressure rollers that roll over the located on a conveyor belt Formgro ⁇ er done.
  • the molded body according to the invention can be ve ⁇ ackt after production, with the use of certain Ve ⁇ ackungssystems has proven particularly effective, as these Ve ⁇ ackungssysteme on the one hand increase the storage stability of the ingredients, but on the other hand, if necessary, but also significantly improve the long-term adhesion of the trough filling.
  • the term "Ve ⁇ ackungssystem” characterized in the context of the present invention is always the Primärve ⁇ ackung the Formkö ⁇ er, ie Ve ⁇ ackung, which is directly on the inside with the Formgro ⁇ erober Structure in contact. An optional Sekundmaschineve ⁇ ackung no requirements are made, so that all the usual materials and systems can be used here.
  • Ve ⁇ ackungssysteme are preferred, which have only a low moisture permeability. In this way, the coloring ability of the molded body according to the invention over a longer period can be obtained, even if, for example, hygroscopic components are used in the Formgro ⁇ ern.
  • packing systems which have a moisture vapor transmission rate of 0.1 g / m 2 / day to less than 20 g / m 2 / day when the compression system is stored at 23 ° C and a relative equilibrium humidity of 85%.
  • the temperature and humidity conditions mentioned are the test conditions specified in the DDSf standard 53122, whereby according to DTN 53122 minimum deviations are permissible (23 ⁇ 1 ° C, 85 ⁇ 2% relative humidity).
  • the moisture vapor transmission rate of a given spray system or material can be determined by further standard methods and is also, for example, in the ASTM standard E-96-53T (test for measuring water vapor transmission of material in sheet form) and in the TAPPI standard T464 m-45 ("Water Vapor Permeability of Sheet Materials at High Temperature Humidity").
  • the measuring principle of current methods is based on the water absorption of anhydrous calcium chloride, which is stored in a container in the appropriate atmosphere, the container is closed at the top with the material to be tested. From the surface of the container, which is closed with the material to be tested (permeation surface), the increase in weight of the calcium chloride and the exposure time, the moisture vapor transmission rate decreases
  • A is the area of the material to be tested in cm
  • x is the weight gain of calcium chloride in g
  • y is the exposure time in h.
  • the absorption capacity of air for water vapor increases with the temperature up to a respective maximum content, the so-called saturation content, and is expressed in g / m.
  • 1 m of air is saturated by 17 ° with 14.4 g of water vapor, at a temperature of 11 ° is already saturated with 10 g of water vapor.
  • the Ve ⁇ ackungssystem encloses depending on the embodiment of the invention, one or more Formgro ⁇ er. It is inventively preferred either to design a molded body such that it comprises an application unit of the colorant, and ve ⁇ acken this Moldkö ⁇ er individually, or the number of Formgro ⁇ em in one Pack packaging unit, which in total comprises an application unit.
  • this principle can be extended, so that combinations according to the invention can also contain three, four, five or even more molded bodies in a packing unit.
  • two or more molded articles in a pack may have different compositions. In this way, it is possible to spatially separate certain components, for example to avoid stability problems.
  • the Ve ⁇ ackungssystem the combination of the invention may consist of a variety of materials and take any external forms. For economic reasons and for reasons of ease of processing, however, Ve ⁇ ackungssysteme are preferred in which the Ve ⁇ ackungsmaterial has a low weight, easy to work and inexpensive and ecologically sound.
  • the packaging system consists of a bag or bags of single-layered or laminated paper and / or plastic film.
  • the moldings can be unsorted, i. as a loose filling, be filled in a bag of the materials mentioned.
  • This Ve ⁇ ackungssystme can then - again preferably sorted - are optionally ve ⁇ ackt in Umve ⁇ ack Institute, which underlines the compact form of the Formgro ⁇ ers offer.
  • the preferably used as Ve ⁇ ackungssystem sacks or bags of single-layer or laminated paper or plastic film can be designed in a variety of ways, such as inflated bag without center seam or bags with center seam, which closed by heat (heat fusion), adhesives or adhesive tapes become.
  • Single-layer bag or bag materials are the known papers, which may optionally be impregnated, as well as plastic films, which may optionally be coextradiert.
  • plastic, which can be used as Ve ⁇ ackungssystem in the context of the present invention are, for example, in Hans Domininghaus "The Plastics and their properties", 3rd edition, VDI Verlag, Dusseldorf, 1988, page 193 indicated.
  • the figure 111 shown there also provides clues to the water vapor permeability of the materials mentioned.
  • Ve ⁇ ackungssystem for the molded in addition to the mentioned films or papers
  • the Ve ⁇ ackungssystem does not comprise boxes of wax-coated paper.
  • Ve ⁇ ackungssystem is designed resealable.
  • a reclosable tube of glass, plastic or even metal as the packaging system.
  • Ve ⁇ ackungssysteme that have a micro perforation can be realized according to the invention with preference.
  • a second object of the invention is a process for the cosmetic treatment of keratin-containing fibers, wherein
  • Application mixture is mixed on AN, (in) the application mixture AN applied to the fibers and
  • the medium M is preferably a gel or an O / W emulsion or a W / O emulsion.
  • the medium M has a viscosity of 500 -
  • the detergent tablets obtainable using the disintegrating agents according to the invention are generally produced by tableting or pressing agglomerating.
  • the particle-shaped Preßagglomerate obtained can either be used directly as a detergent or aftertreated by conventional methods and / or prepared beforehand.
  • the usual post-treatments include, for example, powdering with finely divided ingredients of detergents or cleaners, whereby the bulk density is generally further increased.
  • a preferred aftertreatment is also the procedure according to the German patent applications DE 19524287 AI and DE 19547457 AI, wherein dust-like or at least finely divided ingredients (the so-called fines) are adhered to the inventively produced teilchenformigen process end products, which serve as a core, and thus means arise , which have these so-called fines as an outer shell.
  • the solid detergents are in tablet form, these tablets preferably having rounded corners and edges, in particular for storage and transport reasons.
  • the base of these tablets may, for example, be circular or rectangular.
  • Multi-layer tablets, especially tablets with 2 or 3 layers, which may also be different in color, are especially preferred. Blue-white or green-white or blue-green-white tablets are particularly preferred.
  • the tablets can also contain pressed and unpressed portions.
  • Molded body with particularly advantageous dissolution rates are obtained when the granular constituents before being compressed have a proportion of particles having a diameter outside the range of 0.02 to 6 mm of less than 20, preferably less than 10% by weight.
  • the compaction of the swellable substances can be carried out in common presses, e.g. Screw presses, hydraulic presses, Exzente ⁇ ressen or Rundtown ⁇ ressen be carried out at pressures in the range of 50 to 100,000, preferably 100 to 10,000 and in particular 1,000 to 5,000 bar.
  • common presses e.g. Screw presses, hydraulic presses, Exzente ⁇ ressen or Rundtown ⁇ ressen be carried out at pressures in the range of 50 to 100,000, preferably 100 to 10,000 and in particular 1,000 to 5,000 bar.
  • the known methods of the prior art come into consideration.
  • the comminuted material is sieved and a good grain fraction in the range between 0.1 and 2, preferably 0.2 and 1.5 and in particular 0.4 and 1 mm removed.
  • the preparation of the new fragrance tablets is usually done by Preßagglomerierung.
  • the particle-shaped Preßagglomerate obtained can either be used directly as a detergent or aftertreated by conventional methods and / or prepared beforehand.
  • the usual aftertreatments include, for example, powdering with finely divided ingredients of detergents or cleaning agents, preferably Buildem or talcum aerosils, whereby the bulk density is generally further increased.
  • a preferred aftertreatment is also the procedure according to the German patent applications DE 19524287 AI and DE 19547457 AI, wherein dust-like or at least finely divided ingredients (the so-called fines) are adhered to the inventively produced teilchenformigen process end products, which serve as a core, and thus means arise , which have these so-called fines as an outer shell.
  • the fragrance tablets for storage and transport technical reasons have rounded corners and edges.
  • the base of these tablets may, for example, be circular or rectangular.
  • Multi-layer tablets, especially tablets with 2 or 3 layers, which may also be different in color, are especially preferred. Blue-white or green-white or blue-green-white tablets are particularly preferred.
  • the tablets can also contain pressed and unpressed portions.
  • Moldings having a particularly advantageous dissolution rate are obtained when the granular constituents before being compressed have a proportion of particles * which have a diameter outside the range from 0.02 to 6 mm of less than 20, preferably less than 10% by weight , A particle size distribution in the range from 0.05 to 2.0 and particularly preferably from 0.2 to 1.0 mm is preferred.
  • Gluadin ® W 40 Hydroyzed Wheat Gluten, Cognis, 40% active in water 0.5%
  • Gluadin® ® WQ Laurdimonium hydroxypropyl hydrolyzed wheat protein
  • Elastin hydrolyzate 0.2% The tablet is dissolved in a cup or bowl in 50 ml of water. It forms a viscous gel, which can be applied as usual on the keratinous Fasem.
  • the tablet can be foamed in the hand with the addition of water to a foam and then applied as usual on the keratinous fibers.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)

Abstract

Die vorliegende Erfindung betrifft Formkörper, zur Frisurengestaltung, die in einen kosmetish akzeptablen Träger mindestens ein Polymer, mindestens einen Auflösungsbeschleuniger und mindestens einen kosmetischen Wirkstoff enthalten.

Description

"Formkörper zur Behandlung keratinischer Fasern"
Die vorliegende Erfindung betrifft Formköφer, die neben einem kosmetisch akzeptablen Träger mindestens ein Polymer, mindestens einen Auflösungsbeschleuniger, auch Sprengoder Desintegrationsmittel genannt, und mindestens einen kosmetischen Wirkstoff enthalten, und ein Verfahren zur Behandlung keratinischer Fasern mit diesen Formkörpern.
Eine ansprechend aussehende Frisur wird heute allgemein als unverzichtbarer Teil eines gepflegten Äußeren angesehen. Dabei gelten aufgrund von aktuellen Modeströmungen immer wieder Frisuren als chic, die sich bei vielen Haartypen nur unter Verwendung bestimmter festigender Wirkstoffe aufbauen bzw. für einen längeren Zeitraum aufrechterhalten lassen.
Diese festigenden Wirkstoffe, bei denen es sich in der Regel um polymere Verbindungen handelt, können in übliche Haarremigungs- oder -konditioniermittel eingearbeitet werden. In vielen Fällen ist es aber vorteilhaft, sie in Form spezieller Mittel wie Haarfestiger oder Haarsprays anzuwenden.
Es gibt nun in jüngster Zeit eine Reihe von Entwicklungen auf dem Haarkosmetikgebiet, die einen Bedarf an neuartigen festigenden Wirkstoffen bzw. neuen Formulierungsformen geweckt haben. Viele dieser Entwicklungen beruhen dabei nicht auf anwendungstechnischen Nachteilen oder Unzulänglichkeiten der bekannten Mittel, sondern z.B. auf Umweltschutz-Gesichtspunkten, gesetzlichen Auflagen oder anderen "nicht-technischen" Ursachen. Insbesondere der veränderte Lebenswandel der Verbraucher führt dazu, daß der Verbraucher von einem Haarpflegeprodukt heute eine einfache, gleichmäßige und gute Dosierung sowie eine jederzeit mögliche schnelle Anwendung der Produkte erwartet. Es besteht dann die Aufgabe, entsprechende Mittel zu entwickeln, die hinsichtlich der anwendungstechnischen Eigenschaften, beispielsweise dem Halt, der Fülle, der Möglichkeit des Formens von Frisuren und der Trocknungszeit bei festigenden Haarpflegemitteln die vom Verbraucher gesteckten Erwartungen erfüllen.
So ersetzten in der Vergangenheit beispielsweise Mittel auf wäßriger Basis Mittel auf der Basis von flüchtigen organischen Verbindungen. Dabei entstand das Problem der geringeren Flüchtigkeit von Wasser im Vergleich zu den Alkoholen, was sich in längeren Trocknungszeiten auf dem Haar niederschlägt. Weiterhin ist aufgrund der häufig schlechteren Löslichkeit polymerer Verbindungen in wäßrigen Systemen diese Umstellung auch häufig mit dem Nachteil verbunden, daß beim Aufbringen der gewünschten Polymermenge auf das Haar Wasser zwangsläufig in solchen Mengen auf das Haar gelangt, daß die Trocknungszeiten unakzeptabel lang werden. Aus diesen Problemen heraus resultieren auch starke Schwankungen in der Dosierung der Mittel durch den Verbraucher. Eine weitere Forderung der Verbraucher nach einer ökologischen Alternative zu Haarpflegemitteln mit festigender Wirkung in Form von Schäumen oder Sprays ist auch mit Mitteln auf der Basis überwiegend von Wasser als Lösemittel in noch nicht ausreichendem Maße erfüllt.
Weitere Haaφflegeprodukte zur Frisurengestaltung sind Haarwachse. Haarwachse enthalten als formgebende Komponente in der Regel pflanzliche, tierische oder mineralische Wachse und werden als feste Formulierungen, meist in Tiegeln, angeboten. Für die Anwendung werden diese Produkte zuerst in der Hand verrieben und dann auf dem Haar verteilt. Durch diese Haarwachse wird auf Basis natürlicher Rohstoffe ein guter Halt der Haare bewirkt unter gleichzeitig starker Glanzgebung. Dennoch können die auf dem Markt befindlichen Haarwachse die Wünsche der Anwender hinsichtlich einfacher Applikation und leichter Verteilung auf dem Haar noch nicht vollständig befriedigen. So ist auch hier das genaue, einfache und gleichbleibend reproduzierbare Dosieren ein Problem. Es bestand daher weiterhin die Aufgabe, einfach handhabbare, exakt dosierbare Mengen an festigenden Haaφflegemitteln zu entwickeln. Der Nachteil der zu langen Trocknungszeiten bedingt durch zu hohe Wassermengen in der Formulierung tritt dagegen nicht auf, wenn eine kleine und konstante Menge an Wasser oder einem anderen physiologisch verträglichem Lösemittel verwendet wird. Kleine und immer gleich bleibende Mengen an Wasser oder einem anderen physiologisch verträglichem Lösemittel können verwendet werden, wenn das Haarbehandlungsmittel selbst als fester Formköφer vorliegt.
Überraschenderweise wurde nun gefunden, daß durch die Formulierung des Haarbehandlungsmittels als festem Formköφer enthaltend a) mindestens ein Polymer, b) mindestens einen Auflösungsbeschleuniger und c) mindestens einen kosmetischen Wirkstoff die Aufgabe in hervorragender Weise gelöst werden konnte.
Das erfindungsgemäße Polymer (G) kann sowohl ein festigendes und/oder filmbildendes Polymer als auch ein Polymer mit konditionierenden Eigenschaften sein. Es kann in einer bevorzugten Ausführungsform auch vorteilhaft sein, mindestens ein avivierendes und mindestens ein filmbildendes, festigendes Polymer zu formulieren. Unter Polymeren sind sowohl natürliche als auch synthetische Polymere, welche anionisch, kationisch, amphoter geladen oder nichtionisch sein können, zu verstehen.
Unter kationischen Polymeren (Gl)sind Polymere zu verstehen, welche in der Haupt- und/oder Seitenkette eine Gruppe aufweisen, welche "temporär" oder "permanent" kationisch sein kann. Als "permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH- Wert des Mittels eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Gruppen sind quartäre Ammoniumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammoniumgruppe über eine Cl-4-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacrylsäure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als besonders geeignet erwiesen.
Homopolymere der allgemeinen Formel (Gl-I), R1
-[CH2-C-]n X" (Gl-I)
CO-O-(CH2)m-N+R2R3R4
in der R1= -H oder -CH3 ist, R2, R3 und R4 unabhängig voneinander ausgewählt sind aus Cl-4-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, m = 1, 2, 3 oder 4, n eine natürliche Zahl und X" ein physiologisch verträgliches organisches oder anorganisches Anion ist, sowie Copolymere, bestehend im wesentlichen aus den in Formel (Gl-I) aufgeführten Monomereinheiten sowie nichtionogenen Monomereinheiten, sind besonders bevorzugte kationische Polymere. Im Rahmen dieser Polymere sind diejenigen erfindungsgemäß bevorzugt, für die mindestens eine der folgenden Bedingungen gilt: R1 steht für eine Methylgruppe R2, R3 und R4 stehen für Methylgruppen m hat den Wert 2.
Als physiologisch verträgliches Gegenionen X" kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat- , Tartrat- und Acetationen in Betracht. Bevorzugt sind Halogenidionen, insbesondere Chlorid.
Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(methacryloyloxyethyltrimethylammoniumchlorid) mit der INCI-Bezeichnung Polyquaternium-37. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylen- bisacrylamid, Diallylether, Polyallylpolyglycerylether, oder AUylethem von Zuckern .oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Mannitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vernetzungsagens.
Das Homopolymer wird bevorzugt in Form einer nichtwäßrigen Polymerdispersion, die einen Polymeranteil nicht unter 30 Gew.-% aufweisen sollte, eingesetzt. Solche Polymerdispersionen sind unter den Bezeichnungen Salcare® SC 95 (ca. 50 % Polymeranteil, weitere Komponenten: Mineralöl (INCI-Bezeichnung: Mineral Oil) und Tridecyl-polyoxypro- pylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-l-Trideceth-6)) und Salcare® SC 96 (ca. 50 % Polymeranteil, weitere Komponenten: Mischung von Diestern des Propylengly- kols mit einer Mischung aus Capryl- und Caprinsäure (INCI-Bezeichnung: Propylene Gly- col Dicaprylate/Dicaprate) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI- Bezeichnung: PPG-l-Trideceth-6)) im Handel erhältlich.
Copolymere mit Monomereinheiten gemäß Formel (Gl-I) enthalten als nichtionogene Monomereinheiten bevorzugt Acrylamid, Methacrylamid, Acrylsäure-C1-4-alkylester und Methacrylsäure-Cι-4-alkylester. Unter diesen nichtionogenen Monomeren ist das Acrylamid besonders bevorzugt. Auch diese Copolymere können, wie im Falle der Homopo- lymere oben beschrieben, vernetzt sein. Ein erfindungsgemäß bevorzugtes Copolymer ist das vernetzte Acrylamid-Methacryloyloxyethyltrimethylammoniumchlorid-Copolymer. Solche Copolymere, bei denen die Monomere in einem Gewichtsverhältnis von etwa 20:80 vorliegen, sind im Handel als ca. 50 %ige nichtwäßrige Polymerdispersion unter der Bezeichnung Salcare® SC 92 erhältlich.
Weitere bevorzugte kationische Polymere sind beispielsweise
- quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Polymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR®400 sind bevorzugte quaternierte Cellulose-Derivate,
- kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686, kationiserter Honig, beispielsweise das Handelsprodukt Honeyquat® 50, kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosme- dia®Guar und Jaguar® vertriebenen Produkte, - Polysiloxane mit quaternären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethylsilylamo- dimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-amino-modifi- ziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt), diquaternäre Polydimethylsiloxane, Quaternium-80),
- polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Mer- quat®100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat®550 (Dimethyl- diallylammoniumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere,
Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylamino- alkylacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinylpyrrolidon-Dimethylaminoethyknethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich,
- Vinylpyrrolidon-Vinylimidazoliurnmethochlorid-Copolymere, wie sie unter den Bezeichnungen Luviquat® FC 370, FC 550, FC 905 und HM 552 angeboten werden,
- quaternierter Polyvinylalkohol, sowie die unter den Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette.
Gleichfalls als kationische Polymere eingesetzt werden können die unter den Bezeichnungen Polyquaternium-24 (Handelsprodukt z. B. Quatrisoft® LM 200), bekannten Polymere. Ebenfalls erfindungsgemäß verwendbar sind die Copolymere des Vinylpyrrolidons, wie sie als Handelsprodukte Copolymer 845 (Hersteller: ISP), Gaffix® VC 713 (Hersteller: ISP), Gafquat®ASCP 1011, Gafquat®HS 110, Luviquat®8155 und Luviquat® MS 370 erhältlich sind.
Weitere erfindungsgemäße kationische Polymere sind die sogenannten "temporär kationischen" Polymere. Diese Polymere enthalten üblicherweise eine Aminogruppe, die bei be- stimmten pH-Werten als quartäre Ammoniumgruppe und somit kationisch vorliegt. Bevorzugt sind beispielsweise Chitosan und dessen Derivate, wie sie beispielsweise unter den Handelsbezeichnungen Hydagen® CMF, Hydagen® HCMF, Kytamer® PC und Chitolam® NB/101 im Handel frei verfügbar sind.
Erfindungsgemäß bevorzugte kationische Polymere sind kationische Cellulose-Derivate und Chitosan und dessen Derivate, insbesondere die Handelsprodukte Polymer®JR 400, Hydagen® HCMF und Kytamer® PC, kationische Guar-Derivate, kationische Honig-Derivate, insbesondere das Handelsprodukt Honeyquat® 50, kationische Alkylpolyglycodside gemäß der DE-PS 44 13 686 und Polymere vom Typ Polyquaternium-37.
Weiterhin sind kationiserte Proteinhydrolysate zu den kationischen Polymeren zu zählen, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder biotechnologisch gewonnenen Proteinliydrolysaten, stammen kann. Die den erfindungsgemäßen kationischen Derivaten zugrunde liegenden Proteinhydrolysate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder einer Kombination aus beiden Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche kationischen Proteinhydrolysate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, bevorzugt 250 bis 5000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydrolysaten quaternierte Aminosäuren und deren Gemische zu verstehen. Die Quaternisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quarternären Ammoniumsalzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N- (2-hydroxy-3-chloro-n-propyl)-ammoniumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydrolysate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den JJSfCI - Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimomum Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Silk, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Cocodimonium Hydroxypropyl Silk Amino Acids, Hydroxypropyl Arginine Lauryl/Myristyl Ether HO, Hydroxypropyltrimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltrimonium Hydrolyzed Collagen, Hydroxypropyltrimonium Hydrolyzed Conchiolin Protein, Hydroxypropyltrimonium Hydrolyzed Keratin, Hydroxypropyltrimonium Hydrolyzed Rice Bran Protein, Hydroxyproypltrimonium Hydrolyzed Silk, Hydroxypropyltrimonium Hydrolyzed Soy Protein, Hydroxypropyl Hydrolyzed Vegetable Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Pro- tein/Siloxysilicate, Laurdimonium Hydroxypropyl Hydrolyzed Soy Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein/Siloxysilicate, Lauryldimonium Hydroxypropyl Hydrolyzed Casein, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen, Lauryldimonium Hydroxypropyl Hydrolyzed Keratin, Lauryldimonium Hydroxypropyl Hydrolyzed Silk, Lauryldimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Casein, Steardimonium Hydroxypropyl Hydrolyzed Collagen, Steardimonium Hydroxypropyl Hydrolyzed Keratin, Steardimonium Hydroxypropyl Hydrolyzed Rice Protein, Steardimonium Hydroxypropyl Hydrolyzed Silk, Steardimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Vegetable Protein, Steardimonium Hydroxypropyl Hydrolyzed Wheat Protein, Steartrimonium Hydroxyethyl Hydrolyzed Collagen, Quaternium-76 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Keratin, Quaternium-79 Hydrolyzed Milk Protein, Quaternium-79 Hydrolyzed Silk, Quaternium-79 Hydrolyzed Soy Protein, Quaternium-79 Hydrolyzed Wheat Protein. Ganz besonders bevorzugt sind die kationischen Proteinhydrolysate und -derivate auf pflanzlicher Basis.
Bei den anionischen Polymeren (G2), welche die Wirkung des erfindungsgemäßen Wirkstoffes (A) unterstützen können, handelt es sich um anionische Polymere, welche Car- boxylat- und/oder Sulfonatgruppen aufweisen. Beispiele für anionische Monomere, aus denen derartige Polymere bestehen können, sind Acrylsäure, Methacrylsäure, Crotonsäure, Maleinsäureanhydrid und 2-Acrylamido-2-methylpropansulfonsäure. Dabei können die sauren Gruppen ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen. Bevorzugte Monomere sind 2- Acrylamido-2-methylpropansulfonsäure und Acrylsäure.
Als ganz besonders wirkungsvoll haben sich anionische Polymere erwiesen, die als alleiniges oder Co-Monomer 2-Acrylamido-2-methylpropansulfonsäure enthalten, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen kann.
Besonders bevorzugt ist das Homopolymer der 2-Acrylamido-2-methylpropansulfonsäure, das beispielsweise unter der Bezeichnung Rheothik®! 1-80 im Handel erhältlich ist.
Innerhalb dieser Ausführungsform kann es bevorzugt sein, Copolymere aus mindestens einem anionischen Monomer und mindestens einem nichtionogenen Monomer einzusetzen. Bezüglich der anionischen Monomere wird auf die oben aufgeführten Substanzen verwiesen. Bevorzugte nichtionogene Monomere sind Acrylamid, Methacrylamid, Acrylsäureester, Methacrylsäureester, Vinylpyrrolidon, Vinylether und Vinylester.
Bevorzugte anionische Copolymere sind Acrylsäure-Acrylamid-Copolymere sowie insbesondere Polyacrylamidcopolymere mit Sulfonsäuregruppen-haltigen Monomeren. Ein besonders bevorzugtes anionisches Copolymer besteht aus 70 bis 55 Mol-% Acrylamid und 30 bis 45 Mol-% 2-Acrylamido-2-methylpropansulfonsäure, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegt. Dieses Copolymer kann auch vernetzt vorliegen, wobei als Vernet- zungsagentien bevorzugt polyolefinisch ungesättigte Verbindungen wie Tetraallyl- oxyethan, Allylsucrose, Allylpentaerythrit und Methylen-bisacrylamid zum Einsatz kommen. Ein solches Polymer ist in dem Handelsprodukt Seρigel®305 der Firma SEPPIC enthalten. Die Verwendung dieses Compounds, das neben der Polymerkomponente eine Kohlenwasserstoffmischung (C13-C14-Isoparaffin) und einen nichtionogenen Emulgator (Laureth-7) enthält, hat sich im Rahmen der erfindungsgemäßen Lehre als besonders vorteilhaft erwiesen.
Auch die unter der Bezeichnung Simulgel®600 als Compound mit Isohexadecan und Polysorbat-80 vertriebenen Natriumacryloyldimethyltaurat-Copolymere haben sich als erfmdungsgemäß besonders wirksam erwiesen.
Ebenfalls bevorzugte anionische Homopolymere sind unvernetzte und vernetzte Polyacrylsäuren. Dabei können Allylether von Pentaerythrit, von Sucrose und von Propylen bevorzugte Vernetzungsagentien sein. Solche Verbindungen sind beispielsweise unter dem Warenzeichen Carbopol® im Handel erhältlich.
Copolymere aus Maleinsäureanhydrid und Methylvinylether, insbesondere solche mit Vernetzungen, sind ebenfalls farberhaltende Polymere. Ein mit 1,9-Decadiene vernetztes Maleinsäure-Methylvinylether-Copolymer ist unter der Bezeichnungg Stabileze® QM im Handel erhältlich.
Weiterhin erfindungsgemäß geeignete anionische Polymere sind u. a.:
Vinylacetat/Crotonsäure-Copolymere, wie sie beispielsweise unter den Bezeichnungen Resyn® (NATIONAL STARCH), Luviset® (BASF) und Gafset® (GAF) im Handel sind. Vinylpyrrolidon/Vinylacrylat-Copolymere, erhältlich beispielsweise unter dem Warenzeichen Luviflex® (BASF). Ein bevorzugtes Polymer ist das unter der Bezeichnung Luviflex® VBM-35 (BASF) erhältliche Vinylpyrrolidon/Acrylat- Teφolymere.
Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Teφolymere, die beispielsweise unter der Bezeichnung Ultrahold® strong (BASF) vertrieben werden.
Weiterhin können als Polymere zur Steigerung der Wirkung des erfindungsgemäßen Wirkstoffes (A) amphotere Polymere (G3) verwendet werden. Unter dem Begriff amphotere Polymere werden sowohl solche Polymere, die im Molekül sowohl freie Aminogruppen als auch freie -COOH- oder SO3H-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, als auch zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO"- oder -SO "-Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SO3H-Gruppen und quartäre Ammoniumgruppen enthalten.
Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Bezeichnung Amphomer® erhältliche Acrylharz, das ein Copolymeres aus tert.-Butylamino- ethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Monomeren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt.
Weitere erfindungsgemäß einsetzbare amphotere Polymere sind die in der britischen Offenlegungsschrift 2 104 091, der europäischen Offenlegungsschrift 47 714, der europäischen Offenlegungsschrift 217 274, der europäischen Offenlegungsschrift 283 817 und der deutschen Offenlegungsschrift 28 17 369 genannten Verbindungen. Weiterhin geeignete zwitterionische Polymere sind Methacroylethylbetain/Methacrylat-Copolymere, die unter der Bezeichnung Amersette® (AMERCHOL) im Handel erhältlich sind.
Bevorzugt eingesetzte amphotere Polymere sind solche Polymerisate, die sich im wesentlichen zusammensetzen aus (a) Monomeren mit quartären Ammoniumgruppen der allgemeinen Formel (G3-I), R1-CH=CR2-CO-Z-(CnH2n)-N(+)R3R4R5 Aθ (G3-I)
1 9 in der R und R unabhängig voneinander stehen für Wasserstoff oder eine Methylgruppe und R3, R4 und R5 unabhängig voneinander für Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, Z eine NH-Gruppe oder ein Sauerstoffatom, n eine ganze Zahl von 2 bis 5 und
(-) A das Anion einer organischen oder anorganischen Säure ist, und
(b) monomeren Carbonsäuren der allgemeinen Formel (G3-H), R6-CH=CR7-COOH (G3-H) in denen R6 und R7 unabhängig voneinander Wasserstoff oder Methylgruppen sind.
Diese Verbindungen können sowohl direkt als auch in Salzform, die durch Neutralisation der Polymerisate, beispielsweise mit einem Alkalihydroxid, erhalten wird, erfindungsgemäß eingesetzt werden. Bezüglich der Einzelheiten der Herstellung dieser Polymerisate wird ausdrücklich auf den Inhalt der deutschen Offenlegungsschrift 39 29 973 Bezug genommen. Ganz besonders bevorzugt sind solche Polymerisate, bei denen Monomere des Typs (a) eingesetzt werden, bei denen R , R und R Methylgruppen smd, Z eine NH- Gruppe und AH ein Halogenid-, Methoxysulfat- oder Ethoxysulfat-Ion ist; Acrylamido- propyl-trimethyl-ammoniumchlorid ist ein besonders bevorzugtes Monomeres (a). Als Monomeres (b) für die genannten Polymerisate wird bevorzugt Acrylsäure verwendet.
Die erfindungsgemäßen Mittel können in einer weiteren Ausführungsform nichtionogene Polymere (G4) enthalten.
Geeignete nichtionogene Polymere sind beispielsweise:
Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Warenzeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA . 73, jeweils VinylpyrrolidonA^inylacetat-Copolymere, sind ebenfalls bevorzugte nichtionische Polymere.
Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methyl- hydroxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden. - Schellack
- Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden.
Siloxane. Diese Siloxane können sowohl wasserlöslich als auch wasserunlöslich sein. Geeignet sind sowohl flüchtige als auch nichtflüchtige Siloxane, wobei als nichtflüchtige Siloxane solche Verbindungen verstanden werden, deren Siedepunkt bei Normaldruck oberhalb von 200 °C liegt. Bevorzugte Siloxane sind Polydialkylsiloxane, wie beispielsweise Polydimethylsiloxan, Polyalkylarylsiloxane, wie beispielsweise Poly- phenylmethylsiloxan, ethoxylierte Polydialkylsiloxane sowie Polydialkylsiloxane, die Amin- und/oder Hydroxy-Gruppen enthalten.
- Glycosidisch substituierte Silicone gemäß der EP 0612759 Bl .
Es ist erfindungsgemäß auch möglich, daß die verwendeten Zubereitungen mehrere, insbesondere zwei verschiedene Polymere gleicher Ladung und/oder jeweils ein ionisches und ein amphoteres und/oder nicht ionisches Polymer enthalten.
Weitere bevorzugte Polymere sind alle Polymere, welche im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17* Street, N.W., Suite 300, Washington, DC 20036-4702) als "film formers" und/oder "hair fixatives" genannt und im Handel erhältlich sind. Auf diese Schrift und die daraus zitierten Abschnitte wird ausdrücklich Bezug genommen.
Die Polymere (G) sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5, insbesondere von 0,1 bis 3 Gew.-%, sind besonders bevorzugt.
Der erfindungsgemäße Formköφer enthält ferner mindestens einen Auflösungsbeschleuniger. Der Begriff Auflösungsbeschleuniger umfaßt dabei Gasentwickelnde Komponenten, vorgebildete und eingeschlossene Gase, Sprengmittel sowie deren Mischungen. Unter dem Begriff Auflösungsbeschleuniger, Formköφersprengmittel, Spreng- oder Desintegrationsmittel sind Stoffe zu verstehen, die Tabletten zugegeben werden, um deren Zerfall beim Inkontaktbringen mit Wasser oder anderen Lösemitteln zu beschleunigen. Übersichten hierzu finden sich z.B. in J.Pharm.Sci. 61 (1972), Römpp Chemilexikon, 9. Auflage, Band 6, S. 4440 sowie und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184). Diese Stoffe vergrößern bei Zutritt des Lösemittels, beispielsweise Wasser, ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. In der Pharmazie werden zu diesem Zweck Celluloseabkömmlinge oder Polymere eingesetzt.
In einer Ausfuhrungsform der vorliegenden Erfindung werden als Auflösungsbeschleuniger Gas-entwickelnde Komponenten eingesetzt. Diese Komponenten reagieren bei Kontakt mit Wasser miteinander unter in-situ Bildung von Gasen, die in der Tablette einen Druck erzeugen, der die Tablette in kleinere Partikel zerfallen läßt. Ein Beispiel für ein derartiges System sind spezielle Kombinationen von geeigneten Säuren mit Basen. Bevorzugt sind ein-, zwei- oder dreiwertige Säuren mit einem pKa-Wert von 1,0 bis 6,9. Bevorzugte Säuren sind Citronensäure, Äpfelsäure, Maleinsäure, Malonsäure, Itaconsäure, Weinsäure, Oxalsäure, Glutarsäure, Glutaminsäure, Milchsäure, Fumarsäure, Glykolsäure sowie deren Mischungen. Besonders bevorzugt ist Citronensäure. Ganz besonders bevorzugt kann es sein, die Citronensäure in Teilchenform einzusetzen, wobei die Teilchen einen Durchmesser unterhalb von lOOOμm, insbesondere kleiner als 700μm, ganz besonders bevorzugt kleiner als 400μm, aufweisen. Weitere alternative geeignete Säuren sind die Homopolymere oder Copolymere von Acrylsäure, Maleinsäure, Methacrylsäure oder Itaconsäure mit einem Molekulargewicht von 2000 bis 200 000. Besonders bevorzugt sind Homopolymere der Acrylsäure und Copolymere aus Acrylsäure und Maleinsäure. Bevorzugte Basen sind erfindungsgemäß Alkalimetallsilikate, Carbonate, Hydrogencarbonate sowie deren Mischungen. Metasilicate, Hydrogencarbonate und Carbonate sind besonders bevorzugt, Hydrogencarbonate sind ganz besonders bevorzugt. Besonders bevorzugt sind teilchenförmige Hydrogencarbonate mit einem Teilchendurchmesser von weniger als lOOOμm, insbesondere weniger als 700μm, ganz besonders bevorzugt weniger als 400μm. Natrium oder Kaliumsalze der oben genannten Basen sind besonders bevorzugt. Diese Gas-entwickelnden Komponenten sind in den erfindungsgemäßen Färbeformköφern bevorzugt in einer Menge von mindestens 10 Gew.-%, insbesondere von mindestens 20 Gew.-%, enthalten.
In einer weiteren Ausführungsform der vorliegenden Erfindung ist das Gas vorgebildet oder eingeschlossen, so daß bei Einsetzen der Auflösung des Formköφers die Gasentwicklung beginnt und die weitere Auflösung beschleunigt. Beispiele geeigneter Gase sind Luft, Kohlendioxid, N2O, Sauerstoff und/oder weitere nicht-toxische, nichtbrennbare Gase.
In einer dritten, besonders bevorzugten Ausführungsform der vorliegenden Erfindung werden als Auflösungsbeschleuniger Desintegrationshilfsmittel, sogenannte Formköφersprengmittel, in die Formköφer eingearbeitet, um die Zerfallszeiten zu verkürzen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen (Quellung). Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Formköφer ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 50 Gew.-%, vorzugsweise 3 bis 30 Gew.-%, bezogen auf den gesamten Formköφer enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (CβHioOs),, auf und stellt formal betrachtet ein ß-l,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose- Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy- Gruppen gegen funktioneile Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose- Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht als einzige Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose kann nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu veφressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 μm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 μm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 μm. Die erfindungsgemäßen Desintegrationshilfsmittel sind beispielsweise im Handel unter der Bezeichnung Arbocel® von der Firma Rettenmaier erhältlich. Ein bevorzugtes Desintegrationshilfsmittel ist beispielsweise Arbocel® TF-30-HG.
Als Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente wird bevorzugt mikrokristalline Cellulose verwendet. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amoφhen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kompaktierbar sind. Geeignete mikrokristalline Cellulose ist beispielsweise unter dem Handelsnamen Avicel® kommerziell erhältlich.
Weitere Sprengmittel, die im Sinne der Erfindung zugegen sein können, wie z.B. Kollidon, Alginsäure und deren Alkalisalze, amoφhe oder auch teilweise kristalline Schichtsilicate (Bentonite), Polyacrylate, Polyethylenglycole sind beispielsweise den Druckschriften WO 98/40462 (Rettenmaier), WO 98/55583 und WO 98/55590 (Unilever) und WO 98/40463, DE 19709991 und DE 19710254 (Henkel) zu entnehmen. Auf die Lehre dieser Schriften wird ausdrücklich Bezug genommen. Die nach dem erfindungsgemäßen Verfahren erhältlichen Sprengmittel können im Formköφer makroskopisch betrachtet homogen verteilt vorliegen, mikroskopisch gesehen bilden sie jedoch herstellungsbedingt Zonen erhöhter Konzentration.
Die beschleunigte Auflösung der Formköφer kann erfindungsgemäß auch durch Vorgranulierung der weiteren Bestandteile des Formköφers erreicht werden.
In einer bevorzugten Ausfuhrungsform der erfindungsgemäßen Formköφer enthalten diese zusätzlich zum Ausflösungsbeschleuniger ein Gemisch aus Stärke und mindestens einem Saccharid. Die Verwendung von Disacchariden gemäß dieser Ausfuhrungsform ist bevorzugt. Das besagte Gemisch liegt bevorzugt in einem Gewichtsverhältnis von Stärke und den eingesetzten Sacchariden von 10 : 1 bis 1 : 10, besonders bevorzugt von 1 : 1 bis 1 : 10, ganz besonders bevorzugt von 1 : 4 bis 1 : 7 in dem Formköφer vor.
Die verwendeten Disaccharide sind bevorzugt ausgewählt aus Lactose, Maltose, Saccharose, Trehalose, Turanose, Gentiobiose, Melibiose und Cellobiose. Besonders bevorzugt werden Lactose, Maltose und Saccharose und ganz besonders bevorzugt Lactose in den erfmdungsgemäßen Formköφern eingesetzt. Die Stärke-Disaccharid-Mischung ist in dem Formköφer in einer Menge von 5 bis 60 Gew.%, bevorzugt von 20 bis 40 Gew.% bezogen auf die Masse des gesamten Formköφers, enthalten.
Ein weiterer wesentlicher Bestandteil der erfindungsgemäßen Formköφer können Builder sein. Typische Beispiele für Builder, die sich als fakultative Komponente eignen, sind Zeolithe, Wassergläser, Schichtsilicate, Phosphate sowie Polycarboxylate. Der als Waschmittelbuilder häufig eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP(R) (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P wie auch Y. Von besonderem Interesse ist auch ein cokristallisiertes Natrium Kalium- Aluminiumsilicat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S.p.A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten Ci2-Cι8-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C1 -Fettal- koholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtfb'rmige Natriumsilicate der allgemeinen Formel NaMSixO2x+ι,yH2θ, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP 0164514 AI beschrieben. Bevorzugte kristalline Schichtsilicate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilicate Na2Si2θ5-yH2O bevorzugt, wobei ß-Natriumdisilicat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrieben ist. Weitere geeignete Schichtsilicate sind beispielsweise aus den Patentanmeldungen DE 2334899 AI, EP 0026529 AI und DE 3526405 AI bekannt. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Ben- tonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind z.B. solche der allgemeinen Formeln
(OH)4Si8-yAly(MgxAl -x)θ2o Montmorrilonit
(OH)4Si8-yAly(Mg6-zLiz)θ2ö Hectorit
(OH)4Si8-yAly(Mg6-z Alz)O2o Saponit
mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind beispielsweise aus US 3,966,629, US 4,062,647, EP 0026529 AI und EP 0028432 AI bekannt. Vorzugsweise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Calciumionen und stark färbenden Eisenionen sind.
Zu den bevorzugten Buildersubstanzen gehören auch amoφhe Natriumsilicate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind. Die Löseverzögerung gegenüber herkömmlichen amoφhen Natriumsilicaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompak- tierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amoφh" auch "röntgenamoφh" verstanden. Dies heißt, daß die Silicate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silicatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu inteφretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamoφhe Silicate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE 4400024 AI beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amoφhe Silicate, compoundierte amoφhe Silicate und übertrocknete röntgenamoφhe Silicate.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersub- stanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt beträgt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
Brauchbare organische Gerüstsubstanzen, die als Co-Builder in Frage kommen, sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Buil- derwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH- Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500 000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2 000 bis 30 000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung GB 9419091 AI beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP 0232202 AI, EP 0427349 AI, EP 0472042 AI und EP 0542496 AI sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE 19600018 AI. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patentschriften US 4,524,009, US 4,639,325, in der europäischen Patentanmeldung EP 0150930 AI und der japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150 000 (auf Säure bezogen und jeweils gemessen gegen Polystyrolsulfonsäure). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5 000 bis 200 000, vorzugsweise 10 000 bis 120 000 und insbesondere 50 000 bis 100 000 (jeweils gemessen gegen Polystyrolsulfonsäure). Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden, wobei 20 bis 55 Gew.-%ige wäßrige Lösungen bevorzugt sind. Granuläre Polymere werden zumeist nachträglich zu einem oder mehreren Basisgranulaten zugemischt. Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die gemäß der DE 4300772 AI als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinyl- alkohol-Derivate oder gemäß der DE 4221381 C2 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten. Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE 4303320 AI und DE 4417734 AI beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/ Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen. Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP 0280223 AI beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Die dritte Komponente der erfindungsgemäßen Kombination ist ein kosmetischer Wirkstoff. Die Auswahl des betreffenden Wirkstoffes richtet sich nach der gewünschten Wirkung, welche mit dem Formköφer erzielt werden soll. Für Formköφer, welche keratinische Fasern festigen sollen, den Fasern Halt, Fülle und Glanz sowie eine leichte Frisierbarkeit verleihen sollen, werden erfindungsgemäß bevorzugt die im folgenden beschriebenen Wirkstoffgruppen ausgewählt.
Als erste Wirkstoffgruppe sind Fettstoffe (D) zu nennen. Unter Fettstoffen sind zu verstehen Fettsäuren, Fettalkohole, natürliche und synthetische Wachse, welche sowohl in fester Form als auch flüssig in wäßriger Dispersion vorliegen können, und natürliche und synthetische kosmetische Ölkomponenten zu verstehen.
Als Fettsäuren (Dl) können eingesetzt werden lineare und/oder verzweigte, gesättigte und/oder ungesättigte Fettsäuren mit 6 - 30 Kohlenstoffatomen. Bevorzugt sind Fettsäuren mit 10 - 22 Kohlenstoffatomen. Hierunter wären beispielsweise zu nennen die Isostearinsäuren, wie die Handelsprodukte Emersol® 871 und Emersol® 875, und Isopalmitinsäuren wie das Handelsprodukt Edenor® IP 95, sowie alle weiteren unter den Handelsbezeichnungen Edenor® (Cognis) vertriebenen Fettsäuren. Weitere typische Beispiele für solche Fettsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Li- nolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Besonders bevorzugt sind üblicherweise die Fettsäureschnitte, welche aus Cocosöl oder Palmöl erhältlich sind; insbesondere bevorzugt ist in der Regel der Einsatz von Stearinsäure.
Die Einsatzmenge beträgt dabei 0,1 - 15 Gew.%, bezogen auf das gesamte Mittel. Bevorzugt beträgt die Menge 0,5 - 10 Gew.%, wobei ganz besonders vorteilhaft Mengen von 1 - 5 Gew.% sein können.
Als Fettalkohole (D2) können eingesetzt werden gesättigte, ein- oder mehrfach ungesättigte, verzweigte oder unverzweigte Fettalkohole mit C6 - C3u-, bevorzugt C10 - C22- und ganz besonders bevorzugt C12 - C22- Kohlenstoffatomen. Einsetzbar im Sinne der Erfindung sind beispielsweise Decanol, Octanol, Octenol, Dodecenol, Decenol, Octadienol, Dodecadienol, Decadienol, Oleylalkohol, Erucaalkohol, Ricinolalkohol, Stearylalkohol, Isostearylalkohol, Cetylalkohol, Laurylalkohol, Myristylalkohol, Arachidylalkohol, Caprylalkohol, Caprinalkohol, Linoleylalkohol, Linolenylalkohol und Behenylalkohol, sowie deren Guerbetalkohole, wobei diese Aufzählung beispielhaften und nicht limitierenden Charakter haben soll. Die Fettalkohole stammen jedoch von bevorzugt natürlichen Fettsäuren ab, wobei üblicherweise von einer Gewinnung aus den Estern der Fettsäuren durch Reduktion ausgegangen werden kann. Erfindungsgemäß einsetzbar sind ebenfalls solche Fettalkoholschnitte, die durch Reduktion natürlich vorkommender Triglyceride wie Rindertalg, Palmöl, Erdnußöl, Rüböl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl und Leinöl oder aus deren Umesterungsprodukten mit entsprechenden Alkoholen entstehenden Fettsäureestern erzeugt werden, und somit ein Gemisch von unterschiedlichen Fettalkoholen darstellen. Solche Substanzen sind beispielsweise unter den Bezeichnungen Stenol®, z.B. Stenol® 1618 oder Lanette®, z.B. Lanette® O oder Lorol®, z.B. Lorol® C8, Lorol® C14, Lorol® C18, Lorol® C8-18, HD- Ocenol®, Crodacol®, z.B. Crodacol® CS, Novol®, Eutanol® G, Guerbitol® 16, Guerbitol® 18, Guerbitol® 20, Isofol® 12, Isofol® 16, Isofol® 24, Isofol® 36, Isocarb® 12, Isocarb® 16 oder Isocarb® 24 käuflich zu erwerben. Selbstverständlich können erfindungsgemäß auch Wollwachsalkohole, wie sie beispielsweise unter den Bezeichnungen Corona®, White Swan®, Coronet® oder Fluilan® käuflich zu erwerben sind, eingesetzt werden. Die Fettalkohole werden in Mengen von 0,1 - 30 Gew.-%, bezogen auf die gesamte Zubereitung, bevorzugt in Mengen von 0,1 - 20 Gew.-% eingesetzt.
Als natürliche oder synthetische Wachse (D3) können erfindungsgemäß eingesetzt werden feste Paraffine oder Isoparaffine, Carnaubawachse, Bienenwachse, Candelillawachse, Ozokerite, Ceresin, Walrat, Sonnenblumenwachs, Fruchtwachse wie beispielsweise Apfelwachs oder Citruswachs, Microwachse aus PE- oder PP. Derartige Wachse sind beispielsweise erhältlich über die Fa. Kahl & Co., Trittau. Die Einsatzmenge beträgt 0,1 - 50 Gew.% bezogen auf das gesamte Mittel, bevorzugt 0,1
- 20 Gew.% und besonders bevorzugt 0,1 - 15 Gew.%» bezogen auf das gesamte Mittel.
Zu den natürlichen und synthetischen kosmetischen Ölköφern (D4), welche die Wirkung des erfindungsgemäßen Wirkstoffes steigern können, sind beispielsweise zu zählen:
- pflanzliche Öle. Beispiele für solche Öle sind Sonnenblumenöl, Olivenöl, Sojaöl, Rapsöl, Mandelöl, Jojobaöl, Orangenöl, Weizenkeimöl, Pfirsichkernöl und die flüssigen Anteile des Kokosöls. Geeignet sind aber auch andere Triglyceridöle wie die flüssigen Anteile des Rindertalgs sowie synthetische Triglyceridöle. flüssige Paraffinöle, Isoparaffinöle und synthetische Kohlenwasserstoffe sowie Di-n- alkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C- Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n- undecylether, Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl- n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert- butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso- Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether. Die als Handelsprodukte erhältlichen Verbindungen l,3-Di-(2-ethyl-hexyl)-cyclohexan (Cetiol® S) und Di-n-octylether (Cetiol® OE) können bevorzugt sein. - Esteröle. Unter Esterölen sind zu verstehen die Ester von C6 - C30 - Fettsäuren mit C2 - C30 - Fettalkoholen. Bevorzugt sind die Monoester der Fettsäuren mit Alkoholen mit 2 bis 24 C-Atomen. Beispiele für eingesetzte Fettsäurenanteile in den Estern sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecan- säure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Beispiele für die Fettalkoholanteile in den Esterölen sind Isopropylalkohol, Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylal- kohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Erfindungsgemäß besonders bevorzugt sind Isopropymiyristat (Rilanit® IPM), Isononansäure-Cl6-18-alkylester (Cetiol® SN), 2-Ethylhexylρalmitat (Cegesoft® 24), Stearinsäure-2-ethylhexylester (Cetiol® 868), Cetyloleat, Glycerintri- caprylat, Kokosfettalkohol-caprinat/-caprylat (Cetiol® LC), n-Butylstearat, Oleylerucat (Cetiol® J 600), Isopropylpalmitat (Rilanit® IPP), Oleyl Oleate (Cetiol®), Laurinsäure- hexylester (Cetiol® A), Di-n-butyladipat (Cetiol® B), Myristylmyristat (Cetiol® MM), Cetearyl Isononanoate (Cetiol® SN), Ölsäuredecylester (Cetiol® V).
- Dicarbonsäureester wie Di-n-butyladipat, Di-(2-ethylhexyl)-adipat, Di-(2-ethylhexyl)- succinat und Di-isotridecylacelaat sowie Diolester wie Ethylenglykol-dioleat, Ethylenglykol-di-isotridecanoat, Propylenglykol-di(2-ethylhexanoat), Propylenglykol- di-isostearat, Propylenglykol-di-pelargonat, Butandiol-di-isostearat, Neopentylgly- koldicaprylat, - symmetrische, unsymmetrische oder cyclische Ester der Kohlensäure mit Fettalkoholen, beispielsweise beschrieben in der DE-OS 197 56 454, Glycerincarbonat oder Dicaprylylcarbonat (Cetiol® CC),
- Trifettsäureester von gesättigten und oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin,
- Fettsäurepartialglyceride, das sind Monoglyceride, Diglyceride und deren technische Gemische. Bei der Verwendung technischer Produkte können herstellungsbedingt noch geringe Mengen Triglyceride enthalten sein. Die Partialglyceride folgen vorzugsweise der Formel (D4-I),
Figure imgf000028_0001
I
CHO(CH2CH2O)nR2 (D4-I)
CH2O(CH2CH2θ)q
in der R1, R2 und R3 unabhängig voneinander für Wasserstoff oder für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18, Kohlenstoffatomen stehen mit der Maßgabe, daß mindestens eine dieser Gruppen für einen Acylrest und mindestens eine dieser Gruppen für Wasserstoff steht. Die Summe (m+n+q) steht für 0 oder Zahlen von 1 bis 100, vorzugsweise für 0 oder 5 bis 25. Bevor- zugt steht R für einen Acylrest und R und R für Wasserstoff und die Summe (m+n+q) ist 0. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristin- säure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden Ölsäuremonoglyceride eingesetzt.
Die Einsatzmenge der natürlichen und synthetischen kosmetischen Ölköφer in den erfϊn- dungsgemäß verwendeten Mitteln beträgt üblicherweise 0,1 - 30 Gew.%, bezogen auf das gesamte Mittel, bevorzugt 0,1 - 20 Gew.-%, und insbesondere 0,1 - 15 Gew.-%. Die Gesamtmenge an Öl- und Fettkomponenten in den erfindungsgemäßen Mitteln beträgt üblicherweise 0,5 - 75 Gew.-%, bezogen auf das gesamte Mittel. Mengen von 0,5
- 35 Gew.-% sind erfindungsgemäß bevorzugt.
Ebenfalls als vorteilhaft hat sich die Kombination der erfmdungsgemäßen Kombination mit Tensiden (E) erwiesen. In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäß verwendeten Mittel Tenside. Unter dem Begriff Tenside werden grenzflächenaktive Substanzen, die an Ober- und Grenzflächen Adsoφtionsschichten bilden oder in Volumenphasen zu Mizellkolloiden oder lyotropen Mesophasen aggregieren können, verstanden. Man unterscheidet Aniontenside bestehend aus einem hydrophoben Rest und einer negativ geladenen hydrophilen Kopfgruppe, amphotere Tenside, welche sowohl eine negative als auch eine kompensierende positive Ladung tragen, kationische Tenside, welche neben einem hydrophoben Rest eine positiv geladene hydrophile Gruppe aufweisen, und nichtionische Tenside, welche keine Ladungen sondern starke Dipolmomente aufweisen und in wäßriger Lösung stark hydratisiert sind. Weitergehende Definitionen und Eigenschaften von Tensiden finden sich in "H.D.Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinlieim, 1994". Die zuvor wiedergegebene Begriffsbestimmung findet sich ab S. 190 in dieser Druckschrift.
Als anionische Tenside (El) eignen sich in erfmdungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Köφer geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkyl- gruppe mit etwa 8 bis 30 C-Atomen. Zusätzlich können im Molekül Glykol- oder Poly- glykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Beispiele für geeignete anionische Tenside sind, jeweils in Form der Natrium-, Kalium- und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe,
- lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen (Seifen), - Ethercarbonsäuren der Formel R-O-(CH2"CH2θ)χ-CH2-COOH, in der R eine lineare
Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist,
- Acylsarcoside mit 8 bis 24 C-Atomen in der Acylgruppe,
- Acyltauride mit 8 bis 24 C-Atomen in der Acylgruppe,
- Acylisethionate mit 8 bis 24 C-Atomen in der Acylgruppe,
- Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 24 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen,
- lineare Alkansulfonate mit 8 bis 24 C-Atomen,
- lineare Alpha-Olefmsulfonate mit 8 bis 24 C-Atomen,
- Alpha-Sulfofettsäuremethylester von Fettsäuren mit 8 bis 30 C-Atomen,
- Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH2-CH2O)x-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist,
- Gemische oberflächenaktiver Hydroxysulfonate gemäß DE-A-37 25 030,
- sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether gemäß DE-A-37 23 354,
- Sulfonate ungesättigter Fettsäuren mit 8 bis 24 C-Atomen und 1 bis 6 Doppelbindungen gemäß DE-A-39 26 344,
- Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2-15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen,
- Alkyl- und/oder Alkenyletheφhosphate der Formel (El-I),
O
II
R1(OCH2CH2)n— O — p — OR2 (El-I)
OX
in der R1 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoffatomen, R2 für Wasserstoff, einen Rest (CH2CH2O)nR1 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR3R4R5R6, mit R3 bis R6 unabhängig voneinander stehend für Wasserstoff oder einen Cl bis C4 - Kohlenwasserstoffrest, steht,
- sulfatierte Fettsäurealkylenglykolester der Formel (El -II) R7CO(AlkO)nSO3M (El -II) in der R7CÖ- für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 C-Atomen, Alk für CH2CH2, CHCH3CH2 und/oder CH2CHCH3, n für Zahlen von 0,5 bis 5 und M für ein Kation steht, wie sie in der DE-OS 197 36 906.5 beschrieben sind,
- Monoglyceridsulfate und Monoglyceridethersulfate der Formel (El -III)
CH2O(CH2CH2θ)x— COR8
I (El -III)
CHO(CH2CH2O)yH
I
CH2O(CH2CH2O)z — SO3X in der R8CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonoglycerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (El -III) eingesetzt, in der R8CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht, wie sie beispielsweise in der EP-Bl 0 561 825, der EP-Bl 0 561 999, der DE-Al 42 04 700 oder von A.K.Biswas et al. in J.Am.Oil.Chem.Soc. 37, 171 (1960) und F.U.Ahmed in J.Am.Oil.Chem.Soc. 67, 8 (1990) beschrieben worden sind,
- Amidethercarbonsäuren wie sie in der EP 0 690 044 beschrieben sind,
- Kondensationsprodukte aus C8 - C30 - Fettalkoholen mit Proteinhydrolysaten und/oder Aminosäuren und deren Derivaten,welche dem Fachmann als Eiweissfettsäurekondensate bekannt sind, wie beispielsweise die Lamepon® - Typen, Gluadin® - Typen, Hostapon® KCG oder die Amisoft® - Typen. Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ethercarbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykolether- gruppen im Molekül, Sulfobemstemsäuremono- und -dialkylester mit 8 bis 18 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 18 C- Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen, Monoglycerdisulfate, Alkyl- und Alkenyletheφhosphate sowie Eiweissfettsäurekondensate.
Als zwitterionische Tenside (E2) werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COO^ - oder -SO3 H -Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammonium-glycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycmat, N-Acyl-aminopropyl-N,N- dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl- dimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyϊ-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylamino- ethylhydroxyethylcarboxymethylglycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der INCI-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
Unter ampholytischen Tensiden (E3) werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8 - C2 - Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N- Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-
Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 24 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylamino- propionat und das C12 - Cι8 - Acylsarcosin. Nichtionische Tenside (E4) enthalten als hydrophile Gruppe z.B. eine Polyolgruppe, eine Polyalkylenglykolethergruppe oder eine Kombination aus Pplyol- und Polyglykolether- gruppe. Solche Verbindungen sind beispielsweise
- Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylen- oxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
- mit einem Methyl- oder C2 - C6 - Alkylrest endgruppenverschlossene Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, wie beispielsweise die unter den Verkaufsbezeichnungen Dehydol® LS, Dehydol® LT (Cognis) erhältlichen Typen,
- Cπ-Cso-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
- Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
- Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen® HSP (Cognis) oder Sovermol - Typen (Cognis),
- alkoxilierte Triglyceride,
- alkoxilierte Fettsäurealkylester der Formel (E4-I)
R1CO-(OCH2CHR2)wOR3 (E4-I)
in der R!CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff oder Methyl, R3 für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und w für Zahlen von 1 bis 20 steht,
- Aminoxide,
- Hydroxymischether, wie sie beipielsweise in der DE-OS 19738866 beschrieben sind,
- Sorbitanfettsäureester und Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäureester wie beispielsweise die Polysorbate, - Zuckerfettsäureester und Anlagerungsprodukte von Ethylenoxid an Zuckerfettsäureester,
- Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamme,
- Zuckertenside vom Typ der Alkyl- und Alkenyloligoglykoside gemäß Formel (E4-II),
R4O-[G]p (E4-U)
in der R4 für einen Alkyl- oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Übersichtsarbeit von Biermann et al. in Starch/Stärke 45, 281 (1993), B. Salka in Cosm.Toil. 108, 89 (1993) sowie J. Kahre et al. in SÖFW-Journal Heft 8, 598 (1995) verwiesen.
Die Alkyl- und Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise von Glucose, ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligogluco- side. Die Indexzahl p in der allgemeinen Formel (E4-JJ) gibt den Oligomerisierungs- grad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p im einzelnen Molekül stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R4 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% Cπ-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9 -Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R15 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem Ci2/ι -Kokosalkohol mit einem DP von 1 bis 3.
Zuckertenside vom Typ der Fettsäure-N-alkylpolyhydroxyalkylamide, ein nichtionisches Tensid der Formel (E4-III),
R5CO-NR6-[Z] (E4-m)
in der R5CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R6 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 12 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Fettsäure-N- alkylpolyhydroxyalkylamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Hinsichtlich der Verfahren zu ihrer Herstellung sei auf die US-Patentschriften US 1,985,424, US 2,016,962 und US 2,703,798 sowie die Internationale Patentanmeldung WO 92/06984 verwiesen. Eine Übersicht zu diesem Thema von H.Kelkenberg findet sich in Tens. Surf. Det. 25, 8 (1988). Vorzugsweise leiten sich die Fettsäure-N- alkylpolyhydroxyalkylamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoff- atomen, insbesondere von der Glucose ab. Die bevorzugten Fettsäure-N- alkylpolyhydroxyalkylamide stellen daher Fettsäure-N-alkylglucamide dar, wie sie durch die Formel (E4-IV) wiedergegeben werden:
R7CO-NR8-CH2-(CH-OH)4-CH2OH (E4-TV)
Vorzugsweise werden als Fettsäure-N-alkylpolyhydroxyalkylamide Glucamide der Formel (E4-IV) eingesetzt, in der R für Wasserstoff oder eine Alkylgruppe steht und R7CO für den Acylrest der Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure bzw. derer technischer Mischungen steht. Besonders bevorzugt sind Fettsäure-N-alkylglucamide der Formel (E4-IV), die durch reduktive Aminierung von Glucose mit Methylamin und anschließende Acylierung mit Laurinsäure oder C12/14-Kokosfettsäure bzw. einem entsprechenden Derivat erhalten werden. Weiterhin können sich die Polyhydroxyalkylamide auch von Maltose und Palatinose ableiten.
Als bevorzugte nichtionische Tenside haben sich die Alkylenoxid-Anlagerungsprodukte an gesättigte lineare Fettalkohole und Fettsäuren mit jeweils 2 bis 30 Mol Ethylenoxid pro Mol Fettalkohol bzw. Fettsäure erwiesen. Zubereitungen mit hervorragenden Eigenschaften werden ebenfalls erhalten, wenn sie als nichtionische Tenside Fettsäureester von ethoxyliertem Glycerin enthalten.
Diese Verbindungen sind durch die folgenden Parameter gekennzeichnet. Der Alkylrest R enthält 6 bis 22 Kohlenstoffatome und kann sowohl linear als auch verzweigt sein. Bevorzugt sind primäre lineare und in 2-Stellung methylverzweigte aliphatische Reste. Solche Alkylreste sind beispielsweise 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl, 1-Cetyl und 1-Stea- ryl. Besonders bevorzugt sind 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl. Bei Verwendung sogenannter "Oxo- Alkohole" als Ausgangsstoffe überwiegen Verbindungen mit einer ungeraden Anzahl von Kohlenstoffatomen in der Alkylkette. Weiterhin sind ganz besonders bevorzugte nichtionische Tenside die Zuckertenside. Diese können in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 - 20 Gew.-%, bezogen auf das gesamte Mittel, enthalten sein. Mengen von 0,5 - 15 Gew.-% sind bevorzugt, und ganz besonders bevorzugt sind Mengen von 0,5 - 7,5 Gew.%.
Bei den als Tensid eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so daß man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkyl- kettenlängen erhält.
Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsprodukte darstellen, können sowohl Produkte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhydroxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homologenverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotaleite, Erdalkalimetallsalze von Ethercarbonsäuren, Erdalkalimetalloxide, -hydroxide oder -alkoholate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein.
Die Tenside (E) werden in Mengen von 0,1 - 45 Gew.%, bevorzugt 0,5 - 30 Gew.% und ganz besonders bevorzugt von 0,5 - 25 Gew.%, bezogen auf das gesamte erfindungsgemäß verwendete Mittel, eingesetzt.
Erfindungsgemäß einsetzbar sind ebenfalls kationische Tenside (E5). Typische Beispiele für kationische Tenside sind insbesondere Tetraalkylammoniumverbindungen Amidoamine oder aber Esterquats. Bevorzugte quaternäre Ammoniumverbindungen sind Ammomumhalogenide, insbesondere Chloride und Bromide, wie Alkyltrimethyl- ammoniumchloride, Dialkyldimethylammoniumchloride und Trialkylmethylammonium- chloride, z.B. Cetyltrimethylammoniumchlorid, Stearyltrimethylammoniumchlorid, Di- stearyldimethylammoniumchlorid, Lauryldimethylammoniumchlorid, Lauryl- dimethylbenzylammoniumchlorid, Tricetylmethylammoniumchlorid, Hydroxyethyl Hydroxycetyl Dimmonium Chloride sowie die unter den INCI-Bezeichnungen Quatemium-27 und Quatemium-83 bekannten Imidazolium-Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 10 bis 18 Kohlenstoffatome auf.
Bei Esterquats handelt es sich um bekannte Stoffe, die sowohl mindestens eine Esterfunktion als auch mindestens eine quartäre Ammoniumgruppe als Strukturelement enthalten.
Hierbei handelt es sich beispielsweise um quatemierte Fettsäuretriethanolaminestersalze der Formel (E5-I),
R 16
[R14CO-(OCH2CH2)rnlOCH2CH2-N+-CH2CH2θ-(CH2CH2θ)m2R15] Y" (E5-I)
I
CH2CH2O(CH2CH2θ)rn3R17
in der R14CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R15 und R16 unabhängig voneinander für Wasserstoff oder R14CO, R15 für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen oder eine (CH2CH2θ)m4H-Gruppe, ml, m2 und m3 in Summe für 0 oder Zahlen von 1 bis 12, m4 für Zahlen von 1 bis 12 und Y für Halogenid, Alkylsulfat oder Alkylphosphat steht. Typische Beispiele für Esterquats, die im Sinne der Erfindung Verwendung finden können, sind Produkte auf Basis von Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Isostearinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Arachinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, wie sie beispielsweise bei der Druckspaltung natürlicher Fette und Öle anfallen. Vorzugsweise werden technische
Figure imgf000039_0001
und insbesondere teilgehärtete C16/18-Talg- bzw. Palmfettsäuren sowie elaidinsäurereiche C16/18-Fett- säureschnitte eingesetzt. Zur Herstellung der quatemierten Ester können die Fettsäuren und das Triethanolamin im molaren Verhältnis von.1,1 : 1 bis 3 : 1 eingesetzt werden. Im Hinblick auf die anwendungstechnischen Eigenschaften der Esterquats hat sich ein Einsatzverhältnis von 1,2 : 1 bis 2,2 : 1, vorzugsweise 1,5 : 1 bis 1,9 : 1 als besonders vorteilhaft erwiesen. Die bevorzugten Esterquats stellen technische Mischungen von Mono-, Di- und Triestem mit einem durchschnittlichen Veresterangsgrad von 1,5 bis 1,9 dar und leiten sich von technischer C168- Talg- bzw. Palmfettsäure (Iodzahl 0 bis 40) ab. Aus anwendungstechnischer Sicht haben sich quaternierte Fettsäuretriethanolaminestersalze der Formel (E5-I) als besonders vorteilhaft erwiesen, in der R14CO für einen Acylrest mit 16 bis 18 Kohlenstoffatomen, R15 für R15CO, R16 für Wasserstoff, R17 für eine Methylgruppe, ml, m2 und m3 für 0 und Y für Methylsulfat steht.
Neben den quatemierten Fettsäuretriethanolaminestersalzen kommen als Esterquats femer auch quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen der Formel (E5-JJ) in Betracht,
R 20
[R18CO-(OCH2CH2)m5θCH2CH2-N+-CH2CH2O-(CH2CH2θ)m 6R19] Y" (E5-JJ)
R 21
in der R18CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R19 für Wasserstoff oder R18CO, R20 und R21 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m5 und m6 in Summe für 0 oder Zahlen von 1 bis 12 und Y wieder für Halo- genid, Alkylsulfat oder Alkylphosphat steht.
Als weitere Gruppe geeigneter Esterquats sind schließlich die quatemierten Estersalze von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen der Formel (E5-IJJ) zu nennen,
Figure imgf000040_0001
I I
[R24-N+-CH2CHCH2O-(CH2CH2O)m7R23] X- (E5-IU)
R 26
in der R22CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R23 für Wasserstoff oder R22CO, R24, R25 und R26 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen, m7 und m8 in Summe für 0 oder Zahlen von 1 bis 12 und X wieder für Halo- genid, Alkylsulfat oder Alkylphosphat steht.
Schließlich kommen als Esterquats noch Stoffe in Frage, bei denen die Ester- durch eine Amidbindung ersetzt ist und die vorzugsweise basierend auf Diethylentriamin der Formel (E5-IV) folgen,
R 29
[R27CO-NH-CH2CH2-N+-CH2CH2-NH-R28] Y" (E5-TV)
R30
in der R27CO für einen Acylrest mit 6 bis 22 Kohlenstoffatomen, R28 für Wasserstoff oder R27CO, R29 und R30 unabhängig voneinander für Alkylreste mit 1 bis 4 Kohlenstoffatomen und Y wieder für Halogenid, Alkylsulfat oder Alkylphosphat steht. Derartige Amidesterquats sind beispielsweise unter der Marke Incroquat® (Croda) im Markt erhältlich.
Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Triethanolamin, quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quatemierten Estersalzen von Fettsäuren mit 1,2-Dihydroxyproρyldialkylaminen. Solche Produkte werden beispielsweise unter den Warenzeichen Stepantex®, Dehyquart® und Armocare® vertrieben. Die Produkte Armocare® VGH-70, ein N,N-Bis(2-Palmitoyloxy- ethyl)dimethylammoniumchlorid, sowie Dehyquart® F-75, Dehyquart® C-4046, Dehyquart® L80 und Dehyquart® AU-35 sind Beispiele für solche Esterquats.
Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthetischer Fettsäuren und Fettsäureschnitte mit Dialkylaminoaminen hergestellt. Eine erfindungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid® S 18 im Handel erhältliche Stearamidopropyl-dimethylamin dar.
Die kationischen Tenside (E5) sind in den erfmdungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
Anionische, nichtionische, zwitterionische und/oder amphotere Tenside sowie deren Mischungen können erfindungsgemäß bevorzugt sein.
In einer weiteren bevorzugten Ausführungsform kann die Wirkung der erfindungsgemäßen Kombination durch Emulgatoren (F) gesteigert werden. Emulgatoren bewirken an der Phasengrenzfläche die Ausbildung von wasser- bzw. ölstabilen Adsoφtionsschichten, welche die dispergierten Tröpfchen gegen Koaleszenz schützen und damit die Emulsion stabilisieren. Emulgatoren sind daher wie Tenside aus einem hydrophoben und einem hydrophilen Molekülteil aufgebaut. Hydrophile Emulgatoren bilden bevorzugt O/W - Emulsionen und hydrophobe Emulgatoren bilden bevorzugt W/O - Emulsionen. Unter einer Emulsion ist eine tröpfchenformige Verteilung (Dispersion) einer Flüssigkeit in einer anderen Flüssigkeit unter Aufwand von Energie zur Schaffung von stabilisierenden Phasengrenzflächen mittels Tensiden zu verstehen. Die Auswahl dieser emulgierenden Tenside oder Emulgatoren richtet sich dabei nach den zu dispergierenden Stoffen und der jeweiligen äußeren Phase sowie der Feinteiligkeit der Emulsion. Weiterführende Definitionen und Eigenschaften von Emulgatoren finden sich iή "H.-D.Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Erfindungsgemäß verwendbare Emulgatoren sind beispielsweise
- Anlagerangsprodukte von 4 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C- Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
- C12-C22-Fettsäuremono- und -diester von Anlagerangsprodukten von 1 bis 30 Mol Ethylenoxid an Polyole mit 3 bis 6 Kohlenstoffatomen, insbesondere an Glycerin,
- Ethylenoxid- und Polyglycerin-Anlagerangsprodukte an Methylglucosid-Fettsäure- ester, Fettsäurealkanolamide und Fettsäureglucamide,
- C8-C22-Alkylmono- und -oligoglycoside und deren ethoxylierte Analoga, wobei Oli- gomerisierungsgrade von 1,1 bis 5, insbesondere 1,2 bis 2,0, und Glucose als Zuckerkomponente bevorzugt sind,
- Gemische aus Alkyl-(oligo)-glucosiden und Fettalkoholen zum Beispiel das im Han- del erhältliche Produkt Montano ' 68,
- Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
- Partialester von Polyolen mit 3-6 Kohlenstoffatomen mit gesättigten Fettsäuren mit 8 bis 22 C-Atomen,
Sterine. Als Sterine wird eine Gruppe von Steroiden verstanden, die am C-Atom 3 des Steroid-Gerüstes eine Hydroxylgruppe tragen und sowohl aus tierischem Gewebe (Zoosterine) wie auch aus pflanzlichen Fetten (Phytosterine) isoliert werden. Beispiele für Zoosterine sind das Cholesterin und das Lanosterin. Beispiele geeigneter Phytosterine sind Ergosterin, Stigmasterin und Sitosterin. Auch aus Pilzen und Hefen werden Sterine, die sogenannten Mykosterine, isoliert.
- Phospholipide. Hierunter werden vor allem die Glucose-Phospolipide, die z.B. als Lecithine bzw. Phospahtidylcholine aus z.B. Eidotter oder Pflanzensamen (z.B. Sojabohnen) gewonnen werden, verstanden.
- Fettsäureester von Zuckern und Zuckeralkoholen, wie Sorbit,
- Polyglycerine und Polyglycerinderivate wie beispielsweise Polyglycerinpoly-12-hy- droxystearat (Handelsprodukt Dehymuls® PGPH), - Lineare und verzweigte Fettsäuren mit 8 bis 30 C - Atomen und deren Na-, K-, Ammonium-, Ca-, Mg- und Zn - Salze.
Die erfindungsgemäßen Mittel enthalten die Emulgatoren bevorzugt in Mengen von 0,1 - 25 Gew.-%, insbesondere 0,5 - 15 Gew.-%, bezogen auf das gesamte Mittel.
Bevorzugt können die erfindungsgemäßen Zusammensetzungen mindestens einen nichtionogenen Emulgator mit einem HLB-Wert von 8 bis 18, gemäß den im Römpp-Lexikori Chemie (Hrg. J. Falbe, M.Regitz), 10. Auflage, Georg Thieme Verlag Stuttgart, New York, (1997), Seite 1764, aufgeführten Definitionen enthalten. Nichtionogene Emulgatoren mit einem HLB-Wert von 10 - 15 können erfindungsgemäß besonders bevorzugt sein.
Weiterhin können in den erfindungsgemäß verwendeten Zubereitungen Proteinhydrolysate und/oder Aminosäuren und deren Derivate (H) enthalten sein. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Unter dem Begriff Proteinhydrolysate werden erfindungsgemäß auch Totalhydrolysate sowie einzelne Aminosäuren und deren Derivate sowie Gemische aus verschiedenen Aminosäuren verstanden. Weiterhin werden erfindungsgemäß aus Aminosäuren und Aminosäurederivaten aufgebaute Polymere unter dem Begriff Proteinhydrolysate verstanden. Zu letzteren sind beispielsweise Polyalanin, Polyasparagin, Polyserin etc. zu zählen. Weitere Beispiele für erfindungsgemäß einsetzbare Verbindungen sind L-Alanyl- L-prolin, Polyglycin, Glycyl-L-glutamin oder D/L-Methionin-S-Methylsulfoniumchlorid. Selbstverständlich können erfindungsgemäß auch ß-Aminosäuren und deren Derivate wie ß-Alanin, Anthranilsäure oder Hippursäure eingesetzt werden. Das Molgeweicht der erfindungsgemäß einsetzbaren Proteinhydrolysate liegt zwischen 75, dem Molgewicht für Glycin, und 200000, bevorzugt beträgt das Molgewicht 75 bis 50000 und ganz besonders bevorzugt 75 bis 20000 Dalton. Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen oder marinen oder synthetischen Ursprungs eingesetzt werden.
Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Solche Produkte werden beispielsweise unter den Warenzeichen Dehylän® (Cognis), Promois® (Interorgana), Collapuron® (Cognis), Nutrilan® (Cognis), Gelita-Sol® (Deutsche Gelatine Fabriken Stoess & Co), Lexein® (Inolex) und Kerasol® (Croda) vertrieben.
Erfmdungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z. B. Soja-, Mandel-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Solche Produkte sind beispielsweise unter den Warenzeichen Gluadin® (Cognis), DiaMin® (Diamalt), Lexein® (Inolex), Hydrosoy® (Croda), Hydrolupin® (Croda), Hydrosesame® (Croda), Hydrotritium® (Croda) und Crotein® (Croda) erhältlich.
Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte. Solche Produkte werden beispielsweise unter den Bezeichnungen Lamepon® (Cognis), Lexein® (Inolex), Crolastin® (Croda) oder Crotein® (Croda) vertrieben.
Die Proteinhydrolysate oder deren Derivate sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
Weiterhin kann in einer bevorzugten Ausführungsform der Erfindung die Wirkung der Wirkstoffe (A) durch UV - Filter (I) gesteigert werden. Die erfindungsgemäß zu verwendenden UV-Filter unterliegen hinsichtlich ihrer Struktur und ihrer physikalischen Eigenschaften keinen generellen Einschränkungen. Vielmehr eignen sich alle im Kosmetikbereich einsetzbaren UV-Filter, deren Absoφtionsmaximum im UVA(315-400 nm)-, im UVB(280-315nm)- oder im UVC(<280 nm)-Bereich liegt. UV-Filter mit einem Absoφtionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
Die erfindungsgemäß verwendeten UV-Filter können beispielsweise ausgewählt werden aus substituierten Benzophenonen, p-Aminobenzoesäureestern, Diphenylacrylsäureestern, Zimtsäureestern, Salicylsäureestern, Benzimidazolen und o-Aminobenzoesäureestern.
Beispiele für erfmdungsgemäß verwendbar UV-Filter sind 4-Amino-benzoesäure, N,N,N- Trimethyl-4-(2-oxobom-3τylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexyl- salicylat (Homosalate), 2-Hydroxy-4-methoxy-benzophenon (Benzophenone-3; Uvinul®M 40, Uvasorb®MET, Neo Heliopan®BB, Eusolex®4360), 2-Phenylbenzimidazol-5-sulfon- säure und deren Kalium-, Natrium- und Triethanolaminsalze (Phenylbenzimidazole sulfonic acid; Parsol®HS; Neo Heliopan®Hydro), 3,36-(l,4-Phenylendimethylen)-bis(7,7- dimethyl-2-oxo-bicyclo-[2.2.1]hept-l-yl-methan-sulfonsäure) und deren Salze, l-(4-tert.- Butylphenyl)-3-(4-methoxyphenyl)-propan-l,3-dion (Butyl methoxydibenzoylmethane; Parsol®1789, Eusolex®9020), α-(2-Oxobom-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester (PEG-25 PABA; Uvinul®P 25), 4-Di- methylaminobenzoesäure-2-ethylhexylester (Octyl Dimethyl PABA; Uvasorb®DMO, Escalol®507, Eusolex®6007), Salicylsäure-2-ethylhexylester (Octyl Salicylat; Esca- lol®587, Neo Heliopan®OS, Uvinul®O18), 4-Methoxyzimtsäure-isopentylester (Isoamyl p-Methoxycinnamate; Neo Heliopan®E 1000), 4-Methoxyzimtsäure-2-ethylhexyl-ester (Octyl Methoxycinnamate; Parsol®MCX, Escalol®557, Neo Heliopan®AV), 2-Hydroxy-4- methoxybenzophenon-5-sulfonsäure und deren Natriumsalz (Benzophenone-4; Uvinul®MS 40; Uvasorb®S 5), 3-(4'-Methylbenzyliden)-D,L-Campher (4-Methylbenzyli- dene camphor; Parsol®5000, Eusolex®6300), 3-Benzyliden-campher (3-Benzylidene cam- phor), 4-Isopropylbenzylsalicylat, 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-l '-oxi)-l,3,5- triazin, 3-Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2- oxobom-3-ylidenmethyl]benzyl} -acrylamids, 2,4-Dihydroxybenzophenon (Benzophe- none-1; Uvasorb®20 H, Uvinul®400), l, -Diphenylacrylonitrilsäure-2-ethylhexyl-ester (Octocrylene; Eusolex®OCR, Neo Heliopan®Type 303, Uvinul®N 539 SG), o-Aminoben- zoesäure-menthylester (Menthyl Anthranilate; Neo Heliopan®MA), 2,2',4,4'-Tetrahy- droxybenzophenon (Benzophenone-2; Uvinul®D-50), 2,2'-Dihydroxy-4,4'-dimethoxy- benzophenon (Benzophenone-6), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon-5-natrium- sulfonat und 2-Cyano-3,3-diphenylacrylsäure-2'-ethylhexylester. Bevorzugt sind 4- Amino-benzoesäure, N,N,N-Trimethyl-4-(2-oxobom-3-ylidenmethyl)anilin-methylsulfat, 3,3,5 -Trimethyl-cyclohexylsalicylat, 2-Hydroxy-4-methoxy-benzophenon, 2-Phenylben- zimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, 3,3'-(l,4- Phenylendimethylen)-bis(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]hept-l-yl-methan-sulfon- säure) und deren Salze, l-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-l,3-dion, α- (2-Oxobom-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoe- säure-ethylester, 4-Dimethylaminobenzoesäure-2-ethylhexylester, Salicylsäure-2-ethyl- hexylester, 4-Methoxyzimtsäure-isoρentylester, 4-Methoxyzimtsäure-2-ethylhexyl-ester, 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz, 3-(4'-Methyl- benzyliden)-D,L-Campher, 3-Ben2yliden-campher5 4-Isopropylbenzylsalicylat, 2,4,6-Tri- anilmo-(p-carbo-2£-ethylhexyl- -oxi)-l,3,5-triazin, 3-Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)- [2-oxobom-3-ylidenmethyl]benzyl} -acrylamid. Erfindungsgemäß ganz besonders bevorzugt sind 2-Hydroxy-4-methoxy-benzophenon, 2- Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, 1 -(4-tert. -Butylphenyl)-3 -(4-methoxyphenyl)-propan- 1 ,3 -dion, 4-Me- thoxyzimtsäure-2-ethylhexyl-esterund 3-(4'-Methylbenzyliden)-D,L-Campher.
Bevorzugt sind solche UV-Filter, deren molarer Extinktionskoeffizient am Absoφtionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20000, liegt.
Weiterhin wurde gefunden, daß bei strukturell ähnlichen UV-Filtern in vielen Fällen die wasserunlösliche Verbindung im Rahmen der erfindungsgemäßen Lehre die höhere Wirkung gegenüber solchen wasserlöslichen Verbindungen aufweist, die sich von ihr durch eine oder mehrere zusätzlich ionische Gruppen unterscheiden. Als wasserunlöslich sind im Rahmen der Erfindung solche UV-Filter zu verstehen, die sich bei 20 °C zu nicht mehr als 1 Gew.-%, insbesondere zu nicht mehr als 0,1 Gew.-%, in Wasser lösen. Weiterhin sollten diese Verbindungen in üblichen kosmetischen Ölkomponenten bei Raumtempera- tur zu mindestens 0,1, insbesondere zu mindestens 1 Gew.-% löslich sein). Die Verwendung wasserunlöslicher UV-Filter kann daher erfindungsgemäß bevorzugt sein.
Gemäß einer weiteren Ausführungsform der Erfindung sind solche UV-Filter bevorzugt, die eine kationische Grappe, insbesondere eine quartäre A moniumgrappe, aufweisen.
Diese UV-Filter weisen die allgemeine Struktur U - Q auf.
Der Strukturteil U steht dabei für eine UV-Strahlen absorbierende Gruppe. Diese Grappe kann sich im Prinzip von den bekannten, im Kosmetikbereich einsetzbaren, oben genannten UV-Filtem ableiten, in dem eine Grappe, in der Regel ein Wasserstoffatom, des UV-Filters durch eine kationische Gruppe Q, insbesondere mit einer quartären Amino- funktion, ersetzt wird.
Verbindungen, von denen sich der Strukturteil U ableiten kann, sind beispielsweise substituierte Benzophenone,
- p-Aminobenzoesäureester, Diphenylacrylsäureester, Zimtsäureester, Salicylsäureester,
- Benzimidazole und o-Aminobenzoesäureester.
Strukturteile U, die sich vom Zimtsäureamid oder vom N,N-Dimethylamino-benzoesäu- reamid ableiten, sind erfindungsgemäß bevorzugt.
Die Strukturteile U können prinzipiell so gewählt werden, daß das Absoφtionsmaximum der UV-Filter sowohl im UVA(315-400 nm)-, als auch im UVB(280-315nm)- oder im UVC(<280 nm)-Bereich liegen kann. UV-Filter mit einem Absoφtionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt. Weiterhin wird der Strakturteil U, auch in Abhängigkeit von Strukturteil Q, bevorzugt so gewählt, daß der molare Extinktionskoeffizient des UV-Filters am Absoφtionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20000, liegt.
Der Strakturteil Q enthält als kationische Grappe bevorzugt eine quartäre Ammonium- grappe. Diese quartäre Ammoniumgrappe kann prinzipiell direkt mit dem Strukturteil U verbunden sein, so daß der Strukturteil U einen der vier Substituenten des positiv geladenen Stickstoffatomes darstellt. Bevorzugt ist jedoch einer der vier Substituenten am positiv geladenen Stickstoffatom eine Gruppe, insbesondere eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen, die als Verbindung zwischen dem Strukturteil U und dem positiv geladenen Stickstoffatom fungiert.
Vorteilhafterweise hat die Grappe Q die allgemeine Struktur -(CH2)χ-N+R1R2R3 X", in der x steht für eine ganze Zahl von 1 bis 4, R und R unabhängig voneinander stehen für C1-4-Alkylgruppen, R3 steht für eine C\ .22- Alkylgruppe oder eine Benzylgrappe und X" für ein physiologisch verträgliches Anion. Im Rahmen dieser allgemeinen Struktur steht x bevorzugt für die die Zahl 3, R1 und R2 jeweils für eine Methylgrappe und R3 entweder für eine Methylgruppe oder eine gesättigte oder ungesättigte, lineare oder verzweigte Kohlenwasserstoffkette mit 8 bis 22, insbesondere 10 bis 18, Kohlenstoffatomen.
Physiologisch verträgliche Anionen sind beispielsweise anorganische Anionen wie Halogenide, insbesondere Chlorid, Bromid und Fluorid, Sulfationen und Phosphationen sowie organische Anionen wie Lactat, Citrat, Acetat, Tartrat, Methosulfat und Tosylat.
Zwei bevorzugte UV-Filter mit kationischen Gruppen sind die als Handelsprodukte erhältlichen Verbindungen Zimtsäureamidopropyl-trimethylammoniumchlorid (Incro- quat®UV-283) und Dodecyl-dimethylaminobenzamidopropyl-dimethylammoniumtosylat (Escalol® HP 610).
Selbstverständlich umfaßt die erfindungsgemäße Lehre auch die Verwendung einer Kombination von mehreren UV-Filtem. Im Rahmen dieser Ausführungsform ist die Kombina- tion mindestens eines wasserunlöslichen UV-Filters mit mindestens einem UV-Filter mit einer kationischen Gruppe bevorzugt.
Die UV-Filter (I) sind in den erfmdungsgemäß verwendeten Mitteln üblicherweise in Mengen 0,1-5 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,4-2,5 Gew.-% sind bevorzugt.
Die Wirkung der erfindungsgemäßen Kombination kann weiterhin durch eine 2- Pyrrolidinon-5-carbonsäure und deren Derivate (J) gesteigert werden. Ein weiterer Gegenstand der Erfindung ist daher die Verwendung des Wirkstoffes in Kombination mit Derivaten der 2-Pyrrolidinon-5-carbonsäure. Bevorzugt sind die Natrium-, Kalium-, Calcium-, Magnesium- oder Ammoniumsalze, bei denen das Ammoniumion neben Wasserstoff eine bis drei C\- bis C - Alkylgruppen trägt. Das Natriumsalz ist ganz besonders bevorzugt. Die eingesetzten Mengen in den erfindungsgemäßen Mitteln betragen 0,05 bis 10 Gew.%, bezogen auf das gesamte Mittel, besonders bevorzugt 0,1 bis 5, und insbesondere 0,1 bis 3 Gew.%.
Ebenfalls als vorteilhaft hat sich die Kombination des Wirkstoffes (A) mit Vitaminen, Provitaminen und Vitaminvorstufen sowie deren Derivaten (K) erwiesen.
Dabei sind erfindungsgemäß solche Vitamine, Pro-Vitamine und Vitaminvorstufen bevorzugt, die üblicherweise den Gruppen A, B, C, E, F und H zugeordnet werden.
Zur Grappe der als Vitamin A bezeichneten Substanzen gehören das Retinol (Vitamin A\) sowie das 3,4-Didehydroretinol (Vitamin A2). Das ß-Carotin ist das Provitamin des Re- tinols. Als Vitamin A-Komponente kommen erfindungsgemäß beispielsweise Vitamin A- Säure und deren Ester, Vitamin A- Aldehyd und Vitamin A-Alkohol sowie dessen Ester wie das Palmitat und das Acetat in Betracht. Die erfindungsgemäß verwendeten Zubereitungen enthalten die Vitamin A-Komponente bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf die gesamte Zubereitung. Zur Vitamin B-Gruppe oder zu dem Vitamin B-Komplex gehören u. a.
- Vitamin \ (Thiamin)
- Vitamin B2 (Riboflavin)
- Vitamin B . Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nicotinsäureamid, das in den erfmdungsgemäß verwendetenen Mitteln bevorzugt in Mengen von 0,05 bis 1 Gew.-%, bezogen auf das gesamte Mittel, enthalten ist.
- Vitamin B5 (Pantothensäure, Panthenol und Pantolacton). Im Rahmen dieser Grappe wird bevorzugt das Panthenol und/oder Pantolacton eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. Einzelne Vertreter sind beispielsweise das Panthenoltriacetat, der Panthenolmonoethylether und dessen Monoacetat sowie die in der WO 92/13829 offenbarten kationischen Panthenolderivate. Die genannten Verbindungen des Vitamin B5-Typs sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 - 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 - 5 Gew.-% sind besonders bevorzugt.
- Vitamin B6 (Pyridoxin sowie Pyridoxamin und Pyridoxal).
Vitamin C (Ascorbinsäure). Vitamin C wird in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 3 Gew.-%, bezogen auf das gesamte Mittel eingesetzt. Die Verwendung in Form des Palmitinsäureesters, der Glucoside oder Phosphate kann bevorzugt sein. Die Verwendung in Kombination mit Tocopherolen kann ebenfalls bevorzugt sein.
Vitamin E (Tocopherole, insbesondere α-Tocopherol). Tocopherol und seine Derivate, worunter insbesondere die Ester wie das Acetat, das Nicotinat, das Phosphat und das Succinat fallen, sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
Vitamin F. Unter dem Begriff "Vitamin F" werden üblicherweise essentielle Fettsäuren, insbesondere Linolsäure, Linolensäure und Arachidonsäure, verstanden. Vitamin H. Als Vitamin H wird die Verbindung (3aS,4S, 6ai?)-2-Oxohexa- hydrothienol[3,4-d]-imidazol-4-valeriansäure bezeichnet, für die sich aber inzwischen der Trivialname Biotin durchgesetzt hat. Biotin ist in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,0001 bis 1,0 Gew.-%, insbesondere in Mengen von 0,001 bis 0,01 Gew.-% enthalten.
Bevorzugt enthalten die erfindungsgemäß verwendeten Mittel Vitamine, Provitamine und Vitaminvorstufen aus den Gruppen A, B, E und H.
Panthenol, Pantolacton, Pyridoxin und seine Derivate sowie Nicotinsäureamid und Biotin sind besonders bevorzugt.
Schließlich läßt sich die Wirkung auch durch den kombinierten Einsatz mit Pflanzenextrakten (L) steigern.
Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern der Pflanze herzustellen.
Hinsichtlich der erfindungsgemäß verwendbaren Pflanzenextrakte wird insbesondere auf die Extrakte hingewiesen, die in der auf Seite 44 der 3. Auflage des Leitfadens zur Inhaltsstoffdeklaration kosmetischer Mittel, herausgegeben vom Industrieverband Köφeφflege- und Waschmittel e.V. (IKW), Frankfurt, beginnenden Tabelle aufgeführt sind.
Erfindungsgemäß sind vor allem die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Henna, Kamille, Klettenwurzel, Schachtelhalm, Weißdom, Lindenblüten, Mandel, Aloe Vera, Fichtennadel, Roßkastanie, Sandelholz, Wacholder, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Malve, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng und Ingwerwurzel bevorzugt.
Besonders bevorzugt sind die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Lindenblüten, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Wiesenschaumkraut, Quendel, Schafgarbe, Hauhechel, Meristem, Ginseng und Ingwerwurzel.
Ganz besonders für die erfindungsgemäße Verwendung geeignet sind die Extrakte aus Grünem Tee, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi und Melone.
Als Extraktionsmittel zur Herstellung der genannten Pflanzenextrakte können Wasser, Alkohole sowie deren Mischungen verwendet werden. Unter den Alkoholen sind dabei niedere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Ethylenglykol und Propylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit Wasser, bevorzugt. Pflanzenextrakte auf Basis von Wasser/Propylenglykol im Verhältnis 1:10 bis 10:1 haben sich als besonders geeignet erwiesen.
Die Pflanzenextrakte können erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern sie in verdünnter Form eingesetzt werden, enthalten sie üblicherweise ca. 2 - 80 Gew.-% Aktivsubstanz und als Lösungsmittel das bei ihrer Gewinnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.
Weiterhin kann es bevorzugt sein, in den erfindungsgemäßen Mitteln Mischungen aus mehreren, insbesondere aus zwei, verschiedenen Pflanzenextrakten einzusetzen.
Zusätzlich kann es sich als vorteilhaft erweisen, wenn neben der erfindungsgemäßen Kombination Penetrationshilfsstoffe und/ oder Quellmittel (M) enthalten sind. Diese Hilfsstoffe sorgen für eine bessere Penetration von Wirkstoffen in die keratinische Faser oder helfen die keratinische Faser aufzuquellen. Hierzu sind beispielsweise zu zählen Harnstoff und Harnstoffderivate, Guanidin und dessen Derivate, Arginin und dessen Derivate, Wasserglas, Imidazol und Dessen Derivate, Histidin und dessen Derivate, Benzylalkohol, Glycerin, Glykol und Glykolether, Propylenglykol und Propylenglykolether, beispielsweise Propylenglykolmonoethylether, Carbonate, Hydrogencarbonate, Diole und Triole, und insbesondere 1,2-Diole und 1,3-Diole wie beispielsweise 1,2-Propandiol, 1,2-Pentandiol, 1,2-Hexandiol, 1,2-Dodecandiol, 1,3-Propandiol, 1,6-Hexandiol, 1,5-Pentandiol, 1,4-Butandiol.
Vorteilhaft im Sinne der Erfindung können zusätzlich kurzkettige Carbonsäuren (N) unterstützend mit der erfindungsgemäßen Kombination zusammenwirken. Unter kurzkettigen Carbonsäuren und deren Derivaten irή Sinne der Erfindung werden Carbonsäuren verstanden, welche gesättigt oder ungesättigt und/oder geradkettig oder verzweigt oder cyclisch und/oder aromatisch und/oder heterocyclisch sein können und ein Molekulargewicht kleiner 750 aufweisen. Bevorzugt im Sinne der Erfindung können gesättigte oder ungesättigte geradkettigte oder verzweigte Carbonsäuren mit einer Kettenlänge von 1 bis zu 16 C-Atomen in der Kette sein, ganz besonders bevorzugt sind solche mit einer Kettenlänge von 1 bis zu 12 C - Atomen in der Kette.
Die kurzkettigen Carbonsäuren im Sinne der Erfindung können ein, zwei, drei oder mehr Carboxygruppen aufweisen. Bevorzugt im Sinne der Erfindung sind Carbonsäuren mit mehreren Carboxygruppen, insbesondere Di- und Tricarbonsäuren. Die Carboxygruppen können ganz oder teilweise als Ester, Säureanhydrid, Lacton, Amid, Imidsäure, Lactam, Lactim, Dicarboximid, Carbohydrazid, Hydrazon, Hydroxam, Hydroxim, Amidin, Amidoxim, Nitril, Phosphon- oder Phosphatester vorliegen. Die erfindungsgemäßen Carbonsäuren können selbstverständlich entlang der Kohlenstoffkette oder des Ringgerüstes substituiert sein. Zu den Substituenten der erfindungsgemäßen Carbonsäuren sind beispielsweise zu zählen Cl-C8-Alkyl-, C2-C8-Alkenyl-, Aryl-, Aralkyl- und Aralkenyl-, Hydroxymethyl-, C2-C8-Hydroxyalkyl-,C2-C8-Hydroxyalkenyl-, Aminomethyl-, C2-C8- Aminoalkyl-, Cyano-, Formyl-, Oxo-, Thioxo-, Hydroxy-, Mercapto-, Amino-, Carboxy- oder hninograppen. Bevorzugte Substituenten sind C1-C8- Alkyl-, Hydroxymethyl-, Hydroxy-, Amino- und Carboxygruppen. Besonders bevorzugt sind Substituenten in α - Stellung. Ganz besonders bevorzugte Substituenten sind Hydroxy-, Alkoxy- und Amino- grappen, wobei die Aininofunktion gegebenenfalls durch Alkyl-, Aryl-, Aralkyl- und/oder Alkenylreste weiter substituiert sein kann. Weiterhin sind ebenfalls bevorzugte Carbonsäurederivate die Phosphon- und Phosphatester.
Als Beispiele für erfindungsgemäße Carbonsäuren seien genannt Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure, Pivalinsäure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Glycerinsäure, Glyoxylsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Propiolsäure, Crotonsäure, Isocrotonsäure, Elaidinsäure, Maleinsäure, Fumarsäure, Muconsäure, Citraconsäure, Mesaconsäure, Camphersäure, Benzoesäure, o,m,p- Phthalsäure, Naphthoesäure, Toluoylsäure, Hydratropasäure, Atropasäure, Zimtsäure, Isonicotinsäure, Nicotinsäure, Bicarbaminsäure, 4,4'-Dicyano-6,6'-bmicotinsäure, 8- Carbamoyloctansäure, 1,2,4-Pentantricarbonsäure, 2-Pyrrolcarbonsäure, 1,2,4,6,7- Napthalinpentaessigsäure, Malonaldehydsäure, 4-Hydroxy-phthalamidsäure, 1- Pyrazolcarbonsäure, Gallussäure oder Propantricarbonsäure, eine Dicarbonsäure ausgewählt aus der Gruppe, die gebildet wird durch Verbindungen der allgemeinen Fomiel (N-I),
Figure imgf000054_0001
in der Z steht für eine lineare oder verzweigte Alkyl- oder Alkenylgruppe mit 4 bis 12 Kohlenstoffatomen, n für eine Zahl von 4 bis 12 sowie eine der beiden Gruppen X und Y für eine COOH-Gruppe und die andere für Wasserstoff oder einen Methyl- oder Ethylrest, Dicarbonsäuren der allgemeinen Formel (N-I), die zusätzlich noch 1 bis 3 Methyl- oder Ethylsubstituenten am Cyclohexenring tragen sowie Dicarbonsäuren, die aus den Dicarbonsäuren gemäß Formel (N-I) formal durch Anlagerung eines Moleküls Wasser an die Doppelbindung im Cyclohexenring entstehen. Dicarbonsäuren der Formel (N-I) sind in der Literatur bekannt.
Ein Herstellungsverfahren ist beispielsweise der US-Patentschrift 3,753,968 zu entnehmen. Die deutsche Patentschrift 22 50 055 offenbart die Verwendung dieser Dicarbonsäuren in flüssigen Seifenmassen. Aus der deutschen Offenlegungsschrift 28 33 291 sind deodorierende Mittel bekannt, die Zink- oder Magnesiumsalze dieser Dicarbonsäuren enthalten. Schließlich sind aus der deutschen Offenlegungsschrift 35 03 618 Mittel zum Waschen und Spülen der Haare bekannt, bei denen durch Zusatz dieser Dicarbonsäuren eine merklich verbesserte haarkosmetische Wirkung der im Mittel enthaltenen wasserlöslichen ionischen Polymeren erhalten wird. Schließlich sind aus der deutschen Offenlegungsschrift 197 54 053 Mittel zur Haarbehandlung bekannt, welche pflegende Effekte aufweisen.
Die Dicarbonsäuren der Formel (N-I) können beispielsweise durch Umsetzung von mehrfach ungesättigten Dicarbonsäuren mit ungesättigten Monocarbonsäuren in Form einer Diels-Alder-Cyclisierang hergestellt werden. Üblicherweise wird man von einer mehrfach ungesättigten Fettsäure als Dicarbonsäurekomponente ausgehen. Bevorzugt ist die aus natürlichen Fetten und Ölen zugängliche Linolsäure. Als Monocarbonsäurekomponente sind insbesondere Acrylsäure, aber auch z.B. Methacrylsäure und Crotonsäure bevorzugt. Üblicherweise entstehen bei Reaktionen nach Diels-Alder Isomerengemische, bei denen eine Komponente im Überschuß vorliegt. Diese Isomerengemische können erfindungsgemäß ebenso wie die reinen Verbindungen eingesetzt werden.
Erfindungsgemäß einsetzbar neben den bevorzugten Dicarbonsäuren gemäß Formel (N-I) sind auch solche Dicarbonsäuren, die sich von den Verbindungen gemäß Formel (N-I) durch 1 bis 3 Methyl- oder Ethyl-Substituenten am Cyclohexylring unterscheiden oder aus diesen Verbindungen formal durch Anlagerung von einem Molekül Wasser an die Doppelbildung des Cyclohexenrings gebildet werden. Als erfindungsgemäß besonders wirksam hat sich die Dicarbonsäure(-mischung) erwiesen, die durch Umsetzung von Linolsäure mit Acrylsäure entsteht. Es handelt sich dabei um eine Mischung aus 5- und 6-Carboxy-4-hexyl-2-cyclohexen-l-octansäure. Solche Verbindungen sind kommerziell unter den Bezeichnungen Westvaco Diaeid® 1550 und Westvaco Diaeid® 1595 (Hersteller: Westvaco) erhältlich.
Neben den zuvor beispielhaft aufgeführten erfindungsgemäßen kurzkettigen Carbonsäuren selbst können auch deren physiologisch verträgliche Salze erfindungsgemäß eingesetzt werden. Beispiele für solche Salze sind die Alkali-, Erdalkali- , Zinksalze sowie Ammoniumsalze, worunter im Rahmen der vorliegenden Anmeldung auch die Mono-, Di- und Trimethyl-, -ethyl- und -hydroxyethyl-Ammoniumsalze zu verstehen sind. Ganz besonders bevorzugt können im Rahmen der Erfindung jedoch mit alkalisch reagierenden Aminosäuren, wie beispielsweise Arginin, Lysin, Omithin und Histidin, neutralisierte Säuren eingesetzt werden. Weiterhin kann es aus Formulierungsgründen bevorzugt sein, die Carbonsäure aus den wasserlöslichen Vertretern, insbesondere den wasserlöslichen Salzen, auszuwählen.
Weiterhin ist es erfindungsgemäß bevorzugt, Hydroxycarbonsäuren und hierbei wiederum insbesondere die Dihydroxy-, Trihydroxy- und Polyhydroxycarbonsäuren sowie die Dihydroxy-, Trihydroxy- und Polyhydroxy- di-, tri- und polycarbonsäuren gemeinsam mit dem Wirkstoff (A) einzusetzen. Hierbei hat sich gezeigt, daß neben den Hydroxycarbonsäuren auch die Hydroxycarbonsäureester sowie die Mischungen aus Hydroxycarbonsäuren und deren Estern als auch polymere Hydroxycarbonsäuren und deren Ester ganz besonders bevorzugt sein können. Bevorzugte Hydroxycarbonsäureester sind beispielsweise Vollester der Glycolsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Weitere grundsätzlich geeigneten Hydroxycarbonsäureester sind Ester der ß-Hydroxypropionsäure, der Tartronsäure, der D-Gluconsäure, der Zuckersäure, der Schleimsäure oder der Glucuronsäure. Als Alkoholkomponente dieser Ester eignen sich primäre, lineare oder verzweigte aliphatische Alkohole mit 8 - 22 C-Atomen, also z.B. Fettalkohole oder synthetische Fettalkohole. Dabei sind die Ester von C12-C15- Fettalkoholen besonders bevorzugt. Ester dieses Typs sind im Handel erhältlich, z.B. unter dem Warenzeichen Cosmacol® der EniChem, Augusta Industriale. Besonders bevorzugte Polyhydroxypolycarbonsäuren sind Polymilchsäure und Polyweinsäure sowie deren Ester.
Eine ganz besonders vielfältige und interessante kosmetische Wirkstoffgrappe sind Polyhydroxyverbmdungen. Die erfindungsgemäße Verwendung von
Polyhydroxyverbmdungen als Wirkstoff mit den anderen erfindungsgemäßen Komponenten kann daher besonders bevorzugt sein. Unter Polyhydroxyverbmdungen im Sinne der Erfindung werden alle Substanzen verstanden, welche die Definition in Römpp's Lexikon der Chemie, Version 2.0 der CD - ROM Ausgabe von 1999, Verlag Georg Thieme, erfüllen. Demnach sind unter Polyhydroxyverbmdungen organische Verbindungen mit mindestens zwei Hydroxygruppen zu verstehen. Insbesondere sind im Sinne der vorliegenden Erfindung hierunter zu verstehen:
- Polyole mit mindestens zwei Hydroxygruppen, und mit einer Kohlenstoffkette von 2 bis 30 Kohlenstoffatomenwie beispielsweise Trimethylolpropan,
Ethoxilate und/oder Propoxylate mit 1 bis 50 Mol Ethylenoxid und oder Propylenoxid der zuvor genannten Polyole,
- Kohlenhydrate, Zuckeralkohole und Zucker sowie deren Salze, insbesondere Monosaccharide, Disaccharide, Trisaccharide und Oligosaccharide, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen, sowie geschützt durch übliche und in der Literatur bekannte -OH - und -NH - Schutzgrappen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgrappe oder Acylgrappen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können,
- Aminodesoxyzucker, Desoxyzucker, Thiozucker, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen, sowie geschützt durch übliche und in der Literatur bekannte -OH - und -NH - Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgrappen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können,
Bevorzugt sind hierunter Monosaccharide mit 3 bis 8 C - Atomen, wie beispielsweise Triosen, Tetrosen, Pentosen, Hexosen, Heptosen und Octosen, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen sowie geschützt durch übliche und in der Literatur bekannte -OH - und -NH - Schutzgrappen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgrappen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können,
Weiterhin sind bevorzugt Oligosaccharide mit bis zu 50 Monomereinheiten, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen sowie geschützt durch übliche und in der Literatur bekannte -OH - und -NH - Schutzgrappen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgrappen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können.
Ganz besonders bevorzugte Polyole der vorliegenden Erfindung sind Polyole mit 2 bis 12 C-Atomen im Molekülgerüst. Diese Polyole können geradkettig, verzweigt, cyclisch und/oder ungesättigt sein. Die Hydroxygruppen sind dabei ganz besonders bevorzugt endständig benachbart oder endständig durch den Rest der Kette voneinander getrennt. Als Beispiele für diese Polyole seien genannt: Glykol, Polyethylenglykol bis zu einem Molgewicht bis zu 1000 Dalton, Neopentylglykol, Partialglycerinether mit einem Molgewicht bis zu 1000 Dalton, 1,2-Propandiol, 1,3-Propandiol, Glycerin, 1,2-Butandiol, 1,3-Butandiol, 1,4-Butandiol, 1,2,3-Butantriol, 1,2,4-Butantriol, Pentandiole, beispielsweise 1,2-Pentandiol, 1,5-Pentandiol, Hexandiole, 1,2-Hexandiol, 1,6-Hexandiol, 1,2,6-Hexantriol, 1,4-cyclo-Hexandiol, 1,2-cyclo-Hexandiol, Heptandiole, 1,2- Heptandiol, 1,7-Heptandiol, Oktandiole, 1,2-Oktandiol, 1,8-Oktandiol, 2-Ethyl-l,3- hexandiol, Octadienole, Decadienole, Dodekandiole, 1,2-Dodekandiol, 1,12-Dodekandiol, 1,12-Dodekandiol mit 10 Mol EO, Dodecadienole.
Weiterhin beispielhaft für die erfindungsgemäßen Polyole seien erwähnt Sorbit, Inosit, Mannit, Tetrite, Pentite, Hexite, Threit, Erythrit, Adonit, Arabit, Xylit, Dulcit, Erythrose, Threose, Arabinose, Ribose, Xylose, Lyxose, Glucose, Galactose, Mannose, Allose, Altrose, Gulose, Idose, Talose, Fructose, Sorbose, Psicose, Tegatose, Desoxyribose, Glu- cosamin, Galaktosamin, Rhamnose, Digitoxose, Thioglucose, Saccharose, Lactose, Treha- lose, Maltose, Cellobiose, Melibiose, Gestiobiose, Rutinose, Raffmose sowie Cellotriose. Weiterhin sei auf die einschlägige Fachliteratur wie beispielsweise Beyer- Walter, Lehr- buch der organischen Chemie, S. Hirzel Verlag Stuttgart, 19. Auflage, Abschnitt HI, Seiten 393 und folgende verwiesen.
Selbstverständlich umfaßt die erfindungsgemäße Lehre alle isomeren Formen, wie eis - trans - Isomere, Diastereomere, Epimere, Anomere und chirale Isomere.
Erfindungsgemäß ist es auch möglich, eine Mischung aus mehreren Polyolen (B) einzusetzen.
Die erfindungsgemäßen Polyole (B) sind in den Mitteln in Konzentrationen von 0,01 Gew.%» bis zu 20 Gew.%, vorzugsweise von 0,05 Gew.% bis zu 15 Gew.% und ganz besonders bevorzugt in Mengen von 0,1 Gew.% bis zu 10 Gew.% enthalten.
Falls gewünscht können die Endzubereitungen noch anorganische Salze als Füll- bzw. Stellmittel enthalten, wie beispielsweise Natriumsulfat, welches vorzugsweise in Mengen von 0 bis 10, insbesondere 1 bis 5 Gew.-% - bezogen auf Mittel - enthalten ist.
Der Verbraucher mag bei der Wahrnehmung der Formköφer, insbesondere hervorgerufen durch eine sphärische Gestalt des Formköφers, gegebenenfalls in Verbindung mit aromatischen Duftnoten, das erfmdungsgemäße Färbemittel mit einem Genußmittel wie z.B. Süsswaren in Verbindung bringen. Durch diese Assoziation kann, insbesondere bei Kindern, eine orale Aufnahme bzw. ein Herunterschlucken des Formköφers prinzipiell nicht ausgeschlossen werden. In einer bevorzugten Ausführangsform enthalten daher die erfindungsgemäßen Formköφer einen Bitterstoff, um ein Herunterschlucken bzw. eine akzidentielle Ingestion zu verhindern. Dabei sind erfindungsgemäß Bitterstoffe bevorzugt, die in Wasser bei 20 °C zu mindestens 5 g/1 löslich sind.
Hinsichtlich einer unerwünschten Wechselwirkung mit gegebenenfalls in dem Formköφer enthaltenen Duft-Komponenten, insbesondere einer Veränderung der vom Verbraucher wahrgenommenen Duftnote, haben die ionogenen Bitterstoffe sich den nichtionogenen als überlegen erwiesen. Ionogene Bitterstoffe, bevorzugt bestehend aus organischem(n) Kation(en) und organischem(n) Anion(en), sind daher für die erfindungsgemäßen Zubereitungen bevorzugt.
Erfindungsgemäß hervorragend geeignet als Bitterstoffe sind quartäre Ammoniumverbin- dungen, die sowohl im Kation als auch im Anion eine aromatische Grappe enthalten. Eine solche Verbindung ist das kommerziell z.B. unter den Warenzeichen Bitrex® und Indige- stin® erhältliche Benzyldiethyl((2,6-Xylylcarbamoyl)methyl)ammoniumbenzoat. Diese Verbindung ist auch unter der Bezeichnung Denatonium Benzoate bekannt.
Der Bitterstoff ist in den erfindungsgemäßen Formköφern in Mengen von 0,0005 bis 0,1 Gew.-%, bezogen auf den Formköφer, enthalten. Besonders bevorzugt sind Mengen von 0,001 bis 0,05 Gew.-%.
Neben dem erfindungsgemäß zwingend erforderlichen restrukturierenden Wirkstoff und den weiteren, oben genannten bevorzugten Komponenten können diese Zubereitungen prinzipiell alle weiteren, dem Fachmann für solche kosmetischen Mittel bekannten Komponenten enthalten.
Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise
- nichtionische Polymere wie beispielsweise Vinylpyrrolidon/Vinylacrylat-Copolymere, Polyvinylpyrrolidon und Vinylpyrrolidon/Vinylacetat-Copolymere und Polysiloxane,
- Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi ara- bicum, Karaya-Gummi, Johannisbrotkernmehl, Leinsamengummen, Dextrane, Cellulose-Derivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxymethylcellu- lose, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Tone wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z. B. Polyvinylalkohol,
- haarkonditionierende Verbindungen wie Phospholipide, beispielsweise Sojalecithin, Ei-Lecitin und Kephaline, sowie Silikonöle,
- Parfümöle, Dimethylisosorbid und Cyclodextrine, - Lösungsmittel und -Vermittler wie Ethanol, Isopropanol, Ethylenglykol, Propylenglykol, Glycerin und Diethylenglykol,
- symmetrische und unsymmetrische, lineare und verzweigte Dialkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C-Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n-undecylether und Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl-n- undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert- butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso- Pentyl-n-octylether und 2-Methyl-ρentyl-n-octylether,
- Fettalkohole, insbesondere lineare und/oder gesättigte Fettalkohole mit 8 bis 30 C- Atomen,
- Monoester von C8 bis C30 - Fettsäuren mit Alkoholen mit 6 bis 24 C-Atomen,
- faserstrukturverbessemde Wirkstoffe, insbesondere Mono-, Di- und Oligosaccharide, wie beispielsweise Glucose, Galactose, Fructose, Fruchtzucker und Lactose,
- konditionierende Wirkstoffe wie Paraffinöle, pflanzliche Öle, z. B. Sonnenblumenöl, Orangenöl, Mandelöl, Weizenkeimöl und Pfirsichkernöl sowie
- Phospholipide, beispielsweise Sojalecithin, Ei-Lecithin und Kephaline,
- quaternierte Amine wie Methyl- 1 -alkylamidoethyl-2-alkylimidazolinium-methosulfat, Entschäumer wie Silikone,
- Farbstoffe zum Anfärben des Mittels,
- Antischuppenwirkstoffe wie Piroctone Olamine, Zink Omadine und Climbazol,
- Wirkstoffe wie Allantoin und Bisabolol,
- Cholesterin,
- Konsistenzgeber wie Zuckerester, Polyolester oder Polyolalkylether,
- Fette und Wachse wie Walrat, Bienenwachs, Montanwachs und Paraffine,
- Fettsäurealkanolamide,
- Komplexbildner wie EDTA, NTA, ß-Alanindiessigsäure und Phosphonsäuren,
- Quell- und Penetrationsstoffe wie primäre, sekundäre und tertiäre Phosphate,
- Trübungsmittel wie Latex, Styrol/PVP- und Styrol/Acrylamid-Copolymere
- Perlglanzmittel wie Ethylenglykolmono- und -distearat sowie PEG-3-distearat,
- Pigmente, - Reduktionsmittel wie z. B. Thioglykolsäure und deren Derivate, Thiomilchsäure, Cy- steamin, Thioäpfelsäure und α-Mercaptoethansulfonsäure,
- Treibmittel wie Propan-Butan-Gemische, N2O, Dimethylether, CO2 und Luft,
- Antioxidantien.
Bezüglich weiterer fakultativer Komponenten sowie die eingesetzten Mengen dieser Komponenten wird ausdrücklich auf die dem Fachmann bekannten einschlägigen Handbücher, z. B. die oben genannte Monographie von K. H. Schrader verwiesen.
Die erfindungsgemäßen Formköφer können jedwede geometrische Form annehmen, wie beispielsweise konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhomboedrische Formen. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformβn, Bäume, Wolken usw. können realisiert werden. Die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförrnige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt und Formköφer mit sphärischer Geometrie sind erfindungsgemäß bevorzugt. Besonders bevorzugt sind Formköφer in Gestalt sphärischer Geometrie.
Die zylinderförrnige Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser größer 1. Weist der Basisformköφer Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführangsform mit abgerundeten Ecken und abgeschrägten ("angefasten") Kanten bevorzugt.
In einer ersten bevorzugten Ausführungsform können die portionierten Preßlinge dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der kosmetische Wirkstoffe entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbrachstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Die Ausbildung der portionierten Preßlinge als Tabletten in Zylinder- oder Quaderform kann zweckmäßig sein, wobei ein Durchmesser/Höhe-Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydraulikpressen, Exzenteφressen oder Rundläufeφressen sind geeignete Vorrichtungen insbesondere zur Herstellung derartiger Preßlinge.
Die bevorzugte Raumform der erfindungsgemäßen Formköφer weist eine rechteckige Grundfläche auf, wobei die Höhe der Formköφer kleiner ist als die kleinere Rechteckseite der Grundfläche. Abgerundete Ecken sind bei dieser Angebotsform bevorzugt.
Ein weiterer bevorzugter Formköφer, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Riegel" an den Sollbrachstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und derartig portioniert zum Einsatz kommen können. Dieses Prinzip des "riegelförmigen" Formköφers kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden.
Enthalten die erfindungsgemäßen Formköφer mindestens zwei kosmetische Wirkstoffe, kann es in einer weiteren Ausführangsform vorteilhaft sein, die verschiedenen Komponenten nicht ausschließlich zu einer einheitlichen Tablette zu veφressen. Bei der Tablettierung werden in dieser Ausführangsform Formköφer erhalten, die mehrere Schichten, also mindestens zwei Schichten, aufweisen. Dabei ist es auch möglich, daß diese verschiedenen Schichten unterschiedliche Lösegeschwindigkeiten aufweisen. Hieraus können vorteilhafte anwendungstechnische Eigenschaften der Formköφer resultieren. Falls beispielsweise Komponenten in den Formköφern enthalten sind, die sich wechselseitig negativ beeinflussen, so ist es möglich, die eine Komponente in der schneller löslichen Schicht zu integrieren und die andere Komponente in eine langsamer lösliche Schicht einzuarbeiten, so daß die Komponenten nicht bereits während des Lösevorgangs miteinander reagieren. Der Schichtaufbau der Formköφer kann dabei sowohl stapelartig erfolgen, wobei ein Lösungsvorgang der inneren Schicht(en) an den Kanten des Formköφers bereits dann erfolgt, wenn die äußeren Schichten noch nicht vollständig gelöst sind. Bei der stapeiförmigen Anordnung kann die Stapelachse beliebig zur Tablettenachse angeordnet sein. Die Stapelachse kann also beispielsweise bei einer zylinderförmigen Tablette parallel oder senkrecht zur Höhe des Zylinders liegen.
Es kann aber auch gemäß einer weiteren Ausführungsform bevorzugt sein, wenn eine vollständige Umhüllung der inneren Schicht(en) durch die jeweils weiter außen liegende(n) Schicht(en) erreicht wird, was zu einer Verhinderung der frühzeitigen Lösung von Bestandteilen der inneren Schicht(en) führt. Bevorzugt sind Formköφer, bei denen die Schichten mit den verschiedenen Wirkstoffen sich umhüllen. Beispielsweise sei eine Schicht (A) vollständig von der Schicht (B) und diese wiederum vollständig von der Schicht (C) umhüllt. Ebenso können Formköφer bevorzugt sein, bei denen z.B. die Schicht (C) vollständig von der Schicht (B) und diese wiederum vollständig von der Schicht (A) umhüllt ist.
Ähnliche Effekte lassen sich auch durch Beschichtung ("coating") einzelner Bestandteile der zu veφressenden Zusammensetzung oder des gesamten Formköφers erreichen. Hierzu können die zu beschichtenden Köφer beispielsweise mit wäßrigen Lösungen oder Emulsionen bedüst werden, oder aber über das Verfahren der Schmelzbeschichtung einen Überzug erhalten.
Die erfindungsgemäß hergestellten (Mulden)-Formköφer können ganz oder teilweise mit einer Beschichtung versehen werden. Verfahren, in denen eine Nachbehandlung im Aufbringen einer Coatingschicht auf die Formköφerfläche(n), in der/denen sich die befüllte(n) Mulde(n) befinden, oder im Aufbringen einer Coatingschicht auf den gesamten Formköφer besteht, sind erfindungsgemäß bevorzugt. Nach dem Veφressen weisen die Formköφer eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formköφer kann über die Meßgröße der diametralen Brachbeanspruchung erfaßt werden. Diese ist bestimmbar nach
2P σ = πDt
Hierin steht σ für die diametrale Brachbeansprachung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formköφer ausgeübten Druck führt, der den Brach des Formköφers verursacht, D ist der Formköφerdurchmesser in Meter und t ist die Höhe der Formköφer.
Die Formköφer der vorliegenden Erfindung weisen bevorzugterweise eine Dichte von
0,3g/cm3 bis 2,0g/cm3, insbesondere von 0,5g/cm3 bis 1, lg/cm .
Desweiteren können die erfindungsgemäßen Formköφer aus einem, mit dem Begriff "Basisformköφer" beschriebenen, an sich durch bekannte Tablettiervorgänge hergestellten Forrnköφer bestehen, der eine Mulde aufweist. Bevorzugterweise wird der Basisformköφer zuerst hergestellt und der weitere vβφreßte Teil in einem weiteren Arbeitsschritt auf bzw. in diesen Basisformköφer auf- bzw. eingebracht. Das resultierende Produkt wird nachstehend mit dem Oberbegriff "Muldenformköφer" oder "Muldentablette" bezeichnet.
Der Basisformköφer kann erfindungsgemäß prinzipiell alle realisierbaren Raumformen annehmen. Besonders bevorzugt sind die bereits oben genannten Raumformen. Die Form der Mulde kann frei gewählt werden, wobei erfindungsgemäß Formköφer bevorzugt sind, in denen mindestens eine Mulde eine konkave, konvexe, kubische, tetragonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig-prismatische sowie rhombohedrische Form annehmen kann. Auch völlig irreguläre Muldenformen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Wie auch bei den Basisformköφem sind Mulden mit abgerundeten Ecken und Kanten oder mit abgerundeten Ecken und angefasten Kanten bevorzugt.
Die Größe der Mulde im Vergleich zum gesamten Formköφer richtet sich nach dem gewünschten Verwendungszweck der Formköφer. Je nachdem, ob im zweiten veφreßten Teil eine geringere oder größere Menge an Aktivsubstanz enthalten sein soll, kann die Größe der Mulde variieren. Unabhängig vom Verwendungszweck sind Formköφer bevorzugt, bei denen das Gewichtsverhältnis von Basisformköφer zu Muldenfüllung im Bereich von 1:1 bis 100:1, vorzugsweise von 2:1 bis 80:1, besonders bevorzugt von 3:1 bis 50:1 und insbesondere von 4:1 bis 30:1 beträgt.
Ähnliche Aussagen lassen sich zu den Oberflächenanteilen machen, die der Basisformköφer bzw. die Muldenfüllung an der Gesamtoberfläche des Formköφers ausmachen. Hier sind Fom köφer bevorzugt, bei denen die Oberfläche der eingepreßten Muldenfüllung 1 bis 25 %, vorzugsweise 2 bis 20 %, besonders bevorzugt 3 bis 15 % und insbesondere 4 bis 10 % der Gesamtoberfläche des befüllten Basisformköφers ausmacht.
Hat beispielsweise der Gesamtformköφer Abmessungen von 20 x 20 x 40 mm und somit eine Gesamtoberfläche von 40 cm2, so sind Muldenfüllungen bevorzugt, die eine Oberfläche von 0,4 bis 10 cm , vorzugsweise 0,8 bis 8 cm , besonders bevorzugt von 1,2 bis 6 cm und insbesondere von 1,6 bis 4 cm aufweisen.
Die Muldenfüllung und der Basisformköφer sind vorzugsweise optisch unterscheidbar eingefärbt. Neben der optischen Differenzierung weisen Muldentabletten anwendungstechnische Vorteile einerseits durch unterschiedliche Löslichkeiten der verschiedenen Bereiche andererseits aber auch durch die getrennte Lagerung der Wirkstoffe in den verschiedenen Formköφerbereichen auf.
Formköφer, bei denen sich die eingepreßte Muldenfüllung langsamer löst als der Basisformköφer, sind erfindungsgemäß bevorzugt. Durch Inkoφoration bestimmter Bestandteile kann einerseits die Löslichkeit der Muldenfüllung gezielt variiert werden, andererseits kann die Freisetzung bestimmter Inhaltsstoffe aus der Muldenfüllung zu Vorteilen im Anwendungsprozeß führen.
Es kann erfindungsgemäß bevorzugt sein, einzelne Wirkstoffe vor ihrer Einarbeitung in den Formköφer separat zu verkapseln; so ist es beispielsweise denkbar, besonders reaktive Komponenten oder auch die Duftstoffe in verkapselter Form einzusetzen.
Die Herstellung der erfindungsgemäßen Formköφer erfolgt zunächst durch das trockene Vermischen der Bestandteile, die ganz oder teilweise vorgranuliert sein können, und anschließendes Informbringen, insbesondere Veφressen zu Tabletten, wobei auf bekannte Verfahren zurückgegriffen werden kann. Zur Herstellung der erfindungsgemäßen Formköφer wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formköφers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formköφerdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formköφers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt, und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formköφer mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierang wird der fertige Formköφer durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formköφers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.
Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfachoder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Drackaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Veφressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenteφressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Oberbzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Beruhen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdrackstücke, Niederzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Drackaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Drackrollen geschieht.
Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formköφer werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Veφressen benutzt werden. Die Durchsätze modemer Rundlauftablettenpressen betragen über eine Million Formköφer pro Stunde.
Bei der Tablettierung mit Rundläufeφressen hat es sich als vorteilhaft erwiesen, die Tablettierung mit möglichst geringen Gewichtschwankungen der Tablette durchzuführen. Auf diese Weise lassen sich auch die Härteschwankungen der Tablette reduzieren. Geringe Gewichtschwankungen können auf folgende Weise erzielt werden:
- Verwendung vori Kunststoffeinlagen mit geringen Dickentoleranzen
- Geringe Umdrehungszahl des Rotors
- Große Füllschuhe
- Abstimmung des Füllschuhflügeldrehzahl auf die Drehzahl des Rotors
- Füllschuh mit konstanter Pulverhöhe
- Entkopplung von Füllschuh und Pulvervorlage Zur Verminderung von Stempelanbackungen bieten sich sämtliche aus der Technik bekannte Antihaftbeschichtungen an. Besonders vorteilhaft sind Kunststoffbeschichtungen, Kunststoffeinlagen oder Kunststoffstempel. Auch drehende Stempel haben sich als vorteilhaft erwiesen, wobei nach Möglichkeit Ober- und Unterstempel drehbar ausgeführt sein sollten. Bei drehenden Stempeln kann auf eine Kunststoffeinlage in der Regel verzichtet werden. Hier sollten die Stempeloberflächen elektropoliert sein.
Es zeigte sich weiterhin, daß lange Preßzeiten vorteilhaft sind. Diese können mit Druckschienen, mehreren Drackrollen oder geringen Rotordrehzahlen eingestellt werden. Da die Härteschwankungen der Tablette durch die Schwankungen der Preßkräfte verursacht werden, sollten Systeme angewendet werden, die die Preßkraft begrenzen. Hier können elastische Stempel, pneumatische Kompensatoren oder federnde Elemente im Kraftweg eingesetzt werden. Auch kann die Druckrolle federnd ausgeführt werden.
Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Farm Instruments Company, Houston, Texas (USA), Hofer GmbH, Weil, Hom & Noack Pharmatechnik GmbH, Worms, TMA Veφackungssysteme GmbH Viersen, KTLIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen AG, Berlin, sowie Ro aco GmbH, Worms. Weitere Anbieter sind beispielsweise Dr. Herbert Pete, Wien (AT), Mapag Maschinenbau AG, Bern (CH), BWI Manesty, Liveφool (GB), I. Holand Ltd., Nottingham (GB), Courtoy N.V., Halle (BE/LU) sowie Mediopharm Kamnik (SI). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D. Tablettierwerkzeuge sind beispielsweise von den Firmen Adams Tablettierwerkzeuge, Dresden, Wilhelm Fett GmbH, Schwarzenbek, Klaus Hammer, Solingen, Herber % Söhne GmbH, Hamburg, Hofer GmbH, Weil, Hom & Noack, Pharmatechnik GmbH, Worms, Ritter Pharamatechnik GmbH, Hamburg, Romaco, GmbH, Worms und Notter Werkzeugbau, Tamm erhältlich. Weitere Anbieter sind z.B. die Senss AG, Reinach (CH) und die Medicopharm, Kamnik (SI). Das Verfahren zur Herstellung der Formköφer ist aber nicht darauf beschränkt, daß lediglich ein teilchenformiges Vorgemisch zu einem Formköφer veφreßt wird. Vielmehr läßt sich das Verfahren auch dahingehend erweitem, daß man in an sich bekannter Weise mehrschichtige Formköφer herstellt, indem man zwei oder mehrere Vorgemische bereitet, die aufeinander veφreßt werden. Hierbei wird das zuerst eingefüllte Vorgemisch leicht vorveφreßt, um eine glatte und parallel zum Formköφerboden verlaufende Oberseite zu bekommen, und nach Einfüllen des zweiten Vorgemischs zum fertigen Formköφer endveφreßt. Bei drei- oder mehrschichtigen Formköφem erfolgt nach jeder Vorgemisch-Zugabe eine weitere Vorveφressung, bevor nach Zugabe des letzten Vorgemischs der Formköφer endveφreßt wird.
Die Veφressung der teilchenförmigen Zusammensetzung in die Mulde kann analog zur Herstellung der Basisformköφer auf Tablettenpressen erfolgen. Bevorzugt ist eine Verfahrensweise, bei der erst die Basisformköφer mit Mulde hergestellt, dann befüllt und anschließend erneut veφreßt werden. Dies kann durch Ausstoß der Basisformköφer aus einer ersten Tablettenpresse, Befüllen und Transport in eine zweite Tablettenpresse geschehen, in der die Endveφressung erfolgt. Alternativ kann die Endveφressung auch durch Druckrollen, die über die auf einem Transportband befindlichen Formköφer rollen, erfolgen. Es ist aber auch möglich, eine Rundläufertablettenpresse mit unterschiedlichen Stempelsätzen zu versehen, so das ein erster Stempelsatz Vertiefungen in die Formköφer einpreßt und der zweite Stempelsatz nach Befüllung durch Nachveφressung für eine plane Formköφeroberfläche sorgt.
Die erfindungsgemäßen Formköφer können nach der Herstellung veφackt werden, wobei sich der Einsatz bestimmter Veφackungssysteme besonders bewährt hat, da diese Veφackungssysteme einerseits die Lagerstabilität der Inhaltsstoffe erhöhen, andererseits gegebenenfalls aber auch die Langzeithaftung der Muldenfüllung deutlich verbessern. Der Begriff "Veφackungssystem" kennzeichnet dabei im Rahmen der vorliegenden Erfindung immer die Primärveφackung der Formköφer, d.h. die Veφackung, die an ihrer Innenseite direkt mit der Formköφeroberfläche in Kontakt ist. An eine optionale Sekundärveφackung werden keinerlei Anforderungen gestellt, so daß hier alle üblichen Materialien und Systeme eingesetzt werden können.
Erfindungsgemäß bevorzugt sind Veφackungssysteme, die nur eine geringe Feuchtigkeitsdurchlässigkeit aufweisen. Auf diese Weise läßt sich das Färbevermögen der erfindungsgemäßen Formköφer über einen längeren Zeitraum erhalten, auch wenn beispielsweise hygroskopische Komponenten in den Formköφern eingesetzt werden. Besonders bevorzugt sind Veφackungssysteme, die eine Feuchtigkeits- dampfdurchlässigkeitsrate von 0,1 g/m2/Tag bis weniger als 20 g/m2/Tag aufweist, wenn das Veφackungssystem bei 23°C und einer relativen Gleichgewichtsfeuchtigkeit von 85% gelagert wird. Die genannten Temperatur- und Feuchtigkeitsbedingungen sind die Prüfbedingungen, die in der DDSf-Norm 53122 genannt werden, wobei laut DTN 53122 minimale Abweichungen zulässig sind (23 ± 1°C, 85 ± 2% rel. Feuchte). Die Feuchtigkeitsdampfdurchlässigkeitsrate eines gegebenen Veφackungssystems bzw. Materials läßt sich nach weiteren Standardmethoden bestimmen und ist beispielsweise auch im ASTM-Standard E-96-53T ("Test for measuring Water Vapor transmission of Materials in Sheet form") und im TAPPI Standard T464 m-45 ("Water Vapor Permeability of Sheet Materials at high temperature an Humidity") beschrieben. Das Meßprinzip gängiger Verfahren beruht dabei auf der Wasseraufhahme von wasserfreiem Calciumchlorid, welches in einem Behälter in der entsprechenden Atmosphäre gelagert wird, wobei der Behälter an der Oberseite mit dem zu testenden Material verschlossen ist. Aus der Oberfläche des Behälters, die mit dem zu testenden Material verschlossen ist (Permeationsfläche), der Gewichtszunahme des Calciumchlorids und der Expositionszeit läßt sich die Feuchtigkeitsdampfdurchlässigkeitsrate nach
-__.-, 2244--1100000000 xx \\ 2 1
FDDR = \glm I24h\
A Lδ J
berechnen, wobei A die Fläche des zu testenden Matenals in cm , x die Gewichtszunahme des Calciumchlorids in g und y die Expositionszeit in h bedeutet. Die relative Gleichgewichtsfeuchtigkeit, oft als "relative Luftfeuchtigkeit" bezeichnet, beträgt bei der Messung der Feuchtigkeitsdampfdurchlässigkeitsrate im Rahmen der vorliegenden Erfindung 85%> bei 23°C. Die Aufnahmefähigkeit von Luft für Wasserdampf steigt mit der Temperatur bis zu einem jeweiligen Höchstgehalt, dem sogenannten Sättigungsgehalt, an und wird in g/m angegeben. So ist beispielsweise 1 m Luft von 17° mit 14,4 g Wasserdampf gesättigt, bei einer Temperatur von 11° liegt eine Sättigung schon mit 10 g Wasserdampf vor. Die relative Luftfeuchtigkeit ist das iri Prozent ausgedrückte Verhältnis des tatsächlich vorhandenen Wasserdampf-Gehalts zu dem der herrschenden Temperatur entsprechenden Sättigungs-Gehalt. Enthält beispielsweise Luft von 17° 12 g/m3 Wasserdampf, dann ist die relative Luftfeuchtigkeit = (12/14,4)T00 = 83%. Kühlt man diese Luft ab, dann wird die Sättigung (100% r. L.) beim sogenannten Taupunkt (im Beispiel: 14°) erreicht, d.h., bei weiterem Abkühlen bildet sich ein Niederschlag in Form von Nebel (Tau). Zur quantitativen Bestimmung der Feuchtigkeit benutzt man Hygrometer und Psychrometer.
Die relative Gleichgewichtsfeuchtigkeit von 85% bei 23°C läßt sich beispielsweise in Laborkammern mit Feuchtigkeitskontrolle je nach Gerätetyp auf +/- 2%» r.L. genau einstellen. Auch über gesättigten Lösungen bestimmter Salze bilden sich in geschlossenen Systemen bei gegebener Temperatur konstante und wohldefinierte relative Luftfeuchtigkeiten aus, die auf dem Phasen-Gleichgewicht zwischen Partialdruck des Wassers, gesättigter Lösung und Bodenköφer beruhen.
Die Kombinationen aus Formköφer und Veφackungssystem können selbstverständlich ihrerseits in Sekundärveφackungen, beispielsweise Kartonagen oder Trays, veφackt werden, wobei an die Sekundärveφackung keine weiteren Anforderungen gestellt werden müssen. Die Sekundärveφackung ist demnach möglich, aber nicht notwendig.
Das Veφackungssystem umschließt je nach Ausführungsform der Erfindung einen oder mehrere Formköφer. Es ist dabei erfindungsgemäß bevorzugt, entweder einen Formköφer derart zu gestalten, daß er eine Anwendungseinheit des Färbemittels umfaßt, und diesen Formköφer einzeln zu veφacken, oder die Zahl an Formköφem in eine Veφackungseinheit einzupacken, die in Summe eine Anwendungseinheit umfaßt. Dieses Prinzip läßt sich selbstverständlich erweitem, so daß erfindungsgemäß Kombinationen auch drei, vier, fünf oder noch mehr Formköφer in einer Veφackungseinheit enthalten können. Selbstverständlich können zwei oder mehr Formköφer in einer Veφackung unterschiedliche Zusammensetzungen aufweisen. Auf diese Weise ist es möglich, bestimmte Komponenten räumlich voneinander zu trennen, um beispielsweise Stabilitätsprobleme zu vermeiden.
Das Veφackungssystem der erfindungsgemäßen Kombination kann aus den unterschiedlichsten Materialien bestehen und beliebige äußere Formen annehmen. Aus ökonomischen Gründen und aus Gründen der leichteren Verarbeitbarkeit sind allerdings Veφackungssysteme bevorzugt, bei denen das Veφackungsmaterial ein geringes Gewicht hat, leicht zu verarbeiten und kostengünstig sowie ökologisch verträglich ist.
In einer ersten erfindungsgemäß bevorzugten Kombinationen besteht das Veφackungssystem aus einem Sack oder Beutel aus einschichtigem oder laminiertem Papier und/oder Kunststoffolie. Dabei können die Formköφer unsortiert, d.h. als lose Schüttung, in einen Beutel aus den genannten Materialien gefüllt werden. Es ist aber aus ästhetischen Gründen und zur Sortierung der Kombinationen in Sekundärveφackungen bevorzugt, die Formköφer einzeln oder zu mehreren sortiert in Säcke oder Beutel zu füllen. Diese Veφackungssystme können dann - wiederum vorzugsweise sortiert - optional in Umveφackungen veφackt werden, was die kompakte Angebotsform des Formköφers unterstreicht.
Die bevorzugt als Veφackungssystem einzusetzenden Säcke bzw. Beutel aus einschichtigem oder laminiertem Papier bzw. Kunststoffolie können auf die unterschiedlichste Art und Weise gestaltet werden, beispielsweise als aufgeblähte Beutel ohne Mittelnaht oder als Beutel mit Mittelnaht, welche durch Hitze (Heißverschmelzen), Klebstoffe oder Klebebänder verschlossen werden. Einschichtige Beutel- bzw. Sackmaterialien sind die bekannten Papiere, die gegebenenfalls imprägniert sein können, sowie Kunststoffolien, welche gegebenenfalls coextradiert sein können. Kunststoffolien, die im Rahmen der vorliegenden Erfindung als Veφackungssystem eingesetzt werden können, sind beispielsweise in Hans Domininghaus "Die Kunststoffe und ihre Eigenschaften ", 3. Auflage, VDI Verlag, Düsseldorf, 1988, Seite 193, angegeben. Die dort gezeigte Abbildung 111 gibt gleichzeitig Anhaltspunkte zur Wasserdampfdurchlässigkeit der genannten Materialien.
Obwohl es möglich ist, neben den genannten Folien bzw. Papieren auch wachsbeschichtete Papiere in Form von Kartonagen als Veφackungssystem für die Formköφer einzusetzen, ist es im Rahmen der vorliegenden Erfindung bevorzugt, wenn das Veφackungssystem keine Kartons aus wachsbeschichtetem Papier umfaßt.
An die optionale Sekundärveφackung werden keinerlei Anforderungen gestellt, so daß hier alle üblichen Materialien und Systeme eingesetzt werden können.
Ebenfalls bevorzugt sind Ausführungsformen, bei denen das Veφackungssystem wiederverschließbar ausgeführt ist. Es hat sich beispielsweise als praktikabel erwiesen, als Veφackungssystem ein wiederverschließbares Röhrchen aus Glas, Kunststoff oder auch Metall zu verwenden. Auf diese Weise ist es möglich, die Dosierbarkeit der Haarfärbeprodukte zu optimieren, so daß der Verbraucher beispielsweise angeleitet werden kann, pro definierter Haarlängeneinheit jeweils einen Formköφer zu verwenden. Auch Veφackungssysteme, die eine Microperforation aufweisen, lassen sich erfindungsgemäß mit Vorzug realisieren.
Ein zweiter Gegenstand der Erfindung ist ein Verfahren zur kosmetischen Behandlung von keratinhaltigen Fasern, worin
(I) ein oder mehrere erfindungsgemäße Formköφer in einem Medium M unter Bildung der Zubereitung A gelöst werden, (U) die resultierende Zubereitung A mit einer Zubereitung B zu einer gebrauchsfertigen
Anwendungsmischung AN vermischt wird, (in) die Anwendungsmischung AN auf die Fasern aufgetragen und
(IV) nach einer Einwirkzeit wieder abgespült wird. In einer ersten Ausführungsform ist das Medium M bevorzugt ein Gel oder eine O/W- Emulsion oder eine W/O-Emulsion. Das Medium M hat dabei eine Viskosität von 500 -
50000 mPa-s, besonders bevorzugt von 500 - 25000 mPa-s, ganz besonders bevorzugt von
500 - 15000 mPa-s (Brookfield RVT-Viskosimeter/20 °C/Sρindel 4/20 rpm).
Die Herstellung der unter Einsatz der erfindungsgemäßen Sprengmittel erhältlichen Waschmitteltabletten erfolgt in der Regel durch Tablettierang bzw. Preßagglomerierang. Die erhaltenen teilchenformigen Preßagglomerate können entweder direkt als Waschmittel eingesetzt oder zuvor nach üblichen Methoden nachbehandelt und/oder aufbereitet werden. Zu den üblichen Nachbehandlungen zählen beispielsweise Abpuderungen mit feinteiligen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, wodurch das Schüttgewicht im allgemeinen weiter erhöht wird. Eine bevorzugte Nachbehandlung stellt jedoch auch die Verfahrensweise gemäß den deutschen Patentanmeldungen DE 19524287 AI und DE 19547457 AI dar, wobei staubförmige oder zumindest feinteilige Inhaltsstoffe (die sogenannten Feinanteile) an die erfindungsgemäß hergestellten teilchenformigen Verfahrensendprodukte, welche als Kern dienen, angeklebt werden und somit Mittel entstehen, welche diese sogenannten Feinanteile als Außenhülle aufweisen. Vorteilhafterweise geschieht dies wiederum durch eine Schmelzagglomeration. Zur Schmelzagglomerierung der Feinanteile an wird ausdrücklich auf die Offenbarung in den deutschen Patentanmeldungen DE 19524287 AI und DE 19547457 AI verwiesen. In der bevorzugten Ausführungsform der Erfindung liegen die festen Waschmittel in Tablettenform vor, wobei diese Tabletten insbesondere aus lagerund transporttechnischen Gründen vorzugsweise abgerundete Ecken und Kanten aufweisen. Die Grundfläche dieser Tabletten kann beispielsweise kreisförmig oder rechteckig sein. Mehrschichtentabletten, insbesondere Tabletten mit 2 oder 3 Schichten, welche auch farblich verschieden sein können, sind vor allem bevorzugt. Blau-weiße oder grün-weiße oder blau-grün-weiße Tabletten sind dabei besonders bevorzugt. Die Tabletten können dabei auch gepreßte und ungepreßte Anteile enthalten. Formköφer mit besonders vorteilhafter Auflösegeschwindigkeit werden erhalten, wenn die granulären Bestandteile vor dem Veφressen einen Anteil an Teilchen, die einen Durchmesser außerhalb des Bereiches von 0,02 bis 6 mm besitzen, von weniger als 20, vorzugsweise weniger als 10 Gew.-% aufweisen. Bevorzugt ist eine Teilchengrößenverteilung im Bereich von 0,05 bis 2,0 und besonders bevorzugt von 0,2 bis 1,0 mm.
Die Kompaktierung der quellfähigen Substanzen kann in gängigen Pressen, wie z.B. Spindelpressen, hydraulischen Pressen, Exzenteφressen oder Rundläufeφressen bei Preßdrücken im Bereich von 50 bis 100.000, vorzugsweise 100 bis 10.000 und insbesondere 1.000 bis 5.000 bar erfolgen. Um eine optimale Vermischung mit den übrigen Bestandteilen der Waschmitteltabletten sicherzustellen, empfiehlt es sich, die Granulometrie der Sprengmittel entsprechend der Körnung des Tablettier- Vorgemisches anzupassen. Zur Zerkleinerung des Preßgutes kommen die bekannten Verfahren des Stands der Technik in Betracht. Vorzugsweise wird das Zerkleinerungsgut gesiebt und eine Gutkornfraktion im Bereich zwischen 0,1 und 2, vorzugsweise 0,2 und 1,5 und insbesondere 0,4 und 1 mm abgenommen.
Die Herstellung der neuen Duftstofftabletten erfolgt in der Regel durch Preßagglomerierung. Die erhaltenen teilchenformigen Preßagglomerate können entweder direkt als Waschmittel eingesetzt oder zuvor nach üblichen Methoden nachbehandelt und/oder aufbereitet werden. Zu den üblichen Nachbehandlungen zählen beispielsweise Abpuderungen mit feinteiligen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, vorzugsweise Buildem oder Talcum Aerosilen, wodurch das Schüttgewicht im allgemeinen weiter erhöht wird. Eine bevorzugte Nachbehandlung stellt jedoch auch die Verfahrensweise gemäß den deutschen Patentanmeldungen DE 19524287 AI und DE 19547457 AI dar, wobei staubförmige oder zumindest feinteilige Inhaltsstoffe (die sogenannten Feinanteile) an die erfindungsgemäß hergestellten teilchenformigen Verfahrensendprodukte, welche als Kern dienen, angeklebt werden und somit Mittel entstehen, welche diese sogenannten Feinanteile als Außenhülle aufweisen. Vorteilhafterweise geschieht dies wiederum durch eine Schmelzagglomeration. Zur Schmelzagglomerierang der Feinanteile an wird ausdrücklich auf die Offenbarung in den deutschen Patentanmeldungen DE 19524287 AI und DE 19547457 AI verwiesen. In der bevorzugten Ausführungsform der Erfindung weisen die Duftstofftabletten aus lager- und transporttechnischen Gründen vor abgerundete Ecken und Kanten aufweisen. Die Grundfläche dieser Tabletten kann beispielsweise kreisförmig oder rechteckig sein. Mehrschichtentabletten, insbesondere Tabletten mit 2 oder 3 Schichten, welche auch farblich verschieden sein können, sind vor allem bevorzugt. Blau-weiße oder grün-weiße oder blau-grün-weiße Tabletten sind dabei besonders bevorzugt. Die Tabletten können dabei auch gepreßte und ungepreßte Anteile enthalten. Formköφer mit besonders vorteilhafter Auflösegeschwindigkeit werden erhalten, wenn die granulären Bestandteile vor dem Veφressen einen Anteil an Teilchen* die einen Durchmesser außerhalb des Bereiches von 0,02 bis 6 mm besitzen, von weniger als 20, vorzugsweise weniger als 10 Gew.-%> aufweisen. Bevorzugt ist eine Teilchengrößenverteilung im Bereich von 0,05 bis 2,0 und besonders bevorzugt von 0,2 bis 1,0 mm.
Beispiele
Alle Mengenangaben sind, soweit nicht anders vermerkt, Gewichtsteile.
1. Stylingtablette
Avicel® pH 102 30,0%
Lactose 45,0%
Optigel® SH Sodium Magnesium Silicate, Süd Chemie 6,0%
Amaze® Com Starch modified (National Starch) 4,0%
Jaguar® HP 120 Hydroxypropyl Guar (Rhodia) 8,0%
Luviskol® K 30 PVP (BASF) 5,0%
Glycerin 1,0%
Gluadin® W 40, Hydroyzed Wheat Gluten, Cognis, 40% aktiv in Wasser 0,5%
Gluadin® WQ, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein,
Cognis, 40% aktiv in Wasser, 0,3%
Elastinhydrolysat 0,2% Die Tablette wird in einem Becher oder Schälchen in 50 ml Wasser gelöst. Es bildet sich ein viskoses Gel, welches wie gewohnt auf den keratinischen Fasem aufgetragen werden kann.
2. Stylingtablette aufschäumend
Citronensäure 40,0%
Natriumcarbonat 40,0%
Magnesiumsulfat 5,0%
Luviskol® K30 5,0%
Dehyquart® L80, Cognis 0,5%
Lamesoft® PO 65, Cognis 2,5%
DC® 1501, Dow Coming 2,0%
Cetiol® CC, Cognis 1,5%
Aquaflex® SF 40, ISP 2,5%
Plantapon® KCG, Cognis 1,0%
Die Tablette kann in der Hand unter Zugabe von Wasser zu einem Schaum aufgeschäumt werden und dann wie gewohnt auf den keratinischen Fasem angewendet werden.

Claims

P a t e n t a n s p r ü c h e
1. Formköφer zur Frisurengestaltung keratinischer Fasem enthaltend in einem kosmetisch akzeptablen Träger:
a) mindestens ein Polymer,
b) mindestens einen Auflösungsbeschleuniger und
c) mindestens einen kosmetischen Wirkstoff.
2. Formköφer nach Ansprach 1, dadurch gekennzeichnet, daß der Auflösungsbeschleuniger auf Cellulosebasis ist.
3. Formköφer nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Formköφer zusätzlich ein Gemisch bestehend aus Stärke und mindestens einem Saccharid enthält.
4. Formköφer nach Anspruch 3, dadurch gekennzeichnet, daß das Saccharid ein Disaccharid ist.
5. Formköφer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Wirkstoff ausgewählt aus Tensid (E) ist.
6. Formköφer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Wirkstoff ausgewählt aus den Fettstoffen (D) ist.
7. Formköφer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Wirkstoff ausgewählt aus den UV - Filter ist.
8. Formköφer nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Formköφer weiterhin mindestens einen Bitterstoff enthält.
9. Formköφer nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sich bei der Auflösung in Wasser ein Gel bildet.
10. Formköφer nach einem der Ansprüche 1 bis 9 dadurch gekennzeichnet, daß er von einer Primärveφackung umhüllt ist.
11. Verwendung eines Formköφers nach einem der Ansprüche I bis 10 zur Herstellung eines Mittels zur Frisurengestaltung bei keratinischen Fasem.
12. Verfahren zur Frisurengestaltung keratinischer Fasem, dadurch gekennzeichnet, daß ein oder mehrere Formköφer nach einem der Ansprüche 1 bis 11 in Wasser gelöst werden und die resultierende Zubereitung anschließend auf die Fasem aufgetragen wird.
PCT/EP2004/002575 2003-03-19 2004-03-12 Formkörper zur behandlung keratinischer fasern WO2004082650A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04719956A EP1603522A1 (de) 2003-03-19 2004-03-12 Formkörper zur behandlung keratinischer fasern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003112270 DE10312270A1 (de) 2003-03-19 2003-03-19 Formkörper zur Behandlung keratinischer Fasern
DE10312270.2 2003-03-19

Publications (1)

Publication Number Publication Date
WO2004082650A1 true WO2004082650A1 (de) 2004-09-30

Family

ID=32920971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/002575 WO2004082650A1 (de) 2003-03-19 2004-03-12 Formkörper zur behandlung keratinischer fasern

Country Status (3)

Country Link
EP (1) EP1603522A1 (de)
DE (1) DE10312270A1 (de)
WO (1) WO2004082650A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093203A1 (de) * 2005-12-05 2007-08-23 Henkel Kommanditgesellschaft Auf Aktien Stylingprodukt
WO2012127429A2 (en) 2011-03-21 2012-09-27 Coloright Ltd. Systems for custom coloration
WO2015044944A2 (en) 2013-09-26 2015-04-02 Coloright Ltd. Hair reader, dispenser device and related systems and methods
US10012588B2 (en) 2014-04-27 2018-07-03 Coloright Ltd. Apparatus and method for customized hair-coloring
WO2018127784A1 (en) 2017-01-06 2018-07-12 Coloright Ltd. Hair-holder, hair-reader comprising the same, and methods for optically acquiring data from hair
US10046183B2 (en) 2011-03-21 2018-08-14 Coloright Ltd. Systems for custom coloration
US10806234B2 (en) 2014-04-27 2020-10-20 Coloright Ltd. Apparatus and method for analyzing hair and/or predicting an outcome of a hair-coloring treatment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005062268A1 (de) 2005-12-24 2007-08-02 Henkel Kgaa Pulverförmige Stylingmittel und deren Spendersysteme
FR2994653A1 (fr) * 2012-08-23 2014-02-28 Oreal Composition de decoloration des fibres keratiniques sous forme comprimee avec persulfate et polymere fixant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037284A1 (en) * 1998-01-21 1999-07-29 Dragoco, Inc. Water soluble dry foam personal care product
DE10059291A1 (de) * 2000-11-29 2002-06-06 Henkel Kgaa Tablettierung verdickender Systeme
WO2003037294A2 (en) * 2001-11-01 2003-05-08 The Procter & Gamble Company Personal care compositions containing a water-disintegratable polymeric foam

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9606936D0 (en) * 1996-04-02 1996-06-05 Collis Joanna Method of curling eyelashes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037284A1 (en) * 1998-01-21 1999-07-29 Dragoco, Inc. Water soluble dry foam personal care product
DE10059291A1 (de) * 2000-11-29 2002-06-06 Henkel Kgaa Tablettierung verdickender Systeme
WO2003037294A2 (en) * 2001-11-01 2003-05-08 The Procter & Gamble Company Personal care compositions containing a water-disintegratable polymeric foam

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1603522A1 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093203A1 (de) * 2005-12-05 2007-08-23 Henkel Kommanditgesellschaft Auf Aktien Stylingprodukt
US10046183B2 (en) 2011-03-21 2018-08-14 Coloright Ltd. Systems for custom coloration
WO2012127429A2 (en) 2011-03-21 2012-09-27 Coloright Ltd. Systems for custom coloration
EP3854376A2 (de) 2011-03-21 2021-07-28 Coloright Ltd. Systeme für individuelle färbung
US9205283B2 (en) 2011-03-21 2015-12-08 Coloright Ltd. Systems for custom coloration
US9844687B2 (en) 2011-03-21 2017-12-19 Coloright Ltd. Systems for custom coloration
EP3508254A1 (de) 2013-09-26 2019-07-10 Coloright Ltd. System zur herstellung von haarfärbemitteln
US10302495B2 (en) 2013-09-26 2019-05-28 Coloright Ltd. Hair reader, dispenser device and related systems and methods
WO2015044944A2 (en) 2013-09-26 2015-04-02 Coloright Ltd. Hair reader, dispenser device and related systems and methods
US10012588B2 (en) 2014-04-27 2018-07-03 Coloright Ltd. Apparatus and method for customized hair-coloring
US10416078B2 (en) 2014-04-27 2019-09-17 Coloright Ltd. Apparatus and method for customized hair-coloring
US10806234B2 (en) 2014-04-27 2020-10-20 Coloright Ltd. Apparatus and method for analyzing hair and/or predicting an outcome of a hair-coloring treatment
WO2018127784A1 (en) 2017-01-06 2018-07-12 Coloright Ltd. Hair-holder, hair-reader comprising the same, and methods for optically acquiring data from hair

Also Published As

Publication number Publication date
EP1603522A1 (de) 2005-12-14
DE10312270A1 (de) 2004-09-30

Similar Documents

Publication Publication Date Title
DE102005062268A1 (de) Pulverförmige Stylingmittel und deren Spendersysteme
EP2328544B1 (de) Tensidhaltige zusammensetzung mit spezieller emulgatormischung
DE102005063096A1 (de) Pflegende Haarbehandlungssmittel mit kammartigen Polymeren I
DE102009045606A1 (de) Sensitives Haarreinigungsmittel
EP2717843B1 (de) Stylingmittel mit interessanter textur
WO2004082650A1 (de) Formkörper zur behandlung keratinischer fasern
DE10113446A1 (de) Haarbehandlungsmittel mit Betainen
DE10330247A1 (de) Kosmetische Zusammensetzung in Einmalportionspackungen
DE102009028052A1 (de) Kosmetisches Reinigungsmittel mit neuer Wirkstoffmischung
DE102009020552A1 (de) Polymerkombination aus mindestens zwei verschiedenen N-Vinylpyrrolidon/N-Vinylcaprolactam-Copolymeren für glanzgebende kosmetische Haarbehandlungsmittel
EP3016632B1 (de) Reinigungszusammensetzung mit hohem fettsäuregehalt
DE102004040172A1 (de) Kompakthaarspray
EP2437853A2 (de) Tensidhaltiges kosmetisches reinigungsmittel mit gelee royale
DE10358780A1 (de) Versprühbares Gel
DE102005029534A1 (de) Kosmetische Mittel enthaltend eine Polyammonium-Polysiloxan Verbindung und weitere Wirkstoffe
EP2448547A2 (de) Kompaktes haarspray
EP1776078B1 (de) Selbstschäumendes reinigungskissen
WO2004052322A1 (de) Tücher zur pflege keratinischer fasern
DE102009026899A1 (de) Kosmetisches Reinigungsmittel mit Deo-Effekt
DE102009045605A1 (de) Versprühbares Haarreinigungsmittel
EP1569605B1 (de) Reinigungstücher zur reinigung keratinischer fasern
DE102009028443A1 (de) Tensidhaltiges kosmetisches Haarreinigungsmittel mit Pentaclethra Macroloba Seed Oil
WO2007093203A1 (de) Stylingprodukt

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004719956

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004719956

Country of ref document: EP