WO2004069405A1 - Method for preparing highly active catalyst for coal liquefaction - Google Patents

Method for preparing highly active catalyst for coal liquefaction Download PDF

Info

Publication number
WO2004069405A1
WO2004069405A1 PCT/JP2004/000758 JP2004000758W WO2004069405A1 WO 2004069405 A1 WO2004069405 A1 WO 2004069405A1 JP 2004000758 W JP2004000758 W JP 2004000758W WO 2004069405 A1 WO2004069405 A1 WO 2004069405A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
coal
liquefaction
ammonia
iron hydroxide
Prior art date
Application number
PCT/JP2004/000758
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyoshi Matsuo
Koichi Izumiya
Toshio Yamaki
Original Assignee
Mitsui Engineering & Shipbuilding Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering & Shipbuilding Co., Ltd. filed Critical Mitsui Engineering & Shipbuilding Co., Ltd.
Publication of WO2004069405A1 publication Critical patent/WO2004069405A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/086Characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation

Definitions

  • the catalyst component generation step it is preferable to stir the reaction solution so that the entire reaction system remains uniform.
  • the amount of ammonia required to obtain one mole of iron hydroxide is at least 1.6 times the mole of iron.
  • the reaction temperature is generally about 20 to 80 ° C, preferably about 40 to 60 ° C.
  • FIG. 5 is a graph comparing the hydrogen consumption according to the embodiment of the present invention shown in FIG. 1 with the hydrogen consumption of the comparative example shown in FIG.
  • the amount of slurry supplied is adjusted by a high-pressure slurry constant-volume pump P2, and the amount of hydrogen gas is adjusted by interlocking the hydrogen gas compressor C1 and a flow control valve (not shown). Needle valves nV1 and nV2 are used to withdraw liquid little by little.
  • This small flow liquefaction test device is designed to be used as a continuous reactor.
  • Table 2 shows the main liquefaction reaction conditions used in the present embodiment. Table 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

A method for preparing a highly active catalyst for coal liquefaction, which comprises a catalyst component formation step (1) of reacting ferrous sulfate as a law material for the catalyst with ammonia in an aqueous solution, to form iron hydroxide, a dewatering-drying step (2) of subjecting the iron hydroxide formed in the step (1) to dewatering and drying, and an activation step (3) of pulverizing the dewatered and dried iron hydroxide together with a coal (a part of the raw material coal to be liquefied) in a dry pulverizer, to thereby convert the dried iron hydroxide to a fine powder and allow the powder to adhere on the surface of the coal in a highly dispersed state. The preparation method allows the use of the ammonia water formed in the step (5) as the ammonia in the above catalyst component formation step, and also allows the use of oxygen or an oxygen-containing gas, such as air, as a raw material of the catalyst together with the above ferrous sulfate and the use of the resultant iron oxyhydroxide as an intermediate material.

Description

曰月 糸田 β 石炭液化高活性触媒の製造方法 技術分野  Satsuki Itoda β Coal Liquefaction Highly Active Catalyst Production Method Technical Field
本発明は、石炭液化高活性触媒の製造方法に関し、更に詳細には鉄系石炭液化 触媒成分を高度に分散させて、 微粉状にした石炭からなる担体に付着させた石炭 液化高活性触媒の製造方法に関するものである。  The present invention relates to a method for producing a highly active coal liquefaction catalyst, and more particularly, to a method for producing a highly active coal liquefaction catalyst in which an iron-based coal liquefaction catalyst component is highly dispersed and adhered to a finely powdered coal carrier. It is about the method.
背景技術  Background art
従来から石炭を水素化して液体燃料を得る直接石炭液化法の技術開発が進めら れており、 その最も重要な技術的要素は、石炭液化触媒 (石炭水素化触媒) の活 性を高めることであるとされている。 石炭液化触媒として求められる要素は、 ォ ィルの収率が高く、 しかも生成したオイルに占める軽質 ·中質油の収率が高く、 安価で、 しかも触媒使用量が少なくて済むことであり、 これらの要素の全てを満 足する触媒を開発することが、 直接石炭液化法の商業化のために必要不可欠な技 術的開発課題である。  Conventionally, technological development of direct coal liquefaction method for hydrogenating coal to obtain liquid fuel has been advanced, and the most important technical factor is to enhance the activity of coal liquefaction catalyst (coal hydrogenation catalyst). It is said that there is. Factors required for a coal liquefaction catalyst are that the yield of oil is high, the yield of light and medium oils in the produced oil is high, the cost is low, and the amount of catalyst used is small. Developing a catalyst that satisfies all of these factors is an essential technical development task for the commercialization of direct coal liquefaction.
従来、 モリブデン、 ニッケル、 コバルトなどの貴金属系触媒は、高活性ではあ るが、 価格が非常に高く、 また直接石炭液化の一次触媒に用いるには繰返し使用 のための回収コストおよび被毒の再生コストが掛かりすぎるため、 実用性が少な いとされてきた。  Conventionally, noble metal-based catalysts such as molybdenum, nickel, and cobalt have high activity but are very expensive. It has been considered too practical to be too costly.
一方、鉄系触媒は、触媒活性は貴金属系触媒に劣るが、 一般的に安価で使い捨 てができるという観点から商業化する際の触媒として研究 ·開発に使用されてき た。  On the other hand, iron-based catalysts have lower catalytic activity than noble metal-based catalysts, but have been used in research and development as catalysts for commercialization from the viewpoint of being generally inexpensive and disposable.
ところで、 鉄系触媒として最も多く用いられているものは、 天然パイライト (硫化鉄) などの天然物由来の触媒であり、 これらの触媒は元々安価であるが、 触媒活性をより高めるために、 いかに触媒粒径を小さく粉砕するかが開発のボイ ン卜とされている。  By the way, the most widely used iron-based catalysts are those derived from natural products such as natural pyrite (iron sulfide) .These catalysts are originally inexpensive, but how to increase the catalytic activity The key to development is to reduce the catalyst particle size.
その触媒粒径を小さくする手段として特開平 6— 9 9 0 7 1号公報には、硫化 鉄又は酸化鉄を限界粒径に達した後も更に粉碎を続行することで高活性の石炭液 化触媒が得られることが開示されている。 更に前記化合物の原料として各種の鉱 石、 アルミ精鍊からでる赤泥、鉄鋼製造時に出る金属ダストなどを挙げ、 また使 用しうる粉砕機として乾式粉砕機をそれぞれ例示している。 As a means for reducing the catalyst particle size, JP-A-6-99071 discloses a highly active coal liquefaction by continuing to pulverize iron sulfide or iron oxide even after reaching the critical particle size. It is disclosed that a catalyst is obtained. Further, various minerals may be used as raw materials for the compound. Examples include stones, red mud from aluminum refining, metal dust from steel production, and dry mills as examples of mills that can be used.
しかしながら上記公報に記載された手段は、粉砕コストが非常に大きくなり、 活性の向上にも限界があるため触媒の使用量が多くなり、 そのため石炭液化の残 渣(廃触媒) 量が多く、 その処分にコストが掛かるという問題がある。  However, the means described in the above-mentioned publication increases the amount of catalyst to be used because the cost of pulverization becomes extremely large and the improvement of activity is limited, so that the amount of residue (waste catalyst) of coal liquefaction is large, There is a problem that the disposal is costly.
この鉄系触媒粒径を非常に小さくして高活性化させる方法として、 アンモニア /鉄沈殿法 (AW I P法) などの鉄系触媒合成方法が開発されている。 AW I P 法は、石炭の存在下あるいは石炭なしで、 硫酸鉄とアンモニア、 酸素、 炭酸など を水溶液中で反応させ、 水酸化鉄、 ォキシ水酸化鉄、炭酸鉄などを析出させて微 細 (数〜数十ナノミクロン) な触媒成分 (触媒前駆体) を生成させるものである。 石炭存在下では、 生成した触媒成分は石炭表面に高度に分散して付着し、 その結 果として少ない触媒量で高活性な触媒効果をうることができ、触媒粉砕などのコ ストを低減することができる。  A method for synthesizing an iron-based catalyst such as the ammonia / iron precipitation method (AWIP method) has been developed as a method for increasing the activation by making the particle diameter of the iron-based catalyst extremely small. In the AW IP method, iron sulfate reacts with ammonia, oxygen, carbonic acid, and the like in an aqueous solution in the presence or absence of coal to precipitate iron hydroxide, iron oxyhydroxide, iron carbonate, and the like. It produces a catalyst component (catalyst precursor) of up to several tens of nanometers. In the presence of coal, the generated catalyst component is highly dispersed and adheres to the coal surface, and as a result, a highly active catalytic effect can be obtained with a small amount of catalyst, and the cost of catalyst pulverization etc. is reduced. Can be.
触媒成分生成/分散化工程で得られた水性反応液中の触媒成分は次の脱水/乾 燥工程において乾燥体として分離取得し、 原料炭、溶融硫黄 (助触媒) などと共 にスラリ一状で液化反応工程に供給し、 水素ガスを吹き込みながら液化反応を行 わせるものである。  The catalyst component in the aqueous reaction solution obtained in the catalyst component generation / dispersion process is separated and obtained as a dried product in the next dehydration / drying process, and is formed into a slurry with coking coal, molten sulfur (promoter), etc. The liquid is supplied to the liquefaction reaction step, and the liquefaction reaction is performed while blowing hydrogen gas.
しかしながら、 商業的な大規模石炭液化プロセスにおいては、 水溶液中 (湿式) で石炭に触媒成分 (触媒前駆体) を高度に分散させて付着させる方法は、 触媒付 着炭の脱水 ·乾燥工程の設備 ·運転コストおよび装置規模が過大となり、 また触 媒生成装置も大きくなって、 その設備及び運転コストが大きくなるという欠点が める。  However, in a commercial large-scale coal liquefaction process, the method of highly dispersing and attaching the catalyst component (catalyst precursor) to coal in an aqueous solution (wet process) is based on the equipment for dehydration and drying of the catalyzed coal. · The operating cost and the scale of the equipment are too large, and the catalyst generation equipment is also large, which leads to the disadvantage that the equipment and operating costs are increased.
また、 石炭が存在しない条件下でこの触媒成分 (触媒前駆体) を生成し、 単離 触媒として取り出す方法は、 設備及び運転コストは小さくなるメリットはあるが、. 触媒活性の面からは、 元々の非常に微細な触媒成分 (触媒前駆体) が二次凝集を 起こして、数ミクロン程度の粒径となるため、 前記の石炭存在下の場合ほど高活 性が得られないという欠点がある。  Also, the method of producing this catalyst component (catalyst precursor) under conditions where no coal is present and extracting it as an isolated catalyst has the advantage of reducing equipment and operating costs, but from the viewpoint of catalyst activity, Since the very fine catalyst component (catalyst precursor) of this type undergoes secondary agglomeration and has a particle size of about several microns, there is a drawback that high activity cannot be obtained as in the case of the above-mentioned presence of coal.
一方、 特開平 3— 1 3 1 6 8 3号公報には鉄系触媒を高分散させて触媒活性を 高める方法として、石炭を溶剤 (油) および鉄系触媒と共に機械的に湿式粉砕し てスラリー化し、 これに溶融状態の硫黄を添カ卩し、混合して水素添カ卩して石炭の 液化を行なう方法を開示している。 On the other hand, Japanese Patent Application Laid-Open No. 3-131683 discloses a method of increasing the catalytic activity by highly dispersing an iron-based catalyst by mechanically wet pulverizing coal with a solvent (oil) and an iron-based catalyst. It discloses a method of liquefying coal by slurries, adding sulfur in a molten state to the slurry, mixing and hydrogenating the mixture.
また特開平 1 1 - 7 6 8 2 3号公報には、平均 2 0ミクロン以下に粉碎した粉 砕石炭と解砕鉄化合物とを、 重量比で 1 / 3〜 3で合計重量が全体の 6 0〜 4 0 重量%であって、残部のオイル中に分散、 保持されたスラリー触媒を開示し、前 記鉄化合物として硫化鉄を例示している。  Japanese Patent Application Laid-Open No. 11-76883 discloses that a pulverized coal and a pulverized iron compound, which are pulverized to an average of 20 microns or less, are 1/3 to 3 by weight and the total weight is 6%. A slurry catalyst of 0 to 40% by weight, which is dispersed and held in the remaining oil, is disclosed, and iron sulfide is exemplified as the iron compound.
しかしながら、 これらの特開平 3— 1 3 1 6 8 3号公報および特開平 1 1— 7 6 8 2 3号公報に記載の方法は、硫化鉄 (パイライト) 、 7_酸化鉄、 ォキシ水酸 化鉄など疎油性の無機成分を主成分とする鉄系触媒 (単離触媒) が疎油姓である ため、 有機溶剤 (油) 中で石炭と共に湿式粉砕する方法では濡れ性がよくないた め、 非常に小さい粒径に微細化して、 溶剤 (油) 中で高分散化することには限界 があり、 飛躍的な高活性化を得ることは困難である。  However, these methods described in JP-A-3-131633 and JP-A-11-76883 disclose iron sulfide (pyrite), 7_iron oxide, and oxyhydroxide. Since iron-based catalysts (isolated catalysts) mainly composed of oleophobic inorganic components such as iron are oleophobic, wet-grinding with coal in an organic solvent (oil) has poor wettability. There is a limit to achieving a very small particle size and high dispersion in a solvent (oil), and it is difficult to achieve dramatic high activation.
発明の開示  Disclosure of the invention
本発明の目的は、 従来の鉄系触媒に関する技術上の上記欠点を全て解決し、 低 コスト且つ飛躍的に高活性化した石炭液化高活性化触媒の製造方法を提供するこ とにある。  SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a highly activated catalyst for coal liquefaction that solves all of the above-mentioned technical disadvantages related to conventional iron-based catalysts and that has been dramatically activated at a low cost.
上記目的を達成するための本発明の石炭液化高活性化触媒の製造方法は、触媒 成分生成工程、脱水.乾燥工程、 および触媒活性化工程からなり、 前記触媒成分 生成工程は、 硫酸第一鉄とアンモニアとを水溶液中で反応させて水酸化鉄を生成 させる工程からなり、前記脱水 ·乾燥工程は、 生成した前記水酸化鉄を脱水 ·乾 燥させる工程からなり、前記触媒活性化工程は、前記脱水.乾燥させた水酸化鉄 を液化原料の石炭の一部と共に、乾式粉砕機中で粉砕することにより、前記水酸 化鉄を微粉状にして石炭表面に高度に分散させて付着させるものである。  In order to achieve the above object, a method for producing a highly activated coal liquefaction catalyst of the present invention comprises a catalyst component generation step, a dehydration / drying step, and a catalyst activation step, wherein the catalyst component generation step comprises ferrous sulfate. And ammonia in an aqueous solution to produce iron hydroxide, wherein the dehydration / drying step comprises a step of dehydrating / drying the produced iron hydroxide, and the catalyst activation step comprises: The above-mentioned dehydration.The dried iron hydroxide is pulverized in a dry pulverizer together with a part of the coal as a liquefied raw material, whereby the iron hydroxide is made into a fine powder to be highly dispersed and adhered to the coal surface. It is.
前記触媒成分生成工程は、 反応系全体が均一状態を保つように反応液を攪拌す ることが好ましい。 水酸化鉄 1モルを得るのに必要なァンモニァ量は、鉄の 1 . 6倍モル以上である。 また反応温度は、一般に 2 0〜 8 0 °C、好ましくは 4 0〜 6 0 °C程度である。  In the catalyst component generation step, it is preferable to stir the reaction solution so that the entire reaction system remains uniform. The amount of ammonia required to obtain one mole of iron hydroxide is at least 1.6 times the mole of iron. The reaction temperature is generally about 20 to 80 ° C, preferably about 40 to 60 ° C.
前記脱水/乾燥工程に使用する手段は特に限定はないが、脱水方法は、減圧ろ 過機などを使用することができる。 また乾燥は、 この後の触媒活性ィ匕工程 (乾式 粉砕工程) において、粉砕時に発生する熱で触媒の乾燥が行われるため、完全乾 燥状態とする必要はなく、 水分 7 5 %以下、好ましくは 3 0 %以下まで脱水/乾 燥すればよい。 採用し得る乾燥手段としては、 スラリードライヤ一などを挙げる ことができる。 The means used in the dehydration / drying step is not particularly limited, but the dehydration method may be a vacuum filter or the like. In addition, drying is performed in the subsequent catalyst activation step (dry type). In the pulverization step), since the catalyst is dried by the heat generated during the pulverization, it is not necessary to completely dry the catalyst, and the dehydration / drying may be performed to a water content of 75% or less, preferably 30% or less. Examples of drying means that can be employed include a slurry dryer.
前記触媒成分生成工程において、硫酸第一鉄とアンモニアとを反応させる際に、 前記水溶液に酸素又は酸素含有ガスを吹き込みながら硫酸第一鉄とアンモニアと を反応させると、水酸化鉄と共にォキシ水酸化鉄を生成させることができる。 ま た、 酸素含有ガスとして空気を使用することができる。  In the catalyst component producing step, when reacting ferrous sulfate with ammonia, the ferrous sulfate reacts with ammonia while blowing oxygen or an oxygen-containing gas into the aqueous solution. Iron can be generated. In addition, air can be used as the oxygen-containing gas.
前記触媒成分生成工程で使用するアンモニアの供給源には特に限定はないが、 石炭液化反応によつて副生するァンモユアを溶解するプロセス排水を使用するこ とができる。 このようにするとプロセス排水中に溶存する副生炭酸ィォンから触 媒成分である炭酸鉄を生成させることができる。  Although there is no particular limitation on the supply source of ammonia used in the catalyst component producing step, process wastewater that dissolves by-products produced by the coal liquefaction reaction can be used. In this manner, iron carbonate, which is a catalyst component, can be generated from the by-product carbon dioxide dissolved in the process wastewater.
触媒活性化工程は実質的には乾式粉砕工程であり、使用しうる粉砕機は、 乾式 の微粉砕可能な粉砕手段であること以外に特に限定はないが、粉砕中に触媒成分 と石炭とがー定時間、 例えば 5〜1 8 0分、好ましくは 1 0〜6 0分程度接触し ながら共粉砕されることが好ましく、 ボ一ルミルの使用が好ましい。 また乾式粉 砕工程で、粉砕時に発生する熱で触媒および石炭の乾燥も同時に行われる。  The catalyst activation step is essentially a dry pulverization step, and the pulverizer that can be used is not particularly limited except that it is a pulverization means capable of dry pulverization. Co-milling is preferably carried out for a fixed time, for example, about 5 to 180 minutes, preferably about 10 to 60 minutes, and a ball mill is preferably used. Also, in the dry pulverization process, the catalyst and coal are simultaneously dried by the heat generated during the pulverization.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明の一実施の形態による石炭液化高活性触媒の製造工程および石 炭液化工程の概要を説明するための工程図である。  FIG. 1 is a process diagram for explaining an outline of a production process of a highly active coal liquefaction catalyst and a coal liquefaction process according to an embodiment of the present invention.
図 2は、 図 1の液化反応工程 5の詳細を示す流通式小型液化試験装置のフロー シート図である。  FIG. 2 is a flow sheet diagram of a flow-type small liquefaction test apparatus showing details of the liquefaction reaction step 5 in FIG.
図 3は、従来の鉄系石炭液化触媒を使用して石炭液化を行なう比較例による石 炭液化工程の概要を説明するための工程図である。  FIG. 3 is a process diagram for explaining an outline of a coal liquefaction process according to a comparative example in which coal liquefaction is performed using a conventional iron-based coal liquefaction catalyst.
図 4は、 図 1に示す本発明の実施の形態による全オイル収率を図 3に示す比較 例の全オイル収率と比較したグラフ図である。  FIG. 4 is a graph comparing the total oil yield according to the embodiment of the present invention shown in FIG. 1 with the total oil yield of the comparative example shown in FIG.
図 5は、 図 1に示す本発明の実施の形態による水素消費量を図 3に示す比較例 の水素消費量と比較したグラフ図である。  FIG. 5 is a graph comparing the hydrogen consumption according to the embodiment of the present invention shown in FIG. 1 with the hydrogen consumption of the comparative example shown in FIG.
図 6は、 図 1に示す本発明の実施の形態による軽■中質油収率を図 1に示す比 較例の軽 ·中質油収率と比較したグラフ図である。 FIG. 6 shows light and medium oil yields according to the embodiment of the present invention shown in FIG. FIG. 5 is a graph comparing with light and medium oil yields of a comparative example.
図 7は、 図 1に示す本発明の実施の形態によるガス生成率を図 1に示す比較例 のガス生成率とを比較したグラフ図である。  FIG. 7 is a graph comparing the gas generation rate according to the embodiment of the present invention shown in FIG. 1 with the gas generation rate of the comparative example shown in FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本明細書に添付する図面を参照する一実施の形態を示して本発明を具体的に説 明する。  The present invention will be specifically described by showing one embodiment with reference to the drawings attached to this specification.
本実施の形態の石炭液化高活性触媒 (以下単に高活性触媒又は M A触媒という) の製造および触媒性能試験を、 図 1に示す工程により実施した。 即ち、 MA触媒 製造工程は、触媒成分生成工程 1、 脱水/乾燥工程 2および活性化工程 3からな るものである。 得られた微粉炭に担持された触媒 (図示せず) の触媒性能試験は、 石炭液化反応試験により行い、 そのため前記 MA触媒製造工程の後に液化反応ェ 程 5 (図 1 ) を設けた。  The production of a highly active catalyst for coal liquefaction (hereinafter simply referred to as a highly active catalyst or a MA catalyst) and a catalyst performance test of the present embodiment were carried out by the steps shown in FIG. That is, the MA catalyst production process comprises a catalyst component generation process 1, a dehydration / drying process 2, and an activation process 3. The catalytic performance test of the catalyst (not shown) supported on the obtained pulverized coal was performed by a coal liquefaction reaction test. Therefore, a liquefaction reaction step 5 (FIG. 1) was provided after the MA catalyst production process.
触媒成分生成工程 1に使用した装置は、 攪拌機と空気散気装置とが付属する 2 リットル容量の回分式反応器である。 なお図 1に脱水/乾燥工程 2及び活性化工 程 3を枠で囲み、 供給する石炭の一部 (全量の X %) をこの囲みに供給するよう に記載したのは、脱水/乾燥工程 2及び活性化工程 3を一つの工程と見なすよう に装置を構成する場合があること、 および、 活性化に用いる石炭は液化反応に用 \、る全体の石炭の一部分であること、 を示すものである。  The equipment used in the catalyst component generation step 1 is a 2-liter batch reactor equipped with a stirrer and air diffuser. In Fig. 1, the dewatering / drying process 2 and the activation process 3 are enclosed by a frame, and a part of the supplied coal (X% of the total amount) is supplied in this box. In some cases, the system is configured so that the activation step 3 is regarded as one step, and that the coal used for activation is part of the entire coal used for the liquefaction reaction. .
本実施の形態において、 触媒成分生成工程 1に供給する触媒原料には、 硫酸第 一鉄 (FeS04)の外に空気 (酸素含有ガス) を使用し、 また触媒成分の生成に必要 なアンモニア (NH. は、液化反応工程 5で副生するプロセス排水を使用した。 液 化反応に使用した石炭に神華炭を使用した際のプロセス排水の分析結果を表 1に示 す。 表 1 In this embodiment, the catalyst material supplied to the catalyst component generation step 1, the monoferric (FeS0 4) of outside using air (oxygen-containing gas), also ammonia required to generate the catalyst components sulfate ( NH. Used process wastewater produced as a byproduct in liquefaction reaction step 5. Table 1 shows the analysis results of process wastewater when Shenhua coal was used as the coal used in the liquefaction reaction. table 1
石炭液化プロセス排水の分析例  Analysis example of coal liquefaction process wastewater
Figure imgf000008_0001
Figure imgf000008_0001
表 1はプロセス排水中に触媒成分生成に必要なアンモニア量を多く含むことを 示し、 プロセス排水量と、 その N H 4 濃度、 石炭液化での触媒添加量 (F e量) のバランスから自給できることが分かる。 またプロセス排水中には前記ァン乇ニ ァの外に、触媒成分を生成することができる炭酸根 (C03)が含まれていることが 分かる。 Table 1 shows that the process wastewater contains a large amount of ammonia necessary for the production of catalyst components.It can be seen from the balance between the process wastewater amount, its NH 4 concentration, and the amount of catalyst added (Fe amount) in coal liquefaction that it is self-sufficient. . Also in the process wastewater to the outside of the § down乇Ni §, it can be seen that carbonate groups capable of producing a catalyst component (C0 3) is included.
脱水/乾燥工程 2は、反応水溶液中で析出した水酸化鉄、 ォキシ水酸化鉄、 炭 酸鉄などの触媒成分を反応液から取り出し (即ち脱水) 、 乾燥させる工程であり、 前記脱水は、減圧ろ過機によって行い。 また乾燥は、真空乾燥器によって行なつ 触媒担体を石炭粒子上に高分散状態で付着させるには、 前記のとおり分 7 5 % 以下、 好ましくは 3 0 %以下まで脱水/乾燥させるが、 使用する石炭も同様に水 分 7 5 %以下、 好ましくは 3 0 %以下まで脱水/乾燥させるのがよい。  The dehydration / drying step 2 is a step of removing (ie, dehydrating) a catalyst component such as iron hydroxide, iron oxyhydroxide, and iron carbonate precipitated in the reaction aqueous solution from the reaction liquid, and drying. Performed by filtration machine. Drying is performed by a vacuum dryer.In order to attach the catalyst carrier to the coal particles in a highly dispersed state, the material is dewatered / dried to 75% or less, preferably 30% or less as described above. Similarly, coal is preferably dewatered / dried to a water content of 75% or less, preferably 30% or less.
活性化工程 3は、 乾式粉砕工程であり、 高度に分散した触媒成分が表面に付着 した石炭の粒径を例えば平均粒径 3 0〜4 0ミクロン (マイクロメ一夕) 程度と なるように工程管理した。 なお、触媒成分は、 脱水/乾燥工程 2で 2次的に凝集 するので、 触媒成分も解砕する必要がある。 そこで活性化工程 3では、 石炭と触 媒成分との両方を粉砕し、 両者を混合することにより石炭表面に触媒成分を十分 に、 且つ高度に分散させて付着させるため、 5〜 1 8 0分、好ましくは 1 0〜6 0分程度の間、粉砕域に滞留させることが好ましい。 その点ボールミルは、 好ま しい乾式粉砕機である。 また活性化工程 (乾式粉砕工程) 3では、粉砕時に発生 する熱で触媒と石炭との乾燥も同時に一部行なわれる。  The activation step 3 is a dry pulverization step in which the particle size of the coal on which the highly dispersed catalyst components adhere is, for example, an average particle size of about 30 to 40 microns (micrometer). did. Since the catalyst component is secondarily aggregated in the dehydration / drying step 2, the catalyst component also needs to be crushed. Therefore, in the activation step 3, both the coal and the catalyst component are pulverized, and the two components are mixed to sufficiently disperse and highly disperse the catalyst component on the coal surface so that the catalyst component adheres to the surface for 5 to 180 minutes. It is preferable to stay in the pulverizing zone for preferably about 10 to 60 minutes. In that regard, ball mills are the preferred dry mill. In the activation step (dry pulverization step) 3, the heat generated during the pulverization also partially dries the catalyst and coal.
活性ィ匕に用いる石炭の割合は、液化する石炭全体の 1〜 4 0 %、好ましくは 3 〜1 5%程度であり、 また触媒量は、 鉄 (Fe) 基準で液化する石炭全体 (daf (dry ash free)基準、即ち純炭基準) 当たり 0. 05〜 1. 5 wt%、好ましくは 0. 2〜0. 6wt%になる量とする。 The proportion of coal used for the activation is 1 to 40% of the total coal to be liquefied, preferably 3%. The amount of the catalyst is 0.05 to 1.5 wt%, preferably 0.05 to 1.5 wt%, based on the total coal (daf (dry ash free) standard, ie, pure coal standard) liquefied on an iron (Fe) basis. The amount should be 0.2 to 0.6 wt%.
なお前記活性化に使用する石炭の割合および触媒量は、 編己のとおりであるが、 液化する石炭の組成、 性状により異なるので、 液化する石炭原料に応じて最適値 を選ぶ必要がある。 したがって前記一般的基準を参考に、実際に即して決定する こと力好ましい。  The ratio of the coal used for the activation and the amount of the catalyst are as described in the section, but they vary depending on the composition and properties of the coal to be liquefied. Therefore, it is necessary to select an optimum value according to the coal raw material to be liquefied. Therefore, it is preferable to make a practical decision with reference to the above general criteria.
活性化された触媒付着炭は、粉砕機から取り出した後スラリー調整槽 (図示せ ず) において、 溶剤 (石炭液化油から回収した循環溶剤を使用することができる) 、 活性化に使用しなかった大部分の液化原料石炭、 必要に応じ助触媒の硫黄 (S) と混合し、 スラリー状とする。 ここで、 石炭は元々親油性であるため、 溶剤 (油) 中に容易に高分散し、 したがって石炭表面に高分散化された触媒もスラリ一中で 高分散化されるため、 高活性な触媒性能が、 その後の液化反応工程で得られる。  After the activated catalyst-adhered coal was removed from the crusher, it was not used for activation in a slurry adjusting tank (not shown) in which a solvent (a circulating solvent recovered from coal liquefied oil could be used) and activation. Most of the liquefied coal is mixed with co-catalyst sulfur (S) if necessary to form a slurry. Here, since coal is originally lipophilic, it is easily dispersed in a solvent (oil) easily. Therefore, the catalyst highly dispersed on the coal surface is also highly dispersed in the slurry. Performance is obtained in a subsequent liquefaction reaction step.
(実施例)  (Example)
液化反応工程 5に使用した反応器には、 0. 0 1 トン/日容量の流通式小型液 化試験装置を使用した。 使用した流通式小型液化試験装置の概要を図 2に示す。 なお、 図 2に示す符号 C 1は水素ガス圧縮機、 GM 1は湿式ガスメータ一、 H 1 はスラリー予熱器、 RCはロードセル、 LTV 1と LTV2とは圧力解除弁、 N R 1とNR2とは逆止弁、 nV lおよび nV2はニードル弁、 P 1はスラリー循 環ポンプ、 P 2は高圧スラリー定量ポンプ、 PCV 1と PCV2とは圧力調整弁、 R 1は反応器、 V 1はスラリ一計量槽、 V 2は蓄圧器、 V 3は高温気液分離器、 V 4は粗油受槽、 V 5は低温気液分離器、 V 6はミスト分離器である。  The reactor used in the liquefaction reaction step 5 was a flow-through small-scale liquefaction tester with a capacity of 0.01 ton / day. Fig. 2 shows an outline of the flow-type small liquefaction test equipment used. In Fig. 2, C1 is a hydrogen gas compressor, GM1 is a wet gas meter, H1 is a slurry preheater, RC is a load cell, LTV1 and LTV2 are pressure release valves, and NR1 and NR2 are reverse. Stop valves, nVl and nV2 are needle valves, P1 is a slurry circulation pump, P2 is a high-pressure slurry metering pump, PCV1 and PCV2 are pressure regulating valves, R1 is a reactor, and V1 is a slurry measuring tank. , V2 is an accumulator, V3 is a high-temperature gas-liquid separator, V4 is a crude oil receiving tank, V5 is a low-temperature gas-liquid separator, and V6 is a mist separator.
スラリ一供給量は高圧スラリ一定量ポンプ P 2により調整し、 水素ガスは水素 ガス圧縮機 C 1と図示しない流量調整弁とを連動させて水素供給量を調整してい る。 ニードル弁 n V 1および n V 2は液体を少量ずつ抜き出すのに使用する。 こ の流通式小型液化試験装置は連続反応装置として使用するように設計されている。 本実施の形態で使用した液化反応条件の主なものを表 2に示す。 表 2 The amount of slurry supplied is adjusted by a high-pressure slurry constant-volume pump P2, and the amount of hydrogen gas is adjusted by interlocking the hydrogen gas compressor C1 and a flow control valve (not shown). Needle valves nV1 and nV2 are used to withdraw liquid little by little. This small flow liquefaction test device is designed to be used as a continuous reactor. Table 2 shows the main liquefaction reaction conditions used in the present embodiment. Table 2
小型流通式液化試験装置の試験条件  Test conditions for small flow liquefaction test equipment
Figure imgf000010_0001
Figure imgf000010_0001
c比較例:]  c Comparative example:]
比較例として従来の石炭存在下のアンモニア/鉄沈殿法 (AW I P法)による 触媒、従来の天然パイライト触媒 (N . P . 触媒) および従来の単離触媒による 石炭液化試験を行なった。  As comparative examples, coal liquefaction tests were performed using a conventional catalyst using the ammonia / iron precipitation method (AWIP method) in the presence of coal, a conventional natural pyrite catalyst (NP catalyst), and a conventional isolated catalyst.
図 3において、 AW I P法による触媒での石炭液化試験は、 触媒成分生成/分 散化工程 1 0、 脱水/乾燥工程 1 1および液化反応工程 1 2からなる。 触媒成分 生成/分散化工程 1 0には、触媒原料として硫酸鉄、 触媒担体として石炭、 およ びァンモニァ成分として液化反応工程 1 2で副生されるアンモニア水 (図示せず) を供給し、水溶液中で攪拌下に固形分を微粉砕しながら硫酸鉄とァンモユアとを 反応させ、石炭表面に生成する水酸化鉄を高分散させた触媒成分 (粒径が数〜数 十ナノミクロンからなる触媒前駆体:図示せず) を生成させるようにした。  In FIG. 3, the coal liquefaction test using the catalyst by the AWIP method includes a catalyst component generation / dispersion step 10, a dehydration / drying step 11, and a liquefaction reaction step 12. The catalyst component production / dispersion step 10 is supplied with iron sulfate as a catalyst raw material, coal as a catalyst carrier, and ammonia water (not shown) by-produced in the liquefaction reaction step 12 as an ammonia component. A catalyst component in which iron sulfate is reacted with angmoyea while finely pulverizing the solid content in an aqueous solution with stirring, and the iron hydroxide generated on the coal surface is highly dispersed (catalyst with a particle size of several to several tens of nanometers). (Precursor: not shown).
単離触媒は、前記 M A触媒の触媒生成工程 1と脱水/乾燥工程 2と同一条件で 製造した。 また、天然パイライトは数/ m以下まで微粉砕したものを用い、 表 2 に示す反応条件とそれぞれ同様の反応条件で石炭液化試験を行なつた。  The isolated catalyst was produced under the same conditions as in the catalyst production step 1 and the dehydration / drying step 2 of the MA catalyst. Using natural pyrite finely pulverized to several m or less, a coal liquefaction test was conducted under the same reaction conditions as those shown in Table 2.
前記実施の形態の石炭液化試験結果と比較例の石炭液化試験結果とを、全オイ ル収率 (図 4 ) 、水素消費量 (図 5 ) 、軽 ·中質油収率 (図 6 ) およびガス生成 率 (図 7 ) について比較した。  The results of the coal liquefaction test of the above embodiment and the results of the coal liquefaction test of the comparative example were calculated based on the total oil yield (FIG. 4), hydrogen consumption (FIG. 5), light and medium oil yield (FIG. 6), and The gas generation rates (Fig. 7) were compared.
図 4〜 7に示す結果から、本実施の形態の MA触媒は、 触媒活性が天然パイラ イト触媒 (N. P . 触媒) や、単離触媒に比較して少量で格段に高活性であり、 また AW I P触媒と比較しても、 より高い活性が得られることが分かる。 なお図 4および 5に示す触媒添加量 (w t %) は F e + Sの合計量を示しており、 MA 触媒、 AW I P触媒、 単離触媒では、 F e / Sの原子比は 1 . 5である。 From the results shown in Figs. 4 to 7, the MA catalyst of the present embodiment has significantly higher catalytic activity in a small amount than the natural pyrolyte catalyst (NP catalyst) or the isolated catalyst. Also, it can be seen that higher activity can be obtained compared with the AW IP catalyst. The catalyst addition amount (wt%) shown in Figs. 4 and 5 indicates the total amount of Fe + S, For catalysts, AW IP catalysts and isolated catalysts, the atomic ratio of Fe / S is 1.5.
即ち、 MA触媒は、 オイル収率 (図 4 ) 、特に軽 ·中質油分の収率が高く (図 In other words, the MA catalyst has a high oil yield (Fig. 4), especially the yield of light and medium oils (Fig. 4).
6 ) 、 水素消費量が多くて (図 5 ) 水素がより選択的に軽 ·中質油分の生成に利 用されていることが分かる。 またガス生成率 (図 7 ) は、 MA触媒が他の触媒よ り低く、石炭液化の経済性向上に大きく貢献しうることが認められ、本発明の M6) High hydrogen consumption (Fig. 5) indicates that hydrogen is more selectively used for the production of light and medium oils. The gas production rate (Fig. 7) is lower for the MA catalyst than for the other catalysts, and it is recognized that the MA catalyst can greatly contribute to improving the economics of coal liquefaction.
A触媒が、今までの鉄系触媒の中で、 特に優れた石炭液化高活性触媒であること が明らかである。 It is clear that A-catalyst is the most active catalyst for coal liquefaction among iron-based catalysts so far.
産業上の利用可能性  Industrial applicability
以上説明したように本発明の石炭液化高活性触媒の製造方法は、 水酸化鉄、 ォ キシ酸化鉄、 炭酸鉄などの疎油性触媒成分を、単離触媒として生成、脱水、乾燥 し、 触媒を担持するため液化原料の石炭の一部と共に乾式粉砕機により一定時間 滞留させて共粉砕し、微粉炭上に前記単離触媒を高分散化して担持させた触媒を 得られるようにしたので、 石炭液化の全オイル収率、水素消費量、軽 ·中質油収 率、 ガス生成率のいずれにおいてもアンモニア/鉄沈殿法 ( AW I P法) などの 従来の触媒に対して格段に優れた石炭液化特性が得られる。  As described above, the method for producing a highly active coal liquefaction catalyst of the present invention comprises producing, dehydrating, and drying an oleophobic catalyst component such as iron hydroxide, iron oxide oxide, or iron carbonate as an isolated catalyst, and drying the catalyst. A portion of the coal as a liquefied raw material was co-ground with a portion of the coal as a liquefied raw material by a dry pulverizer for a certain period of time, and the isolated catalyst was highly dispersed on pulverized coal to obtain a supported catalyst. Coal liquefaction that is far superior to conventional catalysts such as the ammonia / iron precipitation method (AW IP method) in all liquefaction oil yields, hydrogen consumption, light and medium oil yields, and gas generation rates Characteristics are obtained.

Claims

言青求の範囲 Scope of Word
1 . 触媒成分生成工程、 脱水 '乾燥工程、 および触媒活性化工程からなり、前 記触媒成分生成工程は、硫酸第一鉄とアンモニアとを水溶液中で反応させて水酸 化鉄を生成させる工程からなり、 前記脱水 ·乾燥工程は、 生成した前記水酸化鉄 を脱水 .乾燥させる工程からなり、前記触媒活性化工程は、前記脱水 .乾燥させ た水酸化鉄を液化原料の石炭の一部と共に、乾式粉砕機中で粉砕することにより、 前記水酸化鉄を微粉状にして石炭表面に高度に分散させて付着させることからな る石炭液化高活性触媒の製造方法。 1. It consists of a catalyst component generation step, dehydration and drying step, and a catalyst activation step. The catalyst component generation step is a step in which ferrous sulfate and ammonia are reacted in an aqueous solution to generate iron hydroxide. The dehydration / drying step comprises a step of dehydrating and drying the produced iron hydroxide, and the catalyst activating step comprises the step of dehydrating and drying the iron hydroxide together with a part of coal as a liquefaction raw material. A method for producing a highly active catalyst for coal liquefaction, comprising pulverizing in a dry pulverizer to make the iron hydroxide into a fine powder and highly disperse and adhere to the coal surface.
2 . 前記触媒成分生成工程において、前記水溶液に酸素又は酸素含有ガスを吹 き込みながら、 硫酸第一鉄とアンモニアとを反応させ、反応生成物として水酸化 鉄と共にォキシ水酸化鉄を生成させるようにした請求項 1記載の石炭液化高活性 触媒の製造方法。  2. In the catalyst component producing step, ferrous sulfate and ammonia are reacted while blowing oxygen or an oxygen-containing gas into the aqueous solution to produce oxyiron hydroxide with iron hydroxide as a reaction product. The method for producing a highly active coal liquefaction catalyst according to claim 1, wherein
3 . 前記触媒成分生成工程で使用するアンモニアの供給源として、 石炭液化反 応によって副生するアンモニアを溶解するプロセス排水を使用する請求項:!〜 2 のいずれかに記載の石炭液化高活性触媒の製造方法。  3. A process wastewater that dissolves ammonia by-produced by the coal liquefaction reaction is used as a supply source of ammonia used in the catalyst component generation step. 3. The method for producing a highly active coal liquefaction catalyst according to any one of claims 1 to 2.
4 . 前記触媒活性化工程における前記乾式粉砕機にボールミルを使用する請求 項 1〜 3のいずれかに記載の石炭液化高活性触媒の製造方法。  4. The method for producing a highly active coal liquefaction catalyst according to any one of claims 1 to 3, wherein a ball mill is used as the dry mill in the catalyst activation step.
PCT/JP2004/000758 2003-02-03 2004-01-28 Method for preparing highly active catalyst for coal liquefaction WO2004069405A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-025720 2003-02-03
JP2003025720A JP4149280B2 (en) 2003-02-03 2003-02-03 Method for producing coal liquefied highly active catalyst

Publications (1)

Publication Number Publication Date
WO2004069405A1 true WO2004069405A1 (en) 2004-08-19

Family

ID=32844114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000758 WO2004069405A1 (en) 2003-02-03 2004-01-28 Method for preparing highly active catalyst for coal liquefaction

Country Status (3)

Country Link
JP (1) JP4149280B2 (en)
CN (1) CN100361743C (en)
WO (1) WO2004069405A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108970614A (en) * 2018-08-01 2018-12-11 国家能源投资集团有限责任公司 Fe-series catalyst, preparation method and application

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101302455B (en) * 2008-05-22 2012-06-20 煤炭科学研究总院 Method for plasticizing lower-grade metamorphic bituminous
CN105363450B (en) * 2014-09-01 2018-01-19 中科合成油技术有限公司 A kind of ferrum-based catalyst of carbon raw material hydrogenation liquefaction and its preparation method and application
CN105233829B (en) * 2015-11-18 2017-11-21 陕西延长石油(集团)有限责任公司 A kind of iron slag prepares the method and its application of hydrocracking catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131683A (en) * 1989-10-16 1991-06-05 Nippon Katsutan Ekika Kk Liquefaction of coal
JPH0699071A (en) * 1992-09-18 1994-04-12 Nippon Koole Oil Kk Catalyst for hydrogenation liquefaction of coal
AU8171094A (en) * 1994-01-13 1995-09-28 New Energy And Industrial Technology Development Organization Process of coal liquefaction
JPH0867880A (en) * 1994-08-29 1996-03-12 Agency Of Ind Science & Technol Liquefaction of coal using impregnation type iron catalyst
JP2000254509A (en) * 1999-03-05 2000-09-19 Mitsui Eng & Shipbuild Co Ltd Production of iron hydroxide type coal liquefying catalyst composition
JP2002018287A (en) * 2000-07-06 2002-01-22 Mitsui Eng & Shipbuild Co Ltd Iron hydroxide type coal liquefying catalyst composition and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981456B2 (en) * 1998-02-16 2007-09-26 三井造船株式会社 Method for producing coal liquefaction catalyst
CN1072703C (en) * 1998-07-20 2001-10-10 中国科学院山西煤炭化学研究所 Method for direct liquefaction of coal using FeSOX as presoma of catalyst therefor
CN1109734C (en) * 1999-03-19 2003-05-28 煤炭科学研究总院北京煤化学研究所 Preparation of pulpous state highly-dispersed iron-base coal liquidation catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131683A (en) * 1989-10-16 1991-06-05 Nippon Katsutan Ekika Kk Liquefaction of coal
JPH0699071A (en) * 1992-09-18 1994-04-12 Nippon Koole Oil Kk Catalyst for hydrogenation liquefaction of coal
AU8171094A (en) * 1994-01-13 1995-09-28 New Energy And Industrial Technology Development Organization Process of coal liquefaction
JPH0867880A (en) * 1994-08-29 1996-03-12 Agency Of Ind Science & Technol Liquefaction of coal using impregnation type iron catalyst
JP2000254509A (en) * 1999-03-05 2000-09-19 Mitsui Eng & Shipbuild Co Ltd Production of iron hydroxide type coal liquefying catalyst composition
JP2002018287A (en) * 2000-07-06 2002-01-22 Mitsui Eng & Shipbuild Co Ltd Iron hydroxide type coal liquefying catalyst composition and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108970614A (en) * 2018-08-01 2018-12-11 国家能源投资集团有限责任公司 Fe-series catalyst, preparation method and application
CN108970614B (en) * 2018-08-01 2021-05-18 国家能源投资集团有限责任公司 Iron-based catalyst, preparation method and application thereof

Also Published As

Publication number Publication date
CN100361743C (en) 2008-01-16
JP4149280B2 (en) 2008-09-10
JP2004261635A (en) 2004-09-24
CN1744947A (en) 2006-03-08

Similar Documents

Publication Publication Date Title
CN101198411B (en) Method and process for providing a controlled batch of micrometer-sized or nanometer-sized coal material
CN102380396B (en) Bimetal or multi-metal high-dispersion composite coal tar hydrogenation catalyst and preparation method thereof
CN104096563B (en) Fe-series catalyst and preparation method thereof
JP2011105726A (en) Method and apparatus for producing useful product from carbonaceous feedstock
CN103769108A (en) Method for simultaneously preparing Fischer-tropsch iron-based catalyst and direct coal liquefaction catalyst
CN1274415C (en) Method for preparing high dispersion iron-base catalyst for coal direct liquefication
CN105312056B (en) Catalyst based on natural minerals and the gasification process using the catalyst
JPH026853A (en) Method for producing a catalyst for hydrogenation and method for hydrogenating conversion with use of the catalyst
CN104923231B (en) A kind of catalyst for coal liquefaction and its preparation method and application
CN109433210A (en) DCL/Direct coal liquefaction Fe-series catalyst and preparation method thereof
CN109762603A (en) A method of ammonia is synthesized using low-order coal multipath
WO2004069405A1 (en) Method for preparing highly active catalyst for coal liquefaction
US4657702A (en) Partial oxidation of petroleum coke
JPH02107335A (en) Hydrocracking of heavy oil in presence of petroleum coke rulting from operation of heavy oil coke
JP2001164263A (en) Method for liquefying coal
US4708819A (en) Reduction of vanadium in recycle petroleum coke
CN110055106A (en) A kind of method that low-order coal sub-prime prepares methanol and oil using Poly-generation
CN106513049B (en) A kind of heavy-oil hydrogenation nanocatalyst and its preparation method and application pressing down burnt performance with superelevation
US20200248083A1 (en) Gasification of post-consumer tires and solid fossil fuels to produce organic compounds
CN109536197B (en) Biomass liquefaction process
CN109762612A (en) A method of using waste water water-coal-slurry and passing through water-coal-slurry methanol
AU681983B2 (en) Process of coal liquefaction
CN110093174A (en) A kind of method of low-order coal hydrogen manufacturing
CN1120878C (en) Coal liquefaction process
JP2955185B2 (en) Coal liquefaction method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048033777

Country of ref document: CN

122 Ep: pct application non-entry in european phase