WO2004077141A1 - Particle rotation display and its manufacturing method - Google Patents

Particle rotation display and its manufacturing method Download PDF

Info

Publication number
WO2004077141A1
WO2004077141A1 PCT/JP2003/002151 JP0302151W WO2004077141A1 WO 2004077141 A1 WO2004077141 A1 WO 2004077141A1 JP 0302151 W JP0302151 W JP 0302151W WO 2004077141 A1 WO2004077141 A1 WO 2004077141A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
particle
resin
region
particles
Prior art date
Application number
PCT/JP2003/002151
Other languages
French (fr)
Japanese (ja)
Inventor
Naoyuki Hayashi
Shino Tokuyo
Tsuneo Watanuki
Norio Sawatari
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/002151 priority Critical patent/WO2004077141A1/en
Priority to JP2004568738A priority patent/JPWO2004077141A1/en
Publication of WO2004077141A1 publication Critical patent/WO2004077141A1/en
Priority to US11/073,861 priority patent/US20050180035A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/026Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light based on the rotation of particles under the influence of an external field, e.g. gyricons, twisting ball displays

Definitions

  • the present invention relates to a particle-rotating display device and a method of manufacturing the same, and more particularly, to a particle-rotating display device provided with rotating particles of two colors having good rotation stability and controllability, and a method of manufacturing the same. .
  • Sheet-type display devices are flexible and do not require a power supply to hold the displayed information, so they can be handled like paper.Therefore, electronic paper, paper-like displays, digital paper, etc. being called.
  • a sheet-type display device is, for example, a display element that performs image display by changing optical absorption or optical reflection by an electric field.
  • microcapsules containing a solvent in which electrophoretic particles and a colorant are dispersed (1) microcapsules containing a solvent in which electrophoretic particles and a colorant are dispersed
  • These sheet display devices are nonvolatile, do not require a holding operation, and are thin, light, and flexible because the display element is sandwiched between PET films on which electrodes are formed.
  • the rotating particles are rotated by an electric field, and information is displayed by the optical contrast of the color-coded resonator.
  • the rotating particles In order to obtain good optical contrast, it is essential that the rotating particles have good operational stability and controllability.
  • rotating particles consisting of two hemispheres having both different colors and different electrical properties are used together with an insulating liquid.
  • a display device using a contained micro force cell as a display element is disclosed. As shown in Fig. 1, this display device has a structure in which an optically transparent base material has a plurality of voids filled with a dielectric liquid, and one void contains one rotating particle. . Since one rotating particle is formed of two regions having different colors and different charging characteristics, when an electric field is applied, electrophoresis and rotation ⁇ of the particle occur, as shown in Fig. 3, and the direction of the rotating particle Is inverted, and the color on the display surface side is changed, so that an image can be displayed.
  • a method for producing such a crystal there are (1) a method in which two kinds of melted particles having different colors are combined, and are sphericalized and solidified by surface tension (see US Pat. No. 5,226,099). No. 8), (2) A method of evaporating or applying metal, bonbon black, antimony sulfide, etc. on the surface of particles such as glass and resin (see JP-A-11-85067) (3) A method in which particles made of a photosensitive material are used to form a color by photographic or electrophotographic exposure, 'development, fixing processing, etc. (Japanese Unexamined Patent Publication No. Hei 1-11-1620, Japanese Unexamined Patent Publication No. Hei 1-185069).
  • the volume ratio and the color boundary occupied by the resin of each color of the obtained rotating particles are affected by the shape of the end face at the time of pulverization. Due to the disturbance of the end face of the block body obtained as described above, the variation in the volume ratio becomes large, and disturbance such as meandering of the boundary between the two colors occurs. As a result, variations occur in the rotation operation of the rotating particles, which causes a problem that a desired display image cannot be displayed with high contrast.
  • a reciprocator is formed by using a wax-like substance having a low specific gravity, and the sphericity of the retort, the diameter of the void including the rotating particles and the resonator are determined.
  • a rotating particle that defines a relationship, a color-coded area ratio, and the like is disclosed. According to this publication, the responsiveness and the kinetic performance of the rotating particles are considered to be good.
  • Patent Document 1 Japanese Patent Application Laid-Open No. Hei 11-282 589
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-2012
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-162620 Disclosure of the Invention
  • a more specific aspect of the present invention is to provide a high-contrast, high-particle-particle rotary display device having a device with excellent controllability of rotational operation and good operational stability, and a method of manufacturing the same.
  • a particle rotating display device that displays information using rotating particles that rotate in response to an electric field
  • the rotating particles include a first region and a second region having different colors and charging characteristics from each other in each substantially hemisphere,
  • a boundary between the first region and the second region passes substantially through the center, and the two-dimensional image is viewed from a direction in which the areas of the first region and the second region are substantially the same.
  • L is the length of the boundary line between the first region and the second region
  • R is the diameter of a circle corresponding to the contour of the rotating particle
  • 1.0 ⁇ L / R ⁇ 1.2 The number of the rotating particles in the range described above is 80% or more of the total number, and the rotating particle type display device is provided.
  • the boundary between the first region and the second region passes substantially at the center, and the area of the first region and the area of the second region are reduced.
  • V represents the boundary between the first region and the second region, the line length, and the circle corresponding to the contour of the rotating particle.
  • the rotating particles whose diameter R and ratio L / R are 1.0 ⁇ L / R ⁇ l.2 are more than 80% of the whole.
  • the boundary line is a straight line passing through the center of the circle.
  • the boundary line becomes more curved or uneven. Due to the different charging characteristics of the first region and the second region, the rotating particles generate a rotational moment due to the cron force in accordance with the applied electric field, rotate about 180 degrees, and stop. Therefore, when the boundary between the first area and the second area is curved, the rotational moment does not work in a certain direction, the rotation stop position shifts, and the rotation operation becomes unstable.
  • the rotating particles satisfying 1.0 ⁇ L / R ⁇ 1.2 are set to 80% or more of the whole, the stability of the rotating operation is good, and as a result, the contrast is high! / Thus, a particle rotating display device can be realized.
  • a first electrode and a second electrode are provided.
  • a transparent substrate provided between the first electrode and the second electrode,
  • a rotating particle display device in which rotating particles display one of two colors corresponding to an electric field applied by the electrode
  • a rotating particle display device is provided, wherein the number of rotating particles in the range of 2 is 80% or more of the total number.
  • the rotating particles satisfying 1.0 ⁇ L / R ⁇ 1.2 should be 80% or more of the whole, so that the stability of the rotating operation is good. Yes, as a result A high-contrast, particle-rotating display device can be realized.
  • a method of manufacturing a particle rotating display device that rotates in response to an electric field and displays information by rotating particles of two colors.
  • a resin piece obtained by cutting a two-color laminated resin plate formed by laminating two-color single-color resin plates is heated in a liquid to form a spherical shape, and the formed rotating particles are granulated.
  • Classification is based on diameter. Therefore, since the resin piece is heated in the liquid to form a sphere, the boundary between the two colors of the resonator becomes monotonous, and the particle size distribution of the rotating particles is reduced by the classification process. As a result, it is possible to form rotating particles in which the rotation operation and the rotation stop position are stabilized.
  • the ratio of the melt viscosity at 190 ° C. of the two color resin materials is 0.5 to 2.
  • the two-color resin material By controlling the melt viscosity of the two-color resin material, when the two-color resin material melts, the two-color resin material becomes self-spherical while maintaining the balance when the two-color resin material is melted.
  • the border between the two colors can be made even more monotonous.
  • FIGS. 1A and 1B are diagrams for explaining the principle of the present invention.
  • the electric field is applied from the upper side to the lower side of the resonators 11 and 12 or in the opposite direction, and the observation is perpendicular to the electric field. This is when it is set in the plane.
  • the rotating particles 11 and 12 consist of two regions, 11A, 11B, 12A and 12B, which are colored white and black. Occupy almost half of the surface area of the rotating particles.
  • the rotating particles 11 and 12 are oriented in arbitrary directions when no electric field is applied from outside. Note that the surrounding spaces of the elements 11 and 12 are filled with a dielectric liquid (not shown).
  • the rotating particles 11 shown in the upper part of FIG.
  • the rotating particles 11 1 The white area 11 A where the surface is negatively charged, the Coulomb force S acts upward, and the black area which is positively charged Coulomb force acts on 1 1 B downward.
  • Rotational motion is generated by the rotation moment due to these Coulomb forces, and the white region 11A is on the upper side and the black region 11B is on the lower side, and the rotation is stopped at an energy stable position.
  • the rotating particle 11 has a rotation stop position of the hemisphere of the white region 11 A, as shown in the middle part of Fig. 1A.
  • FIG. 2 is a view of the rotating particle 12 in the middle stage of FIG. 1B viewed from the direction of arrow X.
  • the circuit is stopped with the boundary BD 2 ′ between the white region 11 A and the black region 11 B tilted.
  • the rotating particles 12 are white. Black is visible on some of the. If this happens, the displayed image will be noisy 5 o
  • rotary particle 1 2 deviates is likewise stop position.
  • a stop position of the element 12 is considered as follows.
  • Rotation moment of the rotating element 1 2 is dependent on the charge distribution of the surface, especially the surface charge distribution in the vicinity of the boundary BD 2 between Coulomb force and the radial direction is substantially perpendicular white areas and black areas, Sunawa That is, it is considered that the shape of the boundary BD 2 determines the direction and magnitude of the rotational moment.
  • FIG. 1A and 1B are diagrams for explaining the principle of the present invention.
  • FIG. 2 is a view of the middle stage of FIG. 1B taken along the arrow X.
  • FIG. 3 is a schematic cross-sectional view of the rotating particle display device according to the embodiment of the present invention.
  • FIG. 4 is a flowchart showing a manufacturing process of the rotating particle display device of the present embodiment.
  • FIG. 5A is a diagram illustrating an example of a still image of a rotating particle.
  • FIG. 5B is a diagram showing an image obtained by subjecting the still image of FIG. 5A to edge wedge enhancement processing.
  • FIG. 6 shows the L / R values and times of the rotating particles according to the first to third examples and the first and second comparative examples.
  • FIG. 10 is a diagram showing evaluation results of contrast of a child display device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 3 is a schematic sectional view of a rotating particle type display device according to an embodiment of the present invention.
  • the rotating particle display device 20 includes a lower electrode 22 and an upper electrode 23 having electrodes formed on a transparent resin film 21, and a lower electrode 22 and an upper electrode 23. , A void 25 formed in the transparent substrate 24, and a rotatable member 28 in the dielectric liquid 26 filled in the void 25. And so on.
  • the rotating particle type display device 20 is composed of regions 28 A and 28 B in which the particles 28 are color-coded substantially by hemisphere.
  • Each of the regions is colored with a coloring agent such as a pigment or a dye, and the charge to be charged is different due to the difference in zeta standing between the coloring agent and a binder as a binder.
  • a voltage is applied between the lower electrode and the upper electrode, and an electric field is applied to the rotating particles via the transparent substrate and the dielectric liquid, the rotating particles rotate in accordance with the direction of the electric field, and the 30 can observe a desired display image.
  • the rotating particles 28 have an average particle diameter (average particle diameter) of 2, ⁇ ! To 500 ⁇ m, preferably 10 111 to 100 ⁇ . If it is larger than jum, the applied voltage for rotation becomes excessively high, which is not economical and high-precision display cannot be performed. In addition, the thickness of the transparent substrate holding the thickness can be reduced, and the applied voltage can be reduced.On the other hand, when the value is smaller than 10; zm, it is difficult to control the particle size distribution of the rotating particles 28.
  • the coefficient of variation of the particle size distribution of the rotating particles 28 is represented by the standard deviation Z average particle diameter X 100 (%).
  • the coefficient of variation shall be 20% or less (preferably 15% or less). If the variation coefficient exceeds 20%, the stop position of the rotating particles shifts and the contrast decreases. That is, the stationary position of a rotating particle having a smaller particle diameter and a constant applied electric field tends to shift. In order to reduce the coefficient of variation, it is effective to improve the cutting accuracy and form classification when forming the resin pieces.
  • the particle size distribution of the particles 28 in the present invention was measured by the Coulter method using a Beckman's Coultane: fc ⁇ manoresizer IIE device, and the volume average particle size and standard deviation were measured under the following measurement conditions. did.
  • Aperture diameter 200 ⁇
  • the inventor of the present application has assiduously studied that, when the boundary between the two colors of the thread thread becomes complicated, the detent position of the rotating particles shifts, and the rotating operation is not performed normally. I found it. Therefore, as a result of various studies, the boundary between the first region and the second region, which are different colors from each other, almost passes through the center, and the areas of the first region and the second region become substantially the same.
  • the L / R value which is the ratio of the length L to the particle size R, and the rotation operation and rotation stop position are closely related. When the L / R value is 1.0, the boundary is a straight line, and the rotation and stop positions are normal.
  • the waveform becomes gentle and the rotation is performed, but the position when the rotation stops is slightly tilted.
  • the boundary line is extremely conspicuous, and the rotating particles rotate according to the electric field, but the rotation stop position is on the boundary side and the observation side From the viewpoint, in addition to the desired color, the other color can be seen.
  • the L / R value exceeds 1.4, the unevenness of the boundary line becomes large, and one color may appear as a spot in the other color region.
  • the rotating operation corresponding to the electric field is not performed.
  • the rotating shaft is formed so as to pass through the center of each of the two color regions, and the rotating operation is performed such that white or black display cannot be distinguished. It becomes abnormal.
  • the contrast of the display device that is, the ratio of the reflectance when one color is displayed and the reflectance when the other color is displayed varies depending on the LZR value of each rotating particle.
  • the inventor of the present application has found that if the number of rotating particles having an LZR value in the range of 1.0 ⁇ L / R ⁇ 1.2 is 80% or more of the total, the visibility as a display device is sufficient. I got it. In other words, if the ratio of 1.2 / L / R is less than 20%, even if other colors are mixed as noise in the desired color, the ratio is small and the visibility is secured. It is.
  • the larger the ratio of the rotating particles having the LZR value in the range of 1.0 ⁇ L / R ⁇ 1.2 for example, it is preferably 90% or more from the viewpoint of contrast.
  • FIG. 4 is a flowchart showing a manufacturing process of the rotating particle display device of the present embodiment.
  • the resin material is formed by heating a kneader, an extruder, or the like, and kneading a binder, a coloring agent, and the like.
  • a binder a known thermoplastic resin such as polyethylene, polypropylene, polystyrene, acrylic, or nylon is used. Later cut into resin pieces From the viewpoint of strength in the process, polyethylene and polypropylene are suitable for the binder.
  • Colorants include white pigments such as titanium dioxide, silicon dioxide, barium sulfate, carbonated calcium carbonate, and alumina, black pigments such as carbon black and magnetite, phthalocyanine pigments, azo pigments, quinatalidone pigments, and perylene facial pigments. And known pigments such as pigments and perinone pigments, and known dyes such as acid dyes, basic dyes, reactive dyes, direct dyes, and disperse dyes.
  • the white pigment titanium dioxide may be an anatase type or a rutile type. From the viewpoint of power whiteness and light reflectance, rutile type titanium dioxide having high concealing property is preferable. Titanium dioxide is obtained by treating the surface with an inorganic substance such as hydrous aluminum hydroxide or hydrous silicon oxide, or an organic substance such as polyhydric alcohol, polyamine, metal stone, alkyl titanate, or polysiloxane. Surface-treated ones can be used. The dispersibility of titanium dioxide in the binder is improved, and higher whiteness can be obtained. It is more preferable to add a fluorescent whitening agent.
  • an inorganic substance such as hydrous aluminum hydroxide or hydrous silicon oxide
  • an organic substance such as polyhydric alcohol, polyamine, metal stone, alkyl titanate, or polysiloxane. Surface-treated ones can be used. The dispersibility of titanium dioxide in the binder is improved, and higher whiteness can be obtained. It is more preferable to add a fluorescent whitening agent.
  • the charge control agent is not added, but the charge tendency and the charge amount are changed by adding the above-mentioned colorant.
  • a charge controlling agent may be added, for example, Ritsu Ritsu Allen, Nig Mouth Synthetic Dye, Quaternary Ammonium Salt, Amino Group-Containing Polymer, Metal-Containing Azo Dye, Salicylic Acid Complex Compound, Phenol Compound, Azochrome Positive and negative charge control agents such as azo and azo zinc can be used.
  • the composition of the resin material is set so that the ratio of the melt viscosity in the temperature range of 220 ° C. from the softening point of the two-color resin material is adjusted to 0.5 to 2.0.
  • the ratio of the melt viscosity of the two-color resin materials is set to 0.5 to 2.0, the boundary between the two-color resin materials of the rotating particles, that is, the two-color region The boundaries can be monotonic. If the ratio of the melt viscosity is smaller than 0.5 or larger than 2, the boundary between the two color regions becomes complicated, for example, a resin material having a lower melt viscosity covers the other resin material irregularly.
  • the temperature at which the melt viscosity is set based on the mechanism of self-spheronization in the sphering process is related to the heat treatment during the sphering process, but the heat treatment temperature ranges from 100 ° C to 220 ° C. Because it is within the range, it is sufficient to set the ratio of the melt viscosity at 190 ° C. If the softening point of at least one of the two color resin materials is higher than 190 ° C In this case, set the melt viscosity ratio at a temperature above the softening point.
  • melt viscosity As a technique for increasing or decreasing the melt viscosity, there is a method of reducing or increasing the mixing ratio of a coloring agent or the like, respectively.
  • the measurement of the melt viscosity in the present invention was carried out using a viscoelasticity measuring device (Rheometric 'Scientific' F1 Co., Ltd., trade name: ARES) under the following measurement conditions, and the complex viscosity was measured. The ratio was measured, and the real part was defined as the melt viscosity.
  • the softening point of the resin material was measured based on JIS K7206, and the Vicat softening point was used.
  • the two-color resin material is formed into a single-layer resin plate by cast molding, rolling, or the like (S104).
  • a cast film molding / manufacturing apparatus for example, manufactured by SHI Modern Machinery
  • Cast film forming and manufacturing equipment includes an extruder that heats and applies pressure to a resin material, a T-die that forms a thin plate of a predetermined thickness, and a cast roller that cools the resin plate supplied from the T-die. It is configured.
  • the resin material is introduced into the extruder, heated to 150 ° C, the extrusion speed is set to about 30 kg / hour, and the resin material is supplied to the T-die.
  • the T-die has an opening width of, for example, 0.5 mm.
  • the cast roller (roller diameter (diameter) 300 mm) is set at a temperature of 20 ° C and a casting speed of 8 mZ to cool and stabilize the sheet-like resin material, and a resin plate of about 20 ⁇ m thickness To form The thickness of the resin plate can be controlled by the gap of the cast roller.
  • a sheet-shaped resin material with a uniform thickness can be formed, and a resin material with a desired thickness can be accurately obtained by a cast roller, and the uniformity of the thickness is improved. can do. As a result, it is possible to suppress the disturbance of the boundary between the two color regions.
  • a resin plate may be formed by rolling a resin material between two films. Specifically, a roughly flat resin material is sandwiched between PET films (thickness: 10 ⁇ ) and passed through a two-stage rolling roll with a gap of 100 ⁇ m and 40 m and a temperature of 150 ° C. Finally, it is cooled by a cooling roll to form a resin plate having a thickness of about 20 ⁇ m.
  • a two-color resin plate is fused and bonded to form a two-color laminated resin base material (S106).
  • the resin plates of each color are superimposed, and sandwiched between heat-resistant films, for example, Kaptonfi ⁇ / REM, and pressed with heat using a device such as a roller or press.
  • 9 X 1 0 Set between 6 P a ⁇ pressurized to 1 minute to 1 0 minutes I do.
  • a two-color laminated resin base material may be formed by dissolving a resin material, forming one resin material by coating or dipping, and then laminating the other resin material thereon.
  • a two-color resin material is dissolved in an organic solvent to prepare a coating material, and a coating material having a thickness of about 20 / Xm is formed using a spin coater, doctor blade, bar coater, dip coater, or the like.
  • the resin material is formed, dried, and then the other resin material is applied thereon to a thickness of about 20 ⁇ and dried.
  • a known material that dissolves in an organic solvent such as acryl or polystyrene can be used.
  • the two-color laminated resin base material is cut into resin pieces having a size of several tens of meters to several hundreds / zm by a cutter using a metal blade, a wire, a laser or the like (S108).
  • a two-color laminated resin substrate is attached to an adhesive film, and the adhesive film is fixed to a cutter processing table.
  • the two-color laminated resin base material is cut by a laser cutter, a rotary blade, or the like. In this way, the cut resin piece can be cut to a desired size without hindering the cutting of other resin pieces by peeling and moving.
  • the rotating blade is preferably made of steel or ceramic and can suppress the disorder of the cut surface of the resin piece, so that the boundary between the two colors when the later rotating particles are formed is straight or gentle. It can be made into a wavy shape.
  • a Rezakatsuta, C 0 (including harmonics.) 2 laser, YAG Les monodentate or the like can be used.
  • the resin piece is recovered by peeling from the adhesive film.
  • the resin pieces are separated from the adhesive film by dissolving the adhesive film substrate or the adhesive on the substrate.
  • the solvent used here is a solvent that does not dissolve the two-color laminated resin base material.
  • the adhesive is polyvinyl alcohol, polystyrene, or polyester, water, alcohol, or the like can be used. ⁇ ⁇
  • the grease pieces are not deformed, In addition, separation can be performed without applying mechanical stress.
  • silicone oil or the like may be used as a release agent. Deformation of resin pieces can be prevented. In this case, it is preferable that the silicone oil is of the same type as the silicone oil used in the sphering treatment described below.
  • a metal plate may be used instead of the adhesive film.
  • the two-color laminated resin base material and a stainless steel or aluminum metal plate are superposed and bonded by heating, cut into resin pieces by the above-described method, cooled by a refrigerant, and separated from the metal plate. Due to the difference in the coefficient of thermal expansion between the metal plate and the resin piece, the metal plate shrinks and the resin piece becomes hard when cooled, so it is separated from the metal piece.
  • the refrigerant ethanol, isopropyl alcohol, Freon, liquid nitrogen, and the like can be used.
  • a sphering treatment is performed (S110).
  • the spheroidizing treatment is performed by dispersing the resin pieces in a container such as a stainless steel beaker containing a heat medium, heating and softening / melting the resin pieces, and performing self-spherical shaping.
  • silicone oil is used as a heating medium. By heating through the silicone oil, the surface of the resin piece can be uniformly heated, so that rotating particles with high sphericity can be formed, and the silicone oil can prevent the releasing action and the aggregation of the resin pieces.
  • the silicone oil dimethyl silicone oil, phenylmethyl silicone, various modified silicone oils and the like can be used.
  • 25 kinematic viscosity at ° C is 3 X 10 "m 2 Z s ⁇ 1 X 10- 2 m 2 / s (300 CS 1; ⁇ l OOOO c S t) is it is laid preferred, it is more preferable 3X 10 one 4 m 2 / s ⁇ 1 X 10 one 3 m 2 / s (300 c S t ⁇ 1000 c S t). 3X 10- 4 m 2 / s is less than the resin piece is easily and agglutination settling. 1 X 10- 2 m 2 Zs larger than process time for recovering the resin specimen becomes excessively large.
  • a silicone oil having a specific gravity at 25 ° C that is 0.3 or less from the specific gravity of the resin piece is used. If the ratio is larger than 0.3, the resin pieces easily float and settle in the silicone oil, which makes the resin pieces easier to float.
  • the resin piece may be shaken and stirred by a shaker, an ultrasonic homogenizer, or the like. Prevents resin pieces from adhering to the inner wall of containers and containers.
  • the particle size distribution of the particles can be narrowed, and the yield in the classification process can be improved.
  • the calorific heat of the sphering treatment is set to be higher than the softening point of the resin piece, and is 100 ° C to 220 ° C (preferably 100 ° C to 200 ° C).
  • the sphering time is set from 10 seconds to 120 seconds.
  • the silicone oil of C to 100 ° C is mixed and cooled to a temperature lower than the softening point of the resin material constituting the rotating particles. By cooling to below the softening point, it is possible to prevent the rotating particles from fusing together, suppress variations in shape and particle size, and improve the yield. At this time, it is preferable to use the same type of silicone oil used for cooling as the silicone oil used for heating. When mixed, the silicone oil used for heating and cooling can be prevented from separating from each other.
  • the rotating particles are classified and collected using a strainer (S112).
  • the mesh opening diameter is 10 ⁇ ! 2200 ⁇ is performed in several steps.
  • Classification is effective from the viewpoint of narrowing the particle size distribution of the rotating particles. The higher the number of passes in the classification process, the lower the yield. Yield is closely related to the cutting properties and spheroidization described above.
  • the obtained polymer is washed with SH200-0.65 cst (Toray's Dawko-Nungune ring) and dried using vacuum drying or the like.
  • the rotating particles are dispersed and filled in the voids of the transparent substrate (S114).
  • an uncured silicone elastomer for example, a two-component hard type silicone rubber KE106 (a volume of 50% 0 /.
  • the particles are stirred and dispersed, applied to a Teflon-coated film to a thickness of several hundred ⁇ by a blade method or the like, and cured by heating.
  • the cured silicone elastomer in which rotating particles are dispersed (referred to as a transparent substrate). ) Is formed.
  • the transparent substrate is swollen with a dielectric liquid such as silicone oil, and the dielectric liquid is filled around the rotating particles of the transparent substrate (S116).
  • a dielectric liquid such as silicone oil
  • the transparent substrate and the silicone oil are sealed in a plastic bag or the like.
  • the ratio between the transparent substrate and the silicone oil is, for example, 1: 2.
  • fill this plastic bag with water Put into a sonic cleaner and apply ultrasonic waves for several minutes.
  • the transparent substrate is taken out, dried at room temperature, and immersed in silicone oil for several hours to several tens of hours.
  • an interfacial polymerization described in Japanese Patent Application Laid-Open No. H8-2346486 is used to convert the dielectric liquid and the rotating particles into a resin film.
  • a PET film in which the ITO electrodes are formed in a stripe shape is attached to both surfaces of the silicone rubber so that the ITO electrodes cross at right angles (S118).
  • a power supply circuit that selectively applies voltage to the ITO electrode.
  • a rotating particle type display device is formed.
  • the ratio of the melt viscosities of the resin materials constituting the two color regions is in the range of 0.5 to 2.
  • the boundary between the two color regions can be formed in a ⁇ shape or a gentle wavy shape.
  • the spheroidizing treatment by setting the kinematic viscosity of the silicone oil to the above-mentioned range, the sphericity is improved, and the cohesion and fusion of the resin pieces that have been melted together are prevented.
  • the particle size distribution of the rotating particles can be narrowed. Further, by the classification treatment, the rotating particles having an excessively large particle size can be surely removed, and the particle size distribution can be further narrowed.
  • hydrophobized titanium dioxide anatase type, particle size: 120 nm
  • petrocene a low-density polyethylene, 353 (Tosohone ⁇ , Melt Index: 150)
  • a roll mill was used. And kneaded while heating to 105 ° C. to produce a white colored resin.
  • a white colored resin is put into an extruder of a cast film molding equipment (for example, SH I Modern Machinery 3 ⁇ 4fc3 ⁇ 4), the caloric heat temperature is 150 ° C, the extrusion speed is 32.9 kg / hour, and the opening width is: Using a 0.5 mm T-die, it was molded into a white resin plate with a thickness of 20. A 20- ⁇ m-thick black resin film was formed under the same conditions as for the white resin film except that the extrusion speed was set to 24.6 kg / hour.
  • a cast film molding equipment for example, SH I Modern Machinery 3 ⁇ 4fc3 ⁇ 4
  • the white resin film and the black resin film are overlaid, sandwiched between 125-layer Kapton films, laid with a lmm-thick silicone rubber cushion, and subjected to melting by applying a heat temperature of 105 ° C and a pressure of 25 kgZcm 2 to caro.
  • This laminated film is cut into a size of 70 ⁇ 70 jum with a rotary blade (manufactured by NTN Corporation), and silicone oil FS 1265—300 cst
  • this resin piece was put into silicone oil FS 1265-300 c st heated to 190 ° C., and heated for 2 minutes while gently shaking.
  • silicone oil FS 1265-300 c st at 25 ° C. was mixed with an equal amount of the heated silicone oil and cooled to produce rotating particles.
  • the rotating particles were classified with a sieve having an opening size of 98 ⁇ , 83 / zm and 77 im, respectively, and then classified with a sieve having an opening size of 77 / xm, and recovered with a sieve having an opening size of 63 ⁇ . .
  • the obtained rotating particles had an average particle size of 71.2 ⁇ and a coefficient of variation of 13.8%.
  • the produced rotating particles are mixed with a two-component curable silicone rubber No. 106 (Toray Dow Corning) at a concentration of 52% by volume, thoroughly stirred and dispersed, and then bladed onto a Teflon-coated film. Is applied to a uniform thickness of 200 ⁇ m, and is hardened for 8 hours in an air atmosphere at a temperature of 50 ° C. ⁇ A transparent substrate with dispersed particles was formed.
  • a two-component curable silicone rubber No. 106 Toray Dow Corning
  • the transparent substrate and silicone oil SH200—0.65 cst were sealed in a plastic bag.
  • the volume ratio between the transparent substrate and the silicone foil was set to 1: 2.
  • ultrasonically clean the plastic bag with water (Made by Hyundai Electronics Co., Ltd., model W-113 MK-II, output 110W), and applied for 2 minutes with the transmission frequency set to 24kHz.
  • the transparent substrate was taken out and dried at room temperature for 20 minutes.
  • silicone rubber was immersed in silicone oil SH200-20 cst (manufactured by Dow Corning Toray) for 12 hours.
  • Petrocene 353 (Tosohone 59.6 parts by weight) Hydrophobic titanium dioxide (rutile type, particle size 280 nm) 40 parts by weight and optical brightener Nitsuka Flow EFS (Nihon Kagaku Kogyosho) 0.4 parts by weight Was heated and kneaded at 105 ° C. with a roll mill to produce a white colored resin.
  • Hydrophobic titanium dioxide rutile type, particle size 280 nm
  • optical brightener Nitsuka Flow EFS (Nihon Kagaku Kogyosho) 0.4 parts by weight was heated and kneaded at 105 ° C. with a roll mill to produce a white colored resin.
  • a film having a thickness of 20 ⁇ m of white resin and black resin was formed under the same conditions as in the first example, and the rotating particles were formed under the same conditions as in the first example. It was created.
  • the rotating particles are classified using a sieve with a mesh opening size of 98 ⁇ , 83 ⁇ , and 77 im, and then classified twice with a sieve with an opening size of 77 / xm, and collected using a sieve with an opening size of 63 im. did.
  • the obtained rotating particles had an average particle size of 72.5 im and a coefficient of variation of 11.5%.
  • the produced rotating particles are mixed with a two-component curable silicone rubber KE 106 (Toray Dow Corning Co., Ltd.) at a concentration of 52% by volume, stirred sufficiently, and dispersed.
  • the coating is applied uniformly to a thickness of 20 ⁇ and cured in an air atmosphere at 50 ° C for 8 hours to disperse the rotating particles.
  • a transparent substrate was formed. .
  • the classification process was performed under the same conditions as for the rotating particles of the first example, except that the mesh was classified using a sieve with an opening size of 98 ⁇ and a mesh size of 83 ⁇ , respectively, and recovered using a sieve with an opening size of 63 / X m. Produced.
  • the obtained reciprocal particles had an average particle size of 78.4 ⁇ and a coefficient of variation of 19.1%.
  • the laminated film was cut into a size of 70 ⁇ 70 ⁇ by a round blade having a fixed rotation, and a resin piece was collected by a cutter blade.
  • the rotating particles were classified using a sieve having a mesh opening size of 98, and then collected using a sieve having an opening size of 63.
  • the obtained rotating particles had an average particle size of 81.6 m and a coefficient of variation of 20.7%.
  • 16 parts by weight of Petrocene 353 (East Sone ⁇ $ 3 ⁇ 4) and 20 parts by weight of hoofed titanium dioxide (anatase type) were kneaded using a roll mill while heating to 105 ° C.
  • the kneaded product was diluted with 64 parts by weight of ethylene wax in a molten state having a melting point of 125 ° C. using a mortar mill to produce a white polyethylene / ethylene wax mixture.
  • Petrocene 353 (Tosone ⁇
  • a black polyethylene / ethylenic mixture was prepared by kneading 65.6 parts by weight of ethylene wax in a molten state at 125.C using a roll mill.
  • Each colored polyethylene / ethylene box was pressed to a thickness of 15 with a pressure press at a temperature of 130 ° C. This film was fused at a temperature of 110 ° C. to produce a laminated film. This laminated film was immersed in liquid nitrogen and then pulverized using an ultrasonic homogenizer. ⁇ 50 ⁇ m, and the size distribution was 10 / m to 120 / m.
  • an alternating voltage of about 1 Hz is applied to the rotating particle type display device, a transmission image and a reflection image of the rotating rotating particles are video-captured, and the images are taken. It was imported into a PC and determined using image processing software. Hereinafter, the evaluation method will be specifically described.
  • an alternation of 1 Hz is applied to the rotating particle display devices of the first to third examples and the first and second comparative examples.
  • Transmission images and reflection images of rotating particles that rotate are magnified by an optical microscope (Olympane STM-UM-BDZ-100 (S)), and these images are captured by a CCD camera (manufactured by Ikegami Tsushinki) and recorded by a video recorder. The image is recorded by. This image is imported to a PC using an MPEG recorder (Iodata USB-MPG).
  • FIG. 5A is a diagram illustrating an example of a still image of a device
  • FIG. 5B is a diagram illustrating an image in which the still image of FIG. 5A is edge-emphasized.
  • the edge enhancement process yields the white and black boundaries and contours of the rotating particles.
  • L be the length of this boundary line, and find the diameter R from the contour.
  • the contour is an ellipse close to a perfect circle, but if the circularity is 0.8 or more, the diameter R is calculated as a perfect circle, and if the circularity is less than 0.8, the minor axis a of the ellipse Find the major diameter b, and let (a + b) Z2 be the diameter R.
  • the R value was classified into 1.0 or more and less than 1.2, 1.2 or more and less than 1.4, and 1.4 or more and the distribution of L / R values was determined.
  • the transmission image and the reflection image of the stationary device can be transferred to the optical microscope with a digital camera (OLYMPUS ⁇ ⁇ ). 3 ⁇ 4D P _ 10).
  • FIG. 6 is a diagram showing the evaluation results of the LZR values of the rotating particles and the contrast of the rotating particle display device according to the first to third examples and the first and second comparative examples. Note that “1” in the figure indicates a case where measurement is impossible.
  • the ratio of the rotating particles having an L / R value in the range of 1.0 or more and 1.2 or less is 80% or more. It can be seen that the contrast of the rotating particle type display device using the above-mentioned device is 7 or more. When the contrast is 5 or more, the visibility is good and the test is passed. In particular, in the case of the rotating particles according to the second embodiment, since the number of times of classification using a 77 m sieve was large, the distribution of the average particle size became sharp, and the L / R value was 1.0 or more and 1.2 or less. The ratio force S85% of the rotating particles in the range is 85%. As a result, it can be seen that the contrast is 10 which is a good result.
  • the ratio of the rotating particles having the LR value in the range of 1.0 or more and 1.2 or less is 62%. Contrast of the display device according to the first comparative example It can be seen that the value is as low as 3.
  • the white area occupied about 80% of the entire surface of the wheel set according to the second comparative example.
  • L / R values could not be measured due to unstable rotation. This is because the ratio of the melt viscosity of the coloring resin at 190 ° C was as large as 2.95, and the white resin material covered the black resin material in the sphering treatment, and the boundary between the two colors became complicated.
  • the rotating particles of two colors have been described as an example.
  • the present invention is not limited to white and black, and one region of the polymer and the other region may be different. All you need is different hues.
  • a particle rotating type display device which has high controllability of the rotating operation, has good operation stability, has high contrast, and has high contrast, and a method of manufacturing the same. it can.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

A rotating particle display (20) is composed of lower and upper electrodes (22, 23) formed on transparent resin films (21), a transparent base (24) disposed between the lower and upper electrodes (22, 23), spaces defined in the transparent base (24), and rotating particles rotatable in a dielectric liquid (26) placed in the spaces (25). The number of rotating particles in which the relationship between the diameter R of each particle (30) and the length L of the boundary line of the boundary face between two colored areas (28A, 28B) of each particle (30) when viewed from side is given by 1.0≤L/R≤1.2 is 80% or more of the total number of particles.

Description

粒子回転型表示装置およぴその製造方法 技術分野  Particle rotation type display device and its manufacturing method
本発明は、 粒子回転型表示装置およびその製造方法に係り、 特に、 回転動作の 安定性及ぴ制御性の良好な 2色からなる回転粒子を備えた粒子回転型表示装置お よびその製造方法に関する。  The present invention relates to a particle-rotating display device and a method of manufacturing the same, and more particularly, to a particle-rotating display device provided with rotating particles of two colors having good rotation stability and controllability, and a method of manufacturing the same. .
シート型表示装置は、 可撓性を有し、 表示した情報の保持するための電源も必 要がないことから、 紙のように取り扱えるので、 電子ぺーパ、 ぺーパライクディ スプレイ、 デジタルぺーパなどと呼ばれている。 シート型表示装置は、 例えば、 電界により光学的吸収や光学的反射を変ィヒさせて像表示を行う表示素子として、 Sheet-type display devices are flexible and do not require a power supply to hold the displayed information, so they can be handled like paper.Therefore, electronic paper, paper-like displays, digital paper, etc. being called. A sheet-type display device is, for example, a display element that performs image display by changing optical absorption or optical reflection by an electric field.
( 1 ) 電気泳動粒子と着色剤を分散させた溶媒を内包したマイクロカプセル、(1) microcapsules containing a solvent in which electrophoretic particles and a colorant are dispersed,
( 2 ) 2色性色素とスメクチック液晶を含む液晶 Z高分子複合膜、 ( 3 )色と電気 的特性の双方が異なる 2つの半球からなる回転粒子を絶縁性液体とともに内包し たマイクロカプセルが提案されている。 (2) Liquid crystal Z-polymer composite film containing dichroic dye and smectic liquid crystal; (3) Microcapsules containing rotating particles consisting of two hemispheres with different colors and electrical properties together with insulating liquid are proposed. Have been.
これらのシート状表示装置は、 不揮発性で保持動作を必要とせず、 表示素子を 電極が形成された P E Tフィルムにより挟んだ構成となっているので薄く、軽く、 可撓性を有する。  These sheet display devices are nonvolatile, do not require a holding operation, and are thin, light, and flexible because the display element is sandwiched between PET films on which electrodes are formed.
特に電界により回転粒子を回転させ、 色分けされた回^ Ϊ子の光学的コントラ ストにより情報を表示する。 良好な光学的コントラストを得るためには、 回転粒 子の動作安定性や制御性が良好であることが必要不可欠である。 背景技術  In particular, the rotating particles are rotated by an electric field, and information is displayed by the optical contrast of the color-coded resonator. In order to obtain good optical contrast, it is essential that the rotating particles have good operational stability and controllability. Background art
米国特許第 4 1 2 6 8 5 4号公報、 及び第 4 1 4 3 1 0 3号公報においては、 色と電気的特性の双方が異なる 2つの半球からなる回転粒子を絶縁性液体ととも に内包したマイクロ力プセルを表示素子として用いた表示装置が開示されている。 この表示装置は、 図 1に示すように、 光学的に透明な基材中に誘電性液体を充填 した空隙を複数有し、 1つの空隙に 1つの回転粒子が格納される構造をしている。 1つの回転粒子は、異なる色及ぴ帯電特性の 2つの領域より形成されているため、 電界を印加すると、 図 3に示すように、 粒子の電気泳動と回 β動が起き、 回転 粒子の向きが反転し、 表示面側の色が変化し像表示を行うことができる。 In U.S. Pat.Nos. 4,126,564 and 4,143,033, rotating particles consisting of two hemispheres having both different colors and different electrical properties are used together with an insulating liquid. A display device using a contained micro force cell as a display element is disclosed. As shown in Fig. 1, this display device has a structure in which an optically transparent base material has a plurality of voids filled with a dielectric liquid, and one void contains one rotating particle. . Since one rotating particle is formed of two regions having different colors and different charging characteristics, when an electric field is applied, electrophoresis and rotation β of the particle occur, as shown in Fig. 3, and the direction of the rotating particle Is inverted, and the color on the display surface side is changed, so that an image can be displayed.
このような回 子の製造方法としては、 ( 1 )色の異なる 2種類の溶融したヮ ックス粒子を結合させ、 表面張力により球形化し固化させる方法 (参照:米国特 許第 5 2 6 2 0 9 8号公報)、 ( 2 ) ガラス、 樹脂などの,粒子の表面に、 金属、 力 一ボンブラック、 硫化アンチモンなどを蒸着あるいは塗布する方法 (参照:特開 ¥ 1 1 - 8 5 0 6 7号公報、 特開平 1 1— 8 5 0 6 8号公報)、 (3 ) 感光材料か らなる粒子を用い、 写真あるいは電子写真方式の露光、'現像、 定着処理等により 発色させる方法 (参照:特開平 1 1— 1 6 1 2 0 6号公報、 特開平 1 1— 8 5 0 6 9号公報) が挙げられる。  As a method for producing such a crystal, there are (1) a method in which two kinds of melted particles having different colors are combined, and are sphericalized and solidified by surface tension (see US Pat. No. 5,226,099). No. 8), (2) A method of evaporating or applying metal, bonbon black, antimony sulfide, etc. on the surface of particles such as glass and resin (see JP-A-11-85067) (3) A method in which particles made of a photosensitive material are used to form a color by photographic or electrophotographic exposure, 'development, fixing processing, etc. (Japanese Unexamined Patent Publication No. Hei 1-11-1620, Japanese Unexamined Patent Publication No. Hei 1-185069).
これらのうち、 特開平 1—2 8 2 5 8 9号公報において、 着色した樹脂により 回転粒子を形成する方法として、 ローラやプレス機により 2色の着色樹脂板を貼 り合わせた圧延シートを作製したのち、 ターボ型粉石權により粉砕処理し、 熱風 によるカロ熱処理、 分級により回転粒子を製造する方法が開示されている。 しかし ながら、 粉碎処理がターボ型粉石權により行われており、 粉碎された個々の樹脂 片の形状、 及び大きさのばらつきが大きくなり、 分級により所望の粒径の回^^ 子は得られるものの、 歩留まりが低くなる。 また、 得られた回転粒子のそれぞれ の色の樹脂が占める体積比や色の境界は、 粉碎時の端面形状に影響されるが、 本 公報ではターボ型粉石權を使用しているので、 粉砕して得られたブロック体の端 面の乱れにより、 体積比のばらつきが大となり、 2色の境界が蛇行するなどの乱 れが生じてしまう。 その結果、 回転粒子の回転動作にばらつきが生じ、 所望の表 示像をコントラスト良く表示できないという 題を生ずる。  Among these, in Japanese Patent Application Laid-Open No. 1-282589, as a method of forming rotating particles with a colored resin, a rolled sheet in which two colored resin plates are laminated with a roller or a press machine is manufactured. After that, a method is disclosed in which crushing treatment is carried out with a turbo-type powdered stone, heat treatment with hot air by heat and classification is performed to produce rotating particles. However, the milling process is performed by a turbo-type milling stone, and the shape and size of the individual shredded resin pieces vary greatly, and particles having a desired particle size can be obtained by classification. However, the yield is low. In addition, the volume ratio and the color boundary occupied by the resin of each color of the obtained rotating particles are affected by the shape of the end face at the time of pulverization. Due to the disturbance of the end face of the block body obtained as described above, the variation in the volume ratio becomes large, and disturbance such as meandering of the boundary between the two colors occurs. As a result, variations occur in the rotation operation of the rotating particles, which causes a problem that a desired display image cannot be displayed with high contrast.
また、 特開 2 0 0 2— 1 2 2 8 9 3号公報において、 2色の着色樹脂板を貼り 合わせ、 これを P E Tフィルムなどの基材で挟み回転刃により切断して大きさの 揃った樹脂片を作製し、 次いで加熱溶融して球状化することにより回転粒子を製 造する方法が開示されている。 本公報によれば、 樹脂片の大きさが揃っているの で、 直径の揃った回転粒子を得易いという特徴があるとされている。 しかしなが ら、 球形化するための加熱工程において、 樹脂片同士が溶融した際融着する可能 性があり、 結局粒径のばらつきが大となってしまう。 その結果、. 回^立子の回転 動作にばらつきが生じ、 所望の表示像をコントラスト良く表示できないという問 題を生ずる。 Also, in Japanese Patent Application Laid-Open No. 2000-122,893, two colored resin plates are bonded together, sandwiched between base materials such as PET films, and cut with a rotary blade to make the sizes uniform. There is disclosed a method of producing a rotating particle by producing a resin piece, then heating and melting it to form a spheroid. According to this publication, since the resin pieces have the same size, it is characterized that it is easy to obtain rotating particles having a uniform diameter. However, in the heating process for spheroidization, it is possible for resin pieces to fuse together when they melt. Therefore, the dispersion of the particle size becomes large eventually. As a result, a variation occurs in the rotation operation of the circulator, causing a problem that a desired display image cannot be displayed with high contrast.
また、 特許 2 8 6 0 7 9 0号公報において、 低比重のワックス状物質を用いて 回 立子を形成し、 回 ¾子の球形度、 回転粒子及ぴ回嫌子を包含する空隙の 直径の関係、 色分け面積比等を規定した回転粒子が開示されている。 本公報によ れば、 応答性及び回転粒子の運動性能が良好であるとされている。  Also, in Japanese Patent No. 2866070, a reciprocator is formed by using a wax-like substance having a low specific gravity, and the sphericity of the retort, the diameter of the void including the rotating particles and the resonator are determined. A rotating particle that defines a relationship, a color-coded area ratio, and the like is disclosed. According to this publication, the responsiveness and the kinetic performance of the rotating particles are considered to be good.
しかしながら、 本公報にぉレヽては回転粒子の球形度、 色分け面積等を制御する 製造方法につ!/、て具体的に記載されていない。  However, according to this publication, a manufacturing method for controlling the sphericity, color-coding area, and the like of the rotating particles! /, Not specifically described.
特許文献 1 特開平 1一 2 8 2 5 8 9号公報  Patent Document 1 Japanese Patent Application Laid-Open No. Hei 11-282 589
特許文献 2 特開 2 0 0 2— 1 2 2 8 9 3号公報  Patent Document 2 Japanese Patent Application Laid-Open No. 2000-2012
特許文献 3 特開 2 0 0 2— 1 6 2 6 5 2号公報 発明の開示  Patent Document 3 Japanese Patent Application Laid-Open No. 2000-162620 Disclosure of the Invention
そこで、 本発明は上記の課題を解決した新規力 有用な粒子回転型表示装置及 びその製造方法を提供することを概括課題とする。  Accordingly, it is a general object of the present invention to provide a novel and useful particle rotating display device which solves the above-mentioned problems, and a method for manufacturing the same.
本発明のより具体的な觀は、 回転動作の制御性が優れ、 動作安定性が良好な 回 子を備え、 コントラストの高レヽ粒子回転型表示装置及びその製造方法を提 供することにある。  A more specific aspect of the present invention is to provide a high-contrast, high-particle-particle rotary display device having a device with excellent controllability of rotational operation and good operational stability, and a method of manufacturing the same.
本発明の一観点によれば、 電界に応じて回転する回転粒子により情報を表示す る粒子回転型表示装置であつて、  According to one aspect of the present invention, there is provided a particle rotating display device that displays information using rotating particles that rotate in response to an electric field,
前記回転粒子は、 略半球ごとに互いに異なる色及び帯電特性を有する第 1の領 域及び第 2の領域よりなり、  The rotating particles include a first region and a second region having different colors and charging characteristics from each other in each substantially hemisphere,
前記第 1の領域と第 2の領域との境界が略中央を通り、 前記第 1の領域及ぴ前 記第 2の領域の面積が略同一となる方向より視た 2次元像にぉレ、て、  A boundary between the first region and the second region passes substantially through the center, and the two-dimensional image is viewed from a direction in which the areas of the first region and the second region are substantially the same. hand,
前記第 1の領域と第 2の領域との境界線の長さを L、 回転粒子の輪郭に相当す る円の直径を Rとした # ^に、 1 . 0≤L/R≤1 . 2の範囲にある回転粒子の 個数が全体の個数の 8 0 %以上であることを特徴とする粒子回転型表示装置が提 供される。 本発明によれば、 粒子回転型表示装置にお!/、て、 第 1の領域と第 2の領域との 境界が略中央を通り、 第 1の領域の面積と第 2の領域の面積が略同一になるよう な方向から回転粒子を視た 2次元像にお V、て、 第 1の領域と第 2の領域との境界 ,線の長さ と、 回転粒子の輪郭に相当する円の直径 Rと比 L/Rが、 1 . 0≤L /R≤l . 2である回転粒子が全体に対して 8 0 %以上あるものである。 Where L is the length of the boundary line between the first region and the second region, and R is the diameter of a circle corresponding to the contour of the rotating particle, and 1.0≤L / R≤1.2 The number of the rotating particles in the range described above is 80% or more of the total number, and the rotating particle type display device is provided. According to the present invention, in the particle rotation type display device, the boundary between the first region and the second region passes substantially at the center, and the area of the first region and the area of the second region are reduced. In a two-dimensional image of a rotating particle viewed from a direction that is almost the same, V represents the boundary between the first region and the second region, the line length, and the circle corresponding to the contour of the rotating particle. The rotating particles whose diameter R and ratio L / R are 1.0≤L / R≤l.2 are more than 80% of the whole.
例えば、 L R= 1の場合は境界線が円の中心を通る直線の場合である。 L/ R値が大となるほど、 境界線が曲線状あるいは凹凸状となる。 回転粒子は第 1の 領域と第 2の領域の帯電特性が異なることにより、 印加された電界に応じて、 ク 一ロン力により回転モーメントが発生し約 1 8 0度回転し停止する。したがって、 第 1の領域と第 2の領域の境界が曲線状になると、 回転モーメントが一定の方向 に働かなくなり回転停止位置がずれ、さらには回転動作が不安定となってしまう。 本発明は 1 . 0≤ L/R≤ 1 . 2である回転粒子が全体に対して 8 0 %以上とす ることで、 回転動作の安定性が良好であり、 その結果コントラストの高!/、粒子回 転型表示装置を実現することができる。  For example, when L R = 1, the boundary line is a straight line passing through the center of the circle. As the L / R value increases, the boundary line becomes more curved or uneven. Due to the different charging characteristics of the first region and the second region, the rotating particles generate a rotational moment due to the cron force in accordance with the applied electric field, rotate about 180 degrees, and stop. Therefore, when the boundary between the first area and the second area is curved, the rotational moment does not work in a certain direction, the rotation stop position shifts, and the rotation operation becomes unstable. According to the present invention, when the rotating particles satisfying 1.0 ≦ L / R ≦ 1.2 are set to 80% or more of the whole, the stability of the rotating operation is good, and as a result, the contrast is high! / Thus, a particle rotating display device can be realized.
本発明の他の観点によれば、 第 1の電極及ぴ第 2の電極と、  According to another aspect of the present invention, a first electrode and a second electrode,
前記第 1の電極と第 2の電極との間に設けられた透明基体と、  A transparent substrate provided between the first electrode and the second electrode,
前記透明基体中に形成された複数の空隙と、  A plurality of voids formed in the transparent substrate,
前記空隙中に充填された誘電性液体と、 2色に色分けされた第 1の領域及び第 2の領域とを有する回^^子とを含み、  A dielectric liquid filled in the void, and a resonator having a first region and a second region which are color-coded into two colors,
前記電極により印加される電界に対応して回転粒子が 2色のいずれかを表示す る粒子回転型表示装置であって、  A rotating particle display device in which rotating particles display one of two colors corresponding to an electric field applied by the electrode,
前記第 1の領域と第 2の領域との境界が略中央を通り、前記第 1の領域及ぴ前 記第 2の領域の面積が略同一となる方向より視た 2次元像にぉレヽて、  A two-dimensional image viewed from a direction in which the boundary between the first region and the second region passes substantially at the center and the areas of the first region and the second region are substantially the same. ,
前記第 1の領域と第 2の領域との境界線の長さを L、 回転粒子の輪郭に相当す る円の直径を Rとした i蚤合に、 1 . 0≤L/R≤1 . 2の範囲にある回転粒子の 個数が全体の個数の 8 0 %以上であることを特徴とする粒子回転型表示装置が提 供される。  When the length of the boundary between the first region and the second region is L, and the diameter of a circle corresponding to the contour of the rotating particle is R, 1.0≤L / R≤1. A rotating particle display device is provided, wherein the number of rotating particles in the range of 2 is 80% or more of the total number.
本発明によれば、 上述したように 1 . 0≤L/R≤1 . 2である回転粒子が全 体に対して 8 0 %以上とするこ'とで、 回転動作の安定性が良好であり、 その結果 コントラストの高レ、粒子回転型表示装置を実現することができる。 According to the present invention, as described above, the rotating particles satisfying 1.0 ≦ L / R ≦ 1.2 should be 80% or more of the whole, so that the stability of the rotating operation is good. Yes, as a result A high-contrast, particle-rotating display device can be realized.
本発明のその他の観点によれば、 電界に応じて回転し、 2色からなる回転粒子 により情報を表示する粒子回転型表示装置の製造方法であって、  According to another aspect of the present invention, there is provided a method of manufacturing a particle rotating display device that rotates in response to an electric field and displays information by rotating particles of two colors.
前記 2色の各々の色が着色された樹脂材を用いて単色樹脂板を形成する工程と、 2色の各々の前記単色樹脂板を貼り合わせて 2色積層樹脂板を形成する工程と、 前記 2色積層樹脂板を切断して樹脂片とする工程と、  A step of forming a single-color resin plate using a resin material in which each of the two colors is colored; a step of bonding the single-color resin plates of each of the two colors to form a two-color laminated resin plate; A step of cutting the two-color laminated resin plate into resin pieces,
前記樹脂片を液体中で熱処理することにより球形化して回転粒子を形成するェ 程と、  Heat-treating the resin piece in a liquid to form spheroids to form rotating particles;
前記回転粒子の粒径に基づいて該回 子を分級する工程と、 を含むことを特 徴とする粒子回転型表示装置の製造方法が提供される。  And a step of classifying the particles based on the particle diameter of the rotating particles.
本発明によれば、 2色の単色樹脂板を貼り合わせ形成した 2色積層樹脂板を切 断して得た樹脂片を液体中で加熱して球形ィ匕し、 形成された回転粒子を粒径に基 づいて分級している。 したがって、 樹脂片を液体中で加熱して球形化しているの で、 回^ Ϊ子の 2色の境界が単調となり、 また、 分級処理により回転粒子の粒径 分布を狭小化する。 その結果、 回転動作及ぴ回転停止位置の安定化を図った回転 粒子を形成することができる。  According to the present invention, a resin piece obtained by cutting a two-color laminated resin plate formed by laminating two-color single-color resin plates is heated in a liquid to form a spherical shape, and the formed rotating particles are granulated. Classification is based on diameter. Therefore, since the resin piece is heated in the liquid to form a sphere, the boundary between the two colors of the resonator becomes monotonous, and the particle size distribution of the rotating particles is reduced by the classification process. As a result, it is possible to form rotating particles in which the rotation operation and the rotation stop position are stabilized.
また、前記 2色の樹脂材の 1 9 0 °Cにおける溶融粘度の比が 0 . 5〜 2である。  Further, the ratio of the melt viscosity at 190 ° C. of the two color resin materials is 0.5 to 2.
2色の樹脂材の溶融粘度を制御することにより、 球形ィ匕にぉレ、て 2色の樹脂材が 溶融する際に、 2色の樹脂材が均衡を保持して自己球形化するので、 2色の境界 をさらに単調にすることができる。 By controlling the melt viscosity of the two-color resin material, when the two-color resin material melts, the two-color resin material becomes self-spherical while maintaining the balance when the two-color resin material is melted. The border between the two colors can be made even more monotonous.
図 1 A及ぴ図 1 Bは本発明の原理を説明するための図である。 図 1 A及ぴ図 1 Bにおける回転粒子の 2次元像は、 電界が回^^子 1 1 , 1 2の上側から下側へ あるいはその逆方向に印加され、 観 置がその電界と垂直な面内としたときの ものである。 図 1 A及ぴ図 1 Bの上段に示すように、 回転粒子 1 1、 1 2は、 白 色と黒色に着色された 2つの領域 1 1 A、 1 1 B、 1 2 A、 1 2 Bがそれぞれ回 転粒子の表面積の略半分を占めている。 回転粒子 1 1、 1 2は、 外部より電界が 一度も印加されていない場合は、任意の方向を向いている。なお、回 子 1 1、 1 2は、 その周囲の空間が図示されない誘電性液体により満たされている。  1A and 1B are diagrams for explaining the principle of the present invention. In the two-dimensional images of the rotating particles in FIGS. 1A and 1B, the electric field is applied from the upper side to the lower side of the resonators 11 and 12 or in the opposite direction, and the observation is perpendicular to the electric field. This is when it is set in the plane. As shown in the upper part of Fig. 1A and Fig. 1B, the rotating particles 11 and 12 consist of two regions, 11A, 11B, 12A and 12B, which are colored white and black. Occupy almost half of the surface area of the rotating particles. The rotating particles 11 and 12 are oriented in arbitrary directions when no electric field is applied from outside. Note that the surrounding spaces of the elements 11 and 12 are filled with a dielectric liquid (not shown).
次に、図 1 Aの上段に示す回転粒子 1 1に、図 1 Aの中段に示すように矢印 Ei の方向 (一 Z方向) に電界を印加すると、 回転粒子 1 1表面がマイナスに帯電し ている白色領域 1 1 Aには、 上方にクーロン力力 S働き、 プラスに帯電している黒 色領域 1 1 Bには下方にクーロン力が働く。 これらのクーロン力による回転モー メントにより回転動作が生じ、 白色領域 1 1 Aが上側、 黒色領域 1 1 Bが下側と なり、 エネルギー的に安定な位置で回転が停止する。 回転粒子 1 1は、 白色領域 1 2 Aと黒色領域 1 2 Bの境界 B Diが単調な場合は、 回転の停止位置が、 図 1 Aの中段に示すように、 白色領域 1 1 Aの半球が上側、 黒色領域 1 1 Bの半球が 下側となる位置で停止する。 したがって、 図の上方 (表示装置の観察側) 力 ら観 察すると回 子 1 1は白色の円に見える。 ' 次に図 1 Aの中段の状態から、 図 1 A下段に示すように電界の方向を反転して 矢印 E2の方向 (Z方向) に電界を印加すると、 Z方向に垂直な方向を回転軸と して回転粒子 1 1が回転し、プラスに帯電している黒色領域 1 1 Bが上側となる。 マイナスに帯電している白色領域 1 1 Aは下側となる。 図の上方から観察すると 回転粒子 1 1は黒色の円に見える。 Next, the rotating particles 11 shown in the upper part of FIG. When an electric field is applied in the direction (1 Z direction), the rotating particles 11 1 The white area 11 A where the surface is negatively charged, the Coulomb force S acts upward, and the black area which is positively charged Coulomb force acts on 1 1 B downward. Rotational motion is generated by the rotation moment due to these Coulomb forces, and the white region 11A is on the upper side and the black region 11B is on the lower side, and the rotation is stopped at an energy stable position. When the boundary B Di between the white region 12 A and the black region 12 B is monotonous, the rotating particle 11 has a rotation stop position of the hemisphere of the white region 11 A, as shown in the middle part of Fig. 1A. Stops at the position where the upper side is the upper side and the hemisphere of the black area 11B is the lower side. Therefore, when viewed from the upper side of the figure (observation side of the display device), the element 11 appears as a white circle. 'Then from the middle of the state of FIG. 1 A, rotation when an electric field is applied, the direction perpendicular to the Z direction in the direction of arrow E 2 by reversing the direction of the electric field (Z-direction) as shown in FIG. 1 A lower The rotating particle 11 rotates as an axis, and the positively charged black region 11 B is on the upper side. The negatively charged white area 11 A is on the lower side. When viewed from above, the rotating particles 11 appear as black circles.
し力し、 図 1 Bの上段に示すように、 白色領域 1 2 Aと黒色領域 1 2 Bの境界 B D2が乱れている回転粒子 1 2の場合は、 図 1 Bの中段に示すように電界 Eiを 印加すると回転粒子 1 2は回転粒子 1 1のように回転して白色領域 1 2 Aを上側、 黒色領域 1 2 Bを下側に向けるものの、 回転の停止位置がずれ、 境界の正常な位 置が境界 B D2, に対して、 境界 B D2になってしまう。  As shown in the upper part of Fig. 1B, as shown in the upper part of Fig. 1B, in the case of the rotating particle 12 where the boundary B D2 between the white area 12A and the black area 12B is disturbed, When the electric field Ei is applied, the rotating particles 1 and 2 rotate like the rotating particles 11 and turn the white area 12 A upward and the black area 12 B downward, but the rotation stop position shifts and the boundary is normal. Is a boundary BD2 with respect to the boundary BD2.
図 2は、 図 1 B中段の回転粒子 1 2を矢印 Xの方向から見た図である。 図 2を 参照すると、回 ½子は、 白色領域 1 1 Aと黒色領域 1 1 Bの境界 B D2'が傾い た状態で停止しており、 図 2の上方から観察すると回転粒子 1 2は白色の一部に 黒色が見えてしまう。 このようになると、 表示される画像にノイズが生じてしま 5 o FIG. 2 is a view of the rotating particle 12 in the middle stage of FIG. 1B viewed from the direction of arrow X. Referring to FIG. 2, the circuit is stopped with the boundary BD 2 ′ between the white region 11 A and the black region 11 B tilted. When viewed from above in FIG. 2, the rotating particles 12 are white. Black is visible on some of the. If this happens, the displayed image will be noisy 5 o
図 I Bの下段に戻り、 図 1 Bの中段より、 電界を反転して矢印 E2の方向 (Z 方向) に電界を印加すると、 回転粒子 1 2は同様に停止位置がずれてしまう。 このような回^^子 1 2の回 止位置は以下のように考えられる。 回 子 1 2の回転モーメントは、 表面の電荷分布に依存し、 特にクーロン力と半径方向 が略直角となる白色領域と黒色領域との境界 B D2付近の表面電荷分布、 すなわ ち境界 B D2の形状が回転モーメントの方向及ぴ大きさを決定づけると考えられ る。 回転粒子 1 1のように境界 B Diが単調である場合は、 上下方向のクーロン 力が均一に発生するので回転モーメントの均衡が、白色領域 1 1 Aの半球が上側、 黒色領域 1 1 Bの半球が下側となる位置でとれるものの、 回転粒子 1 2のように 境界 B D2が複雑である場合は、 上下方向のクーロン力が不均一となり、 白色領 域 1 2 Aおよび黒色領域 1 2 Bの半球が傾いた状態で回転モーメントの均衡がと れるものと ί察される。 ' Returning to the lower part of FIG. IB, from the middle of FIG. 1 B, when inverting the electric field for applying an electric field in a direction (Z direction) of the arrow E 2, rotary particle 1 2 deviates is likewise stop position. Such a stop position of the element 12 is considered as follows. Rotation moment of the rotating element 1 2 is dependent on the charge distribution of the surface, especially the surface charge distribution in the vicinity of the boundary BD 2 between Coulomb force and the radial direction is substantially perpendicular white areas and black areas, Sunawa That is, it is considered that the shape of the boundary BD 2 determines the direction and magnitude of the rotational moment. When the boundary B Di is monotonous as in the case of the rotating particle 11, the Coulomb force in the vertical direction is generated uniformly, so that the rotational moment is balanced, the hemisphere in the white area 11 A is on the upper side, and the black area 11 B Although the hemisphere can be taken at the lower side, if the boundary BD 2 is complicated like the rotating particle 1 2, the Coulomb force in the vertical direction becomes uneven, and the white area 12 A and the black area 1 B It is assumed that the rotational moment is balanced when the hemisphere is tilted. '
そこで、 本願発明者は、 実験、 及ぴ上述の考察に基づいて本発明をするに至つ たものである。 図面の簡単な説明  Thus, the present inventor has led to the present invention based on experiments and the above considerations. BRIEF DESCRIPTION OF THE FIGURES
図 1 Α及び図 1 Bは、 本発明の原理を説明するための図である。  1A and 1B are diagrams for explaining the principle of the present invention.
図 2は、 図 1 Bの中段の回 子の X矢視図である。  FIG. 2 is a view of the middle stage of FIG. 1B taken along the arrow X.
図 3は、 本発明の実施の形態に係る回転粒子型表示装置の概略断面図である。 図 4は、 本実施の形態の回転粒子型表示装置の製造工程を示すフローチャート である。  FIG. 3 is a schematic cross-sectional view of the rotating particle display device according to the embodiment of the present invention. FIG. 4 is a flowchart showing a manufacturing process of the rotating particle display device of the present embodiment.
図 5 Aは、 回転粒子の静止画像の一例を示す図である。  FIG. 5A is a diagram illustrating an example of a still image of a rotating particle.
図 5 Bは、 図 5 Aの静止画像をェッジ強調処理した画像を示す図である。  FIG. 5B is a diagram showing an image obtained by subjecting the still image of FIG. 5A to edge wedge enhancement processing.
図 6は、 第 1〜第 3実施例及び第 1〜第 2比較例係る回転粒子の L/R値及び 回!^子型表示装置のコントラストの評価結果を示す図である。 発明を実施するための最良の態様  FIG. 6 shows the L / R values and times of the rotating particles according to the first to third examples and the first and second comparative examples. FIG. 10 is a diagram showing evaluation results of contrast of a child display device. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明を実施の形態を挙げて詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to embodiments.
図 3は、 本発明の実施の形態、に係る回転粒子型表示装置の概略断面図である。 図 3を参照するに、 回転粒子型表示装置 2 0は、 透明な樹脂フィルム 2 1上に 電極が形成された下部電極 2 2及ぴ上部電極 2 3と、 下部電極 2 2と上部電極 2 3との間に設けられた透明基体 2 4と、透明基体 2 4中に形成された空隙 2 5と、 空隙 2 5に充填された誘電性液体 2 6中で回転可能な回 ^&子 2 8などから構成 されている。 回転粒子型表示装置 2 0は、 回^ Ϊ子 2 8が略半球ずつ色分けされた領域 2 8 A、 2 8 B 力ら構成されている。 それぞれの領域は、 顔料、 染料等の着色剤によ り着色されており、 着色剤及び結合剤としてのバインダなどのゼータ 立の差違 により、 帯電する電荷が異なってくる。 下部電極と上部電極との間に電圧を印カロ して、 透明基体及び誘電性液体を介して回転粒子に電界が印加されると、 電界の 方向に対応して回転粒子が回転し、 観察者 3 0が所望の表示像を観察することが できる。 FIG. 3 is a schematic sectional view of a rotating particle type display device according to an embodiment of the present invention. Referring to FIG. 3, the rotating particle display device 20 includes a lower electrode 22 and an upper electrode 23 having electrodes formed on a transparent resin film 21, and a lower electrode 22 and an upper electrode 23. , A void 25 formed in the transparent substrate 24, and a rotatable member 28 in the dielectric liquid 26 filled in the void 25. And so on. The rotating particle type display device 20 is composed of regions 28 A and 28 B in which the particles 28 are color-coded substantially by hemisphere. Each of the regions is colored with a coloring agent such as a pigment or a dye, and the charge to be charged is different due to the difference in zeta standing between the coloring agent and a binder as a binder. When a voltage is applied between the lower electrode and the upper electrode, and an electric field is applied to the rotating particles via the transparent substrate and the dielectric liquid, the rotating particles rotate in accordance with the direction of the electric field, and the 30 can observe a desired display image.
回転粒子 2 8は、 粒径の平均値 (平均粒径) が 2 ," π!〜 5 0 0 μ m、 好ましく は 1 0 111〜1 0 0 μ πιの範囲に設定される。 5 0 0 ju mより大きいと、 回転さ せるための印加電圧が過度に大となり経済的ではなく、 また、 高精度な表示がで きない。 また、 1 0 Ο μ πι以下とすることで回^^子を保持する透明基体の厚さ も薄層化可能となり、 印加電圧も低電圧化可能となる。 一方 1 0 ;z mより小さい と回転粒子 2 8の粒径分布の制御が困難となる。  The rotating particles 28 have an average particle diameter (average particle diameter) of 2, π! To 500 μm, preferably 10 111 to 100 μπι. If it is larger than jum, the applied voltage for rotation becomes excessively high, which is not economical and high-precision display cannot be performed. In addition, the thickness of the transparent substrate holding the thickness can be reduced, and the applied voltage can be reduced.On the other hand, when the value is smaller than 10; zm, it is difficult to control the particle size distribution of the rotating particles 28.
また、 回転粒子 2 8の粒径分布の変動係数は、 標準偏差 Z平均粒径 X 1 0 0 (%) で表される。 変動係数を 2 0 %以下 (好ましくは 1 5 %以下) とする。 変 動係数が 2 0 %を超えると回転粒子の停止位置がずれコントラストが低下する。 すなわち、 印加される電界の大きさが一定の 、 粒径のより小なる回転粒子の 静止位置がずれる傾向にある。 変動係数を低減するためには樹脂片を形成する際 の切断精度の向上及び分級処理が有効である。  The coefficient of variation of the particle size distribution of the rotating particles 28 is represented by the standard deviation Z average particle diameter X 100 (%). The coefficient of variation shall be 20% or less (preferably 15% or less). If the variation coefficient exceeds 20%, the stop position of the rotating particles shifts and the contrast decreases. That is, the stationary position of a rotating particle having a smaller particle diameter and a constant applied electric field tends to shift. In order to reduce the coefficient of variation, it is effective to improve the cutting accuracy and form classification when forming the resin pieces.
なお、 本願発明における回^ Ϊ子 2 8の粒径分布の測定はコールター法による ベックマン'コールターネ: fc^マノレチサィザー I I E装置を用いて、 下記の測定条 件下で体積平均粒径及び標準偏差を測定した。  The particle size distribution of the particles 28 in the present invention was measured by the Coulter method using a Beckman's Coultane: fc ^ manoresizer IIE device, and the volume average particle size and standard deviation were measured under the following measurement conditions. did.
アパーチャ径: 2 0 0 μ πι  Aperture diameter: 200 μππ
サンプリング数: 1 0 0 0 0  Number of sampling: 1 0 0 0 0
上述したように、 本願発明者は、 鋭意検討の結果、 回絲立子の 2色の境界が複 雑になると回転粒子の回 亭止位置がずれ、 さらに回転動作が正常に行われな 、 ことを見出した。 そこで、 種々の検討の結果、 互いに異なる色からなる第 1の領 域と第 2の領域との境界が略中央を通り、 第 1の領域の面積と第 2の領域の面積 が略同一になるような方向から回^ &子を視た 2次元像において、 2色の境界線 の長さ Lと粒径 Rとの比である L/R値と回転動作及ぴ回転停止位置が密接に関 係することを知見した。 L/R値が 1 . 0の場合は、 境界線は直線であり、 回転 動作及ぴ停止位置が正常である。 1 . 0く LZR 1 . 2の場合は、 穏やかな波 状となり、 回転動作はするものの回転停止時の位置が若干傾く。 1 . 2 < L R ≤1 . 4の場合は、 境界線は極端な凹凸が目立ち、 回転粒子は、 電界に応じて回 転はするものの、 回転停止位置は境界線が観察側になり、 観察側からみると所望 の色の他に、 他方の色が見えてしまう。 また L/R値が 1 . 4を超えると境界線 の凹凸が大となると共に一方の色が他方の色の領域に斑点状になって現れる場合 もある。 このような場合は電界に対応する回転動作をせず、 例えば回転軸が 2色 の領域のそれぞれの中央を貫くように形成され、 白色又は黒色の表示が区別がで きない等、 回転動作が異常となる。 As described above, the inventor of the present application has assiduously studied that, when the boundary between the two colors of the thread thread becomes complicated, the detent position of the rotating particles shifts, and the rotating operation is not performed normally. I found it. Therefore, as a result of various studies, the boundary between the first region and the second region, which are different colors from each other, almost passes through the center, and the areas of the first region and the second region become substantially the same. In the two-dimensional image that looks at the child from the direction like It has been found that the L / R value, which is the ratio of the length L to the particle size R, and the rotation operation and rotation stop position are closely related. When the L / R value is 1.0, the boundary is a straight line, and the rotation and stop positions are normal. In the case of 1.0 and LZR 1.2, the waveform becomes gentle and the rotation is performed, but the position when the rotation stops is slightly tilted. In the case of 1.2 <LR ≤ 1.4, the boundary line is extremely conspicuous, and the rotating particles rotate according to the electric field, but the rotation stop position is on the boundary side and the observation side From the viewpoint, in addition to the desired color, the other color can be seen. If the L / R value exceeds 1.4, the unevenness of the boundary line becomes large, and one color may appear as a spot in the other color region. In such a case, the rotating operation corresponding to the electric field is not performed.For example, the rotating shaft is formed so as to pass through the center of each of the two color regions, and the rotating operation is performed such that white or black display cannot be distinguished. It becomes abnormal.
表示装置のコントラスト、 すなわち一方の色を表示した場合と他方の色を表示 した場合の反射率の比は、 個々の回転粒子が有する LZR値により変ィ匕する。 本 願発明者は 1 . 0≤L/R≤1 . 2の範囲の LZR値を有する回転粒子の個数が 全体の 8 0 %以上あれば、表示装置としての視認性が十分であることを知得した。 すなわち、 1 . 2く L/Rの割合が 2 0 %未満であれば、 所望の色の中にノィズ として他の色が混在することになってもその割合が少ないので、 視認性が確保さ れる。 もちろん、 1 . 0≤L/R≤1 . 2の範囲の LZR値を有する回転粒子の 割合が大であればあるほど、 例えば 9 0 %以上であることが、 コントラストの観 点からは好ましい。  The contrast of the display device, that is, the ratio of the reflectance when one color is displayed and the reflectance when the other color is displayed varies depending on the LZR value of each rotating particle. The inventor of the present application has found that if the number of rotating particles having an LZR value in the range of 1.0≤L / R≤1.2 is 80% or more of the total, the visibility as a display device is sufficient. I got it. In other words, if the ratio of 1.2 / L / R is less than 20%, even if other colors are mixed as noise in the desired color, the ratio is small and the visibility is secured. It is. Of course, the larger the ratio of the rotating particles having the LZR value in the range of 1.0≤L / R≤1.2, for example, it is preferably 90% or more from the viewpoint of contrast.
以下、 本発明に係る回赫立子および粒子回転型表示装置の構成と共に、 それら の製造方法について説明する。  Hereinafter, the configurations of the circulator and the particle rotating type display device according to the present invention, as well as the method of manufacturing them, will be described.
始めに回転粒子の構成及び製造方法について図 4を参照しながら説明する。 図 4は、 本実施の形態の回転粒子型表示装置の製造工程を示すフローチヤ一トであ る。  First, the configuration and manufacturing method of the rotating particles will be described with reference to FIG. FIG. 4 is a flowchart showing a manufacturing process of the rotating particle display device of the present embodiment.
まず、 2色の樹脂材をそれぞれ作製する (S 1 0 2)。樹脂材は、パインダ、及 ぴ着色剤などを口ールミル、 ェクストルーダ等で加熱して練合等することにより 形成する。 パインダとしては、 ポリエチレン、 ポリプロピレン、 ポリスチレン、 アクリル、 ナイロンなどの公知の熱可塑性樹脂を用いる。 後に樹脂片に切断する 工程における力ット性の観点からはバインダはポリエチレン、 ポリプロピレンが 奸適である。 First, two color resin materials are manufactured (S102). The resin material is formed by heating a kneader, an extruder, or the like, and kneading a binder, a coloring agent, and the like. As the binder, a known thermoplastic resin such as polyethylene, polypropylene, polystyrene, acrylic, or nylon is used. Later cut into resin pieces From the viewpoint of strength in the process, polyethylene and polypropylene are suitable for the binder.
また 着色剤としては、 二酸化チタン、 二酸化ケイ素、 硫酸バリウム、 炭酸力 ルシム、 及ぴアルミナなどの白色顔料、 カーボンブラック、 及ぴマグネタイトな どの黒色顔料、 フタロシアニン顔料、 ァゾ顔料、 キナタリドン顔料、 ペリレン顔 料、 及ぴペリノン顔料などの公知の顔料や、 酸性染料、 塩基性染料、 反応染料、 直接染料、 及び分散染料などの公知の染料を用いる。  Colorants include white pigments such as titanium dioxide, silicon dioxide, barium sulfate, carbonated calcium carbonate, and alumina, black pigments such as carbon black and magnetite, phthalocyanine pigments, azo pigments, quinatalidone pigments, and perylene facial pigments. And known pigments such as pigments and perinone pigments, and known dyes such as acid dyes, basic dyes, reactive dyes, direct dyes, and disperse dyes.
白色顔料の二酸化チタンは、 アナターゼ型であってもルチル型であってもよい 力 白色度おょぴ光反射率の観点からは、 隠蔽性の高いルチル型二酸化チタンが 好適である。 また、 二酸化チタンは、 その表面を含水酸化アルミニウム、 含水酸 ィ匕珪素等の無機物質で表面処理したもの、 多価アルコール、 多価ァミン、 金属石 鹼、 アルキルチタネート、 ポリシロキサン等の有機物質で表面処理したもの等を 使用することができる。 二酸化チタンのバインダ中での分散性が向上し、 より一 層高い白色度が得られる。 また、 蛍光増白剤を添加するとさらに好ましい。  The white pigment titanium dioxide may be an anatase type or a rutile type. From the viewpoint of power whiteness and light reflectance, rutile type titanium dioxide having high concealing property is preferable. Titanium dioxide is obtained by treating the surface with an inorganic substance such as hydrous aluminum hydroxide or hydrous silicon oxide, or an organic substance such as polyhydric alcohol, polyamine, metal stone, alkyl titanate, or polysiloxane. Surface-treated ones can be used. The dispersibility of titanium dioxide in the binder is improved, and higher whiteness can be obtained. It is more preferable to add a fluorescent whitening agent.
ここで帯電制御剤は添加していなレヽが、上述した着色剤を添加することにより、 帯電傾向、 帯電量が変化する。 また帯電制御剤を添 Λ卩してもよく、 例えば力リツ タスアレン、ニグ口シン系染料、四級アンモニゥム塩、アミノ基含有のポリマー、 含金属ァゾ染料、 サリチル酸の錯化合物、 フエノール化合物、 ァゾクロム系、 ァ ゾ亜鉛系など正帯電†生、 負帯電性の帯電制御剤を使用することができる。  Here, the charge control agent is not added, but the charge tendency and the charge amount are changed by adding the above-mentioned colorant. Further, a charge controlling agent may be added, for example, Ritsu Ritsu Allen, Nig Mouth Synthetic Dye, Quaternary Ammonium Salt, Amino Group-Containing Polymer, Metal-Containing Azo Dye, Salicylic Acid Complex Compound, Phenol Compound, Azochrome Positive and negative charge control agents such as azo and azo zinc can be used.
樹脂材の配合は、 2色の樹脂材の軟化点から 2 2 0 °Cの温度範囲における溶融 粘度の比を 0 . 5〜2. 0に調整するように設定する。 後述する球形化処理にお いて、 2色の樹脂材の溶融粘度の比を 0. 5〜2. 0にすることにより、 回転粒 子の 2色の樹脂材の境界、すなわち 2色の領域の境界を単調とすることができる。 この溶融粘度の比が 0. 5より小さいか又は 2より大きくなると溶融粘度のより 低い樹脂材が他方の樹脂材を不規則に覆う等、 2色の領域の境界が複雑になって しまう。 なお、 球形化処理における自己球形化のメカニズムに基づけば溶融粘度 を設定する温度は、 球形化処理の際の熱処理の に関連するが、 熱処理温度は 1 0 0 °C〜 2 2 0 °Cの範囲であるので、 1 9 0 °Cでの溶融粘度の比を設定すれば 十分である。 2色の樹脂材のうち少なくとも一方の軟化点が 1 9 0 °Cより高い場 合は、 溶融粘度の比を軟化点以上の温度で設定する。 The composition of the resin material is set so that the ratio of the melt viscosity in the temperature range of 220 ° C. from the softening point of the two-color resin material is adjusted to 0.5 to 2.0. In the sphering process described later, by setting the ratio of the melt viscosity of the two-color resin materials to 0.5 to 2.0, the boundary between the two-color resin materials of the rotating particles, that is, the two-color region The boundaries can be monotonic. If the ratio of the melt viscosity is smaller than 0.5 or larger than 2, the boundary between the two color regions becomes complicated, for example, a resin material having a lower melt viscosity covers the other resin material irregularly. The temperature at which the melt viscosity is set based on the mechanism of self-spheronization in the sphering process is related to the heat treatment during the sphering process, but the heat treatment temperature ranges from 100 ° C to 220 ° C. Because it is within the range, it is sufficient to set the ratio of the melt viscosity at 190 ° C. If the softening point of at least one of the two color resin materials is higher than 190 ° C In this case, set the melt viscosity ratio at a temperature above the softening point.
具体的には、 溶融粘度を増加あるいは減少させる手法としては着色剤などの配 合比をそれぞれ增カ卩あるいは減少させることが挙げられる。 なお、 本願発明にお ける溶融粘度の測定は粘弾性測定装置(レオメトリック'サイエンティフィック ' エフ ·ィ一社製、 商品名: ARES) を用いて、 下記の測定条件下で行い、 複素 粘性率を測定しその実数部を溶融粘度とした。  Specifically, as a technique for increasing or decreasing the melt viscosity, there is a method of reducing or increasing the mixing ratio of a coloring agent or the like, respectively. The measurement of the melt viscosity in the present invention was carried out using a viscoelasticity measuring device (Rheometric 'Scientific' F1 Co., Ltd., trade name: ARES) under the following measurement conditions, and the complex viscosity was measured. The ratio was measured, and the real part was defined as the melt viscosity.
プレート:パラレノレプレート (直径 25 mm)  Plate: Pararenole plate (diameter 25 mm)
測疋モード: Dy n am i cモード  Measurement mode: Dy n am i c mode
測定周波数: 1Hz  Measurement frequency: 1Hz
また、 樹脂材の軟化点の測定は J I S K7206に基づいて行い、 ビカット 軟化点を用いた。  The softening point of the resin material was measured based on JIS K7206, and the Vicat softening point was used.
次に、 2色の樹脂材をキャスト成形、 圧延等によりそれぞれ単層の樹脂板に成 形する (S 104)。例えばキャスト成形法によれば、具体的には、 キャストフィ ルム成形製造装置 (例えば、 SH Iモダンマシナリー社製) を用いる。 キャスト フィルム成形製造装置は、 樹脂材を加熱し圧力を付与する押出機と、 所定の厚さ の薄板に成形する T—ダイと、 T—ダイから供給される樹脂板を冷却するキャス トローラなどに り構成されている。 上記に樹脂材を押出機に投入し、 1 50°C に加熱し、押出速度を約 30 k g/時間に設定し、樹脂材を T—ダイに供給する。  Next, the two-color resin material is formed into a single-layer resin plate by cast molding, rolling, or the like (S104). For example, according to the cast molding method, specifically, a cast film molding / manufacturing apparatus (for example, manufactured by SHI Modern Machinery) is used. Cast film forming and manufacturing equipment includes an extruder that heats and applies pressure to a resin material, a T-die that forms a thin plate of a predetermined thickness, and a cast roller that cools the resin plate supplied from the T-die. It is configured. The resin material is introduced into the extruder, heated to 150 ° C, the extrusion speed is set to about 30 kg / hour, and the resin material is supplied to the T-die.
T一ダイは開口幅が例えば 0. 5mmのものを用いる。 キャストローラ (ローラ 径 (直径) 300mm) を、 温度 20°C、 キャスト速度 8 mZ分に設定して、 シ 一ト状の樹脂材を冷却し安定化させ、厚さ約 20 μ mの樹脂板を形成する。なお、 樹脂板の厚さはキャストローラのギャップにより制御可能である。 T一ダイを用 いることにより厚さの均一なシート状の樹脂材を形成することができ、 キャスト ローラにより精度良く所望の厚さの樹脂材が得られると共に、 厚さの均一性を向 上することができる。 その結果、 2色の領域の境界線の乱れを抑制することがで きる。なお、樹脂板の厚さは後述する樹脂片の大きさに対応させて適宜設定十る。 また、 樹脂材を 2枚のフィルムに挟んで圧延により樹脂板を形成してもよレ、。 具体的には、略平板状にした樹脂材を、 PETフィルム(厚さ 10 μιη)に挟み、 ギヤップが 100 μ m、 40 mの 2段の、 温度が 1 50°Cの圧延ロールを通過 させ、 最後に冷却ロールにより冷却し厚さ約 2 0 μ mの樹脂板を形成する。 The T-die has an opening width of, for example, 0.5 mm. The cast roller (roller diameter (diameter) 300 mm) is set at a temperature of 20 ° C and a casting speed of 8 mZ to cool and stabilize the sheet-like resin material, and a resin plate of about 20 μm thickness To form The thickness of the resin plate can be controlled by the gap of the cast roller. By using a T-die, a sheet-shaped resin material with a uniform thickness can be formed, and a resin material with a desired thickness can be accurately obtained by a cast roller, and the uniformity of the thickness is improved. can do. As a result, it is possible to suppress the disturbance of the boundary between the two color regions. Note that the thickness of the resin plate is appropriately set according to the size of the resin piece described later. Alternatively, a resin plate may be formed by rolling a resin material between two films. Specifically, a roughly flat resin material is sandwiched between PET films (thickness: 10 μιη) and passed through a two-stage rolling roll with a gap of 100 μm and 40 m and a temperature of 150 ° C. Finally, it is cooled by a cooling roll to form a resin plate having a thickness of about 20 μm.
次に、 2色の樹脂板を融着して貼合わせ、 2色積層榭脂基材を形成する ( S 1 0 6 )。具体的には、それぞれの色の榭脂板を重ね合わせ、 さらに耐熱性のフィル ム、 例えばカプトンフィ^/レムに挾んで、 ローラやプレスなどの機器を用いて、 カロ 熱しながら加圧する。カロ熱温度を 1 0 0 °C〜 1 5 0 °C、圧力を 9 . 8 X 1 05 P a 〜4 . 9 X 1 06 P aヽ 加圧時間を 1分〜 1 0分に設定する。 Next, a two-color resin plate is fused and bonded to form a two-color laminated resin base material (S106). Specifically, the resin plates of each color are superimposed, and sandwiched between heat-resistant films, for example, Kaptonfi ^ / REM, and pressed with heat using a device such as a roller or press. Caro heat temperature 1 0 0 ° C~ 1 5 0 ° C, the pressure 9. 8 X 1 0 5 P a ~4. 9 X 1 0 Set between 6 P aヽpressurized to 1 minute to 1 0 minutes I do.
また、 樹脂材を溶解して塗布あるいは浸漬法により、 一方の樹脂材を形成後、 その上に他方の樹脂材を積層して 2色積層樹脂基材を形成してもよい。 具体的に は、 2色の樹脂材を有機溶媒を用レ、て溶解して塗料を作製し、 スピンコータ、 ド クタ一ブレード、 バーコータ、 ディップコータ等により、 厚さ約 2 0 /X mの一方 の樹脂材を先ず形成し、 乾燥後、 他方の樹脂材を厚さ約 2 0 μ πιになるようにそ の上に塗布し乾燥する。 この場合、 樹脂としては、 アクリル、 ポリスチレン等の 有機溶媒に溶解する公知の材料を用いることができる。 また有機溶媒としては、 アルコール、 ケトン、 炭化水素、 およびハロゲンィ匕炭化水素等が挙げられる。 次に、 2色積層樹脂基材を金属刃、 ワイヤー、 レーザなどを用いたカッターに より大きさ数十 m〜数百 /z mの樹脂片に切断する (S 1 0 8 )。具体的には、 2 色積層樹脂基材を粘着性のフィルムに貼り、 粘着性のフィルムをカツターの加工 台に固定する。 この状態で、 レーザカツタ、 回転刃等により 2色積層樹脂基材を 切断する。 このようにすると切断後の樹脂片が剥離■移動等により他の樹脂片の 切断の妨害となることなく、 所望の大きさに切断可能である。 なお、 回転刃とし ては鉄鋼又はセラミック製が好適であり、 樹脂片の切断面の乱れを抑制できるの で、 後の回転粒子が形成された際の 2色の境界線を、 直線状又は緩やかな波状に することができる。 また、 レーザカツタを用いる場合は、 C 02レーザ、 YAGレ 一ザ (高調波を含む。) 等を用いることができる。 Alternatively, a two-color laminated resin base material may be formed by dissolving a resin material, forming one resin material by coating or dipping, and then laminating the other resin material thereon. Specifically, a two-color resin material is dissolved in an organic solvent to prepare a coating material, and a coating material having a thickness of about 20 / Xm is formed using a spin coater, doctor blade, bar coater, dip coater, or the like. First, the resin material is formed, dried, and then the other resin material is applied thereon to a thickness of about 20 μππι and dried. In this case, as the resin, a known material that dissolves in an organic solvent such as acryl or polystyrene can be used. Examples of the organic solvent include alcohols, ketones, hydrocarbons, halogenated hydrocarbons, and the like. Next, the two-color laminated resin base material is cut into resin pieces having a size of several tens of meters to several hundreds / zm by a cutter using a metal blade, a wire, a laser or the like (S108). Specifically, a two-color laminated resin substrate is attached to an adhesive film, and the adhesive film is fixed to a cutter processing table. In this state, the two-color laminated resin base material is cut by a laser cutter, a rotary blade, or the like. In this way, the cut resin piece can be cut to a desired size without hindering the cutting of other resin pieces by peeling and moving. Note that the rotating blade is preferably made of steel or ceramic and can suppress the disorder of the cut surface of the resin piece, so that the boundary between the two colors when the later rotating particles are formed is straight or gentle. It can be made into a wavy shape. In the case of using a Rezakatsuta, C 0 (including harmonics.) 2 laser, YAG Les monodentate or the like can be used.
次に、 粘着性のフィルムから剥離して樹脂片を回収する。 具体的には、 粘着性 のフィルムの基材あるいは基材上の粘着剤を溶解することにより樹脂片を粘着性 のフィルムから分離する。 ここで用いる溶媒は 2色積層樹脂基材が溶解しない溶 媒とする。 例えば、 粘着剤がポリビエルアルコール、 ポリスチレン、 ポリエステ ルの場合、水、アルコール等を用いることができる。榭脂片が変形することなく、 また機械的ストレスを加えることなく分離することができる。 さらに、 樹脂片を 回収する際にシリコーンオイル等を剥離剤として用いてもよい。 樹脂片の変形を —層防止することができる。 この際シリコーンオイルは、 次に説明する球形化処 理に用いるシリコーンオイルと同種であることが好ましい。 Next, the resin piece is recovered by peeling from the adhesive film. Specifically, the resin pieces are separated from the adhesive film by dissolving the adhesive film substrate or the adhesive on the substrate. The solvent used here is a solvent that does not dissolve the two-color laminated resin base material. For example, when the adhesive is polyvinyl alcohol, polystyrene, or polyester, water, alcohol, or the like can be used.な く The grease pieces are not deformed, In addition, separation can be performed without applying mechanical stress. Further, when recovering the resin pieces, silicone oil or the like may be used as a release agent. Deformation of resin pieces can be prevented. In this case, it is preferable that the silicone oil is of the same type as the silicone oil used in the sphering treatment described below.
また、 粘着性のフィルムの替わりに金属板を用いてもよい。 2色積層樹脂基材 とステンレス、 アルミエゥムの金属板と重ね合わせて加熱して接着し、 上述した 方法により樹脂片に切断後、 冷媒により冷却して金属板より剥離する。 金属板と 樹脂片の熱膨張率の差により、冷却すると金属板が収縮し樹脂片も硬くなるので、 樹脂片から金属板から分離する。 冷媒としてはエタノール、 ィソプロピルアルコ ール、 フロン、 液ィ匕窒素などを用いることができる。  Further, a metal plate may be used instead of the adhesive film. The two-color laminated resin base material and a stainless steel or aluminum metal plate are superposed and bonded by heating, cut into resin pieces by the above-described method, cooled by a refrigerant, and separated from the metal plate. Due to the difference in the coefficient of thermal expansion between the metal plate and the resin piece, the metal plate shrinks and the resin piece becomes hard when cooled, so it is separated from the metal piece. As the refrigerant, ethanol, isopropyl alcohol, Freon, liquid nitrogen, and the like can be used.
次に、回収した樹脂片は乾燥した後、球形化処理を行う (S 110)。球形化処 理は熱媒体の入ったステンレスビーカ等の容器に樹脂片を分散させ、 加熱して軟 化-溶融させ、 自己球形ィ匕させることにより行う。 具体的には、 熱媒体としてシ リコーンオイルを用いる。 シリコーンオイルを介して加熱することにより樹脂片 の表面を均一に加熱できるので、 真球度の高い回転粒子を形成することができる と共に、 シリコーンオイルにより離型作用及び樹脂片同士の凝集を防止できる。 シリコーンオイルとしては、 ジメチルシリコーンオイル、 フエニルメチルシリコ ーン、 各種変性シリコーンオイルなどを用いることができる。 円形度が高く力つ 樹脂片同士の を防止する観点からは、 25 °Cにおける動粘度が 3 X 10"m2 Z s〜 1 X 10— 2m2/ s (300 C S 1;〜 l O O O O c S t) であることが好ま しく、 3X 10一4 m2/ s〜 1 X 10一3 m2/ s (300 c S t〜1000 c S t) であることがさらに好ましい。 3X 10— 4m2/ sより小さいと樹脂片が沈降し凝 集し易くなる。 1 X 10—2m2Zsより大きいと樹脂片を回収するためのプロセス 時間が過度に大となってしまう。 Next, after the collected resin pieces are dried, a sphering treatment is performed (S110). The spheroidizing treatment is performed by dispersing the resin pieces in a container such as a stainless steel beaker containing a heat medium, heating and softening / melting the resin pieces, and performing self-spherical shaping. Specifically, silicone oil is used as a heating medium. By heating through the silicone oil, the surface of the resin piece can be uniformly heated, so that rotating particles with high sphericity can be formed, and the silicone oil can prevent the releasing action and the aggregation of the resin pieces. . As the silicone oil, dimethyl silicone oil, phenylmethyl silicone, various modified silicone oils and the like can be used. From the viewpoint of preventing the between circularity is high Chikaratsu resin pieces, 25 kinematic viscosity at ° C is 3 X 10 "m 2 Z s~ 1 X 10- 2 m 2 / s (300 CS 1; ~ l OOOO c S t) is it is laid preferred, it is more preferable 3X 10 one 4 m 2 / s~ 1 X 10 one 3 m 2 / s (300 c S t~1000 c S t). 3X 10- 4 m 2 / s is less than the resin piece is easily and agglutination settling. 1 X 10- 2 m 2 Zs larger than process time for recovering the resin specimen becomes excessively large.
また、 シリコーンオイルは、 25 °Cにおける比重が樹脂片の比重との差が 0. 3以下のものを用いる。 0. 3より大きいと、 シリコーンオイル中で樹脂片が浮 上や沈降し易くなり、 し易くなつてしまう。  Also, a silicone oil having a specific gravity at 25 ° C that is 0.3 or less from the specific gravity of the resin piece is used. If the ratio is larger than 0.3, the resin pieces easily float and settle in the silicone oil, which makes the resin pieces easier to float.
また、 熱媒体中で樹脂片を加熱しながら、 振とう機や超音波ホモジナイザ等で 振とう '撹拌してもよい。 樹脂片の や容器の内壁への付着を防止し、 回 » 子の粒径分布を狭小化し、 分級処理における歩留まりを向上することができる。 球形化処理のカロ熱 は、樹脂片の軟化点より高く設定し、 1 0 0 °C〜2 2 0 °C (好ましくは 1 0 0 °C〜2 0 0 °C) である。 また球形化処理の時間は 1 0秒から 1 2 0秒に設定する。 Further, while heating the resin piece in the heat medium, the resin piece may be shaken and stirred by a shaker, an ultrasonic homogenizer, or the like. Prevents resin pieces from adhering to the inner wall of containers and containers. The particle size distribution of the particles can be narrowed, and the yield in the classification process can be improved. The calorific heat of the sphering treatment is set to be higher than the softening point of the resin piece, and is 100 ° C to 220 ° C (preferably 100 ° C to 200 ° C). The sphering time is set from 10 seconds to 120 seconds.
次いで、 球形化処理により球形化された回転粒子の形状を固定化するために、 2 5。C〜1 0 0 °Cのシリコーンオイルを混合して、 回転粒子を構成する樹脂材の 軟化点の温度以下に冷却する。 軟ィ匕点以下に冷却することにより、 回転粒子が互 いに融着することを防止して、 形状や粒径のばらつきを抑制することができ、 歩 留まりを向上することができる。 この際、 冷却に使用するシリコーンオイルは加 熱に用いたシリコーンオイルと同種のシリコーンオイルを使用することが好まし い。 混合した際に、 加熱及び冷却に用いたシリコーンオイルが互いに分離するこ とを防止することができる。  Next, in order to fix the shape of the rotating particles sphericalized by the sphering treatment, 25. The silicone oil of C to 100 ° C is mixed and cooled to a temperature lower than the softening point of the resin material constituting the rotating particles. By cooling to below the softening point, it is possible to prevent the rotating particles from fusing together, suppress variations in shape and particle size, and improve the yield. At this time, it is preferable to use the same type of silicone oil used for cooling as the silicone oil used for heating. When mixed, the silicone oil used for heating and cooling can be prevented from separating from each other.
次に、 ストレーナ一を用いて回転粒子の分級処理及ぴ回収を行う (S 1 1 2 )。 分級はメッシュの開口径が 1 0 μ π!〜 2 0 0 μ παのものを用いて数段階行う。 回 転粒子の粒径分布を狭くする観点からは分級処理が有効である。 し力し、 分級処 理のパス数を多くすればするほど歩留まりが低下してしまう。 歩留まりは上述し た、 カット性、 球形化処理等に密接に関係する。 次いで、 得られた回^^子を S H 2 0 0 - 0. 6 5 c s t (東レ 'ダウコ一二ングネ環) により洗浄し、 真空乾 等を用いて乾燥する。  Next, the rotating particles are classified and collected using a strainer (S112). For classification, the mesh opening diameter is 10 μπ! 2200 μπα is performed in several steps. Classification is effective from the viewpoint of narrowing the particle size distribution of the rotating particles. The higher the number of passes in the classification process, the lower the yield. Yield is closely related to the cutting properties and spheroidization described above. Next, the obtained polymer is washed with SH200-0.65 cst (Toray's Dawko-Nungune ring) and dried using vacuum drying or the like.
次に回転粒子を透明基体の空隙に分散'充填する (S 1 1 4 )。先ず、未硬化の シリコーンエラストマ一、例えば 2成分硬ィヒ型のシリコーンゴム KE 1 0 6 (東 レ .ダウコ一二ングネ に 5 0体積0/。〜 5 5 #¾%となるように回^^子を撹 拌 '分散し、 テフロンコートフィルムにブレード法等により厚さ数百 μ πιとなる ように塗布し、 加熱硬化させ、 回転粒子が分散した硬化したシリコーンエラスト マー (透明基体と呼ぶ。) が形成される。 Next, the rotating particles are dispersed and filled in the voids of the transparent substrate (S114). First, an uncured silicone elastomer, for example, a two-component hard type silicone rubber KE106 (a volume of 50% 0 /. The particles are stirred and dispersed, applied to a Teflon-coated film to a thickness of several hundred μπι by a blade method or the like, and cured by heating. The cured silicone elastomer in which rotating particles are dispersed (referred to as a transparent substrate). ) Is formed.
次に、 透明基体をシリコーンオイル等の誘電性液体により膨潤させ、 透明基体 の回転粒子の周囲に誘電性液体を充填する (S 1 1 6 )。具体的には、透明基体と シリコーンオイルとをビニール袋等に密封する。 この際、 透明基体とシリコーン オイルとの 比を例えば 1 : 2とする。 次にこのビニール袋を水を満たした超 音波洗浄機に投入し、 数分間超音波を印加する。 次いで透明基体を取り出し、 室 温で乾燥後シリコーンオイルに数時間〜十数時間浸漬する。 Next, the transparent substrate is swollen with a dielectric liquid such as silicone oil, and the dielectric liquid is filled around the rotating particles of the transparent substrate (S116). Specifically, the transparent substrate and the silicone oil are sealed in a plastic bag or the like. At this time, the ratio between the transparent substrate and the silicone oil is, for example, 1: 2. Next, fill this plastic bag with water Put into a sonic cleaner and apply ultrasonic waves for several minutes. Next, the transparent substrate is taken out, dried at room temperature, and immersed in silicone oil for several hours to several tens of hours.
なお、 空隙に回転粒子及ぴ誘電体液体を充填する他の方法としては、 特開平 8 - 2 3 4 6 8 6号公報に記載の界面重合を用いて、 誘電性液体と回転粒子を樹脂 膜で覆い、 マイクロ力プセルを形成し、 このマイクロ力プセルを透明基体中に分 散する方法が挙げられる。  As another method for filling the voids with the rotating particles and the dielectric liquid, an interfacial polymerization described in Japanese Patent Application Laid-Open No. H8-2346486 is used to convert the dielectric liquid and the rotating particles into a resin film. To form a micro force capsule, and disperse the micro force capsule in the transparent substrate.
次いで I T O電極をストライプ状に形成した P E Tフィルムをシリコーンゴム の両面に、 I T O電極が直角に交叉するように貼り付ける (S 1 1 8 )。 I TO電 極に選択的に電圧を印加する給電回路を設ける。 以上により回転粒子型表示装置 が形成される。  Next, a PET film in which the ITO electrodes are formed in a stripe shape is attached to both surfaces of the silicone rubber so that the ITO electrodes cross at right angles (S118). Provide a power supply circuit that selectively applies voltage to the ITO electrode. Thus, a rotating particle type display device is formed.
本実施の形態によれば、 2色の領域を構成する樹脂材の溶融粘度の比を 0 . 5 〜 2の範囲にしているので、 球形化処理の加熱により、 2色の領域がシリコーン オイル中で均等な圧力を受けながら、 一方の領域の樹脂材が他方の領域の樹脂材 を覆うことを防止することができる。 したがって、 2色の領域の境界線を 镓状 又は緩やかな波状にすることができる。 その結果、 回転動作の制御性が優れ、 動 作安定性が良好な回転粒子を備え、 コントラストの高い粒子回転型表示装置を実 現することができる。  According to the present embodiment, the ratio of the melt viscosities of the resin materials constituting the two color regions is in the range of 0.5 to 2. Thus, it is possible to prevent the resin material in one area from covering the resin material in the other area while receiving an even pressure. Therefore, the boundary between the two color regions can be formed in a 镓 shape or a gentle wavy shape. As a result, it is possible to realize a high-contrast particle rotation type display device having excellent controllability of the rotation operation and rotating particles having excellent operation stability.
また、 球形化処理の際に、 シリコーンオイルの動粘度を上記の範匪こ設定する ことにより、真球度を向上し、カゝっ溶融した樹脂片同士の凝集'融着を防止して、 回転粒子の粒径分布を狭くすることができる。 さらに分級処理により確実に粒径 の過度に大なる回転粒子を除去して、 一層粒径分布を狭くすることができる。  In addition, during the spheroidizing treatment, by setting the kinematic viscosity of the silicone oil to the above-mentioned range, the sphericity is improved, and the cohesion and fusion of the resin pieces that have been melted together are prevented. The particle size distribution of the rotating particles can be narrowed. Further, by the classification treatment, the rotating particles having an excessively large particle size can be surely removed, and the particle size distribution can be further narrowed.
[第 1実施例] [First embodiment]
低密度ポリエチレンであるペトロセン 3 5 3 (東ソーネ ± 、 メルトインデック ス 1 5 0 ) 8 0重量部に、 疎水化した二酸化チタン (アナターゼ型、 粒径 1 2 0 n m) 2 0重量部をロールミルを用いて 1 0 5 °Cに加熱しながら混練し、 白色の 着色樹脂を作製した。  20 parts by weight of hydrophobized titanium dioxide (anatase type, particle size: 120 nm) was added to 80 parts by weight of petrocene, a low-density polyethylene, 353 (Tosohone ±, Melt Index: 150), and a roll mill was used. And kneaded while heating to 105 ° C. to produce a white colored resin.
一方、 ペトロセン 3 5 3 (東ソーネ: fc^) 8 2重量部に、 カーポンプラック 2重 量部とマグネタイト 1 6重量部をロールミルを用いて 1 0 5 °Cに加熱しながら混 練し、黒色の着色樹脂を作製した。 190°Cにおける着色樹脂の溶融粘度の比(= 白色着色樹脂の溶融粘度/黒色着色樹脂の溶融粘度) は、 1. 28であった。 次に、 キャストフィルム成形製造装匱(例えば、 SH Iモダンマシナリー ¾fc¾) の押出機に白色の着色樹脂を投入し、 カロ熱温度 150°C、 押出速度を 32. 9 k g/時間、 開口幅: 0. 5 mmの T一ダイを用いて、 厚さ 20 の白色樹脂板 に成形した。 また、 押出速度を 24. 6 k g /時間とした以外は白色樹脂フィル ムと総て同条件より、 厚さ 20 μ mの黒色樹脂フィルムを成形した。 On the other hand, 2 parts by weight of Petrocene 35 3 (Tosone: fc ^), 2 parts by weight of car pump rack and 16 parts by weight of magnetite were mixed while heating to 105 ° C using a roll mill. The mixture was kneaded to produce a black colored resin. The ratio of the melt viscosity of the colored resin at 190 ° C. (= melt viscosity of white colored resin / melt viscosity of black colored resin) was 1.28. Next, a white colored resin is put into an extruder of a cast film molding equipment (for example, SH I Modern Machinery ¾fc¾), the caloric heat temperature is 150 ° C, the extrusion speed is 32.9 kg / hour, and the opening width is: Using a 0.5 mm T-die, it was molded into a white resin plate with a thickness of 20. A 20-μm-thick black resin film was formed under the same conditions as for the white resin film except that the extrusion speed was set to 24.6 kg / hour.
次に、 白色樹脂フィルムと黒色樹脂フィルムを重ね合わせ、 厚さ 125 の カプトンフィルムに挟み、 厚さ lmmのシリコンラバークッションを敷いて、 カロ 熱温度 105°C 圧力 25 k gZcm2を印加して融着させ、 積層フィルムを形 成した。 この積層フィルムを回転刃 (ェヌティー社製) により積層フィルムを 7 0X 70 jumの大きさに切断し、 シリコーンオイル FS 1265— 300 c s tNext, the white resin film and the black resin film are overlaid, sandwiched between 125-layer Kapton films, laid with a lmm-thick silicone rubber cushion, and subjected to melting by applying a heat temperature of 105 ° C and a pressure of 25 kgZcm 2 to caro. To form a laminated film. This laminated film is cut into a size of 70 × 70 jum with a rotary blade (manufactured by NTN Corporation), and silicone oil FS 1265—300 cst
(東レ ·ダウコーユング觀) を離型剤として用い、 樹脂片を回収した。 (Toray Dow Co., Ltd.) was used as a release agent to collect resin pieces.
次にこの樹脂片を、 190°Cに加熱したシリコーンオイル F S 1265-30 0 c s tに投入し、 ゆるやかに振とうさせながら 2分間加熱した。 次に、 25°C のシリコーンオイル F S 1265— 300 c s tを加熱されたシリコーンオイル と等量を混合して、 冷却し回転粒子を作製した。  Next, this resin piece was put into silicone oil FS 1265-300 c st heated to 190 ° C., and heated for 2 minutes while gently shaking. Next, the silicone oil FS 1265-300 c st at 25 ° C. was mixed with an equal amount of the heated silicone oil and cooled to produce rotating particles.
次に、 回転粒子を、 メッシュの開口寸法がそれぞれ 98 μΐη, 83/zm、 77 imのふるいで分級後、 さらに開口寸法 77 /xmのふるいで分級し、開口寸法 6 3 μπιのふるいで回収した。 得られた回転粒子は、 平均粒径が 71. 2μπι、 変 動係数が 13. 8 %であった。  Next, the rotating particles were classified with a sieve having an opening size of 98 μΐη, 83 / zm and 77 im, respectively, and then classified with a sieve having an opening size of 77 / xm, and recovered with a sieve having an opening size of 63 μπιι. . The obtained rotating particles had an average particle size of 71.2 μπι and a coefficient of variation of 13.8%.
次に、 作製した回転粒子を、 2成分硬化型シリコーンゴム ΚΕ 106 (東レ■ ダウコーニングネ ) に、 52体積%の濃度で混合し、 十分に撹拌'分散させた 後、 テフロンコートフィルムにブレード法で均一に厚さ 200 μ mで塗布し、 温 度 50°Cの大気雰囲気下で 8時間かけて硬ィ匕し、 回!^立子が分散された透明基体 が形成された。  Next, the produced rotating particles are mixed with a two-component curable silicone rubber No. 106 (Toray Dow Corning) at a concentration of 52% by volume, thoroughly stirred and dispersed, and then bladed onto a Teflon-coated film. Is applied to a uniform thickness of 200 μm, and is hardened for 8 hours in an air atmosphere at a temperature of 50 ° C. ^ A transparent substrate with dispersed particles was formed.
次に、 透明基体とシリコーンオイル SH200— 0. 65 c s t (東レ ·ダウ コーユングネ ±¾) とをビニール袋に密封した。 この際、 透明基体とシリコーンォ ィルとの体積比を 1 : 2とした。 次にこのビニール袋を水を満たした超音波洗浄 機(本田電子(株)製、.型式 W— 113 MK- I I、出力 110W) に投入し、 発信周波数 24kHzに設定して 2分間印加した。 次いで透明基体を取り出し、 室温下で 20分間乾燥した。 Next, the transparent substrate and silicone oil SH200—0.65 cst (Toray Dow Kojungune ± ¾) were sealed in a plastic bag. At this time, the volume ratio between the transparent substrate and the silicone foil was set to 1: 2. Next, ultrasonically clean the plastic bag with water (Made by Honda Electronics Co., Ltd., model W-113 MK-II, output 110W), and applied for 2 minutes with the transmission frequency set to 24kHz. Next, the transparent substrate was taken out and dried at room temperature for 20 minutes.
次に、このシリコ一ンゴムをシリコーンオイル SH 200— 20 c s t (東レ' ダウコーニング製) に 12時間浸漬した。  Next, this silicone rubber was immersed in silicone oil SH200-20 cst (manufactured by Dow Corning Toray) for 12 hours.
次に、 このように形成した透明基体に、 I T O電極が形成された P E Tフィル ムの上部シート、 及び銅箔を貼り付けたィミドフィルムを貼り合わせ、 第 1実施 例に係る回転粒子型表示装置を作製した。 [第 2実施例]  Next, the upper sheet of the PET film on which the ITO electrode was formed and the imidium film to which the copper foil was adhered were bonded to the transparent substrate thus formed, to produce the rotating particle type display device according to the first embodiment. did. [Second embodiment]
ペトロセン 353 (東ソーネ 59. 6重量部に、 疎水ィ匕した二酸化チタン (ルチル型、 粒径 280 nm) 40重量部と蛍光増白剤ニツカフロー E F S (日 本化学工業所製) 0. 4重量部をロールミルで 105°Cに加熱しながら混練し、 白色の着色樹脂を作製した。  Petrocene 353 (Tosohone 59.6 parts by weight) Hydrophobic titanium dioxide (rutile type, particle size 280 nm) 40 parts by weight and optical brightener Nitsuka Flow EFS (Nihon Kagaku Kogyosho) 0.4 parts by weight Was heated and kneaded at 105 ° C. with a roll mill to produce a white colored resin.
一方、 ペトロセン 353 (東ソーネ環) 62重量部に、 カーボンブラック 2重 量部、 マグネタイト 36重量部をロールミルで 105 °Cに加熱しながら混練し、 黒色の着色樹脂を作製した。 190°Cにおける着色樹脂の溶融粘度の比 (二白色 着色樹脂の溶融粘度/黒色着色樹脂の溶融粘度) は、 1. 90であった。  On the other hand, 62 parts by weight of Petrocene 353 (East Sone Ring), 2 parts by weight of carbon black, and 36 parts by weight of magnetite were kneaded while being heated at 105 ° C by a roll mill to produce a black colored resin. The ratio of the melt viscosity of the colored resin at 190 ° C. (the melt viscosity of the two-colored resin / the melt viscosity of the black-colored resin) was 1.90.
次に、 キャストフィルム成形製造装置を用いて、 第 1実施例と同条件により白 色樹脂及び黒色樹脂の厚さ 20 umのフィルムを成形し、第 1実施例と同様の条 件で、 回転粒子を作成した。  Next, using a cast film forming and manufacturing apparatus, a film having a thickness of 20 μm of white resin and black resin was formed under the same conditions as in the first example, and the rotating particles were formed under the same conditions as in the first example. It was created.
次に、 回転粒子を、 メッシュの開口寸法がそれぞれ 98 μπι、 83 μπι、 77 imのふるいで分級後、 さらに開口寸法 77 /xmのふるいで 2回分級し、開口寸 法 63 imのふるいで回収した。得られた回転粒子は、平均粒径が 72. 5 im、 変動係数が 11. 5%であつた。  Next, the rotating particles are classified using a sieve with a mesh opening size of 98 μπι, 83 μπι, and 77 im, and then classified twice with a sieve with an opening size of 77 / xm, and collected using a sieve with an opening size of 63 im. did. The obtained rotating particles had an average particle size of 72.5 im and a coefficient of variation of 11.5%.
次に、 作製した回転粒子を、 2成分硬化型シリコーンゴム KE 106 (東レ · ダウコ一二ング に、 52体積%の濃度で混合し、 十分に撹拌.分散させた 後、 テフロンコートフィルムにプレード法で均一に厚さ 20 Ομηιになるように 塗布し、 50°Cの大気雰囲気下で 8時間かけて硬化し、 回転粒子が分散され た透明基体が形成された。 . Next, the produced rotating particles are mixed with a two-component curable silicone rubber KE 106 (Toray Dow Corning Co., Ltd.) at a concentration of 52% by volume, stirred sufficiently, and dispersed. The coating is applied uniformly to a thickness of 20 μμηι and cured in an air atmosphere at 50 ° C for 8 hours to disperse the rotating particles. A transparent substrate was formed. .
以後、 第 1実施例と同様にして第 2実施例に係る回転粒子型表示装置を作製し た。  Thereafter, a rotating particle type display device according to the second embodiment was manufactured in the same manner as in the first embodiment.
[第 3実施例] [Third embodiment]
分級処理をメッシュの開口寸法がそれぞれ 98 μτα、 83 μπιのふるいで分級 し、開口寸法 63 /X mのふるレ、で回収した以外は第 1実施例の回転粒子と同様の 条件により回転粒子を作製した。得られた回 立子は、平均粒径が 78. 4 μπι、 変動係数が 1 9. 1 %であつた。  The classification process was performed under the same conditions as for the rotating particles of the first example, except that the mesh was classified using a sieve with an opening size of 98 μτα and a mesh size of 83 μπι, respectively, and recovered using a sieve with an opening size of 63 / X m. Produced. The obtained reciprocal particles had an average particle size of 78.4 μπι and a coefficient of variation of 19.1%.
[第 1比較例] [First Comparative Example]
第 1実施例と同様の配合及び条件により白色及び黒色の着色樹脂を作製した。 この着色樹脂の 190°Cにおける溶融粘度の比 (=白色の着色樹脂の溶融粘度 Z 黒色の着色樹脂の溶融粘度) は、 1. 28であった。  White and black colored resins were produced under the same composition and conditions as in the first example. The ratio of the melt viscosity of this colored resin at 190 ° C. (= melt viscosity of white colored resin Z melt viscosity of black colored resin) was 1.28.
次に、 第 1実施例と同じキャストフィルム成形製造装置を用いて、 加熱 SJ l 70°C、 押出速度を 32. 9k gZ時間、 開口幅: 0. 5mmの T一ダイを用い て、 厚さ 35 mの白色樹脂板に成形した。 また、 押出速度を 24. 6 k gZ時 間とした以外は白色樹脂フィルムと総て同条件より、厚さ 35 / mの黒色樹脂フ イルムを成形した。  Next, using the same cast film forming and manufacturing apparatus as in the first example, using a T-die having a heating SJ l of 70 ° C, an extrusion speed of 32.9 kgZ hours and an opening width of 0.5 mm, a thickness of 0.5 mm was used. It was molded into a 35 m white resin plate. A 35 / m thick black resin film was formed under the same conditions as for the white resin film except that the extrusion speed was set to 24.6 kgZ hours.
次に第 1実施例と同様の条件で融着させ積層フィルムを形成した。 この積層フ イルムを、 回転を固定した丸刃によりフィルムを 70 X 70 μπιの大きさに切断 し、 カッター刃で樹脂片を回収した。  Next, fusion was performed under the same conditions as in the first example to form a laminated film. The laminated film was cut into a size of 70 × 70 μπι by a round blade having a fixed rotation, and a resin piece was collected by a cutter blade.
次に、 第 1実施例と同様の条件でシリコーンォィル中で加熱し、 回転粒子を形 しに。  Next, heating was performed in a silicone roll under the same conditions as in the first embodiment to form rotating particles.
次に、 回転粒子を、 メッシュの開口寸法が 98 のふるいで分級後、 開口寸 法 63 のふるいで回収した。得られた回転粒子は、平均粒径が 81. 6 m、 変動係数が 20. 7%であった。  Next, the rotating particles were classified using a sieve having a mesh opening size of 98, and then collected using a sieve having an opening size of 63. The obtained rotating particles had an average particle size of 81.6 m and a coefficient of variation of 20.7%.
以後、 第 1実施例と同様にして第 1比較例に係る回転粒子型表示装置を作製し た。 [第 2比較例] Thereafter, a rotating particle display according to a first comparative example was manufactured in the same manner as in the first example. [Second comparative example]
ペトロセン 353 (東ソーネ ±$¾) 16重量部に、 蹄水化した二酸化チタン (ァ ナターゼ型) 20重量部をロールミルを用いて 105 °Cに加熱しながら混練した。 この混練物を、 融点 125 °Cの溶融状態にあるエチレンヮックス 64重量部で口 ールミルを用いて希釈することで、白色のポリエチレン/エチレンヮックス混合物 を作製した。  16 parts by weight of Petrocene 353 (East Sone ± $ ¾) and 20 parts by weight of hoofed titanium dioxide (anatase type) were kneaded using a roll mill while heating to 105 ° C. The kneaded product was diluted with 64 parts by weight of ethylene wax in a molten state having a melting point of 125 ° C. using a mortar mill to produce a white polyethylene / ethylene wax mixture.
一方、 ペトロセン 353 (東ソーネ ±|¾ 16. 4重量部に、 マグネタイト 16 重量部、 カーボンブラック 2重量部をロールミルを用いて 105°Cに加熱しなが ら混練した。 この混練物を、 融点 125。Cの溶融状態にあるエチレンワックス 6 5. 6重量部をロールミルを用いて混練することで、黒色のポリエチレン/ェチレ ンヮックス混合物を作製した。 190 °Cにおける着色樹脂の溶融粘度の比 (=白 色の着色樹脂の溶融粘度/黒色の着色樹脂の溶融粘度) は、 2. 95であった。 温度 130°Cの加圧プレス機で、各々の着色したポリエチレン/エチレンヮック スを厚さ 15 のフィルムを作製した。 このフィルムを温度 110°Cで融着さ せ積層フィルムを作製した。 この積層フィルムを液体窒素に浸漬した後、 超音波 ホモジナイザを用いて粉砕したところ、 平均サイズで 50 μταΧ 50 μ m, 大き さの分布が 10/ m〜120/ mの榭脂片を形成した。  On the other hand, Petrocene 353 (Tosone ± | ¾16.4 parts by weight, 16 parts by weight of magnetite, and 2 parts by weight of carbon black were kneaded using a roll mill while heating to 105 ° C. A black polyethylene / ethylenic mixture was prepared by kneading 65.6 parts by weight of ethylene wax in a molten state at 125.C using a roll mill.The ratio of the melt viscosity of the colored resin at 190 ° C (= The melt viscosity of the white colored resin / melt viscosity of the black colored resin) was 2.95. Each colored polyethylene / ethylene box was pressed to a thickness of 15 with a pressure press at a temperature of 130 ° C. This film was fused at a temperature of 110 ° C. to produce a laminated film.This laminated film was immersed in liquid nitrogen and then pulverized using an ultrasonic homogenizer. μταΧ 50 μm, and the size distribution was 10 / m to 120 / m.
樹脂片を、 150。Cのシリコーンオイル SH200— 100 c s t (東レ ·ダ ゥコ一二ング ) に投入し 3分間加熱した。 次に、 25 °Cのシリコーンオイノレ SH200-100 c s tを加熱されたシリコーンオイルと等量を混合して、 冷 却し回転粒子を作製した。  150 pieces of resin. C Silicone oil SH200—100 c st (Toray Dakoganing) was added and heated for 3 minutes. Next, an equivalent amount of the silicone oil SH200-100 c st at 25 ° C. was mixed with the heated silicone oil, and the mixture was cooled to produce rotating particles.
[第 3比較例] [Third comparative example]
樹脂片 (比重 1. 3) の加熱の工程において、 シリコーンオイルを SH200 - 100 c s t (比重 0. 96) 東レ 'ダウコ一-ング社製) を用い、 シリコー ンオイルの振とうをしない以外は、第 2実施例と同じ工程で回転粒子を作製した。 この際回転粒子の沈降に伴い、 凝集、 容器への付着が発生し、 回収ができなかつ た。 (回転粒子の直径 R及び 2色の境界線の長さ Lの評価方法) 第 1〜第 3実施例及び第 1〜第 2比較例の回転粒子型表示装置に係る回転粒子 の直径 R及ぴ 2色の境界線の長さ Lを測定し L/R値の評価を行つた。 In the process of heating the resin pieces (specific gravity 1.3), use silicone oil SH200-100 cst (specific gravity 0.96) (manufactured by Toray Industries, Inc.) and do not shake the silicone oil except for shaking. Rotating particles were produced in the same steps as in Example 2. At this time, the settling of the rotating particles caused agglomeration and adhesion to the container, which prevented collection. (Method of Evaluating Diameter R of Rotating Particle and Length L of Boundary Line of Two Colors) The diameter R and the diameter of the rotating particle according to the rotating particle display device of the first to third examples and the first and second comparative examples. The length L of the boundary line between the two colors was measured, and the L / R value was evaluated.
回転粒子の直径 R及び境界線の長さ Lは、回転粒子型表示装置に 1 H z程度の 交番電圧を印加し、 回転動作する回転粒子の透過像及び反射像をビデオ撮影し、 その画像を PCに取り込んで、 画像処理ソフトにより求めた。 以下、 具体的に評 価方法を説明する。  For the diameter R of the rotating particles and the length L of the boundary line, an alternating voltage of about 1 Hz is applied to the rotating particle type display device, a transmission image and a reflection image of the rotating rotating particles are video-captured, and the images are taken. It was imported into a PC and determined using image processing software. Hereinafter, the evaluation method will be specifically described.
まず、 第 1〜第 3実施例及び第 1〜第 2比較例の回転粒子型表示装置に 1 H z の交番 を印加する。 回転動作をする回転粒子の透過像及び反射像を光学顕微 鏡(ォリンパスネ環 STM— UM— BDZ— 100 (S)) により拡大し、 この画 像を CCDカメラ (池上通信機製) によりに取り込みビデオレコーダーにより画 像を記録する。この画像を MP EGレコーダ(アイオーデータ製 USB— MP G) により PCに取り込む。  First, an alternation of 1 Hz is applied to the rotating particle display devices of the first to third examples and the first and second comparative examples. Transmission images and reflection images of rotating particles that rotate are magnified by an optical microscope (Olympane STM-UM-BDZ-100 (S)), and these images are captured by a CCD camera (manufactured by Ikegami Tsushinki) and recorded by a video recorder. The image is recorded by. This image is imported to a PC using an MPEG recorder (Iodata USB-MPG).
次に、 PC上で MP EG画像再生ソフトにより、 回転粒子の回転動作の連続画 像より、 2色の境界線が回転粒子の略中央を切り、 力つ 2色の面積がほぼ同一と なる時の画像を静止画像として取り込む。 この作業を繰り返し、 50個〜 100 個の回転粒子の静止画像を得る。  Next, when the two-color boundary line cuts the approximate center of the rotating particle from the continuous image of the rotating motion of the rotating particle using MPEG image reproduction software on the PC, the area of the two colors is almost the same. Is captured as a still image. This operation is repeated to obtain still images of 50 to 100 rotating particles.
次に、 静止画像を総合倍率 5000倍程度、 例えば回^ i子の粒子径が 70 μ mの場合 35 Oramに拡大して、 画像処理ソフト (ァドビ社製、 商品名: P h o t o s h o p) を用いて、エッジ強調処理(設定:デフォルト) を行い、次いで、 回 子の直径 Rおよび 2色の境界線の長さ Lを求める。 例えば、 図 5 Aは、 回 子の静止画像の一例を示す図であり、 図 5 Bは、 図 5 Aの静止画像をェッジ 強調処理した画像を示す図である。 図 5 A及ぴ図 5 Bに示すように、 ェッジ強調 処理により回転粒子の白色と黒色の境界線と輪郭が得られる。 この境界線の長さ を Lとし、 輪郭より直径 Rを求める。 輪郭は厳密には真円に近い楕円であるが、 円形度が 0. 8以上の場合は真円として直径 Rを求め、 円形度が 0. 8より小さ い場合は、 楕円の短径 aと長径 bを求め、 (a+b) Z2を直径 Rとする。  Next, the still image is enlarged to 35 Oram when the total magnification is approximately 5000 times, for example, when the particle size of the particle is 70 μm, and the image is processed using image processing software (product name: P hotoshop, manufactured by Adobe). Then, edge enhancement processing (setting: default) is performed, and then the diameter R of the element and the length L of the boundary line between the two colors are obtained. For example, FIG. 5A is a diagram illustrating an example of a still image of a device, and FIG. 5B is a diagram illustrating an image in which the still image of FIG. 5A is edge-emphasized. As shown in FIGS. 5A and 5B, the edge enhancement process yields the white and black boundaries and contours of the rotating particles. Let L be the length of this boundary line, and find the diameter R from the contour. Strictly speaking, the contour is an ellipse close to a perfect circle, but if the circularity is 0.8 or more, the diameter R is calculated as a perfect circle, and if the circularity is less than 0.8, the minor axis a of the ellipse Find the major diameter b, and let (a + b) Z2 be the diameter R.
次に、 境界線の長さと直径の比である LZR値について統計処理を行い、 LZ R値が 1 · 0以上 1 . 2未満、 1 . 2以上 1 . 4未満、 及ぴ 1 . 4以上のそれぞ れに分類し L/R値の分布を求めた。 Next, statistical processing is performed on the LZR value, which is the ratio of the length and diameter of the boundary line, and the LZR value is calculated. The R value was classified into 1.0 or more and less than 1.2, 1.2 or more and less than 1.4, and 1.4 or more and the distribution of L / R values was determined.
なお、 上述した回転粒子の画像を得る際に、 表示装置としてではなく回転粒子 単体が得られる場合は、 静止状態の回 子の透過像及び反射像を上記光学顕微 鏡にデジタルカメラ (ォリンパス†±¾D P _ 1 0 ) に取り込んでもよい。  In the case of obtaining the above-described image of the rotating particles, if a single rotating particle is obtained instead of a display device, the transmission image and the reflection image of the stationary device can be transferred to the optical microscope with a digital camera (OLYMPUS † ±). ¾D P _ 10).
(回転粒子型表示装置のコントラストの評価方法) (Method of evaluating the contrast of a rotating particle display device)
第 1〜第 3実施例及ぴ第 1〜第 2比較例の回 子型表示装置のコントラスト •を評価した。  The contrast • of the liquid crystal display devices of the first to third examples and the first and second comparative examples was evaluated.
コントラストの評価は、 色彩計 (G r e t a g M a c b e t hネ環 S p e c t r o E y e、 光源: D 6 5、 視野: 2度) を用い、 回 子型表示装置の I T O電極と他方の銅箔の電極に 2 0 0 Vの ®Eを正負の両方向を印加し、 白表示と 黒表示の反射濃度を測定して反射率に変換し、 反射率の比 (=白表示の反射率/ 黒表示の反射率) を求めた。  The contrast was evaluated using a colorimeter (G retag Macbeth Spectro Eye, light source: D65, field of view: 2 degrees), using two electrodes on the ITO electrode of the crystal display and the other copper foil electrode. Apply 0 V ®E in both positive and negative directions, measure the reflection density of white display and black display, convert it to reflectance, and reflectivity ratio (= reflectance of white display / reflectance of black display) I asked.
(L/R値とコントラストの評価) (Evaluation of L / R value and contrast)
図 6は、 第 1〜第 3実施例及ぴ第 1〜第 2比較例係る回転粒子の LZR値及び 回転粒子型表示装置のコントラストの評価結果を示す図である。なお、図中の「一」 は測定不能の場合を示している。  FIG. 6 is a diagram showing the evaluation results of the LZR values of the rotating particles and the contrast of the rotating particle display device according to the first to third examples and the first and second comparative examples. Note that “1” in the figure indicates a case where measurement is impossible.
図 6を参照するに、 第 1〜第 3実施例に係る回転粒子においては、 L/R値が 1 . 0以上 1 . 2以下の範囲にある回転粒子の割合が 8 0 %以上あり、 それらの 回^^子を用いた回転粒子型表示装置のコントラストは 7以上あることが分かる。 なお、 コントラストが 5以上である場合は視認性は良好であり合格である。 特に 第 2実施例に係る回転粒子においては、 7 7 mふるいを用いた分級処理の回数 が多いので、 平均粒径の分布がシャープとなり力つ L/R値が 1 . 0以上 1 . 2 以下の範囲における回転粒子の割合力 S 8 5 %となっている。 その結果、 コントラ ストが 1 0と良好な結果を示していることが分かる。  Referring to FIG. 6, in the rotating particles according to the first to third examples, the ratio of the rotating particles having an L / R value in the range of 1.0 or more and 1.2 or less is 80% or more. It can be seen that the contrast of the rotating particle type display device using the above-mentioned device is 7 or more. When the contrast is 5 or more, the visibility is good and the test is passed. In particular, in the case of the rotating particles according to the second embodiment, since the number of times of classification using a 77 m sieve was large, the distribution of the average particle size became sharp, and the L / R value was 1.0 or more and 1.2 or less. The ratio force S85% of the rotating particles in the range is 85%. As a result, it can be seen that the contrast is 10 which is a good result.
一方、 第 1比較例に係る回^^子は、 L R値が 1 . 0以上 1 . 2以下の範囲 にある回転粒子の割合が 6 2 %である。 第 1比較例に係る表示装置のコントラス トは 3と低い値であることが分かる。 On the other hand, in the resonator according to the first comparative example, the ratio of the rotating particles having the LR value in the range of 1.0 or more and 1.2 or less is 62%. Contrast of the display device according to the first comparative example It can be seen that the value is as low as 3.
また、 第 2比較例に係る回車 立子は、 白色の領域が表面全体の 8 0 %程度を占 め., 回転動作が不安定なため L/R値が測定できなかった。 1 9 0 °Cにおける着 色樹脂の溶融粘度の比が 2 . 9 5と大きく、 球形化処理において白色樹脂材が黒 色樹脂材を覆うと共に 2色の境界が複雑化したためである。  In addition, the white area occupied about 80% of the entire surface of the wheel set according to the second comparative example. L / R values could not be measured due to unstable rotation. This is because the ratio of the melt viscosity of the coloring resin at 190 ° C was as large as 2.95, and the white resin material covered the black resin material in the sphering treatment, and the boundary between the two colors became complicated.
したがって、 LZR値が 1 . 0以上 1 . 2以下の範囲にある回転粒子が占める 割合が高い程、コントラストが高い回転粒子型表示装置を実現することができる。 以上、 本発明の好ましい実施例について詳述したが、 本発明は係る特定の実施 形態に限定されるものではなく、 特許請求の範囲に記載された本発明の範囲内に おいて、 種々の変形'変更が可能である。  Therefore, the higher the ratio of the rotating particles having an LZR value in the range of 1.0 or more and 1.2 or less, the higher the contrast of the rotating particle display device can be realized. Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments, and various modifications may be made within the scope of the present invention described in the appended claims. 'Changes are possible.
例えば、 上記実施の形態及び実施例では、 白色と黒色の 2色の回転粒子を一例 として説明したが、 白色及ぴ黒色に限定されず、 回^ Ϊ子の一方の領域と他方の 領域とが異なる色相でさえあればよレ、。 産業上の利用可能性  For example, in the above-described embodiments and examples, the rotating particles of two colors, white and black, have been described as an example. However, the present invention is not limited to white and black, and one region of the polymer and the other region may be different. All you need is different hues. Industrial applicability
本発明によれば、 粒子回転型表示装置において、 回転動作の制御性が優れ、 動 作安定性が良好な回転粒子を備え、 コントラストの高い粒子回転型表示装置及び その製造方法を^することができる。  According to the present invention, it is possible to provide a particle rotating type display device which has high controllability of the rotating operation, has good operation stability, has high contrast, and has high contrast, and a method of manufacturing the same. it can.

Claims

請求の範囲 The scope of the claims
1 . 電界に応じて回転する回転粒子により情報を表示する粒子回転型表示装置 であって、 1. A particle rotating display device that displays information by rotating particles that rotate in response to an electric field,
前記回転粒子は、 略半球ごとに互いに異なる色及び帯電特性を有する第 1の領 域及ぴ第 2の領域よりなり、  The rotating particles include a first area and a second area having different colors and charging characteristics from each other substantially in each hemisphere,
前記第 1の領域と第 2の領域との境界が略中央を通り、 前記第 1の領域及び前 記第 2の領域の面積が略同一となる方向より視た 2次元像にぉ 、て、 A two-dimensional image viewed from a direction in which the boundary between the first region and the second region passes substantially at the center and the areas of the first region and the second region are substantially the same,
前記第 1の領域と第 2の領域との境界線の長さを L、 回転粒子の輪郭に相当す る円の直径を Rとした:^に、 1 . 0≤L/R≤1 . 2の範囲にある回転粒子の 個数が全体の個数の 8 0 %以上であることを特徴とする粒子回転型表示装置。  L is the length of the boundary line between the first region and the second region, and R is the diameter of a circle corresponding to the contour of the rotating particle: 1.0≤L / R≤1.2 Wherein the number of rotating particles in the range of is at least 80% of the total number.
2. 第 1の電極及ぴ第 2の電極と、 2. a first electrode and a second electrode;
前記第 1の電極と第 2の電極との間に設けられた透明基体と、  A transparent substrate provided between the first electrode and the second electrode,
前記透明基体中に形成された複数の空隙と、  A plurality of voids formed in the transparent substrate,
編己空隙中に充填された誘電性液体と、 2色に色分けされた第 1の領域及び第 2の領域とを有する回^^子とを含み、  A dielectric liquid filled in the knitting space, and a resonator having a first region and a second region colored in two colors,
前記電極により印加される電界に対応して回 ^立子が 2色のいずれかを表示す る粒子回転型表示装置であつて、  A particle rotating type display device in which a mirror displays one of two colors corresponding to an electric field applied by the electrode,
前記第 1の領域と第 2の領域との境界が略中央を通り、 前記第 1の領域及び前 記第 2の領域の面積が略同一となる方向より視た 2次元像において、  In a two-dimensional image viewed from a direction in which the boundary between the first region and the second region passes substantially at the center and the areas of the first region and the second region are substantially the same,
前記第 1の領域と第 2の領域との境界線の長さを L、 回転粒子の輪郭に相当す る円の直径を Rとした に、 1 . 0≤LZR≤1 . 2の範囲にある回転粒子の 個数が全体の個数の 8 0 %以上であることを特徴とする粒子回転型表示装置。  Assuming that the length of the boundary between the first region and the second region is L and the diameter of a circle corresponding to the contour of the rotating particle is R, the range is 1.0≤LZR≤1.2. A particle rotating type display device, wherein the number of rotating particles is 80% or more of the total number.
3. 前記回転粒子の粒径の平均値が 1 0 μ II!〜 1 0 0 μ. mであり、 かつ変動 係数が 2 0 %以下であることを特徴とする請求項 1または 2記載の粒子回転型表 3. The average value of the particle size of the rotating particles is 10 μII! The particle rotation type table according to claim 1 or 2, wherein the coefficient of variation is 20% or less.
4. 回 立子の第 1の領域及び第 2の領域は、 熱可塑性樹脂と着色剤とを含- む樹脂材よりなり、 4. The first region and the second region of the reciprocator are made of a resin material containing a thermoplastic resin and a colorant,
該第 1の領域を形成する樹脂材の 1 9 0 °Cにおける溶融粘度 MViと第 2の領 域を形成する樹脂材の 1 9 0 °Cにおける溶融粘度 MV2との比 M Vi/MV2が 0 · 5〜2 . 0であることを特徴とする請求項 1または 2記載の粒子回転型表示装置。 1 9 of the resin material forming the first area 0 ° the ratio M Vi / MV 2 of the melt viscosity MV 2 in 1 9 0 ° C melt viscosity MVi and the resin material forming the second realm in C 3. The particle rotating type display device according to claim 1, wherein the particle diameter is 0.5 to 2.0.
5 . 前記第 1及び第 2の領域の一方の領域がルチル型の二酸化チタンと蛍光 増白剤とを含み白色に着色されて!/、ることを特徴とする請求項 1または 2記載の 粒子回転型表示装置。 5. The particles according to claim 1 or 2, wherein one of the first and second regions is colored white, containing rutile-type titanium dioxide and a fluorescent whitening agent. Rotary display device.
6. 前記透明基体はシリコーンゴムよりなり、 前記誘電性液体はシリコーン オイルであることを特徴とする請求項 2記載の粒子回転型表示装置。 6. The particle rotating display device according to claim 2, wherein the transparent substrate is made of silicone rubber, and the dielectric liquid is silicone oil.
7. 電界に応じて回転し、 2色からなる回 子により情報を表示する粒子 回転型表示装置の製造方法であって、 7. A method for producing a rotary display device, which rotates in response to an electric field and displays information with a two-color element,
前記 2色の各々の色が着色された樹脂材を用レヽて単色樹脂板を形成する工程と、 2色の各々の前記単色樹脂板を貼り合わせて 2色積層樹脂板を形成する工程と、 前記 2色積層樹脂板を切断して樹脂片とする工程と、  A step of forming a single-color resin plate by using a resin material in which each of the two colors is colored; and a step of forming a two-color laminated resin plate by bonding the single-color resin plates of each of the two colors. Cutting the two-color laminated resin plate into a resin piece;
前記樹脂片を液体中で熱処理することにより球形化して回転粒子を形成するェ 程と、  Heat-treating the resin piece in a liquid to form spheroids to form rotating particles;
前記回転粒子の粒径に基づいて該回 子を分級する工程と、 を含むことを特 徴とする粒子回転型表示装置の製造方法。  A method of classifying the particles based on the particle diameter of the rotating particles.
8. 前記回転粒子を形成する工程において、 前記熱処理が液体を介して加熱 すると共に振とうすることを特徴とする請求項 7記載の粒子回転型表示装置の製 造方法。 8. The method according to claim 7, wherein, in the step of forming the rotating particles, the heat treatment includes heating and shaking via a liquid.
9 . 前記液体は 2 5 °Cにおける動粘度が 3 X 1 0 -4m2/ s〜 1 X 1 0— 2m2/ sであることを特徴とする請求項 7記載の粒子回転型表示装置の製造方法。 . 9 wherein the liquid is 2 5 ° kinematic viscosity at C is 3 X 1 0 - 4 m 2 / s~ 1 X 1 0- 2 m 2 / s particle rotation type display according to claim 7, characterized in that the Device manufacturing method.
1 0. 前記液体の比重と、 前記樹脂片の比重との差が 2 5 °Cにおレ、て 0. 3 以下であることを特 ¾tとする請求項 7記載の立子回転型表示装置の製造方法。 10. The method according to claim 7, wherein the difference between the specific gravity of the liquid and the specific gravity of the resin piece is not more than 0.3 at 25 ° C. Production method.
1 1 . 前記 2色の樹脂材の 1 9 0。ひこおける溶融粘度の比が 0 · . 5〜 2であ ることを特徴とする請求項 7記載の粒子回転型表示装置の製造方法。 1 1. 190 of the two color resin materials. 8. The method for producing a particle rotary display device according to claim 7, wherein the ratio of the melt viscosities in the cracks is 0.5 to 2.
1 2 . 前記回転粒子を形成する工程において、 前記液体がシリコーン才ィノレ であることを特徴とする請求項 7記載の粒子回転型表示装置の製造方法。 12. The method for manufacturing a particle rotating display device according to claim 7, wherein in the step of forming the rotating particles, the liquid is silicone.
1 3 . 前記回転粒子を形成する工程において、 前記熱処理後に熱処理に用い たシリコーンオイルと同種のシリコーンオイルを混合して、 前記樹脂材の軟化点 より低温に冷却することを特徴とする請求項 1 2記載の粒子回転型表示装置の製 造方法 13. In the step of forming the rotating particles, the same type of silicone oil as the silicone oil used for the heat treatment after the heat treatment is mixed, and cooled to a temperature lower than the softening point of the resin material. Method for manufacturing the particle rotating display device described in 2
1 4. 前記樹脂片を形成する工程は、 前記 2色積層樹脂板を回転刃により所 定の大きさに切断することを特徴とする請求項 7記載の粒子回転型表示装置の製 造方法。 14. The method of manufacturing a particle rotary display device according to claim 7, wherein in the step of forming the resin piece, the two-color laminated resin plate is cut into a predetermined size by a rotary blade.
1 5 . 前記樹脂片を形成する工程は、 樹脂片に切断した後、 離型剤を用いて 樹脂片を回収すること特徴とする請求項 7記載の粒子回転型表示装置の製造方法。 15. The method of manufacturing a particle rotary display device according to claim 7, wherein in the step of forming the resin pieces, the resin pieces are collected using a release agent after cutting into the resin pieces.
PCT/JP2003/002151 2003-02-26 2003-02-26 Particle rotation display and its manufacturing method WO2004077141A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2003/002151 WO2004077141A1 (en) 2003-02-26 2003-02-26 Particle rotation display and its manufacturing method
JP2004568738A JPWO2004077141A1 (en) 2003-02-26 2003-02-26 Particle rotation type display device and manufacturing method thereof
US11/073,861 US20050180035A1 (en) 2003-02-26 2005-03-08 Rotation particle display apparatus and method for manufacturing rotation particle display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/002151 WO2004077141A1 (en) 2003-02-26 2003-02-26 Particle rotation display and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/073,861 Continuation US20050180035A1 (en) 2003-02-26 2005-03-08 Rotation particle display apparatus and method for manufacturing rotation particle display apparatus

Publications (1)

Publication Number Publication Date
WO2004077141A1 true WO2004077141A1 (en) 2004-09-10

Family

ID=32923080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002151 WO2004077141A1 (en) 2003-02-26 2003-02-26 Particle rotation display and its manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2004077141A1 (en)
WO (1) WO2004077141A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095659A (en) * 2009-11-02 2011-05-12 Soken Chem & Eng Co Ltd Pseudo-dichroic particle having improved display performance
JP2011123468A (en) * 2009-12-09 2011-06-23 Samsung Electro-Mechanics Co Ltd Color electronic paper display device and method for manufacturing the same
KR20140017449A (en) * 2012-08-01 2014-02-11 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 Bicolored particles
WO2017061586A1 (en) * 2015-10-08 2017-04-13 大日本印刷株式会社 Particles, optical sheet, screen, display device, particle inspection device, particle manufacturing device, particle inspection method, particle manufacturing method, screen inspection method, and screen manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246924A2 (en) * 1986-05-23 1987-11-25 Ortech Corporation Method of manufacturing plastic particles for a particle display
JPH01282589A (en) * 1988-05-10 1989-11-14 Fuji Xerox Co Ltd Manufacture of rotary particles for display for particle rotation type display
EP0928681A1 (en) * 1998-01-09 1999-07-14 Xerox Corporation Apparatus and method for fabricating bicoloured microspheres
JP2002287174A (en) * 2001-03-23 2002-10-03 Minolta Co Ltd Migration type display device
JP2002366102A (en) * 2001-06-12 2002-12-20 Fujitsu Ltd Display device, its driving method and manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0246924A2 (en) * 1986-05-23 1987-11-25 Ortech Corporation Method of manufacturing plastic particles for a particle display
JPH01282589A (en) * 1988-05-10 1989-11-14 Fuji Xerox Co Ltd Manufacture of rotary particles for display for particle rotation type display
EP0928681A1 (en) * 1998-01-09 1999-07-14 Xerox Corporation Apparatus and method for fabricating bicoloured microspheres
JP2002287174A (en) * 2001-03-23 2002-10-03 Minolta Co Ltd Migration type display device
JP2002366102A (en) * 2001-06-12 2002-12-20 Fujitsu Ltd Display device, its driving method and manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095659A (en) * 2009-11-02 2011-05-12 Soken Chem & Eng Co Ltd Pseudo-dichroic particle having improved display performance
JP2011123468A (en) * 2009-12-09 2011-06-23 Samsung Electro-Mechanics Co Ltd Color electronic paper display device and method for manufacturing the same
KR20140017449A (en) * 2012-08-01 2014-02-11 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 Bicolored particles
JP2014032243A (en) * 2012-08-01 2014-02-20 Soken Chem & Eng Co Ltd Dichroic particle
KR101632472B1 (en) 2012-08-01 2016-06-21 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 Bicolored particles
WO2017061586A1 (en) * 2015-10-08 2017-04-13 大日本印刷株式会社 Particles, optical sheet, screen, display device, particle inspection device, particle manufacturing device, particle inspection method, particle manufacturing method, screen inspection method, and screen manufacturing method

Also Published As

Publication number Publication date
JPWO2004077141A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP2011158783A (en) Display particle, method for producing display particle, and image display medium and image display device using display particle
WO2004090626A1 (en) Particle used for image display medium, image display panel using same, and image display
TW200301398A (en) Particles for display device, image display medium using the same, and image forming device
WO2004077141A1 (en) Particle rotation display and its manufacturing method
US8248685B2 (en) Display particles for image display apparatus and image display apparatus loaded with the same
US20050180035A1 (en) Rotation particle display apparatus and method for manufacturing rotation particle display apparatus
JP2008152211A (en) Display device particle, electrophoretic display liquid and display device
WO2016047549A1 (en) Modeling particles used for manufacturing three-dimensional object, powder including same, and method for manufacturing three-dimensional object using same
EP1096304A2 (en) Bichromal beads having crystalline materials therein
US20060256422A1 (en) Two particle electophoretic systems, electronic displays including two particle electophoretic systems, and methods for producing the two particle electophoretic systems
JP2004198973A (en) Particle for display device, image display medium, and image forming apparatus
JP2003270678A (en) Sheet type display device and method for manufacturing the same
JP4945099B2 (en) Particles for display medium and information display panel using the same
JP2004212868A (en) Two color rotating particle powder, sheet-type display device and manufacture method
JP2011248236A (en) Display particles, production method thereof and image display medium using the same
JP4073702B2 (en) Sheet type display device and manufacturing method thereof
US7839562B2 (en) White particles for image display device
JPH01282589A (en) Manufacture of rotary particles for display for particle rotation type display
US7969643B2 (en) Display particles for image display apparatus and image display apparatus loaded with the same
JP2004070043A (en) Two color rotating particle and display sheet for display
Cox Microencapsulation effects on the electro-optical behavior of polymer cholesteric liquid crystal flakes
JP4701609B2 (en) Image display medium and image forming apparatus
JP2004093916A (en) Particles for display and display apparatus using the same
JP2003307754A (en) Sheet-type display device
JP2011257520A (en) Display particle and manufacturing method of the same particle, and image display medium using the same particle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004568738

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11073861

Country of ref document: US