WO2004075338A1 - Resonateur a microruban supraconducteur et filtre constitue de tels resonateurs - Google Patents

Resonateur a microruban supraconducteur et filtre constitue de tels resonateurs Download PDF

Info

Publication number
WO2004075338A1
WO2004075338A1 PCT/CN2003/001082 CN0301082W WO2004075338A1 WO 2004075338 A1 WO2004075338 A1 WO 2004075338A1 CN 0301082 W CN0301082 W CN 0301082W WO 2004075338 A1 WO2004075338 A1 WO 2004075338A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip line
superconducting microstrip
resonators
filter
type
Prior art date
Application number
PCT/CN2003/001082
Other languages
English (en)
French (fr)
Other versions
WO2004075338A8 (fr
Inventor
Bisong Cao
Meihong Zhu
Xubo Guo
Guoyong Zhang
Shan He
Irana B. Vendik
Yaroslav Kolmakov
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to US10/540,332 priority Critical patent/US7532918B2/en
Priority to EP03782059A priority patent/EP1575119A4/en
Priority to AU2003292857A priority patent/AU2003292857A1/en
Publication of WO2004075338A1 publication Critical patent/WO2004075338A1/zh
Publication of WO2004075338A8 publication Critical patent/WO2004075338A8/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20372Hairpin resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators

Definitions

  • the present invention relates to a microwave filter, and more particularly, to a superconducting microstrip line resonator and a filter.
  • BACKGROUND A filter is a very important microwave component. Its main function is to separate frequencies, that is, to block signals in other frequency bands by blocking signals in a certain frequency band.
  • the frequency band through which a filter can pass a signal is usually called the passband, and the frequency band that blocks a signal is called a cutoff region.
  • the ideal filter should have no attenuation for the signal in the passband and infinite attenuation for the signal in the cutoff region.
  • the transition between the passband and the cutoff region should be as steep as possible, that is, the band edge of the passband must be as wide as possible. May be steep.
  • the characteristics of steep pass-band band edges can be obtained by increasing the number of filters (that is, the number of resonators).
  • increasing the number of filters will introduce significant insertion loss, making the pass-band attenuation larger, and the filter Degraded performance. Therefore, the insertion loss of the ordinary microstrip line filter with a high number of nodes is generally large. This field cannot meet the required index for applications with high requirements, such as satellite applications. In this case, it can only be applied. Waveguide filters to achieve the required specifications.
  • superconducting microstrip line filters have lower insertion loss, stronger anti-adjacent frequency interference, and higher resonator quality factor (Q) (in the range of several thousand MHz, its Q The value can reach 40,000 to 100,000). From the existing experimental results, superconducting microstrip line filters have steep band edges, extremely low insertion loss and flat passband characteristics, which are closer to the ideal filter in performance.
  • the superconducting microstrip line filter not only has the performance comparable to a waveguide filter, but also has the advantages of small size and light weight of an ordinary microstrip line filter. Using this feature of superconducting microstrip line filters, superconducting microstrip line filters can be used in place of waveguide filters in more demanding areas.
  • Figure 1 shows a superconducting microstrip line filter invented by the United Kingdom in 2000 and consisting of eight resonators with similar or identical shapes and sizes.
  • the material of the substrate with the line filter is LaA10 3 , and the length * width is 39 * 23.5mm.
  • the resonators 1, 2, ..., 8 are distributed axisymmetrically, and the distance between each other is determined by the performance requirements of the superconducting microstrip line filter. Decided.
  • Each resonator is a ring-shaped band structure with a gap of Wg folded from a superconducting microstrip line.
  • the total length of the microstrip line of the ring-shaped band structure is about the superconducting microstrip line filter. Half of the wavelength corresponding to the center frequency of the transmitter.
  • the positions where the input feeder line 11 and the output feeder line 12 are in contact with the respective nearest neighbors 1 and 8 are determined by matching the input impedance and the output impedance.
  • Figure 2 is the frequency response diagram of the superconducting microstrip line filter shown in Figure 1 under the combination of a 55K test temperature and a low noise amplifier.
  • the solid line 21 is a characteristic curve of the transmission loss of the superconducting microstrip line filter
  • the dotted line 22 is a characteristic curve of the reflection loss of the superconducting microstrip line filter. It can be seen from the figure that the passband insertion loss of the superconducting microstrip line filter is about 0.13dB, the steepness of the passband edge sharpness is 20dB / MHz at the low end and 15dB / MHz at the high end.
  • the Q value of the resonator of this superconducting microstrip line filter is very high, it has a small in-band insertion loss and a good pass-band band edge steepness, but because of the resonator constituting the superconducting microstrip line filter, The shape is too large to use the substrate space very effectively, so it cannot be increased by increasing the number of resonators, and increasing the number of filters can fundamentally increase its steepness, so This structure is also not ideal.
  • An object of the present invention is to provide a superconducting microstrip line resonator.
  • the superconducting microstrip line resonance The structure size of the resonator is smaller than that of an open-loop resonator.
  • the superconducting microstrip line filter is composed of a plurality of superconducting microstrip line resonators with a smaller structure size than the open-loop resonator proposed by the present invention, so that the superconducting microstrip line filter can have The characteristics of small insertion loss, large out-of-band rejection, and steep band edges also have the advantages of simple structure and small overall size.
  • a U-shaped superconducting microstrip line resonator according to the present invention is characterized in that the superconducting microstrip line resonator is an asymmetric U folded from a superconducting microstrip line Type structure.
  • a superconducting microstrip line filter according to the present invention includes:
  • An input coupling line for receiving a signal to be filtered and coupling the signal for output
  • a plurality of U-shaped superconducting microstrip line resonators with the same structure and size for filtering signals outputted from the input coupling line to filter out signals in a corresponding frequency band and couple the signals to output;
  • FIG. 1 is a schematic structural diagram of a conventional superconducting microstrip line filter composed of eight open-loop resonators.
  • FIG. 2 is a response curve diagram of the superconducting microstrip line filter shown in FIG. 1.
  • FIG. 2 is a response curve diagram of the superconducting microstrip line filter shown in FIG. 1.
  • FIG. 3 is a schematic structural diagram of a U-type superconducting microstrip line resonator according to the present invention.
  • FIG. 4 is a schematic structural diagram of a superconducting microstrip line filter composed of four U-type superconducting microstrip line resonators according to the present invention.
  • FIG. 5 is a response curve diagram of the superconducting microstrip line filter shown in FIG. 4.
  • FIG. 6 is a schematic structural diagram of another superconducting microstrip line filter composed of four U-type superconducting microstrip line resonators according to the present invention.
  • FIG. 7 is a response curve diagram of the superconducting microstrip line filter shown in FIG. 6.
  • the U-shaped superconducting microstrip line resonator and the corresponding superconducting microstrip line filter of the present invention will be described in detail below with reference to the drawings.
  • FIG. 3 shows a schematic structural diagram of a U-type superconducting microstrip line resonator of the present invention.
  • the U-shaped superconducting microstrip line resonator is a U-shaped structure folded from a superconducting microstrip line.
  • the total length of the superconducting microstrip line folded into the U-shaped structure is about The half of the wavelength corresponding to the center frequency of the superconducting microstrip line filter constituted by the U-shaped superconducting microstrip line resonator.
  • 33 is a closed end
  • 34 is an open end
  • 31 and 32 are both sides of the open end 34
  • the superconducting microstrip lines 31 and 32 have different lengths.
  • FIG. 4 shows a schematic structural diagram of a superconducting microstrip line filter composed of four U-shaped superconducting microstrip line resonators according to the present invention.
  • the substrate of the filter may be LaA103, MgO or Sapphire. Wait.
  • an input feeder 401 receives a signal to be filtered and sends it to an input coupling line 411.
  • the input coupling line 411 couples the signal to be filtered received from the input feeder 401 to a resonator array composed of four U-shaped superconducting microstrip line resonators 42, 43, 44 and 45 having the same size and structure.
  • the resonator array After receiving the signal coupled by the input coupling line 411, the resonator array filters the signal to filter out signals in the corresponding frequency band and couples the signal to the output coupling line 412.
  • U-shaped superconducting microstrip line resonators 42, 43, 44 and 45 are arranged in parallel with each other at a corresponding distance from left to right.
  • U-shaped superconducting microstrip line resonators 42 and 43 are arranged in parallel in an axisymmetric manner, and the longer side of the superconducting microstrip line in their respective open ends is closer to the axis of symmetry than the shorter side of the superconducting microstrip line.
  • U-shaped superconducting microstrip line resonators 44 and 45 also follow Arrange in parallel in the same way.
  • the distances II, 12 and 13 between U-shaped superconducting microstrip line resonators 42 and 43, 43 and 44 and 44 and 45 are determined by the specific design requirements of the superconducting microstrip line filter.
  • the top end of the side close to the coupling line is aligned with the top end of the coupling line.
  • the top end of the side close to the coupling line is aligned with the top end of the coupling line.
  • the signal is output to the input feeder line 402, and the feeder line 402 sends the signal from the output coupling line 412 to the corresponding processing module.
  • the above is a superconducting microstrip line filter composed of four U-type superconducting microstrip line resonators of the present invention.
  • the shorter side of the superconducting microstrip line in the respective open end may be closer to the axis of symmetry, while the longer side of the superconducting microstrip line is away from Symmetry axis.
  • the U-shaped superconducting microstrip line resonators 44 and 45 can be treated in the same manner.
  • more U-shaped superconducting microstrip line resonators can be used in the resonator array according to requirements to design a filter with a higher number of nodes.
  • FIG. 5 is a response curve diagram of the superconducting microstrip line filter shown in FIG. 4.
  • the solid line 51 is a characteristic curve of the transmission loss of the superconducting microstrip line filter
  • the broken line 52 is a characteristic curve of the reflection loss of the superconducting microstrip line filter.
  • the superconducting microstrip line filter has a passband insertion loss of 0.3dB, a low-end of the passband band edge of 35dB / MHz, a high-end of 30dB / MHz, and a low-end of the out-of-band suppression near 80dB.
  • the high end is close to 100dB.
  • FIG. 6 shows a schematic structural diagram of another superconducting microstrip line filter composed of four U-shaped superconducting microstrip line resonators according to the present invention.
  • the substrate of the filter may be LaA103, MgO or Sapphire et al. As shown in FIG.
  • the input feeder 601 receives a signal to be filtered and sends it to the input coupling line 611,
  • the input coupling line 611 then couples the signal to be filtered received from the input feeder 601 to a resonator array composed of four U-shaped superconducting microstrip line resonators 62, 63, 64, and 65 having the same structure and size.
  • the resonator array After receiving the signal coupled by the input coupling line 611, the resonator array filters the signal to filter out signals of the corresponding frequency band and couples the signal to the output coupling line 612.
  • U-shaped superconducting microstrip line resonators 62, 63, 64, and 65 are arranged in parallel at a corresponding distance from left to right. The longer sides of the superconducting microstrip line are oriented in the same direction. The distances between the U-shaped superconducting microstrip resonators 62 and 63, 63 and 64, and 64 and 65 are 14, 15, and 16. The specific design requirements of the superconducting microstrip line filter are determined.
  • the top end of the side close to the coupling line is aligned with the top end of the coupling line.
  • the top end of the side close to the coupling line is aligned with the top end of the coupling line.
  • the signal is output to the output feeder 602, and then the output feeder 602 sends the signal from the output coupling line 612 to the corresponding processing module.
  • the above is another superconducting microstrip line filter composed of four U-type superconducting microstrip line resonators of the present invention.
  • more U-shaped superconducting microstrip line resonators can be used in the resonator array according to requirements to design a filter with a higher number of nodes.
  • FIG. 7 is a response curve diagram of the superconducting microstrip line filter shown in FIG. 6.
  • the solid line 71 is a characteristic curve of the transmission loss of the superconducting microstrip line filter
  • the broken line 72 is a characteristic curve of the reflection loss of the superconducting microstrip line filter. It can be seen from the figure that the passband insertion loss of this superconducting microstrip line filter is about 0.29dB, the low end of the passband band edge steepness is 27dB / MHz, and the high end is 19dB / MHz. If the number of filters is increased, the band edge of the superconducting microstrip line filter will be steeper and the out-of-band suppression will be better.
  • the superconducting microstrip line filter of the present invention consists of a smaller U-shaped superconducting microstrip line Resonator structure, so under the same number of conditions, the superconducting microstrip line filter can achieve open-loop performance in terms of in-band insertion loss, out-of-band attenuation, and pass-band band edge steepness.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

超导微带线谐振器及滤波器 技术领域 本发明涉及微波滤波器, 特别涉及超导微带线谐振器及滤波器。 背景技术 滤波器是一种十分重要的微波元件,它的主要功能是用来分隔频 率, 即通过一定频带的信号而阻断其它频带的信号。通常将滤波器可 以通过信号的频带称为通带, 而阻断信号的频带称为截止区域。理想 的滤波器应当对通带的信号无衰减而对截止区域内的信号衰减无穷 大, 为了达到这个目的, 通带与截止区域的跳变要尽可能的陡峭, 也 即通带的带边要尽可能的陡峭。一般可以通过增加滤波器的节数(即 谐振器的个数)来获得通带带边陡峭的特性, 但是滤波器节数的增加 将引入显著的***损耗, 使通带衰减变大, 滤波器性能恶化。 因此具 有较高节数的普通微带线滤波器的***损耗一般较大,这对要求较高 的领域, 例如卫星应用, 就达不到所要求的指标, 在这种情况下一般 只能应用波导滤波器来达到所要求的指标。
近几年来, 随着高温超导材料的制备工艺, 包括单晶样品和薄膜 等的发展, 超导微带线滤波器的实用化成为了可能。与普通微带线滤 波器相比,超导微带线滤波器的***损耗更小,抗邻频干扰能力更强, 谐振器品质因子 (Q) 更高 (在几千 MHz范围内, 其 Q值可达 40000 一 100000)。 从已有的实验结果来看, 超导微带线滤波器有陡峭的带 边, 极低的***损耗平坦通带特性, 在性能上更接近于理想滤波器。 因此超导微带线滤波器不仅具有可与波导滤波器比拟的性能,而且还 具有普通微带线滤波器体积小, 重量轻的优点。利用超导微带线滤波 器的这一特点,可以在要求较高的领域用超导微带线滤波器代替波导 滤波器。
图 1显示了一个英国于 2000年发明的由 8个幵环形 (Open-loop) 的形状尺寸相近或相同的谐振器构成的超导微带线滤波器,该超导微 带线滤波器的基片材料为 LaA103,长 *宽为 39 *23.5mm。如图 1所示, 在该超导微带线滤波器中, 谐振器 1、 2、 ...、 8以轴对称分布, 相互 之间的距离由该超导微带线滤波器的性能要求所决定。其中, 每个谐 振器是一个由超导微带线折叠而成的有一宽度为 Wg 的缺口的环带 状结构,该环带状结构的微带线总长度约为该超导微带线滤波器中心 频率所对应波长的一半。分析每个谐振器的电磁场可知, 电场主要分 布在环带状结构的缺口处, 因此此处相当于一个电容; 磁场主要分布 于与环带状结构缺口相对应的另一侧,所以环带状结构的超导微带线 接近于电感。 输入馈线 11和输出馈线 12各自的宽度 W0对应着 50 欧姆输入阻抗和输出阻抗, 由于它们的长度对滤波器性能没有影响, 因此根据工艺要求取几毫米即可。输入馈线 11和输出馈线 12与各自 最相邻谐振器 1和 8接触的位置由输入阻抗和输出阻抗匹配确定。
图 2为图 1所示超导微带线滤波器在 55K测试温度与低噪声放 大器组合条件下的频率响应图。 如图 2所示, 实线 21为该超导微带 线滤波器传输损耗的特性曲线, 虚线 22为该超导微带线滤波器反射 损耗的特性曲线。从图中可以看出,超导微带线滤波器的通带***损 耗约为 0.13dB, 通带带边陡峭度低端为 20dB/MHz, 高端为 15dB/MHz。 虽然这种超导微带线滤波器的谐振器 Q值很高, 有很小 的带内***损耗和很好的通带带边陡峭度,但是因为构成该超导微带 线滤器的谐振器形状过于庞大, 不能非常有效的利用基片空间, 所以 限制了它不能通过增加谐振器的个数来将节数增加得很高,而增加滤 波器节数能够从根本上提高其陡峭度, 所以此种结构也并不十分理 想。
为了克服已有技术的不足之处,有必要提出一种结构尺寸更小的 谐振器,以便能在超导微带线滤波器有限的基片空间中获得更多数量 的谐振器, 提高该超导微带线滤波器的节数。 发明内容 本发明的目的是提供一种超导微带线谐振器。该超导微带线谐振 器的结构尺寸比开环形 (Open-loop) 谐振器小。
本发明的另一个目的是提供一种超导微带线滤波器。该超导微带 线滤波器由多个本发明提出的结构尺寸比开环形 (Open-loop) 谐振 器小的超导微带线谐振器构成,以使该超导微带线滤波器能够具有插 入损耗小、通带带外抑制大和带边陡峭的特性时, 还能具有结构简洁 和整体尺寸小的优点。 为了实现本发明的目的, 按照本发明的一种 U型超导微带线谐 振器, 其特征在于, 该超导微带线谐振器是一个由超导微带线折叠而 成的非对称 U型结构。 为了实现本发明的目的, 按照本发明的一种超导微带线滤波器, 包括:
一个输入耦合线, 用于接收需要滤波的信号并将该信号耦合输 出;
多个结构尺寸相同的 U型超导微带线谐振器, 用于将所述输入 耦合线输出的信号进行滤波处理,以滤出相应频带的信号并将该信号 耦合输出;
一个输出耦合线, 用于将所述多个 U型超导微带线谐振器输出 的信号进行耦合输出。 附图简述 图 1是现有的一种由 8个开环形 (Open-loop) 谐振器构成的超 导微带线滤波器的结构示意图。
图 2是图 1所示超导微带线滤波器的响应曲线图。
图 3是本发明的一种 U型超导微带线谐振器的结构示意图。 图 4是本发明的一种由 4个 U型超导微带线谐振器构成的超导 微带线滤波器的结构示意图。
图 5是图 4所示超导微带线滤波器的响应曲线图。 图 6是本发明的另一种由 4个 U型超导微带线谐振器构成的超 导微带线滤波器的结构示意图。
图 7为图 6所示超导微带线滤波器的响应曲线图。 发明详述 下面结合附图, 详细说明本发明的 U型超导微带线谐振器以及 相应的超导微带线滤波器。
图 3示出了本发明的 U型超导微带线谐振器的结构示意图。 如 图所示,该 U型超导微带线谐振器是一个由超导微带线折叠而成的 U 型结构,其中,折叠成该 U型结构的超导微带线的总长度约为由该 U 型超导微带线谐振器所构成的超导微带线滤波器的中心频率所对应 波长的一半。 在该 U型结构中, 33为封闭端, 34为开口端, 31和 32为开口端 34的两边, 31和 32的超导微带线长度不相同。 开口端 34的边 31和 32各自的长度以及它们之间的距离由该 U型超导微带 线谐振器所构成的超导微带线滤波器的具体设计要求所决定。 图 4示出了本发明的一种由 4个所述 U型超导微带线谐振器构 成的超导微带线滤波器的结构示意图, 该滤波器的基片可以使用 LaA103、 MgO或 Sapphire等。 如图 4所示, 在该超导微带线滤波器 中,输入馈线 401接收需要滤波的信号并将其发送给输入耦合线 411。 输入耦合线 411将从输入馈线 401收到的需要滤波的信号耦合给由 4 个尺寸结构完全相同的 U型超导微带线谐振器 42、 43、 44和 45构 成的谐振器阵。
所述谐振器阵收到输入耦合线 411耦合的信号后,对该信号进行 滤波以滤出相应频带的信号并耦合给输出耦合线 412。 在所述谐振器 阵中, U型超导微带线谐振器 42、 43、 44和 45从左至右相互之间接 照相应的距离平行排列。其中, U型超导微带线谐振器 42和 43以轴 对称的方式平行排列,它们各自开口端中超导微带线较长的边比超导 微带线较短的边靠近对称轴。 U型超导微带线谐振器 44和 45也按照 相同方式平行排列。 U型超导微带线谐振器 42和 43之间、 43和 44 之间以及 44和 45之间的距离 II、 12和 13由该超导微带线滤波器的 具体设计要求所决定。 此外, 在与输入耦合线 411靠近的 U型超导 微带线谐振器 42的开口端中, 与该耦合线靠近的边的顶端与该耦合 线的顶端对齐。 同理, 在与输出耦合线 412靠近的 U型超导微带线 谐振器 45的开口端中, 与该耦合线靠近的边的顶端与该耦合线的顶 端对齐。
输出耦合线 412耦合得到所述谐振器阵滤出的信号后,将该信号 输出给输入馈线 402, 然后馈线 402将来自输出耦合线 412的信号发 送给相应的处理模块。
上述就是本发明的一种由 4个 U型超导微带线谐振器构成的超 导微带线滤波器。其中,对于所述的 U型超导微带线谐振器 42和 43, 也可以是各自开口端中超导微带线较短的边靠近对称轴,而超导微带 线较长的边远离对称轴。 所述的 U型超导微带线谐振器 44和 45也 可以同样处理。
根据上述的超导微带线滤波器的结构原理,可以根据要求在所述 谐振器阵中使用更多的 U型超导微带线谐振器以设计出节数更高的 滤波器。
图 5为图 4所示超导微带线滤波器的响应曲线图。 如图 5所示, 实线 51为该超导微带线滤波器传输损耗的特性曲线,虚线 52为该超 导微带线滤波器反射损耗的特性曲线。从图 5可以看出, 该超导微带 线滤波器的通带***损耗为 0.3dB, 通带带边陡峭度低端为 35dB/MHz, 高端为 30dB/MHz, 带外抑制低端接近 80dB, 高端接近 100dB。 如果增加滤波器的节数, 该超导微带线滤波器的带边会更加 陡峭, 带外抑制会更好。 图 6示出了本发明的另一种由 4个所述 U型超导微带线谐振器 构成的超导微带线滤波器的结构示意图, 该滤波器的基片可以使用 LaA103、 MgO或 Sapphire等。 如图 6所示, 在该超导微带线滤波器 中,输入馈线 601接收需要滤波的信号并将其发送给输入耦合线 611, 然后输入耦合线 611将从输入馈线 601收到的需要滤波的信号耦合给 由 4个结构尺寸完全相同的 U型超导微带线谐振器 62、 63、 64和 65 构成的谐振器阵。
所述谐振器阵收到输入耦合线 611耦合的信号后,对该信号进行 滤波以滤出相应频带的信号并耦合给输出耦合线 612。 在所述谐振器 阵中, U型超导微带线谐振器 62、 63、 64和 65从左至右按照相应的 距离平行排列, 其中, 每个超导微带线谐振器的开口端中超导微带线 较长的边所朝的方向相同, U型超导微带线谐振器 62和 63之间、 63 和 64之间以及 64和 65之间的距离 14、 15和 16由该超导微带线滤波 器的具体设计要求所决定。 此外, 在与输入耦合线 611靠近的 U型 谐振器 62的开口端中, 与该耦合线靠近的边的顶端与该耦合线的顶 端对齐。 同理, 在与输出耦合线 612靠近的 U型超导微带线谐振器 65的开口端中, 与该耦合线靠近的边的顶端与该耦合线的顶端对齐。
输出耦合线 612耦合得到所述谐振器阵滤出的信号后,将该信号 输出给输出馈线 602, 然后输出馈线 602将来自输出耦合线 612的信 号发送给相应的处理模块。
上述就是本发明的另一种由 4个 U型超导微带线谐振器构成的 超导微带线滤波器。根据该超导微带线滤波器的结构原理, 可以根据 要求在所述谐振器阵中使用更多的 U型超导微带线谐振器以设计出 节数更高的滤波器。
图 7为图 6所示超导微带线滤波器的响应曲线图。 如图 7所示, 实线 71为该超导微带线滤波器传输损耗的特性曲线,虚线 72为该超 导微带线滤波器反射损耗的特性曲线。从图中可以看出, 该超导微带 线滤波器的通带***损耗约为 0.29dB, 通带带边陡峭度低端为 27dB/MHz,高端为 19dB/MHz。 如果增加滤波器的节数, 该超导微带 线滤波器的带边会更加陡峭, 带外抑制会更好。 有益效果 由于本发明的超导微带线滤波器由尺寸更小的 U型超导微带线 谐振器构成, 因此在相同节数条件下, 该超导微带线滤波器在带内插 入损耗、 带外衰减和通带带边陡峭度等性能不但能够达到开环形
( Open-loop ) 超导微带线滤波器的性能指标, 而且尺寸比开环形 (Open-loop) 超导微带线滤波器更小。
本领域技术人员应当理解,本发明所公开的超导微带线谐振器及 滤波器, 可以在不脱离本发明内容的基础上做出各种改进。 因此, 本 发明的保护范围应当由所附的权利要求书的内容确定。

Claims

权 利 要 求
1、 一种 U型超导微带线谐振器, 其特征在于:
该超导微带线谐振器是一个由超导微带线折叠而成的 U型结构。
2、 如权利要求 1所述的 U型超导微带线谐振器, 其中, 所述 U 型结构的超导微带线的总长度为由该 U型超导微带线谐振器构成的 滤波器的中心频率所对应波长的一半。
3、 如权利要求 1或 2所述的 U型超导微带线谐振器, 其中, 所 述 U型结构开口端的两边的超导微带线长度不相同。
4、 一种超导微带线滤波器, 包括:
一个输入耦合线,用于接收需要滤波的信号并将该信号耦合输出; 多个结构尺寸相同的 U型超导微带线谐振器, 用于将所述输入耦 合线输出的信号进行滤波处理,以滤出相应频带的信号并将该信号耦 合输出; 一个输出耦合线, 用于将所述多个 U型超导微带线谐振器输出的 信号进行耦合输出。
5、 如权利要求 4所述的滤波器, 其中, 所述多个 U型超导微带 线谐振器相互之间平行排列。
6、 如权利要求 5所述的滤波器, 其中, 所述多个 U型超导微带 线谐振器排列时, 每两个相邻的 U型超导微带线谐振器以轴对称方 式平行排列。
7、 如权利要求 6所述的滤波器, 其中, 对于以轴对称方式平行 排列的任意两个 U型超导微带线谐振器, 每个 U型超导微带线谐振 器的开口端中超导微带线较长的边比超导微带线较短的边靠近对称 轴
8、 如权利要求 6所述的滤波器, 其中, 对于以轴对称方式平行 排列的任意两个 U型超导微带线谐振器, 每个 U型超导微带线谐振 器的开口端中超导微带线较短的边比超导微带线较长的边靠近对称 轴。
9、 如权利要求 5所述的滤波器, 其中, 所述多个 U型超导微带 线谐振器中每个 U型超导微带线谐振器的开口端中超导微带线较长 的边所朝的方向相同。
10、如权利要求 5至 9中任意一个权利要求所述的滤波器,其中, 所述多个 U型超导微带线谐振器中任意两个相邻的 U型超导微带线 谐振器之间的距离由该滤波器的具体设计要求决定。
11、如权利要求 4至 9中任意一个权利要求所述的滤波器,其中, 在所述多个 U型超导微带线谐振器中, 与其它 U型超导微带线谐振 器相比靠近所述输入耦合线的 U型超导微带线谐振器, 它的开口端 中靠近所述输入耦合线的边的顶端与所述输入耦合线的顶端对齐。
12、如权利要求 4至 9中任意一个权利要求所述的滤波器,其中, 在所述多个 U型超导微带线谐振器中, 与其它 U型超导微带线谐振 器相比靠近所述输出耦合线的 U型超导微带线谐振器, 它的开口端 中靠近所述输出耦合线的边的顶端与所述输出耦合线的顶端对齐。
PCT/CN2003/001082 2002-12-20 2003-12-18 Resonateur a microruban supraconducteur et filtre constitue de tels resonateurs WO2004075338A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/540,332 US7532918B2 (en) 2002-12-20 2003-12-18 Superconductive filter having U-type microstrip resonators with longer and shorter parallel sides
EP03782059A EP1575119A4 (en) 2002-12-20 2003-12-18 SUPERCONDUCTING MICRORUBAN RESONATOR AND FILTER CONSISTING OF SUCH RESONATORS
AU2003292857A AU2003292857A1 (en) 2002-12-20 2003-12-18 Superconductive microstrip resonator and filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN02156889.8 2002-12-20
CNB021568898A CN1180509C (zh) 2002-12-20 2002-12-20 微波单折叠滤波器

Publications (2)

Publication Number Publication Date
WO2004075338A1 true WO2004075338A1 (fr) 2004-09-02
WO2004075338A8 WO2004075338A8 (fr) 2004-11-25

Family

ID=4752852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/001082 WO2004075338A1 (fr) 2002-12-20 2003-12-18 Resonateur a microruban supraconducteur et filtre constitue de tels resonateurs

Country Status (5)

Country Link
US (1) US7532918B2 (zh)
EP (1) EP1575119A4 (zh)
CN (1) CN1180509C (zh)
AU (1) AU2003292857A1 (zh)
WO (1) WO2004075338A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740846A (zh) * 2008-11-17 2010-06-16 中国科学院物理研究所 一种微带谐振器及微带滤波器
GB201004838D0 (en) * 2010-03-23 2010-05-05 Imp Innovations Ltd Broad-band coupling transducers for waveguides
CN102544654B (zh) * 2012-02-28 2014-10-29 中国科学院微电子研究所 一种变容管电可调微带滤波器
CN104103879B (zh) * 2014-05-06 2016-06-01 西安理工大学 带陷波功能的超宽带滤波器
CN106848505A (zh) * 2017-01-11 2017-06-13 电子科技大学 基于混合耦合的微带滤波器设计方法
CN108808184B (zh) * 2018-07-17 2023-09-22 云南大学 全介质集成封装的低通滤波器
CN110556614B (zh) * 2019-08-22 2022-06-07 中国电子科技集团公司第二十九研究所 一种由c形谐振对构成的微带滤波器
SE1951451A1 (en) * 2019-12-13 2021-03-02 Andrey Danilov Tunable microwave resonator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055809A (en) * 1988-08-04 1991-10-08 Matsushita Electric Industrial Co., Ltd. Resonator and a filter including the same
JPH11214757A (ja) * 1998-01-27 1999-08-06 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk 超伝導平面回路及びその製造方法
US6122533A (en) * 1996-06-28 2000-09-19 Spectral Solutions, Inc. Superconductive planar radio frequency filter having resonators with folded legs
JP2001077604A (ja) * 1999-09-08 2001-03-23 Nec Corp 帯域通過濾波器及び帯域通過濾波器の通過帯域幅調整方法
US6323426B1 (en) * 1998-01-14 2001-11-27 Advanced Mobile Telecommunication Technology Inc. Mounting structure for semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2510326A1 (fr) * 1981-07-24 1983-01-28 Thomson Csf Filtre passe-bande a resonateurs lineaires ouverts a leurs deux extremites
US4918050A (en) * 1988-04-04 1990-04-17 Motorola, Inc. Reduced size superconducting resonator including high temperature superconductor
JPH05299914A (ja) * 1992-04-21 1993-11-12 Matsushita Electric Ind Co Ltd 超伝導高周波共振器およびフィルター
US5519366A (en) * 1993-06-08 1996-05-21 Murata Manufacturing Co., Ltd. Strip line filter
US5616538A (en) * 1994-06-06 1997-04-01 Superconductor Technologies, Inc. High temperature superconductor staggered resonator array bandpass filter
US5888942A (en) * 1996-06-17 1999-03-30 Superconductor Technologies, Inc. Tunable microwave hairpin-comb superconductive filters for narrow-band applications
GB2333905A (en) * 1998-01-29 1999-08-04 Roke Manor Research Filter for electrical signals
JP2001308603A (ja) * 2000-04-24 2001-11-02 Cryodevice Inc フィルタ
JP2004530391A (ja) * 2001-06-13 2004-09-30 コンダクタス・インコーポレーテッド 共振器およびこれを含むフィルタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055809A (en) * 1988-08-04 1991-10-08 Matsushita Electric Industrial Co., Ltd. Resonator and a filter including the same
US6122533A (en) * 1996-06-28 2000-09-19 Spectral Solutions, Inc. Superconductive planar radio frequency filter having resonators with folded legs
US6323426B1 (en) * 1998-01-14 2001-11-27 Advanced Mobile Telecommunication Technology Inc. Mounting structure for semiconductor device
JPH11214757A (ja) * 1998-01-27 1999-08-06 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk 超伝導平面回路及びその製造方法
JP2001077604A (ja) * 1999-09-08 2001-03-23 Nec Corp 帯域通過濾波器及び帯域通過濾波器の通過帯域幅調整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1575119A4 *

Also Published As

Publication number Publication date
AU2003292857A1 (en) 2004-09-09
EP1575119A4 (en) 2006-07-19
CN1414656A (zh) 2003-04-30
WO2004075338A8 (fr) 2004-11-25
US7532918B2 (en) 2009-05-12
CN1180509C (zh) 2004-12-15
US20060276343A1 (en) 2006-12-07
EP1575119A1 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
CN103367844B (zh) 基于多个枝节加载的三通带高温超导滤波器
CN102437400B (zh) 四阶交叉耦合带通滤波器
US7276995B2 (en) Filter
WO2004075338A1 (fr) Resonateur a microruban supraconducteur et filtre constitue de tels resonateurs
CN115882813A (zh) 一种基于声表面波-集总元件组合谐振器及带通滤波器
CN110350273B (zh) 一种双通带毫米波基片集成波导滤波器
JP2871725B2 (ja) 導波管帯域通過フィルター
US3668564A (en) Waveguide channel diplexer and mode transducer
CN108879043A (zh) 一种采用耦合枝节加载槽线谐振结构的三模平衡滤波器
CN101005151A (zh) 一种结构紧凑的微带线谐振器及其微波滤波器
CN100361344C (zh) 一种微带线谐振器及其微波滤波器
US8143973B2 (en) Cavity filter coupling system
CN1414658A (zh) 折叠形微带线谐振器及其滤波器
JPS585001A (ja) マイクロ波フィルタ
CN211830724U (zh) 带通滤波电路和多工器
JPS6219081B2 (zh)
CN107681234A (zh) 一种e型谐振器与阶梯阻抗谐振器的三通带微带滤波器
JPH10322155A (ja) 帯域阻止フィルタ
JP2003304103A (ja) バンドパスフィルタ
Mospan et al. Spatial filter with quasi-elliptical response
CN110137644A (zh) 一种基于槽线的高选择性宽阻带平衡滤波器
CN115732875B (zh) 一种s频段大功率波导收阻谐波滤波器
CN116345091B (zh) 一种基于双模枝节加载谐振器的双工器
CN1160976C (zh) 微波类发夹形滤波器
JP3954770B2 (ja) 帯域フィルタ装置およびそれを用いた送信装置と送受信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page

Free format text: UNDER (72, 75) ADD "KOLMAKOV, YAROSLAV [RU/RU]; DEPARTMENT OF MICROELECTRONICS AND RADIO ENGINEERING IN ST. PETERSBURG ELECTROTECHNICAL UNIV., ST. PETERSBURG, 197376 (RU)"

WWE Wipo information: entry into national phase

Ref document number: 2003782059

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003782059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006276343

Country of ref document: US

Ref document number: 10540332

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWP Wipo information: published in national office

Ref document number: 10540332

Country of ref document: US