WO2004055174A1 - Composition de milieu de culture, procede de culture, et myoblastes ainsi obtenus, et leurs utilisations - Google Patents

Composition de milieu de culture, procede de culture, et myoblastes ainsi obtenus, et leurs utilisations Download PDF

Info

Publication number
WO2004055174A1
WO2004055174A1 PCT/FR2003/003691 FR0303691W WO2004055174A1 WO 2004055174 A1 WO2004055174 A1 WO 2004055174A1 FR 0303691 W FR0303691 W FR 0303691W WO 2004055174 A1 WO2004055174 A1 WO 2004055174A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
myoblasts
cell
serum
culture
Prior art date
Application number
PCT/FR2003/003691
Other languages
English (en)
Inventor
Christian Pinset
Original Assignee
Celogos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celogos filed Critical Celogos
Priority to EP03813174A priority Critical patent/EP1572988A1/fr
Priority to NZ540723A priority patent/NZ540723A/en
Priority to BR0316757-7A priority patent/BR0316757A/pt
Priority to MXPA05006350A priority patent/MXPA05006350A/es
Priority to AU2003300585A priority patent/AU2003300585A1/en
Priority to CA002509642A priority patent/CA2509642A1/fr
Priority to US10/538,655 priority patent/US20060258003A1/en
Priority to JP2004559824A priority patent/JP2006509516A/ja
Publication of WO2004055174A1 publication Critical patent/WO2004055174A1/fr
Priority to IL169115A priority patent/IL169115A0/en
Priority to NO20053357A priority patent/NO20053357D0/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0658Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/135Platelet-derived growth factor [PDGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/33Insulin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes

Definitions

  • the present invention relates to a composition of culture medium for progenitor / stem cells from muscle tissue, to a method for culturing progenitor / stem cells, and to a method for producing myoblasts which can be used as a cell therapy product. gene.
  • Document US-A-5130141 discloses a method for obtaining myogenic cells from culture but also myogenic cells which have been previously cloned, the latter having advantages over the former due to their higher development potential.
  • Document US-A-2001 0034061 discloses a method of culturing progenitor cells by controlled use of culture in hypoxia in order to promote specific differentiation.
  • WO-A-01 94555 proposes to provide well-characterized cell populations of muscular origin, adapted and specially prepared for their desired use in cell therapy.
  • EP-A-1048724 which relates to a process for the culture of immortalized muscle cell lines, that is to say which have been obtained after a high number of passages, which are used in therapy gene, either in
  • Document WO-A-97 00774 teaches a means for improving graft uptake by "preconditioning" the myoblasts of the donor in the presence of both a growth factor such as bFGF and an inducer of metalloprotease production , to increase the migration distance of transplanted myoblasts and to increase the number of fused myoblasts expressing functional muscle proteins.
  • Document WO-A-99 56785 discloses a method for producing genetically modified muscle cells before being injected at sites of muscle dysfunction: this method being in particular intended to treat urinary incontinence.
  • WO-A-01 78754 refers to progenitor cells having a long in situ survival, which have a particular expression profile of cellular markers and which can be used in the treatment of urinary incontinence.
  • the document O-A-02 067867 relates to a method of preparing stem cells using a cell matrix to fix them: it is in particular intended for urinary treatment.
  • the literature including all these documents of the prior art cited above, thus have in common the characteristic that the animal serum (non-human, for example bovine or equine) is used during the cell culture properly said, the latter being probably considered as a sufficient supply of all the elements necessary for cell proliferation.
  • transplantation requires the production of a high number of myoblasts, it is therefore important to improve this production by starting from progenitor cells / stem cells from muscle tissue.
  • the present invention proposes to supplement the serum (or serum fraction) which is used in the culture medium, thus making it possible to optimize the culture medium.
  • the present invention provides a composition of cell culture medium containing:
  • one or more compound (s) chosen from the class of antioxidants and / or vitamins (iii) one or more compound (s) chosen from the class of antioxidants and / or vitamins.
  • Serum and / or serum fraction of bovine origin preferably of human origin, can be used.
  • the concentration of human serum is less than 5% by volume, and even more between 1% and 3% by volume.
  • the insulin derivative is chosen from the class of IGFs, and vanadate type insulomimetics.
  • the vitamin is ascorbic acid
  • the antioxidant is N-acetylcysteine or selenium.
  • one or more compound (s) chosen from the class of growth factors of FGF type can be used. Typically, this growth factor is chosen from the class of bFGFs, FGF-2 to FGF-10.
  • the culture medium can optionally comprise a glucocorticoid.
  • composition of the culture medium also comprises lipophosphatidic acid and / or one or more compound (s) from the class of EGF, heregulins, thrombin, PDGF, thyroid hormones and LIF.
  • the present invention also relates to a process for the culture of progenitor cells and / or stem, in which the composition previously presented is used as culture medium during the cell amplification step.
  • the cell differentiation step is carried out before, during or after the cell amplification step.
  • the human serum used is autologous for the progenitor / stem cells.
  • the invention also relates to a method for producing myoblasts by implementing the method previously presented.
  • the progenitor cells and / or stem are obtained by a step of cellular extraction of muscle tissue.
  • the extraction step is carried out by enzymatic digestion.
  • the cells obtained are harvested and separated.
  • the harvesting and separation of the cells is carried out by enzymatic digestion followed by centrifugation and / or filtration.
  • the enzymatic digestion step can also be omitted.
  • the ability of the myoblasts to form colonies is tested.
  • a cell characterization is carried out.
  • markers of the cell cycle are used.
  • a step of freezing the myoblasts is carried out.
  • the invention also relates to a cell population containing pro-genitor / stem cells or myoblasts or a mixture of these in the culture medium.
  • the myoblasts produced according to the above-mentioned process can be used for cell therapy purposes.
  • they are intended for the preparation of a product intended for the treatment of urinary incontinence or for the functional treatment of small muscles (a non-exhaustive list of these muscles characterized by their small size includes sphincters such as the urethral sphincters or anal, eyelid muscles, finger muscles and larynx muscles).
  • the myoblasts thus produced are intended for gene therapy.
  • the present invention relates to the use of the myoblasts produced in toxicological and / or pharmacological screening.
  • this screening aims to detect one or more substance (s) involved in rhabdomyolysis.
  • FIG. 1 Histograms representing the number of nuclei of human muscle cells per unit area using the culture media: (A) devoid of growth factors; (B) containing 5% human serum according to the invention; (C) FGF + insulin + PDGF + EGF + dexamethasone + thrombin (Mixture M); (D) corresponding to (B) + (C), and the medium “FCS” containing 20% fetal calf serum.
  • FIG. 2 A Study of the effect of the dose of dexamethasone (concentrations from 0 to 10 "6 M) added to a culture medium containing fetal calf serum (FCS) supplemented with insulin and FGF on the proliferation of rat cells from passage 23.
  • - Figure 2B Study of the specificity of dexamethasone.
  • FCS fetal calf serum
  • Dexamethasone is also tested or in combination with the anti-progestagen RU486.
  • Figure 3 Comparative study of the toxicity of lovastatin on muscle cells and on adipocyte cells.
  • the present invention relates first of all to a composition of culture medium intended for cell proliferation and / or differentiation.
  • This culture medium can in particular be used to ensure the proliferation and differentiation of stem cells and / or muscle progenitors into myoblasts.
  • this composition of culture medium of the invention comprises at least serum of human and / or animal origin, insulin (or one of its derivatives) and an antioxidant and / or a vitamin.
  • the basic nutrient medium used is buffered with buffers dependent or independent of the CO 2 concentration.
  • the media used are, in most cases, made up of a mixture of DME type, Ham F12 type and alpha MEM type media. Among these, one can also cite as an example the mixture DME / F12 and DME / MCDB 202.
  • a basic nutritive medium which is particularly suitable during the cultivation of progenitor and / or stem cells, also comprises glucose to 4.5 g / 1 and baking soda at 3.7 g / 1.
  • Another example of a preferred medium is MCDB 120 medium modified by substituting L-valine for D-valine.
  • serum of animal origin for example bovine or equine
  • serum of human origin which can be obtained from the PAA laboratory for the purpose of '' avoid any health risk of contamination in humans with serum of animal origin.
  • serum fraction consisting of one or more sub-elements of the serum
  • albumin or human transferrin such as albumin or human transferrin
  • One embodiment according to the invention consists in using the serum or the serum fraction of human origin at a concentration of less than 5%, and more preferably at a concentration of between 1 and 3%.
  • FIG. 1 surprisingly shows that the addition of the mixture M to human serum (C) makes it possible to obtain a production in myoblasts improved by 3 times compared to HS serum (human serum alone) (A).
  • Examples 2 and 3 in which human and fetal calf serum respectively are supplemented, illustrate this in more detail.
  • the cell culture medium composition also contains insulin or insulinomimetics.
  • insulin or insulinomimetics we find hormones belonging to the class of somatomedins or insulin like growth factor, like IGF 1 and IGF 2 or metals like vanadate which inhibits a specific group of phosphatase.
  • At least one antioxidant and / or a vitamin should be added to the culture medium.
  • N-acetylcysteine is preferred at a concentration of between 0 and 10 mM or selenium.
  • selenium is used at a concentration of between 0 and 1 mM in the form of sodium selenite or selenomethionine (Sigma).
  • antioxidant we also refer to a culture condition in which a partial pressure is used reduced in oxygen.
  • ascorbic acid can be used at a concentration between 0 and 1 mM or nicotinamide at a concentration between 0 to 100 mM. Vitamin E is also usable.
  • ascorbic acid is the preferred vitamin since it gives the best results as shown in Example 4.
  • one or more compound (s) belonging to the class of growth factors FGF are added to the culture medium of the invention.
  • FGF growth factors
  • These factors allow cells in culture, in particular stem or progenitor cells to proliferate as well as to differentiate in a specific way.
  • This class of growth factors groups bFGF, FGF-2 to 10.
  • these growth factors are used at a concentration between 0.1 ng / ml and 100 ng / ml.
  • At least one glucocorticoid can be added to the culture medium.
  • These are hormones that act, among other things, on carbohydrate metabolism.
  • Natural or hemi-synthetic glucocorticoids can be used, i.e. hydrocortisone, dexamethasone, prednisolone or triamcinolone.
  • Dexamethasone (Dex) is the preferred glucocorticoid.
  • glucocorticoids have a stimulating and specific effect on cell growth.
  • Another embodiment of the invention consists in using one or more additional additives chosen from lipophosphatidic acid, growth factors EGF, PDGF, heregulins, thrombin (IL6 IL8, IL-15), LIF and hormones thyroid (including T3, T4). It is also possible, if necessary, to add transferrin as a protective factor against heavy metals. Other hormones or active molecules can enter into the composition of the culture medium such as the hepatocyte growth factor, HGF / SF, and the various characterized factors such as LIF, VEGF, SCF, TGFb, TNFa, thrombopoietin or the hormone growth.
  • progestagens and derivatives such as progesterone
  • estrogens and derivatives such as estradiol
  • androgens and derivatives such as testosterone
  • mineralocorticoids and derivatives such as aldosterone
  • the composition defined above is very particularly suitable as a culture medium for progenitor cells and / or strains from muscle tissue.
  • the invention also relates to a process for the production of myoblasts during which the progenitor cells and / / muscle strains are cultured on a culture medium the composition of which has been defined above. This production process can be divided into the following phases: - extraction: the cells are obtained from muscle tissue, for example by enzymatic treatment,
  • the cells obtained during the previous step are cultured, they undergo selective growth,
  • a muscle biopsy is carried out to collect the progenitor and / or stem cells. It takes place under local anesthesia by incision.
  • the size of the sample is approximately 1 g, from which it is possible to extract 10 6 cells.
  • the tissue is placed in the protective medium.
  • This protective medium essentially consists of the basic nutritive medium mentioned above, to which antibiotics such as gentamycin, which is preferred for its less allergic nature to penicillin derivatives, can be added; protective factors such as carnitme (1 mM), insulin (10 ⁇ g / ml), dexamethasone (5.10 "9 M), ascorbic acid, nicotinamide and trealose.
  • the temperature must be below 25 ° C and above 4 ° C. It is preferable that the volume of transport medium is at least 10 times greater than the volume of muscle tissue and that the transport time does not exceed 24 hours.
  • the cells can in particular be obtained from the vast external, vast internal, biceps, quadriceps, leg, gastrocnemius, peroneal, deltoids, dorsal, sterno-cleido-mastoid, intercostal, homo-hyoid, rectus or psoas. subsequent enzymatic dissociation.
  • This consists of cutting the biopsy into sections preferably less than 0.5 mm in size, placed in a suitable culture medium.
  • the mincing can be carried out manually using fine scissors. Also carry out the mincing in an assisted manner, using for example knife grinders driven by electrical or mechanical energy.
  • An example of such a usable mill is the Medimachine mill (distributed by Becton-Dickinson).
  • One embodiment of the invention is to extract cells from muscle tissue.
  • muscle tissue consists of muscle fibers, within which the satellite cells are located under the basal lamina thereof.
  • the step of dissociation of the muscle fibers and detachment of the satellite cells makes it possible to isolate the latter.
  • the preferred dissociation step according to the invention consists in the use of enzymes for digestion of the extracellular matrix.
  • the choice of enzymes and their concentrations used for the dissociation of muscle fibers and satellite cells from the tissues removed is guided by the study of their enzymatic efficiency, the criteria sought are the lowest possible concentration of enzyme and a minimum incubation time for similar efficiency.
  • the yield of cells obtained after filtration partly depends on the quality of the enzymatic dissociation step.
  • Digestion enzymes which can be used in the process of the invention alone or in combination are, for example, all collagenases, including types IA, S and H partially purified, as well as the purified form marketed under the name of Liberase by Roche- Boehringer, pronase, or trypsins, of all origins, in solution in buffers containing or not EDTA, dispases (also known as proteases), elastases, or even hyaluronidases.
  • the enzymatic associations trypsin-collagenase or pronase-collagenase are suitable, as shown by the results of Example 1.
  • the combination pronase-collagenase is preferred, since these are enzymes of non-extractive origin, thus making it possible to refrain from any health risk of contamination by prions or viruses. It is also possible to use collagenase as the sole enzyme. It is preferable to carry out this extraction step by sequential process in order to minimize the time of exposure of the cells to the enzymes. It is also desirable that the duration of the enzymatic treatments does not exceed 10 minutes and to use a treatment temperature of between 20 and 25 ° C. Throughout this stage, the medium used is the protective medium. The enzyme action is inhibited by dilution, washing and centrifugation. Variants of the extraction processing are applicable.
  • the dissociation step can be carried out in two stages; a first incubation in the presence of collagenase and a second incubation in the presence of trypsin.
  • the cells can be frozen at this stage (before culturing) according to a protocol well known in the art.
  • the invention also relates to the method for producing myoblasts during which the cell amplification step is carried out using the culture medium as already described. At the end of this amplification phase, a majority of myoblast cell populations are obtained, that is to say in which at least 70% of myoblasts are found.
  • This cell growth step is followed by a differentiation step: thus the growth medium previously described is replaced by a differentiation medium, an example of which is provided below (example 6).
  • collagen or its derivatives such as gelatin
  • these substances are obtained by extraction of bovine carcass, which poses a problem of health risk of contamination, for example, by the prion.
  • the invention therefore proposes to solve this problem by using a protein which is obtained by genetic engineering.
  • a commercially available molecule called Pronectin F which is a polymer of the RGDS fragment of fibronectin, is particularly suitable. Having an effectiveness comparable to gelatin for the growth of human cells like those precursors of muscle tissue, this protein can then be used in the context of the invention as a substrate. It is also possible to use polymers of L-lysine or D-lysine.
  • the cells are cultured in a reactor suitable for the cultivation of adherent cells.
  • the culture reactor is preferably static. It must have a large culture surface compared to conventional supports (Petri dishes, flasks) so as to harvest a large cell population in a few days.
  • An example of such a culture reactor is the culture device in trays (single, double and / or multi-stage).
  • the culture device which can be used in the method also makes it possible to sample the cells in a sterile manner. This makes it possible to take samples necessary for the identification of the cell types present at the various stages of the culture by analysis of specific markers.
  • Bags can be used and specially adapted sterile tubes connecting the bags to the reactor to allow transfer of media or harvesting of cells. This device thus makes it possible to carry out a large number of operations in a closed system.
  • the number of days of culture varies from 0 to 45 days.
  • the culture can be continued by conventional expansion or perfusion techniques for a period of up to several months.
  • the expansion phases include a step of detaching the cells, washing the cells and re-culturing on a larger culture surface, the solutions and enzymes used to carry out these steps being well known to those skilled in the art.
  • the method of the invention comprises at least one phase of cell expansion. Such a method makes it possible to multiply the number of cells while ensuring the differentiation of the progenitor cells and / initial strains mainly into myoblasts at the end of culture of each expansion.
  • a freezing protocol is provided in Example 8.
  • 1/5 of the culture can be frozen, the remaining 4/5 being subjected to a cell amplification process.
  • the cells are suspended in the freezing medium.
  • These freezing medium compositions are typically DME / F12 medium with 1 mM L-carnitine, 0.2521 mM ascorbic acid, 5.10 -9 M dexamethasone, 10 ⁇ g / ml of insulin and 2% human serum and transferred into two sterile freezer bags, at a concentration of between 10 5 to 10 7 cells per ml cells / ml or in cryofreeze tubes at a concentration between 10 to 10 cells per ml. Under these conditions, the preservative is DMSO at a concentration of 10%. L-Arginine freezing medium can be added to the trehalose (up to 0.5 M). By immersion of the cells in this dioside, this makes it possible to improve the conservation of these.
  • Freezing is carried out using a device (Digicool or Nicool) ensuring a gradual descent in controlled temperature.
  • the cells are stored in liquid nitrogen until the moment of thawing. It is possible to thaw frozen cells after culture, for example in a water bath at 37 ° C.
  • Cell preparations are washed twice with isotonic saline. The rinses are carried out by sterile connection to the isotonic solution bags and the drainage bags. An aliquot is reserved for the estimation of cell viability and quality.
  • the cells After cell amplification, the cells should be separated by enzymatic digestion. During this stage and in order to reduce the health risks, it is recommended to use trypsin of recombinant origin which is commonly found on the market.
  • the cell suspension obtained by the process for producing myoblasts described above Before proceeding to cell transplantation in the context of future clinical applications, it may be preferable according to the invention to characterize at the molecular and functional level the cell suspension obtained by the process for producing myoblasts described above.
  • This characterization can be carried out by analyzing cellular markers by flow cytofluorimetry or FACS, after labeling the surface antigens or any specific antigen of the different cell types to be analyzed.
  • the term "cell markers” indicates any cell antigen making it possible to supply information alone or in combination with other markers on a cell type. This characterization can be undertaken at the protein level through the use of other cellular markers such as:
  • This characterization can also be carried out at the transcription level by the use of microarrays (“gene array”) containing oligonucleotides encoding cellular genes (for example, specific transcription factors and factors of the cell cycle machinery) allowing to identify cells in the cell suspension.
  • gene array containing oligonucleotides encoding cellular genes (for example, specific transcription factors and factors of the cell cycle machinery) allowing to identify cells in the cell suspension.
  • Obtaining a high purity cell population may be necessary for certain uses as a cell therapy product. It is clear that a person skilled in the art will be able to use the various techniques proposed in the state of the art to selectively sort said cells. As an example, let us cite the sorting techniques by cloning, by flow cytofluorimetry or by immunoaffinity or immunomagnetic columns using antibodies specific for the cells in question. For this purpose, both molecular and functional biological characterizations should be used.
  • the cellular markers chosen make it possible to identify the precursor cells of muscle fibers. This identification is made not apart from a single marker but by a combination of markers.
  • membrane markers such as N-Cam, Vla4, M-cadherin, integrins, CD56, cytoplasmic markers like desmin and nuclear markers like pax 7 and myoD.
  • markers of the cell cycle machinery like Ki67, PCNA and negative for cell cycle inhibitors like P21 and P16.
  • these cells are negative for terminal markers of muscular terminal differentiation such as myogenin and troponin T (TNT).
  • TNT troponin T
  • the principle is based on the analysis of low density growth and on the revelation of the cell phenotype by the use of specific differentiation medium. Note that we must keep the cell seeding density as low as possible.
  • the progenitor / stem cells are first subjected to a growth phase, followed by a cell differentiation phase.
  • the resulting cells are then fixed by an alcoholic solution, stained with giemsa according to a well-known protocol. in the field of art then photographed by digital camera. As part of the functionality test, they are then submitted:
  • the present invention also covers any cell population which is contained in the culture medium as defined above.
  • Cell population is understood to mean any population of non-pure cells, generally containing a dominant cell type and one or more minority cell types.
  • This embodiment therefore relates to a population mainly of progenitor and / or stem cells (that is to say before the amplification phase takes place), to a population enriched in myoblasts (following the cell amplification step).
  • the invention relates to the use of a cell population of which the dominant cell type consists of myoblastic cells in the preparation of a cell therapy product for the reconstruction in skeletal, cardiac and visceral muscle tissues and vascular tissue.
  • the myoblast population as a cell therapy product is used to treat urinary incontinence in men or women. This may be caused by insufficient pressure to close the urethra, the normal resistance of the urethra being half due to the smooth sphincter and half due to the striated sphincter of the middle urethra.
  • This cell therapy product can also be used to treat incontinence following treatment for prostate cancer as well as innate or acquired muscular dystrophy.
  • myoblast transplantation allows restoration of dystrophin expression. It consists, for example, of injecting, using a needle, the cells of muscular origin obtained by a process of the invention directly into the skeletal muscle or into the general circulation.
  • a cell therapy product suitable for human administration comprises an isotonic solution in which the cells are resuspended. It is preferable that this solution be free from the toxic components present in the freezing media.
  • this consists in particular of injecting using a needle a population of cells, the dominant type of which has the characteristics of myoblastic cells, obtained and prepared as a cell therapy product, directly in the urethra or rhabdosphincter, this in order to improve the function of the urethral closure mechanism.
  • the number of cells injected is between 10 5 and 10 7 cells.
  • a step of genetic modification of the cells by transfection of a heterologous nucleic acid can be carried out.
  • the nucleic acid is chosen so as to allow the expression of a polypeptide or a protein in the transfected cells.
  • the transfected cells are then transplanted and allow the delivery of the polypeptide or protein expressed from the heterologous nucleic acid, the said polypeptide or protein being a biologically active product.
  • the invention thus relates to the use of a cell population as a cell therapy product as a delivery platform for a biologically active product.
  • a viral approach which makes it possible to rapidly and effectively modify the cells in culture.
  • Moloney type retroviruses are particularly effective in this case. It is possible to insert a molecular marker into this virus, for example a fluorescent protein of the GFP type (example 7).
  • the cells thus modified represent a tool for tracing cell fate once introduced into the animal.
  • Another embodiment according to the invention consists in using the population of myoblasts in toxicological and / or pharmacological screening.
  • the aim is to shorten the development and preclinical and clinical testing phases as much as possible in order to respond quickly to the needs of patients. Indeed, it is advantageous to use this population of cells as a "model" in the development of drugs, thus making it possible to carry out high-throughput screening. It will then be possible to elucidate the mechanisms at the origin of the diseases and to find therapeutic targets or candidate molecules to become active principles.
  • This screening can also be used in toxicology, in particular to study drug interactions.
  • the pharmacology / toxicology specialist knows well how to implement automated techniques, and will be able to select the molecules of interest, depending on the target to be reached, from banks of several thousand new or already used molecules as as medicine for other pathologies.
  • a preferred embodiment according to the invention consists in using the pharmacological / toxicology screening to detect target molecules involved in rhabdomyolysis, that is to say the lysis of the striated muscles.
  • HMG Coareductase inhibitors HMG Coareductase inhibitors
  • the incorrect evaluation of this risk known by Bayer for Cerivastatin had considerable human and economic consequences.
  • P450 cytochromes molecules involved in apoptosis such as BCL2, antioxidants, proteins of the NFKb complex, PPARs or surgical procedures.
  • HMG-coenzyme A reductase inhibitors include creatine kinase, statins, fibrates, anesthetics, heroin, macrolides, cyclosporine and their derivatives.
  • HMG-coenzyme A reductase inhibitors include creatine kinase, statins, fibrates, anesthetics, heroin, macrolides, cyclosporine and their derivatives.
  • the progenitor / stem cells used come from biopsy of muscle tissue from adult sheep.
  • the cell extraction protocol is of sequential type.
  • the enzyme action is inhibited by dilution, washing and centrifugation.
  • the duration of the enzyme treatments does not exceed 10 minutes.
  • the processing temperature is between 20 and 25 ° C.
  • the muscle tissue (1 g of tissue after mincing) is placed in the presence of the enzymatic solution (10 ml), that is to say at least 10 times the volume of the muscle tissue.
  • the enzyme solution consists of a combination of collagenase (0.5 mg / ml) - trypsin (1 mg / ml) without addition of serum, or the combination of collagenase (0.5 mg / ml) -pronase (1 mg / ml) with or without addition of fetal calf serum, these enzymes being dissolved in DME / F12 supplemented with 15 mM Hepes.
  • the supplemented basic medium (without serum) used for cell extraction is DME / F12 supplemented with 15 mM Hepes, human insulin at 10 ⁇ g / ml, FGF 2 at 10 ng / ml, dexamethasone at 5.10 "9 M, ascorbic acid at (0.252 mM) and L-carnitine at 1 mM
  • the whole (enzymatic solution and tissue fragment) is diluted in a volume of 30 ml to inhibit the enzymes then subjected to a slow centrifugation (less than 10 g for 3 minutes). By this process, the supernatant which contains the cells extracted by the first enzymatic digestion and the remaining tissue fragment are recovered.
  • a centrifugation at 200 g is carried out for approximately 3 minutes.
  • the cells thus obtained are resuspended in the medium without serum.
  • the efficiency of the enzymatic digestion is followed by microscopic observation of the released cells. es of the tissue fragment
  • the remaining tissue fragment is again subjected to an enzymatic digestion according to the same protocol. This operation is repeated five times in succession.
  • the substrate used for cell attachment is bovine gelatin.
  • DME / F12 supplemented with 20% fetal calf serum, insulin 10 ⁇ g / ml, dexamethasone 5 to 10 -9 M and FGF 2 to 10 ng / ml are used as culture medium.
  • the culture conditions are as follows: the temperature is 37 ° C. under a humid atmosphere, 20% oxygen and 5% carbon dioxide.
  • the culture time is 7 days.
  • the cells are fixed by an alcoholic solution and are colored by giemsa dye, the boxes are then photographed.
  • the cells are amplified in culture in the presence of human serum (PAA laboratory) and then seeded under the various conditions described.
  • the growth factors FGF2, EGF, PDGF A / B are produced by Preprotech and the thrombin is obtained from Sigma.
  • the various culture media are prepared as follows: the basic nutrient medium is DME, to which we add:
  • mixture M does not contain proteins of animal origin.
  • a second change of environment is made 3 days after the first. After 3 days of culture (total of 7 days), fixing and staining with giemsa are carried out. The number is determined on the fixed and stained cells.
  • the combination of the growth factor cocktail and human serum makes it possible to obtain growth three times greater than that obtained in the presence of fetal calf serum not supplemented. Under these conditions the amplification factor is greater than 30 after a week of growth.
  • human serum at concentrations of 1% and 5% supplemented with the mixture M strongly stimulates cell proliferation since at these low concentrations, we obtain, respectively, a doubling and a tripling of the number of myoblasts compared to non-supplemented 20% fetal calf serum.
  • the serum supplemented with the mixture. M improves proliferation by more than 4 times compared to unsupplemented serum.
  • the cell extraction and amplification steps are similar to those previously described.
  • the culture parameters used are defined as follows: normal human cells obtained in passage 7 after cell extraction are chosen.
  • the temperature is 37 ° C in a humid atmosphere with 20% oxygen and 5% carbon dioxide.
  • the cell density is 10 3 cells per culture dish.
  • the substrate used is gelatin.
  • the duration of growth is respectively 10 days and 7 days with changes of medium every three days. After alcoholic fixation and staining with giemsa, a digital photograph of the petri dishes is taken.
  • EtTet of ascorbic acid and nicotinamide on the amplification of human precursor muscle cells came from a biopsy of a normal subject aged 16 years.
  • the extraction protocol used is identical to that of Example 1.
  • the procedure is as in the previous example, except that DM comme / F12 supplemented with either : 2% human serum + mixture M (insulin (10 ⁇ g / ml) + dexamethasone (5.10 "9 M) +
  • FGF2 (10 ng / ml) + ⁇ GF (10 ng / ml) + thrombin (1 unit) (designated as 2% HS + M) the previous supplemented serum (2% HS + M) to which ascorbic acid is added to a concentration of 0.252 mM supplemented serum (2% HS + M) to which nicotinamide is added to a concentration of 10 mM supplemented serum (2% HS + M) to which ascorbic acid and nicotinamide are added to previous concentrations.
  • ascorbic acid used in this experiment as an antioxidant, makes it possible to double the number of amplified cells after a period of 8 days of culture.
  • nicotinamide used in this experiment as an antioxidant, no positive effect on growth is observed.
  • the addition of these two antioxidants gives an intermediate result, it allows an increase in the number of amplified cells but not at the same level as with ascorbic acid alone.
  • Rat cells obtained in passage 23 after cell extraction are used.
  • the incubation temperature is 37 ° C in a humid atmosphere with 20% oxygen and 5% carbon dioxide.
  • the cell density is 3.10 3 cells in multiples of 12.
  • the substrate is gelatin.
  • DME / F12 As the culture medium for the growth phase, DME / F12 is used to which 20% fetal calf serum supplemented with insulin (10 ⁇ g / ml) and FGF (10 ng / ml) are added. To this medium, it is added:
  • steroid hormones estradiol, testosterone, progesterone, DEHA, SDEAH, aldosterone
  • dexamethasone alone or in combination such as dexamethasone with the anti-progestagen RU486
  • concentration 10 "7 M”. 5 days without change of environment.
  • the cell culture conditions are as follows: the temperature is 37 ° C., humid atmosphere, 20% oxygen and 5% carbon dioxide.
  • the cell density is 10 cells per culture dish which come from 100 mm muscle tissue.
  • the substrate is gelatin.
  • the culture medium used in this experiment for the growth phase is DME / F12 to which is added 20% fetal calf serum, human insulin at 10 ⁇ g / ml, dexamethasone at 5.10 "9 M and FGF at 2 10 ng / ml.
  • the growth time is 9 days with medium changes every three days.
  • DME / F12 is used as the differentiation medium to which 2% human serum, insulin at 10 ⁇ g / ml, EGF at 10 ng / ml, thyroid hormone T3 at 5.10 "9 M.
  • the differentiation time is 4 days with a change every 2 days.
  • An alcoholic fixation is then carried out, a giemsa staining is carried out and digital photography of the boxes is carried out.
  • colonies of the first type are colored with intense mammary and microscopic observation reveals the presence of numerous muscle cells differentiated from the myotubes: these are colonies formed from muscle precursors.
  • the results are as follows: among 107 total colonies, there are 91 colonies of precursor cells of muscle tissue and 16 colonies of non-muscle cells. Thus, globally, among 1000 cells seeded, 10.7% of the cells are capable of forming colonies and of these 85.6% are capable of forming colonies of precursor cells of muscle tissue.
  • MMLV Moloney-type retrovirus
  • GFP green fluorescent protein
  • a packaging plasmid containing the “gag” and “pol” sequences, a plasmid containing the VSVg envelope, and a plasmid containing the GFP construct are tri-infected according to a protocol well known to those skilled in the art. job.
  • Rat cells obtained in passage 21 are used after cell extraction.
  • the incubation temperature is 37 ° C in a humid atmosphere with 20% oxygen and 5% carbon dioxide.
  • the cell density is 2.10 4 cells per 35 mm dish.
  • the substrate used is gelatin.
  • culture medium for the growth phase use is made of basic nutrient medium DME / F12 to which is added 20% fetal calf serum supplemented with D of insulin (10 ⁇ g / ml), dexamethasone (5.10 " 5 M) and FGF (10 ng / ml).
  • the infection protocol is as follows: the day after the cells are seeded, the cells are infected with the rMLV virus (VsVg) LTR-eGFP at a dose of
  • the cells are incubated for 6 hours at 37 ° C. then the medium is replaced with 10 ml of DME / F12 supplemented with 20% of FCS and insulin (10 ng / ml), dexamethasone (5.10 "9 M) and FGF2 (10 ng / ml).
  • the living cells are observed by microscopic photography with a fluorescence microscope. There are myoblasts and myotubules, which appear green and therefore have been transfected with the virus.
  • the uninfected cells show no fluorescence and a very large majority of the cells express GFP and thus appear green, under these conditions more than 90% of the cells express GFP.
  • GFP is also correctly expressed in myotubes which result from the fusion of myoblasts. Under these conditions, the myoblasts, which are replicative cells, and the myotubes, which are differentiated cells, are genetically modifiable and this modification is stable. The number of cells expressing GFP is not modified by the passages in culture. After reintroduction into animals, the cells thus modified express GFP and can thus be observed. This tool is important for analyzing the fate and functions of cells once reintroduced into the animal.
  • Example 8 is important for analyzing the fate and functions of cells once reintroduced into the animal.
  • the cells used come from a normal individual aged 6 years. They are cultivated and harvested in passage 7.
  • HS human serum
  • FGF growth factors
  • the cells are placed in the various freezing media which are the following at a concentration of 10 5 cells per ml:
  • DME / F12 medium is added alone or supplemented with:
  • Thawing is carried out in an incubator or in a water bath at 37 ° C.
  • the bulb kept in liquid nitrogen is placed in a culture incubator.
  • the thawed cells are placed in a 10 ml centrifuge tube in the presence of: DME / F12 supplemented with pyruvate, antibiotics such as gentamycin and protective factors such as 1 mM L-carnitine, insulin 10 ⁇ g / ml, Dexamethasone 5.10 "9 M, ascorbic acid 0.252 mM. Centrifugation is carried out at 200 g for 10 minutes at room temperature.
  • the cells thus thawed are cultured in multiples of 12 with gelatin as a substrate and as culture medium human serum (HS) at 2% HS supplemented with insulin (10 ⁇ / ml), ascorbic acid (0.252 mM), and growth factors FGF2 (10 ng / ml), PDGF (1 ng / ml), and EGF (1 ng / ml), as well as thrombin (limited) and LPA (5 mM) .
  • HS human serum
  • the medium is changed using new multi-well dishes.
  • staining is carried out in multi-well dishes on part of the cells.
  • the other part is subjected to a new culture phase for 4 additional days and to a new change of environment.
  • a coloring is carried out 2 days later.
  • the technique used is based on the construction of culture techniques which dissociate the period of selection of progenitor muscle cells from the period of amplification of these.
  • a medium for selection of progenitor cells and subsequently an amplification medium is used.
  • the positive progenitor muscle cell selection medium combines both agents that inhibit the growth of non-muscle cells and agents that stimulate the growth of muscle progenitor cells.
  • the former belong to the family of glucocorticoids and the latter are antioxidants and metals.
  • the cells resulting from the muscle biopsy after enzymatic digestion are cultured at clonal density in the presence of inhibiting agents and stimulating agents.
  • the amplification medium contains growth factors which facilitate the growth of the selected cells. These factors belong to the FGF family. In this phase, cells can be grown either at low density or at high density.
  • the protocol described in two stages makes it possible to obtain populations of muscle cells enriched to more than 95%.
  • Example 6 the cells are seeded at clonal density. In this type of test, each cell gives rise to a cell colony whose phenotype is analyzed.
  • the cells come from a normal person without muscular pathology.
  • the cells are seeded at a clonal density of 250 cells per 100mm dishes in 10 ml of culture medium.
  • the following media are used for the selection period D0: - DMEM / F12 + FCS.
  • DMEM / F12 + FCS + FGF + Insulin + Dexamethasone The medium is changed on day 6 and day 10 in the four series. On day 14, the medium is changed to a medium allowing the differentiation of muscle cells composed of:
  • FCS The cells cultivated in FCS provide 70 colonies / dish, of which 10% are myogenic colonies.
  • FCS + FGF The cells cultivated in FCS + FGF provide 70 colonies / dish including 0% myogenic colonies.
  • Selenomethionine -l-Ascorbic Acid provide 80 colonies / dish, 50% of which are myogenic colonies.
  • Rat Muscle cells
  • Rat 160 mg The origin of the cells and their type are: Rat (muscle cells) and Rat 160 mg
  • Adipocytes (Adipocytes). Their passage numbers are P9 and P4. The culture conditions are FCS + FGF + Insulin + Dexamethasone.
  • the enzymatic treatment is carried out with Trypsin-EDTA (PAA), the treatment time being 5 minutes. Centrifugation is performed.
  • PAA Trypsin-EDTA
  • the handling conditions are as follows: type of box: 4 multiwells of 12 (TPP); substrate: Gelatin density: 5,000 cells / well, the culture medium is DME / F12 + 20% FCS + FGF + Insulin -HDexamethasone + Statins (at concentrations of 0; 0.1; 0.5 or 1 ⁇ M). The concentrations are FGF: 10 ng / ml; Insulin: 10 ⁇ .g / ml, dexamethasone: 5.10 "9 M.
  • the cells are thus cultured for 2 days then fixed stained and analyzed.
  • the type of dish is 2 multiwells of 96 (TPP) -the cell density is 2,500 cells / well -the culture medium contains DME / F12 + 20% FCS + FGF + Insulin +
  • X being chosen from:
  • Lovastatin has a concentration of 0; 0.01; 0.05; 0.1; 0.5 ⁇ M; or Cerivastatin at a concentration of 0; 0.01; 0.05; 0.1; 0.5 l ⁇ M; or Atorvastatin at a concentration of 0; 0.01; 0.05; 0.1; 0.5; 1 ⁇ M; or Pravastatin has a concentration of 0; 0.01; 0.05; 0.1; 0.5; l ⁇ M; or Fluvastatin has a concentration of 0; 0.01; 0.05; 0.1; 0.5; 1 ⁇ M; or Simvastatin at a concentration of 0; 0.01; 0.05; 0.1; 0.5; 1 ⁇ M.
  • the total culture time is 5 days.
  • the cells After aspiration of the culture medium, the cells are washed with PBS and then fixed with 100% ethanol. 10 minutes later the cells are washed with water and then stained with a 10% Giemsa solution for 10 minutes. The final step is washing with water.
  • Images of the cells are obtained with an inverted microscope (Nikon) equipped with a digital camera and a motorized stage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Rheumatology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

La présente invention se rapporte à une composition de milieu de culture de cellules progénitrices/souches issues de tissus musculaires contenant du sérum et/ou de la fraction sérique d'origine humaine et/ou d'origine animale de l'insuline ou un dérivé de celle-ci, et un ou plusieurs composé(s) choisi(s) parmi la classe des antioxydants et/ou des vitamines. Elle propose également un procédé de culture des cellules progénitrices/souches, un procédé de production de myoblastes pouvant être utilisés comme produit de thérapie cellulaire/génique. Cette invention a pour objectif d'optimiser la production en myoblastes à partir de cellules progénitrices/souches.

Description

COMPOSITION DE MILIEU DE CULTURE. PROCEDE DE CULTURE.
ET MYOBLASTES AINSI OBTENUS. ET LEURS UTILISATIONS
La présente invention se rapporte à une composition de milieu de culture de cellules progénitrices/souches issues de tissus musculaires, à un procédé de culture des cellules progénitrices/souches, et à un procédé de production de myoblastes pouvant être utilisés comme produit de thérapie cellulaire/génique.
De nombreuses études portant sur des procédés de culture cellulaires ont été réalisées dans le but d'obtenir des fractions cellulaires riches en myoblastes afin d'être administrées à des patients souffrant généralement de dégénérescence musculaire telle que la dystrophie musculaire de Duchenne par exemple. Beaucoup d'entre elles ont porté sur le choix des cellules initiales, conditions de culture, ou sur l'étape d'identification cellulaire par exemple.
A cet égard, on peut citer le document US-A-5538722 qui propose un procédé de synthèse in vivo d'une protéine musculaire qui résulte de l'intégration d'un ADN dans les myoblastes en culture, ces myoblastes ayant subi au moins 5 doublements cellulaires.
Le document US-A-5130141 divulgue une méthode d'obtention de cellules myogéniques issues de culture mais également des cellules myogéniques qui ont été préalablement clonées, ces dernières présentant des avantages sur les premières du fait de leur potentiel de développement supérieur. Le document US-A-2001 0034061 divulgue un procédé de culture de cellules progénitrices par utilisation contrôlée de culture en hypoxie afin de favoriser une différenciation spécifique.
Enfin, le document WO-A-01 94555 se propose de fournir des populations cellulaires bien caractérisées d'origine musculaire, adaptées et spécialement préparées pour leur utilisation souhaitée en thérapie cellulaire.
Cependant, il existe un nombre plus restreint de travaux qui ont été effectués sur la composition du milieu de culture lui-même en vue de produire une population cellulaire apte à être utilisée en thérapie cellulaire/génique.
Parmi ceux-ci, on trouve la demande européenne EP-A- 1048724 qui se rapporte à un procédé de culture de lignées de cellules musculaires immortalisées c'est à dire qui ont été obtenues après un nombre élevé de passages, qui sont utilisées en thérapie génique, soit en
« réparant » les tissus musculaires défectueux ou comme vecteurs dans lesquelles un ou plusieurs gènes peuvent être introduits pour fournir un produit déterminé.
Le document WO-A-97 00774 enseigne un moyen pour améliorer la prise de la greffe en « préconditionnant » les myoblastes du donneur en présence à la fois d'un facteur de croissance tel que bFGF et d'un inducteur de la production de métalloprotéases, pour augmenter la distance de migration des myoblastes transplantés et pour accroître le nombre de myoblastes fusionnés exprimant des protéines fonctionnelles du muscle. Le document WO-A-99 56785 divulgue une méthode pour produire des cellules musculaires modifiées génétiquement avant d'être injectées aux sites de dysfonctionnement musculaire : cette méthode étant notamment destinée à traiter l'incontinence urinaire.
Le document WO-A-01 78754 se réfère à des cellules progénitrices ayant une survie in situ longue, qui présentent un profil d'expression particulier de marqueurs cellulaires et pouvant être utilisées dans le traitement de l'incontinence urinaire.
Enfin, le document O-A-02 067867 se rapporte à une méthode de préparation de cellules souches en utilisant une matrice cellulaire pour fixer celles-ci : elle est notamment destinée au traitement urinaire. La littérature, y compris tous ces documents de l'art antérieur cités ci-dessus, ont ainsi en commun la caractéristique que le sérum animal (non-humain, par exemple bovin ou équin) non supplémenté est utilisé au cours de la culture cellulaire proprement dite, celui-ci étant vraisemblablement considéré comme un apport suffisant de tous les éléments nécessaires à la prolifération cellulaire. Or, la transplantation exige la production d'un nombre élevé de myoblastes, il est alors important d'améliorer cette production en partant des cellules progénitrices/souches issues de tissus musculaires. La présente invention propose de supplémenter le sérum (ou fraction sérique) qui est utilisé dans le milieu de culture, permettant ainsi d'optimiser le milieu de culture. De ce fait, il est possible de raccourcir le temps de culture. Ainsi cette optimisation permet alors d'utiliser moins de sérum (ou fraction sérique), ce qui est nécessaire dans le cas du sérum humain dont la disponibilité est limitée et du même coup permet de s'affranchir de l'utilisation de protéines animales, sources potentielles de contamination par le prion ou des virus. Pour résoudre le problème d'optimisation de la production en myoblastes à partir de cellules progénitrices/souches, la présente invention propose une composition de milieu de culture cellulaire contenant :
(i) du sérum et/ou de la fraction sérique d'origine humaine et/ou d'origine animale (ii) de l'insuline ou un dérivé de celle-ci
(iii) un ou plusieurs composé(s) choisi(s) parmi la classe des antioxydants et/ou des vitamines. On peut utiliser du sérum et/ou de la fraction sérique d'origine bovine, de préférence d'origine humaine. Avantageusement, la concentration en sérum humain est inférieure à 5 % en volume, et encore davantage entre 1 % et 3 % en volume.
Typiquement, le dérivé de l'insuline est choisi parmi la classe des IGF, et des insulomimétiques de type vanadate. Avantageusement, la vitamine est l'acide ascorbique, et l'antioxydant est la N-acétyl- cystéine ou le sélénium. Dans un mode de réalisation, on peut utiliser en outre un ou plusieurs composé(s) choisi(s) parmi la classe des facteurs de croissance de type FGF. Typiquement, ce facteur de croissance est choisi parmi la classe des bFGF, FGF-2 à FGF- 10.
Dans un autre mode de réalisation, le milieu de culture peut comporter le cas échéant un glucocorticoïde.
Dans un autre mode de réalisation, la composition du milieu de culture comprend en outre de l'acide lipophosphatidique et/ou un ou plusieurs composé(s) de la classes des EGF, hérégulines, thrombine, PDGF, hormones thyroïdiennes et LIF.
La présente invention se rapporte également à un procédé de culture de cellules progénitrices et/ou souches, dans lequel on utilise comme milieu de culture durant l'étape d'amplification cellulaire la composition précédemment présentée.
Selon un mode de réalisation, l'étape de différenciation cellulaire est réalisée avant, pendant ou après l'étape d'amplification cellulaire. Typiquement, le sérum humain utilisé est autologue des cellules progénitrices/souches. L'invention concerne également un procédé de production de myoblastes par mise en œuvre du procédé précédemment présenté.
Selon un mode de réalisation, les cellules progénitrices et/ou souches sont obtenues par une étape d'extraction cellulaire de tissus musculaires. Avantageusement, l'étape d'extraction est réalisée par digestion enzymatique. Selon un autre mode de réalisation on effectue une récolte et une séparation des cellules obtenues. Typiquement, la récolte et la séparation des cellules est effectuée par digestion enzymatique suivie d'une centrifugation et/ou filtration. L'étape de digestion enzymatique peut en outre être omise.
Selon un autre mode de réalisation, on teste l'aptitude des myoblastes à former des colonies.
Selon un autre mode de réalisation, on effectue une caractérisation cellulaire. Avantageusement, on utilise des marqueurs du cycle cellulaire.
Selon un autre mode de réalisation, on réalise une étape de congélation des myoblastes. L'invention se rapporte également à une population cellulaire contenant des cellules pro génitrices/souches ou des myoblastes ou un mélange de ceux-ci dans le milieu de culture.
Selon l'invention, les myoblastes produits selon le procédé précédemment cité peuvent être utilisés à des fins de thérapie cellulaire. De préférence, ils sont destinés à la préparation d'un produit destiné au traitement de l'incontinence urinaire ou au traitement fonctionnel des petits muscles (une liste non exhaustive de ces muscles caractérisés par leur petite taille comprend les sphincters tel que les sphincters urétraux ou anaux, les muscles des paupières, les muscles des doigts et les muscles du larynx). Selon un autre mode de réalisation, les myoblastes ainsi produits sont destinés à la thérapie génique.
Enfin, la présente invention se rapporte à l'utilisation des myoblastes produits dans le criblage toxicologique et/ou pharmacologique. Typiquement, ce criblage vise à détecter une ou plusieurs substance(s) impliquée(s) dans la rhabdomyolyse.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit des modes de réalisation de l'invention, donnés à titre d'exemple uniquement et en références aux dessins qui montrent :
- Figure 1: Histogrammes représentant le nombre de noyaux de cellules musculaires humaines par unité de surface en utilisant les milieux de culture : (A) dépourvu de facteurs de croissance ; (B) contenant 5 % de sérum humain selon l'invention ; (C) FGF + insuline + PDGF + EGF + dexaméthasone + thrombine (Mélange M) ; (D) correspondant à (B) + (C), et le milieu « FCS » contenant 20 % de sérum fœtal de veau. - Figure 2 A : Etude de l'effet de la dose de dexaméthasone (concentrations de 0 jusqu'à 10"6 M) ajoutée à un milieu de culture contenant du sérum fœtal de veau (FCS) supplémenté par de l'insuline et du FGF sur la prolifération de cellules de rat issues du passage 23.
- Figure 2B : Etude de la spécificité de la dexaméthasone. A un milieu de culture contenant du sérum fœtal de veau (FCS) supplémenté par de l'insuline et du FGF, on observe l'effet de l'ajout de la dexaméthasone à 10"7 M, ou d'une autre hormone stéroïdienne (œstradiol, testostérone, progestérone, DEHA, SDEAH, aldostérone) à une dose fixe (10" M) sur la croissance cellulaire. La dexaméthasone est également testée ou en association avec l'anti-progestagène RU486. - Figure 3 : Etude comparative de la toxicité de la lovastatine sur les cellules musculaires et sur les cellules adipocytaires.
- Figure 4 : Etude comparative de la toxicité sur les cellules musculaires humaines des différentes statines utilisées en clinique humaines.
- Dans les figures 2A et 2B, l'intensité de la coloration (représentée ici par les taches sombres) augmente avec la densité cellulaire. Une série de trois puits de culture a été réalisée pour chaque concentration. La présente invention se rapporte tout d'abord à une composition de milieu de culture destinée à la prolifération et/ou la différenciation cellulaire. On peut notamment utiliser ce milieu de culture pour assurer la prolifération et la différenciation de cellules souches et/ou progénitrices musculaires en myoblastes. Outre le milieu nutritif de base, cette composition de milieu de culture de l'invention comporte au minimum du sérum d'origine humaine et/ou d'origine animale, de l'insuline (ou un de ses dérivés) et un antioxydant et/ou une vitamine. Le milieu nutritif de base utilisé est tamponné avec des tampons dépendants ou indépendants de la concentration en CO2. Il est préférable d'exclure le Hepès du milieu de culture comme tampon car une concentration à 15 mM inhibe sur le long terme la croissance des cellules musculaires humaines. Les milieux utilisés sont, dans la plupart des cas, constitués d'un mélange de milieu de type DME, de type Ham F12 et de type alpha MEM. Parmi ceux-ci, on peut également citer en exemple le mélange DME/F12 et DME/MCDB 202. Un milieu nutritif de base qui est particulièrement adapté lors de la mise en culture de cellules progénitrices et/ou souches, comporte également du glucose à 4,5 g/1 et du bicarbonate à 3,7 g/1. Un autre exemple de milieu préféré est le milieu MCDB 120 modifié en substituant la L-valine par la D-valine.
Il est possible d'utiliser dans la composition de la présente invention du sérum d'origine animale (par exemple bovine ou équine), mais on préfère le sérum d'origine humaine que l'on peut obtenir auprès du laboratoire PAA dans le but d'éviter tout risque sanitaire de contamination chez l'homme par du sérum d'origine animale. A la place du sérum, on peut également utiliser une fraction sérique (constituée par un ou plusieurs sous-éléments du sérum) que l'on obtient couramment dans le commerce (comme l'albumine ou la transferrine humaine). Il est particulièrement avantageux de réduire le plus possible la concentration de sérum humain lors de la culture cellulaire étant donné que contrairement au sérum animal qui est abondant et dont l'approvisionnement est relativement aisé, le sérum humain quant à lui provient d'une « source » plus limitée, puisqu'il s'agit du patient et il est souhaitable de limiter le nombre de prises de sang et de lui prélever le moins de sang possible. Un mode de réalisation selon l'invention consiste à utiliser le sérum ou la fraction sérique d'origine humaine à une concentration inférieure à 5 %, et plus préférentiellement à une concentration comprise entre 1 et 3 %. La figure 1 montre de façon surprenante que l'ajout du mélange M au sérum humain (C) permet d'obtenir une production en myoblastes améliorée de 3 fois par rapport au sérum HS (sérum humain seul) (A). Les exemples 2 et 3, dans lesquels les sérum humain et de veau fœtal respectivement sont supplémentés, illustrent ceci plus en détails.
La composition de milieu de culture cellulaire contient également de l'insuline ou des insulinomimétiques. Parmi ceux ci, on trouve des hormones appartenant à la classe des somatomédines ou insuline like growth factor, comme les IGF 1 et IGF 2 ou des métaux comme le vanadate qui inhibe un groupe spécifique de phosphatase.
Dans la composition selon l'invention, il convient d'ajouter au milieu de culture au moins un antioxydant et/ou une vitamine. Parmi les antioxydants, on préfère la N- acétylcystéine à une concentration comprise entre 0 et 10 mM ou le sélénium. Généralement, le sélénium est utilisé à une concentration comprise entre 0 et 1 mM sous forme de sodium sélénite ou de sélénométhionine (Sigma). On notera que par le terme « antioxydant », on se réfère également à une condition de culture dans laquelle on utilise une pression partielle réduite en oxygène. Parmi les vitamines, on peut utiliser l'acide ascorbique à une concentration comprise entre 0 et 1 mM ou la nicotinamide à une concentration comprise entre 0 à 100 mM. La vitamine E est aussi utilisable. Néanmoins, l'acide ascorbique est la vitamine préférée puisqu'elle donne les meilleurs résultats comme le montre l'exemple 4. A part le sérum associé aux composés précédemment décrits, il est possible d'ajouter dans le milieu de culture de l'invention un ou plusieurs composé(s) appartenant à la classe des facteurs de croissance FGF. Ces facteurs permettent aux cellules en culture, en particulier les cellules souches ou progénitrices de proliférer ainsi que de se différencier de façon spécifique. Cette classe de facteurs de croissance regroupe les bFGF, FGF-2 à 10. Généralement, on utilise ces facteurs de croissance à une concentration entre 0.1 ng/ml et 100 ng/ml.
Selon un mode de réalisation de l'invention, au moins un glucocorticoïde peut être ajouté dans le milieu de culture. Ce sont des hormones qui agissent entre autre sur le métabolisme des glucides. On peut utiliser des glucocorticoïdes naturels ou hémisynthétiques, i.e. l'hydrocortisone, la dexaméthasone, la prednisolone ou la triamcinolone. La dexaméthasone (Dex) est le glucocorticoïde préféré. Comme le montre l'exemple 5, les glucocorticoïdes ont un effet stimulant et spécifique sur la croissance cellulaire.
Un autre mode de réalisation de l'invention consiste à utiliser un ou plusieurs additifs supplémentaire(s) choisis parmi l'acide lipophosphatidique, les facteurs de croissance EGF, PDGF, hérégulines, thrombine (IL6 IL8, IL-15), LIF et hormones thyroïdiennes (dont T3, T4). II est également possible le cas échéant d'ajouter comme facteur protecteur contre les métaux lourds la transferrine. D'autres hormones ou molécules actives peuvent rentrer dans la composition du milieu de culture comme le facteur de croissance des hépatocytes, HGF/SF, et les différents facteurs caractérisés tels LIF, VEGF, SCF, TGFb, TNFa, la thrombopoïétine ou l'hormone de croissance. On peut également utiliser les progestagènes et dérivés (tels que la progestérone), les œstrogènes et dérivés (tels que l'œstradiol), les androgènes et dérivés (tels que la testostérone), les minéralocorticoïdes et dérivés (tels que l'aldostérone), les hormones LH, LH-RH, FSH et TSH, l'acide rétinoïque et ses dérivés, la calcitonine, les prostaglandines E2 et F2/alpha ou l'hormone parathyroïdienne. Selon un mode de réalisation de l'invention, la composition définie ci-dessus convient tout particulièrement comme milieu de culture pour des cellules progénitrices et/ou souches issues de tissus musculaires.
Selon l'invention, il est préférable d'utiliser du sérum humain qui soit autologue aux cellules progénitrices et/ou souches mises en culture car cela permet de supprimer tout risque de contamination qui existe lors de l'utilisation d'un sérum hétérologue. Il en résulte dans ce cas que le traitement du sérum avant son utilisation dans le cadre de la culture cellulaire n'est plus nécessaire. L'invention se rapporte aussi à un procédé de production de myoblastes au cours duquel les cellules progénitrices et/souches musculaires sont mises en culture sur un milieu de culture dont la composition a été définie ci-dessus. Ce procédé de production peut être divisé en les phases suivantes : - extraction : les cellules sont obtenues à partir de tissus musculaires par exemple par traitement enzymatique,
- amplification : les cellules obtenues lors de l'étape précédente sont mises en culture, elles subissent une croissance sélective,
- congélation des cellules issues de l'amplification (le cas échéant), - caractérisation des cellules issues de l'amplification avant leur réimplantation chez le patient.
Préalablement à ce procédé de production, on effectue une biopsie musculaire pour récolter les cellules progénitrices et/ou souches. Elle a lieu sous anesthésie locale par incision.
La taille du prélèvement est d'environ 1 gr, dont il est possible d'extraire 106 cellules. Une fois la biopsie effectuée, le tissu est placé dans le milieu de protection. Ce milieu de protection consiste essentiellement au milieu nutritif de base évoqué auparavant, auquel on peut ajouter des antibiotiques tels que la gentamycine, qui est préféré pour son caractère moins allergique aux dérivés de la pénicilline ; des facteurs protecteurs comme la carnitme (1 mM), insuline (10 μg/ml), dexaméthasone (5.10"9 M), l'acide ascorbique, la nicotinamide et le tréalose. La température doit être inférieure à 25°C et supérieure à 4°C. Il est préférable que le volume de milieu de transport soit d'au moins 10 fois supérieur au volume du tissu musculaire et que le temps de transport n'excède pas 24 heures. Les cellules peuvent être notamment obtenues à partir du vaste externe, vaste interne, biceps, quadriceps, jambiers, gastrocnémiens, péronier, deltoïdes, grand dorsal, sterno-cleido-mastoïdien, intercostal, homo-hyoïdien, grand droit ou du psoas. Une étape d'éminçage peut être réalisée pour permettre une meilleure dissociation enzymatique ultérieure. Elle consiste à découper la biopsie en sections d'une taille de préférence inférieure à 0,5 mm placées dans un milieu de culture adapté. L'éminçage peut être réalisé manuellement à l'aide de ciseaux fins. On peut également effectuer l'éminçage de manière assistée, à l'aide par exemple de broyeurs à couteaux mus par l'énergie électrique ou mécanique. Un exemple d'un tel broyeur utilisable est le broyeur Medimachine (distribué par Becton-Dickinson).
Un mode de réalisation de l'invention consiste à extraire les cellules des tissus musculaires. En effet, les tissus musculaires sont constitués de fibres musculaires, au sein desquelles les cellules satellites sont situées sous la lame basale des celles-ci. L'étape de dissociation des fibres musculaires et de décollement des cellules satellites permet d'isoler ces dernières. L'étape de dissociation préférée selon l'invention consiste en l'utilisation d'enzymes de digestion de la matrice extracellulaire. Le choix des enzymes et leurs concentrations utilisées pour la dissociation des fibres musculaires et des cellules satellites des tissus prélevés est guidé par l'étude de leur efficacité enzymatique, les critères recherchés sont une concentration d'enzyme la moins élevée possible et un temps d'incubation minimal pour une efficacité similaire. Le rendement en cellules obtenues après filtration dépend en partie de la qualité de l'étape de dissociation enzymatique. Des enzymes de digestion utilisables dans le procédé de l'invention seules ou en association sont, par exemple, toutes les collagénases, incluant les types IA, S et H partiellement purifiées, ainsi que la forme purifiée commercialisée sous le nom de Libérase par Roche-Boehringer, la pronase, ou les trypsines, de toutes origines, en solution dans des tampons contenant ou non de l'EDTA, les dispases (aussi connues sous le nom de protéases), les élastases, ou encore, les hyaluronidases. Notamment les associations enzymatiques trypsine-collagénase ou pronase-collagénase conviennent comme le montre les résultats de l'exemple 1. Parmi ces dernières, on préfère la combinaison pronase-collagénase, car ce sont des enzymes d'origine non-extractive, permettant ainsi de s'abstraire de tout risque sanitaire de contamination par le prion ou des virus. Il est également possible d'utiliser la collagénase comme enzyme unique. Il est préférable d'effectuer cette étape d'extraction par processus séquentiel afin de minimiser le temps d'exposition des cellules aux enzymes. Il est également souhaitable que la durée des traitements enzymatiques n'excède pas 10 minutes et d'utiliser une température de traitement comprise entre 20 et 25°C. Pendant toute cette étape, le milieu utilisé est le milieu de protection. L'inhibition de l'action des enzymes se fait par dilution, lavage et centrifugation. Des variantes du traitement d'extraction sont applicables. D'une part, on peut effectuer l'étape de dissociation en deux temps; une première incubation en présence de collagénase et une deuxième incubation en présence de trypsine. D'autre part, il est possible de compléter la dissociation enzymatique par une dissociation mécanique par aspiration et refoulement de la suspension au travers d'une pipette. II est alors possible de suivre l'efficacité de la digestion enzymatique par l'observation microscopique des cellules libérées du fragment tissulaire. Par cette observation, on peut constater la présence de cellules de taille variée, d'hématies et de fragments de sarcomères. Ces fragments de sarcomères sont de bons indicateurs de l'efficacité de la digestion enzymatique du tissu musculaire. Il est recommandé de soumettre à nouveau le fragment tissulaire non digéré par les enzymes à une nouvelle digestion enzymatique selon le même traitement que précédemment décrit. Il est particulièrement approprié de renouveler l'opération 5 fois. Les cellules peuvent être congelées à ce stade (avant la mise en culture) selon un protocole bien connu dans le domaine de l'art.
L'invention porte également sur le procédé de production de myoblastes au cours duquel l'étape d'amplification cellulaire est réalisée en utilisant le milieu de culture tel que déjà décrit. Au terme de cette phase d'amplification, on obtient majoritairement une population cellulaire de myoblastes, c'est à dire dans laquelle on trouve au minimum 70 % de myoblastes. Cette étape de croissance cellulaire est suivie par une étape de différenciation : ainsi on remplace le milieu de croissance précédemment décrit par un milieu de différenciation dont un exemple est fourni ci-après (exemple 6).
Afin d'améliorer la croissance des précurseurs myogéniques, il est courant d'utiliser dans le domaine de culture cellulaire du collagène ou ses dérivés comme la gélatine. Or, ces substances sont obtenues par extraction de carcasse bovine, ce qui pose un problème de risque sanitaire de contamination, par exemple, par le prion. L'invention se propose donc de résoudre ce problème en utilisant une protéine qui est obtenue par génie génétique. Une molécule disponible dans le commerce appelée Pronectin F, qui est un polymère du fragment RGDS de la fibronectine, convient tout particulièrement. Ayant une efficacité comparable à la gélatine pour la croissance des cellules humaines comme celles précurseurs du tissu musculaire, cette protéine peut être alors utilisée dans le cadre de l'invention en tant que substrat. Il est aussi possible d'utiliser des polymères du L-lysine ou de D-lysine.
Il est préférable que les cellules soient mises en culture dans un réacteur adapté pour la culture de cellules adhérentes. Afin de s'affranchir des contraintes de contrôles de la vitesse d'agitation, de sa régularité et de l'homogénéité des préparations, le réacteur de culture est de préférence statique. Il doit présenter une grande surface de culture par rapport aux supports classiques (boites de Pétri, flasques) de manière à récolter en quelques jours une population cellulaire importante. Un exemple d'un tel réacteur de culture est le dispositif de culture en plateaux (simple, double et/ou multi-étagé). Le dispositif de culture utilisable dans le procédé permet également de procéder à l'échantillonnage des cellules de manière stérile. Ceci permet de réaliser à des prélèvements nécessaires à l'identification des types cellulaires présents aux différents stades de la culture par analyse de marqueurs spécifiques. Il permet la vidange des milieux, le lavage et le décollement des cellules et enfin leur récolte de manière stérile. Des poches peuvent être utilisées et des tubulures stériles spécialement adaptées reliant les poches au réacteur pour permettre les transvasements des milieux ou la récolte des cellules. Ce dispositif permet ainsi de réaliser un grand nombre d'opérations en système clos.
Selon la population cellulaire souhaitée, le nombre de jours de culture varie de 0 à 45 jours.
De plus, la culture peut être poursuivie par des techniques classiques d'expansion ou de perfusion pendant une durée pouvant atteindre plusieurs mois.
Afin d'augmenter le nombre de cellules récoltées, une ou plusieurs phases d'expansion sont possibles. Les phases d'expansion comprennent une étape de décollement des cellules, de lavage des cellules et de remise en culture sur une plus grande surface de culture, les solutions et enzymes utilisées pour réaliser ces étapes étant bien connues de l'homme du métier. En particulier, le procédé de l'invention comprend au moins une phase d'expansion de cellules. Un tel procédé permet de multiplier le nombre de cellules tout en assurant la différenciation des cellules progénitrices et/souches initiales majoritairement en myoblastes en fin de culture de chaque expansion. Selon un mode de réalisation de l'invention, on procède à une congélation d'une partie des cellules ayant subi l'étape d'amplification. Un protocole de congélation est fourni dans l'exemple 8. Par exemple, on peut congeler 1/5 de la culture, soit approximativement 2 105 cellules, les 4/5 restants étant soumis à un processus d'amplification cellulaire. Afin de permettre l'utilisation dans le temps des cellules ainsi préparées, il peut être avantageux de les congeler dans des conditions telles que la décongélation ultérieure permette une survie des cellules suffisante, de préférence supérieure à 90 %. A titre d'exemple, les cellules sont suspendues dans le milieu de congélation. Ces compositions de milieux de congélation sont typiquement du milieu DME/F12 avec 1 mM L- carnitine, 0.2521 mM d'acide ascorbique, de 5.10-9 M dexaméthasone, 10 μg/ml d'insuline et 2 % de sérum humain et transférées dans deux poches de congélation stériles, à une concentration comprise entre 10 5 à 107 cellules par ml cellules/ml ou dans des tubes de cryocongélation à une concentration comprise entre 10 à 10 cellules par ml. Dans ces conditions l'agent préservant est le DMSO à la concentration de 10 %. On peut ajouter à ce milieu de congélation de L-Arginine du tréhalose (jusqu'à 0.5 M). Par immersion des cellules dans ce dioside, cela permet d'améliorer la conservation de celles-ci. La congélation est réalisée à l'aide d'un dispositif (Digicool ou Nicool) assurant une descente progressive en température contrôlée. Les cellules sont stockées dans l'azote liquide jusqu'au moment de la décongélation. On peut procéder à une décongélation des cellules congelées après culture par exemple au bain-marie à 37°C. Les préparations cellulaires sont lavées deux fois à l'aide d'une solution saline isotonique. Les rinçages sont effectués par connexion stérile aux poches de solution isotonique et aux poches de vidange. Une aliquote est réservée pour l'estimation de la viabilité et de la qualité cellulaire.
Après amplification cellulaire, il convient d'effectuer une séparation des cellules par digestion enzymatique. Lors de cette étape et dans le but de réduire les risques sanitaires, il est recommandable d'utiliser de la trypsine d'origine recombinante que l'on trouve couramment dans le commerce.
Avant de procéder à la transplantation cellulaire dans le cadre des futures applications cliniques, il peut être préférable selon l'invention de caractériser au niveau moléculaire et fonctionnel la suspension cellulaire obtenue par le procédé de production des myoblastes décrit ci-dessus. Cette caractérisation peut être réalisée par l'analyse de marqueurs cellulaires par cytofluorimétrie de flux ou FACS, après marquage des antigènes de surfaces ou de tout antigène spécifique des différents types cellulaires à analyser. Dans le présent texte, le terme « marqueurs cellulaires » indique tout antigène cellulaire permettant d'apporter des informations à lui seul ou en combinaison avec d'autres marqueurs sur un type cellulaire. Cette caractérisation peut être entreprise au niveau protéique grâce à l'utilisation d'autres marqueurs cellulaires tels que :
- P-Cam comme marqueur de cellule endothéliales
- N-Cam comme marqueur de cellule neuronales et musculaires - « Smooth muscle actin » comme marqueurs du muscle lisse
- GFAP comme marqueur de cellules gliales
- MyoD Myf5, Pax3, Pax7, C-met et M-cadhérine N-cam comme marqueurs de cellules musculaires - Scal+, C-Kit, CD45, CD34 et CD56 comme marqueurs de cellules souches
- PCNA, P21 , P 16, Ki67 comme marqueurs du cycle cellulaire.
On peut également procéder à cette caractérisation au niveau de la transcription par l'utilisation de biopuces (« gène array ») contenant des oligonucléotides codant pour des gènes cellulaires (par exemple, facteurs de transcription spécifiques et facteurs de la machinerie du cycle cellulaire) permettant d'identifier les cellules de la suspension cellulaire.
L'obtention d'une population cellulaire de degré de pureté élevé peut se révéler nécessaire pour certaines utilisations en tant que produit de thérapie cellulaire. II apparaît clairement que l'homme du métier pourra mettre en œuvre les différentes techniques proposées dans l'état de l'art pour faire un tri sélectif des dites cellules. A titre d'exemple, citons les techniques de tri par clonage, par cytofluorimétrie de flux ou encore par colonnes d'immunoaffinité ou immunomagnétiques utilisant des anticorps spécifiques des cellules en cause. Dans ce but, il convient d'utiliser à la fois des caractérisations moléculaires et des caractérisations biologiques fonctionnelles. Les marqueurs cellulaires choisis permettent d'identifier les cellules précurseurs des fibres musculaires. Cette identification est faite non part un marqueur unique mais par une combinaison de marqueurs. Il s'agit de marqueurs membranaires comme les N-Cam, Vla4, M-cadhérine, intégrines, CD56, de marqueurs cytoplasmiques comme la desmine et de marqueurs nucléaires comme les pax 7 et myoD. Pour augmenter la capacité de colonisation et de croissance une fois implantées dans l'organisme les cellules utilisées pour la thérapie cellulaire sont positives pour des marqueurs de la machinerie du cycle cellulaire comme Ki67, PCNA et négatives pour les inhibiteurs du cycle cellulaire comme P21 et P16. D'autre part ces cellules sont négatives pour des marqueurs terminaux de la différenciation terminale musculaire comme la myogénine et la troponin T (TNT). On procède à l'analyse de la fonctionnalité cellulaire par des tests biologiques en culture. Ces tests ont pour but de déterminer dans un échantillon cellulaire la capacité à former des colonies en culture et la fréquence de colonies myogéniques. Ce test peut être pratiqué, soit après l'extraction cellulaire, soit avant la congélation, soit après la congélation. Le principe est basé sur l'analyse de la croissance à basse densité et sur la révélation du phénotype cellulaire par l'utilisation de milieu de différenciation spécifique. A noter que l'on se doit de garder une densité d'ensemencement cellulaire la plus faible possible. Au préalable, on soumet les cellules progénitrices/souches à une phase de croissance, suivie par une phase de différenciation cellulaire. Les cellules résultantes sont alors fixées par une solution alcoolique, colorées au giemsa selon un protocole bien connu dans le domaine de l'art puis photographiées par appareil numérique. Dans le cadre du test de fonctionnalité, elles ci sont alors soumises :
- à une observation macroscopique qui permet de dénombrer le nombre total de colonies et de déterminer ainsi le pourcentage de cellules qui présente un potentiel de croissance clonale,
- à une observation microscopique qui permet de déterminer le nombre et le pourcentage de colonies de précurseurs musculaires. Les colonies de précurseurs musculaires forment par fusion cellulaire des cellules polynuclées fusiformes, les myotubes qui dans l'organisme formeront les fibres musculaires. Ce test fonctionnel est illustré par l'exemple 6. La présente invention couvre également toute population cellulaire qui est contenue dans le milieu de culture tel que défini ci-dessus. On entend par population cellulaire toute population de cellules non pure, contenant en général un type cellulaire dominant et un ou plusieurs types cellulaires minoritaires. Ce mode de réalisation porte donc sur une population majoritairement de cellules progénitrices et/ou souches (c'est à dire avant que la phase d'amplification ait lieu), sur une population enrichie en myoblastes (suite à l'étape d'amplification cellulaire), mais également sur une population « intermédiaire », ce qui correspond au cas où aucune catégorie de ces cellules n'est majoritaire, c'est à dire au cours du processus d'amplification. Il peut donc s'agir d'un mélange de différents types cellulaires. L'invention se rapporte à l'utilisation d'une population cellulaire dont le type cellulaire dominant est constitué de cellules myoblastiques dans la préparation d'un produit de thérapie cellulaire pour la reconstitution chez l'homme des tissus musculaires squelettiques, cardiaques et viscéraux et des tissus vasculaires.
Selon un mode de réalisation préféré, la population de myoblastes en tant que produit de thérapie cellulaire est utilisée pour traiter l'incontinence urinaire chez l'homme ou la femme. Celle-ci peut avoir comme origine une pression insuffisante pour fermer l'urètre, la résistance normale de l'urètre étant pour moitié due au sphincter lisse et pour moitié due au sphincter strié de l'urètre moyen.
On peut également utiliser ce produit de thérapie cellulaire pour traiter les incontinences suite au traitement du cancer de la prostate ainsi que la dystrophie musculaires innées ou acquises. Chez des patients dystrophiques, la transplantation de myoblastes permet la restauration de l'expression de la dystrophine. Elle consiste par exemple à injecter à l'aide d'une aiguille les cellules d'origine musculaire obtenues par un procédé de l'invention directement dans le muscle squelettique ou dans la circulation générale. Un produit de thérapie cellulaire apte à l'administration humaine comprend une solution isotonique dans laquelle les cellules sont remises en suspension. Il est préférable que cette solution soit être exempte des composants toxiques présents dans les milieux de congélation. Dans le cas du traitement de l'incontinence urinaire, cela consiste notamment à injecter à l'aide d'une aiguille une population de cellules, dont le type dominant a les caractéristiques de cellules myoblastiques, obtenue et préparée comme produit de thérapie cellulaire, directement dans l'urètre ou le rhabdosphincter, ceci dans le but d'améliorer la fonction du mécanisme de fermeture urétrale. Le nombre de cellules injectées est compris entre 105 et 107 cellules.
Il est également possible de contrôler l'injection des myoblastes par une sonde ultrasons transurétrale, et de mesurer la pression urétrale avant et après l'injection, permettant ainsi d'estimer les changements de pression de fermeture urétrale à l'aide d'IRM en particulier. Au cours des phases de culture et d'expansion des cellules dans les procédés fournis par l'invention, une étape de modification génétique des cellules par transfection d'un acide nucléique hétérologue peut être réalisée. L'acide nucléique est choisi de manière à permettre l'expression d'un polypeptide ou d'une protéine dans les cellules transfectées. Les cellules transfectées sont ensuite transplantées et permettent la délivrance du polypeptide ou de la protéine exprimés à partir de l'acide nucléique hétérologue, le dit polypeptide ou protéine étant un produit biologiquement actif. L'invention porte ainsi sur l'utilisation d'une population de cellules comme produit de thérapie cellulaire en tant que plate-forme de délivrance d'un produit biologiquement actif. Pour modifier génétiquement les cellules précurseurs, il est préférable d'utiliser une approche virale qui permette de modifier rapidement et efficacement les cellules en culture. Les retrovirus de type Moloney sont dans ce cas particulièrement efficaces. Il est possible d'insérer dans ce virus un marqueur moléculaire comme par exemple une protéine fluorescente de type GFP (exemple 7). Les cellules ainsi modifiées représentent un outil pour tracer le devenir cellulaire une fois introduite dans l'animal.
Un autre mode de réalisation selon l'invention consiste à utiliser la population de myoblastes dans le criblage toxicologique et/ou pharmacologique. L'objectif est de raccourcir au maximum les phases de développement et de tests précliniques et cliniques afin de répondre au plus vite aux besoins des malades. En effet, il est avantageux d'utiliser cette population de cellules en tant que « modèle » dans le développement de médicaments, permettant ainsi d'effectuer un criblage à haut débit. Il sera alors possible d'élucider les mécanismes à l'origine des maladies et de trouver des cibles thérapeutiques ou des molécules candidates à devenir des principes actifs. Ce criblage peut également servir en toxicologie, notamment à étudier les interactions médicamenteuses.
Le spécialiste en pharmacologie/toxicologie connaît bien la façon de mettre en œuvre des techniques automatisées, et saura sélectionner les molécules d'intérêt, en fonction de la cible à atteindre, à partir de banques de plusieurs milliers de molécules nouvelles ou déjà exploitées en tant que médicament pour d'autres pathologies. Un mode de réalisation préféré selon l'invention consiste à utiliser le criblage pharmacologique/toxicologie pour détecter des molécules cibles impliquées dans la rhabdomyolyse, c'est à dire la lyse des muscles striés. En effet les accidents mortels avec les inhibiteurs de la synthèse du cholestérol de la famille des statmes (inhibiteurs de la HMG Coareductase) ont remis le tissu musculaire au premier plan comme cible toxicologique. La mauvaise évaluation de ce risque connu par Bayer pour la Cerivastatine au eu des conséquences humaines et économiques considérables. De très nombreuses drogues sont susceptibles d'entraîner des myopathies. Dans les cas aigus et graves, on assiste à une lyse importante du tissu musculaire (rhabdomyolyse) dont le mécanisme est encore mal connu. Plusieurs hypothèses ont été émises. Certaines invoquent une augmentation de la perméabilité membranaire et d'autres des anomalies au niveau des mitochondries. Dans la grande majorité des cas, il s'agit d'accidents survenant dans un contexte de poly chimiothérapie suggérant le rôle d'interactions médicamenteuses (macrolides, immunosuppresseurs, anticancéreux, fibrates, cocaïne, antiprotéases du HIV, anesthésiques...).
Parmi les nombreux acteurs impliqués : les cytochromes P450, les molécules impliquées dans l'apoptose comme BCL2, les antioxydants, les protéines du complexe NFKb, les PPARs ou les interventions chirurgicales.
À l'exception des accidents aigus, menaçant le pronostic vital (rhabdomyolyse), les signes cliniques d'une atteinte musculaire sont frustres, douleurs musculaires (myalgies), fatigabilité, crampes et les signes biologiques en dehors des accidents aigus les CPK sont très fréquemment normaux. Dans les cas des statines, des données récentes indiquent que les sujets présentant des atteintes musculaires ne montrent ni de corrélations entre le niveau plasmatique de cet agent pharmacologique et l'atteinte toxique, ni d'élévation des CPK. Dans ces cas l'histologie révèle dans le tissu musculaire des modifications des mitochondries (gonflement) et des accumulations de gouttelettes lipidiques.
Parmi les molécules cibles potentielles, on peut citer : inhibiteurs de l'HMG-coenzyme A réductase, créatine kinase, les statines, les fibrates, les anesthésiques, l'héroïne, les macrolides, la cyclosporine ainsi que leurs dérivés. La section suivante présente des exemples détaillés qui est destiné à illustrer la présente invention. Toutefois, celui-ci n'est pas limitatif dans le sens que l'homme de l'art pourra, avec ses connaissances du domaine, apporter quelques variantes qui sont également couvertes par l'invention.
Exemple 1 :
Extraction cellulaire d'une biopsie de tissu musculaire en absence de protéines d'origine extr actives. Il s'agit dans cette expérience de comparer l'efficacité de différents protocoles d'extraction cellulaire. Le protocole de référence utilise un mélange de deux enzymes (trypsine et la collagénase). La trypsine est d'origine porcine et la collagénase est d'origine bactérienne. L'action de ces enzymes est stoppée par la présence de sérum de veau fœtal. Dans les protocoles suivants, on a choisi des enzymes d'origine bactérienne et le sérum de veau fœtal a été éliminé.
Les cellules progénitrices/souches utilisées proviennent de biopsie de tissu musculaire de brebis adulte.
Le protocole d'extraction cellulaire est de type séquentiel. L'inhibition de l'action des enzymes se fait par dilution, lavage et centrifugation. La durée des traitements enzymatiques n'excède pas les 10 minutes. La température de traitement est située entre 20 et 25°C. Le tissu musculaire (1 g de tissu après éminçage) est mis en présence de la solution enzymatique (10 ml) c'est à dire au moins 10 fois supérieure au volume du tissu musculaire. La solution enzymatique est constituées par une combinaison de collagénase (0.5 mg/ml) - trypsine (1 mg/ml) sans ajout de sérum, ou la combinaison collagénase (0.5 mg/ml)-pronase (1 mg/ml) avec ou sans ajout de sérum fœtal de veau, ces enzymes étant solubilisées dans du DME/F12 additionné de 15 mM Hepes.
Le milieu de base supplémenté (sans sérum) utilisé pour l'extraction cellulaire est du DME/F12 additionné de 15 mM Hepes, insuline humaine à 10 μg/ml, FGF 2 à 10 ng/ml, dexaméthasone à 5.10"9 M, de l'acide ascorbique à (0.252 mM) et de la L-carnitine à 1 mM. Après 10 minutes de contact avec la solution enzymatique, l'ensemble (solution enzymatique et fragment tissulaire) est dilué dans un volume de 30 ml pour inhiber les enzymes puis soumis à une centrifugation lente (inférieure à 10 g pendant 3 minutes). Par ce procédé, on récupère le surnageant qui contient les cellules extraites par la première digestion enzymatique et le fragment tissulaire restant. Pour récupérer les cellules de la première digestion une centrifugation à 200 g est effectuée pendant 3 minutes environ. Les cellules ainsi obtenues sont remises en suspension dans le milieu sans sérum. L'efficacité de la digestion enzymatique est suivie par l'observation microscopique des cellules libérées du fragment tissulaire. Le fragment tissulaire restant est de nouveau soumis à une digestion enzymatique selon le même protocole. Cette opération est répétée cinq fois de suite.
Le substrat utilisé pour l'attachement cellulaire est la gélatine bovine. On utilise comme milieu de culture du DME/F12 supplémenté par du sérum de veau fœtal à 20 %, de l'insuline à 10 μg/ml, de la dexaméthasone 5 à 10"9 M et du FGF 2 à 10 ng/ml. Les conditions de culture sont les suivantes : la température est de 37°C sous atmosphère humide, 20 % d'oxygène et 5 % de gaz carbonique. Le temps de culture est de 7 jours. Les cellules sont fixées par une solution alcoolique et sont colorées par le colorant giemsa. Les boites sont alors photographiées. Les résultats indiquent que le nombre de cellules observées dans les trois différentes conditions d'extraction : trypsine + collagénase sans sérum bovin, pronase + collagénase avec sérum bovin (FCS) et pronase + collagénase sans sérum bovin (FCS) après une semaine de culture sont semblables ainsi que leur potentiel de différenciation. Cet exemple montre l'efficacité des techniques d'extraction cellulaire en utilisant des enzymes d'origine non extractive comme la pronase et/ou la collagénase.
Exemple 2 :
Effet de la « supplémentation » du sérum humain sur l'amplification des cellules musculaires précurseurs humaines.
Dans cette expérience les cellules humaines sont issue d'une biopsie d'un sujet normal. On réalise l'étape d'extraction cellulaire comme précédemment.
Dans un premier temps, les cellules sont amplifiées en culture en présence de sérum humain (laboratoire PAA) puis ensemencées dans les différentes conditions décrites. Les facteurs de croissance FGF2, EGF, PDGF A/B sont produites par Preprotech et la thrombine est obtenue auprès de Sigma.
Au cours de la culture cellulaire, on utilise :
- 2 boîtes multipuits de 12 (TPP)
- gélatine bovine (Merck) - 10000 cellules/puits
- 1 ml de milieu /puits
On prépare les différents milieux de culture de la façon suivante : le milieu nutritif de base est le DME, auquel on ajoute :
- aucun supplément (0) - 1 % de sérum humain (1 % HS)
- 5 % de sérum humain (5 % HS)
- Mélange M : FGF2 (10 ng/ml ) + insuline (10 μg/ml) + PDGF (1 ng/ml) +EGF (10 ng/ml)+ dexaméthasone (5.10 "9 M) + thrombine (1 unité)
- 1 % de sérum humain + mélange M (1 % HS + M) - 5 % de sérum humain + mélange M (5 % HS + M)
- 20 % de sérum de veau fœtal (20 % FCS)
Il est à préciser que le mélange M ne contient pas de protéines d'origine animale. Un deuxième changement de milieu est effectué 3 jours après le premier. Après 3 jours de culture (total de 7 jours), on réalise la fixation et la coloration au giemsa. On effectue la détermination du nombre sur les cellules fixées et colorées.
Les résultats (exprimés en nombre de cellules par puits) sont indiqués dans le tableau 1 suivant : Tableau 1
Effet de supplémenter le sérum humain (HS sur la croissance cellulaire
Figure imgf000018_0001
D'après ces résultats, on observe que la combinaison du cocktail de facteur de croissance et du sérum humain permet d'obtenir une croissance de trois fois supérieure à celle obtenue en présence de sérum de veau fœtal non supplémenté. Dans ces conditions le facteur d'amplification est supérieur à 30 après une semaine de croissance. De façon surprenante, il est important de noter que le sérum humain aux concentrations de 1 % et 5 % supplémenté par le mélange M stimule fortement la prolifération cellulaire puisqu'à ces faibles concentrations, on obtient, respectivement, un doublement et un triplement du nombre de myoblastes par rapport au sérum fœtal de veau à 20 % non supplémenté. Enfin, le sérum supplémenté par le mélange. M améliore de plus de 4 fois la prolifération comparativement au sérum non supplémenté.
Exemple 3 :
Amélioration du potentiel de croissance des précurseurs des cellules musculaires en présence de sérum de veau fœtal supplémenté.
Dans cette expérience, les étapes d'extraction cellulaire et d'amplification sont similaires à celles précédemment décrites. Cependant, on les paramètres de culture utilisés sont définies comme suit : on choisit des cellules humaines normales obtenues au passage 7 après l'extraction cellulaire. La température est de 37°C dans une atmosphère humide avec 20 % d'oxygène et 5 % de gaz carbonique. La densité cellulaire est de 103 cellules par boite de culture. Le substrat utilisé est de la gélatine.
Comme milieu de culture pour la phase de croissance, on teste du : - DME/F12 auquel on ajoute du sérum de veau fœtal à 20 %,
- DME/F12 auquel on ajoute du sérum de veau fœtal à 20 % supplémenté par de l'insuline (10 μg/ml), acide ascorbique (0.252 mM), FGF2 (10 ng/ml),
- PDGF (1 ng/ml), EGF (10 ng/ml), thrombine (1 unité), LPA (5 mM).
La durée de croissance est respectivement de 10 jours et 7 jours avec des changements de milieu tous les trois jours. Après fixation alcoolique, et coloration au giemsa, on effectue une photographie numérique des boites de pétri.
Les résultats sont consignés dans le tableau 2 suivant.
Tableau 2
Figure imgf000019_0001
D'après les résultats obtenus, on observe de façon surprenante une amélioration très importante du nombre de cellules musculaires humaines suite à l'addition du cocktail précité par rapport au sérum de veau fœtal seul, puisque ce nombre de cellules est augmenté par un facteur 5 sur une période de croissance de 7 jours seulement.
Exemple 4 :
EtTet de l'acide ascorbique et de la nicotinamide sur l'amplification des cellules humaines musculaires précurseurs. Dans cette expérience les cellules humaines sont issues d'une biopsie d'un sujet normal âgé de 16 ans.
Les protocole d'extraction utilisé est identique à celui de l'exemple 1. Dans l'étape d'amplification, on procède comme dans l'exemple précédent, sauf qu'on utilise comme milieu de culture, du DMΕ/F12 supplémenté par soit : 2 % de sérum humain + mélange M (insuline (10 μg/ml) + dexaméthasone (5.10"9 M) +
FGF2 (10 ng/ml) + ΕGF (10 ng/ml) + thrombine (1 unité) (désigné comme 2 %HS + M) le sérum supplémenté précédent (2 %HS + M) auquel on ajoute de l'acide ascorbique à une concentration de 0.252 mM le sérum supplémenté (2 %HS + M) auquel on ajoute de la nicotinamide à une concentration de 10 mM le sérum supplémenté (2 %HS + M) auquel on ajoute de l'acide ascorbique et de la nicotinamide aux concentrations précédentes.
Au cours des 8 jours de culture, on effectue 3 changements de milieu de culture. Au terme de cette période, on colore les cellules selon le même mode opératoire que précédemment. Les résultats (exprimés en nombre de cellules par puits) sont indiqués dans le tableau 3 suivant :
Tableau 3
Effet de supplémenter le sérum humain (HS) par de l'acide ascorbique et ou de la nicotinami e sur la croissance cellulaire.
Figure imgf000020_0001
L'addition d'acide ascorbique, utilisé dans cette expérience comme antioxydant, permet de doubler le nombre de cellules amplifiées après une période de 8 jours de culture. En utilisant la nicotinamide comme autre antioxydant, aucun effet positif sur la croissance est observé. L'addition de ces deux antioxydants donne un résultat intermédiaire, elle permet une augmentation du nombre de cellules amplifiées mais pas au même niveau qu'avec de l'acide ascorbique seul.
Exemple 5 :
Effet spécifiques des glucocorticoïdes sur la croissance des cellules précurseurs des fibres musculaires
On utilise des cellules de rat obtenues au passage 23 après l'extraction cellulaire. La température d'incubation est de 37°C dans une atmosphère humide avec 20 % d'oxygène et 5 % de gaz carbonique. La densité cellulaire est de 3.103 cellules par multiples de 12. Le substrat est la gélatine.
Comme milieu de culture pour la phase de croissance, on utilise du DME/F12 auquel on ajoute du sérum de veau fœtal à 20 % supplémenté par de l'insuline (10 μg/ml) et du FGF (10 ng/ml). A ce milieu, il est ajouté :
- soit de la dexaméthasone à des concentrations croissantes (de 10"6 M à 10"10 M)
- soit des hormones stéroïdiennes (œstradiol, testostérone, progestérone, DEHA, SDEAH, aldostérone) seules ou en association comme la dexaméthasone avec l'anti-progestagène RU486) à une concentration fixe (10"7 M). La durée de culture est de 5 jours sans changement de milieu.
Après fixation alcoolique et coloration au giemsa, on effectue une prise photographique numérique.
Les résultats sont indiqués dans les figures 2 A et 2B. D'après ces résultats, on montre que l'ajout de dexaméthasone améliore très nettement la prolifération cellulaire et que sa concentration optimale est comprise entre 10"6 M à 5.10"9 M. De plus, l'effet de ce glucocorticoïde est spécifique sur la croissance des cellules précurseurs musculaires contrairement aux autres hormones stéroïdiennes testées qui n'améliorent pas la croissance. Enfin, la présence d'un anti-progestagène comme le RU486 abolit l'effet des glucocorticoïdes.
Exemple 6 :
Test fonctionnel des précurseurs des cellules musculaires humaines On utilise des cellules humaines saines au passage 1 après l'extraction. Les conditions de culture cellulaire sont les suivantes : la température est de 37°C, atmosphère humide, 20 % d'oxygène et 5 % de gaz carbonique. La densité cellulaire est de 10 cellules par boite culture qui sont issues d'un tissu musculaire de 100 mm. Le substrat est la gélatine. Le milieu de culture utilisé dans cette expérience pour la phase de croissance est le DME/F12 auquel on ajoute du sérum de veau fœtal à 20 %, de l'insuline humaine à 10 μg/ml, de la dexaméthasone à 5.10"9 M et du FGF à 2 10 ng/ml. Le temps de croissance est de 9 jours avec des changements de milieu tous les trois jours. Ensuite, on utilise comme milieu de différenciation le DME/F12 auquel on ajoute du sérum humain à 2 %, de l'insuline à 10 μg/ml, de l'EGF à 10 ng/ml, de l'hormone thyroïdienne T3 à 5.10"9 M. Le temps de différenciation est de 4 jours avec un changement tous les 2 jours. On effectue ensuite une fixation alcoolique, une coloration au giemsa et on procède à la photographie numérique des boites.
D'après cette expérience, l'observation macroscopique permet de compter 107 colonies. Parmi celles-ci, on peut remarquer deux types de colonies. Les colonies du premier type sont colorées de mamère intense et l'observation microscopique révèle la présence de nombreuses cellules musculaires différenciées les myotubes : il s'agit de colonies formées de précurseurs musculaires. Les colonies du second type, plus pâles à l'observation macroscopique, ne contiennent aucun myotube : il s'agit de colonies de cellules non-musculaires.
Les résultats sont les suivants : parmi 107 colonies totales, on dénombre 91 colonies de cellules précurseurs du tissu musculaire et 16 colonies de cellules non musculaires. Ainsi, globalement, parmi 1000 cellules ensemencées, 10.7 % des cellules sont capables de former des colonies et parmi celles-ci 85.6 % sont capables de former des colonies de cellules précurseur de tissu musculaire.
Exemple 7 :
Modification génétique des cellules précurseurs des fibres musculaires. Pour modifier génétiquement les cellules précurseurs, nous avons utilisé un retrovirus de type Moloney (MMLV) dans lequel la séquence codant pour la « green fluorescent protein » (GFP) a été insérée. On procède à une tri-infection de par un plasmide d'empaquetage contenant les séquences « gag » et « pol », un plasmide contenant l'enveloppe VSVg, et un plasmide contenant la construction GFP selon un protocole bien connu par l'homme du métier. On utilise des cellules de rat obtenues au passage 21 après l'extraction cellulaire. La température d'incubation est de 37°C sous atmosphère humide avec 20 % d'oxygène et 5 % de gaz carbonique. La densité cellulaire est de 2.104 cellules par boites de 35 mm. Le substrat utilisé est la gélatine.
Comme milieu de culture pour la phase de croissance, on utilise du milieu nutritif de base DME/F12 auquel on ajoute du sérum de veau fœtal à 20 % supplémenté par Dde l'insuline (10 μg/ml), de la dexaméthasone (5.10"5 M) et du FGF (10 ng/ml).
Le protocole d'infection est le suivant : le lendemain de l'ensemencement des cellules, on procède à l'infection des cellules avec le virus rMLV (VsVg) LTR-eGFP à une dose de
8,3.106 ip/mL. L'infection est réalisée en utilisant 10 particules infectieuses par cellule (MOI). L'échantillon est dilué dans un volume final de 5 mL pour une boîte de 10 du milieu composé de :
- DMEM/F12
- polybrène (8 μg/ml) (molécule aidant à l'introduction de l'ADN dans la cellule)
- insuline (10 μg/ml) - FGF (10 ng/ml).
Les cellules sont incubées pendant 6 heures à 37°C puis le milieu est remplacé par 10 mL de DME/F12 supplémenté par 20 % de FCS et de l'insuline (10 ng/ml), de la dexaméthasone (5.10"9 M) et du FGF2 (10 ng/ml).
Au 3eme et 7eme jour, on procède à l'observation des cellules vivantes par photographie microscopique avec un microscope à fluorescence. On dénombre les myoblastes ainsi que les myotubules, qui apparaissent verts et par conséquent qui ont été transfectés par le virus.
Comme attendu, les cellules non infectées ne révèlent aucune fluorescence et une très grande majorité des cellules expriment la GFP et ainsi apparaissent vertes, dans ces conditions plus de 90 % des cellules expriment la GFP. La GFP est correctement exprimée également dans les myotubes qui résultent de la fusion des myoblastes. Dans ces conditions, les myoblastes, qui sont des cellules réplicatives, et les myotubes, qui sont des cellules différenciées, sont modifiables génétiquement et cette modification est stable Le nombre de cellules exprimant la GFP n'est pas modifié par les passages en culture. Après réintroduction chez l'animal, les cellules ainsi modifiées expriment la GFP et peuvent ainsi être observées. Cet outil est important pour analyser le devenir et la fonctions des cellules une fois réintroduites chez l'animal. Exemple 8 :
Amélioration des techniques de congélation cellulaire par utilisation de sérum humain en faible concentration.
Les cellules utilisées proviennent d'un individu normal âgé del6 ans. Elles sont mises en culture et récoltées au passage 7.
Au cours de la phase de culture, on utilise comme milieu 2 % de sérum humain (HS) supplémenté par de l'insuline 10 μg/ml, de l'acide ascorbique 0.252 mM, des facteurs de croissance FGF (10 ng/ml), PDGF (1 ng/ml), EGF (1 ng/ml), ainsi que de la thrombine (1 unité) et du LPA (5 mM). On effectue le traitement enzymatique tel que dans l'exemple 1, en utilisant comme enzyme la trypsine-EDTA (laboratoire PAA). Le temps de traitement est de 10 minutes.
Une fois détachées de leurs substrats, les cellules sont mises dans les différents milieux de congélation qui sont les suivants à la concentration de 105 cellules par ml :
A une solution de DMSO à 10 % comme agent cryopréservant et du sérum fœtal de veau (FCS) à 90 %, on ajoute du milieu DME/F12 seul ou supplémenté par :
- 90 % FCS
- 10 % FCS
- 10 % HS
- 2 % HS - dexaméthasone à 5.10"9 M
- insuline à 10 μg/ml
- acide ascorbique à 0.252 mM
- dexaméthasone +insuline + acide ascorbique (aux concentrations précédentes) - 2 % HS + dexaméthasone à 5.10"9M
- 2 % HS + insuline à 10 μg/ml
- 2 % HS + acide ascorbique à 0.252 mM
- 2 % HS + dexaméthasone (5.10"9 M) +insuline (10 μg/ml) + acide ascorbique (0.252 mM). Après 10 minutes à température ambiante, on refroidit progressivement les cellules jusqu'à la température de -80°C.
La décongélation est effectuée dans un incubateur ou dans un bain-marie à 37°C. L'ampoule conservée dans l'azote liquide est placée dans un incubateur de culture. Après 5 minutes, les cellules décongelées sont placées dans un tube de centrifugation de 10 ml en présence de : DME/F12 supplémenté par du pyruvate, des antibiotiques comme la gentamycine et des facteurs protecteurs comme la L-carnitine à 1 mM, de l'insuline à 10 μg/ml, de la Dexaméthasone à 5.10"9 M, de l'acide ascorbique à 0.252 mM. La centrifugation est effectuée à 200 g pendant 10 minutes à température ambiante. Les cellules ainsi décongelées sont mise en cultures sur des multiples de 12 avec comme substrat de la gélatine et comme milieu de culture du sérum humain (HS) à 2 %HS supplémenté par de l'insuline (10 μ/ml), de l'acide ascorbique (0.252 mM), et des facteurs de croissance FGF2 (10 ng/ml), PDGF (1 ng/ml), et EGF (1 ng/ml), ainsi que de la thrombine (limité) et du LPA (5 mM).
Après 2 jours de culture, on effectue un changement du milieu en utilisant des nouvelles boites à multi-puits. A cette étape, on réalise une coloration dans des boites à multi-puits sur une partie des cellules. L'autre partie est soumise à une nouvelle phase de culture pendant 4 jours supplémentaires et à un nouveau changement de milieu. On réalise une coloration 2 jours après.
Les résultats consignés dans le tableau 4 suivant :
Tableau 4
Effet du type de milieu de congélation sur la croissance cellulaire
(exprimés en nombre de cellules/puits).
Figure imgf000024_0001
Ces résultats confirment que le milieu de congélation doit contenir du sérum ou des fractions de celui ci comme l'albumine pour une bonne conservation cellulaire Ils montrent également de façon surprenante que la présence des différents additifs comme l'insuline, la dexaméthasone et l'acide ascorbique permettent d'augmenter l'efficacité de congélation en présence de faible concentration de sérum, et notamment d'origine humaine. Par ces moyens, on montre qu'il est possible, en vue de préserver une bonne croissance cellulaire ultérieure, d'optimiser le milieu de congélation en réduisant la concentration en sérum tout en s 'émancipant des risques de contaminations par les prions et les virus d'origine animale.
Exemple 9 :
Sélection et amplification de cellules musculaires progenitrices à partir de biopsies.
Il est possible de sélectionner et d'amplifier les cellules musculaires progénitrices présentes dans les échantillons biologiques par des techniques de cultures. D'un point de vue cellulaire, une biopsie de tissu musculaire est très hétérogène. À la fois pour la thérapie cellulaire et pour l'exploitation pharmacologique et toxicologique cette hetérogénité est un handicap.
La technique utilisée est basée sur la construction de techniques de culture qui dissocient la période de sélection de cellules musculaires progénitrices de la période d'amplification de celles-ci. Il est utilisé un milieu de sélection des cellules progenitrices et par la suite un milieu d'amplification.
Le milieu de sélection positif des cellules musculaires progénitrices combine à la fois des agents qui inhibent la croissance des cellules non musculaires et des agents qui stimulent la croissance des cellules progénitrices musculaires. Les premiers appartiennent à la famille des glucocorticoïdes et les seconds sont des antioxydants et des métaux. Dans cette phase de sélection, les cellules issues de la biopsie musculaire après digestion enzymatique sont cultivées à densité clonale en présence des agents inhibiteurs et des agents stimulateurs.
Le milieu d'amplification contient des facteurs de croissance qui permettent de faciliter la croissance des cellules sélectionnées. Ces facteurs appartiennent à la famille des FGF. Dans cette phase, les cellules peuvent être cultivées soit à faible densité soit à forte densité.
Le protocole décrit en deux étapes permet d'obtenir des populations de cellules musculaires enrichies à plus de 95 %.
Comme pour l'exemple 6 les cellules sont ensemencées à densité clonale. Dans ce type d'essai, chaque cellule donne naissance à une colonie cellulaire dont le phénotype est analysé.
Les cellules proviennent d'une personne normale sans pathologie musculaire. Les cellules sont ensemencées à densité clonale de 250 cellules par boites de 100mm dans 10ml de milieu de culture. Les milieux suivants sont utilisés pour la période de sélection J0: - DMEM/F12 + FCS.
- DMEM/F12 + FCS + FGF.
- DMEM/F12 + FCS + Insuline + Dexaméthasone + Sélénométhionine +Acide Ascorbique. - DMEM/F12 + FCS + FGF + Insuline + Dexaméthasone + Sélénométhionine +
Acide Ascorbique. Au jour 3 pour les quatre séries les milieux sont changés pour un milieu identique suivant :
DMEM/F12 + FCS + FGF + Insuline + Dexaméthasone. Le milieu est changé au jour 6 et jour 10 dans les quatre séries. Au jour 14 le milieu est changé pour un milieu permettant la différenciation des cellules musculaires composé de :
- DMEM/F12 + 1 % FCS + Fétuine + Insuline + EGF + T3.
- Au jour 19 les cellules sont fixées et colorées comme décrit dans l'exemple 6.
Les résultats obtenus sont les suivants :
- Les cellules cultivées dans du FCS fournissent 70 colonies/boîte dont 10 % colonies myogéniques.
- Les cellules cultivées dans du FCS + FGF fournissent 70 colonies/boîte dont 0 % colonies myogéniques.
- Les cellules cultivées dans du FCS + Insuline + Dexaméthasone + Sélénométhionine +Acide Ascorbique fournissent 150 colonies/boîte dont 100 % colonies myogéniques.
-Les cellules cultivées dans du FCS + FGF + Insuline + Dexaméthasone +
Sélénométhionine -l-Acide Ascorbique fournissent 80 colonies/boîte dont 50 % colonies myogéniques.
La présence de la combinaison Insuline, Dexaméthasone, Sélénométhionine et acide ascorbique permet de sélectionner avec une grande efficacité les cellules musculaires progénitrices. Exemple 10 : Tests cellulaires prédictifs de toxicité musculaire
Afin de construire des cultures de cellules permettant des tests toxicologiques in vitro nous avons utilisé les cellules musculaires et adipocytaires de rat pour analyser la spécificité de la toxicité musculaire.
Les conditions de l'expérience sont les suivantes :
L'origine des cellules et leur type sont: Rat (cellules musculaires) et Rat 160 mg
(adipocytes). Leurs numéros de passage sont P9 et P4. Les conditions de culture sont FCS+FGF + Insuline + Dexaméthasone.
Le traitement enzymatique est effectué avec de la Trypsine-EDTA (PAA), le temps de traitement étant 5 minutes. Une Centrifugation est effectuée.
Les conditions de la manipulation sont les suivants : type de boîte : 4 multipuits de 12 (TPP) ; substrat : Gélatine densité : 5 000 cellules/puit, le milieu de culture est DME/F12 + 20% FCS + FGF + Insuline -HDexamethasone + Statines (à des concentrations de 0 ; 0,1 ; 0,5 ou 1 μM). Les concentrations sont FGF : lOng/ml ; Insuline : 10μ.g/ml, dexaméthasone : 5.10"9 M.
Les cellules sont ainsi cultivées 2 jours puis fixées colorées et analysées.
Cette analyse révèle une toxicité préférentielle de la Lovastatine pour les cellules musculaires. A 0.5μM, les cellules musculaires sont très inhibées dans leur croissance alors que les cellules adipocytaires y sont insensibles. La figure 3 montre les résultats de l'exploitation numérique des résultats du test de toxicité.
Ces expériences ont été reproduites avec des cellules musculaires humaines pour tester la toxicité des statines commerciales.
Les conditions de l'expérimentation sont les suivantes:
-le type de boite est 2 multipuits de 96 (TPP) -la densité cellulaire est 2 500 cellules/puit -le milieu de culture contient DME/F12 + 20% FCS + FGF + Insuline +
Dexaméthasone +X.
X étant choisi parmi :
Lovastatine aune concentration de 0 ; 0,01 ; 0,05 ; 0,1 ; 0,5 μM ; ou Cerivastatine à une concentration de 0 ; 0,01 ; 0,05 ; 0,1 ; 0,5 lμM ; ou Atorvastatine à une concentration de 0 ; 0,01 ; 0,05 ; 0,1 ; 0,5 ; 1 μM ; ou Pravastatine a une concentration de 0 ; 0,01 ; 0,05 ; 0,1 ; 0,5 ; lμM ; ou Fluvastatine a une concentration de 0 ; 0,01 ; 0,05 ; 0,1 ; 0,5 ; 1 μM ; ou Simvastatine à une concentration de 0 ; 0,01 ; 0,05 ; 0,1 ; 0,5 ; 1 μM.
Le déroulement de l'expérimentation est comme suit.
Au jour 1 on procède à un changement des milieux. Au jour 3 on procède à une coloration.
Le temps de culture total est de 5 jours.
Après aspiration du milieu de culture, les cellules sont lavées avec du PBS puis fixées avec de l'éthanol à 100%. 10 minutes plus tard les cellules sont lavées à l'eau puis colorées avec une solution de Giemsa à 10% pendant 10 minutes. L'étape finale est un lavage à l'eau.
Des images des cellules sont obtenues avec un microscope inversé (Nikon) équipé d'une caméra numérique et d'une platine motorisée.
L'exploitation numérique est présentée dans la Figure 4. Cette figure révèle la toxicité élevée de la Cerivastatine. Cette dernière molécule s'est avérée la statine la plus toxique en clinique humaine. Ce test permet donc de révéler la toxicité préférentielle de la Cerivastatine pour les cellules musculaires humaines.

Claims

REVENDICATIONS
1. Composition de milieu de culture cellulaire contenant :
(i) du sérum et/ou de la fraction sérique d'origine humaine et/ou d'origine animale
(ii) de l'insuline ou un dérivé de celle-ci
(iii) un ou plusieurs composé(s) choisi(s) parmi la classe des antioxydants et/ou des vitamines.
2. Composition selon la revendication 1, dans laquelle on utilise du sérum humain.
3. Composition selon la revendication 1, dans laquelle on utilise du sérum bovin.
4. Composition selon la revendication 1, comprenant en outre un ou plusieurs composé(s) choisi(s) parmi la classe des facteurs de croissance de type FGF.
5. Composition selon la revendication précédente, dans laquelle la classe des facteurs de croissance de type FGF est composée de bFGF, FGF-2 à FGF-10.
6. Composition selon l'une des revendications précédentes, dans laquelle le dérivé de l'insuline est choisi parmi la classe des IGF, et des insulomimétiques de type vanadate.
7. Composition selon l'une quelconque des revendications 1-2 et 4-6, dans laquelle la concentration en sérum humain est inférieure à 5 % en volume, de préférence entre 1 % et 3 %.
8. Composition selon l'une des revendications précédentes, qui comprend en outre un glucocorticoïde.
9. Composition selon l'une quelconque des revendications précédentes, ladite vitamine étant l'acide ascorbique.
10. Composition selon l'une quelconque des revendications précédentes, ledit antioxydant étant la N-acétyl-cystéine et/ou le sélénium.
11. Composition selon l'une quelconque des revendications précédentes, qui comprend en outre de l'acide lipophosphatidique et/ou un ou plusieurs composé(s) de la classes des EGF, hérégulines, thrombine, PDGF, hormones thyroïdiennes, LIF.
12. Procédé de culture de cellules progénitrices et/ou souches, dans lequel on utilise comme milieu de culture durant l'étape d'amplification cellulaire la composition selon l'une des revendications précédentes.
13. Procédé selon la revendication précédente, dans lequel on réalise une étape de différenciation cellulaire avant, pendant ou après ladite étape d'amplification cellulaire.
14. Procédé selon la revendication 12 ou 13, dans lequel le sérum humain utilisé est autologue des cellules progénitrices/souches.
15. Procédé de production de myoblastes par mise en œuvre du procédé selon l'une des revendications 12 à 14.
16. Procédé de production de myoblastes selon la revendication précédente, dans lequel les cellules progénitrices et/ou souches sont obtenues par une étape d'extraction cellulaire de tissus musculaires.
17. Procédé de production de myoblastes selon la revendication précédente, ladite étape d'extraction étant réalisée par digestion enzymatique.
18. Procédé de production de myoblastes selon l'une des revendications 15 à 17, dans lequel on effectue une récolte et une séparation des cellules obtenues.
19. Procédé de production de myoblastes selon la revendication précédente, dans lequel ladite étape de récolte et séparation des cellules est effectuée par digestion enzymatique suivie d'une centrifugation et/ou filtration.
20. Procédé de production de myoblastes selon l'une des revendications 15 à 19, dans lequel on réalise un test de fonctionnalité sur l'aptitude des myoblastes à former des colonies.
21. Procédé de production de myoblastes selon l'une des revendications 15 à 20 dans lequel on réalise en outre une étape de caractérisation.
22. Procédé de production de myoblastes selon la revendication précédente, dans lequel on utilise des marqueurs du cycle cellulaire.
23. Procédé de production de myoblastes selon l'une des revendications 15 à 22, dans lequel on réalise une étape de congélation des myoblastes.
24. Population cellulaire contenant des cellules progénitrices et/ou souches et/ou des myoblastes dans le milieu de culture selon l'une des revendications 1 à 11.
25. Utilisation des myoblastes selon l'une des revendications 15 à 23, ledit produit étant destiné à la thérapie cellulaire.
26. Utilisation des myoblastes selon la revendication précédente pour la préparation d'un produit destiné au traitement fonctionnel des petits muscles.
27. Utilisation des myoblastes selon la revendication 25 pour la préparation d'un produit destiné au traitement de l'incontinence urinaire.
28. Utilisation des myoblastes selon l'une des revendications 15 à 23, ledit produit étant destiné à la thérapie génique.
29. Utilisation des myoblastes par le procédé obtenus selon l'une des revendications 15 à 23 dans le criblage toxicologique et/ou pharmacologique.
30. Utilisation des myoblastes selon la revendication précédente pour détecter une ou plusieurs substance(s) impliquée(s) dans la rhabdomyolyse.
PCT/FR2003/003691 2002-12-13 2003-12-12 Composition de milieu de culture, procede de culture, et myoblastes ainsi obtenus, et leurs utilisations WO2004055174A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP03813174A EP1572988A1 (fr) 2002-12-13 2003-12-12 Composition de milieu de culture, procede de culture, et myoblastes ainsi obtenus, et leurs utilisations
NZ540723A NZ540723A (en) 2002-12-13 2003-12-12 Culture medium composition, culture method, and myoblasts obtained, and their uses
BR0316757-7A BR0316757A (pt) 2002-12-13 2003-12-12 Composições de meio de cultura de célula, processo para a cultura de célula progenitoras e/ou tronco, processo para a produção de mioblastos, população de células, e uso de mioblastos
MXPA05006350A MXPA05006350A (es) 2002-12-13 2003-12-12 Composicion de medio de cultivo, procedimiento de cultivo y mioblastos obtenidos y sus utilizaciones.
AU2003300585A AU2003300585A1 (en) 2002-12-13 2003-12-12 Culture medium composition, culture method, and myoblasts obtained, and their uses
CA002509642A CA2509642A1 (fr) 2002-12-13 2003-12-12 Composition de milieu de culture, procede de culture, et myoblastes ainsi obtenus, et leurs utilisations
US10/538,655 US20060258003A1 (en) 2002-12-13 2003-12-12 Culture medium composition, culture method, and myoblasts obtained, and their uses
JP2004559824A JP2006509516A (ja) 2002-12-13 2003-12-12 培地組成物、培養方法、得られた筋芽細胞、および該細胞の使用方法
IL169115A IL169115A0 (en) 2002-12-13 2005-06-09 Culture medium composition culture method, and myoblasts obtained, and their uses
NO20053357A NO20053357D0 (no) 2002-12-13 2005-07-11 Dyrkingsmedium, dyrkingsmetode og de oppnadde myoblaster og deres anvendelse.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0215827 2002-12-13
FR02/15827 2002-12-13

Publications (1)

Publication Number Publication Date
WO2004055174A1 true WO2004055174A1 (fr) 2004-07-01

Family

ID=32524649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/003691 WO2004055174A1 (fr) 2002-12-13 2003-12-12 Composition de milieu de culture, procede de culture, et myoblastes ainsi obtenus, et leurs utilisations

Country Status (16)

Country Link
US (1) US20060258003A1 (fr)
EP (1) EP1572988A1 (fr)
JP (1) JP2006509516A (fr)
KR (1) KR20050088118A (fr)
CN (1) CN1723277A (fr)
AU (1) AU2003300585A1 (fr)
BR (1) BR0316757A (fr)
CA (1) CA2509642A1 (fr)
IL (1) IL169115A0 (fr)
MX (1) MXPA05006350A (fr)
NO (1) NO20053357D0 (fr)
NZ (1) NZ540723A (fr)
PL (1) PL378334A1 (fr)
RU (1) RU2005122030A (fr)
WO (1) WO2004055174A1 (fr)
ZA (1) ZA200505125B (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900810A1 (fr) * 2006-09-15 2008-03-19 Celogos Methode d'extraction et de selection de cellules
EP2120976A1 (fr) 2007-02-28 2009-11-25 Innovacell Biotechnologie AG Procédés de traitement de l'incontinence anale
EP2284254A1 (fr) 2009-07-28 2011-02-16 Grifols, S.A. Milieux pour la culture de cellules de mammiferes comprenant les surnagenants obtenus a partir des etapes de fractionnement Cohn et leurs utilisations.
EP2397851A1 (fr) 2010-06-21 2011-12-21 Centre d'Etude des Cellules Souches Méthode de sélection des modulateurs de la synthèse de mévalonate en utilisant des cellules dérivées de cellules pluripotentes humaines
RU2576842C2 (ru) * 2014-02-28 2016-03-10 Общество С Ограниченной Ответственностью "Витацел" Способ получения миобластов, использование биоптата десны, препарат миобластов для лечения патологий мышечной ткани и способ его получения
CN117925509A (zh) * 2024-03-25 2024-04-26 山东三链医疗科技有限公司 一种细胞培养替代血清培养液及方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2029771A4 (fr) * 2006-06-12 2010-08-04 Zora Biosciences Oy Procédé diagnostique de la myopathie
JP5240715B2 (ja) * 2006-08-08 2013-07-17 国立大学法人名古屋大学 脂肪組織由来多分化能幹細胞を含有する細胞製剤
US20090042296A1 (en) * 2007-03-16 2009-02-12 Marie Callahan Transfection ready eukaryotic cells
JP2010529888A (ja) * 2007-06-15 2010-09-02 エシコン・インコーポレイテッド 失禁治療のための組織断片組成物
CN101386836B (zh) * 2007-09-12 2010-11-24 北京清大天一科技有限公司 动物细胞培养基干粉组合物、培养基组合物及其制备方法
JP2012029623A (ja) * 2010-07-30 2012-02-16 Bio Link Inc 細胞分離用酵素溶液及び細胞分離方法、並びに膵島分離方法
US20150247856A1 (en) * 2012-09-24 2015-09-03 Innovacell Bioyechnologie Ag Potency assay for skeletal muscle derived cells
JP6343671B2 (ja) * 2013-12-12 2018-06-13 サムスン ライフ パブリック ウェルフェア ファウンデーション トロンビンを利用した幹細胞由来のエキソソームの生成促進方法
WO2015091593A1 (fr) 2013-12-18 2015-06-25 Cytoo Dispositif et procédé pour la normalisation de la différenciation des myoblastes en myotubes
KR101661847B1 (ko) 2014-03-18 2016-09-30 사회복지법인 삼성생명공익재단 줄기세포 유래 엑소좀을 유효성분으로 포함하는 뇌 염증성 질환의 치료용 조성물
KR20220119179A (ko) 2014-06-18 2022-08-26 메디뮨 엘엘씨 N-아세틸시스테인을 포함하는 세포 배양 방법 및 배지
KR101960497B1 (ko) * 2016-05-09 2019-03-21 고려대학교 산학협력단 소변 유래 세포 배양용 배지 조성물
AU2018304618A1 (en) * 2017-07-15 2020-03-05 Aleph Farms Ltd Cultured meat compositions
EP3923718A1 (fr) * 2019-02-13 2021-12-22 TiGenix, S.A.U. Cryoconservation de cellules souches
CN112592890A (zh) * 2020-12-17 2021-04-02 江南大学 一种促进肌肉干细胞增殖的方法
EP4317420A1 (fr) * 2021-03-29 2024-02-07 Hyupsung University Industry-Academic Cooperation Foundation Composition de milieu pour la culture de cellules souches musculaires comprenant de la curcumine longa, de la glysine ou de l'insuline pour la prolifération de cellules souches musculaires
CN114752590B (zh) * 2022-01-14 2023-09-08 江南大学 一种高效且经济的猪肌肉干细胞的分离方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010039050A1 (en) * 1997-06-25 2001-11-08 Luyten Frank P. Serum-free cell growth medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010039050A1 (en) * 1997-06-25 2001-11-08 Luyten Frank P. Serum-free cell growth medium

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BETIGER W J ET AL: "RAPID CLONAL GROWTH AND SERIAL PASSAGE OF HUMAN DIPLOID FIBROBLAST IN A LIPID-ENRICHED SYNTHETIC MEDIUM SUPPLEMENTED WITH EPIDERMAL GROWTH FACTOR, INSULIN, AND DEXAMETHASONE", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, vol. 78, no. 9, 1 September 1981 (1981-09-01), pages 5588 - 5592, XP000606304, ISSN: 0027-8424 *
JIN P ET AL: "RECOMBINANT PLATELET-DERIVED GROWTH FACTOR-BB STIMULATES GROWTH AND INHIBITS DIFFERENT OF RAT L6 MYOBLASTS", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 266, no. 2, 1991, pages 1245 - 1249, XP002247434, ISSN: 0021-9258 *
PINSET C ET AL: "CONTROL OF MYOGENESIS IN THE MOUSE MYOGENIC C2 CELL LINE BY MEDIUM COMPOSITION AND BY INSULIN CHARACTERIZATION OF PERMISSIVE AND INDUCIBLE C2 MYOBLASTS", DIFFERENTIATION, vol. 38, no. 1, 1988, pages 28 - 34, XP002247432, ISSN: 0301-4681 *
UPTON STEVE J ET AL: "Effects of select medium supplements on in vitro development of Cryptosporidium parvum in HCT-8 cells.", JOURNAL OF CLINICAL MICROBIOLOGY, vol. 33, no. 2, 1995, pages 371 - 375, XP001153442, ISSN: 0095-1137 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900810A1 (fr) * 2006-09-15 2008-03-19 Celogos Methode d'extraction et de selection de cellules
WO2008031957A2 (fr) * 2006-09-15 2008-03-20 Celogos Methode d'extraction et de selection de cellules
WO2008031957A3 (fr) * 2006-09-15 2008-07-03 Celogos Methode d'extraction et de selection de cellules
EP2120976A1 (fr) 2007-02-28 2009-11-25 Innovacell Biotechnologie AG Procédés de traitement de l'incontinence anale
EP2120976B1 (fr) * 2007-02-28 2018-08-15 Innovacell Biotechnologie AG Procédés de traitement de l'incontinence anale en utilisant des myoblastes
EP2826854A1 (fr) 2009-07-28 2015-01-21 Grifols, S.A. Milieu de culture de cellules mammifères comprenant un surnageant à partir d'étapes de fractionnement de Cohn et utilisation associée
US8252590B2 (en) 2009-07-28 2012-08-28 Grifols, S.A. Mammalian cell culture media which comprise supernatant from cohn fractionation stages and use thereof
EP2284254A1 (fr) 2009-07-28 2011-02-16 Grifols, S.A. Milieux pour la culture de cellules de mammiferes comprenant les surnagenants obtenus a partir des etapes de fractionnement Cohn et leurs utilisations.
WO2011161611A1 (fr) 2010-06-21 2011-12-29 Centre D'etude Des Cellules Souches Méthode de sélection des modulateurs de la synthèse de mévalonate en utilisant des cellules derivées de cellules pluripotentes humaines
US8759022B2 (en) 2010-06-21 2014-06-24 Centre D'etude Des Cellules Souches Method for selecting mevalonate synthesis modulators using cells derived from human pluripotent cells
EP2397851A1 (fr) 2010-06-21 2011-12-21 Centre d'Etude des Cellules Souches Méthode de sélection des modulateurs de la synthèse de mévalonate en utilisant des cellules dérivées de cellules pluripotentes humaines
US9250231B2 (en) 2010-06-21 2016-02-02 Centre D'etude Des Cellules Souches Method for selecting mevalonate synthesis modulators using cells derived from human pluripotent cells
RU2576842C2 (ru) * 2014-02-28 2016-03-10 Общество С Ограниченной Ответственностью "Витацел" Способ получения миобластов, использование биоптата десны, препарат миобластов для лечения патологий мышечной ткани и способ его получения
CN117925509A (zh) * 2024-03-25 2024-04-26 山东三链医疗科技有限公司 一种细胞培养替代血清培养液及方法

Also Published As

Publication number Publication date
KR20050088118A (ko) 2005-09-01
EP1572988A1 (fr) 2005-09-14
AU2003300585A1 (en) 2004-07-09
US20060258003A1 (en) 2006-11-16
NZ540723A (en) 2008-04-30
RU2005122030A (ru) 2005-12-20
PL378334A1 (pl) 2006-03-20
CA2509642A1 (fr) 2004-07-01
MXPA05006350A (es) 2006-02-08
BR0316757A (pt) 2005-10-25
NO20053357L (no) 2005-07-11
NO20053357D0 (no) 2005-07-11
CN1723277A (zh) 2006-01-18
JP2006509516A (ja) 2006-03-23
ZA200505125B (en) 2006-03-29
IL169115A0 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
WO2004055174A1 (fr) Composition de milieu de culture, procede de culture, et myoblastes ainsi obtenus, et leurs utilisations
US20210309972A1 (en) Brown fat cell compositions and methods
Chandra et al. Generation of pancreatic hormone-expressing islet-like cell aggregates from murine adipose tissue-derived stem cells
Rodeheffer et al. Identification of white adipocyte progenitor cells in vivo
EP1527161A2 (fr) Cellules souches issues de tissu adipeux et cellules differenciees issues de ces cellules
JP5570814B2 (ja) 胃食道病理学を処置するための筋由来細胞ならびにその作成法および使用法
FR2859381A1 (fr) Utilisaton de cellules issues du tissu adipeux pour induire la formation d'un reseau vasculaire fonctionnel
Li et al. Advances in stem cell research for the treatment of primary hypogonadism
WO2001094555A1 (fr) Procede d'obtention de populations cellulaires caracterisees d'origine musculaire et utilisations
WO2020144381A1 (fr) Procede d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain
EP2092057B1 (fr) Utilisation des cellules de la moelle osseuse pour une culture a long terme des cellules des ilots pancreatiques
CN115120600B (zh) 薯蓣皂苷元及其类似物在制备预防或治疗糖尿病药物中的应用
CN114540273B (zh) 一种诱导间充质干细胞向胰岛β细胞分化的方法
US20230279355A1 (en) Method for the in vitro or ex vivo amplification of stem cells of brown or beige adipocytes
Shintani et al. Protocol for isolating adult pituitary stem/progenitor cells in mice
EP3512573B1 (fr) Procédé de préparation d'une composition pour la réparation tissulaire
Li et al. Differentiation of Human Adipose Derived Stem Cells into Leydig-Like Cells with Molecular Compounds
CA2491043A1 (fr) Procede de preparation de cellules souches adultes animales ou humaines et utilisation desdites cellules souches en therapie.
WO2004003181A2 (fr) Procede de preparation de cellules souches adultes animales ou humaines et utilisation desdites cellules souches en therapie.
Chumpon Wilasrusmee et al. Functional Pancreatic Isolated Islets from Cryopreserved Porcine and Human Pancreatic Tissues Based on GLUT2 Receptor Sensitivity
AU2014218470A1 (en) Use of bone marrow cells for long term culture of pancreatic islet cells.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 169115

Country of ref document: IL

Ref document number: 20038A54437

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2509642

Country of ref document: CA

Ref document number: 2003813174

Country of ref document: EP

Ref document number: 2004559824

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/006350

Country of ref document: MX

Ref document number: 378334

Country of ref document: PL

Ref document number: 540723

Country of ref document: NZ

Ref document number: 1020057010749

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2755/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005/05125

Country of ref document: ZA

Ref document number: 200505125

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2003300585

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005122030

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020057010749

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003813174

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0316757

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2006258003

Country of ref document: US

Ref document number: 10538655

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10538655

Country of ref document: US