WO2004055879A1 - Ozone-processing apparatus - Google Patents

Ozone-processing apparatus Download PDF

Info

Publication number
WO2004055879A1
WO2004055879A1 PCT/JP2003/015360 JP0315360W WO2004055879A1 WO 2004055879 A1 WO2004055879 A1 WO 2004055879A1 JP 0315360 W JP0315360 W JP 0315360W WO 2004055879 A1 WO2004055879 A1 WO 2004055879A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
ozone
gas
processing gas
discharging
Prior art date
Application number
PCT/JP2003/015360
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuo Kikuchi
Takeo Yamanaka
Yukitaka Yamaguchi
Tokiko Kanayama
Original Assignee
Sumitomo Precision Products Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co., Ltd. filed Critical Sumitomo Precision Products Co., Ltd.
Publication of WO2004055879A1 publication Critical patent/WO2004055879A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass

Definitions

  • the present invention relates to an ozone treatment apparatus that blows a processing gas containing at least ozone onto a substrate surface such as a semiconductor substrate or a liquid crystal substrate to remove a resist film formed on the substrate surface.
  • the ozone treatment apparatus 100 includes a mounting table 101 on which a substrate ⁇ is mounted on an upper surface, and a mounting table 101 above the mounting table 101.
  • An opposing plate 102 disposed at a predetermined distance from the upper substrate K, and an opening at an opposing surface of the opposing plate 102 facing the substrate K, and disposed above a central portion of the substrate K.
  • a nozzle body 103 is provided.
  • the mounting table 101 has a built-in heater (not shown), and the nozzle body 103 is connected to an ozone gas generator (not shown).
  • ozone treatment apparatus 100 when the substrate K is appropriately mounted on the upper surface of the mounting table 101, it is heated to a predetermined temperature by a heater (not shown). At the same time, ozone gas (processing gas) of a predetermined concentration generated by an ozone gas generator (not shown) is discharged from the opening of the nozzle body 103 toward the upper surface of the central portion of the heated substrate K.
  • the discharged ozone gas collides with the substrate K and flows along the substrate K An ozone gas layer is formed, and in such a stream, ozone (O 3 ) is heated by the substrate K, and is converted into oxygen (o 2 ) by being heated in this way or coming into contact with the substrate K or the resist. Decomposed with active oxygen (o *). Then, the resist film formed on the substrate ⁇ surface is removed by a thermochemical reaction with active oxygen (o *).
  • the ozone gas flowing along the surface of the substrate K flows to the periphery of the substrate K, and then flows out from between the substrate K and the opposing plate 102 as appropriate.
  • the resist film R formed on the surface of the substrate K usually has a film thickness at the peripheral portion of the substrate K at other portions (center portion) due to a manufacturing problem. It tends to be thicker than the thickness.
  • the processing is naturally completed more quickly in the central portion having a small film thickness than in the peripheral portion having a large film thickness. For this reason, in order to completely remove the resist film at the peripheral portion using the conventional ozone treatment apparatus 100, the processing time is lengthened and the resist film at the central portion is removed even after the resist film at the central portion is removed. There was a problem that it was necessary to continue processing, and efficient processing could not be performed.
  • the use amount of the ozone gas and the ozone discharged unreacted may increase.
  • the ozone gas discharged from the nozzle body 103 flows along the surface of the substrate K so as to spread around the opening portion around the opening, and in the flow, the ozone concentration gradually decreases due to thermal decomposition.
  • the peripheral portion of the substrate K is treated with ozone gas having a lower ozone concentration than the central portion thereof, which also enables the peripheral portion of the substrate K to be treated efficiently.
  • the present invention has been made in view of the above-described circumstances, and has an entire substrate surface. It is an object of the present invention to provide an ozone treatment apparatus capable of performing efficient and uniform treatment. Disclosure of the invention
  • the present invention provides a supporting means for supporting a substrate, a heating means for heating the substrate supported by the supporting means, and a heating means provided above the substrate supported by the supporting means.
  • a first discharging means for discharging a processing gas containing ozone toward a peripheral portion of the substrate surface, and a second discharging means for discharging the processing gas toward a region other than the peripheral portion on the substrate surface.
  • the present invention relates to an ozone treatment apparatus provided with a gas supply means configured as described above.
  • the substrate is supported by the supporting means, and the substrate is heated by the heating means in the supported state.
  • a processing gas containing ozone is supplied from the gas supply means to each of the first discharge means and the second discharge means, and the processing gas is discharged from the first discharge means toward the peripheral portion of the substrate surface, and the second discharge means
  • the processing gas is discharged from the device toward a region other than the peripheral portion.
  • the processing gas discharged from the first discharging device and the second discharging device collides with the substrate, respectively.
  • ozone (O 3 ) in the processing gas is decomposed into oxygen (O 2 ) and active oxygen (O *), and formed on the substrate surface.
  • the resist film is removed by a thermochemical reaction with active oxygen (O *).
  • the ozone concentration of the processing gas supplied from the gas supply unit to the first discharge unit and the second discharge unit, respectively, depends on the processing supplied to the second discharge unit.
  • the processing gas supplied to the first discharge means has a higher concentration than the gas.
  • the thickness of the resist film formed on the substrate surface is usually larger at the peripheral portion of the substrate than at other portions.
  • the processing gas By spraying the processing gas, the peeling of the resist film at the peripheral portion is promoted, and as a result, the entire substrate surface can be processed in substantially the same time. By doing so, it is possible to reduce the amount of processing gas used and the amount of ozone exhausted unreacted as compared with the related art.
  • the entire substrate surface can be treated efficiently and uniformly.
  • the gas supply unit may adjust the supply amount of the processing gas such that a flow rate of the processing gas discharged from the first discharging unit is larger than a flow rate of the processing gas discharged from the second discharging unit. It may be configured to control. Also in this case, the large amount of the processing gas blown to the peripheral portion of the substrate promotes the separation of the resist film at the peripheral portion, and the same effect as described above is exerted.
  • first discharge means and the second discharge means are each formed of a housing-like member provided with a gas retention chamber having a predetermined internal volume which is disposed to face the substrate and has an opening on the opposite surface.
  • the opening is closed by a plate-shaped gas-permeable member having a large number of air passages penetrating from front to back over the entire area, and the processing gas supplied from the gas supply unit is filled in each of the gas retention chambers. It may be configured to be discharged through each ventilation passage of the elastic member.
  • the processing gas is supplied from the gas supply unit to the gas storage chambers of the first discharge unit and the second discharge unit, and the lower opening of the gas storage room is provided.
  • the gas is discharged toward the substrate surface through the ventilation path of the gas permeable member provided in the section, but when the internal pressure in the gas storage chamber increases and the pressure in the gas storage chamber becomes almost equilibrium, the processing gas becomes gas permeable. Discharge is performed from the entire area of the member at a substantially uniform speed. That is, the processing gas supplied to the gas retaining chamber is discharged toward the substrate surface in a state where the processing gas is diffused at a substantially uniform speed by the gas permeable member.
  • the processing gas is discharged from the ventilation path formed over the entire area of the gas permeable member, thereby reducing the velocity of the processing gas discharged from each ventilation path. It can be made substantially uniform over the entire area of the permeable member, and the substrate region facing the permeable member can be treated almost uniformly.
  • the substrate is cooled by contact with the processing gas having a predetermined flow rate.
  • the velocity of the processing gas to be discharged is uniform, the temperature of the surface of the substrate in contact with the substrate becomes uniform, and the surface temperature decreases. Become uniform. Therefore, the active oxygen generation efficiency becomes uniform, and in this sense, the substrate can be uniformly processed.
  • the first discharge means and the second discharge means are as close to the substrate as possible, and the distance between the air-permeable member and the substrate is not less than 0.2 mm and not more than 1.4 mm. Is preferred. If the distance exceeds 1.4 mm, the time required for the discharged processing gas to reach the substrate surface is prolonged, during which the ozone concentration is reduced due to thermal decomposition, or the processing gas remains in the atmosphere. This is because they cannot be uniformly and efficiently treated due to diffusion. On the other hand, if the distance is less than 0.2 mm, a problem arises when the processing gas becomes difficult to be exhausted from between the gas permeable member and the substrate, and a problem occurs in device manufacturing.
  • the supported substrate, the first discharging means, and the The two discharging means may be configured to be relatively moved in a direction along the surface of the substrate by a suitable moving means.
  • the air-permeable member include a sintered body of stainless steel, a sintered body of zirconia, a sintered body of titanium and a sintered body of ceramic, and a porous membrane of polytetrafluoroethylene. Examples thereof include a wire mesh, a punched metal, and a metal nonwoven fabric, but are not limited thereto.
  • the heating temperature of the substrate is preferably in the range of 200 ° C. to 500 ° C. Within this range, the impurities contained in the substrate can be evaporated at the same time as the above processing.
  • the processing gas preferably contains 14% by weight or more of ozone, and a mixture of ozone and TEOS (Tetraethyl orthosilicate, tetraethyl silicate, Si (C 2 H 5 O) 4 ) It may be gas.
  • the ozone treatment apparatus is mainly intended for removing a resist film, it is not intended to apply this method to formation of an oxide film on a substrate surface or its modification. It is not excluded.
  • FIG. 1 is a sectional view showing a schematic configuration of a preferred ozone treatment apparatus according to the present invention
  • FIG. 2 is a bottom view in the direction of arrow A in FIG.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a second processing gas supply head according to the present embodiment
  • FIG. 4 is a cross-sectional view in the direction of arrows BB in FIG. is there.
  • 5 and 6 are cross-sectional views showing a schematic configuration of a first processing gas supply head according to the present embodiment.
  • FIG. 7 is a plan view showing a schematic configuration of an ozone treatment apparatus according to another embodiment of the present invention
  • FIG. 8 is a side view in the direction of arrow C in FIG.
  • FIG. 9 shows another embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a schematic configuration of a second processing gas supply head according to the embodiment.
  • FIG. 10 is a sectional view showing a schematic configuration of a first processing gas supply head according to another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a schematic configuration of an ozone treatment apparatus according to a conventional example.
  • FIG. 12 is an explanatory diagram for explaining the thickness of a resist film formed on a substrate.
  • an ozone treatment apparatus 1 of this example includes a treatment chamber 10 having a predetermined internal volume, a treatment chamber 10 disposed in the treatment chamber 10, and a substrate K on an upper surface thereof. And a plurality of first processing gas supply heads (first and second processing gas supply heads) disposed above the mounting table 15 so as to face the substrate K on the mounting table 15. 1 discharge device) 30 and a second processing gas supply head (second discharge device) 20.
  • the processing chamber 10 is a casing having a predetermined internal volume closed by a lid 11, and gas inside the exhaust chamber 56 penetrates and is fixed to the side wall of the processing chamber 10. It is configured to be exhausted to the outside by the exhaust device 55 through the air.
  • the pressure inside the processing chamber 10 is adjusted to 7 KPa or more (more preferably, 14 KPa or more) and the pressure of the ozone gas supply source or less by the exhaust device 55.
  • the mounting table 15 has a built-in heater (not shown), and the substrate K mounted on the upper surface is heated by the heater (not shown).
  • the mounting table 15 can be moved up and down by an elevating device 16, and the elevating device 16 has an elevating opening 17 provided through the bottom surface of the processing chamber 10.
  • the bottom of the mounting table 15 is supported by the lifting rod 17 are doing.
  • the elevating device 16 is composed of an electric cylinder, a pneumatic cylinder and the like.
  • a plurality of support needles 12 each having a sharp tip formed thereon and a substrate K being temporarily placed are provided upright at the front end.
  • 15 When 15 is at the lower end position, it is passed through a through hole (not shown) formed in the mounting table 15, and its tip projects upward from the upper surface of the mounting table 15.
  • the mounting table 15 When the mounting table 15 is at the rising end position, it is removed from the through hole (not shown).
  • the support needles 12 are moved to the mounting table 1.
  • the substrate K is mounted on the mounting table 15 while being relatively immersed in the substrate 5.
  • the elevating device 16 is configured such that a distance g between the lower surface of each of the permeable members 24 and 34 described below and the surface of the substrate K becomes a predetermined distance. Then, the mounting table 15 is raised to the raised end position.
  • each of the first processing gas supply heads 30 is provided above the peripheral portion of the substrate K, and each of the second processing gas supply heads 20 is provided.
  • Each of the second processing gas supply heads 20 and each of the first processing gas supply heads 30 are adjacent to each other.
  • the first and second processing gas supply heads 30 and 20 are arranged on the same plane so as to form a predetermined gap S between them.
  • each of the second processing gas supply heads 20 and each of the first processing gas supply heads 30 include a block-shaped upper member 21, 31 and a lower surface of the upper member 21, 31.
  • Lower members 22, 32 which are fixed to each other and have internal spaces opened up and down, respectively, and an opening 2 on the lower surface (the surface facing the substrate K) side of the lower members 22, 32. Close the openings 2 3, 3 3 at 3, 3 3 Members 24 and 34 provided as described above.
  • each of the second processing gas supply heads 20 and each of the first processing gas supply heads 30 are such that the upper surfaces of the upper members 21 and 31 are fixed to the connecting member 40, respectively.
  • the connecting member 40 is integrally provided with the connecting member 40 and is supported by a supporting member 41 disposed on a side wall of the processing chamber 10.
  • Each of the permeable members 24 and 34 is a plate-like member having a large number of air passages penetrating vertically (front and back) over the entire area.
  • the lower openings of the lower members 22 and 32 are formed as described above.
  • the lower members 23, 33 are fixed to the lower members 23, 33 so as to close the lower members 23, 33, and the lower surface thereof is opposed to the substrate K on the mounting table 15 described above. 4 is a state in which the lower surface as a whole faces the entire surface of the substrate K (excluding the portion corresponding to the gap S).
  • the permeable members 24 and 34 include a sintered body of stainless steel, a sintered body of zirconia, a sintered body of titanium and a sintered body of ceramic, a polytetrafluoroethylene porous membrane, and a wire mesh. Or a punched metal, a metal nonwoven fabric, or the like.
  • the permeable members 24 and 34 are made of a sintered body, the voids (pores) formed between the particles are as described above. It corresponds to an airway.
  • the ozone gas generated by the first ozone gas generator 52 is supplied via the pipe 53 and the ozone gas flow path 39 formed in each lower member 32 to the first ozone gas.
  • the ozone gas (process gas) generated by the second ozone gas generator 50 is supplied and filled from the generators 52 into the gas retention chamber 28, respectively. And, it is supplied and filled from the second ozone gas generator 50 via an ozone gas flow path 29 formed in each upper member 21.
  • the ozone gas generated by the first ozone gas generator 52 has a higher ozone concentration than the ozone gas generated by the second ozone gas generator 50. Further, as shown in FIGS. 2, 5, and 6, the position where the ozone gas flow path 39 is provided differs slightly depending on the arrangement position of the first processing gas supply head 30. Position.
  • FIG. 5 shows the first processing gas supply head 30 arranged in parallel with the second processing gas supply head 20, and
  • FIG. 6 shows the second processing gas supply head.
  • FIG. 3 shows a first processing gas supply head 30 arranged orthogonally to the head 20.
  • the gas was supplied from the first and second ozone gas generators 52, 50 to the gas retention chambers 38, 28 via the pipes 53, 51 and the ozone gas flow paths 39, 29.
  • the ozone gas passes through the ventilation passages of the permeable members 34, 24 provided in the lower openings 33, 23 of the gas retention chambers 38, 28, respectively, and the periphery of the surface of the substrate K and other parts.
  • Each ozone gas is discharged toward the region, but when the internal pressure in each of the gas retention chambers 38, 28 rises and the pressure in each of the gas retention chambers 38, 28 becomes almost equilibrium, the ozone gas flows through The liquid is discharged from the entire area of the conductive members 34 and 24 at a substantially uniform speed.
  • the ozone gas supplied from the first ozone gas generator 52 to each gas retaining chamber 38 is discharged toward the peripheral portion of the surface of the substrate K in a state where it is diffused at a substantially uniform speed by each permeable member 34. Then, the ozone gas supplied from the second ozone gas generation device 50 to each gas retaining chamber 28 is diffused at a substantially uniform speed by each of the permeable members 24, and the ozone gas is diffused from the peripheral portion of the substrate K surface. Discharged toward the outside area.
  • the upper member 21, 31 has a coolant passage 27, 37.
  • Pipes 46 and 47 connected to the coolant circulating device 45 are connected to the coolant channels 27 and 37, respectively.
  • the coolant is supplied to the coolant channels 27 and 37 via the pipe 46.
  • the supplied coolant flows through the coolant channels 27 and 37 and is returned to the coolant circulation device 45 via the pipe 47.
  • the coolant is circulated between the first and second processing gas supply heads 20 and 30 and the coolant circulating device 45, and the first and second processing are performed by the coolant.
  • the gas supply heads 20 and 30 are cooled, and the ozone gas supplied to and filled in the gas storage chambers 28 and 38 is cooled.
  • the position where the cooling liquid flow path 37 is provided depends on the arrangement position of the first processing gas supply head 30 as shown in FIGS. 2, 5, and 6, respectively. It is in a slightly different position.
  • the substrate K is placed on the support needle 12 by appropriate means.
  • the position of the mounting table 15 is located at the lower end.
  • the coolant is supplied and circulated from the coolant circulation device 45 to each of the coolant passages 27 and 37, and the coolant supplies the first processing gas supply head 30 and the second processing gas.
  • the supply heads 20 are each cooled.
  • the pressure in the processing chamber 10 is 7 KPa or more (more preferably, 14 KPa or more) by the exhaust device 55, and the supply source of the ozone gas (the first ozone gas generation device 52 and the second ozone gas generation device 52). The pressure is adjusted below the pressure of the device 50).
  • the mounting table 15 rises, the support needles 12 relatively sink with respect to the mounting table 15, and the substrate K is mounted on the upper surface of the mounting table 15, and 5 reaches the rising end position, and the distance g between the lower surface of each of the air-permeable members 24 and 34 and the surface of the substrate K becomes a predetermined distance.
  • mount on the upper surface of The placed substrate K is heated to a predetermined temperature by a heater (not shown).
  • ozone gas having the above concentration is supplied from the first and second ozone gas generators 52 and 50 to pipes 53 and 51 and
  • the first and second processing gas supply heads 30 and 20 are supplied to the gas storage chambers 38 and 28 via the ozone gas flow paths 39 and 29, respectively.
  • the gas was diffused at a substantially uniform speed through the air passages of the gas permeable members 34, 24 provided in the gas retention chambers 38, 28 toward the peripheral edge of the substrate ⁇ surface and other areas. It is discharged in the state.
  • the ozone gas generated by the first ozone gas generator 52 has a higher ozone concentration than the ozone gas generated by the second ozone gas generator 50, and the Is sprayed with a higher concentration of ozone gas than other areas.
  • the ozone gas after the reaction flows along the surface of the substrate ⁇ , and then flows out as appropriate between the air-permeable members 24 and 34 and the substrate ⁇ .
  • the resist film R formed on the surface of the substrate is generally thicker at the peripheral portion of the substrate than at other portions, as shown in FIG.
  • ozone gas having a high ozone concentration on the peripheral portion of the substrate ⁇
  • the peeling of the resist film at the peripheral portion is promoted as compared with other regions, and as a result, the peripheral portion having a large thickness is formed. And other areas can be processed in almost the same time. By doing so, the amount of ozone gas used and the amount of unreacted exhaust air Ozone can be reduced.
  • the ozone gas is supplied to each gas storage chamber 2 8
  • the gas is discharged from the air passage formed over the entire area of each of the gas permeable members 24, 34. It can be made substantially uniform over the entire area of the members 24 and 34, and the region of the substrate K facing each of the air-permeable members 24 and 34 can be treated almost uniformly.
  • the substrate K is cooled by contact with the ozone gas at a predetermined flow rate.
  • the velocity of the discharged ozone gas is uniform, the temperature of the surface of the substrate K in contact therewith becomes uniform, and the surface temperature becomes uniform. It becomes. Therefore, the active oxygen generation efficiency becomes uniform, and in this sense, the substrate K can be uniformly processed.
  • the ozone gas discharged from each of the permeable members 24 and 34 and supplied to the surface of the substrate K flows along the surface of the substrate K, and the ozone gas is supplied to each of the permeable members 24 and 34 and the substrate K. Exhausted from between. For this reason, the ozone gas supplied near the center of the processing region of the substrate K is easily replaced by the sequentially supplied unreacted ozone gas, and the vicinity of the center is processed by the ozone gas having a stable ozone concentration. In the peripheral area, the reacted ozone gas is not easily replaced by newly supplied unreacted ozone gas, and the ozone concentration is reduced in a mixed state, and the treatment efficiency is lower than that in the vicinity of the center. I hate to decline.
  • a plurality of the first and second processing gas supply heads 20 and 30 each having a rectangular shape are connected to the adjacent first and second processing gas supply heads 20.
  • a gap S is formed between the first and the second 30 to arrange them.
  • the ozone gas after the reaction is effectively exhausted from the gap S provided in the short side direction of the first and second processing gas supply heads 20 and 30.
  • the surface of the substrate to be processed by the first and second processing gas supply heads 20 and 30 can be processed substantially uniformly.
  • the processing area of the substrate ⁇ which can be processed at once can be widened.
  • the first and second processing gas supply heads 20 and 30 are as close as possible to the substrate ⁇ .
  • the distance g from the distance ⁇ is 0.2 mm or more and 1.4 mm or less.
  • the distance g exceeds 1.4 mm, the time required for the discharged ozone gas to reach the surface of the substrate K becomes longer, during which the ozone concentration decreases due to thermal decomposition or the ozone gas diffuses into the atmosphere.
  • uniform and efficient processing cannot be performed.
  • the distance g is less than 0.2 mm, problems such as difficulty in exhausting ozone gas from between the air permeable members 24 and 34 and the substrate K, and a problem in manufacturing the device will occur.
  • the first and second processing gas supply heads 20 and 30 have the high temperature.
  • the first and second processing gas supply heads 20 and 30 are cooled by the cooling liquid flowing through the respective cooling liquid flow paths 27 and 37.
  • the ozone gas in each of the gas storage chambers 28 and 38 can be cooled by the coolant, and the temperature can be maintained within a certain range. This can prevent the ozone concentration in the ozone gas from being reduced.
  • the heating temperature of the substrate K is preferably in the range of 200 ° C. to 500 ° C. Within this range, the impurities contained in the substrate K are evaporated at the same time as the above processing. I can. Further, ozone gas, 1 4 and is preferably one containing a weight% or more of ozone, ozone and TEOS with a mixed gas (Tetraethyl orthosilicate, Ke Isante Toraechiru, S i (C 2 H 5 O) 4) Is also good. As mentioned above, although one Embodiment of this invention was described, the concrete aspect which this invention can take is not limited to this at all.
  • the ozone treatment apparatus 1 may be configured to perform the treatment while supporting and transporting the substrate K in a predetermined direction.
  • the same components as those of the ozone treatment apparatus 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the ozone treatment apparatus 70 includes a transport roller 75 that supports the substrate K and transports the substrate K in a predetermined direction (the direction indicated by an arrow D in FIG. 7).
  • the substrate K transported by the transport roller 75 Above the substrate K at predetermined intervals along the transport direction so as to cover the entire width of the substrate K in a direction facing the substrate K and orthogonal to the transport direction (the direction indicated by the arrow E in FIG. 7).
  • two second processing gas supply heads 80 provided, and on both side edges of the substrate K in a direction orthogonal to the transport direction, along the transport direction so as to face the substrate K.
  • two first processing gas supply heads 85 respectively, and a heater 78 disposed below the substrate K and heating the substrate K.
  • the transport roller 75, the first processing gas supply head 85, the second processing gas supply head 80, and the heater 78 are appropriately disposed in a processing chamber (not shown).
  • a plurality of the transfer rollers 75 are disposed at predetermined intervals along the transfer direction, and both ends of the rotating shaft 76 are fixed to side walls of the processing chamber (not shown) as appropriate.
  • Each supporting device (not shown) is rotatably supported. It is located on both sides of the transport rollers 75.
  • a flange 77 a is formed on the roller 77, and the movement of the substrate K in the direction of arrow E is restricted by the flange 77 a.
  • One end of the rotating shaft 76 is connected to a driving device (not shown), and the driving device (not shown) causes the rotating shaft 76 to rotate around the center of the rotating shaft 76, whereby the transport roller 7 is rotated. 5 rotates to transport the substrate K in the transport direction.
  • the first processing gas supply head 85 and the second processing gas supply head 80 are composed of an upper member 31, 21 in which the coolant flow paths 37, 27 are formed, and an ozone gas flow path.
  • Lower members 32, 22 on which 39, 29 'are formed, and permeable members 34, 24, respectively, are provided.
  • the lower surface of each permeable member 34, 24 and the substrate K They are arranged such that the distance g from the surface becomes a predetermined distance.
  • the first and second processing gas supply heads 85 and 80 are supported by respective support members (not shown) appropriately fixed to the side walls of the processing chamber (not shown). I have.
  • each of the permeable members 24 is fixed to the lower member 23 so as to close the lower opening 23 of the lower member 22, and the lower surface thereof is formed by the transport roller 75.
  • the substrate K to be supported and conveyed faces the entire width of the substrate K in the direction indicated by the arrow E, while each of the air-permeable members 34 closes the lower opening 33 of the lower member 32 as described above.
  • the lower surface of the substrate K is fixed to the lower member 33, and the lower surface thereof faces both ends (peripheral portions) of the substrate K in the direction of arrow E.
  • the above-described processing can be performed while the substrate K is transported by the transport roller 75, so that the processing can be continuously performed.
  • the ozone concentration of the ozone gas supplied to the first processing gas supply heads 30 and 85 is changed to the second processing gas supply head.
  • concentration was set higher than that supplied to the heads 20 and 80, it was supplied to the first processing gas supply heads 30 and 85 and the second processing gas supply heads 20 and 80.
  • the ozone concentration of the supplied ozone gas is made the same, and the flow rate of the ozone gas supplied to the first processing gas supply heads 30 and 85 is supplied to the second processing gas supply heads 20 and 80 It may be larger than the ozone gas flow rate. Even in this case, the same effects as above can be obtained.
  • the substrate K is transported by the transport rollers 75 so that the substrate K and the first and second processing gas supply heads 85 and 80 are relatively moved.
  • the present invention is not limited to this, and the first and second processing gas supply heads 85 and 80 are applied to the surface of the substrate K on the substrate K appropriately supported by the supporting device.
  • the substrate K and the first and second processing gas supply heads 85 and 80 can be configured to be relatively moved by appropriately moving in the direction along the axis.
  • each processing gas supply head 20, 30, 80, 85 is not limited to the above example. Industrial applicability
  • the present invention can be suitably used for removing a resist film formed on a substrate surface such as a semiconductor substrate or a liquid crystal substrate.

Abstract

An ozone-processing apparatus for efficiently and uniformly processing the entire surface of a substrate is disclosed. This ozone-processing apparatus (1) comprises a substrate supporting unit for supporting a substrate (K), a heating unit for heating the substrate (K), a first process gas supply head (30) arranged above the substrate (K) for discharging an ozone gas onto the peripheral portion of the substrate, a second process gas supply head (20) arranged above the substrate (K) for discharging an ozone gas onto the other portions of the substrate, and gas supply units (52, 50) which respectively feed ozone gases into the first and second process gas supply heads (30, 20). The gas supply units (52, 50) supply the ozone gases such that the first process gas supply head (30) is fed with an ozone gas having a higher ozone concentration than the ozone gas fed into the second process gas supply head (20).

Description

明 細 書 オゾン処理装置 技術分野  Description Ozone treatment equipment Technical field
この発明は、 半導体基板や液晶基板などの基板表面に、 少なく ともォ ゾンを含んだ処理ガスを吹きかけて、 基板表面に形成されたレジス ト膜 を除去するオゾン処理装置に関する。 背景技術  The present invention relates to an ozone treatment apparatus that blows a processing gas containing at least ozone onto a substrate surface such as a semiconductor substrate or a liquid crystal substrate to remove a resist film formed on the substrate surface. Background art
従来、 上記オゾン処理装置と して、 第 1 1 図に示すような構造のもの が知られている。 このオゾン処理装置 1 0 0は、 同第 1 1 図に示すよう に、 上面に基板 κが載置される載置台 1 0 1 と、 載置台 1 0 1 の上方に 、 この載置台 1 0 1上の基板 Kと所定間隔を隔てて設置された対向板 1 0 2と、 対向板 1 0 2の前記基板 Kとの対向面に開口し、 当該基板 K中 央部の上方に配設されたノズル体 1 0 3などを備えて構成される。  Conventionally, as the above-mentioned ozone treatment apparatus, one having a structure as shown in FIG. 11 is known. As shown in FIG. 11, the ozone treatment apparatus 100 includes a mounting table 101 on which a substrate κ is mounted on an upper surface, and a mounting table 101 above the mounting table 101. An opposing plate 102 disposed at a predetermined distance from the upper substrate K, and an opening at an opposing surface of the opposing plate 102 facing the substrate K, and disposed above a central portion of the substrate K. A nozzle body 103 is provided.
尚、 前記載置台 1 0 1 には、 ヒータ (図示せず) が内蔵されており、 前記ノズル体 1 0 3には、 オゾンガス生成装置 (図示せず) が接続され ている。  The mounting table 101 has a built-in heater (not shown), and the nozzle body 103 is connected to an ozone gas generator (not shown).
そして、 このように構成されたオゾン処理装置 1 0 0によれば、 基板 Kが載置台 1 0 1 の上面に適宜載置されると、 これがヒータ (図示せず ) によって所定温度に加熱されるとともに、 オゾンガス生成装置 (図示 せず) によって生成された所定濃度のオゾンガス (処理ガス) が、 この 加熱された基板 Kの中央部上面に向けてノズル体 1 0 3の開口部から吐 出される。  According to the ozone treatment apparatus 100 configured as described above, when the substrate K is appropriately mounted on the upper surface of the mounting table 101, it is heated to a predetermined temperature by a heater (not shown). At the same time, ozone gas (processing gas) of a predetermined concentration generated by an ozone gas generator (not shown) is discharged from the opening of the nozzle body 103 toward the upper surface of the central portion of the heated substrate K.
吐出されたオゾンガスは、 基板 Kに衝突した後、 これに沿って流れる オゾンガス層を形成し、 かかる流れの中で、 オゾン ( O 3 ) は基板 Kに より加熱され、 このように加熱されたり、 基板 Kやレジス トと接触した りすることによって酸素 (o 2 ) と活性酸素 (o * ) とに分解される。 して、 基板 κ表面に形成されたレジス 卜膜が活性酸素 (o * ) との熱 化学反応によって除去される。 The discharged ozone gas collides with the substrate K and flows along the substrate K An ozone gas layer is formed, and in such a stream, ozone (O 3 ) is heated by the substrate K, and is converted into oxygen (o 2 ) by being heated in this way or coming into contact with the substrate K or the resist. Decomposed with active oxygen (o *). Then, the resist film formed on the substrate κ surface is removed by a thermochemical reaction with active oxygen (o *).
尚、 基板 K表面に沿って流動するオゾンガスは、 当該基板 Kの周縁部 まで流動した後、 基板 Kと対向板 1 0 2との間から適宜流出する。  The ozone gas flowing along the surface of the substrate K flows to the periphery of the substrate K, and then flows out from between the substrate K and the opposing plate 102 as appropriate.
ところで、 第 1 2図に示すように、 基板 K表面に形成されるレジス ト 膜 Rは、 通常、 その製造上の問題から、 基板 K周縁部の膜厚がその他の 部分 (中央部) の膜厚に比べて厚くなる傾向にある。  By the way, as shown in FIG. 12, the resist film R formed on the surface of the substrate K usually has a film thickness at the peripheral portion of the substrate K at other portions (center portion) due to a manufacturing problem. It tends to be thicker than the thickness.
したがって、 上記従来のオゾン処理装置 1 0 0では、 当然のことなが ら、 膜厚の薄い中央部の方が、 膜厚の厚い周縁部に比べて早く処理が完 了する。 このため、 従来のオゾン処理装置 1 0 0を用いて周縁部のレジ ス ト膜を完全に除去するためには、 処理時間を長く して、 中央部のレジ ス ト膜が除去された後も引き続き処理を続ける必要があり、 効率的な処 理を行うことができないという問題があった。  Therefore, in the above-mentioned conventional ozone treatment apparatus 100, the processing is naturally completed more quickly in the central portion having a small film thickness than in the peripheral portion having a large film thickness. For this reason, in order to completely remove the resist film at the peripheral portion using the conventional ozone treatment apparatus 100, the processing time is lengthened and the resist film at the central portion is removed even after the resist film at the central portion is removed. There was a problem that it was necessary to continue processing, and efficient processing could not be performed.
また、 このように、 長時間にわたってオゾンガスをノズル体 1 0 3か ら吐出ざせ続けると、 オゾンガスの使用量や、 未反応のまま排気される オゾンが増大するという不都合もある。  In addition, if the ozone gas is continuously discharged from the nozzle body 103 for a long time, the use amount of the ozone gas and the ozone discharged unreacted may increase.
更に、 ノズル体 1 0 3から吐出されたオゾンガスは、 その開口部を中 心と して周囲に広がるように基板 K表面に沿って流動し、 その流れの中 で、 熱分解によりオゾン濃度が徐々に低下していくため、 基板 K周縁部 はその中央部に比べて低オゾン濃度のオゾンガスによって処理されるこ ととなリ、 このことも、 基板 K周縁部を効率的に処理することができな い原因となっている。  Further, the ozone gas discharged from the nozzle body 103 flows along the surface of the substrate K so as to spread around the opening portion around the opening, and in the flow, the ozone concentration gradually decreases due to thermal decomposition. As a result, the peripheral portion of the substrate K is treated with ozone gas having a lower ozone concentration than the central portion thereof, which also enables the peripheral portion of the substrate K to be treated efficiently. Cause.
本発明は、 以上の実情に鑑みなされたものであって、 基板表面全体を 効率的且つ均一に処理することができるオゾン処理装置の提供をその目 的とする。 発明の開示 The present invention has been made in view of the above-described circumstances, and has an entire substrate surface. It is an object of the present invention to provide an ozone treatment apparatus capable of performing efficient and uniform treatment. Disclosure of the invention
上記目的を達成するための本発明は、 基板を支持する支持手段と、 前 記支持手段によって支持された基板を加熱する加熱手段と、 前記支持手 段によって支持された基板の上方に配設され、 該基板表面の周縁部に向 けてオゾンを含んだ処理ガスを吐出する第 1 吐出手段、 及び前記基板表 面の前記周縁部以外の領域に向けて前記処理ガスを吐出する第 2吐出手 段と、 前記第 1 吐出手段及び第 2吐出手段に前記処理ガスを供給すると ともに、 前記第 2吐出手段に供給する処理ガスに比べて高オゾン濃度の 処理ガスを前記第 1 吐出手段に供給するように構成されたガス供給手段 とを設けて構成したオゾン処理装置に係る。  To achieve the above object, the present invention provides a supporting means for supporting a substrate, a heating means for heating the substrate supported by the supporting means, and a heating means provided above the substrate supported by the supporting means. A first discharging means for discharging a processing gas containing ozone toward a peripheral portion of the substrate surface, and a second discharging means for discharging the processing gas toward a region other than the peripheral portion on the substrate surface. And supplying the processing gas to the first discharging means and the second discharging means, and supplying a processing gas having a higher ozone concentration than the processing gas supplied to the second discharging means to the first discharging means. The present invention relates to an ozone treatment apparatus provided with a gas supply means configured as described above.
この発明によれば、 まず、 基板が支持手段により支持され、 支持され た状態で加熱手段によって加熱される。 そして、 ガス供給手段から第 1 吐出手段及び第 2吐出手段にそれぞれオゾンを含んだ処理ガスが供給さ れ、 第 1 吐出手段から基板表面の周縁部に向けて処理ガスが吐出され、 第 2吐出手段から前記周縁部以外の領域に向けて処理ガスが吐出される 斯く して、 前記第 1 吐出手段及び第 2吐出手段から吐出された処理ガ スは、 それぞれ基板に衝突した後、 これに沿って流れる処理ガス層を形 成し、 かかる流れの中で、 当該処理ガス中のオゾン ( O 3 ) が酸素 ( O 2 ) と活性酸素 ( O * ) とに分解され、 基板表面に形成されたレジス ト 膜が活性酸素 (O * ) との熱化学反応によって除去される。 According to the present invention, first, the substrate is supported by the supporting means, and the substrate is heated by the heating means in the supported state. Then, a processing gas containing ozone is supplied from the gas supply means to each of the first discharge means and the second discharge means, and the processing gas is discharged from the first discharge means toward the peripheral portion of the substrate surface, and the second discharge means The processing gas is discharged from the device toward a region other than the peripheral portion. Thus, the processing gas discharged from the first discharging device and the second discharging device collides with the substrate, respectively. Forming a flowing processing gas layer, and in this flow, ozone (O 3 ) in the processing gas is decomposed into oxygen (O 2 ) and active oxygen (O *), and formed on the substrate surface. The resist film is removed by a thermochemical reaction with active oxygen (O *).
また、 前記ガス供給手段から第 1 吐出手段及び第 2吐出手段にそれぞ れ供給される処理ガスのオゾン濃度は、 第 2吐出手段に供給される処理 ガスに比べて第 1 吐出手段に供給される処理ガスの方が高濃度となって いる。 Further, the ozone concentration of the processing gas supplied from the gas supply unit to the first discharge unit and the second discharge unit, respectively, depends on the processing supplied to the second discharge unit. The processing gas supplied to the first discharge means has a higher concentration than the gas.
上述したように、 基板表面に形成されるレジス ト膜は、 通常、 基板周 縁部の膜厚がその他の部分に比べて厚くなっているが、 上記のように、 前記周縁部に高オゾン濃度の処理ガスを吹きかけることで、 当該周縁部 におけるレジス 卜膜の剥離が促進され、 その結果、 基板表面の全体をほ ぼ同じ時間で処理することが可能となる。 また、 このようにすることで 、 従来に比べて、 処理ガスの使用量や、 未反応のまま排気されるオゾン を減少させることができる。  As described above, the thickness of the resist film formed on the substrate surface is usually larger at the peripheral portion of the substrate than at other portions. By spraying the processing gas, the peeling of the resist film at the peripheral portion is promoted, and as a result, the entire substrate surface can be processed in substantially the same time. By doing so, it is possible to reduce the amount of processing gas used and the amount of ozone exhausted unreacted as compared with the related art.
このように、 本発明に係るオゾン処理装置によれば、 基板表面の全体 を効率的且つ均一に処理することができる。  Thus, according to the ozone treatment apparatus of the present invention, the entire substrate surface can be treated efficiently and uniformly.
尚、 前記ガス供給手段は、 前記第 1 吐出手段から吐出される処理ガス の流量が前記第 2吐出手段から吐出される処理ガスの流量に比べて多く なるように、 前記処理ガスの供給量を制御するように構成されていても 良い。 このようにしても、 基板周縁部に吹きかけられる大流量の処理ガ スによって、 当該周縁部におけるレジス ト膜の剥離が促進され、 上記と 同様の効果が奏される。  The gas supply unit may adjust the supply amount of the processing gas such that a flow rate of the processing gas discharged from the first discharging unit is larger than a flow rate of the processing gas discharged from the second discharging unit. It may be configured to control. Also in this case, the large amount of the processing gas blown to the peripheral portion of the substrate promotes the separation of the resist film at the peripheral portion, and the same effect as described above is exerted.
また、 前記第 1 吐出手段及び第 2吐出手段は、 それぞれ前記基板と対 向配置され、 且つ該対向面に開口する所定内容積のガス滞留室を備えた 筐体状の部材から構成されるとともに、 前記開口部が、 表裏に貫通した 通気路を全域にわたって多数有する板状の通気性部材によって閉塞され 、 前記ガス供給手段から供給された処理ガスが前記各ガス滞留室に充填 され、 前記各通気性部材の各通気路を通ってそれぞれ吐出されるように 構成されていても良い。  Further, the first discharge means and the second discharge means are each formed of a housing-like member provided with a gas retention chamber having a predetermined internal volume which is disposed to face the substrate and has an opening on the opposite surface. The opening is closed by a plate-shaped gas-permeable member having a large number of air passages penetrating from front to back over the entire area, and the processing gas supplied from the gas supply unit is filled in each of the gas retention chambers. It may be configured to be discharged through each ventilation passage of the elastic member.
このようにすれば、 前記処理ガスは、 ガス供給手段から第 1 吐出手段 及び第 2吐出手段のガス滞留室に供給され、 当該ガス滞留室の下部開口 部に設けられた通気性部材の通気路を通り基板表面に向けて吐出される が、 ガス滞留室内の内圧が高まり、 当該ガス滞留室内の圧力がほぼ平衡 状態になると、 当該処理ガスは通気性部材の全域からほぼ均一な速度で 吐出されるようになる。 即ち、 ガス滞留室に供給された処理ガスは、 通 気性部材によってそれぞれほぼ均一な速度に拡散された状態で基板表面 に向けて吐出される。 With this configuration, the processing gas is supplied from the gas supply unit to the gas storage chambers of the first discharge unit and the second discharge unit, and the lower opening of the gas storage room is provided. The gas is discharged toward the substrate surface through the ventilation path of the gas permeable member provided in the section, but when the internal pressure in the gas storage chamber increases and the pressure in the gas storage chamber becomes almost equilibrium, the processing gas becomes gas permeable. Discharge is performed from the entire area of the member at a substantially uniform speed. That is, the processing gas supplied to the gas retaining chamber is discharged toward the substrate surface in a state where the processing gas is diffused at a substantially uniform speed by the gas permeable member.
斯く して、 このように、 処理ガスをガス滞留室に供給, 充填した後、 通気性部材の全域にわたって形成された通気路から吐出させることで、 各通気路から吐出される処理ガスの速度を通気性部材の全域にわたって ほぼ均一なものとすることができ、 通気性部材と対向する基板領域をほ ぼ均一に処理することができる。  In this manner, after supplying and filling the processing gas into the gas retaining chamber, the processing gas is discharged from the ventilation path formed over the entire area of the gas permeable member, thereby reducing the velocity of the processing gas discharged from each ventilation path. It can be made substantially uniform over the entire area of the permeable member, and the substrate region facing the permeable member can be treated almost uniformly.
また、 基板は所定流速の処理ガスと接触することによって冷却される が、 吐出される処理ガスの速度が均一であれば、 これと接触する基板表 面の温度低下が均一となり、 その表面温度が均一となる。 このため、 活 性酸素の生成効率が均一なものとなり、 この意味においても、 基板を均 一に処理することが可能となる。  The substrate is cooled by contact with the processing gas having a predetermined flow rate. However, if the velocity of the processing gas to be discharged is uniform, the temperature of the surface of the substrate in contact with the substrate becomes uniform, and the surface temperature decreases. Become uniform. Therefore, the active oxygen generation efficiency becomes uniform, and in this sense, the substrate can be uniformly processed.
この場合、 前記第 1 吐出手段及び第 2吐出手段を、 可能な限り基板に 近づけるのが好ましく、 通気性部材と基板との間の間隔は、 0 . 2 m m 以上 1 . 4 m m以下であるのが好ましい。 前記間隔が 1 . 4 m mを超え ると、 吐出された処理ガスが基板表面に達するまでの時間が長くなリ、 その間に熱分解によつてオゾン濃度が低下したり、 処理ガスが雰囲気中 に拡散したり して、 均一且つ効率的な処理ができないからである。 一方 、 前記間隔が 0 . 2 m m未満であると、 処理ガスが通気性部材と基板と の間から排気され難くなるといつた問題や、 装置製造上の問題を生じる また、 前記支持手段によリ支持された基板と前記第 1 吐出手段及び第 2吐出手段とは、 適宜移動手段により、 当該基板の表面に沿った方向に 相対移動せしめられるように構成されていても良い。 In this case, it is preferable that the first discharge means and the second discharge means are as close to the substrate as possible, and the distance between the air-permeable member and the substrate is not less than 0.2 mm and not more than 1.4 mm. Is preferred. If the distance exceeds 1.4 mm, the time required for the discharged processing gas to reach the substrate surface is prolonged, during which the ozone concentration is reduced due to thermal decomposition, or the processing gas remains in the atmosphere. This is because they cannot be uniformly and efficiently treated due to diffusion. On the other hand, if the distance is less than 0.2 mm, a problem arises when the processing gas becomes difficult to be exhausted from between the gas permeable member and the substrate, and a problem occurs in device manufacturing. The supported substrate, the first discharging means, and the The two discharging means may be configured to be relatively moved in a direction along the surface of the substrate by a suitable moving means.
また、 前記通気性部材の好ましいものとしては、 ステンレスの焼結体 、 ジルコニァの焼結体、 チタンの焼結体及びセラミックの焼結体や、 ポ リテ トラフルォロエチレンの多孔質膜の他、 金網やパンチングメタル、 金属製の不織布などを挙げることができるが、 これらに限定されるもの ではない。  Preferred examples of the air-permeable member include a sintered body of stainless steel, a sintered body of zirconia, a sintered body of titanium and a sintered body of ceramic, and a porous membrane of polytetrafluoroethylene. Examples thereof include a wire mesh, a punched metal, and a metal nonwoven fabric, but are not limited thereto.
また、 前記基板の加熱温度は、 2 0 0 °C〜 5 0 0 °Cの範囲が好ましい 。 この範囲内であれば、 基板内に含まれる不純物の蒸発を上記処理と同 時に行うことができる。 また、 前記処理ガスは、 1 4重量%以上のォゾ ンを含むものが好適であり、 オゾンと T E O S ( Tetraethyl orthosilic ate , ケィ酸テ トラエチル、 S i ( C 2 H 5 O ) 4 ) の混合ガスであって も良い。 Further, the heating temperature of the substrate is preferably in the range of 200 ° C. to 500 ° C. Within this range, the impurities contained in the substrate can be evaporated at the same time as the above processing. The processing gas preferably contains 14% by weight or more of ozone, and a mixture of ozone and TEOS (Tetraethyl orthosilicate, tetraethyl silicate, Si (C 2 H 5 O) 4 ) It may be gas.
尚、 本発明に係るオゾン処理装置は、 主と してレジス ト膜の除去に向 けられたものであるが、 これを基板表面への酸化膜の形成やその改質に 適用することを何ら排除するものではない。 図面の簡単な説明  Although the ozone treatment apparatus according to the present invention is mainly intended for removing a resist film, it is not intended to apply this method to formation of an oxide film on a substrate surface or its modification. It is not excluded. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 この発明にかかる好ましいオゾン処理装置の概略構成を示 した断面図であり、 第 2図は、 第 1 図における矢示 A方向の底面図であ る。 第 3図は、 本実施形態に係る第 2処理ガス供給へッ ドの概略構成を 示した断面図であり、 第 4図は、 第 3図 3における矢示 B— B方向の断 面図である。 第 5図及び第 6図は、 本実施形態に係る第 1処理ガス供給 ヘッ ドの概略構成を示した断面図である。 第 7図は、 本発明の他の実施 形態に係るオゾン処理装置の概略構成を示した平面図であり、 第 8図は 、 第 7における矢示 C方向の側面図である。 第 9図は、 本発明の他の実 施形態に係る第 2処理ガス供給ヘッ ドの概略構成を示した断面図である 。 第 1 0図は、 本発明の他の実施形態に係る第 1 処理ガス供給ヘッ ドの 概略構成を示した断面図である。 第 1 1 図は、 従来例に係るオゾン処理 装置の概略構成を示した断面図である。 第 1 2図は、 基板に形成される レジス ト膜の膜厚を説明するための説明図である。 発明を実施するための最良の形態 FIG. 1 is a sectional view showing a schematic configuration of a preferred ozone treatment apparatus according to the present invention, and FIG. 2 is a bottom view in the direction of arrow A in FIG. FIG. 3 is a cross-sectional view showing a schematic configuration of a second processing gas supply head according to the present embodiment, and FIG. 4 is a cross-sectional view in the direction of arrows BB in FIG. is there. 5 and 6 are cross-sectional views showing a schematic configuration of a first processing gas supply head according to the present embodiment. FIG. 7 is a plan view showing a schematic configuration of an ozone treatment apparatus according to another embodiment of the present invention, and FIG. 8 is a side view in the direction of arrow C in FIG. FIG. 9 shows another embodiment of the present invention. FIG. 3 is a cross-sectional view illustrating a schematic configuration of a second processing gas supply head according to the embodiment. FIG. 10 is a sectional view showing a schematic configuration of a first processing gas supply head according to another embodiment of the present invention. FIG. 11 is a cross-sectional view showing a schematic configuration of an ozone treatment apparatus according to a conventional example. FIG. 12 is an explanatory diagram for explaining the thickness of a resist film formed on a substrate. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明をより詳細に説明するために、 添付図面に基づいてこれ を説明する。  Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
第 1 図及び第 2図に示すように、 本例のオゾン処理装置 1 は、 所定の 内容積を有する処理チャンバ 1 0と、 この処理チャンバ 1 0内に配設さ れ、 その上面に基板 Kが載置される載置台 1 5と、 この載置台 1 5の上 方に、 当該載置台 1 5上の基板 Kと対向するように配設された複数の第 1 処理ガス供給ヘッ ド (第 1 吐出装置) 3 0及び第 2処理ガス供給へッ ド (第 2吐出装置) 2 0などを備えて構成される。  As shown in FIG. 1 and FIG. 2, an ozone treatment apparatus 1 of this example includes a treatment chamber 10 having a predetermined internal volume, a treatment chamber 10 disposed in the treatment chamber 10, and a substrate K on an upper surface thereof. And a plurality of first processing gas supply heads (first and second processing gas supply heads) disposed above the mounting table 15 so as to face the substrate K on the mounting table 15. 1 discharge device) 30 and a second processing gas supply head (second discharge device) 20.
前記処理チャンバ 1 0は、 蓋体 1 1 によって閉じられた所定の内容積 を有する筐体であり、 その内部のガスが、 当該処理チャンバ 1 0の側壁 に貫通, 固設された排気管 5 6を介し排気装置 5 5によって外部に排気 されるように構成されている。 尚、 処理チャンバ 1 0内は、 当該排気装 置 5 5により、 その内部の圧力が 7 K P a以上 (より好ましくは、 1 4 K P a以上) 、 オゾンガスの供給元の圧力以下に調整される。  The processing chamber 10 is a casing having a predetermined internal volume closed by a lid 11, and gas inside the exhaust chamber 56 penetrates and is fixed to the side wall of the processing chamber 10. It is configured to be exhausted to the outside by the exhaust device 55 through the air. The pressure inside the processing chamber 10 is adjusted to 7 KPa or more (more preferably, 14 KPa or more) and the pressure of the ozone gas supply source or less by the exhaust device 55.
前記載置台 1 5は、 ヒータ (図示せず) を内臓しており、 このヒータ (図示せず) によって、 上面に載置された基板 Kを加熱する。 また、 載 置台 1 5は、 昇降装置 1 6によって昇降自在となっており、 この昇降装 置 1 6は、 前記処理チャンバ 1 0の底面を貫通して設けられる昇降口ッ ド 1 7を備え、 この昇降ロッ ド 1 7により前記載置台 1 5の底面を支持 している。 尚、 昇降装置 1 6は、 電動シリンダゃ空圧シリンダなどから 構成される。 The mounting table 15 has a built-in heater (not shown), and the substrate K mounted on the upper surface is heated by the heater (not shown). The mounting table 15 can be moved up and down by an elevating device 16, and the elevating device 16 has an elevating opening 17 provided through the bottom surface of the processing chamber 10. The bottom of the mounting table 15 is supported by the lifting rod 17 are doing. The elevating device 16 is composed of an electric cylinder, a pneumatic cylinder and the like.
前記処理チャンバ 1 0の底面には、 先端が先鋭に形成され、 先端部に 基板 Kが仮置きされる複数の支持針 1 2が立設されており、 この支持針 1 2は、 前記載置台 1 5が下降端位置にある時に、 当該載置台 1 5に形 成された貫通孔 (図示せず) に揷通されて、 その先端が載置台 1 5の上 面より上方に突出する一方、 前記載置台 1 5が上昇端位置にある時に、 前記貫通孔 (図示せず) から抜き取られるようになつている。  At the bottom of the processing chamber 10, a plurality of support needles 12 each having a sharp tip formed thereon and a substrate K being temporarily placed are provided upright at the front end. When 15 is at the lower end position, it is passed through a through hole (not shown) formed in the mounting table 15, and its tip projects upward from the upper surface of the mounting table 15. When the mounting table 15 is at the rising end position, it is removed from the through hole (not shown).
斯く して、 載置台 1 5が下降端位置にある時に、 支持針 1 2上に基板 Kが仮置きされた後、 載置台 1 5が上昇せしめられると、 当該支持針 1 2が載置台 1 5に対し相対的に没して、 前記基板 Kが載置台 1 5上に載 置される。 尚、 昇降装置 1 6は、 載置台 1 5が上昇端位置に達したとき 、 後述する各通気性部材 2 4 , 3 4下面と基板 K表面との間の間隔 gが 所定の間隔となるように、 載置台 1 5を前記上昇端位置に上昇させる。 第 1 図乃至第 6図に示すように、 前記各第 1 処理ガス供給ヘッ ド 3 0 は、 前記基板 K周縁部の上方にそれぞれ配設され、 前記各第 2処理ガス 供給へッ ド 2 0は、 前記基板 Kの周縁部を除いた領域の上方にそれぞれ 配設されており、 これら各第 2処理ガス供給へッ ド 2 0及び各第 1 処理 ガス供給へッ ド 3 0は、 各隣り合う第 1 , 第 2処理ガス供給へッ ド 3 0 , 2 0間に、 所定間隔の隙間 Sが形成されるように同一平面内に配置さ れている。  Thus, after the substrate K is temporarily placed on the support needles 12 while the mounting table 15 is at the lower end position, when the mounting table 15 is raised, the support needles 12 are moved to the mounting table 1. The substrate K is mounted on the mounting table 15 while being relatively immersed in the substrate 5. In addition, when the mounting table 15 reaches the rising end position, the elevating device 16 is configured such that a distance g between the lower surface of each of the permeable members 24 and 34 described below and the surface of the substrate K becomes a predetermined distance. Then, the mounting table 15 is raised to the raised end position. As shown in FIGS. 1 to 6, each of the first processing gas supply heads 30 is provided above the peripheral portion of the substrate K, and each of the second processing gas supply heads 20 is provided. Are disposed above the region excluding the peripheral edge of the substrate K. Each of the second processing gas supply heads 20 and each of the first processing gas supply heads 30 are adjacent to each other. The first and second processing gas supply heads 30 and 20 are arranged on the same plane so as to form a predetermined gap S between them.
また、 前記各第 2処理ガス供給へッ ド 2 0及び各第 1 処理ガス供給へ ッ ド 3 0は、 ブロック状の上部部材 2 1 , 3 1 と、 この上部部材 2 1 , 3 1 の下面に固設され、 上下にそれぞれ開口した内部空間を有する筐体 状の下部部材 2 2 , 3 2と、 この下部部材 2 2 , 3 2の下面 (基板 Kと の対向面) 側の開口部 2 3 , 3 3に、 当該開口部 2 3 , 3 3を閉塞する ように設けられた通気性部材 2 4, 3 4とからそれぞれ構成される。 尚、 各第 2処理ガス供給へッ ド 2 0及び各第 1 処理ガス供給へッ ド 3 0は、 これらの各上部部材 2 1 , 3 1 の上面が連結部材 4 0にそれぞれ 固設されてこれと一体的に設けられておリ、 この連結部材 4 0が前記処 理チャンバ 1 0の側壁に配設された支持部材 4 1 によって支持されてい る。 Further, each of the second processing gas supply heads 20 and each of the first processing gas supply heads 30 include a block-shaped upper member 21, 31 and a lower surface of the upper member 21, 31. Lower members 22, 32, which are fixed to each other and have internal spaces opened up and down, respectively, and an opening 2 on the lower surface (the surface facing the substrate K) side of the lower members 22, 32. Close the openings 2 3, 3 3 at 3, 3 3 Members 24 and 34 provided as described above. Note that each of the second processing gas supply heads 20 and each of the first processing gas supply heads 30 are such that the upper surfaces of the upper members 21 and 31 are fixed to the connecting member 40, respectively. The connecting member 40 is integrally provided with the connecting member 40 and is supported by a supporting member 41 disposed on a side wall of the processing chamber 10.
前記各通気性部材 2 4 , 3 4は、 上下 (表裏) に貫通した多数の通気 路を全域にわたって有する板状の部材からなり、 上述したように、 下部 部材 2 2, 3 2の下部開口部 2 3 , 3 3を閉塞するように当該下部部材 2 3 , 3 3に固設されて、 その下面が前記載置台 1 5上の基板 Kと対向 しており、 当該通気性部材 2 4, 3 4は、 全体と してその下面が前記基 板 Kの全表面 (前記隙間 S部分に対応する部分を除く) に対向した状態 となっている。  Each of the permeable members 24 and 34 is a plate-like member having a large number of air passages penetrating vertically (front and back) over the entire area. As described above, the lower openings of the lower members 22 and 32 are formed as described above. The lower members 23, 33 are fixed to the lower members 23, 33 so as to close the lower members 23, 33, and the lower surface thereof is opposed to the substrate K on the mounting table 15 described above. 4 is a state in which the lower surface as a whole faces the entire surface of the substrate K (excluding the portion corresponding to the gap S).
通気性部材 2 4, 3 4と しては、 ステンレスの焼結体, ジルコニァの 焼結体, チタンの焼結体及びセラミックの焼結体や、 ポリテ トラフルォ 口エチレンの多孔質膜の他、 金網やパンチングメタル、 金属製の不織布 などを挙げることができ、 例えば、 通気性部材 2 4 , 3 4が焼結体から 構成されている場合、 その各粒子間に形成された空隙 (気孔) が前記通 気路に相当する。  Examples of the permeable members 24 and 34 include a sintered body of stainless steel, a sintered body of zirconia, a sintered body of titanium and a sintered body of ceramic, a polytetrafluoroethylene porous membrane, and a wire mesh. Or a punched metal, a metal nonwoven fabric, or the like. For example, when the permeable members 24 and 34 are made of a sintered body, the voids (pores) formed between the particles are as described above. It corresponds to an airway.
前記上部部材 2 1 , 3 1 及び通気性部材 2 4 , 3 4によって閉塞され る前記下部部材 2 2 , 3 2の内部空間は、 ガス滞留室 2 8 , 3 8と して 機能するものであり、 ガス滞留室 3 8には、 第 1 オゾンガス生成装置 5 2によって生成されたオゾンガスが、 配管 5 3及び各下部部材 3 2に形 成されたオゾンガス流路 3 9を介して、 当該第 1 オゾンガス生成装置 5 2からそれぞれ供給, 充填され、 ガス滞留室 2 8には、 第 2オゾンガス 生成装置 5 0によって生成されたオゾンガス (処理ガス) が、 配管 5 1 及び各上部部材 2 1 に形成されたオゾンガス流路 2 9を介して、 当該第 2オゾンガス生成装置 5 0からそれぞれ供給, 充填される。 The internal spaces of the lower members 22 and 32 closed by the upper members 21 and 31 and the permeable members 24 and 34 function as gas retention chambers 28 and 38. In the gas retaining chamber 38, the ozone gas generated by the first ozone gas generator 52 is supplied via the pipe 53 and the ozone gas flow path 39 formed in each lower member 32 to the first ozone gas. The ozone gas (process gas) generated by the second ozone gas generator 50 is supplied and filled from the generators 52 into the gas retention chamber 28, respectively. And, it is supplied and filled from the second ozone gas generator 50 via an ozone gas flow path 29 formed in each upper member 21.
尚、 第 1 オゾンガス生成装置 5 2により生成されるオゾンガスのォゾ ン濃度は、 第 2オゾンガス生成装置 5 0により生成されるオゾンガスよ リも高濃度となっている。 また、 前記オゾンガス流路 3 9の設けられる 位置は、 第 2図, 第 5図及び第 6図に示すように、 第 1 処理ガス供給へ ッ ド 3 0の配設位置によって、 それぞれ若干異なった位置となっている 。 ここに、 第 5図は、 第 2処理ガス供給ヘッ ド 2 0と平行に配設された 第 1 処理ガス供給ヘッ ド 3 0を示したものであり、 第 6図は、 第 2処理 ガス供給へッ ド 2 0と直交するように配設された第 1処理ガス供給へッ ド 3 0を示したものである。  The ozone gas generated by the first ozone gas generator 52 has a higher ozone concentration than the ozone gas generated by the second ozone gas generator 50. Further, as shown in FIGS. 2, 5, and 6, the position where the ozone gas flow path 39 is provided differs slightly depending on the arrangement position of the first processing gas supply head 30. Position. Here, FIG. 5 shows the first processing gas supply head 30 arranged in parallel with the second processing gas supply head 20, and FIG. 6 shows the second processing gas supply head. FIG. 3 shows a first processing gas supply head 30 arranged orthogonally to the head 20.
斯く して、 第 1 , 第 2オゾンガス生成装置 5 2 , 5 0から配管 5 3 , 5 1 及び各オゾンガス流路 3 9 , 2 9を介して各ガス滞留室 3 8 , 2 8 に供給されたオゾンガスは、 当該各ガス滞留室 3 8 , 2 8の下部開口部 3 3 , 2 3にそれぞれ設けられた通気性部材 3 4, 2 4の通気路を通り 基板 K表面の周縁部とこれ以外の領域に向けてそれぞれ吐出されるが、 各ガス滞留室 3 8 , 2 8内の内圧が高まり、 当該各ガス滞留室 3 8 , 2 8内の圧力がほぼ平衡状態になると、 当該オゾンガスは各通気性部材 3 4 , 2 4の全域からほぼ均一な速度で吐出されるようになる。  Thus, the gas was supplied from the first and second ozone gas generators 52, 50 to the gas retention chambers 38, 28 via the pipes 53, 51 and the ozone gas flow paths 39, 29. The ozone gas passes through the ventilation passages of the permeable members 34, 24 provided in the lower openings 33, 23 of the gas retention chambers 38, 28, respectively, and the periphery of the surface of the substrate K and other parts. Each ozone gas is discharged toward the region, but when the internal pressure in each of the gas retention chambers 38, 28 rises and the pressure in each of the gas retention chambers 38, 28 becomes almost equilibrium, the ozone gas flows through The liquid is discharged from the entire area of the conductive members 34 and 24 at a substantially uniform speed.
即ち、 第 1 オゾンガス生成装置 5 2から各ガス滞留室 3 8に供給され たオゾンガスは、 各通気性部材 3 4によってほぼ均一な速度に拡散され た状態で基板 K表面の周縁部に向けて吐出され、 第 2オゾンガス生成装 置 5 0から各ガス滞留室 2 8に供給されたオゾンガスは、 各通気性部材 2 4によつてほぼ均一な速度に拡散された状態で基板 K表面の周縁部以 外の領域に向けて吐出される。  That is, the ozone gas supplied from the first ozone gas generator 52 to each gas retaining chamber 38 is discharged toward the peripheral portion of the surface of the substrate K in a state where it is diffused at a substantially uniform speed by each permeable member 34. Then, the ozone gas supplied from the second ozone gas generation device 50 to each gas retaining chamber 28 is diffused at a substantially uniform speed by each of the permeable members 24, and the ozone gas is diffused from the peripheral portion of the substrate K surface. Discharged toward the outside area.
また、 前記各上部部材 2 1 , 3 1 には、 冷却液流路 2 7 , 3 7がそれ ぞれ形成されており、 これら各冷却液流路 2 7 , 3 7には、 冷却液循環 装置 4 5に接続された配管 4 6 , 4 7がそれぞれ接続され、 当該冷却液 循環装置 4 5から配管 4 6を介して各冷却液流路 2 7 , 3 7に冷却液が 供給される。 そして、 供給された冷却液は、 各冷却液流路 2 7 , 3 7内 を流通した後、 配管 4 7を介して冷却液循環装置 4 5に還流される。 斯 く して、 冷却液が各第 1 , 第 2処理ガス供給ヘッ ド 2 0 , 3 0と冷却液 循環装置 4 5との間で循環され、 かかる冷却液によって各第 1 , 第 2処 理ガス供給ヘッ ド 2 0 , 3 0が冷却され、 ひいては各ガス滞留室 2 8 , 3 8に供給, 充填されたオゾンガスが冷却される。 The upper member 21, 31 has a coolant passage 27, 37. Pipes 46 and 47 connected to the coolant circulating device 45 are connected to the coolant channels 27 and 37, respectively. The coolant is supplied to the coolant channels 27 and 37 via the pipe 46. Then, the supplied coolant flows through the coolant channels 27 and 37 and is returned to the coolant circulation device 45 via the pipe 47. In this way, the coolant is circulated between the first and second processing gas supply heads 20 and 30 and the coolant circulating device 45, and the first and second processing are performed by the coolant. The gas supply heads 20 and 30 are cooled, and the ozone gas supplied to and filled in the gas storage chambers 28 and 38 is cooled.
尚、 前記冷却液流路 3 7の設けられる位置は、 第 2図, 第 5図及び第 6図に示すように、 第 1 処理ガス供給へッ ド 3 0の配設位置によつて、 それぞれ若干異なった位置となっている。  The position where the cooling liquid flow path 37 is provided depends on the arrangement position of the first processing gas supply head 30 as shown in FIGS. 2, 5, and 6, respectively. It is in a slightly different position.
以上のように構成された本例のオゾン処理装置 1 によれば、 まず、 適 宜手段によって基板 Kが支持針 1 2上に載置される。 この時、 載置台 1 5の位置は下降端に位置している。 また、 冷却液循環装置 4 5から各冷 却液流路 2 7 , 3 7に冷却液がそれぞれ供給, 循環され、 この冷却液に よって第 1 処理ガス供給へッ ド 3 0及び第 2処理ガス供給へッ ド 2 0が それぞれ冷却される。  According to the ozone treatment apparatus 1 of the present example configured as described above, first, the substrate K is placed on the support needle 12 by appropriate means. At this time, the position of the mounting table 15 is located at the lower end. The coolant is supplied and circulated from the coolant circulation device 45 to each of the coolant passages 27 and 37, and the coolant supplies the first processing gas supply head 30 and the second processing gas. The supply heads 20 are each cooled.
ついで、 排気装置 5 5により処理チャンバ 1 0内の圧力が 7 K P a以 上 (より好ましくは、 1 4 K P a以上) 、 オゾンガスの供給元 (第 1 ォ ゾンガス生成装置 5 2及び第 2オゾンガス生成装置 5 0 ) の圧力以下に 調整される。  Then, the pressure in the processing chamber 10 is 7 KPa or more (more preferably, 14 KPa or more) by the exhaust device 55, and the supply source of the ozone gas (the first ozone gas generation device 52 and the second ozone gas generation device 52). The pressure is adjusted below the pressure of the device 50).
そして、 載置台 1 5が上昇すると、 支持針 1 2がノ載置台 1 5に対し相 対的に没して、 基板 Kが載置台 1 5の上面に載置されるとともに、 載置 合 1 5が上昇端位置に達して、 各通気性部材 2 4 , 3 4の下面と基板 K 表面との間の間隔 gが所定の間隔となる。 また、 載置台 1 5の上面に載 置された基板 Kは、 ヒータ (図示せず) によって所定温度に加熱される 次に、 上記濃度のオゾンガスが第 1 , 第 2オゾンガス生成装置 5 2 , 5 0から配管 5 3 , 5 1 及び各オゾンガス流路 3 9, 2 9を介して各第 1 , 第 2処理ガス供給ヘッ ド 3 0 , 2 0のガス滞留室 3 8 , 2 8にそれ ぞれ供給され、 供給されたオゾンガスは、 各ガス滞留室 3 8 , 2 8に設 けられた通気性部材 3 4, 2 4の通気路を通り基板 Κ表面の周縁部及び これ以外の領域に向けて、 それぞれほぼ均一な速度に拡散された状態で 吐出される。 Then, when the mounting table 15 rises, the support needles 12 relatively sink with respect to the mounting table 15, and the substrate K is mounted on the upper surface of the mounting table 15, and 5 reaches the rising end position, and the distance g between the lower surface of each of the air-permeable members 24 and 34 and the surface of the substrate K becomes a predetermined distance. Also, mount on the upper surface of The placed substrate K is heated to a predetermined temperature by a heater (not shown). Next, ozone gas having the above concentration is supplied from the first and second ozone gas generators 52 and 50 to pipes 53 and 51 and The first and second processing gas supply heads 30 and 20 are supplied to the gas storage chambers 38 and 28 via the ozone gas flow paths 39 and 29, respectively. The gas was diffused at a substantially uniform speed through the air passages of the gas permeable members 34, 24 provided in the gas retention chambers 38, 28 toward the peripheral edge of the substrate Κ surface and other areas. It is discharged in the state.
尚、 上述したように、 第 1 オゾンガス生成装置 5 2により生成される ォゾンガスのオゾン濃度は、 第 2ォゾンガス生成装置 5 0により生成さ れるオゾンガスよりも高濃度となっており、 基板 Κの周縁部には、 他の 領域よりも高濃度のオゾンガスが吹きかけられる。  As described above, the ozone gas generated by the first ozone gas generator 52 has a higher ozone concentration than the ozone gas generated by the second ozone gas generator 50, and the Is sprayed with a higher concentration of ozone gas than other areas.
このようにして吐出されたオゾンガスは、 基板 Κ表面にそれぞれ到達 して、 当該オゾンガス中のオゾン ( Ο 3 ) が酸素 ( Ο 2 ) と活性酸素 ( Ο * ) とに分解され、 基板 Κ表面に形成されたレジス ト膜が活性酸素 ( ο * ) との熱化学反応によって除去される。 In this way, the discharged ozone gas, reaches the respective substrate Κ surface, ozone of the ozone gas (Omicron 3) is decomposed into oxygen (Omicron 2) and active oxygen (Omicron *), the substrate Κ surface The formed resist film is removed by a thermochemical reaction with active oxygen (ο *).
そして、 反応後のオゾンガスは基板 Κ表面に沿って流動した後、 各通 気性部材 2 4 , 3 4と基板 Κとの間から適宜流出する。  Then, the ozone gas after the reaction flows along the surface of the substrate 、, and then flows out as appropriate between the air-permeable members 24 and 34 and the substrate Κ.
上述したように、 基板 Κ表面に形成されるレジス ト膜 Rは、 第 1 2図 に示すように、 通常、 基板 Κ周縁部の膜厚がその他の部分に比べて厚く なっているが、 上記のように、 基板 Κの周縁部に高オゾン濃度のオゾン ガスを吹きかけることで、 当該周縁部におけるレジス ト膜の剥離がその 他の領域に比べて促進され、 その結果、 膜厚の厚い周縁部とそれ以外の 領域とをほぼ同じ時間で処理することが可能となる。 また、 このように することで、 従来に比べて、 オゾンガスの使用量や、 未反応のまま排気 されるオゾンを減少させることができる。 As described above, the resist film R formed on the surface of the substrate is generally thicker at the peripheral portion of the substrate than at other portions, as shown in FIG. By spraying ozone gas having a high ozone concentration on the peripheral portion of the substrate 剥離, the peeling of the resist film at the peripheral portion is promoted as compared with other regions, and as a result, the peripheral portion having a large thickness is formed. And other areas can be processed in almost the same time. By doing so, the amount of ozone gas used and the amount of unreacted exhaust air Ozone can be reduced.
また、 本例のオゾン処理装置 1 では、 オゾンガスを各ガス滞留室 2 8 In the ozone treatment apparatus 1 of the present embodiment, the ozone gas is supplied to each gas storage chamber 2 8
, 3 8に供給, 充填した後、 各通気性部材 2 4, 3 4の全域にわたって 形成された通気路から吐出させるようにしているので、 各通気路から吐 出されるオゾンガスの速度を各通気性部材 2 4, 3 4の全域にわたって ほぼ均一なものとすることができ、 各通気性部材 2 4 , 3 4と対向する 基板 Kの領域をほぼ均一に処理することができる。 , 38 after being supplied and filled, the gas is discharged from the air passage formed over the entire area of each of the gas permeable members 24, 34. It can be made substantially uniform over the entire area of the members 24 and 34, and the region of the substrate K facing each of the air-permeable members 24 and 34 can be treated almost uniformly.
また、 基板 Kは所定流速のオゾンガスと接触することによって冷却さ れるが、 吐出されるオゾンガスの速度が均一であれば、 これと接触する 基板 K表面の温度低下が均一となり、 その表面温度が均一となる。 この ため、 活性酸素の生成効率が均一なものとなり、 この意味においても、 基板 Kを均一に処理することが可能となる。  The substrate K is cooled by contact with the ozone gas at a predetermined flow rate. However, if the velocity of the discharged ozone gas is uniform, the temperature of the surface of the substrate K in contact therewith becomes uniform, and the surface temperature becomes uniform. It becomes. Therefore, the active oxygen generation efficiency becomes uniform, and in this sense, the substrate K can be uniformly processed.
ところで、 各通気性部材 2 4 , 3 4からそれぞれ吐出され、 基板 K表 面に供給されたオゾンガスは当該基板 K表面に沿って流動して、 各通気 性部材 2 4 , 3 4と基板 Kとの間から排気される。 このため、 基板 Kの 処理領域中央付近に供給されたオゾンガスは、 順次供給される未反応の オゾンガスと容易に置換され、 当該中央付近は安定したオゾン濃度のォ ゾンガスによって処理されるものの、 前記中央より周辺の部分では、 反 応後のオゾンガスが新たに供給される未反応のオゾンガスと置換され難 く、 これらが混合した状態となってォゾン濃度が低下し、 中央付近に比 ベて処理効率が低下する嫌いにある。  By the way, the ozone gas discharged from each of the permeable members 24 and 34 and supplied to the surface of the substrate K flows along the surface of the substrate K, and the ozone gas is supplied to each of the permeable members 24 and 34 and the substrate K. Exhausted from between. For this reason, the ozone gas supplied near the center of the processing region of the substrate K is easily replaced by the sequentially supplied unreacted ozone gas, and the vicinity of the center is processed by the ozone gas having a stable ozone concentration. In the peripheral area, the reacted ozone gas is not easily replaced by newly supplied unreacted ozone gas, and the ozone concentration is reduced in a mixed state, and the treatment efficiency is lower than that in the vicinity of the center. I hate to decline.
そこで、 本例のオゾン処理装置 1 では、 矩形形状をした第 1 , 第 2処 理ガス供給ヘッ ド 2 0, 3 0の複数を、 隣り合う各第 1 , 第 2処理ガス 供給ヘッ ド 2 0, 3 0間に隙間 Sを形成してそれぞれ配設するようにし ている。 これにより、 反応後のオゾンガスを各第 1 , 第 2処理ガス供給 ヘッ ド 2 0, 3 0の短辺側方向に設けられた隙間 Sから効果的に排気す ることができ、 各第 1 , 第 2処理ガス供給ヘッ ド 2 0 , 3 0によって処 理される基板 Κ表面をほぼ均一に処理することが可能となる。 また、 こ のように、 複数の第 1 , 第 2処理ガス供給ヘッ ド 2 0 , 3 0を配設する ことで、 一度に処理することができる基板 Κの処理領域を広くすること ができる。 Therefore, in the ozone treatment apparatus 1 of this example, a plurality of the first and second processing gas supply heads 20 and 30 each having a rectangular shape are connected to the adjacent first and second processing gas supply heads 20. A gap S is formed between the first and the second 30 to arrange them. Thereby, the ozone gas after the reaction is effectively exhausted from the gap S provided in the short side direction of the first and second processing gas supply heads 20 and 30. Thus, the surface of the substrate to be processed by the first and second processing gas supply heads 20 and 30 can be processed substantially uniformly. Further, by arranging the plurality of first and second processing gas supply heads 20 and 30 as described above, the processing area of the substrate Κ which can be processed at once can be widened.
尚、 オゾン処理の際には、 前記各第 1 , 第 2処理ガス供給ヘッ ド 2 0 , 3 0を、 可能な限り基板 Κに近づけるのが好ましく、 各通気性部材 2 4, 3 4と基板 Κとの間の間隔 gは、 0 . 2 m m以上 1 . 4 m m以下で あるのが好ましい。 前記間隔 gが 1 . 4 m mを超えると、 吐出されたォ ゾンガスが基板 K表面に達するまでの時間が長くなリ、 その間に熱分解 によってオゾン濃度が低下したり、 ォゾンガスが雰囲気中に拡散したリ して、 均一且つ効率的な処理ができないからである。 一方、 前記間隔 g が 0 . 2 m m未満であると、 オゾンガスが各通気性部材 2 4 , 3 4と基 板 Kとの間から排気され難くなるといった問題や、 装置製造上の問題を 生じる。  In the ozone treatment, it is preferable that the first and second processing gas supply heads 20 and 30 are as close as possible to the substrate 、. It is preferable that the distance g from the distance Κ is 0.2 mm or more and 1.4 mm or less. When the distance g exceeds 1.4 mm, the time required for the discharged ozone gas to reach the surface of the substrate K becomes longer, during which the ozone concentration decreases due to thermal decomposition or the ozone gas diffuses into the atmosphere. On the other hand, uniform and efficient processing cannot be performed. On the other hand, if the distance g is less than 0.2 mm, problems such as difficulty in exhausting ozone gas from between the air permeable members 24 and 34 and the substrate K, and a problem in manufacturing the device will occur.
また、 処理チャンバ 1 0内の雰囲気温度は、 ヒータ (図示せず) によ つて加熱され高温となるため,、 各第 1 , 第 2処理ガス供給ヘッ ド 2 0 , 3 0がこの高温となった雰囲気などによって加熱されることになるが、 当該各第 1 , 第 2処理ガス供給ヘッ ド 2 0 , 3 0を、 その各冷却液流路 2 7 , 3 7を流通する冷却液によって冷却するようにしているので、 各 ガス滞留室 2 8 , 3 8内のオゾンガスをこの冷却液によってそれぞれ冷 却することができ、 その温度を一定の範囲内に維持することができる。 これにより、 オゾンガス中のオゾン濃度が低下するのを防止することが できる。  Further, since the ambient temperature in the processing chamber 10 is heated by a heater (not shown) to a high temperature, the first and second processing gas supply heads 20 and 30 have the high temperature. The first and second processing gas supply heads 20 and 30 are cooled by the cooling liquid flowing through the respective cooling liquid flow paths 27 and 37. Thus, the ozone gas in each of the gas storage chambers 28 and 38 can be cooled by the coolant, and the temperature can be maintained within a certain range. This can prevent the ozone concentration in the ozone gas from being reduced.
基板 Kの加熱温度は、 2 0 0 °C ~ 5 0 0 °Cの範囲が好ましい。 この範 囲内であれば、 基板 K内に含まれる不純物の蒸発を上記処理と同時に行 うことができる。 また、 オゾンガスは、 1 4重量%以上のオゾンを含む ものが好適であり、 オゾンと T E O S ( Tetraethyl orthosilicate , ケ ィ酸テ トラエチル、 S i ( C 2 H 5 O ) 4 ) の混合ガスであっても良い。 以上、 本発明の一実施形態について説明したが、 本発明の採り得る具 体的な態様は、 何らこれに限定されるものではない。 The heating temperature of the substrate K is preferably in the range of 200 ° C. to 500 ° C. Within this range, the impurities contained in the substrate K are evaporated at the same time as the above processing. I can. Further, ozone gas, 1 4 and is preferably one containing a weight% or more of ozone, ozone and TEOS with a mixed gas (Tetraethyl orthosilicate, Ke Isante Toraechiru, S i (C 2 H 5 O) 4) Is also good. As mentioned above, although one Embodiment of this invention was described, the concrete aspect which this invention can take is not limited to this at all.
上記オゾン処理装置 1 は、 例えば、 第 7図乃至第 1 0図に示すように 、 基板 Kを支持して所定の方向に搬送しつつ前記処理を行うように構成 されていても良い。 尚、 上記オゾン処理装置 1 の構成と同じ構成部分に ついては、 同一の符号を付してその詳しい説明を省略する。  For example, as shown in FIGS. 7 to 10, the ozone treatment apparatus 1 may be configured to perform the treatment while supporting and transporting the substrate K in a predetermined direction. The same components as those of the ozone treatment apparatus 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
前記オゾン処理装置 7 0は、 基板 Kを支持して所定の方向 (第 7図に おける矢示 D方向) に搬送する搬送ローラ 7 5と、 この搬送ローラ 7 5 によつて搬送される基板 Kの上方に、 当該基板 Kと対向し且つ前記搬送 方向と直交する方向 (第 7図における矢示 E方向) における基板 Kの全 幅にわたるように、 前記搬送方向に沿って所定間隔を隔てて配設された 2つの第 2処理ガス供給へッ ド 8 0と、 前記搬送方向と直交する方向に おける基板 Kの両側縁部の上方に、 当該基板 Kと対向するように前記搬 送方向に沿ってそれぞれ配設された 2つの第 1 処理ガス供給へッ ド 8 5 と、 前記基板 Kの下方に配設され、 当該基板 Kを加熱するヒータ 7 8な どを備えて構成される。  The ozone treatment apparatus 70 includes a transport roller 75 that supports the substrate K and transports the substrate K in a predetermined direction (the direction indicated by an arrow D in FIG. 7). The substrate K transported by the transport roller 75 Above the substrate K at predetermined intervals along the transport direction so as to cover the entire width of the substrate K in a direction facing the substrate K and orthogonal to the transport direction (the direction indicated by the arrow E in FIG. 7). Along the two second processing gas supply heads 80 provided, and on both side edges of the substrate K in a direction orthogonal to the transport direction, along the transport direction so as to face the substrate K. And two first processing gas supply heads 85, respectively, and a heater 78 disposed below the substrate K and heating the substrate K.
尚、 前記搬送ローラ 7 5, 第 1 処理ガス供給へッ ド 8 5 , 第 2処理ガ ス供給へッ ド 8 0及びヒータ 7 8は、 図示しない処理チャンバ内に適宜 配設されている。  The transport roller 75, the first processing gas supply head 85, the second processing gas supply head 80, and the heater 78 are appropriately disposed in a processing chamber (not shown).
前記搬送ローラ 7 5は、 その複数が前記搬送方向に沿って所定の間隔 で配設されており、 その回転軸 7 6の両端部が前記処理チャンバ (図示 せず) の側壁などに適宜固設された各支持装置 (図示せず) によってそ れぞれ回転自在に支持されている。 また、 搬送ローラ 7 5の両側に位置 するローラ 7 7には、 鍔部 7 7 aが形成されており、 この鍔部 7 7 aに よって、 基板 Kが矢示 E方向に移動するのを規制している。 A plurality of the transfer rollers 75 are disposed at predetermined intervals along the transfer direction, and both ends of the rotating shaft 76 are fixed to side walls of the processing chamber (not shown) as appropriate. Each supporting device (not shown) is rotatably supported. It is located on both sides of the transport rollers 75. A flange 77 a is formed on the roller 77, and the movement of the substrate K in the direction of arrow E is restricted by the flange 77 a.
また、 前記回転軸 7 6の一方端は、 図示しない駆動装置に接続されて おり、 この駆動装置 (図示せず) によって当該回転軸 7 6がその軸中心 に回転せしめられることにより、 搬送ローラ 7 5が回転して基板 Kを前 記搬送方向に搬送するようになつている。  One end of the rotating shaft 76 is connected to a driving device (not shown), and the driving device (not shown) causes the rotating shaft 76 to rotate around the center of the rotating shaft 76, whereby the transport roller 7 is rotated. 5 rotates to transport the substrate K in the transport direction.
前記第 1処理ガス供給へッ ド 8 5及び第 2処理ガス供給へッ ド 8 0は 、 冷却液流路 3 7, 2 7が形成された上部部材 3 1 , 2 1 と、 オゾンガ ス流路 3 9 , 2 9 ' が形成された下部部材 3 2, 2 2と、 通気性部材 3 4 , 2 4とからそれぞれ構成されており、 各通気性部材 3 4 , 2 4の下 面と基板 K表面との間の間隔 gが所定の間隔となるようにそれぞれ配設 されている。 尚、 各第 1 , 第 2処理ガス供給ヘッ ド 8 5 , 8 0は、 前記 処理チャンバ (図示せず) の側壁などに適宜固設された各支持部材 (図 示せず) によってそれぞれ支持されている。  The first processing gas supply head 85 and the second processing gas supply head 80 are composed of an upper member 31, 21 in which the coolant flow paths 37, 27 are formed, and an ozone gas flow path. Lower members 32, 22 on which 39, 29 'are formed, and permeable members 34, 24, respectively, are provided. The lower surface of each permeable member 34, 24 and the substrate K They are arranged such that the distance g from the surface becomes a predetermined distance. The first and second processing gas supply heads 85 and 80 are supported by respective support members (not shown) appropriately fixed to the side walls of the processing chamber (not shown). I have.
前記各通気性部材 2 4は、 上述したように、 下部部材 2 2の下部開口 部 2 3を閉塞するように当該下部部材 2 3に固設されて、 その下面が前 記搬送ローラ 7 5によって支持, 搬送される基板 Kと、 その矢示 E方向 における全幅にわたって対向する一方、 前記各通気性部材 3 4は、 上述 したように、 下部部材 3 2の下部開口部 3 3を閉塞するように当該下部 部材 3 3に固設されて、 その下面が前記基板 Kの、 矢示 E方向における 両端部 (周縁部) と対向した状態となっている。  As described above, each of the permeable members 24 is fixed to the lower member 23 so as to close the lower opening 23 of the lower member 22, and the lower surface thereof is formed by the transport roller 75. The substrate K to be supported and conveyed faces the entire width of the substrate K in the direction indicated by the arrow E, while each of the air-permeable members 34 closes the lower opening 33 of the lower member 32 as described above. The lower surface of the substrate K is fixed to the lower member 33, and the lower surface thereof faces both ends (peripheral portions) of the substrate K in the direction of arrow E.
このように構成されたオゾン処理装置 7 0によれば、 搬送ローラ 7 5 によって基板 Kを搬送しつつ上記処理を行うことができるので、 当該処 理を連続的に行うことができる。  According to the ozone treatment apparatus 70 configured as described above, the above-described processing can be performed while the substrate K is transported by the transport roller 75, so that the processing can be continuously performed.
また、 上例のオゾン処理装置 1 , 7 0では、 第 1 処理ガス供給ヘッ ド 3 0, 8 5に供給されるオゾンガスのオゾン濃度を、 第 2処理ガス供給 ヘッ ド 2 0 , 8 0に供給されるそれと比べて高濃度に設定したが、 第 1 処理ガス供給へッ ド 3 0 , 8 5及び第 2処理ガス供給へッ ド 2 0 , 8 0 に供給されるオゾンガスのオゾン濃度を同濃度にして、 第 1処理ガス供 給へッ ド 3 0, 8 5に供給されるオゾンガスの流量を第 2処理ガス供給 ヘッ ド 2 0 , 8 0に供給されるオゾンガス流量に比べて大きく しても良 い。 このようにしても、 上記と同様の効果が奏される。 Further, in the ozone treatment apparatuses 1 and 70 of the above example, the ozone concentration of the ozone gas supplied to the first processing gas supply heads 30 and 85 is changed to the second processing gas supply head. Although the concentration was set higher than that supplied to the heads 20 and 80, it was supplied to the first processing gas supply heads 30 and 85 and the second processing gas supply heads 20 and 80. The ozone concentration of the supplied ozone gas is made the same, and the flow rate of the ozone gas supplied to the first processing gas supply heads 30 and 85 is supplied to the second processing gas supply heads 20 and 80 It may be larger than the ozone gas flow rate. Even in this case, the same effects as above can be obtained.
また、 上例のオゾン処理装置 7 0では、 搬送ローラ 7 5によリ基板 K を搬送することによって、 基板 Kと第 1 , 第 2処理ガス供給へッ ド 8 5 , 8 0とを相対移動させるように構成したが、 これに限られるものでは なく、 適宜支持装置により支持された基板 Kに対して第 1 , 第 2処理ガ ス供給へッ ド 8 5 , 8 0を当該基板 Kの表面に沿った方向に適宜移動さ せることによって、 基板 Kと各第 1 , 第 2処理ガス供給へッ ド 8 5 , 8 0とを相対移動させるように構成することもできる。  In the ozone treatment apparatus 70 of the above example, the substrate K is transported by the transport rollers 75 so that the substrate K and the first and second processing gas supply heads 85 and 80 are relatively moved. However, the present invention is not limited to this, and the first and second processing gas supply heads 85 and 80 are applied to the surface of the substrate K on the substrate K appropriately supported by the supporting device. The substrate K and the first and second processing gas supply heads 85 and 80 can be configured to be relatively moved by appropriately moving in the direction along the axis.
また、 上記各処理ガス供給ヘッ ド 2 0 , 3 0 , 8 0, 8 5の形態は何 ら上例のものに限られない。 産業上の利用可能性  Further, the form of each processing gas supply head 20, 30, 80, 85 is not limited to the above example. Industrial applicability
以上のように、 本発明は、 半導体基板や液晶基板などの基板表面に形 成されたレジス ト膜の除去に好適に用いることができる。  As described above, the present invention can be suitably used for removing a resist film formed on a substrate surface such as a semiconductor substrate or a liquid crystal substrate.

Claims

請 求 の 範 囲 The scope of the claims
1 . 基板を支持する支持手段と、 1. Support means for supporting the substrate;
前記支持手段によって支持された基板を加熱する加熱手段と、 前記支持手段によって支持された基板の上方に配設され、 該基板表面 の周縁部に向けてオゾンを含んだ処理ガスを吐出する第 1 吐出手段、 及 ぴ前記基板表面の前記周縁部以外の領域に向けて前記処理ガスを吐出す る第 2吐出手段と、  Heating means for heating the substrate supported by the support means; and a first means disposed above the substrate supported by the support means for discharging a processing gas containing ozone toward a peripheral portion of the substrate surface. Discharging means, and second discharging means for discharging the processing gas toward a region other than the peripheral portion of the substrate surface,
前記第 1 吐出手段及び第 2吐出手段に前記処理ガスを供給するととも に、 前記第 2吐出手段に供給する処理ガスに比べて高オゾン濃度の処理 ガスを前記第 1 吐出手段に供給するように構成されたガス供給手段とを 設けて構成したことを特徴とするオゾン処理装置。  The processing gas is supplied to the first discharge unit and the second discharge unit, and a processing gas having a higher ozone concentration than the processing gas supplied to the second discharge unit is supplied to the first discharge unit. An ozone treatment apparatus, comprising: a gas supply unit configured as described above.
2 . 基板を支持する支持手段と、  2. Support means for supporting the substrate;
前記支持手段によって支持された基板を加熱する加熱手段と、 前記支持手段によって支持された基板の上方に配設され、 該基板表面 の周縁部に向けてオゾンを含んだ処理ガスを吐出する第 1 吐出手段、 及 び前記基板表面の前記周縁部以外の領域に向けて前記処理ガスを吐出す る第 2吐出手段と、  Heating means for heating the substrate supported by the support means; and a first means disposed above the substrate supported by the support means for discharging a processing gas containing ozone toward a peripheral portion of the substrate surface. Discharge means, and second discharge means for discharging the processing gas toward a region other than the peripheral portion of the substrate surface,
前記第 1 吐出手段及び第 2吐出手段に前記処理ガスを供給するととも に、 前記第 1 吐出手段から吐出される処理ガスの流量が前記第 2吐出手 段から吐出される処理ガスの流量に比べて多くなるように、 前記処理ガ スの供給量を制御するガス供給手段とを設けて構成したことを特徴とす るオゾン処理装置。  While supplying the processing gas to the first discharging means and the second discharging means, the flow rate of the processing gas discharged from the first discharging means is compared with the flow rate of the processing gas discharged from the second discharging means. An ozone treatment apparatus characterized by comprising a gas supply means for controlling a supply amount of the treatment gas so as to increase the amount of the treatment gas.
3 . 前記第 1 吐出手段及び第 2吐出手段と前記支持手段によって支持 された基板とを、 該基板の表面に沿った方向に相対移動させる移動手段 を更に設けて構成したことを特徴とする請求の範囲第 1 項又は第 2項記 載のオゾン処理装置。 3. A moving means for relatively moving the first and second discharging means and the substrate supported by the supporting means in a direction along the surface of the substrate. Paragraph 1 or 2 Ozone treatment equipment.
4 . 前記第 1 吐出手段及び第 2吐出手段は、 それぞれ前記基板と対向 配置され、 且つ該対向面に開口する所定内容積のガス滞留室を備えた筐 体状の部材から構成されるとともに、 前記開口部が、 表裏に貫通した通 気路を全域にわたって多数有する板状の通気性部材によって閉塞され、 前記ガス供給手段から供給された処理ガスが前記各ガス滞留室に充填さ れ、 前記各通気性部材の各通気路を通ってそれぞれ吐出されるように構 成されてなることを特徴とする請求の範囲第 1 項又は第 2項記載のォゾ ン処理装置。  4. The first discharge means and the second discharge means are each formed of a housing-like member provided with a gas retention chamber having a predetermined internal volume that is disposed to face the substrate and that opens to the opposite surface, The opening is closed by a plate-shaped permeable member having a large number of air passages penetrating from front to back over the entire area, and the processing gas supplied from the gas supply unit is filled in each of the gas retention chambers. 3. The ozon treatment apparatus according to claim 1, wherein the ozone treatment apparatus is configured to be discharged through each ventilation path of the ventilation member.
5 . 前記第 1 吐出手段及び第 2吐出手段を、 これらの各通気性部材と 前記基板との間の間隔が 0 . 2 m m以上 1 . 4 m m以下となるようにそ れぞれ配設したことを特徴とする請求の範囲第 4項記載のオゾン処理装 置。 5. The first discharge means and the second discharge means are arranged so that the distance between each of these air-permeable members and the substrate is not less than 0.2 mm and not more than 1.4 mm. 5. The ozone treatment apparatus according to claim 4, wherein:
PCT/JP2003/015360 2002-12-13 2003-12-01 Ozone-processing apparatus WO2004055879A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002362295A JP2004193484A (en) 2002-12-13 2002-12-13 Ozone treatment system
JP2002-362295 2002-12-13

Publications (1)

Publication Number Publication Date
WO2004055879A1 true WO2004055879A1 (en) 2004-07-01

Family

ID=32588154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015360 WO2004055879A1 (en) 2002-12-13 2003-12-01 Ozone-processing apparatus

Country Status (3)

Country Link
JP (1) JP2004193484A (en)
TW (1) TW200416885A (en)
WO (1) WO2004055879A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101046902B1 (en) * 2005-11-08 2011-07-06 도쿄엘렉트론가부시키가이샤 Plasma treatment device using shower plate and shower plate
JP5010234B2 (en) * 2006-10-23 2012-08-29 北陸成型工業株式会社 Shower plate in which gas discharge hole member is integrally sintered and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267909A (en) * 1993-03-10 1994-09-22 Hitachi Ltd Organic matter removing device
JPH08283439A (en) * 1995-04-20 1996-10-29 Japan Storage Battery Co Ltd Treatment with ultraviolet light and device therefor
JP2002025971A (en) * 2000-07-04 2002-01-25 Seiko Epson Corp Substrate processing method and device, and method of manufacturing electronic device
JP2002079203A (en) * 2000-09-07 2002-03-19 Techno Plex:Kk Ultraviolet irradiation device and method for controlling ultraviolet-light irradiation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06267909A (en) * 1993-03-10 1994-09-22 Hitachi Ltd Organic matter removing device
JPH08283439A (en) * 1995-04-20 1996-10-29 Japan Storage Battery Co Ltd Treatment with ultraviolet light and device therefor
JP2002025971A (en) * 2000-07-04 2002-01-25 Seiko Epson Corp Substrate processing method and device, and method of manufacturing electronic device
JP2002079203A (en) * 2000-09-07 2002-03-19 Techno Plex:Kk Ultraviolet irradiation device and method for controlling ultraviolet-light irradiation device

Also Published As

Publication number Publication date
TW200416885A (en) 2004-09-01
JP2004193484A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP4560575B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
TWI415185B (en) Etching method and device
CN101819920A (en) Lining processor
JP2009224775A (en) Gas supply equipment, film-forming apparatus, and film formation method
WO2005124845A1 (en) Substrate processing equipment and semiconductor device manufacturing method
TW201013139A (en) Heat treating device and heat treating method
TW200524034A (en) Plasma processing system and plasma treatment process
JP2010118462A (en) Substrate processing apparatus
KR20060048613A (en) Heat treatment apparatus
KR20090037340A (en) Film formation apparatus for semiconductor process and method for using same
JP2005026478A (en) Method and device for substrate processing
JP2004103630A (en) Shower head and semiconductor thermal treatment apparatus using the same
WO2004055879A1 (en) Ozone-processing apparatus
KR100808741B1 (en) Ozone-processing device
JP2010056565A (en) Apparatus for forming thin film
JP4103565B2 (en) Surface treatment apparatus and surface treatment method
JP2003017413A (en) Plasma processing equipment and method
JP2003142415A (en) Plasma treatment device
JP4445226B2 (en) Thin film manufacturing equipment
JP2009004642A (en) Device for treating substrate
JP2006005007A (en) Method and device for forming amorphous silicon layer
JP2004193482A (en) Ozone treatment system
WO2004055878A1 (en) Ozone-processing apparatus
JP2011222404A (en) Plasma processing method, plasma processing apparatus and processing object processed by plasma
JP2004281859A (en) Ozone treatment method and ozone treatment apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US