WO2004052528A1 - Kapazitiver nachweis von gebundenen molekülen - Google Patents

Kapazitiver nachweis von gebundenen molekülen Download PDF

Info

Publication number
WO2004052528A1
WO2004052528A1 PCT/EP2003/013913 EP0313913W WO2004052528A1 WO 2004052528 A1 WO2004052528 A1 WO 2004052528A1 EP 0313913 W EP0313913 W EP 0313913W WO 2004052528 A1 WO2004052528 A1 WO 2004052528A1
Authority
WO
WIPO (PCT)
Prior art keywords
biochip
molecules
array
electrode
electrodes
Prior art date
Application number
PCT/EP2003/013913
Other languages
English (en)
French (fr)
Inventor
Ralph Müller
Original Assignee
Axaron Bioscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axaron Bioscience Ag filed Critical Axaron Bioscience Ag
Priority to AU2003289985A priority Critical patent/AU2003289985A1/en
Publication of WO2004052528A1 publication Critical patent/WO2004052528A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/226Construction of measuring vessels; Electrodes therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00653Making arrays on substantially continuous surfaces the compounds being bound to electrodes embedded in or on the solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • B01J2219/00704Processes involving means for analysing and characterising the products integrated with the reactor apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof

Definitions

  • Biochips are increasingly used for analysis in the field of medicine, genome research or food analysis.
  • the biochips usually consist of a slide on which different types of DNA or RNA oligonucleotides, peptides, proteins, enzymes, etc. are immobilized in separate spots.
  • the spots are arranged in the form of a grid or array, which is why the biochips are also generally referred to as microarrays.
  • Biochips are, for example, hybridization assays, e.g. B. transcription analyzes, usually carried out with the help of appropriately labeled, such as fluorescence-labeled samples. Microarrays are generally suitable for studying affinity reactions.
  • the object of the invention is to simplify the parallel detection of a large number of different biomolecules.
  • the molecules to be detected can be any chemical substances, e.g. B. from combinatorial chemistry or from a substance library for drug screening. As a rule, they are biomolecules of the type mentioned at the beginning, that is to say DNA, RNA, PNA, proteins, enzymes, peptides, tumor markers, etc. These molecules are usually in solution. However, the detection of other molecules is also possible. B. from the gas phase.
  • a fluid is therefore generally understood to mean a flowable substance, in particular a gas or a liquid.
  • molecules are fixed on the top of a substrate on predetermined spots, to which the molecules to be detected can bind.
  • a biochip Such a system is usually called a biochip. This can be done on a flat substrate or on a substrate with a plurality of wells.
  • a well is typically a closed well, a small pot in an array, as found in micro or nanotiter plates.
  • the substrate can be formed from a suitably doped semiconductor material, which also offers the possibility of microstructuring with the usual means.
  • an electrically conductive array of electrodes is selected, the electrodes of which are designed such that they are then arranged essentially above the spots of the biochip when the electrode array is brought into a suitable position (complementary position) to the top of the biochip, whereby by an electrode and a spot of the biochip as a counter electrode
  • Capacitor is formed, the capacitor has a capacitance and the space between the electrode and the spot has a dielectric.
  • the electrodes are individually raised on a substrate by microstructuring.
  • the substrate is formed in integrated circuit technology in such a way that voltages can be applied to the electrodes individually.
  • the electrodes in a flat substrate merely as spatial areas that can be subjected to voltages individually.
  • the electrodes can also be produced by influence when the counter electrode is energized. It is sufficient to drive one side of a capacitor with electrical voltage; on the opposite side, a counterelectrode forms due to the influence, provided that the opposite side is electrically conductive. This then works as a ground electrode. Whether the coated side is controlled or the uncoated side - which will be the rule for practical reasons - or both sides is irrelevant.
  • the molecules to be detected are bound on the electrode or the counterelectrode, on the electrically individually controllable element or not, on raised or recessed microstructured elements, in wells or on a flat substrate.
  • the part on which molecules are bound is referred to as a biochip, the other as an electrode array.
  • a system is also conceivable in which the electrode array simultaneously functions as a biochip, for example when such a system is only opposed to a conductive plate.
  • the fluid with the molecules to be detected is brought into contact with the top of the biochip.
  • the molecules to be detected are bound, provided they are present in the fluid and the physico-chemical boundary conditions for the binding reaction have been met.
  • the electrode array and the top of the biochip are brought together in a complementary position.
  • the biochip will have wells and the electrodes will protrude from the electrode array as small columns.
  • the electrodes are lowered into the wells in a complementary position until they almost touch the bottom of the wells.
  • This distance can be less than 1 ⁇ m, for example 50 nm.
  • the capacitance C of a capacitor is calculated in the textbook case of the plate capacitor according to the formula
  • is the dielectric constant of the substance between the capacitor plates
  • ⁇ Q is the dielectric constant of the
  • Vacuum A is the area of the two opposing plates and d is the distance between the plates.
  • the dielectric constant changes when molecules are bound in the space between the electrodes.
  • the very close merging of the two electrodes thus results in a high sensitivity in the capacitive detection of bound molecules.
  • the sensitivity is sufficient for the detection of a few less bound molecules.
  • a change in the capacitance and / or the dielectric of the interspace of the individual capacitors compared to at least one comparison standard is determined. Determining the change in The capacitance and / or the dielectric can be done in different ways.
  • the capacitance can be determined at a predetermined distance.
  • the dielectric can then be concluded from the capacitance or its change. It is also possible to track the capacitance as a function of the distance between the electrode and the spot. There are then different ways of evaluating the function obtained. In the extreme case that the electrode touches the bound molecules and mechanically compresses it, for example, there will be a deviation from the 1 / d dependence of the capacitance on the distance.
  • the difference or quotient to a reference is considered during the measurement.
  • z. B measurements before the supply of the fluid or measurements on spots that are not coated and therefore do not specifically bind molecules from the fluid. A well that is closed and does not come into contact with the sample can also serve as a reference. It therefore always offers constant conditions, in particular with regard to the dielectric of the substance filling it.
  • each capacitor formed from the electrode and spot must be individual be read out.
  • the electrode array must be suitably designed electronically so that each electrode can be controlled individually for a sequential or parallel reading. It is not necessary that the conductive substrate of the biochip also have an individual address.
  • a localized counter electrode forms in the conductive substrate opposite to the electrode to which voltage is applied.
  • the voltage between the electrode and this counterelectrode created by the influence can be measured as a mass between the electrode and the substrate.
  • the capacitance or the dielectric of the intermediate space can be concluded from this.
  • each system of spot and electrode forms a small capacitor, an array of microcapacitors is obtained overall.
  • the capacities obtained can be output as an array in the form of a capacitive image if appropriately displayed.
  • the chip is then read out by reading out the capacitive image.
  • a substrate which has an array of elevations and depressions, and additionally an electrode array which has an array of projecting electrodes which is complementary to the depressions and which can be inserted in a complementary position in the depressions of the substrate, this results in each of the individual capacitors to a strong concentration of the electric field that is building up on this capacitor alone, without there being any significant crosstalk or stray fields towards other capacitors.
  • spaces of the dimensions of the spots exist between the spots on which binding molecules are immobilized. Typical values for the size of these spots are, for example, 100 ⁇ m. Since the binding reactions with the molecules to be detected are diffusion-limited, the typical lengths beyond which there is no longer any binding are in the range of 10 ⁇ m for the time usually available for the detection. This means that large parts of the spaces between the spots remain unused. It is therefore advisable to partially use these rooms with elevations or small columns. This has several advantages:
  • a cover glass but preferably an electrically insulating film, can be arranged between the biochip and the electrode array.
  • a material with a dielectric constant close to 1 should be selected as the material for the film, so that the measurement of the capacitance or dielectric is not influenced by the film if possible.
  • the film should also be as thin as possible so that the distance between the electrode and the counterelectrode of the capacitor is not unnecessarily increased by the film, which would reduce the sensitivity of the detection.
  • the film should have a thickness in the range of 50 to 500 nm.
  • the arrangement of the film between the biochip and the electrode array has a number of advantages.
  • a biochip with pseudowells is covered by such a film, a liquid is more easily distributed over the entire biochip when it is applied laterally by capillary forces. Such a chip can also be easily rinsed and dried completely.
  • such a film electrically isolates the biochip and the electrode array from one another, so that short circuits cannot occur in one of the capacitors.
  • the film also ensures that the electrode array is not contaminated during the measurement. So that in such a system i. d. R. reused the electrode array formed in semiconductor technology and the biochip as
  • the biochip and / or the electrode array can also be coated with an electrically insulating film.
  • Nitrocellulose for example, is suitable for such a coating on. Coating the biochip and / or the electrode array with nitrocellulose offers a number of advantages.
  • Nitrocellulose is electrically insulating. It thus prevents short circuits between the biochip and the electrode array.
  • nitrocellulose allows DNA molecules to bind to the biochip in a very simple manner.
  • DNA can be bound to nitrocellulose by irradiation with UV light (so-called UV crosslinking).
  • Nitrocellulose itself is a network. UV radiation leads to chemical bonds between the backbone of the DNA and the nitrocellulose.
  • the DNA to be bound can be applied to the nitrocellulose dissolved in a buffer. The DNA bound in this way lies flat on the nitrocellulose coating.
  • the hybridization of a complementary DNA strand leads to an ideal alignment of the dipole moments of the base pairings, namely perpendicular to the surface of the spot, parallel to the electrical field lines between the electrodes of the capacitance measurement. This results in a maximum dielectric constant of the bound molecules.
  • the nitrocellulose can be sprayed on with high pressure and in small quantities using chemicals from silane chemistry.
  • the layers formed in this way are very well fixed on the substrate.
  • 1 shows a schematic representation of a biochip suitable for carrying out the invention
  • 2 shows a schematic illustration of a silicon wafer with a column array
  • FIG. 3 shows a schematic representation of a biochip with a film lying thereon; and
  • FIG. 4 shows a schematic illustration of the capacitive detection.
  • FIG. 1 shows in the upper right part an array 10 of spots 12 on which molecules are immobilized which can selectively bind the molecules to be detected from a solution.
  • An array 14 of rectangular columns 16 is shown in the central region of FIG. 1. Between the pillars 16 are the above-described pseudo-wells 18 which communicate with one another such that the solution can flow to the 'molecules to be detected or a rinsing liquid freely between them.
  • the finished biochip 20 is shown in the lower right area. It arises from the fact that the spots 12 are placed in the pseudowells 18 of the column array 14.
  • the spotting can be done in different ways, for example photolithographically.
  • the spotting for all spots 12 is preferably carried out simultaneously using a stamp which has a multiplicity of projecting capillaries. Each of these projecting capillaries is connected to one Reservoir for the molecules to be applied in the respective spot 12.
  • a stamp can be produced using microstructuring methods, among other things.
  • the thickness of the silicon wafer 22 is 675 ⁇ m including the columns 16.
  • the columns 16 have a height of 10 ⁇ m.
  • the columns 16 have a distance from the center of the column to the center of the column of preferably 300 ⁇ m to the nearest neighbor, measured parallel to the edges of the entire array 14.
  • the column diagonal is in any case smaller than the distance, that is to say smaller than 300 ⁇ m, since otherwise the free flow of solutions between the pseudowells 18 would not be possible.
  • Typical edge lengths of the columns 16 are 10 ⁇ m, 100 ⁇ m, 230 ⁇ m or 280 ⁇ m.
  • the columns are prepared on the silicon wafer 22 using microstructuring processes.
  • a film 26 lies on the biochip 20.
  • the film is electrically insulating and preferably has a thickness between 50 and 500 nm. A thickness of one or a few micrometers is also conceivable.
  • a film made of PET (polyethylene terephthalate), PC (polycarbonate), PEN (polyethylene naphthalene), silicone film or PP (polypropylene) is preferably used.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PEN polyethylene naphthalene
  • silicone film or PP polypropylene
  • Biochips 20 can be applied laterally. Due to capillary forces, the solution is distributed independently over the entire biochip 20.
  • the checkerboard-like pattern of the columns 16 or the column array 14 helps to further close the solution mix thoroughly.
  • the solution can - as indicated on the right of the biochip 20 by the arrow 30 pointing to the right - be easily sucked out of the biochip 20 again or flushed through the biochip 20 with pressure and dried by nitrogen or dried air introduced.
  • the electrode array 32 is shown in the upper area. It consists of an electrically conductive semiconductor substrate 34, on which truncated pyramid-shaped electrodes 36 are formed.
  • the electrodes 36 are formed from the substrate 34 using microstructuring methods.
  • the electrodes 36 are preferably designed as truncated pyramids in order not to tear the foil 26 which may be present in the event of detection.
  • the electrode array 32 has a total height of preferably 675 ⁇ m.
  • the electrodes 36 themselves have a height of 9 or 10 ⁇ m.
  • the substrate 34 contains corresponding dopants
  • the arrow 38 indicates how the electrode array 32 is brought up to the biochip 20 for the capacitance measurement.
  • FIG 4B illustrates the positioning of the electrode array 32 and the biochip 20 during the capacitance measurement.
  • the electrodes 36 are in the pseudowells
  • the biochip 20 was covered by a film 26, the distance between the electrode 36 and the bottom of the Pseudowells 18 essentially determined by the thickness of the film 26.
  • the biochip can first be dried, for example with the aid of nitrogen.
  • the electrodes 36 and optionally the film 26 can be designed such that they lie directly on the bottom of the pseudowells 18 for the capacitance measurement and thereby displace all residues of the solution. The half-open structure of the pseudowells helps here.
  • Electrode array Substrate of the electrode array 32 Electrode Direction of movement of the electrode array 32 for capacitive detection

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Electrochemistry (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Für den Nachweis von Molekülen in einer Lösung wird zunächst ein Biochip (20) gewählt, an den die nachzuweisenden Moleküle binden können. Für den Biochip wird ein elektrisch leitendes Substrat (24) gewählt. Zusätzlich wird ein elektrisch leitendes Array (32) von Elektroden (36) benötigt. Das Elektrodenarray ist in seiner räumlichen Anordnung zu den Spots des Biochips komplementär. Durch jeweils eine Elektrode und einen Spot kann ein Mikrokondensator gebildet werden. Das Elektrodenarray wird nach der Bindungsreaktion auf den Biochip aufgesetzt, wodurch Mikrokondensatoren mit einem minimalen Abstand von Elektrode und Gegenelektrode gebildet werden. Mit Hilfe dieser Mikrokondensatoren wird über eine Änderung der Dielektrizität des Raums im jeweiligen Kondensator bestimmt, ob Moleküle an den betreffenden Spot gebunden haben.

Description

Anmelder in :
Axaron Bioscience AG
Im Neuenheimer Feld 515
69120 Heidelberg
Kapazitiver Nachweis von gebundenen Molekülen
Beschreibung
Gebiet der Erfindung:
In zunehmendem Maße werden Biochips für Analysen im Bereich der Medizin, Genomforschung oder Lebensmittelanalytik eingesetzt . Die Biochips bestehen in der Regel aus einem Objektträger, auf dem in getrennten Spots unterschiedliche Arten von DNA- oder RNA-Oligonukleotiden, Peptiden, Proteinen, Enzymen, etc. immobilisiert sind. Die Spots sind in Form eines Rasters oder Arrays angeordnet, weshalb die Biochips allgemein auch als Microarrays bezeichnet werden. Mit Hilfe dieser
Biochips werden beispielsweise Hybridisierungsassays, z. B. Transkriptionsanalysen, durchgeführt, in der Regel mit Hilfe geeignet markierter, etwa fluoreszenzmarkierter Proben. Microarrays sind allgemein für das Studium von Affinitätsreaktionen geeignet.
Stand der Technik:
Neben den fluoreszenzspektroskopischen Ausleseverfahren für Biochips sind noch weitere Ausleseverfahren bekannt, u. a. Ausleseverfahren, die auf Prinzipien der Elektrotechnik zurückgreifen, also etwa eine Impedanz messen, elektrochemische Parameter bestimmen oder auf Voltametrie oder Polarometrie basieren. Auch sind in einer Reihe von Schriften Nachweisverfahren geschildert, die auf der Messung einer Kapazität beruhen (siehe beispielsweise US 6,440,662, WO 97/34140, WO 00/62047, US 4,072,576, US 5,114,674, WO 87/03095) . Die meisten dieser Lösungen haben sich jedoch als wenig praktikabel erwiesen.
Aufgabe:
Aufgabe der Erfindung ist es, den parallelen Nachweis einer Vielzahl von unterschiedlichen Biomolekülen zu vereinfachen.
Lösung ;
Diese Aufgabe wird durch die Erfindungen mit den Merkmalen der unabhängigen Ansprüche gelöst . Vorteilhafte Weiterbildungen der Erfindungen sind in den Unteransprüchen gekennzeichnet.
Die nachzuweisenden Moleküle können jegliche chemische Substanzen sein, z. B. aus der kombinatorischen Chemie oder aus einer Substanzbibliothek für das Wirkstoffscreening. In der Regel sind es Biomoleküle von der Art, wie sie eingangs erwähnt wurden, also DNA, RNA, PNA, Proteine, Enzyme, Peptide, Tumormarker, usw. Diese Moleküle liegen in der Regel in Lösung vor. Möglich ist jedoch auch der Nachweis anderer Moleküle z. B. aus der Gasphase. Daher wird unter einem Fluid allgemein ein fließfähiger Stoff, insbesondere ein Gas oder eine Flüssigkeit verstanden.
Erfindungsgemäß werden auf der Oberseite eines Substrats auf vorgegebenen Spots Moleküle fixiert, an die die nachzuweisenden Moleküle binden können. Ein solches System wird üblicherweise Biochip genannt. Dies kann auf einem flachen Substrat oder auf einem Substrat mit einer Vielzahl von Wells erfolgen. Ein Well ist typischerweise eine abgeschlossene Vertiefung, ein kleiner Topf in einem Array, wie man sie in Mikro- oder Nanotiterplatten findet.
Für das Substrat wird ein elektrisch leitendes Material gewählt, damit in geeigneter Weise die weiter unten beschriebenen Kondensatoren gebildet werden können. Beispielsweise kann das Substrat aus einem geeignet dotierten Halbleitermaterial gebildet werden, das auch die Möglichkeit der Mikrostrukturierung mit den üblichen Mitteln bietet.
Zusätzlich wird ein elektrisch leitendes Array von Elektroden gewählt, dessen Elektroden derart ausgebildet sind, dass sie dann im wesentlichen über den Spots des Biochips angeordnet sind, wenn das Elektrodenarray in geeigneter Position (komplementäre Lage) an die Oberseite des Biochips herangeführt wird, wodurch durch jeweils eine Elektrode und einen Spot des Biochips als eine Gegenelektrode ein
Kondensator gebildet wird, wobei der Kondensator eine Kapazität und der Raum zwischen Elektrode und Spot eine Dielektrizität hat.
In der Regel werden die Elektroden durch Mikrostrukturierung jeweils einzeln erhaben auf einem Substrat ausgebildet. Dabei wird das Substrat in integrierter Schaltungstechnik derart ausgebildet, dass die Elektroden individuell mit Spannungen beaufschlagbar sind.
Es ist jedoch auch möglich, die Elektroden in einem flachen Substrat lediglich als individuell mit Spannungen beaufschlagbare räumliche Bereiche auszubilden. Die Elektroden können auch durch Influenz erzeugt werden, wenn die Gegenelektrode mit Spannung beaufschlagt wird. Es genügt, eine Seite eines Kondensators mit elektrischer Spannung anzusteuern; auf der gegenüberliegenden Seite bildet sich durch Influenz eine Gegenelektrode, sofern die gegenüberliegende Seite elektrisch leitend ist. Diese arbeitet dann als Massenelektrode. Ob die beschichtete Seite angesteuert wird oder die unbeschichtete - was aus praktischen Gründen die Regel sein wird - oder beide Seiten ist unerheblich.
Ob die nachzuweisenden Moleküle auf der Elektrode oder der Gegenelektrode gebunden sind, auf dem elektrisch individuell ansteuerbaren Element oder nicht, auf erhabenen oder vertieften mikrostrukturierten Elementen, in Wells oder auf einem flachen Substrat, ist letztlich gleich. Begrifflich, jedoch nicht baulich, wird derjenige Teil, auf dem Moleküle gebunden sind, als Biochip, der andere als Elektrodenarray bezeichnet. Denkbar ist auch ein System, bei dem das Elektrodenarray gleichzeitig als Biochip fungiert, etwa wenn einem solchen System lediglich noch eine leitende Platte gegenüber steht .
Ist das System solcherart vorbereitet, wird das Fluid mit den nachzuweisenden Molekülen mit der Oberseite des Biochips in Kontakt gebracht. Dadurch kommt es zur Bindung der nachzuweisenden Moleküle, sofern diese im Fluid vorhanden sind und die physiko-chemischen Randbedingungen für die Bindungsreaktion eingehalten wurden.
Es folgt der eigentliche kapazitive Nachweis der Moleküle. Dazu werden das Elektrodenarray und die Oberseite des Biochips in komplementärer Lage einander angenähert. Typischerweise wird der Biochip Wells aufweisen und die Elektroden werden als kleine Säulen aus dem Elektrodenarray vorspringen. In diesem üblichen Fall werden in komplementärer Lage die Elektroden in die Wells gesenkt bis sie nahezu den Boden der Wells berühren. Dadurch besteht nur ein minimaler Abstand zwischen Elektrode und Gegenelektrode des Kondensators . Dieser Abstand kann weniger als 1 μm betragen, beispielsweise 50 nm.
Die Kapazität C eines Kondensators berechnet sich im lehrbuchmäßigen Fall des Plattenkondensators gemäß der Formel
A
C - ε εn
wobei ε die Dielektrizitätskonstante des Stoffs zwischen den Kondenstorplatten ist, εQ die Dielektrizitätskonstante des
Vakuums, A die Fläche der beiden sich gegenüberstehenden Platten und d der Abstand der Platten ist.
Da die Kapazität eines Kondensators invers proportional zum Abstand der beiden Elektroden ist, ergibt sich für den erfindungsgemäßen Nachweis eine extrem hohe Kapazität. Dies wiederum führt zu einer extrem hohen Empfindlichkeit beim
Nachweis von Änderungen der Dielektrizitätskonstante des Raums zwischen den beiden Elektroden. Die Dielektrizitätskonstante ändert sich, wenn im Raum zwischen den Elektroden Moleküle gebunden werden. Das sehr nahe Zusammenführen der beiden Elektroden bewirkt somit eine hohe Empfindlichkeit beim kapazitiven Nachweis von gebundenen Molekülen. Die Empfindlichkeit reicht für den Nachweis einiger weniger gebundener Moleküle aus .
Zum kapazitiven Nachweis wird eine Änderung der Kapazität und/oder .der Dielektrizität des Zwischenraums der individuellen Kondensatoren gegenüber mindestens einem Vergleichsstandard bestimmt. Die Bestimmung der Änderung der Kapazität und/oder der Dielektrizität kann auf unterschiedliche Weise erfolgen.
Hierzu kann beispielsweise die Kapazität bei einem vorgegebenen Abstand bestimmt werden. Dann kann aus der Kapazität auf die Dielektrizität bzw. deren Änderung geschlossen werden. Auch ist es möglich, die Kapazität als Funktion des Abstands der Elektrode und des Spots zu verfolgen. Es gibt dann unterschiedliche Möglichkeiten der Auswertung der erhaltenen Funktion. In dem extremen Fall, dass die Elektrode die gebundenen Moleküle berührt und mechanisch komprimiert, wird es beispielsweise zu einer Abweichung von der 1/d-Abhängigkeit der Kapazität vom Abstand kommen.
In der Regel wird bei der Messung die Differenz oder der Quotient zu einer Referenz betrachtet. Als Referenz bzw. Vergleichsstandard bieten sich z. B. Messungen vor dem Zuführen des Fluids oder auch Messungen an Spots an, die nicht beschichtet sind und daher keine Moleküle spezifisch aus dem Fluid binden. Als Referenz kann auch ein Well dienen, der geschlossen ist und nicht mit der Probe in Berührung kommt. Er bietet somit stets gleich bleibende Bedingungen insbesondere hinsichtlich der Dielektrizität des ihn füllenden Stoffs.
Es kann auch nützlich sein, Referenzen für bestimmte Abstände auszubilden. Dies kann durch geeignete Erhebungen oder Vertiefungen auf dem Substrat des Biochips oder des Elektrodenarrays erfolgen.
Um eine Vielzahl verschiedener Moleküle nachweisen zu können, wird üblicherweise auf jeden Spot eine andere Art von Molekülen fixiert, die spezifisch eine bestimmte Art von Molekülen aus dem Fluid bindet. Zum differenzierten Nachweis aller dieser verschiedenen Arten von Molekülen muss jeder aus Elektrode und Spot gebildete Kondensator individuell ausgelesen werden. Dazu ist das Elektrodenarray elektronisch geeignet auszulegen, so dass jede Elektrode einzeln angesteuert werden kann für eine sequentielle oder parallele Auslesung. Es ist nicht nötig, dass auch das leitende Substrat des Biochips eine individuelle Adressierung aufweist.
Gegenüber der mit Spannung beaufschlagten Elektrode bildet sich im leitenden Substrat durch Influenz eine lokalisierte Gegenelektrode aus . Die Spannung zwischen Elektrode und dieser durch Influenz entstandenen Gegenelektrode kann zwischen Elektrode und dem Substrat als Masse gemessen werden. Daraus kann auf die Kapazität bzw. die Dielektrizität des Zwischenraums geschlossen werden.
Da jedes System aus Spot und Elektrode einen kleinen Kondensator bildet, erhält man insgesamt einen Array aus Mikrokondensatoren. Die erhaltenen Kapazitäten können bei entsprechender Darstellung als Array in Form eines kapazitiven Bildes ausgegeben werden. Das Auslesen des Chips besteht dann im Auslesen des kapazitiven Bildes.
Aus der bei der jeweiligen Messung bestimmten Änderung wird ermittelt, ob nachzuweisende Moleküle an einzelne Spots des Biochips gebunden sind.
Wird ein Substrat gewählt, welches ein Array von Erhöhungen und Vertiefungen aufweist, und zusätzlich ein Elektrodenarray, das ein zu den Vertiefungen komplementäres Array von vorspringenden Elektroden aufweist, die in komplementärer Lage in die Vertiefungen des Substrats eingeführt werden können, so führt dies in jedem der einzelnen Kondensatoren zu einer starken Konzentration des sich aufbauenden elektrischen Feldes allein auf diesen Kondensator, ohne dass es ein nennenswertes Übersprechen oder Streufelder hin zu anderen Kondensatoren gibt . Auf einem flachen Biochip existieren zwischen den Spots, auf denen Bindungsmoleküle immobilisiert sind, Räume von der Dimensionen der Spots. Typische Werte für die Größe dieser Spots sind beispielsweise 100 um. Da die Bindungsreaktionen mit den nachzuweisenden Molekülen diffusionslimitiert verlaufen, liegen die typischen Längen, jenseits derer es zu keiner Bindung mehr kommt, im Bereich von 10 μm für die üblicherweise für den Nachweis zur Verfügung stehende Zeit. Das heißt große Teile der Zwischenräume zwischen den Spots bleiben ungenutzt. Es bietet sich daher an, diese Räume teilweise mit Erhöhungen oder kleine Säulen auszunutzen. Dies hat mehrere Vorteile:
Zum einen werden damit die ohnehin für die Nachweisreaktion nicht zu nutzenden Zwischenräume zwischen den Spots mit
Material gefüllt, das das für den Nachweis benutzte Fluid verdrängt. Es wird dann weniger Fluid für den Nachweis benötigt .
Zum anderen bildet sich dadurch ein System von Erhöhungen und
Vertiefungen, ähnlich den Wells einer üblichen Mikrotiterplatte . Im Gegensatz zu den üblichen Wells kommunizieren jedoch die gebildeten Vertiefungen derart miteinander, dass ein Fluid frei zwischen ihnen fließen kann. Es handelt sich somit nicht um Wells im eigentlichen Sinne, sondern eher um so genannte Pseudowells.
Durch einen solchen Biochip kann schließlich ein Fluid auch vollständig fließen, ohne dass das Fluid in jede Vertiefung einzelnen pipettiert werden muss. Aufgrund der geringen räumlichen Dimensionen, die die Säulen und Vertiefungen in einem solchen Biochip üblicherweise haben, verteilt sich eine Flüssigkeit aufgrund von Kapillarkräften selbstständig und durch die Rastersieb-artige Struktur gleichmäßig über den Biochip. Zwischen Biochip und Elektrodenarray kann ein Deckglas, vorzugsweise jedoch eine elektrisch isolierende Folie angeordnet werden. Als Material für die Folie sollte ein Material mit einer Dielektrizitätskonstante nahe 1 gewählt werden, damit die Messung der Kapazität bzw. Dielektrizität durch die Folie möglichst nicht beeinflusst wird. Auch sollte die Folie möglichst dünn sein, damit der Abstand zwischen Elektrode und Gegenelektrode des Kondensators durch die Folie nicht unnötig vergrößert wird, wodurch die Empfindlichkeit des Nachweises abnehmen würde. Die Folie sollte eine Dicke im Bereich von 50 bis 500 nm haben.
Die Anordnung der Folie zwischen Biochip und Elektrodenarray hat eine Reihe von Vorteilen.
Wird ein Biochip mit Pseudowells durch eine solche Folie abgedeckt, so verteilt sich eine Flüssigkeit bei lateralem Auftrag durch Kapillarkräfte noch leichter über den ganzen Biochip. Auch kann ein solcher Chip leicht vollständig gespült und getrocknet werden.
Zusätzlich isoliert eine solche Folie den Biochip und das Elektrodenarray elektrisch voneinander, sodass es nicht zu Kurzschlüssen in einem der Kondensatoren kommen kann.
Die Folie bewirkt auch, dass das Elektrodenarray bei der Messung nicht kontaminiert wird. Damit wird in einem solchen System i. d. R. das in Halbleiter-Technik ausgebildete Elektrodenarray wiederverwendet und der Biochip als
Verbrauchsartikel ausgelegt.
Der Biochip und/oder das Elektrodenarray können auch mit einem elektrisch isolierenden Film beschichtet werden. Für eine solche Beschichtung bietet sich beispielsweise Nitrozellulose an. Eine Beschichtung des Biochips und/oder des Elektrodenarrays mit Nitrozellulose -bietet eine Vielzahl von Vorteilen.
Nitrozellulose ist elektrisch isolierend. Sie verhindert somit Kurzschlüsse zwischen Biochip und Elektrodenarray.
Ferner erlaubt eine Beschichtung des Biochips mit Nitrozellulose eine Bindung von DNA-Molekülen an den Biochip in sehr einfacher Weise. Auf Nitrozellulose kann DNA mittels Bestrahlung mit UV-Licht gebunden werden (sog. UV-Vernetzung) . Nitrozellulose selbst ist ein Geflecht. Durch UV-Bestrahlung kommt es zu chemischen Bindungen zwischen dem Backbone der DNA und der Nitrozellulose. Dazu kann die zu bindende DNA in einem Puffer gelöst auf die Nitrozellulose aufgebracht werden. Die solcherart gebundene DNA liegt flach auf der Nitrozellulose- Beschichtung auf. Bei . der Hybridisierung eines komplementären DNA-Strangs kommt es infolgedessen zu einer idealen Ausrichtung der Dipolmomente der Basenpaarungen, nämlich senkrecht zur Oberfläche des Spots, parallel zu den elektrischen Feldlinien zwischen den Elektroden der Kapazitätsmessung. Es ergibt sich dadurch eine maximale Dielektrizitätskonstante der gebundenen Moleküle.
Die Nitrozellulose kann nach Vorbereitung der Oberflächen mit Mitteln der Silan-Chemie mit hohem Druck und in geringen Mengen aufgesprüht werden. Dazu wird eine geringe Menge Nitrozellulose, weniger als 1 μl, einem trockenen Stickstoffstrahl beigemengt. Es ergeben sich dadurch Schichtdicken von weniger als 10 nm, typischerweise zwischen 1 und 100 nm. Die solcherart gebildeten Schichten sind sehr gut auf dem Untergrund fixiert. Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert, die in den Figuren schematisch dargestellt sind. Gleiche Bezugsziffern in den einzelnen Figuren bezeichnen dabei gleiche Elemente. Im Einzelnen zeigt:
Fig. 1 eine schematische Darstellung eines zur Ausführung der Erfindung geeigneten Biochips; Fig. 2 eine schematische Darstellung eines Silizium-Wafers mit einem Säulenarray;
Fig. 3 eine schematische Darstellung eines Biochips mit einer darauf liegenden Folie; und Fig. 4 eine schematische Darstellung des kapazitiven Nachweises .
Fig. 1 zeigt im oberen rechten Teil ein Array 10 von Spots 12, auf denen Moleküle immobilisiert sind, die die nachzuweisenden Moleküle selektiv aus einer Lösung binden können.
Im mittleren Bereich der Fig. 1 ist ein Array 14 von rechteckigen Säulen 16 dargestellt. Zwischen den Säulen 16 befinden sich die eingangs geschilderten Pseudowells 18, die derart miteinander kommunizieren, dass die Lösung mit den ' nachzuweisenden Molekülen oder eine Spülflüssigkeit frei zwischen ihnen fließen kann.
Im unteren rechten Bereich ist der fertige Biochip 20 abgebildet. Er entsteht dadurch, dass in die Pseudowells 18 des Säulenarrays 14 die Spots 12 gesetzt werden. Das Spotten kann auf unterschiedliche Weise erfolgen, beispielsweise photolithographisch. Vorzugsweise erfolgt der Spotten für alle Spots 12 gleichzeitig mit Hilfe eines Stempels, der eine Vielzahl von vorspringenden Kapillaren aufweist. Jede dieser vorspringenden Kapillaren steht in Verbindung mit einem Reservoir für die in den jeweiligen Spot 12 aufzubringenden Moleküle. Ein derartiger Stempel kann u. a. mit Hilfe von Mikrostrukturierungsverfahren hergestellt werden.
Fig. 2 zeigt einen Silizium-Wafer 22 mit einem leitend dotierten Silizium-Substrat 24. Die Stärke des Silizium-Wafers 22 beträgt 675 μm einschließlich der Säulen 16. Die Säulen 16 haben eine Höhe von 10 μm. Die Säulen 16 haben einen Abstand von Säulenmittelpunkt zu Säulenmittelpunkt von vorzugsweise 300 μm zum nächsten Nachbarn, gemessen parallel zu den Kanten des gesamten Arrays 14. Die Säulendiagonale ist in jedem Fall kleiner als der Abstand, also kleiner als 300 μm, da ansonsten das freie Fließen von Lösungen zwischen den Pseudowells 18 nicht möglich wäre. Typische Kantenlängen der Säulen 16 sind 10 μm, 100 μm, 230 μm oder 280 μm. Die Säulen werden auf dem Silizium-Wafer 22 mit Hilfe von Mikrostrukturierungsverfahren präpariert .
Fig. 3 zeigt den Biochip 20 mit den darauf präparierten Säulen 16. Auf dem Biochip 20 liegt eine Folie 26. Die Folie ist elektrisch isolierend und hat vorzugsweise eine Dicke zwischen 50 und 500 nm. Denkbar ist auch eine Dicke von einem oder wenigen Mikrometern. Um die weiter unten im Zusammenhang mit Fig. 4 deutlich werdende erforderliche Elastizität aufzuweisen, wird vorzugsweise eine Folie aus PET (Polyethylenterephthalat) , PC (Polycarbonat) , PEN (Polyethylennaphthalen) , Silikonfolie oder PP (Polypropylen) verwendet. Links des Biochips 20 ist durch einen nach rechts weisenden Pfeil 28 angedeutet, dass die zu untersuchende Lösung auf einer Seite des mit der Folie 26 abgedeckten
Biochips 20 lateral aufgebracht werden kann. Aufgrund von Kapillarkräften verteilt sich die Lösung selbstständig über den gesamten Biochip 20. Das schachbrettartige Muster der Säulen 16 bzw. des Säulenarrays 14 (wie es im mittleren Teil der Fig. 1 zu erkennen ist) hilft dabei, die Lösung weiter zu durchmischen. Die Lösung kann - wie es rechts des Biochips 20 durch den nach rechts weisenden Pfeil 30 angedeutet ist - leicht aus dem Biochip 20 wieder abgesaugt werden bzw. durch den Biochip 20 mit Druck durchgespült werden und durch eingeleiteten Stickstoff oder getrocknete Luft getrocknet werden.
Fig. 4 veranschaulicht den eigentlichen kapazitiven Nachweis. In Fig. 4A, ist im oberen Bereich das Elektrodenarray 32 abgebildet. Es besteht aus einem elektrisch leitenden Halbleitersubstrat 34, auf dem pyramidenstumpfförmige Elektroden 36 ausgebildet sind. Die Elektroden 36 werden aus dem Substrat 34 mit Hilfe von Mikrostrukturierungsverfahren herausgebildet. Die Elektroden 36 werden vorzugsweise als Pyramidenstümpfe ausgeführt, um im Falle des Nachweises die ggf. vorhandene Folie 26 nicht zu zerreißen.
Das Elektrodenarray 32 hat eine Gesamthöhe von vorzugsweise 675 μm. Die Elektroden 36 selbst haben eine Höhe von 9 oder 10 μm. Das Substrat 34 enthält durch die Dotierung entsprechender
Leiterbahnen und die Ausbildung von Schaltungen einen integrierten Schaltkreis, der es ermöglicht, jede Elektrode 36 einzelnen anzusteuern.
In Fig. 4A deutet der Pfeil 38 an, wie das Elektrodenarray 32 für die Kapazitätsmessung an den Biochip 20 herangeführt wird.
Fig. 4B veranschaulicht die Positionierung des Elektrodenarrays 32 und des Biochips 20 während der Kapazitätsmessung. Die Elektroden 36 sind in die Pseudowells
18 eingesunken, so dass sich ein möglichst geringer Abstand zwischen Elektrode 36 und Boden des Pseudowells 18 ergibt. Wurde der Biochip 20 durch eine Folie 26 abgedeckt, so wird der Abstand zwischen der Elektrode 36 und dem Boden des Pseudowells 18 im wesentlichen durch die Dicke der Folie 26 bestimmt.
War das Fluid eine wässrige Lösung, so wird diese vor der kapazitiven Messung entfernt, da die Dielektrizitätskonstante von Wasser mit 81 die Messwerte aller anderen Stoffe überlagern würde . Der Biochip kann dazu zunächst getrocknet werden, beispielsweise mit Hilfe von Stickstoff. Alternativ können die Elektroden 36 und gegebenenfalls die Folie 26 derart gestaltet werden, dass sie für die Kapazitätsmessung unmittelbar auf dem Boden des Pseudowells 18 aufliegen und dadurch alle Reste der Lösung verdrängen. Dabei hilft die halboffene Struktur der Pseudowells.
Bezugszeichen
Array von Spots 12 Spot mit immobilisierten Molekülen Array von Säulen Säule Pseudowell Biochip Silizium-Wafer Substrat des Silizium-Wafers Folie Lösungseinlassrichtung Lösungsauslassrichtung Elektrodenarray Substrat des Elektrodenarrays 32 Elektrode Bewegungsrichtung des Elektrodenarrays 32 für den kapazitiven Nachweis
zitierte Literatur
WO 87/03095 WO 97/34140 WO 00/62047 US 4, 072,576 US 5,114,674 US 6,440,662

Claims

Patentansprüche
1. Verfahren zum Nachweis von Molekülen in einem Fluid mit folgenden Schritten: a) auf der Oberseite eines Substrats (24) werden auf vorgegebenen Spots (12) Moleküle fixiert (Biochip, 20) , an die die nachzuweisenden Moleküle binden können; b) für das Substrat (24) wird ein elektrisch leitendes Material gewählt; c) es wird ein elektrisch leitendes Array (32) von
Elektroden gewählt, dessen Elektroden (36) derart ausgebildet sind, dass sie dann im wesentlichen über den Spots (12) des Biochips (20) angeordnet sind, wenn das Elektrodenarray (32) in geeigneter Position (komplementäre Lage) an die Oberseite des Biochips herangeführt wird, wodurch durch jeweils eine Elektrode (36) und einen Spot (12) des Biochips als eine Gegenelektrode ein Kondensator gebildet wird, wobei der Kondensator eine Kapazität und der Raum zwischen Elektrode und Spot eine Dielektrizität aufweist; d) das Fluid mit den nachzuweisenden Molekülen wird mit der Oberseite des Biochips (20) in Kontakt gebracht; e) das Elektrodenarray (32) und die Oberseite des Biochips (20) werden in komplementärer Lage einander angenähert; f) eine Änderung der Kapazität und/oder der Dielektrizität des Zwischenraums der individuellen Kondensatoren gegenüber mindestens einem Vergleichsstandard wird bestimmt; und g) aus der bestimmten Änderung wird ermittelt, ob nachzuweisende Moleküle an einzelne Spots des Biochips (20) gebunden sind.
2. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass ein Substrat (24) gewählt wird, welches ein Array von Erhöhungen (16) und Vertiefungen (18) aufweist; und dass ein Elektrodenarray (32) gewählt wird, das ein zu den Vertiefungen (18) komplementäres Array von vorspringenden Elektroden (36) aufweist, die in komplementärer Lage in die Vertiefungen (18) des Substrats (24) versenkt werden können. 5
3. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Vertiefungen (18) derart gewählt werden, dass sie miteinander kommunizieren und das Fluid frei zwischen ihnen 10 fließen kann.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Biochip (20) und dem Elektrodenarray (32) 15 eine elektrisch isolierende Folie (26) angeordnet wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Biochip (20) und/oder das Elektrodenarray (32) mit 20 einem elektrisch isolierenden Film beschichtet wird.
6. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass als elektrisch isolierender Film ein Film aus 25 Nitrozellulose gewählt wird.
7. Anordnung zum Nachweis von Molekülen in einem Fluid: a) mit einem Substrat (24) , auf dessen Oberseite auf vorgegebenen Spots (12) Moleküle fixiert sind (Biochip, 20),
30., an die die nachzuweisenden Moleküle binden können, wobei das Substrat im wesentlichen aus einem elektrisch leitenden Material gebildet ist; und b) mit einem elektrisch leitenden Array (32) von Elektroden (36) , dessen Elektroden derart ausgebildet sind, dass sie dann
35 im wesentlichen über den Spots (12) des Biochips (20) angeordnet sind, wenn das Elektrodenarray (32) in geeigneter Position an die Oberseite des Biochips herangeführt wird; c) wobei das Elektrodenarray (32) derart ausgebildet ist, dass die Elektroden (36) des Elektrodenarrays individuell mit einer elektrischen Spannung beaufschlagbar sind.
PCT/EP2003/013913 2002-12-09 2003-12-09 Kapazitiver nachweis von gebundenen molekülen WO2004052528A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003289985A AU2003289985A1 (en) 2002-12-09 2003-12-09 Capacitive detection of bound molecules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10257604.1 2002-12-09
DE2002157604 DE10257604A1 (de) 2002-12-09 2002-12-09 Kapazitiver Nachweis von gebundenen Molekülen

Publications (1)

Publication Number Publication Date
WO2004052528A1 true WO2004052528A1 (de) 2004-06-24

Family

ID=32477505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/013913 WO2004052528A1 (de) 2002-12-09 2003-12-09 Kapazitiver nachweis von gebundenen molekülen

Country Status (3)

Country Link
AU (1) AU2003289985A1 (de)
DE (1) DE10257604A1 (de)
WO (1) WO2004052528A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975810A (zh) * 2010-11-01 2011-02-16 福州大学 复杂样品的高通量检测电极及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005016412A1 (de) * 2005-04-08 2006-10-12 Westfaliasurge Gmbh Vorrichtung und Verfahren zur Überwachung eines Gemelks
DE102005016413A1 (de) * 2005-04-08 2006-10-12 Westfaliasurge Gmbh Melkvorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164319A (en) * 1985-08-22 1992-11-17 Molecular Devices Corporation Multiple chemically modulated capacitance determination
WO1999027367A1 (de) * 1997-11-21 1999-06-03 Meinhard Knoll Vorrichtung und verfahren zum nachweis von analyten

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251955A2 (de) * 1999-12-15 2002-10-30 Motorola, Inc. Biochiparray mit addressierbaren säulen und reihen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164319A (en) * 1985-08-22 1992-11-17 Molecular Devices Corporation Multiple chemically modulated capacitance determination
WO1999027367A1 (de) * 1997-11-21 1999-06-03 Meinhard Knoll Vorrichtung und verfahren zum nachweis von analyten

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975810A (zh) * 2010-11-01 2011-02-16 福州大学 复杂样品的高通量检测电极及其制备方法

Also Published As

Publication number Publication date
AU2003289985A1 (en) 2004-06-30
DE10257604A1 (de) 2004-07-22

Similar Documents

Publication Publication Date Title
DE69824586T2 (de) Probenträger hoher dichte für die analyse biologischer proben
DE102004042729B4 (de) Bio-Chip mit einem Elektrodenarray auf einem Substrat
DE60318313T2 (de) Verfahren und einrichtung zur hochempfindlichen detektion der anwesenheit von dna und weitere sonden
DE10058394C1 (de) Verfahren für die biochemische Analytik und zugehörige Anordnung
DE112015005465B4 (de) Vorrichtung und Verfahren zur Messung von Biomolekülen
EP1789811B1 (de) Biosensor-Anordnung und Verfahren zum Ermitteln eines Sensorereignisses
WO2004048962A1 (de) Integrierte elektronische schaltung mit feldeffekt-sensoren zum nachweis von biomolekülen
DE10049901C2 (de) Vorrichtung und Verfahren zur elektrisch beschleunigten Immobilisierung und zur Detektion von Molekülen
WO2001084150A1 (de) Biochip zur archivierung und labormedizinischen analyse von biologischem probenmaterial
EP1738172B1 (de) Verfahren zur funktionalisierung von biosensor-chips
WO2004052528A1 (de) Kapazitiver nachweis von gebundenen molekülen
DE10136008B4 (de) Verfahren zur Analyse von Makromolekülen und Verfahren zur Herstellung einer Analysevorrichtung
DE10127045C2 (de) Verfahren zum Nachweis einer Substanz und Mikrotiterplatte
DE10122659A1 (de) Biochip-Anordnung
EP2414821B1 (de) Vorrichtung nach art einer elektrochemischen kamera sowie verfahren zur herstellung und verwendung der vorrichtung
EP1573328A1 (de) Bio-chip
EP2243023B1 (de) Vorrichtung und verfahren mit einem sensor-array und mit einem porösen stempel sowie deren verwendung
EP1980854B1 (de) Verfahren und Vorrichtung zur Messung der Konzentration eines in einer zu untersuchenden Probe enthaltenen Liganden
DE10319155A1 (de) Elektrisch auslesbare Bindungen von Analytmolekülen an immobilisierten Sondenmolekülen
DE10051252A1 (de) Bio-Chip
WO2002094442A1 (de) Biosensorchip-dispensier-anordnung und verfahren zum dispensieren einer zu dispensierenden lösung unter verwendung der dispensier-anordnung auf einem biosensorchip
EP1604198A2 (de) Leiterplatte zur elektrochemischen detektion von biomolekülen
DE102008039425B4 (de) Biosensor-Anordnung zur Messung einer elektrischen Eigenschaft einer Anzahl N von elektrischen Widerstandsbauelementen
DE10065278A1 (de) Vorrichtung und Verfahren zur elektrisch beschleunigten Immobilisierung von Molekülen
DE102004006428A1 (de) Vorrichtung zur Durchführung von Untersuchungen an Biokomponenten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP