WO2004066379A1 - Substrate processing device - Google Patents

Substrate processing device Download PDF

Info

Publication number
WO2004066379A1
WO2004066379A1 PCT/JP2004/000147 JP2004000147W WO2004066379A1 WO 2004066379 A1 WO2004066379 A1 WO 2004066379A1 JP 2004000147 W JP2004000147 W JP 2004000147W WO 2004066379 A1 WO2004066379 A1 WO 2004066379A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processing apparatus
stage
substrate processing
axis
Prior art date
Application number
PCT/JP2004/000147
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihisa Nozawa
Satoru Kawakami
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2004066379A1 publication Critical patent/WO2004066379A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices

Definitions

  • the present invention relates to a substrate processing apparatus for performing processing such as plasma CVD (Chemical Vapor Deodorosion) or etching on a substrate such as a semiconductor wafer.
  • processing such as plasma CVD (Chemical Vapor Deodorosion) or etching on a substrate such as a semiconductor wafer.
  • a process for manufacturing a semiconductor device includes a number of processes.
  • a main process for forming a circuit pattern on a semiconductor wafer includes a cleaning process for cleaning the wafer, a metal cleaning process, and a metal cleaning process.
  • a film forming process for forming a film and an insulating film includes a photolithographic process for forming a rota pattern with photoresist, an etching process for etching a wafer on which a resist pattern is formed, and a process for implanting impurities.
  • the wafer is loaded into a vacuum chamber and the processing is performed in this chamber.
  • the configuration of such a system consists of a multi-joint robot that transfers substrates in almost the center of the champer, and units necessary to surround the multi-joint robot, such as a plasma processing unit and CVD processing. Unit, load port unit, heating unit, etc. are arranged.
  • the articulated robot is placed on a stage that can rotate in the ⁇ direction.
  • the articulated mouth pot faces each unit so that each unit can be accessed.
  • Patent Document 1 For example, see Patent Document 1).
  • Patent Literature 1 Japanese Patent Application Laid-Open No. 2000-290450 (Diagram # 003, FIG. 2).
  • the area used for the transfer system is smaller than the area corresponding to the rotation radius.
  • a substrate processing apparatus includes: a stage that can move linearly; and at least one substrate that is disposed on one side of a movement axis of the stage and that processes a substrate. Two processing chambers, and a holding unit that is disposed on the stage and holds the substrate. The holding unit moves forward and backward toward the facing processing chamber, and a space between the processing chamber and the holding unit. And a one-axis articulated robot that transfers the substrate with the robot.
  • a substrate is transferred between the processing chamber by a stage (for example, transfer in the Y direction) and a single-axis articulated robot (for example, transfer in the X direction) that can move in an S-shape without rotating.
  • a stage for example, transfer in the Y direction
  • a single-axis articulated robot for example, transfer in the X direction
  • the transfer path may be simply extended in a straight line, so that the expandability is excellent.
  • the substrate processing apparatus may further include another processing chamber disposed on two sides opposite to the one side with respect to the movement axis of the stage, wherein the single-axis multi-joint port bot is provided.
  • the holding portion is capable of moving forward and backward with respect to the processing chamber and the another processing chamber.
  • two or more processing chambers are arranged along a movement axis of the stage, and the one-axis articulated robot moves the stage.
  • Two or more along the axis are placed on the t & f stage, and the holding unit of the 1-axis articulated robot corresponding to each of the processing chambers can advance and retreat with respect to at least two adjacent processing chambers. It is characterized by being. Thereby, the throughput can be improved.
  • two or more of the processing chambers may be disposed along a movement axis of the stage, and the other processing chamber may be two or more along a movement axis of the stage.
  • each of the processing chambers, or each of the separate processing chambers The holder of the multi-joint shaft pot is capable of moving forward and backward. Thereby, the throughput can be further improved.
  • the processing chamber may process the substrate under vacuum, and the stage and the single-axis articulated robot may transfer the substrate under vacuum. This makes it possible to perform vacuum processing while reducing the footprint.
  • the substrate processing apparatus may further include a load lock chamber disposed near an end of a movement axis of the stage, and a load lock chamber disposed near the end of a movement axis of the stage, and And a cassette on which a cassette for accommodating a plurality of substrates before and after processing is placed so as to sandwich the substrate delivery mechanism between a substrate delivery mechanism for delivering a substrate by the above and a vicinity of the end of the stage movement axis. It is specially equipped with a mounting table. Thereby, the footprint can be further reduced.
  • the substrate processing apparatus includes a first drive source for moving the stage, a second drive source for driving the one-axis articulated robot, and a first and a second drive source.
  • a battery for supplying electric power to a second drive source is integrated with the stage and the single-shaft multi-joint mouth pot. Thereby, generation of particles can be suppressed as much as possible.
  • the substrate processing apparatus is characterized in that the substrate processing apparatus further includes a unit for charging the battery in a non-contact manner when the stage is stopped at a predetermined position. .
  • the substrate processing apparatus further includes a unit for charging the battery in a non-contact manner when the stage is stopped at a predetermined position. .
  • At least a control system for controlling driving of the touch stage and the one-axis articulated robot exchanges signals with a control system of the main body by wireless communication. It is characterized. As a result, generation of particles can be suppressed as much as possible.
  • a substrate processing apparatus includes: a processing chamber that processes a substrate under vacuum; a transport apparatus that transports a substrate under vacuum and transfers a substrate to and from the processing chamber; It is equipped with a battery mounted on the device, for supplying power to the transfer device, and a means for exchanging signals by wireless communication between the transfer device and the main body. Thereby, generation of particles can be suppressed as much as possible.
  • the substrate processing apparatus is characterized by further comprising a unit for charging the battery in a non-contact manner when the transfer device is stopped at a predetermined position. . Thereby, it is possible to charge the battery efficiently.
  • a substrate processing apparatus is characterized in that the transfer device is movable at least in the fiber direction. As a result, the generation of particles, which is a drawback of the direct acting type, can be minimized.
  • FIG. 1 is a plan view showing the configuration of the substrate processing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a side view showing the configuration of the substrate processing apparatus according to the first embodiment.
  • FIG. 3 is a plan view showing a configuration of a one-axis articulated robot in the substrate processing apparatus according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing a configuration of a single-shaft multi-joint mouth bot in the substrate processing apparatus according to the first embodiment.
  • FIG. 5 is a plan view showing the configuration of another one-axis articulated robot according to the present invention.
  • FIG. 6 is a plan view showing the configuration of the substrate processing apparatus according to the second embodiment of the present invention.
  • FIG. 7 is a plan view showing the configuration of the substrate processing apparatus according to the third embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating a configuration of a substrate processing apparatus according to a fourth embodiment of the present invention.
  • FIG. 9 is a plan view illustrating a configuration of a substrate processing apparatus according to a fifth embodiment of the present invention.
  • FIG. 10 is a side view showing the configuration of the substrate processing apparatus according to the fifth embodiment.
  • FIG. 11 is a block diagram showing a configuration of a control system according to the fifth embodiment.
  • FIG. 1 is a plan view showing a configuration of a substrate processing apparatus according to a first embodiment of the present invention
  • FIG. 2 is a side view thereof.
  • This substrate processing apparatus 1 is configured by arranging a cassette mounting table 2, a transfer chamber 3, and a vacuum processing unit 4 in a straight line in the Y direction in the drawing.
  • an airtight cassette 5 such as FOUP (Front Ounified Pod) for accommodating, for example, 25 Uenos and Ws arranged in multiple stages is shown in the figure. For example, two are placed side by side in the direction.
  • the transfer chamber 3 is provided with a wafer transfer body 6 composed of a multi-joint port pot and a preparation stage 7.
  • the wafer carrier 6 takes out the wafer W from the cassette 5 and transfers it to the pre-alignment stage 7.
  • the wafer W is provided in the vacuum processing unit 4 and then transferred to the load lock chamber 8. Further, the wafer carrier 6 takes out the wafer W from the load lock chamber 8 and transfers it to the cassette 5.
  • the wafer carrier 6 is rotated in the horizontal plane (direction e) by the base portion 9 and can be moved up and down by the height of the cassette 5 by the motor 10 as shown in FIG. .
  • the bri-alignment stage 7 has a function of positioning the wafer W in a horizontal plane.
  • a two-link multi-joint robot is used as the wafer carrier 6, but, for example, a one-link multi-joint robot is used according to the required stroke. May be adopted.
  • a shirt 11 that can be opened and closed up and down is provided, so that the wafer transfer body 6 can access the cassette 5. Further, a downflow of N 2 gas is formed in the transfer chamber 3 under atmospheric pressure.
  • the transfer path 12 is provided linearly along the Y direction in the figure, and one end of the transfer path 12 is adjacent to the transfer chamber 3.
  • a load lock chamber 8 On both sides of the transfer path 12, for example, a load lock chamber 8, a CVD processing unit 13, and an etching processing unit 14 are respectively arranged in the longitudinal direction along the transfer path 12 from the transfer chamber 3 side. I have.
  • the transport path 12 is surrounded by a housing 12a, and the inside of the housing 12a can be evacuated by a vacuum pump (not shown). You. ,
  • a wafer mounting table 15 on which the wafer W is mounted is provided at substantially the center of each load port chamber 8.
  • Each load lock chamber 8 is connected to the transfer chamber 3 via the gate pulp 16 and further connected to the transfer path 12 via the gate valve 17.
  • Each of the CVD processing sections 13 is connected to a transfer path 12 through a gate pulp 13a, and each of the etching processing sections 14 is connected to a transfer path 12 through a gate valve 14a.
  • the transport path 12 is provided with a main ueno and a transport body 18 movably in the Y direction. That is, the main wafer carrier 18 is provided with a stage 18a that can move linearly along the Y direction. This stage 18a is moved along the Y direction by a motor 36 along a Renore 35.
  • This drive mechanism can be constituted by, for example, a belt drive mechanism or the like.
  • On this stage 18a for example, a one-link type one-axis multi-joint robot 19 is arranged.
  • FIG. 3 is a plan view showing the configuration of the single-axis articulated robot 19, and FIG. 4 is a sectional view thereof.
  • the base 20 of the single-axis articulated robot 19 has a first arm 27 rotatably provided by a motor 19a. One end of the second arm 28 is attached to the first arm 27.
  • the support plate 29 is connected to the other end of the second arm 28, and the support plate
  • Two sets of tweezers 30 for holding Ueno and W on 29 are fixed as one set.
  • the tweezers 30 are provided with, for example, a plurality of suction pads (not shown) for holding a wedge and a wedge. .
  • the first arm 27 is provided with a pulley A fixed to the rotating shaft of the motor 19a, and the rotation of the motor is transmitted to the pulley B via the belt 31.
  • the rotation of the pulley B is transmitted to a pulley C fixed in the second arm 28 via a shaft member 32, and the rotation of the pulley C is transmitted to a pulley D via a belt 33.
  • the rotation of the pulley D is transmitted to the support plate 29 fixed to the shaft member 34 via the shaft member 34, and moves the tweezers 30 linearly (X direction).
  • the tweezers 30 can be moved back and forth in one axis direction, that is, in the X-axis direction shown in FIG. Next, the operation of the substrate processing apparatus 1 configured as described above will be described.
  • the shirt 11 is opened, the wafer carrier 6 accesses the cassette 5, and one wafer W is taken out.
  • the taken-out wafer W is carried into the pre-alignment stage 7 and pre-aligned, then taken out again by the wafer carrier 6 and carried into, for example, the load lock chamber 8.
  • the wafer carrier 6 accesses the mounting table 15 and mounts the wafer W.
  • the wafer W is mounted on the mounting table 15, and the wafers and W wait on the mounting table 15. Thereafter, the gate valve 16 is closed, and the room is evacuated by a vacuum pump (not shown). This vacuum is maintained, for example, until the pressure in the transfer path 12, the CVD processing section 13 and the etching processing section 14 becomes the same (for example, 20 Pa to 1330 Pa (about 0.1 l to 10 to 10 r)).
  • the gate pulp is opened, and the single-axis articulated robot 19 accesses the CVD processing section 13 to take out the wafer W. Further, the taken out Ueno and W are carried into the etching processing unit 14. Here, ⁇ Eno and W are etched and treated to flatten the surface of the metal film formed by the CVD process.
  • the gate valve opens, and the one-axis articulated robot 19 accesses the etching processing section 14 to take out the wafer W. Further, the taken out wafer W is put into the load lock chamber 8 and placed on the mounting table 15.
  • the gate valve 16 When the pressure in the load lock chamber 8 becomes slightly higher than the atmospheric pressure after being mounted on the mounting table 15, the gate valve 16 is opened to release the load lock chamber 8 to the atmosphere. This can prevent particles from flowing into the load lock chamber 8. Thereafter, the wafer W is taken out from the mounting table 15 in the load lock chamber 8 by the wafer carrier 6, and returned to the cassette 5.
  • the load port chamber 8 and the CVD are provided by the stage 18a that can move in a horizontal shape without rotating operation and the one-axis multi-joint robot 19 that is a transfer means. Since the wafer W is transferred between the processing unit 13 and the etching processing unit 14, the footprint can be improved.
  • the transfer path 12 may be simply extended in a straight line, so that the expansion is excellent.
  • a 1-link system has been described.
  • a 2-link 1-axis articulated robot as shown in FIG. Of course it doesn't matter.
  • FIG. 5 is a plan view showing the configuration of the two-link single-axis articulated robot.
  • a first arm 127 is rotatably provided by a motor 119a.
  • One end of the second arm 128 is connected, the other end of the second arm 128 is connected to one end of the third arm 135, and the other end of the third arm 135 is connected to the support plate 129.
  • Two tweezers 130 that are connected and hold the wafer W on the support plate 127 are fixed as one set.
  • the tweezers 130 are provided with, for example, a plurality of suction pads (not shown) for holding the wafer W.
  • This two-link single-axis articulated robot The operation of 1 19 is the same as that of the 1-link single-axis articulated robot 19 described above. As described above, since the two-link single-axis multi-joint robot 119 is provided with one more arm than the one-link single-axis multi-joint robot 119, a long stroke can be realized.
  • FIG. 6 is a plan view showing the configuration of the substrate processing apparatus according to the second embodiment of the present invention.
  • the configurations of the cassette mounting table 202 and the transport champers 203 are the same as those of the above-described embodiment, and description of these portions will be omitted.
  • This substrate processing apparatus 201 is configured by arranging a cassette mounting table 202, a transport chamber 203, and a vacuum processing unit 204 on a straight line in the Y direction in the drawing.
  • the transport path 212 is provided linearly along the Y direction in the drawing, and one end of the transport path 212 is adjacent to the transport champ 203.
  • a mouth lock chamber 208 is connected to a position adjacent to the transfer chamber 203 on both sides of the transfer path 212.
  • two wafer mounting tables 2 15 (2 15a, 2 15b) on which the wafers W are placed are arranged along the Y direction.
  • two CVD processing sections 2 13 are connected to one side of the transfer path 2 12 on the transfer path 2 12, and two CVD processing sections 2 13 on the other side are opposed to the two CVD processing sections 2 13.
  • Two etching processing sections 2 14 are connected to each other.
  • the transport path 2 1 2 can be evacuated as in the above-described embodiment.
  • two 1-axis multi-joints of the 1-link type are used.
  • Robots 219 a and 219 b are provided on the base 220.
  • the distance between the robots 2 19 a and 2 19 b is substantially the same as the distance between the mounting tables 2 15 a and 2 15 b provided in the load lock chamber 208.
  • the distance between the robots 219 a and 219 b is substantially the same as the distance between the two CVD processing parts 2 13 and the distance between the two etching processing parts 2 14. .
  • these two single-axis articulated robots 219a and 219 can carry in and out two wafers W at a time.
  • the shirt 211 is opened, the ueno and the carrier 206 access the cassette 205, and one wafer W is taken out.
  • the extracted wafers and wafers W are carried into the pre-alignment stage 207 and are subjected to the bri-alignment.
  • the wafer carrier 206 accesses the mounting table 215a of the load lock chamber 208 and mounts the first wafer W.
  • the wafer carrier 206 similarly accesses the mounting table 215b and mounts the second wafer W.
  • the two wafers, W are carried into the load lock chamber 208 by the wafer carrier 206.
  • the wafers W stand by on the mounting tables 215a and 215b, respectively. Thereafter, the gate valve 216 is closed, and the room is evacuated by a vacuum pump (not shown).
  • the gate pulp 217 is opened, and the two wafers W mounted on the mounting tables 215 a and 215 b are transferred to the single-axis articulated robot 219 (219 a, 219). ) At the same time, and are simultaneously carried into two CVD processing apparatuses 13.
  • the gate valve 213a is opened, and the single-axis articulated robots 219a and 219b access the CVD processing unit 213 to take out the two wafers W at the same time. Further, the two taken out ⁇ ⁇ / W are simultaneously carried into the etching processing unit 214.
  • the gate valve 214a opens, and the single-axis articulated robot 219 accesses the etching processing section 214 to take out the wafer W. Further, the taken-out wafer W is carried into the load lock chamber 208 and placed on the mounting tables 215a and 215b.
  • the gate valve 216 is opened to release the load lock chamber 208 to the atmosphere.
  • the two wafers W are sequentially taken out of the mounting tables 215 a and 215 b in the load lock chamber 208 by the wafer carrier 206 and returned to the cassette 205.
  • the distance between the robot 219 a and the robot 219 b is the distance between the mounting table 215 a and the mounting table 215 b, Since the spacing between 13 and the spacing between the two etching processing sections 214 are almost the same, it is possible to carry in and out two Uenos and W at a time. As a result, the throughput can be improved.
  • FIG. 7 is a diagram illustrating a configuration of a substrate processing apparatus according to a third embodiment of the present invention.
  • the same components as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted.
  • the transport path 312 is provided longer in the Y direction than the transport path 212 in FIG.
  • one CVD processing section 3 23 and two etching processing sections 3 2 4 are connected to the transport paths 3 1 2, respectively, because the length of the transfer path 3 12 is long. .
  • FIG. 8 is a sectional view showing a substrate processing apparatus according to the fourth embodiment.
  • a cover member 40 is provided on a base 20 of a one-axis articulated robot 19.
  • the force par member 40 is provided so as to cover a portion above the base 20 of the uniaxial articulated robot 19.
  • the inside of the cover member 40 is supplied with nitrogen gas from a nitrogen gas supply section 38 via a supply port 37. This nitrogen gas may be supplied, for example, all the time, or may be supplied intermittently.
  • An opening 40 a is formed in the cover member 40, and the opening 40 a can be opened and closed by a shutter 42.
  • the housing 12a for creating a vacuum region has a large number of drive units and electric cables for operating the main wafer carrier 180, and it is necessary to prevent contamination by particles generated from these. it can.
  • the main wafer carrier 180 configured as described above, for example, transfers a substrate to the load lock chamber 8, the CVD processing unit 13 and the etching processing unit 14, Open gate pulp 13a, 14a, 17 and open shirt 42 In this way, the gates norbs 13a, 14a and 17 are opened, and the substrate is transferred by the single-axis multi-joint robot 19 with the shutter 42 opened.
  • FIG. 9 is a plan view showing a configuration of a substrate processing apparatus according to the fifth embodiment, and FIG. 10 is a side view thereof.
  • the basic structure of the substrate processing apparatus according to this embodiment is almost the same as the apparatus shown in the first embodiment, and the same components are denoted by the same reference numerals.
  • an infrared transmitting / receiving element 401 is provided at a predetermined position on the main unit 400 side, for example, in the housing 12a, and similarly at a predetermined position of the main wafer carrier 18. Also, an infrared transmitting / receiving element 402 is provided. In addition, the main wafer and the transfer position of the transfer member 18 on the floor surface of the main unit 400, for example, in the housing 12 a (for example, the position where the main wafer transfer member 18 faces the load lock chamber 8). An output-side coil box 403 for performing inductive charging is arranged, and an input-side coil box 404 is arranged at a position facing the output-side coil pox 403 on the main wafer carrier 18. .
  • FIG. 11 is a diagram showing a configuration of a control system according to this embodiment.
  • the pair of transmitting / receiving elements 401, 4 described above is used.
  • the exchange of signals is performed using 02.
  • the supply of power to the main wafer carrier 18 is performed using the above-described pair of output-side coil poxes 400 and input-side coil poxes 104 without using a power supply line or the like. It has become.
  • control system 405 on the main unit 400 side includes a control unit 407 for controlling the main wafer carrier 18, etc., a transceiver 408, and the above-described infrared transmitting / receiving element 400. And a power source unit 409 for supplying power to these units via an AC power supply 414.
  • the control system 406 on the main wafer carrier 18 side includes a control unit 410 controlling a drive motor 415 based on a command from the main unit 400, and a transceiver 4. 1 1 And an infrared transmitting / receiving element 402, a battery 413 for supplying power to these units, and a unit 412 used for charging the battery 413.
  • the main unit 4 When charging the battery 4 13, the main unit 4 is placed in a state where the main wafer carrier 18 is located at the standby position and the output side coil box 400 and the input side coil box 104 face each other. 0 0 side power supply 4 0 9 ⁇ output side coil box 4 0 3 ⁇ input side coil box 4 04 ⁇ main wafer carrier 1 8 power to battery 4 13 via tortoise source 4 12 on side 8 Is supplied.
  • the inside of the enclosure 12a in a vacuum is in an environment where particles and gas are likely to float and pollute Ueno and W.
  • a control signal line and a power supply line are connected between the main device 400 and the main wafer carrier 18. The generation of such particles is remarkable when connected by.
  • control signals are exchanged between the main unit 400 and the main wafer carrier 18 using infrared rays, and the main wafer carrier is inductively charged.
  • control signals are exchanged between the main unit 400 and the main wafer carrier 18 using infrared rays.
  • signals are exchanged in a non-contact manner such as radio waves. If it does, that method can be applied to the present invention.
  • power was supplied to the main carrier 18 by inductive charging, but, for example, a terminal for power supply on the apparatus body side and a terminal for power supply of the main wafer carrier 18 were set up by waiting. May be contacted. In this case, since there is no contact between the terminals while the main wafer carrier 18 is moving, the generation of particles can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

There is provided a substrate processing device capable of improving the foot print and having an excellent extension characteristic. In the substrate processing device, a stage capable of rectilinear movement not requiring rotational operation and a one-shaft multi-joint robot as convey means pass a wafer (W) between a load lock chamber, a CVD processing section, and an etching processing section. Accordingly, it is possible to improve the foot print. Moreover, when the number of processing chambers such as the CVD processing section and the etching processing section is increased, what is necessary is only to extend the convey path rectilinearly. Accordingly, the extension characteristic is also excellent.

Description

明細書 基板処理装置 技術分野  Description Substrate processing equipment Technical field
本発明は、 例えば半導体ウェハ等の基板に対してプラズマ C VD (CH EM I C A L VA P O R D E P O S I T I ON) やエッチング等の処理を施す基板 処理装置に関する。 背景技術  The present invention relates to a substrate processing apparatus for performing processing such as plasma CVD (Chemical Vapor Deodorosion) or etching on a substrate such as a semiconductor wafer. Background art
半導体デバイスの製造するための工程は多数の工程からなり、 例えば、 半導体 ウェハ(以下、 ウェハという。)上に回路パターンを形成するための主な工程とし ては、 ウェハを洗浄する洗浄工程、 金属膜や絶縁膜を形成する成膜工程、 フォト レジストで酉 パターンを形成するフォトリソグラフイエ程、 レジストパターン が形成されたウェハをエッチングするエッチング工程、 その他不純物を注入する 工程等がある。  A process for manufacturing a semiconductor device includes a number of processes. For example, a main process for forming a circuit pattern on a semiconductor wafer (hereinafter, referred to as a wafer) includes a cleaning process for cleaning the wafer, a metal cleaning process, and a metal cleaning process. There are a film forming process for forming a film and an insulating film, a photolithographic process for forming a rota pattern with photoresist, an etching process for etching a wafer on which a resist pattern is formed, and a process for implanting impurities.
上記ェツチング工程にお!/、て例えばプラズマを用いる場合や、 成膜工程にぉレヽ て例えば C VD 装置により処理を行う場合、ウェハを真空チヤンパ内に搬入して このチャンバ内で処理を行っている。  In the above etching process! In the case where plasma is used, for example, or when processing is performed using a CVD apparatus during the film formation process, the wafer is loaded into a vacuum chamber and the processing is performed in this chamber.
このようなシステムの構成としては、 チャンパ内のほぼ中央に基板の受け渡し を行うための多関節ロボットを配置し、 多関節ロボットの周囲を取り囲むように 必要なユニット、 例えばプラズマ処理ユニット、 C VD処理ユニット、 ロード口 ツクユニット、 加熱ュニット等が配置される。  The configuration of such a system consists of a multi-joint robot that transfers substrates in almost the center of the champer, and units necessary to surround the multi-joint robot, such as a plasma processing unit and CVD processing. Unit, load port unit, heating unit, etc. are arranged.
多関節ロボットは Θ方向に回転可能なステージ上に配置され、 ステージを Θ方 向に回転させることで多関節口ポットが各ユニットに対面し、 各ユニットにァク セスできるようにされている (例えば、 特許文献 1参照)。  The articulated robot is placed on a stage that can rotate in the Θ direction. By rotating the stage in the Θ direction, the articulated mouth pot faces each unit so that each unit can be accessed. For example, see Patent Document 1).
[特許文献 1 ]特開 2 0 0 0— 2 9 4 5 5 0号公報 (段^ #号 0 0 3 2、 図 2 )。 しかしながら、 特許文献 1に開示された装置では、 多関節ロボットを 0方向に 回転させるため、 搬送系に用いる面積としてその回転半径に相当する分の面積以 上は最低でも必要となり、 装置全体のフットプリントが非常に悪い、 という問題 があった。 [Patent Literature 1] Japanese Patent Application Laid-Open No. 2000-290450 (Diagram # 003, FIG. 2). However, in the device disclosed in Patent Document 1, since the articulated robot is rotated in the zero direction, the area used for the transfer system is smaller than the area corresponding to the rotation radius. There was a problem that the above was necessary at least and the footprint of the entire device was very bad.
また、 多関節ロボットの周囲に配置されるュニット数を増やそうとした 、 その数に応じてほぼ円形のチャンパの直径を大きくする必要があり、 装置全体が 非常に大型化するし、 またチャンバもチヤンパ径が変わるたびに新たに製作する 必要があり、 拡張性が欠ける、 という問題もある。 発明の開示 ' 本発明は、 このような事情に基づきなされたもので、 フットプリントの向上を 図ることができる基板処理装置を ίΐ^することを目的としている。  Also, in order to increase the number of units arranged around the articulated robot, it is necessary to increase the diameter of the substantially circular champer in accordance with the number, so that the entire apparatus becomes very large, and the chamber is also changed. Each time the diameter changes, it must be manufactured anew, and there is also the problem of lack of expandability. DISCLOSURE OF THE INVENTION 'The present invention has been made in view of such circumstances, and has as its object to provide a substrate processing apparatus capable of improving a footprint.
本発明の別の目的は、 拡張性に優れた基板処理装置をす!^することにある。 力かる課題を解決するため、 本発明の主たる観点に係る基板処理装置は、 直線 状に移動可能なステージと、 前記ステージの移動軸に対して一側に配置された、 基板を処理する少なくとも 1つの処理室と、 前記ステージ上に配置され、 前記基 板を保持する保持部を有し、対面する前記処理室に向けて fit己保持部を進退させ、 前記処理室と前記保持部との間で基板の受け渡しを行う 1軸多関節ロボットと、 を具備することを特徴とする。  Another object of the present invention is to provide a substrate processing apparatus having excellent expandability! To do it. In order to solve a powerful problem, a substrate processing apparatus according to a main aspect of the present invention includes: a stage that can move linearly; and at least one substrate that is disposed on one side of a movement axis of the stage and that processes a substrate. Two processing chambers, and a holding unit that is disposed on the stage and holds the substrate.The holding unit moves forward and backward toward the facing processing chamber, and a space between the processing chamber and the holding unit. And a one-axis articulated robot that transfers the substrate with the robot.
本発明では、 回転動作を伴うことなく、 S 状に移動可能なステージ (例えば Y方向の搬送) と 1軸多関節ロボット (例えば X方向の搬送) とによって、 処理 室との間で基板の受け渡しを行っているので、 フットプリントの向上を図ること ができる。 また、 処理室の数が増えた場合に、 単に搬送路を直線状に延ばしてい けば良いので、 拡張性にも優れている。  In the present invention, a substrate is transferred between the processing chamber by a stage (for example, transfer in the Y direction) and a single-axis articulated robot (for example, transfer in the X direction) that can move in an S-shape without rotating. , So the footprint can be improved. In addition, when the number of processing chambers increases, the transfer path may be simply extended in a straight line, so that the expandability is excellent.
本発明の一の形態に係る基板処理装置は、 前記ステージの移動軸に対して、 前 記一側に対向する二側に配置された別の処理室をさらに設け、 前記 1軸多関節口 ボットは、 前記処理室おょぴ前記別の処理室に対して前記保持部が進退可能とさ れていることを特徴とする。 これにより、 処理室の数を増大することが可能であ り、 処理能力の向上を図ることができる。  The substrate processing apparatus according to an aspect of the present invention may further include another processing chamber disposed on two sides opposite to the one side with respect to the movement axis of the stage, wherein the single-axis multi-joint port bot is provided. Is characterized in that the holding portion is capable of moving forward and backward with respect to the processing chamber and the another processing chamber. As a result, the number of processing chambers can be increased, and the processing capacity can be improved.
本努明の一の形態に係る基板処¾¾置は、 前記処理室は、 前記ステージの移動 軸に沿って 2つ以上配置され、 前記 1軸多関節ロボットは、 前記ステージの移動 軸に沿って 2つ以上 t&f己ステージ上に配置され、 少なくとも隣接する 2つの ΙίίΙΒ 処理室に対して、 それぞれの前記処理室に対応する前記 1軸多関節ロボットの前 記保持部が、 進退可能であることを特徴とする。 これにより、 スループットの向 上を図ることができる。 According to one embodiment of the present invention, in the substrate processing apparatus, two or more processing chambers are arranged along a movement axis of the stage, and the one-axis articulated robot moves the stage. Two or more along the axis are placed on the t & f stage, and the holding unit of the 1-axis articulated robot corresponding to each of the processing chambers can advance and retreat with respect to at least two adjacent processing chambers. It is characterized by being. Thereby, the throughput can be improved.
本発明の一の形態に係る基板処理装置は、 前記処理室は、 前記ステージの移動 軸に沿って 2つ以上配置され、 さらに前記別の処理室は、 前記ステージの移動軸 に沿つて 2つ以上配置され、 少なくとも隣接する 2つの前記処理室、 または少な くとも隣接する 2つの前記別の処理室に対して、 それぞれの前記処理室、 または それぞれの前記別の処理室に対応する、前記 1軸多関節口ポットの前記保持部が、 進退可能であることを特徴とする。 これにより、 更にスループットの向上を図る ことができる。  In the substrate processing apparatus according to an aspect of the present invention, two or more of the processing chambers may be disposed along a movement axis of the stage, and the other processing chamber may be two or more along a movement axis of the stage. With respect to at least two adjacent processing chambers or at least two adjacent separate processing chambers that are arranged as described above, each of the processing chambers, or each of the separate processing chambers, The holder of the multi-joint shaft pot is capable of moving forward and backward. Thereby, the throughput can be further improved.
本発明の一の形態に係る基板処理装置は、 前記処理室は、 真空下で基板を処理 し、 前記ステージ及び前記 1軸多関節ロボットは、 真空下で基板を搬送すること を特徴とする。 これにより、 フットプリントの低減を図りつつ、 真空系の処理を 行うことができる。  In the substrate processing apparatus according to an aspect of the present invention, the processing chamber may process the substrate under vacuum, and the stage and the single-axis articulated robot may transfer the substrate under vacuum. This makes it possible to perform vacuum processing while reducing the footprint.
本発明の一の形態に係る基板処理装置は、 前記ステージの移動軸の末端近傍に 配置されたロードロック室と、前記ステージの移動軸の前記末端近傍に配置され、 前記ロードロック室との間で基板を受け渡す基板受渡機構と、 前記ステージの移 動軸の前記末端近傍との間で前記基板受渡機構を挟むように配置され、 処理前後 の基板を複数収容するカセットが載置されるカセット載置台とを更に具備するこ とを特 ί敷とする。 これにより、 更にフットプリントの低減を図ることができる。 本 S明の一の形態に係る基板処理装置は、 前記ステージを移動させるための第 1の駆動源、 前記 1軸多関節ロボットを駆動させるための第 2の駆動源及ぴこれ ら第 1及び第 2の駆動源に電力を供給さるためのパッテリ一が前記ステージ及び 前記 1軸多関節口ポットと一体化されていることを特徴とする。 これにより、 パ 一ティクルの発生を極力抑えることができる。  The substrate processing apparatus according to an aspect of the present invention may further include a load lock chamber disposed near an end of a movement axis of the stage, and a load lock chamber disposed near the end of a movement axis of the stage, and And a cassette on which a cassette for accommodating a plurality of substrates before and after processing is placed so as to sandwich the substrate delivery mechanism between a substrate delivery mechanism for delivering a substrate by the above and a vicinity of the end of the stage movement axis. It is specially equipped with a mounting table. Thereby, the footprint can be further reduced. The substrate processing apparatus according to one embodiment of the present invention includes a first drive source for moving the stage, a second drive source for driving the one-axis articulated robot, and a first and a second drive source. A battery for supplying electric power to a second drive source is integrated with the stage and the single-shaft multi-joint mouth pot. Thereby, generation of particles can be suppressed as much as possible.
本発明の一の形態に係る基板処職置は、 前記ステージが所定の位置で停止し ているときに前記バッテリ一に非接触式で充電するための手段を更に具備するこ とを特徴とする。 これにより、 パーティクルが発生することもなく、 効率よくパ ッテリ一に充電することが可能である。 The substrate processing apparatus according to one aspect of the present invention is characterized in that the substrate processing apparatus further includes a unit for charging the battery in a non-contact manner when the stage is stopped at a predetermined position. . As a result, particles are not generated, and It is possible to charge the battery.
本発明の一の形態に係る基板処雜置は、 少なくとも觸己ステージ及び前記 1 軸多関節ロボットの駆動を制御する制御系が本体の制御系との間でワイヤレス通 信によって信号をやり取りすることを特徴とする。 これにより、 パーティクルの 発生を極力抑えることができる。  In the substrate processing apparatus according to one aspect of the present invention, at least a control system for controlling driving of the touch stage and the one-axis articulated robot exchanges signals with a control system of the main body by wireless communication. It is characterized. As a result, generation of particles can be suppressed as much as possible.
本発明の別の観点に係る基板処理装置は、 真空下で基板を処理する処理室と、 真空下で基板を搬送し、 前記処理室と間で基板の受け渡しを行う搬送装置と、 前 記搬送装置に搭載され、 当該搬送装置に電力を供給するためのバッテリーと、 前 記搬送装置と本体との間でワイヤレス通信によって信号をやり取りするための手 段とを具備することを特徴とする。 これにより、 パーティクルの発生を極力抑え ることができる。  A substrate processing apparatus according to another aspect of the present invention includes: a processing chamber that processes a substrate under vacuum; a transport apparatus that transports a substrate under vacuum and transfers a substrate to and from the processing chamber; It is equipped with a battery mounted on the device, for supplying power to the transfer device, and a means for exchanging signals by wireless communication between the transfer device and the main body. Thereby, generation of particles can be suppressed as much as possible.
本発明の一の形態に係る基板処理装置は、 前記搬送装置が所定の位置で停止し ているときに前記バッテリ一に非接触式で充電するための手段を更に具備するこ とを特徴とする。これにより、効率よくバッテリ一に充電することが可能である。 本発明の一の形態に係る基板処理装置は、 前記搬送装置は、 少なくとも纖方 向に移動可能であることを特徴とする。 これにより、 特に直動式の欠点であるパ 一ティクルの発生を極力抑えることができる。 図面の簡単な説明  The substrate processing apparatus according to one aspect of the present invention is characterized by further comprising a unit for charging the battery in a non-contact manner when the transfer device is stopped at a predetermined position. . Thereby, it is possible to charge the battery efficiently. A substrate processing apparatus according to one aspect of the present invention is characterized in that the transfer device is movable at least in the fiber direction. As a result, the generation of particles, which is a drawback of the direct acting type, can be minimized. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施形態に係る基板処理装置の構成を示す平面図であ る。  FIG. 1 is a plan view showing the configuration of the substrate processing apparatus according to the first embodiment of the present invention.
図 2は、 第 1の実施形態に係る基板処理装置の構成を示す側面図である。 図 3は、 第 1の実施形態に係る基板処理装置における 1軸多関節ロボットの構 成を示す平面図である。  FIG. 2 is a side view showing the configuration of the substrate processing apparatus according to the first embodiment. FIG. 3 is a plan view showing a configuration of a one-axis articulated robot in the substrate processing apparatus according to the first embodiment.
図 4は、 第 1の実施形態に係る基板処理装置における 1軸多関節口ボットの構 成を示す断面図である。  FIG. 4 is a cross-sectional view showing a configuration of a single-shaft multi-joint mouth bot in the substrate processing apparatus according to the first embodiment.
図 5は、 本発明に係る他の 1軸多関節ロボットの構成を示す平面図である。 図 6は、 本発明の第 2の実施形態に係る基板処理装置の構成を示す平面図であ る。 図 7は、 本宪明の第 3の実施形態に係る基板処理装置の構成を示す平面図であ る。 FIG. 5 is a plan view showing the configuration of another one-axis articulated robot according to the present invention. FIG. 6 is a plan view showing the configuration of the substrate processing apparatus according to the second embodiment of the present invention. FIG. 7 is a plan view showing the configuration of the substrate processing apparatus according to the third embodiment of the present invention.
図 8は、 本発明の第 4の実施形態に係る基板処理装置の構成を示す断面図であ る。  FIG. 8 is a cross-sectional view illustrating a configuration of a substrate processing apparatus according to a fourth embodiment of the present invention.
図 9は、 本発明の第 5の実施形態に係る基板処理装置の構成を示す平面図であ る。  FIG. 9 is a plan view illustrating a configuration of a substrate processing apparatus according to a fifth embodiment of the present invention.
図 1 0は、 第 5の実施形態に係る基板処理装置の構成を示す側面図である。 図 1 1は、 第 5の実施形態に係る制御系の構成を示すプロック図である。 発明を実施するための最良の形態  FIG. 10 is a side view showing the configuration of the substrate processing apparatus according to the fifth embodiment. FIG. 11 is a block diagram showing a configuration of a control system according to the fifth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面に基づき説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は本発明の第 1の実施形態に係る基板処理装置の構成を示す平面図、 図 2 はその側面図である。  FIG. 1 is a plan view showing a configuration of a substrate processing apparatus according to a first embodiment of the present invention, and FIG. 2 is a side view thereof.
この基板処理装置 1は、 カセット載置台 2と、 搬送チャンバ 3と、 真空処理部 4とを図中 Y方向に一直線上に配置して構成される。  This substrate processing apparatus 1 is configured by arranging a cassette mounting table 2, a transfer chamber 3, and a vacuum processing unit 4 in a straight line in the Y direction in the drawing.
カセット載-置台 2には、例えば 2 5枚のウエノ、 Wを多段に配置させて収容する 例えば F OU P (F r o n t O e n i n g U n i f i e d P o d ) 等の 密閉性を有するカセット 5が図中 X方向に例えば 2つ並んで載置されている。 搬送チャンバ 3には、 多関節口ポットから構成されるウェハ搬送体 6と、 プリ ァライメントステージ 7とが設けられている。 ウェハ搬送体 6は、 カセット 5か らウェハ Wを取り出してプリアライメントステージ 7にー且渡し、 そのウェハ W を真空処理部 4側に設けられた後ロードロック室 8に渡す。 また、 ウェハ搬送体 6は、 ロードロック室 8からウェハ Wを取り出してカセット 5に渡すようになつ ている。 このウェハ搬送体 6はベース部 9によって水平面内 (e方向) で回転自 在になっており、 また、 図 2に示すようにモータ 1 0によってカセット 5の高さ 分だけ昇降自在となっている。 ブリアライメントステージ 7は、 ウェハ Wの水平 面内の方向の位置決めを行う機能を有している。  On the cassette mounting table 2, for example, an airtight cassette 5 such as FOUP (Front Ounified Pod) for accommodating, for example, 25 Uenos and Ws arranged in multiple stages is shown in the figure. For example, two are placed side by side in the direction. The transfer chamber 3 is provided with a wafer transfer body 6 composed of a multi-joint port pot and a preparation stage 7. The wafer carrier 6 takes out the wafer W from the cassette 5 and transfers it to the pre-alignment stage 7. The wafer W is provided in the vacuum processing unit 4 and then transferred to the load lock chamber 8. Further, the wafer carrier 6 takes out the wafer W from the load lock chamber 8 and transfers it to the cassette 5. The wafer carrier 6 is rotated in the horizontal plane (direction e) by the base portion 9 and can be moved up and down by the height of the cassette 5 by the motor 10 as shown in FIG. . The bri-alignment stage 7 has a function of positioning the wafer W in a horizontal plane.
なお、 本実施形態では、 ウェハ搬送体 6として 2リンク方式の多関節ロボット を採用しているが、 必要なストロークに応じて例えば 1リンク方式の多関節ロボ ットを採用しても構わない。 In this embodiment, a two-link multi-joint robot is used as the wafer carrier 6, but, for example, a one-link multi-joint robot is used according to the required stroke. May be adopted.
また、 搬送チャンパ 3においてカセット 5が臨む位置には、 例えば上下に開閉 可能なシャツタ 1 1が設けられており、 これによりウェハ搬送体 6がカセット 5 にアクセスできるようになつている。 さらに、 搬送チャンバ 3内には、 大気圧下 で N 2ガスのダウンフローが形成されている。  Further, at a position where the cassette 5 faces the transfer champer 3, for example, a shirt 11 that can be opened and closed up and down is provided, so that the wafer transfer body 6 can access the cassette 5. Further, a downflow of N 2 gas is formed in the transfer chamber 3 under atmospheric pressure.
真空処理部 4では、 搬送路 1 2が図中 Y方向に沿って直線状に設けられており 、 搬送路 1 2の一端部は搬送チャンバ 3に隣接している。 搬送路 1 2の両側には 、 例えばロードロック室 8、 C VD処理部 1 3及ぴエッチング処理部 1 4がそれ ぞれ搬送チャンバ 3側から搬送路 1 2に沿って長手方向に配置されている。 また 、 搬送路 1 2は、 筐体 1 2 aに囲繞されており、 筐体 1 2 a内が図示を省略した 真空ポンプにより減圧されることによつて真空状態とすることが可能となってい る。 ,  In the vacuum processing section 4, the transfer path 12 is provided linearly along the Y direction in the figure, and one end of the transfer path 12 is adjacent to the transfer chamber 3. On both sides of the transfer path 12, for example, a load lock chamber 8, a CVD processing unit 13, and an etching processing unit 14 are respectively arranged in the longitudinal direction along the transfer path 12 from the transfer chamber 3 side. I have. The transport path 12 is surrounded by a housing 12a, and the inside of the housing 12a can be evacuated by a vacuum pump (not shown). You. ,
各ロード口ック室 8のほぼ中央には、 ウェハ Wがー且載置されるウェハ載置台 1 5が設けられている。 各ロードロック室 8は、 ゲートパルプ 1 6を介して搬送 チヤンパ 3に接続されており、 更にゲートバルブ 1 7を介して搬送路 1 2に接続 されている。  A wafer mounting table 15 on which the wafer W is mounted is provided at substantially the center of each load port chamber 8. Each load lock chamber 8 is connected to the transfer chamber 3 via the gate pulp 16 and further connected to the transfer path 12 via the gate valve 17.
各 C VD処理部 1 3はゲートパルプ 1 3 aを介して、 各エッチング処理部 1 4 はゲートバルブ 1 4 aを介して、 夫々搬送路 1 2と接続されている。  Each of the CVD processing sections 13 is connected to a transfer path 12 through a gate pulp 13a, and each of the etching processing sections 14 is connected to a transfer path 12 through a gate valve 14a.
搬送路 1 2には、 主ウエノ、搬送体 1 8が Y方向に移動可能に設けられている。 即ち、 この主ウェハ搬送体 1 8は Y方向に沿って直線状に移動可能なステージ 1 8 aが設けられている。 このステージ 1 8 aは、 レーノレ 3 5に沿ってモータ 3 6 により Y方向に沿って移動されるようになっている。 この駆動機構としては、 例 えばベルト駆動機構等により構成することができる。 このステージ 1 8 a上には 、 例えば 1リンク方式の 1軸多関節ロポット 1 9が配置されている。  The transport path 12 is provided with a main ueno and a transport body 18 movably in the Y direction. That is, the main wafer carrier 18 is provided with a stage 18a that can move linearly along the Y direction. This stage 18a is moved along the Y direction by a motor 36 along a Renore 35. This drive mechanism can be constituted by, for example, a belt drive mechanism or the like. On this stage 18a, for example, a one-link type one-axis multi-joint robot 19 is arranged.
図 3はこの 1軸多関節ロボット 1 9の構成を示す平面図、 図 4はその断面図で める。  FIG. 3 is a plan view showing the configuration of the single-axis articulated robot 19, and FIG. 4 is a sectional view thereof.
この 1軸多関節ロボット 1 9の基台 2 0には、 第 1アーム 2 7がモータ 1 9 a により回転自在に設けられており、 この第 1アーム 2 7に第 2アーム 2 8の一端 が接続され、 この第 2アーム 2 8の他端に支持板 2 9が接続されて、 この支持板 29にウエノ、 Wを保持する 2本のピンセット 30が 1組となって固定されている 。 このピンセット 30にはウエノ、 Wを保持するための、 例えば図示しない吸着パ ッドが複数設けられている。 . The base 20 of the single-axis articulated robot 19 has a first arm 27 rotatably provided by a motor 19a. One end of the second arm 28 is attached to the first arm 27. The support plate 29 is connected to the other end of the second arm 28, and the support plate Two sets of tweezers 30 for holding Ueno and W on 29 are fixed as one set. The tweezers 30 are provided with, for example, a plurality of suction pads (not shown) for holding a wedge and a wedge. .
第 1アーム 27には、 モータ 19 aの回転軸に固定されたプーリ Aが設けられ 、 モータの回転はベルト 31を介して、 プーリ Bに伝達されるようになっている 。 プーリ Bの回転は軸部材 32を介して第 2アーム 28内に固定されたプーリ C に伝達され、 このプーリ Cの回転はベルト 33を介してプーリ Dに伝達されるよ うになつている。 プーリ Dの回転は、 軸部材 34を介してこの軸部材 34に固定 された支持板 29に伝達され、 ピンセット 30を直線的 (X方向) に進退移動さ せるようになつている。  The first arm 27 is provided with a pulley A fixed to the rotating shaft of the motor 19a, and the rotation of the motor is transmitted to the pulley B via the belt 31. The rotation of the pulley B is transmitted to a pulley C fixed in the second arm 28 via a shaft member 32, and the rotation of the pulley C is transmitted to a pulley D via a belt 33. The rotation of the pulley D is transmitted to the support plate 29 fixed to the shaft member 34 via the shaft member 34, and moves the tweezers 30 linearly (X direction).
このような 1軸多関節ロポット 19の構成により、 ピンセット 30を 1軸方向 、 すなわち図 1に示す X軸方向に進退させることができるようになっている。 次に、 以上のように構成された基板処理装置 1の動作を説明する。  With such a configuration of the single-axis multi-joint robot 19, the tweezers 30 can be moved back and forth in one axis direction, that is, in the X-axis direction shown in FIG. Next, the operation of the substrate processing apparatus 1 configured as described above will be described.
まず、 シャツタ 11が開き、 ウェハ搬送体 6がカセット 5にアクセスして 1枚 のウェハ Wが取り出される。 取り出されたウェハ Wはプリアライメントステージ 7に搬入されてプリァライメントされた後、 再びウェハ搬送体 6により取り出さ れ、 例えばロードロック室 8に搬入される。 この場合、 ウェハ搬送体 6が載置台 15にアクセスしウェハ Wを載置する。  First, the shirt 11 is opened, the wafer carrier 6 accesses the cassette 5, and one wafer W is taken out. The taken-out wafer W is carried into the pre-alignment stage 7 and pre-aligned, then taken out again by the wafer carrier 6 and carried into, for example, the load lock chamber 8. In this case, the wafer carrier 6 accesses the mounting table 15 and mounts the wafer W.
ロードロック室 8において、 ウェハ Wが載置台 15に載置され、 この載置台 1 5でウエノ、 Wが待機する。 その後ゲートバルブ 16が閉められ、 図示しない真空 ポンプにより室内が真空状態とされる。 この真空は、 例えば搬送路 12、 CVD 処理部 13及ぴェツチング処理部 14内の圧力と同圧 (例えば 20Pa〜133 0 P a (約 0. lTo r r〜10To r r)) となるまで行われる。  In the load lock chamber 8, the wafer W is mounted on the mounting table 15, and the wafers and W wait on the mounting table 15. Thereafter, the gate valve 16 is closed, and the room is evacuated by a vacuum pump (not shown). This vacuum is maintained, for example, until the pressure in the transfer path 12, the CVD processing section 13 and the etching processing section 14 becomes the same (for example, 20 Pa to 1330 Pa (about 0.1 l to 10 to 10 r)).
ロードロック室 8内の圧力が 20P a〜1330 Paとなったら、 ゲートバル ブ 17を開き、 載置台 15に載置されたウェハ Wを 1軸多関節ロボット 19によ つて取り出し、 CVD S¾置 13へ #Λする。  When the pressure in the load lock chamber 8 becomes 20 Pa to 1330 Pa, the gate valve 17 is opened, the wafer W mounted on the mounting table 15 is taken out by the one-axis articulated robot 19, and the CVD S is mounted 13. # Λ
そして CVD処理部 13での CVD処理が終了すると、 ゲートパルプが開き 1 軸多関節ロボット 19が CVD処理部 13にアクセスしてウェハ Wを取り出す。 さらに取り出されたウエノ、 Wをエッチング処理部 14へ搬入する。 ここでは、 ゥ エノ、 Wをエッチパック処理し、 C VD処理により形成された金属膜の表面を平坦 化する。 Then, when the CVD processing in the CVD processing section 13 is completed, the gate pulp is opened, and the single-axis articulated robot 19 accesses the CVD processing section 13 to take out the wafer W. Further, the taken out Ueno and W are carried into the etching processing unit 14. Here, ゥ Eno and W are etched and treated to flatten the surface of the metal film formed by the CVD process.
そしてエッチング処理部 1 4でのエッチパック処理が終了すると、 ゲートバル ブが開き 1軸多関節ロボット 1 9がエッチング処理部 1 4にアクセスしてウェハ Wを取り出す。 さらに取り出されたウェハ Wをロードロック室 8に ¾Λし、 载置 台 1 5に載置する。  Then, when the etching pack processing in the etching processing section 14 is completed, the gate valve opens, and the one-axis articulated robot 19 accesses the etching processing section 14 to take out the wafer W. Further, the taken out wafer W is put into the load lock chamber 8 and placed on the mounting table 15.
載置台 1 5に載置された後、 ロードロック室 8内の圧力が大気圧よりわずかに 大きくしたら、 ゲートバルブ 1 6を開き、 ロードロック室 8を大気解放する。 こ れにより、 ロードロック室 8内にパーティクルが流入することを防止できる。 その後、 ウェハ Wはウェハ搬送体 6によりロードロック室 8内の載置台 1 5か ら取り出され、 カセット 5に戻される。  When the pressure in the load lock chamber 8 becomes slightly higher than the atmospheric pressure after being mounted on the mounting table 15, the gate valve 16 is opened to release the load lock chamber 8 to the atmosphere. This can prevent particles from flowing into the load lock chamber 8. Thereafter, the wafer W is taken out from the mounting table 15 in the load lock chamber 8 by the wafer carrier 6, and returned to the cassette 5.
本発明の基板処理装置 1では、 回転動作を伴うことなく、 ϋ 状に移動可能な ステージ 1 8 aと搬送手段である 1軸多関節ロポット 1 9とによって、 ロード口 ック室 8、 C VD処理部 1 3及ぴエッチング処理部 1 4との間でウエノヽ Wの受け 渡しを行っているので、 フットプリントの向上を図ることができる。  In the substrate processing apparatus 1 of the present invention, the load port chamber 8 and the CVD are provided by the stage 18a that can move in a horizontal shape without rotating operation and the one-axis multi-joint robot 19 that is a transfer means. Since the wafer W is transferred between the processing unit 13 and the etching processing unit 14, the footprint can be improved.
また、 C V D処理部 1 3やエツチング処理部 1 4等の処理室の数が増えた場合 に、 単に搬送路 1 2を直線状に延ばしていけば良いので、 拡 生にも優れている 上記の実施形態では、 1軸多関節ロボットとして、 1リンク方式の例を挙げて 説明したが、 1リンク方式以外の、 例えば図 5に示すように 2リンク方式の 1軸 多関節ロボットを採用しても勿論構わない。  In addition, when the number of processing chambers such as the CVD processing section 13 and the etching processing section 14 increases, the transfer path 12 may be simply extended in a straight line, so that the expansion is excellent. In the embodiment, as an example of the 1-axis articulated robot, a 1-link system has been described. However, other than the 1-link system, for example, a 2-link 1-axis articulated robot as shown in FIG. Of course it doesn't matter.
図 5は、 その 2リンク方式の 1軸多関節ロボットの構成を示す平面図である。 この 1軸多関節ロボット 1 1 9の基台 1 2 0には、 第 1アーム 1 2 7がモータ 1 1 9 aにより回転自在に設けられており、 この第 1アーム 1 2 7に第 2アーム 1 2 8の一端が接続され、 この第 2アーム 1 2 8の他端に第 3アーム 1 3 5の一 端が接続され、 この第 3アーム 1 3 5の他端に支持板 1 2 9が接続されて、 この 支持板 1 2 9にウェハ Wを保持する 2本のピンセット 1 3 0が 1組となって固定 されている。 このピンセット 1 3 0にはウエノヽ Wを保持するための、 例えば図示 しない吸着パッドが複数設けられている。 この 2リンク式の 1軸多関節ロボット 1 1 9の動作は、 上述した 1リンク式の 1軸多関節ロボット 1 9と同様である。 このように 2リンク方式の 1軸多関節ロポット 1 1 9は、 1リンク方式の 1軸 多関節ロポット 1 9よりもアームを 1つ多く設ける構成としたので、 ロングスト ロークを実現することができる。 FIG. 5 is a plan view showing the configuration of the two-link single-axis articulated robot. On the base 120 of the single-axis articulated robot 1 19, a first arm 127 is rotatably provided by a motor 119a. One end of the second arm 128 is connected, the other end of the second arm 128 is connected to one end of the third arm 135, and the other end of the third arm 135 is connected to the support plate 129. Two tweezers 130 that are connected and hold the wafer W on the support plate 127 are fixed as one set. The tweezers 130 are provided with, for example, a plurality of suction pads (not shown) for holding the wafer W. This two-link single-axis articulated robot The operation of 1 19 is the same as that of the 1-link single-axis articulated robot 19 described above. As described above, since the two-link single-axis multi-joint robot 119 is provided with one more arm than the one-link single-axis multi-joint robot 119, a long stroke can be realized.
図 6は、 本発明の第 2の実施形態に係る基板処理装置の構成を示す平面図であ る。  FIG. 6 is a plan view showing the configuration of the substrate processing apparatus according to the second embodiment of the present invention.
本実施形態の基板処理装置 2 0 1は、 カセット载置台 2 0 2と搬送チャンパ 2 0 3の構成は上述の実施形態と同様であり、 これらの部分については説明を省略 する。  In the substrate processing apparatus 201 of the present embodiment, the configurations of the cassette mounting table 202 and the transport champers 203 are the same as those of the above-described embodiment, and description of these portions will be omitted.
この基板処理装置 2 0 1は、 カセット載置台 2 0 2と、 搬送チヤンバ 2 0 3と 、 真空処理部 2 0 4とを図中 Y方向に一直線上に配置して構成される。  This substrate processing apparatus 201 is configured by arranging a cassette mounting table 202, a transport chamber 203, and a vacuum processing unit 204 on a straight line in the Y direction in the drawing.
真空処理部 2 0 4では、 搬送路 2 1 2が図中 Y方向に沿って直線状に設けられ ており、 搬送路 2 1 2の一端部は搬送チャンパ 2 0 3に隣接している。 搬送路 2 1 2の両側の搬送チヤンバ 2 0 3に隣接する位置には、 例えば口ードロック室 2 0 8がそれぞれ接続されている。 これらロードロック室 2 0 8には、 ウェハ Wが —且载置されるウェハ載置台 2 1 5 ( 2 1 5 a , 2 1 5 b ) が Y方向に沿って 2 つ配列されている。 また、 搬送路 2 1 2には、 この搬送路 2 1 2の一方側に 2つ の CVD処理部 2 1 3がそれぞれ接続され、 他方側に 2つの C VD処理部 2 1 3 に対向して 2つのエッチング処理部 2 1 4がそれぞれ接続されている。 また、 搬 送路 2 1 2は、 上記実施の形態と同様に真空状態とすることが可能となっている 本実施の形態では上記実施の形態と異なり、 1リンク方式の 2つの 1軸多関節 ロボット 2 1 9 a及ぴ 2 1 9 bが基台 2 2 0上に設けられている。 ここで、 ロボ ット 2 1 9 aとロポット 2 1 9 bとの間隔は、 ロードロック室 2 0 8に設けられ た载置台 2 1 5 a、 2 1 5 bとの間隔と略同一である。 また、 同様にロボット 2 1 9 aとロボット 2 1 9 bとの間隔は、 2つの C VD処理部 2 1 3同士の間隔及 ぴ 2つのエッチング処理部 2 1 4同士の間隔と略同一である。 つまり、 これら 2 つの 1軸多関節ロボット 2 1 9 a及び 2 1 9 により、 一度に 2枚のウエノヽ Wを 搬入出することが可能となっている。 次に、 以上のように構成された基板処理装置 1の動作を説明する。 In the vacuum processing section 204, the transport path 212 is provided linearly along the Y direction in the drawing, and one end of the transport path 212 is adjacent to the transport champ 203. For example, a mouth lock chamber 208 is connected to a position adjacent to the transfer chamber 203 on both sides of the transfer path 212. In these load lock chambers 208, two wafer mounting tables 2 15 (2 15a, 2 15b) on which the wafers W are placed are arranged along the Y direction. In addition, two CVD processing sections 2 13 are connected to one side of the transfer path 2 12 on the transfer path 2 12, and two CVD processing sections 2 13 on the other side are opposed to the two CVD processing sections 2 13. Two etching processing sections 2 14 are connected to each other. In addition, the transport path 2 1 2 can be evacuated as in the above-described embodiment. In this embodiment, unlike the above-described embodiment, two 1-axis multi-joints of the 1-link type are used. Robots 219 a and 219 b are provided on the base 220. Here, the distance between the robots 2 19 a and 2 19 b is substantially the same as the distance between the mounting tables 2 15 a and 2 15 b provided in the load lock chamber 208. . Similarly, the distance between the robots 219 a and 219 b is substantially the same as the distance between the two CVD processing parts 2 13 and the distance between the two etching processing parts 2 14. . In other words, these two single-axis articulated robots 219a and 219 can carry in and out two wafers W at a time. Next, the operation of the substrate processing apparatus 1 configured as described above will be described.
まず、 シャツタ 211が開き、 ウエノ、搬送体 206がカセット 205にァクセ スして 1枚のゥェハ Wが取り出される。 取り出されたゥエノ、 Wはプリアライメン トステージ 207に搬入されてブリアライメントされた後、 ウェハ搬送体 206 がロードロック室 208の載置台 215 aにアクセスし 1枚目のウェハ Wを載置 する。 そしてウェハ搬送体 206は同様にして载置台 215 bにアクセスし 2枚 目のウェハ Wを載置する。 これにより、 2枚のウエノ、 Wがウェハ搬送体 206に よりロードロック室 208に搬入される。  First, the shirt 211 is opened, the ueno and the carrier 206 access the cassette 205, and one wafer W is taken out. The extracted wafers and wafers W are carried into the pre-alignment stage 207 and are subjected to the bri-alignment. After that, the wafer carrier 206 accesses the mounting table 215a of the load lock chamber 208 and mounts the first wafer W. Then, the wafer carrier 206 similarly accesses the mounting table 215b and mounts the second wafer W. As a result, the two wafers, W, are carried into the load lock chamber 208 by the wafer carrier 206.
このようにロードロック室 208において、 2枚のウェハ Wが载置台 215 a 、 215bに载置されると、 この載置台 215 a、 215 bでウェハ Wがそれぞ れ待機する。 その後ゲートバルブ 216が閉められ、 図示しない真空ポンプによ り室内が真空状態とされる。  As described above, when two wafers W are placed on the mounting tables 215a and 215b in the load lock chamber 208, the wafers W stand by on the mounting tables 215a and 215b, respectively. Thereafter, the gate valve 216 is closed, and the room is evacuated by a vacuum pump (not shown).
ロードロック室 208内の圧力が 20Pa〜1330Paとなったら、 ゲート パルプ 217を開き、 載置台 215 a, 215 bに載置された 2枚のウェハ Wは 1軸多関節ロボット 219 (219 a, 219 ) によって同時に取り出され、 2つの CVD処理装置 13へ同時に搬入される。  When the pressure in the load lock chamber 208 becomes 20 Pa to 1330 Pa, the gate pulp 217 is opened, and the two wafers W mounted on the mounting tables 215 a and 215 b are transferred to the single-axis articulated robot 219 (219 a, 219). ) At the same time, and are simultaneously carried into two CVD processing apparatuses 13.
そして CVD処理部 213での CVD処理が終了すると、 ゲートバルブ 213 aが開き 1軸多関節ロボット 219 a、 219 bが CVD処理部 213にァクセ スして 2枚のゥヱハ Wを同時に取り出す。 さらに取り出された 2枚のゥヱ/、 Wを エツチング処理部 214へ同時に搬入する。  Then, when the CVD processing in the CVD processing unit 213 is completed, the gate valve 213a is opened, and the single-axis articulated robots 219a and 219b access the CVD processing unit 213 to take out the two wafers W at the same time. Further, the two taken out ゥ ヱ / W are simultaneously carried into the etching processing unit 214.
そしてェッチング処理部 214でのェッチバック処理が終了すると、 ゲートバ ルプ 214 aが開き 1軸多関節ロボット 219がエッチング処理部 214にァク セスしてウェハ Wを取り出す。 さらに取り出されたウェハ Wをロードロック室 2 08に搬入し、 载置台 215 a、 215bに载置する。  When the etch-back processing in the etching processing section 214 is completed, the gate valve 214a opens, and the single-axis articulated robot 219 accesses the etching processing section 214 to take out the wafer W. Further, the taken-out wafer W is carried into the load lock chamber 208 and placed on the mounting tables 215a and 215b.
载置台 215 a、 215bに載置された後、 ロードロック室 208内の圧力が 大気圧よりわずかに大き <したら、 ゲートバルブ 216を開き、 ロードロック室 208を大気解放する。  When the pressure in the load lock chamber 208 is slightly higher than the atmospheric pressure after being placed on the mounting tables 215a and 215b, the gate valve 216 is opened to release the load lock chamber 208 to the atmosphere.
その後、 2枚のウェハ Wはウェハ搬送体 206によりロードロック室 208内 の載置台 215 a、 215 bから順に取り出され、 カセット 205に戻される。 本発明の基板処理装置 2 0 1では、 ロポット 2 1 9 aとロボット 2 1 9 bとの 間隔は、 載置台 2 1 5 aと载置台 2 1 5 bとの間隔、 2つの CVD処理部 2 1 3 同士の間隔及ぴ 2つのエッチング処理部 2 1 4同士の間隔はすべて略同一である ので、 一度に 2枚のウエノ、 Wを搬入出することが可能である。 これにより、 スル 一プットの向上を図ることができる。 Thereafter, the two wafers W are sequentially taken out of the mounting tables 215 a and 215 b in the load lock chamber 208 by the wafer carrier 206 and returned to the cassette 205. In the substrate processing apparatus 201 of the present invention, the distance between the robot 219 a and the robot 219 b is the distance between the mounting table 215 a and the mounting table 215 b, Since the spacing between 13 and the spacing between the two etching processing sections 214 are almost the same, it is possible to carry in and out two Uenos and W at a time. As a result, the throughput can be improved.
図 7は、 本発明の第 3の実施形態に係る基板処理装置の構成を示す図である。 なお、 図 7において、 図 6における構成要素と同一のものについては同一の符号 を付すものとし、 その説明を省略する。  FIG. 7 is a diagram illustrating a configuration of a substrate processing apparatus according to a third embodiment of the present invention. In FIG. 7, the same components as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted.
本実施形態では、 搬送路 3 1 2が、 図 6における搬送路 2 1 2より Y方向にお いて長く設けられている。 この搬送路 3 1 2が長く設けられた分に、 例えば≥つ の CVD処理部 3 2 3と、 2つのエッチング処理部 3 2 4とが対向して搬送路 3 1 2にそれぞれ接続されている。  In the present embodiment, the transport path 312 is provided longer in the Y direction than the transport path 212 in FIG. For example, one CVD processing section 3 23 and two etching processing sections 3 2 4 are connected to the transport paths 3 1 2, respectively, because the length of the transfer path 3 12 is long. .
このように、 C VD処理部 2 1 3、 3 2 3やエッチング処理部 2 1 4、 3 1 4 等の処理室の数が増えた場合に、 単に搬送路 3 1 2を直線状に延ばしていけば良 いので、 拡張 I"生に優れている。  As described above, when the number of processing chambers such as the CVD processing sections 2 13 and 3 23 and the etching processing sections 2 14 and 3 14 increases, the transfer path 3 12 is simply extended linearly. It's good to go, so I'm good at Extended I "students.
図 8は第 4の実施形態に係る基板処理装置を示す断面図である。 この例に示す 主ウエノ、搬送体 1 8 0では、 例えば 1軸多関節ロボット 1 9の基台 2 0上にカバ 一部材 4 0が設けられている。 力パー部材 4 0は 1軸多関節ロボット 1 9の基台 2 0より上部の部分を覆うように設けられている。 カバー部材 4 0の内部は窒素 ガス供給部 3 8から供給口 3 7を介して窒素ガスが供給される。 この窒素ガスは 例えば常に供給されるようにしてもよいし、 間欠的に供給されるようにしてもよ い。 カバー部材 4 0には、 開口 4 0 aが开成されており、 この開口 4 0 aはシャ ッタ 4 2により開閉自在となっている。  FIG. 8 is a sectional view showing a substrate processing apparatus according to the fourth embodiment. In the main wafer and the carrier 180 shown in this example, for example, a cover member 40 is provided on a base 20 of a one-axis articulated robot 19. The force par member 40 is provided so as to cover a portion above the base 20 of the uniaxial articulated robot 19. The inside of the cover member 40 is supplied with nitrogen gas from a nitrogen gas supply section 38 via a supply port 37. This nitrogen gas may be supplied, for example, all the time, or may be supplied intermittently. An opening 40 a is formed in the cover member 40, and the opening 40 a can be opened and closed by a shutter 42.
このような構成によれば、 1軸多関節ロボット 1 9のピンセット 3 0が保持す るウェハの汚染を防止することができる。 特に、 真空領域を作るための筐体 1 2 aには主ウェハ搬送体 1 8 0を作動させるための駆動部や電気ケーブル等が多数 あるが、 これらから発生するパーティクルによる汚染を防止することができる。 このように構成された主ウェハ搬送体 1 8 0は、 例えば、 ロードロック室 8、 CVD処理部 1 3、 エッチング処理部 1 4に対して基板の受け渡しをする場合、 ゲートパルプ 1 3 a、 1 4 a、 1 7を開き、 シャツタ 4 2も開く。 このようにゲ 一トノルブ 1 3 a、 1 4 a、 1 7を開き、 シャツタ 4 2が開いた状態で 1軸多関 節ロボット 1 9により基板の受け渡しを行わせる。 According to such a configuration, contamination of the wafer held by the tweezers 30 of the single-axis articulated robot 19 can be prevented. In particular, the housing 12a for creating a vacuum region has a large number of drive units and electric cables for operating the main wafer carrier 180, and it is necessary to prevent contamination by particles generated from these. it can. The main wafer carrier 180 configured as described above, for example, transfers a substrate to the load lock chamber 8, the CVD processing unit 13 and the etching processing unit 14, Open gate pulp 13a, 14a, 17 and open shirt 42 In this way, the gates norbs 13a, 14a and 17 are opened, and the substrate is transferred by the single-axis multi-joint robot 19 with the shutter 42 opened.
次に、 本発明の更に別の実施形態について説明する。  Next, still another embodiment of the present invention will be described.
図 9はこの第 5の実施形態に係る基板処«置の構成を示す平面図、 図 1 0は その側面図である。  FIG. 9 is a plan view showing a configuration of a substrate processing apparatus according to the fifth embodiment, and FIG. 10 is a side view thereof.
この実施形態に係る基板処理装置は、 基本的な構成は第 1の実施形態に示した 装置とほぼ同様であり、 同一の構成要素には同一の符号を付してある。  The basic structure of the substrate processing apparatus according to this embodiment is almost the same as the apparatus shown in the first embodiment, and the same components are denoted by the same reference numerals.
この基板処理装置では、 本体装置 4 0 0側の例えば筐体 1 2 a内の所定の位置 には赤外線の送受信素子 4 0 1が設けられ、 同様に主ウェハ搬送体 1 8の所定の 位置にも赤外線の送受信素子 4 0 2が設けられている。 また、 本体装置 4 0 0側 の例えば筐体 1 2 a内の床面における主ウエノ、搬送体 1 8の待機位置 (例えば主 ウェハ搬送体 1 8がロードロック室 8と対向する位置) にはインダクティブ充電 を行うための出力側コイルボックス 4 0 3が配置され、 主ゥェハ搬送体 1 8にお ける出力側コィルポックス 4 0 3との対向位置には入力側コイルボックス 4 0 4 が配置されている。  In this substrate processing apparatus, an infrared transmitting / receiving element 401 is provided at a predetermined position on the main unit 400 side, for example, in the housing 12a, and similarly at a predetermined position of the main wafer carrier 18. Also, an infrared transmitting / receiving element 402 is provided. In addition, the main wafer and the transfer position of the transfer member 18 on the floor surface of the main unit 400, for example, in the housing 12 a (for example, the position where the main wafer transfer member 18 faces the load lock chamber 8). An output-side coil box 403 for performing inductive charging is arranged, and an input-side coil box 404 is arranged at a position facing the output-side coil pox 403 on the main wafer carrier 18. .
図 1 1はこの実施形態に係る制御系の構成を示す図である。  FIG. 11 is a diagram showing a configuration of a control system according to this embodiment.
本体装置 4 0 0側の制御系 4 0 5と主ウェハ搬送体 1 8の制御系 4 0 6との間 では、 制御信号線などを用いることなく、 上述した一対の送受信素子 4 0 1、 4 0 2を用いて信号のやり取りが行われるようになっている。 また、 主ウェハ搬送 体 1 8への電力の供給については、 電力供給線などを用いることなく、 上述した 一対の出力側コィルポックス 4 0 3と入力側コィルポックス 4 0 4を用レ、て行わ れるようになっている。  Between the control system 405 of the main unit 400 and the control system 406 of the main wafer carrier 18, without using a control signal line or the like, the pair of transmitting / receiving elements 401, 4 described above is used. The exchange of signals is performed using 02. In addition, the supply of power to the main wafer carrier 18 is performed using the above-described pair of output-side coil poxes 400 and input-side coil poxes 104 without using a power supply line or the like. It has become.
ここで、 本体装置 4 0 0側の制御系 4 0 5は、 主ウェハ搬送体 1 8などを制御 するための制御部 4 0 7と、 送受信機 4 0 8と、 上述した赤外線送受信素子 4 0 1とを備えると共に、 A C電源 4 1 4を介してこれら各部に電力を供給するため の 源部 4 0 9を備える。  Here, the control system 405 on the main unit 400 side includes a control unit 407 for controlling the main wafer carrier 18, etc., a transceiver 408, and the above-described infrared transmitting / receiving element 400. And a power source unit 409 for supplying power to these units via an AC power supply 414.
また、 主ウエノヽ搬送体 1 8側の制御系 4 0 6は、 本体装置 4 0 0側からの指令 に基づき駆動用のモータ 4 1 5などを制御する制御部 4 1 0と、 送受信機 4 1 1 と、 赤外線送受信素子 4 0 2とを備えると共に、 これら各部に電力を供給するた めのバッテリー 4 1 3と、 バッテリー 4 1 3の充電に用いられる ® 部 4 1 2と を備える。 The control system 406 on the main wafer carrier 18 side includes a control unit 410 controlling a drive motor 415 based on a command from the main unit 400, and a transceiver 4. 1 1 And an infrared transmitting / receiving element 402, a battery 413 for supplying power to these units, and a unit 412 used for charging the battery 413.
バッテリー 4 1 3に充電を行うときには、 主ウェハ搬送体 1 8が待樹立置に位 置して出力側コイルボックス 4 0 3と入力側コイルボックス 4 0 4とが対向した 状態で、 本体装置 4 0 0側の電源部 4 0 9→出力側コイルボックス 4 0 3→入力 側コイルボックス 4 0 4→主ウェハ搬送体 1 8側の鼈源部 4 1 2を介してバッテ リー 4 1 3に電力が供給されるようになっている。  When charging the battery 4 13, the main unit 4 is placed in a state where the main wafer carrier 18 is located at the standby position and the output side coil box 400 and the input side coil box 104 face each other. 0 0 side power supply 4 0 9 → output side coil box 4 0 3 → input side coil box 4 04 → main wafer carrier 1 8 power to battery 4 13 via tortoise source 4 12 on side 8 Is supplied.
真空中の筐体 1 2 a内は、 パーティクルやガスなどが浮遊してウエノ、 Wを汚染 し易い環境にある。 特に、 本実施形態の基板処理装置のように主ウェハ搬送体 1 8を直動式とした場合において、 例えば本体装置 4 0 0側と主ウェハ搬送体 1 8 とを制御信号線や電力供給線で接続したときには、 そのようなパーティクルの発 生は顕著である。 これに対して、 本実施形態の基板処理装置のように、 本体装置 4 0 0側と主ゥェハ搬送体 1 8とを赤外線を使つて制御信号のやり取りを行レヽ、 ィンダクティブ充電によって主ウェハ搬送体 1 8に電力を供給することで、 即ち 本体装置 4 0 0ィ則と主ゥェハ搬送体 1 8との間を有線により接続することないの で、 上記のようなパーティクルの発生を抑えることができる。 従って、 真空中の 筐体 1 2 a内にウェハ Wを汚染することなく直動式の駆動部を配置することが可 能となる。  The inside of the enclosure 12a in a vacuum is in an environment where particles and gas are likely to float and pollute Ueno and W. In particular, when the main wafer carrier 18 is a direct-acting type as in the substrate processing apparatus of the present embodiment, for example, a control signal line and a power supply line are connected between the main device 400 and the main wafer carrier 18. The generation of such particles is remarkable when connected by. On the other hand, as in the substrate processing apparatus of the present embodiment, control signals are exchanged between the main unit 400 and the main wafer carrier 18 using infrared rays, and the main wafer carrier is inductively charged. By supplying electric power to 18, that is, since there is no wired connection between the main device 400 rule and the main wafer carrier 18, the generation of particles as described above can be suppressed. . Therefore, it is possible to arrange a direct-acting drive unit in the housing 12a in a vacuum without contaminating the wafer W.
なお、 上記の実施形態では、 本体装置 4 0 0側と主ウェハ搬送体 1 8との間で 赤外線を使つて制御信号のやり取りを行つていたが、 電波など非接触式に信号の やり取りを行うものであれば、 その方式を本発明に適用することができる。 また、 主ゥヱハ搬送体 1 8への電力の供給をインダクティブ充電によって行つ ていたが、 例えば待樹立置で装置本体側の電力供給用の端子と主ウェハ搬送体 1 8の電力供給用の端子とを接触させるようにしてもよい。 この場合には、 主ゥェ ハ搬送体 1 8の移動中には端子間の接触がないので、 パーティクルの発生を抑え ることができる。  In the above embodiment, control signals are exchanged between the main unit 400 and the main wafer carrier 18 using infrared rays. However, signals are exchanged in a non-contact manner such as radio waves. If it does, that method can be applied to the present invention. In addition, power was supplied to the main carrier 18 by inductive charging, but, for example, a terminal for power supply on the apparatus body side and a terminal for power supply of the main wafer carrier 18 were set up by waiting. May be contacted. In this case, since there is no contact between the terminals while the main wafer carrier 18 is moving, the generation of particles can be suppressed.
上記のいずれの実施形態も基板とした半導体ウェハを例にとり説明したが、 液 晶装置に用いられるガラス基板や C D基板などにも勿論本発明を適用することが できる。 産業上の利用可能性 In each of the above embodiments, a semiconductor wafer as a substrate has been described as an example. However, the present invention can of course be applied to a glass substrate, a CD substrate, and the like used in a liquid crystal device. it can. Industrial applicability
以上説明したように、 フットプリントの向上を図ることができ、 また拡張 I1生に 優れたシステムを提供できる。 As described above, it is possible to improve the footprint, also possible to provide an excellent system to expansion I 1 production.

Claims

請求の範囲 The scope of the claims
1 . 直線状に移動可能なステージと、  1. A stage that can move linearly,
前記ステージの移動軸に対して一側に配置された、 基板を処理する少なくとも 1つの処理室と、  At least one processing chamber for processing a substrate, arranged on one side with respect to a movement axis of the stage,
前記ステージ上に配置され、 前記基板を保持する保持部を有し、 対面する前記 処理室に向けて前記保持部を進退させ、 前記処理室と前記保持部との間で基板の 受け渡しを行う 1軸多関節口ポットと  A holding unit that is arranged on the stage and holds the substrate, moves the holding unit toward and away from the processing chamber facing the processing chamber, and transfers the substrate between the processing chamber and the holding unit. 1 Shaft articulated mouth pot
を具備することを特徴とする基板処理装置。  A substrate processing apparatus comprising:
2. 請求項 1に記載の基板処理装置であって、 2. The substrate processing apparatus according to claim 1, wherein
前記ステージの移動軸に対して、 前記一側に対向する二側に配置された別の処 理室をさらに設け、  With respect to the movement axis of the stage, another processing chamber is further provided, which is disposed on two sides opposite to the one side,
■ 前記 1軸多関節ロボットは、 前記処理室および前記別の処理室に対して前記保 持部が進退可能とされている  ■ In the single-axis articulated robot, the holding unit can move forward and backward with respect to the processing chamber and the other processing chamber.
ことを特徴とする基板処理装置。  A substrate processing apparatus characterized by the above-mentioned.
3 . 請求項 1に記載の基板処理装置であって、 3. The substrate processing apparatus according to claim 1, wherein
前記処理室は、 前記ステージの移動軸に沿つて 2つ以上配置され、  Two or more processing chambers are arranged along the movement axis of the stage,
前記 1軸多関節ロボットは、 前記ステージの移動軸に沿って 2つ以上前記ステ —ジ上に配置され、  The one-axis articulated robot is arranged on two or more stages along the movement axis of the stage,
少なくとも隣接する 2つの前記処理室に対して、 それぞれの前記処理室に対応 する前記 1軸多関節ロボットの前記保持部が、 進退可能である  With respect to at least two adjacent processing chambers, the holding unit of the one-axis articulated robot corresponding to each of the processing chambers can advance and retreat.
ことを特徴とする基板処理装置。  A substrate processing apparatus characterized by the above-mentioned.
4. 請求項 2に記載の基板処理装置であって、 4. The substrate processing apparatus according to claim 2, wherein
前記処理室は、 前記ステージの移動軸に沿つて 2つ以上配置され、  Two or more processing chambers are arranged along the movement axis of the stage,
さらに前記別の処理室は、 前記ステージの移動軸に沿って 2つ以上配置され、 少なくとも隣接する 2つの前記処理室、 または少なくとも隣接する 2つの前記 別の処理室に対して、 それぞれの前記処理室、 またはそれぞれの前記別の処理室に対応する、 前記 1 軸多関節ロボットの前記保持部が、 進退可能である Further, two or more of the other processing chambers are arranged along the movement axis of the stage, and at least two adjacent processing chambers, or at least two adjacent processing chambers, The holding unit of the one-axis articulated robot, which corresponds to each of the processing chambers or each of the different processing chambers, is capable of moving forward and backward.
ことを特徴とする基板処理装置。  A substrate processing apparatus characterized by the above-mentioned.
5. 請求項 1に記載の基板処置装置であって、 5. The substrate processing apparatus according to claim 1, wherein
前記処理室は、 真空下で基板を処理し、  The processing chamber processes the substrate under vacuum;
前記ステージ及び前記 1軸多関節ロボットは、 真空下で基板を搬送することを 特徴とする基板処理装置。  The substrate processing apparatus, wherein the stage and the one-axis articulated robot transport a substrate under vacuum.
6 . 請求項 5に記載の基板処理装置であって、 6. The substrate processing apparatus according to claim 5, wherein
前記ステージの移動軸の末端近傍に配置されたロードロック室と、  A load lock chamber arranged near the end of the movement axis of the stage,
前記ステージの移動軸の前記末端近傍に配置され、 前記ロードロック室との間 で基板を受け渡す基板受渡機構と、  A substrate delivery mechanism that is arranged near the end of the movement axis of the stage and that delivers the substrate to and from the load lock chamber;
前記ステージの移動軸の前記末端近傍との間で前記基板受渡機構を挟むように 配置され、 処理前後の基板を複数収容するカセットが載置されるカセット載置台 と  A cassette mounting table on which a cassette for housing a plurality of substrates before and after processing is disposed so as to sandwich the substrate transfer mechanism between the vicinity of the end of the movement axis of the stage, and
を更に具備することを特徴とする基板処理装置。  A substrate processing apparatus, further comprising:
7 . 請求項 1に記載の基板処理装置であって、 7. The substrate processing apparatus according to claim 1, wherein
前記ステージを移動させるための第 1の駆動源、 前記 1軸多関節ロボットを駆 動させるための第 2の駆動源及ぴこれら第 1及び第 2の駆動源に電力を供給する ためのバッテリ一が前記ステージ及ぴ前記 1軸多関節ロボットと一体化されてい ることを特徴とする基板処理装置。  A first drive source for moving the stage, a second drive source for driving the one-axis articulated robot, and a battery for supplying power to the first and second drive sources. Is integrated with the stage and the single-axis articulated robot.
8 . 請求項 7に記載の基板処理装置であって、 8. The substrate processing apparatus according to claim 7, wherein
tinsステージが所定の位置で停止して!/、るときに tffiBバッテリ一に非接触式で 充電するための手段を更に具備することを特徴とする基板処理装置。  The tins stage stops at a certain position! / A substrate processing apparatus further comprising means for charging a tffiB battery in a non-contact manner at the time of operation.
9. 請求項 7に記載の基板処理装置であって、 少なくとも前記ステージ及び前記 1軸多関節ロポットの駆動を制御する制御系 が本体の制御系との間でワイヤレス通信によつて信号をやり取りすることを特徴 とする基板処理装置。 9. The substrate processing apparatus according to claim 7, wherein A substrate processing apparatus, wherein at least a control system for controlling the driving of the stage and the one-axis multi-joint robot exchanges signals with a control system of a main body by wireless communication.
1 0. 真空下で基板を処理する処理室と、 10. A processing chamber for processing substrates under vacuum,
真空下で基板を搬送し、 前記処理室と間で基板の受け渡しを行う搬送装置と、 前記搬送装置に搭載され、当該搬送装置に電力を供給するためのパッテリーと、 前記搬送装置と本体との間でワイヤレス通信によつて信号をやり取りするため の手段と  A transfer device that transfers the substrate under vacuum and transfers the substrate to and from the processing chamber, a battery mounted on the transfer device, and a battery for supplying power to the transfer device; and Means for exchanging signals with each other by wireless communication
を具備することを特徴とする基板処3¾置。  A substrate processing device 3 characterized by comprising:
1 1 . 請求項 1 0に記載の基板処理装置であって、 11. The substrate processing apparatus according to claim 10, wherein
前記搬送装置が所定の位置で停止しているときに前記パッテリ一に非接触式で 充電するための手段を更に具備することを特徴とする基板処理装置。  The substrate processing apparatus further comprising: means for charging the battery in a non-contact manner when the transfer device is stopped at a predetermined position.
1 2. 請求項 1 0に記載の基板処理装置であって、 1 2. The substrate processing apparatus according to claim 10, wherein
前記搬送装置は、 少なくとも直線方向に移動可能であることを特徴とする基板 処理装置。  The substrate processing apparatus, wherein the transfer device is movable at least in a linear direction.
PCT/JP2004/000147 2003-01-17 2004-01-13 Substrate processing device WO2004066379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-010451 2003-01-17
JP2003010451A JP2004265894A (en) 2003-01-17 2003-01-17 Substrate treating device

Publications (1)

Publication Number Publication Date
WO2004066379A1 true WO2004066379A1 (en) 2004-08-05

Family

ID=32767252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000147 WO2004066379A1 (en) 2003-01-17 2004-01-13 Substrate processing device

Country Status (2)

Country Link
JP (1) JP2004265894A (en)
WO (1) WO2004066379A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253434A1 (en) * 2009-05-19 2010-11-24 Kabushiki Kaisha Yaskawa Denki Robot system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758298B1 (en) 2006-03-03 2007-09-12 삼성전자주식회사 Apparatus and method for treating substrates
JP4660434B2 (en) * 2006-07-21 2011-03-30 株式会社安川電機 Conveying mechanism and processing apparatus having the same
JP2008074551A (en) * 2006-09-21 2008-04-03 Murata Mach Ltd Expansion type transfer device
JP2008135630A (en) * 2006-11-29 2008-06-12 Jel:Kk Substrate conveying device
KR102110585B1 (en) * 2007-05-17 2020-05-13 브룩스 오토메이션 인코퍼레이티드 Side opening substrate carrier and load port
TWI475627B (en) 2007-05-17 2015-03-01 Brooks Automation Inc Substrate carrier, substrate processing apparatus and system, for reducing particle contamination of substrate during processing and method of interfacing a carrier with a processing tool
WO2009066573A1 (en) * 2007-11-21 2009-05-28 Kabushiki Kaisha Yaskawa Denki Conveyance robot, locally cleaned housing with the conveyance robot, and semiconductor manufacturing device with the housing
JP5470770B2 (en) * 2008-08-07 2014-04-16 シンフォニアテクノロジー株式会社 Vacuum processing equipment
DE102008058805B4 (en) * 2008-11-24 2013-11-21 Asys Automatic Systems Gmbh & Co. Kg Processing system for flat substrates and transfer device therefor
JP5454455B2 (en) * 2010-11-02 2014-03-26 東京エレクトロン株式会社 Substrate transport apparatus, substrate transport method, and storage medium
KR101829397B1 (en) * 2011-09-16 2018-02-19 퍼시몬 테크놀로지스 코포레이션 Low variability robot
JP5956324B2 (en) * 2012-12-13 2016-07-27 東京エレクトロン株式会社 Transport base and transport system
WO2015112538A1 (en) 2014-01-21 2015-07-30 Persimmon Technologies, Corp. Substrate transport vacuum platform
JP6411852B2 (en) * 2014-10-07 2018-10-24 平田機工株式会社 Conveying device, conveying system, and conveying method
US10232506B2 (en) 2014-12-26 2019-03-19 Kawasaki Jukogyo Kabushiki Kaisha Production system
US11581203B2 (en) * 2020-09-02 2023-02-14 Applied Materials, Inc. Systems for integrating load locks into a factory interface footprint space

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349931A (en) * 1993-06-10 1994-12-22 Tokyo Electron Ltd Processing system
JPH11330189A (en) * 1998-05-19 1999-11-30 Nikon Corp Carrying equipment
JP2000299365A (en) * 1999-04-12 2000-10-24 Murata Mach Ltd Optical data transmitter
JP3080143U (en) * 2001-03-08 2001-09-14 オリンパス光学工業株式会社 Substrate transfer device
JP2002370182A (en) * 2001-06-13 2002-12-24 Matsushita Electric Ind Co Ltd Self-traveling clean stocker robot system and its robot
WO2003056624A1 (en) * 2001-12-25 2003-07-10 Tokyo Electron Limited Processed body carrying device, and processing system with carrying device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349931A (en) * 1993-06-10 1994-12-22 Tokyo Electron Ltd Processing system
JPH11330189A (en) * 1998-05-19 1999-11-30 Nikon Corp Carrying equipment
JP2000299365A (en) * 1999-04-12 2000-10-24 Murata Mach Ltd Optical data transmitter
JP3080143U (en) * 2001-03-08 2001-09-14 オリンパス光学工業株式会社 Substrate transfer device
JP2002370182A (en) * 2001-06-13 2002-12-24 Matsushita Electric Ind Co Ltd Self-traveling clean stocker robot system and its robot
WO2003056624A1 (en) * 2001-12-25 2003-07-10 Tokyo Electron Limited Processed body carrying device, and processing system with carrying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253434A1 (en) * 2009-05-19 2010-11-24 Kabushiki Kaisha Yaskawa Denki Robot system

Also Published As

Publication number Publication date
JP2004265894A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
WO2004066379A1 (en) Substrate processing device
US6264748B1 (en) Substrate processing apparatus
TWI623055B (en) Processing systems, apparatus, and methods adapted to process substrates in electronic device manufacturing
US9355876B2 (en) Process load lock apparatus, lift assemblies, electronic device processing systems, and methods of processing substrates in load lock locations
US9263307B2 (en) Apparatus and method for treating substrate
US8974601B2 (en) Apparatuses, systems and methods for treating substrate
JP6582676B2 (en) Load lock device and substrate processing system
TW201027784A (en) Advanced platform for processing crystalline silicon solar cells
JP2000306978A (en) Substrate treatment apparatus, substrate transfer apparatus, and substrate treatment method
KR20020019414A (en) Substrate processing apparatus and method for manufacturing a semiconductor device by using the substrate processing apparatus
TW200931576A (en) Transport system with buffering
US20080178914A1 (en) Substrate processing apparatus
US20190096702A1 (en) Substrate processing apparatus, substrate processing method, and computer storage medium
US11688619B2 (en) Vacuum processing apparatus and substrate transfer method
US20110179717A1 (en) Substrate processing apparatus
CN116137241A (en) Connection processing container and substrate processing method
US20220037181A1 (en) Vacuum transfer device, substrate processing system, and substrate processing method
JPH10107124A (en) Substrate processing device
CN112151412A (en) Transfer robot and substrate processing apparatus having the same
JP5920981B2 (en) Substrate processing system
TW201701393A (en) Carrier transport device and carrier transport method
JP2004119627A (en) Semiconductor device manufacturing apparatus
JP2002173775A (en) Semiconductor manufacturing apparatus, and manufacturing method of semiconductor apparatus
KR102139613B1 (en) Apparatus for transfer a substrate and apparatus for treating a substrate
JP3702194B2 (en) Heating device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase